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INPUTVoltage

Jeff Child

I t’s clear that Bluetooth technology has become 
part of our everyday modern lives. When I say 
“our” I mean mostly other people. As an old 
curmudgeon, I’m still quite attached (literally) to 

the wired headphones that I use daily. I’ll eventually 
make the shift, I’m sure. My daughter has a winter 
hat with Bluetooth headphones built in and that seems 
pretty cool. Bluetooth was slow to reach me in the 
automotive side of life as well—and that’s because I’m 
not a car person.

I’ve noticed throughout my life is that there’s a distinct 
difference between someone who is a “car person” or 
“not a car person.” I am most definitely am a “not.” Car 
people seem to get excited about choosing and buying 
a new vehicle and have a keen interest in the different 
models and brands—and can easily identify them. But 
that’s never been me. That’s probably why our two family 
cars are a 1997 model and a 2005 model. Because we 
have teenage drivers now, last year we added a third 
car—a used 2010 model. Of course, none of the three 
have embedded Bluetooth technology. 

While I’m indifferent about cars themselves, I do 
care about being able to play music from my phone 
in the car. Until a few years back, I was among the 
last people on the planet that had used one of those 
audio jacks that plays from a car’s tape cassette deck. 
Now all three of our cars have one of those aftermarket 
Bluetooth transmitters that plug into the car’s cigarette 
lighter socket. (Can I still call them that?) Every time 
the car is started, the transmitter, through the car’s 
speakers, says: “Bluetooth connected. The voltage is 
normal” and in an embarrassingly loud voice. That’s my 
daily reminder that Bluetooth is alive and among us.

Covering Internet of Things (IoT) technologies in 
recent years, Bluetooth—and Bluetooth Low Energy 
(BLE) in particular—is most definitely front and center 
of any discussion of chips and connectivity. Bluetooth 
is on track to be as much of a machine-to-machine 
wireless interconnect technology as it’s been an end 
user, consumer wireless solution.

For its part, the Bluetooth Special Interest Group 
(SIG) continues to expand the capabilities for Bluetooth 
with new features and subsets. In January, for example, 
the SIG announced a direction finding feature that allows 
devices to determine the direction of a Bluetooth signal. 
This capability is expected to enable the development 
of Bluetooth proximity solutions that can understand 

device direction as well as Bluetooth positioning 
systems that can achieve down to centimeter-level 
location accuracy.

According to the Bluetooth SIG, Bluetooth location 
services solutions generally fall into two categories: 
proximity solutions and positioning systems. Proximity 
solutions currently use Bluetooth to understand when 
two devices are near each other, and approximately 
how far apart. They include item finding solutions such 
as personal property tags, as well as point-of-interest 
(PoI) information solutions like proximity marketing 
beacons. By including the new direction-finding feature, 
Bluetooth proximity solutions can add device direction 
capability. As an example, an item finding solution could 
not only let a user know when a personal property tag 
is nearby, but also in what direction.

Meanwhile, positioning systems use Bluetooth to 
determine the physical location of devices and include 
real-time locating systems (RTLS). This includes those 
used for asset tracking, as well as indoor positioning 
systems (IPS)—like those for indoor wayfinding. Today’s 
Bluetooth positioning systems can achieve meter-level 
accuracy when determining the physical location of a 
device. But when you add the new the direction finding 
feature, these positioning systems could improve their 
location accuracy down to the centimeter-level. The 
direction finding feature is included in version 5.1 of 
the Bluetooth Core Specification, which is available to 
developers on the Bluetooth SIG website. In addition, 
Launch Studio, the Bluetooth SIG tool used to qualify new 
products, has been updated to support this feature.

In so many ways, Bluetooth technology is an on-going 
success story that’s still being written. I look forward to 
the day when Bluetooth direction finding will point me 
toward where I left my headphones. 

“The Voltage is Normal”
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T ouch sensing was first implemented 
using resistive sensing technology. 
But resistive sensing had a number 
of disadvantages, including low 

sensitivity, false triggering and shorter 
operating life. All of that discouraged its use 
and led to its eventual downfall in the market.

Today whenever people talk about touch 
sensing, they’re usually referring to capacitive 
sensing. Capacitive sensing has proven to be 
robust not only in a normal environmental use 
cases but also underwater, thanks to its water-
resistant capabilities. As with any technology, 
capacitive sensing comes with a new set of 
disadvantages. These disadvantages tend 
to more application-specific. That situation 

opened the door for the advent of inductive 
sensing technology.

In this article, we’ll discuss capacitive 
sensing for embedded applications and how 
it can be used in various applications. We 
will then explore the use of inductive sensing 
in embedded products and why inductive 
sensing is preferred over capacitive sensing 
in some use cases. Finally, we’ll compare 
the advantages of inductive sensing over 
capacitive sensing in these applications.

CAPACITIVE SENSING FOR 
EMBEDDED

Capacitive sensing operates on the principle 
of monitoring the change in parasitic capacitance 
due to a finger touch (Figure 1). Capacitive 
sensing has been used primarily in two different 
forms: self-capacitance and mutual-capacitance. 
In self-capacitance mode, the net capacitance 
due to a finger touch and board capacitance 
is additive. This capacitance includes PCB 
traces and PCB materials like FR4, which has 
more capacitance compared to Flex materials 
and many similar dielectrics. Self-capacitance 
mode is useful in general touch application like 
buttons for touch-and-respond applications. In 
contrast, mutual capacitance is well-suited for 
applications involving more complex sensing 
such as gestures, multi-touch and sliders.

Mutual capacitance sensing uses 
two different lines: TX(Transmitter) and 
RX(Receiver). The Transmitter sends a PWM 
signal with respect to the system VDD and 
GND. The Receiver detects the amount of 
charge received on the RX electrode.

One of the difficult use cases of capacitive 
sensing is that it cannot operate perfectly 

FIGURE 1
Capacitive sensing technique

Touch sensing has become an indispensable technology across a wide range 
of embedded systems. In this article, Nishant discusses capacitive sensing and 
inductive sensing, each in the context of their use in embedded applications. He 
then explores the trade-offs between the two technologies, and why inductive 
sensing is preferred over capacitive sensing in some use cases.

Touch Trade-Offs

By 
Nishant Mittal

Capacitive vs. Inductive Sensing
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underwater. It also requires relatively strict 
design guidelines to be followed for error-free 
operation. Capacitive sensing performance 
is also impacted by nearby LEDs and power 
lines on PCBs. Implementing auto-tuning with 
variation in trace capacitance, variation in 
capacitive sensing buttons and different slider 
sizes and shapes all require different designs. 
Implementation challenges in industrial 
applications include using capacitive sensing 
with thicker glass material (display glass) 
and meeting capacitive sensor sensitivity 
requirements with those types of materials. 

