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Parameter

■ Parameters are useful because they can be redefined on a module 
instance basis. That is, each different instance can have different 
parameter values. This is particularly useful for vector widths.  

■ For example, the following module implements a shifter:  
module shift (shiftOut, dataIn, shiftCount);  
 parameter width = 4;  
 output [width-1:0] shiftOut;  
 input [width-1:0] dataIn;  
 input [31:0] shiftCount;  
 assign shiftOut = dataIn << shiftCount;  
endmodule  

■ This module can now be used for shifters of various sizes, simply 
by changing the width parameter. 



Define Parameter Value

■ There are two ways to change parameter values from their 
defaults, defparam statements and module instance 
parameter assignment.  

The defparam statement allows you to change a module 
instance parameter directly from another module. This is 
usually used as follows:  

 shift sh1 (shiftedVal, inVal, 7); //instantiation 
defparam sh1.width = 16; // parameter redefinition 

Parameter values can be specified in the module instantiation 
directly. This is done as follows:  

 shift #(16) sh1 (shiftedVal, inVal, 7);  
 //instance of 16-bit shift module 



Task and Function

■ Tasks and functions are declared within modules. The 
declaration may occur anywhere within the module, but it 
may not be nested within procedural blocks. The declaration 
does not have to precede the task or function invocation.  

■ Tasks may only be used in procedural blocks. A task 
invocation, or task enable as it is called in Verilog, is a 
statement by itself. It may not be used as an operand in an 
expression.  

■ Functions are used as operands in expressions. A function 
may be used in either a procedural block or a continuous 
assignment, or indeed, any place where an expression may 
appear. 



Task
■ Tasks may have zero or more arguments, and they may be 

input, output, or inout arguments.  

task do_read;  
input [15:0] addr;  
output [7:0] value;  
begin  
 adbus_reg = addr; // put address out  
 adbus_en = 1; // drive address bus  
 @(posedge clk) ; // wait for the next clock  
  while (~ack)  
 @(posedge clk); // wait for ack  
 value = data_bus; // take returned value  
 adbus_en = 0; // turn off address bus  
 count = count + 1; // how many have we done  
end  
endtask 



Function

■ In contrast to tasks, no time or delay controls are allowed in a 
function. Function arguments are also restricted to inputs only. 
Output and inout arguments are not allowed. The output of a function 
is indicated by an assignment to the function name. For example,  
function [15:0] relocate;  
 input [11:0] addr;  
 input [3:0] relocation_factor;  
begin  
 relocate = addr + (relocation_factor<<12);  
 count = count + 1; // how many have we done  
end  
endfunction  

■ The above function might be used like this:     
assign absolute_address = relocate(relative_address, rf);



System Task

■ System tasks are used just like tasks which have been 
defined with the task ... endtask construct. They are 
distinguished by their first character, which is always a 
"$".  

■ There are many system tasks, but the most common 
are:  

$display, $write, $strobe  
$monitor  
$readmemh and $readmemb  
$stop  
$finish 



Example of System Task

■ The $write system task is just like $display, except 
that it does not add a newline character to the output 
string.  

■ Example:  
$write ($time," array:");  
for (i=0; i<4; i=i+1) write(" %h", array[i]); 
$write("\n");  

This would produce the following output:  
110 array: 5a5114b3 0870261a 0678448d 4e8a7776 



System Function

■ Likewise, system functions are used just like 
functions which have been defined with the 
function ... endfunction construct. Their first 
character is also always a "$".  

■ There are many system functions, with the 
most common being:  

$time ($stime)  
$random  
$bitstoreal 



Example of System Function

■ The $time system function simply returns the current 
simulation time. Simulation time is a 64-bit unsigned 
quantity, and that is what $time is assumed to be when 
it is used in an expression.  

■ $stime (short time) is just like $time, except that it 
returns a 32-bit value of time.  

■ Example:  
  

 $display ("The current time is %d", $time);  

 $display ($time," now the value of x is %h", x); 



Conversion Function

$rtoi(real_value)  
Returns a signed integer, truncating 
the real value.  

$itor(int_val) 
 Returns the integer converted to a 

real value.  
$realtobits(real_value)  

Returns a 64-bit vector with the bit 
representation of the real number.  

$bitstoreal(bit_value) 
 Returns a real value obtained by 

interpreting the bit_value argument 
as an IEEE 754 floating point 
number. 

module driver (net_r);  
output net_r;  
real r;  
wire [64:1]  
net_r = $realtobits(r);  
endmodule  
module receiver (net_r);  
input net_r;  
wire [64:1] net_r;  
real r;  
always @(net_r)  
   r = $bitstoreal(net_r);  
endmodule 



XMR

■ Verilog has a mechanism for globally referencing 
nets, registers, events, tasks, and functions called the 
cross-module reference, or XMR. This is in marked 
contrast to VHDL, which rejected the concept.  