INDUCTIVE SENSING FOR 
EMBEDDED

Inductive sensing enables the next-
generation of touch technology in applications 
involving metal-over-touch use cases such as 
in automotive, industrial and many embedded 
and IoT applications. Inductive sensing is 
based on the principle of electromagnetic 
coupling, between a coil and the target 
(Figure 2). When a metal target comes closer 
to the coil, its magnetic field is obstructed 
and it passes through the metal target before 
coupling to its origin. This phenomenon 
causes some energy to get transferred to the 
metal target—referred to as eddy current—
that causes a circular magnetic field. Eddy 
current induces a reverse magnetic field, in 
turn leading to a reduction in inductance.

 To cause the resonant frequency to occur, 
a capacitor is added in parallel to the coil to 
cause the LC tank circuit. As the inductance 
starts reducing, the frequency shifts upward 
changing the amplitude throughout. In contrast 
to a capacitive sensor, inductive sensing is able 
to operate reliably in the presence of water 
thanks to the removal of a dielectric from the 
sensor. This advantage brings inductive sensing 
touch sensing to a wide range of applications 

that involve liquids such as underwater 
equipment, flow meters, RPM detection, medical 
instruments and many others. Inductive 
sensing also supports biomedical applications. 
In general applications, inductive sensing 
enables replacement of mechanical switches 
and proximity sensing of metal objects. For 
example, in automotive applications, inductive 
sensing can be used to replace mechanical 
handles as well as detect car proximity. Some of 
these examples will be discussed in detail later.

Currently, the primary design challenge 
for implementing inductive sensing is 
designing coils with 100% production yield 
where inductive trace spacing is very narrow, 

FIGURE 2
Inductive sensing technique [1]
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such as using 4-mil spacing. There is also 
the consideration of meeting inductive values 
with variations in PCB laminate materials.

USE CASES FOR EACH METHOD
Capacitive sensing is undeniably useful in 

a great many applications. However, for certain 
use cases inductive sensing offers greater 
reliability, ruggedness and usability.

Consider the use case of a Bluetooth speaker 
that needs to be water resistant and is intended 
for use in up to 2’ underwater for half an hour. 
This use case requires more than just that 

the product is functional underwater. It also 
requires that the user can adjust the speaker in 
these circumstances. Such operation needs to 
be simple, consistent and reliable—even in the 
presence of water.

With capacitive sensing, such operation 
is partially possible using mutual capacitive 
sensing employing complex shielding 
techniques. However, the device would offer a 
less than ideal user experience. For example, 
there would be inconsistent responsiveness 
from the touch interface. Due to changes in the 
dielectric introduced by the presence of water, 
its responsiveness would not be consistent with 
how the device operates when it is used out of 
water 

For this application, metal-over-touch using 
inductive sensing would provide a consistent 
and reliable user performance (Figure 3). 
Alternatively, a mechanical button and/or dial 
could be used. However, a mechanical interface 
is costly compared to a coil printed on a PCB 
and connected to a few passive components. 
Additionally, a mechanical button can break or 
fail, providing a much shorter useable lifespan 
than an inductive button would.

Consider another use case employing 
proximity sensing: A vehicle detection system 
needs to monitor when another vehicle 
approaches within two meters and signal the 
driver on the dashboard or navigation panel. 
This functionality can be implement using 
inductive sensing. A hardware board containing 
multiple coils at different locations using a 
flex cable—all around the dashboard—can be 
designed around the four corners and center 
of the headlight areas (Figure 4). Data from 
the inductive coils is collected by an inductive 
sensing controller such as the PSoC 4700S from 
Cypress Semiconductor. The controller would 
then analyze the data to determine the presence 
or absence of other cars in a 4 m vicinity around 
the vehicle.

Capacitive sensing could also be used for 
vehicle proximity sensing. Inductive sensing is 
rugged, environment-independent, and easy to 
design and develop from an engineering point 
of view. In addition, little tuning is required to 
achieve the desired closed loop for a particular 
application.

Note: The controller need not be placed 
far away from the coils to improve signal-to-
noise ration (SNR). Individual controllers can 
be used to optimize the design. The block 
diagram mentioned in Figure 4 is a principle 
representation.

COMPARATIVE APPROACH
In general, designing an inductive sensor 

is fairly straightforward (Figure 3). A typical 
inductive sensor requires one or more inductive 
coils, as determined by the requirements of the 
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FIGURE 4
Using inductive sensing to determine vehicle proximity in an automotive application.

FIGURE 5
Inductive sensor block diagram

For detailed article references and additional resources go to:
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application. The sensor needs to be interfaced to 
the controller using suitable drivers or controllers 
to be understood by the microcontroller. This 
interface can be implemented using external 
components. However, to reduce system design 
and manufacturing complexity, some inductive 
controllers integrate driver and converter 
circuitry to convert inductive sensor data into 
raw counts which can then be processed using 
suitable algorithms. To learn more about the 
techniques involved in designing the circuitry 
around inductive sensing and controller check 
out Cypress’ Inductive Sensing Evaluation Kit 
product page [2].

To program the inductive sensing controller, 
we need a suitable programmer—either on 
board or using external programmers. You 
need to decide the maximum power to be 
provided. Here we have shown the system at 
3.3 V, however one can range from 1.8 V to 
5 V. Next, all the interfaces in the design—like 
LEDs, motor drivers and so forth—need to be 
decided and placed accordingly. Figure 5 shows 
the system level block diagram of an inductive 
sensing board.

Figure 6 shows the design flow involved 
in a typical inductive sensing application. 
First, assess how sensitive the system needs 
to be. Sensitivity determines the coil size 
and its number of turns. The application also 
impacts the shape of the coil. For example, a 
slider interface requires a series of squares 
or an elongated rectangle. The next step is to 
calculate the tank capacitor and the inductance 
based on the number of turns, spacing, width 
and diameter. To understand the detailed steps, 
refer to Cypress’ Inductive Sensing Design 
guide [3].

Capacitive Sensing on the other hand requires 
measurement of theoretical capacitance with 
the required dielectric constant. During the 
layout, the designer is required to follow 
strict layout guidelines like ground shielding—
CapSense traces have to have equal length for 
constant Cp and so forth. For more details on 
CapSense design, refer to Cypress’ CapSense 
Design Guide [4].

Once these parameters are decided, the 
next step is to begin the mechanical design, 
specifically the overlay—also known as the metal 
target. An overlay comprises two materials 
whose specifications need to be decided: the 
metal target and the adhesive. The metal target 
material determines the amount of deflection 
and response. I recommend using an aluminum 
overlay for inductive sensing application 
because of its better deflection and response. 
For button applications, a higher Newton force 
on the overlay causes deflection throughout the 
overlay, leading to undesirable false triggering 
throughout the coils. For this use case, the user 
should only be able to press the buttons just 

enough to generate feedback. Pressing the 
overlay harder can even deform the overlay. 
Once all these things are intact, the board is 
designed and fabricated. The advantage of 
PSoC Creator IDE is it provides a user-friendly 
Inductive Sensing Tuner GUI which can be used 
by designers to serve their design needs.

Both capacitive and inductive sensing enable 
OEMs to build intuitive, touch-based user 
interfaces to make their products more 
intuitive and easier to use. Because of its 
versatility, capacitive sensing has become the 
technology of choice in a great many 
applications. However, for applications where 
water tolerance is required, inductive sensing 
provides a robust and cost-effective 
alternative. 
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W e challenged ourselves to 
build a system using the 
PIC32 microcontroller (MCU) 
from Microchip Technology 

that could track stock prices in real time and 
display them. The goal was to create a PIC32 
system that connects to the Internet and can 
work as a server/client to perform several 
functions and eventually serve as a central 
home hub. The system can be easily modified 
to fetch and display any kind of data from the 
Internet, as long as there is an API for it.

The rationale behind this project was that 
there are few libraries or applications of the 
PIC32 using the Espressif Systems ESP8266. 
Both the chips individually are highly capable, 
inexpensive and can be used for even large-
scale manufacturing. We wanted to create 
a prototype PIC32 system that has Internet 
connectivity and can be easily extended 
to perform a multitude of things. We used 
“Protothreads”, a lightweight threading 
library created by Adam Dunkels [1], to make 
our system efficient and capable of handling a 
variety of tasks simultaneously.

SYSTEM DESIGN
The system works as a TCP server that 

connects to a Python Client and fetches real-

time stock information for any company the 
user inputs. The input is a 12-digit keypad 
that works like a cell phone keyboard. The user 
inputs the stock symbol for a company, and 
the system displays the stock price on an LCD 
monitor, along with the corresponding arrows 
for increase or decrease in price relative to 
the last fetch. A high-level block diagram for 
our system design is given in Figure 1. In 
essence, we first wait for the Python Client to 
connect to the server. Until this happens, the 
server remains idle. The user can then input 
a stock symbol using the keyboard at any 
time, which triggers an API call. The display 
is then updated with the price of the stock, 
and refreshes automatically every 5 seconds.

We made use of Sean Carroll’s Development 
Board, which contains a TFT LCD, the PIC32 
MCU, several peripheral pins and support for 
a port expander. We connected the ESP8266 
transmit and receive pins to RA1 and RB10, 
respectively, on the PIC, as these pins 
support UART. We used UART channel 2 for 
communication with the ESP8266. The LCD 
communicates with the PIC via SPI channel 1 
on pin SCK1.

To use the 12-digit keyboard, we made use 
of a port expander. This allowed us to wire 
the keyboard to a series of seven consecutive 

With today’s technology, even simple microcontroller-based devices can 
fetch and display data from the Internet. Learn how these two Cornell 
students built a system that can track stock prices in real time and display 
them conveniently on an LCD screen. For the design, they used an Espressif 
Systems ESP8266 Wi-Fi module controlled by a Microchip PIC32 MCU.

Market Matador

By David Valley and Saelig Khattar

PIC32 Tames Real-Time
Stock Monitoring
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pins on the PIC, which helped us to write 
more concise code. Additionally, by using the 
port expander, we were able to refer to Bruce 
Land’s sample code [2], which helped serve 
as a template for writing a bitmask lookup 
table. The keyboard worked by reading bits 
on pins RY0-RY6, which were the seven pins 
used by the port expander. They were then 
compared against the entries in the bitmask 
lookup table. This is how readings were made 
by our keyboard thread, which we discuss 
further in a later section of this article. The 
hardware schematic is shown in Figure 2. 
A link to a more detailed diagram of Sean 
Carroll’s Development Board is available on 
the Circuit Cellar article materials webpage. 
We did not use external resistors for pins RY4-
RY6, because the port expander has internal 
pull up resistors that we enabled in software. 
The bit readings for these three pins were 
then active low, so we inverted our logic to 
correctly register key presses.

SYSTEM COMMUNICATION
You can program and communicate with 

the ESP8266 Wi-Fi Module using AT Commands. 
Numerous AT Commands for this module are 
provided in the ESP8266 datasheet. See the 
Circuit Cellar article materials webpage for 
the link. We sent AT commands from the 
PIC32 to the ESP module using UART Serial 
communication. We would send strings (or 
rather, character arrays) from the PIC32 to 
the ESP module containing the AT Command, 
and would await a response on the receive 
line of the PIC.

The ESP communicated with our Python 
Client (independent of OS) via a socket 
connection. The client connected to the 
module at its IP address on port 333 (the 
default when the ESP module is set up as a 
server). The ESP module sent this client our 

custom commands based on user input on the 
keypad. The client received these commands, 
retrieved the necessary information (described 
in the next section), and sent this information 
back over the socket connection. The socket 
communication client side was handled by the 
standard Python socket library.

Next, our Python Client communicated 
with the Intrinio Web API using HTTP GET 
Requests. Based on the command it received 
from the ESP, the client made the necessary 

FIGURE 2
Hardware schematic. The row of 
connections at the bottom are the 
interfaces to Sean Carroll's Large 
Development Board PIC32MX25F128B.

FIGURE 1
Shown here is a high-level block 
diagram of our system for tracking 
stock prices in real time.
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GET request, formatted the response, and 
sent it back to the ESP module. The GET 
requests were formatted based on the API 
requirements, and contained our Intrinio API 
key. On an API call, Intrinio returned a JSON 
string with the necessary information. The 
client then parsed this JSON string to get the 
stock price. The overall communication of our 
project is shown in Figure 3.

SOFTWARE THREAD STRUCTURE
Our software for this project consisted 

of three distinct threads: a main thread, one 
to set up the ESP module and one to handle 
keyboard input. We also had a function to 
make an API call from the PIC MCU.

Main Thread: To make the software design 
more structured and the software workflow 
clearer, we developed a “main” protothread. 
This thread first spawned the ESP Init thread, 
and then waited for a connection from our 
client, blocking the rest of the system until 
this requirement was satisfied. Once it had 
detected the client had connected, it would 
then check to see if a stock symbol had been 
entered. If so, it made an API call which 
updated the corresponding stock price on the 
LCD in real time.

ESP Init Thread: To set up the ESP module, 
we had to send it various AT commands before 
we began to use it in our application. To check 
if the module worked, simply sending it “AT” 
via serial—which can easily be done using 
Putty or the Arduino Serial Monitor—and 
receiving the string “OK” verified its proper 
operation. Next, we reset the module, using 

“AT+RST” to ensure any previous settings 
would not interfere with our current setup.