■ Cross-module references, or hierarchical references 
as they are sometimes called, can take several 
different forms:  

References to a Different Scope within a Module  
References between Modules  
Downward Reference  
Upward Reference 



Hierarchical Module

■ There is a static scope within each module definition with which one can locate any 
identifier. For example, in the following,  

module A;  
reg x; // 1  
...  
task B;  
reg x; // 2  
  begin  
  ...  
    begin: C  
    reg x; // 3  
    ...  
    end  
  end  
endtask 

initial  
begin: D  
  reg x; // 4  
  ...  
end  
endmodule



Reference to Scopes within Module

■ there is a module, a task, and two named 
blocks. There are four distinct registers, 
each named x within its local scope.



Coding Styles



Memory

■ The following are examples of memory 
declarations. 
reg [7:0] memdata[0:255];// 256 8-bit registers 
reg [8*6:1] strings[1:10];// 10 6-byte strings 
reg membits [1023:0];// 1024 1-bit registers 

■ The maximum size of a memory is 
implementation-dependent, but is at least 
2^24 (16,777,216) elements. 



Access to Memory

■ A memory element is accessed by means of a memory index 
operation. A memory index looks just like a bit-select: 
 mem[index] 

■ Another limitation on memory access is that you can't take a 
bit-select or part-select of a memory element. Thus, if you 
want to get the 3rd bit out of the 10th element of a memory, 
you need to do it in two steps:  
reg [0:31] temp, mem[1:1024];  
...  
temp = mem[10];  
bit = temp[3];



Finite State Machine

■ There are two common variations of state machines, 
Mealy and Moore machines.  

■ Mealy machines produce outputs based on both current state and input.  
■ Moore machines produce outputs based only on the current state. As 

you would expect, the Verilog representation of the two types is very 
similar.  

■ Typically, the clock is used to change the state based on 
the inputs which have been seen up to that point. It is 
often convenient to think of all the activity of the state 
machine as taking place on the clock edge:  

■ sample inputs  
■ compute next state  
■ compute outputs  
■ change state  
■ produce outputs 



Finite State Machine

■ Finite state machines are one of the common types 
of logic designed using Verilog. There are several 
ways to represent them:  

■ Implicit  
■ Explicit  

■ State machines always have inputs, a state variable 
or set of variables (sometimes called a state vector), 
and a clock. The clock does not have to be periodic, 
but there must be some strobe signal which indicates 
when the state transition decision should be made. 



Implicit Coding

 An implicit FSM is 
simply one whose 
state encoding is 
done by means of 
procedural code. In 
essence, the 
program counter is 
the current state 
variable. 



Explicit Coding

 Representing FSMs 
explicitly is a better 
style than implicit 
coding, both because 
the code maps well to a 
state transition table 
and also because 
explicit representation 
is synthesizable. 



Explicit Coding

 The following is an 
example of using an 
always block for next 
state logic. This style 
is probably more 
common, but it is 
really no different 
than the first version.



Pipeline

■ Pipelines, queues, and FIFOs are common 
logic structures which are all related, in the 
sense that data moves from one storage 
location to another synchronously, based 
on a strobe signal, usually a clock. 



Pipeline Coding

module pipeline (out, in, clock);  
output out;  
input in, clock;  
reg out, pipe[1:2];  
always @(posedge clock)  

begin  
out = pipe[2];  
pipe[2] = pipe[1];  
pipe[1] = in;  
end  

endmodule  

■ This code works fine. The only potential problem is that out changes value on 
the clock edge, so whatever takes it as an input may get the wrong value. 



Pipeline Coding

■ A better version would be to use a non-blocking assign:  

always @(posedge clock)  
begin  
out <= pipe[2];  
pipe[2] <= pipe[1];  
pipe[1] <= in;  
end  

■ Note that with the non-blocking assign, the order of the 
assignment statements is irrelevent. 



Pipe Stage as Separate Module

 It is common to 
make a single 
pipe stage 
module and use it 
repetitively, as 
follows: 



Combinational Logic in Pipeline

 It is more interesting if 
there is some 
combinational logic 
associated with each pipe 
stage. Suppose each stage 
has some logic 
represented by a function 
f1, f2, f3 which is applied to 
the input. 



Race Condition

■ The implication of all this is that you had better not write 
Verilog code which has a different result depending on the 
order of execution of simultaneous, unordered events. This 
is known generally as a race condition, and it occurs when 
one event samples a data value, another event changes 
the data value, and the two events are unordered with 
respect to each other. 

■ Example: 
 always @(posedge clock) dff1 = f(x);  
 always @(posedge clock) dff2 = dff1;  
■ This attempt at a pipeline doesn't work, because the value 

of dff2 may be either the old or the new value of dff1