Once we ensured the module worked 
and was reset, the next step was to connect 
the module to a Wi-Fi network. We used 
RedRover, a free Wi-Fi network available at 
Cornell University. To connect this module to 
RedRover, we first registered the device with 
Cornell IT, and then sent the AT command 
“AT+CWJAP_DEF=RedRover” to the module. 
It should be noted that RedRover does not 
require a password to join the network, but 
the AT Command can accept a password 
argument. After it was connected, we got the 
IP address of the module using “AT+CIFSR.” 
Next, we enabled the ESP module to have 
multiple connections using “AT+CIPMUX=1” 
and configured the ESP module as a server 
using “AT+CIPSERVER=1”. This thread sent 
this series of AT commands, and was spawned 
once at system start.

Keyboard Thread: Our keyboard thread 
works by reading bits from pins RY0-RY3 on 
the port expander (which map to horizontal 
rows of the keyboard) on the PIC, and then 
the bits from RY4-RY6 (which map to vertical 
columns). The bit readings from these two 
groups are then ORed together and the value 
compared against a lookup table, which we 
defined locally in our thread. We would have 
used a different set of pins RA0-RA3 and RB7-
RB9 on the PIC32. However, due to a usage 
conflict with other pins on the ESP module, we 
used a port expander.

We could not use a series of seven 
consecutive pins on the MCU outright, due to 
these conflicts with the ESP. Merely swapping 
single pins where conflicts existed would mean 
different bit masks and subsequently produce 
different values when the row and column 
values were ORed together. These would not 
match any of the lookup table entries. One 
solution to this problem was to manually 
calculate the expected values from these OR 
operations and create a new bitmask lookup 
table. However, we felt a cleaner solution 
involved using the port expander. For this, 
we referred to the example code in [2], which 
initialized and set up the port expander and 
the main keypad scanning logic.

To translate keypad number presses 
to letters, we made use of a large case 
statement. We had 27 cases—one for each 
letter of the alphabet, plus an additional space 
character. In our logic, once the pound sign 
was pressed, which worked as our “enter“’ 
button, the current value in a running buffer 
was passed as the argument to this case 
statement. The letter corresponding to the 
numbers in the buffer was then stored in a 
second ticker symbol buffer. Once a total of 
four characters (which is the maximum length 

FIGURE 3
Communication from PIC to cloud

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
References [1] through [3] as marked in the article can be found there
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for an NYSE stock symbol) had been input, the 
buffers reset, and an API call was made using 
that ticker. The keypad thread continuously 
checked if any input had been received from 
the keypad.

Reading and Sending via UART: API Call: 
Reading and Sending messages via UART 
between the PIC32 chip and the ESP Wi-Fi 
Module was tricky. To do these things, we 
used the function DMA_PutSerialBuffer 
provided by [3] and a heavily modified 
version of GetSerialBuffer. The DMA_

PutSerialBuffer function sent the string 
placed in PT_send_buffer through UART 
to the ESP module using DMA one byte at 
a time. Modifying the GetSerialBuffer 
function was tricky, because we could not 
find any documentation on how the ESP 
module responses were terminated. After 
experimenting, we concluded that most 
responses terminated with a ‘\n’ (new 
line) and ‘\r’ (carriage return) character in 
succession. We read up to 200 characters 
from the buffer (which was slightly more than 
the largest response we expected to receive), 
and stopped reading as soon as we saw that 
terminator. As each character was read, it was 
put into a character array that could be used 
by other functions. At the beginning of this 
function, we also cleared all UART2 errors.

Unfortunately, this method did not work 
for receiving stock price responses, which 
was the most important function of our 
project. To implement this task, we created 
a separate function, called APICall(), 
which was responsible for sending a custom 
command to the ESP via serial, based on 
the stock ticker entered on the keypad. The 
stock price was returned and displayed with 
its symbol and a triangle to indicate how the 
price instantaneously changed on the TFT 
LCD. To receive stock price responses, we 
read a preset number of characters from the 
buffer, instead of relying on a terminator. This 
was feasible because the response containing 
the stock price was always the same number 
of characters. We then parsed this response 
to get only the stock price, so we could display 
it and compare it with the last price.

RESULTS AND CONCLUSION
In conclusion, we finished with a reliable 

framework for making API calls to financial 
data servers. The latency for a call was 
roughly 1 s. The stock prices were updated 
every 10 s (manually set to avoid spamming 
the API services and reaching the daily call 
limit), provided we left the PIC running 
without requesting a different stock quote. 
Initial configuration of the chip took about 
2 s, meaning our system had relatively small 
startup costs and could make quick and 
accurate updates in real time. Additionally, 
stock prices were reported to two decimal 
points accuracy.

Figure 4 shows some of the results. 
Overall, the results of the project met our 
expectations, despite various complexities 
along the way. In a broad sense, our project 
served as a proof of concept for lightweight 
wireless communication projects using Wi-Fi 
over the ESP module. Protothreads made our 
code more efficient, organized, and easier to 
understand.

FIGURE 4
(a) Increase in price; (b) decrease in price; (c) no change in price

c)

b)

a)
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It is important to note the extensibility 
of the PIC32 MCU to other projects and 
applications. In general, this project served 
as demonstration of the PIC32 and the ESP 
as a TCP server and client. This manner of 
functionality could be easily applied to other 
peripheral circuits or additional modules. 
Wireless communication makes many new 
functions possible, and allows us to increase 
the usability and relevance of our smart home 
merely by incorporating additional API calls 
and data requests to various external servers.

In a similar fashion to our stock quote 
requests, we could make API calls to servers 
of the national weather service and display 
temperature, environmental conditions, and 
general weather data on our TFT display. 
We could take this even further by then 
analyzing the weather data and, based on the 
conditions, stream music that fit the mood of 
the weather. Streaming would occur via Wi-Fi 
communication with the ESP module.

Aside from the incorporation of API calls 
and data requests to external servers, Wi-Fi 
communication with the PIC could be used in 
various other applications. It is extremely 
versatile, so any sort of light display, 
temperature control circuit, home security 
unit, or IoT application could be implemented 

using the ESP module and serial 
communication over the PIC. 

Authors’ Note: Special thanks to our 
team member, Shrinidhi Kulkarni, for his 
contribution to the development of this project. 
Shrinidhi is a second-year masters student 
studying Applied and Engineering Physics at 
Cornell University. He helped develop some of 
the code for this project, and provided some 
reference text for this article.
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W hat good is a transistor? Sure, 
integrated circuits (ICs) are 
full of transistors, thousands 
of them. Before the IC and 

microprocessor revolutions, there was a 
transistor revolution—where televisions, 
radios and computers were built using the 
new solid-state devices. The transistor was 
the father of the IC. But isn’t a single transistor 
obsolete as a circuit element today? What use 
does a lowly transistor have in a world where 
the current Intel microprocessors have over a 
billion transistors each?

It’s true that nearly all the things we used 
to do with transistors can be done cheaper, 
better and more efficiently with an IC, and we 
can do things with ICs that are not possible 
with discrete transistors. It would not be 
possible to build a modern microprocessor 

with discrete transistors—the lead lengths 
alone would make the speeds impossible. But 
the reverse is also true. A discrete transistor 
can be a simple way to solve some problems. 
Transistors, for example, typically have much 
higher operating voltage and power limits in 
simple circuits than those of comparable ICs. 
Electronics manufacturers and distributors still 
make and sell individual transistors because 
the parts still have some uses. In this article, I 
want to go over some very basic things about 
transistors, how they are used and how you 
can include them in your applications.

OVERVIEW
A BJT (bipolar junction transistor) was the 

first commonly available transistor, and it 
fueled the transition away from vacuum tubes. 
BJTs come in two varieties, NPN and PNP. Both 
are (usually) silicon devices. The silicon is 
modified (doped) with impurities to produce 
N-type or P-type material. An NPN transistor 
has a P-type layer sandwiched between two 
N-type layers, and a PNP is the reverse.

Figure 1 shows an NPN BJT schematic symbol, 
a simple diagram of the structure, and a diode 
model. The N-P-N structure is just representative. 
In an actual transistor, the collector region is 
normally larger than the emitter region, and none 
of them is square as shown in the diagram. The 
diode representation of the transistor indicates 
how current flows, not how the actual part is 
constructed. You can’t build a transistor out of 
two diodes, but using two diodes helps to explain 
how the transistor biasing works.

FIGURE 1
Schematic symbol, physical representation and diode model of NPN transistor

In this day and age of highly integrated chips, what is the relevance of the 
lone, discrete transistor? It’s true that most embedded system design needs 
can be met by chip-level solutions. But electronic component vendors do still 
make and sell individual transistors because there’s still a market for them. In 
this article, Stuart reviews some important basics about transistors and how 
you can use them in your embedded system design.

And Their Role Today

By Stuart Ball

Transistor Basics
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Operation of an NPN transistor is conceptually 
easy to understand. Referring to the diode 
model, if you connect the collector to a positive 
voltage—say 5 V—and the emitter to ground, 
you end up with two diodes back-to-back with 
their anodes connected together. The junction 
of the two anodes represents the base of a 
transistor. If you apply a positive voltage greater 
than 0.7 V to the base, the emitter diode will be 
forward-biased and current will flow from the 
base, through the emitter and to ground. The 
collector diode will be reverse-biased, and no 
current will flow through that diode.

REAL TRANSISTOR OPERATION
Now discard the diode model and look at 

a real transistor. If the collector is connected 
to +5 V and the emitter to ground, and the 
voltage on the base is high enough (0.7 V) 
to forward-bias the base-emitter junction, 
current will flow from the base to the emitter 
and from the collector to the emitter. If the 
base-emitter voltage is below 0.7 V, the 
transistor is in “cutoff” and no current flows 
through the emitter or through the collector. 
That’s it. That’s how a BJT works.

The collector-emitter current flow is inherent 
in the construction of the transistor. It’s why the 
actual transistor differs from the diode model, 
and it’s why you can’t build a transistor from 
two diodes. If the collector is at +5 V and the 
emitter is at ground, bringing the base to about 
0.7 V will cause current to flow from the 5 V 
supply—through the collector—to the emitter 
and to ground. If the emitter is at +2 V, then 
you must bring the base to about 2.7 V to get 
current to flow from the collector to the emitter.

The magic in a transistor is determining how 
to get the amount of current you want flowing 
through the collector. If you just connect the 
transistor as I’ve described, with nothing to 
limit the current, your transistor will quickly 
become a smoking, melted bit of plastic.

Generally, if the transistor is operated within 
its current, power and voltage ratings, the 
current in the emitter will be the current flowing 
into the base plus the current flowing from 
the collector to the emitter. A very small base 
current controls a much larger collector current, 
so the collector current is approximately equal to 
the emitter current. When no current is flowing 
in the collector, the transistor is in “cutoff” as 
mentioned earlier. If there is enough current 
flowing that the collector-emitter voltage is 
as low as it can go (generally around 0.3 V 
for a small-signal transistor), the transistor is 
considered “saturated”. In this state, changes to 
base current no longer affect collector current.

PUTTING IT TO USE
How might we use this transistor? Figure 2 

shows a simple circuit. In this circuit, we connect 

the collector to +5 V, the emitter to ground 
through a 220 Ω resistor and the base to a fixed 
value of 1 V. The forward voltage of the 2N3904 
is 0.65 V to 0.85 V at 10 mA collector current. 
Conventionally, 0.7 V is used for calculations. So, 
the voltage at the emitter (VE) will be 1 V - 0.7 V, 
or 0.3 V. Here’s where the magic happens: The 
voltage at the emitter is fixed, so the current 
through the 220 Ω resistor is 0.3V/220Ω, or 
1.36 mA. The collector current is the same. 
Therefore, by controlling the base voltage, we 
control the emitter current and thereby the 
collector current.

Figure 3 shows how we can make an 
amplifier with this circuit. This circuit is identical 
to the circuit in Figure 2, except that now we’ve 
added a 1.5 kΩ resistor, R2, between the 
collector and the 5 V supply. Since the current 
in the emitter is fixed at 1.36 mA, the current in 
the collector is also 1.36 mA. This current flows 
through R2, producing a voltage across R2 of 
1.36 mA x 1.5 kΩ, or 2.04 V. So, the voltage at 
the collector, VC, is the 5 V supply minus the 
voltage across R2, or 2.95 V.

FIGURE 2
A simple circuit shows the base-
emitter voltage and current 
relationship

FIGURE 3
The transistor connected as an 
amplifier by adding a resistor in the 
collector
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Now, what happens if the voltage at the 
base is raised to 1.1 V? When that happens, 
the voltage at the emitter is now 0.4 V (1.1 V – 
0.7 V), making the emitter current 1.8 mA. The 
collector current is also 1.8 mA, so the voltage 
across R2 is now 1.8 mA x 1.5 kΩ, or 2.7 V. 
VC is now 5 V – 2.73 V, or 2.27 V. So, a 0.1 V 
change in the base voltage caused the collector 
voltage to drop from 2.95 V to 2.27 V, a change 
of -0.68 V. The collector voltage dropped by 6.8 
x 0.1 V (the input voltage change).

Here’s the interesting thing: The collector 
voltage change is equal to the negative of the 
input voltage change times the ratio of the 
collector resistor R2 to the emitter resistor 
R1, or 1.5 kΩ / 220 = 6.8. If you work through 
the math, this makes sense, because the 
collector current is the same as the emitter 
current. But since the collector resistor R2 is 
6.8× the emitter resistor, any current change 
in the emitter resistor will result in a voltage 
change 6.8× as large at the collector.

If you did the same calculation after 
lowering the base voltage from 1 V to 0.9 V, 
you would see the collector voltage rise by 
0.68 V. This circuit is an inverting amplifier 

with a gain of -6.8. A positive voltage change 
at the input produces a negative voltage 
change at the output and vice-versa.

This circuit has some limitations. If you 
put 1.32 V at the base, you will find that the 
emitter is at 0.62 V, and the collector voltage 
works out to be nearly the emitter voltage. 
The transistor can’t drive the collector to 
the emitter voltage, so it’s saturated. The 
limitation of this specific circuit, therefore, is 
a maximum input voltage of about 1.3 V. At 
the other end, anything less than 0.7 V causes 
the transistor to go into cutoff. So, the useful 
input voltage range of this circuit is 0.7 V to 
about 1.3 V. Still, that would be adequate for 
boosting a low-level audio signal to something 
that can be further amplified.

Speaking of audio, how would you connect 
audio signals into the circuit? Audio signals 
typically swing between negative and positive 
voltages. If you put that into the base, the 
transistor will be in cutoff most of the time—
all the time if the positive signal peaks never 
reach 0.7 V.

This brings us to biasing. Figure 4 is a 
modification of Figure 3 with some biasing 
resistors added to the base. Resistors R3 and 
R4 make a voltage divider that brings the 
base to about 1 V. This is halfway between the 
0.7 V and 1.3 V lower and upper limits of the 
circuit. Now say that we apply a signal to the 
input that swings between -0.1 V and +0.1 V. 
Because of the DC blocking capacitor C1, this 
will become 0.9 V to 1.1 V at the base, and will 
be amplified by -6.8 in the circuit.

There are other ways to bias a transistor 
base. A voltage reference diode, as shown in 
Figure 5, fixes the base at a known voltage. 
In this circuit, the emitter voltage, VE, will 
be about 1.3 V, so the emitter and collector 
current will be 5.9 mA. The point is not to 
show all the possible ways to bias a transistor, 
just that there are other ways to do it.

TRANSISTOR LIMITATIONS
As with all things in the physical world, 

transistors have some limitations. We already 
looked at one—the values of the base and 
emitter resistors in the amplifier circuit have 
to be chosen so that the transistor doesn’t go 
into cutoff or saturation with whatever input 
signal you are trying to amplify.

Transistors have other characteristics. For 
example, the 2N3904 used in these examples 
has a maximum collector-emitter voltage of 
40 V. Any more than that, and the transistor 
fries. The base-emitter reverse voltage—where 
the base is taken negative with respect to the 
emitter—has a maximum value of 6 V. Beyond 
that, the emitter-base junction breaks down.

The collector can handle a maximum 
continuous current of 200 mA. The device 

FIGURE 4
Biasing resistors allow the transistor 
to operate with AC-coupled inputs 
such as audio signals.

FIGURE 5
A Zener or reference diode can be 
used to create a fixed bias.
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has a maximum power dissipation of about 600 mW. So even 
though the collector-emitter can withstand 40 V and the 
collector current can be as high as 200 mA, if you try to put 
200 mA through it at 40 V, it will fail. 40 V at 200 mA is 8 W, 
well beyond the power-handling capability of the device.

The point of all this is that, like any semiconductor device, 
your design has to stay within all the maximum ratings: Power, 
collector-emitter voltage, collector current, emitter-base 
reverse breakdown voltage and so on.

One of the key characteristics of the transistor is the 
current gain. This number describes how much the emitter 
current changes for a given change in the base current. The 
current gain varies with the amount of current flowing in the 
collector. For the 2N3904, the minimum current gain at 0.1 mA 
collector current is 40. At 10 mA, the minimum gain is 50. The 
maximum gain per the datasheet is 300. Just before writing 
this paragraph, I measured a handful of 2N3904s All of them 
had gain exceeding 300.

The practical implication of the gain is to affect how the 
emitter interacts with the base. If the transistor in the amplifier 
circuit in Figure 3 had a gain of only 10, the 220 Ω resistor in 
the emitter would look like approximately 2 kΩ at the base, 
which would affect biasing and the load presented to the driving 
circuit. In that case, you would want the biasing resistors to be 
a low enough value that the loading effect of the emitter resistor 
would change the bias voltage by less than 10% or so. But if you 
have to use lower value resistors in your biasing circuit, this in 
turn presents more load to whatever is driving it. In the case of 
the amplifier, it reduces the overall end-to-end gain.

Fortunately, for most small-signal applications, it isn’t too 
hard to find a transistor with a sufficiently high minimum gain 
to make this a minor problem. Where you get into difficulty is 
when you need a very low value of emitter resistance. Even at 
a gain of 300, an emitter resistor of about 10 Ω could have a 
significant loading effect on the base that must be considered 
in your calculations. Because the transistor has finite gain, 
you can’t use very large resistors—such as something in the 
megaohm range—to bias the base. If you do, the emitter will 
pull down the voltage.

One common addition to an audio amplifier is to bypass the 
emitter resistor with an electrolytic capacitor. The capacitor has 
a very high impedance (nearly infinite) at DC, but the impedance 
decreases as frequency increases. This allows the DC biasing to 
work, but it raises the gain for audio signals by making the emitter 
impedance (the resistance in parallel with the impedance of the 
capacitor) a very low value at audio frequencies. This makes the 
ratio of the collector resistance to emitter resistance much higher 
at audio than at DC, which raises the gain. (Remember: The 
gain is the collector resistor divided by the emitter impedance.) 
However, this also has the effect of significantly lowering the 
input impedance of the circuit at those audio frequencies. Other 
transistor characteristics that affect use in RF circuits, such 
as high-speed switching circuits, are beyond the scope of this 
article, and won’t be discussed here.

APPLICATIONS
You can build amplifiers with transistors, and a lot of people 

do. But it’s also easy to build an amplifier with an op amp or other 
IC and I want to focus here on applications where the unique 
characteristics of a transistor are useful.

How might you make practical use of a transistor, given what 
we’ve done so far? In Figure 6, I have modified Figure 5 by 
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Basic and simple features, single power supply operation
Free download technical documents before purchasing

See all our products, A/D D/A conversion board, 
boards with USB chip from FTDI and accessories at :
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INTELINTEL
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Intel Cyclone 10 LP F484 FPGA board
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Xilinx Spartan-7 FGGA484 FPGA board

ACM-033 is an FPGA board with 
Intel high-performance FPGA Cyclone 10 LP.
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3.3V single power supply operation.
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Xilinx high-performance FPGA Spartan-7.
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making the reference voltage 2.5 V, making 
R1 120 Ω and adding an LED in the collector 
circuit. Because the voltage at the base is fixed 
at 2.5 V by the reference diode, the emitter 
voltage is 1.8 V and the emitter current is 
15 mA. This is true as long as the V+ supply 
voltage is high enough to keep the reference 
diode and LED turned on. So, the LED will have 
15 mA current whether the supply voltage is 
5 V or 20 V.

Obviously, there are upper limits to this, 
and at some point, the voltage or power 
dissipation limit of the 2N3904 will be 
exceeded and it will go up in a cloud of smoke. 
I’ve shown the bias circuit powered from 5 V. 
If you also powered it from the variable V+, 
you also would need to take the limitations of 
R3 and D1 into account. But if you wanted a 
constant current through an LED regardless 
of supply voltage (within reasonable limits), 
this circuit will do it. You might do this if you 
wanted an LED to have constant intensity 
regardless of the voltage applied, or just 
to keep higher voltages from exceeding the 
maximum LED current.

Figure 7 shows a 2N3904 used for logic-
level translation between two different circuits 
operating at different voltages. You might use 

this to translate between a 3.3 V output of a 
microcontroller (MCU) to the input of a circuit 
that needs 5 V. V+ in the schematic would be 
connected to the supply voltage of the target 
system. Whatever is driving the input must 
have enough output current capability to drive 
the 2.2 kΩ resistor. This circuit inverts the 
signal—a high input produces a low output. In 
this circuit, the transistor is always in either 
cutoff or saturation.

There are plenty of ICs that can do this, 
such as open-collector buffers, so why use a 
transistor? The transistor can handle higher 
voltages than most logic-level translator 
circuits. A transistor could translate between 
a 3.3 V circuit and a 12 V circuit, for example.

Many voltage-translator circuits require 
that you know the supply voltage, and 
therefore the drive voltage, of the input. But 
I had a situation once where the input could 
come from different sources, ranging from 
under 2.5 V to 5 V. The transistor solution 
works for all logic voltages, because the 
transistor will turn on with any drive voltage 
above 0.7 V. It could even be used to translate 
between a 12 V or 24 V input to a 3.3 V or 
5 V output, as long as the input resistor R2 
is large enough to prevent excessive current.

The final NPN application is shown in 
Figure 8. In Figure 8a, a 2N3904 is driving 
a relay. The diode D1 protects the transistor 
against overvoltage. When the relay is turned 
off by switching the transistor off, a “flyback” 
voltage is created as the energy in the relay 
coil is dissipated. This voltage can reach levels 
sufficient to destroy the transistor due to 
excessive collector-emitter voltage—remember 
the transistor characteristics section. Diode D1 
limits the voltage to 0.7 V above V+ to protect 
the transistor. But this has the side effect of 
slowing down relay opening.

Figure 8b shows the same circuit, but 
with a 12 V Zener, D2, in series with D1. This 
allows the flyback voltage to reach 12.7 V 
above V+, which allows the coil energy to be 
dissipated much more quickly, speeding up 
relay operation. But with a 12 V relay, the 
collector voltage will exceed 24 V during the 
flyback period. This circuit takes advantage of 
the high collector-emitter breakdown voltage 
to improve the speed. There are some relay 
drivers that can do this, but they offer little 
advantage over a transistor. Note however 
that base resistor R1 must be sized to allow 
enough current for the transistor to operate 
the relay. A large, high-current relay may 
require a pre-driver and a power transistor. 
At that point, an IC might be a better solution.

PNP TRANSISTORS
I’ve focused on NPN transistors so far. 

Functionally, the PNP is the reverse of the 

FIGURE 7
A 2N3904 used as a logic-level 
translator

FIGURE 6
A 2N3904 connected as a constant-
current LED driver
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NPN. The collector voltage of the PNP (when 
normally biased) is less than the emitter, and 
the base is lower than the emitter by 0.7 V to 
turn the transistor on. It isn’t necessary to 
use negative voltages. As with the NPN, the 
voltage with respect to the emitter is what 
matters. A PNP transistor can be paired with 
an NPN in simple audio amplifiers to make 
a headphone or speaker amplifier. The PNP 
complement to the 2N3904 is the 2N3906.

Figure 9 shows how a 2N3906 might be 
used to create a negative bias voltage in a 
system with only a positive supply. You might 
need a negative bias to offset an input signal, 
or to power an op-amp that needs a negative 
supply for some reason.

The input is driven by a square wave 
input that might come from the timer output 
of a MCU or a two-transistor multivibrator 
(Google it). I picked values arbitrarily for the 
components in this example. You would want 
to use component values appropriate for the 
input frequency, output current and voltage, 
and other requirements of your application. 
Note that the input signal must swing close 
to the positive supply rail (5 V in the circuit 
shown) to fully turn off Q1—otherwise the 
transistor will never turn off, and it will get 
hot. If you were driving the circuit with a 
logic-level output, you might need a pull-up 
resistor to be sure the input swings all the 
way to the positive rail. You could also use 
this circuit in a 3.3 V system.

I include this example to show how a PNP 
transistor can be used. This isn’t to say there 
aren’t ICs that can do this. For example, the 
TPS6735 DC/DC converter made by Texas 
Instruments can produce a -5 V output at 
200 mA, although it won’t operate at 3.3 V.

MOSFET TRANSISTORS
I’ve looked at BJTs so far, but there is 

another class of transistors called MOSFETs 
(metal-oxide semiconductor field effect 
transistors). Where a BJT has a base, emitter 

FIGURE 9
Negative voltage generator using PNP 
2N3906

FIGURE 8
Driving a relay with a 2N3904.  A basic diode clamp (a) and a higher voltage Zener clamp (b) for faster operation.

ABOUT THE AUTHOR
Stuart Ball is a registered professional engineer with a BSEE and an 
MBA. He has more than 30 years of experience in electronics design. He 
is currently a principal engineer at Seagate Technologies.
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and collector, the equivalent MOSFET pins are 
the gate, source and drain. MOSFET operation 
is similar to the BJT, but there are some 
important differences.

The MOSFET was sometimes previously 
referred to as the IGFET (insulated-gate field 
effect transistor). I haven’t seen that term 
used for many years, but it is descriptive. The 
gate of the MOSFET is electrically insulated 
from the rest of the part, and the current 
from the drain to the source is controlled 
by the electrical field created by applying a 
voltage to the gate. The insulated gate means 
that the MOSFET has a very high impedance 
input, so no current has to flow into the gate 
to control the drain-source current. In fact, 
if current is flowing into the gate, it probably 
means that some limit has been exceeded and 
the transistor has failed.

The BJT can be thought of as a current-
controlled current device, where a small 
change in base current causes a large change 
in collector current. A MOSFET is a voltage-
controlled current device, where a change 
in the gate voltage causes a large change in 
the drain current. Figure 10 shows a 2N7000 
MOSFET connected as a logic-level translator, 
similar to the way the BJT was wired in 
Figure 7. It will work the same way as the 
2N3904 circuit, with the following differences:

1. The high impedance means no series 
resistor is needed in the gate to limit 
current. This also means that the transistor 
input won’t load down whatever output is 
driving it.

2. The BJT needs 0.7 V and a little current to 
turn the transistor on. The MOSFET needs 
the gate to be positive with respect to the 
source. In the case of the 2N7000, the 
turn-on voltage, Vgs, can range from 0.8 V 
to 3 V. This means that using a 2N7000 
to translate between a 2.5 V or 3.3 V 
input to a higher voltage output might be 
problematic, and the transistor might not 
turn on. However, going the other way, 
from a 5 V or higher system input to 3.3 V 
or 2.5 V output, will work the same as it 
does with the bipolar circuit.

3. A saturated MOSFET doesn’t have a 
saturation voltage—it has a resistance 
between the source and drain. For the 
2N7000, this can be up to about 6 Ω when 
V+ is 5 V for the On Semiconductor version 
of the part. For most applications, this 
value is small enough that it makes no 
difference, but it is something to be aware 
of, especially when switching significant 
current.

The 2N7000 is normally used as a 
switch. You can bias it as an amplifier, but 
the varying Vgs threshold value makes that 
a bit more complicated than for a BJT. Like 
the PNP complement to the NPN transistor, 
N-channel MOSFETs have a complement, 
which is the P-channel MOSFET. The BS250 
from Vishay is an approximate P-channel 
equivalent to the 2N7000. You could use such 
a transistor instead of a PNP to implement the 
negative voltage generator mentioned earlier, 
although, of course, you have to be sure the 
driving voltage exceeds the gate threshold 
voltage.

OTHER TRANSISTORS
I’ve focused on small-signal transistors 

to demonstrate the basic principles. In both 
bipolar and MOSFET transistors there are 
devices designed to handle high currents and 
high voltages, parts designed specifically for 
RF applications, and other variants. But the 
basic principles are the same.

I hope my explanation of how transistors 
work has helped you understand them better, 
and that the examples are enough to let you 
experiment with transistors in your 
applications. Sometimes transistors are 
useful, even though they’ve been around a 
long time. And even in circuits you could build 
with ICs, transistors are interesting devices 
for tinkering, because you can get down to 
the basic component level. 

FIGURE 10
2N7000 MOSFET as inverting logic-
level converter

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials

RESOURCES
On Semiconductor | www.onsemi.com

Texas Instruments | www.ti.com

Vishay | www.vishay.com

http://www.circuitcellar.com/article-materials
http://www.onsemi.com
http://www.ti.com
http://www.vishay.com
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B ecause the electronics industry 
is advancing so rapidly, it’s now 
easier than ever to build interesting 
systems without hurting your wallet. 

This has also led to an overwhelming variety of 
projects suitable as a final project in a college 
class. One of the types of systems we were 
interested in from the start was wearables—
but wearables and what? We could attempt to 
create something meaningful, something that 
would help humanity. Or not. We opted for a 
something fun for college students—something 
you could talk about at parties without losing 
everyone’s attention. That’s how our idea of the 
“Pong Bot” came to life.

The project’s focus was to simulate the 
movement of a human arm such as aiming 
and throwing small objects—for example, a 
ping pong ball—with a small robotic arm. We 
used the motion-controlled, 3-DoF (degrees 
of freedom) robotic arm that takes the user’s 
throwing motion as a reference to its own 
throw. A robotic arm that mimics the user’s 
arm motion has many different applications. 
For example, you can use the robot arm to lift 
heavy objects that human arms can’t handle, or 
use the robotic arm remotely from a distance.

With all that in mind, we hope that, with small 
modifications, readers could take the concepts 
from this project and create something more 

useful—although perhaps less fun. Integrating 
both mechanical and electrical components, we 
set out to control a beer-pong catapult robot 
that simulates the user’s throwing gesture. With 
this system, a mini-scale beer pong game can 
be played using a robotic arm that throws the 
ping pong ball for you—a fun twist enabling you 
to play beer pong in style. For those unfamiliar 
with the game, beer pong is a drinking game in 
which players throw a ping pong ball across a 
table with the intent of landing the ball in a cup 
of beer on the other end.

THE USER INTERFACE
The user interface for our device relies on a 

sleeve (Figure 1) worn on the user’s arm and 
adjusted so that IMUs (inertial measurement 
units) align with wrist and elbow. This allows 
gesture control. The aiming of the catapult and 
start position for the throw are determined 
using readings from the IMU. The IMU delivers 
two angles from the elbow and one angle from 
the wrist, so we get the 3 degrees of freedom 
needed for our robotic arm. By combining the 
data from the gyroscopes and accelerometers 
attached on the elbow and wrist, the controller 
sends out three current angles from the 
calibrated zero. This mapping of user's arm 
to the robotic arm will be discussed in a later 
section including the implementation of a 

Simulating human body motion is a key concept in robotics development. With 
that in mind, learn how these three Cornell graduates accurately simulate the 
movement of a human arm on a small-sized robotic arm. The Microchip PIC32 
MCU-based system enables the motion-controlled, 3-DoF robotic arm to take 
a user’s throwing motion as a reference to its own throw. In this way, they 
created a robotic arm that can throw a ping pong ball and thus play beer pong.

Using PIC32s and IMUs

By Daniel Fayad, Justin Choi and 
Harrison Hyundong Chang

Robotic Arm Plays Beer Pong
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complementary filter using IMU readings.
The controller device itself consists of two 

IMUs, a Digi International RF XBee module, an 
inexpensive pressure sensor and a Microchip 
PIC32 microcontroller (MCU) on the sleeve. 
The pressure sensor is implemented as a 
digital button. When the user pinches on the 
pressure sensor to a certain threshold, the 
robotic catapult starts to move according to the 
movement of user's arm. This is when the user is 
expected to aim. As soon as the pressure sensor 
is released, the robotic arm swings very quickly 
as it throws the ball—similar to what a catapult 
would do. Figure 2 shows the development 
board and the circuitry mounted on the sleeve. 
The development board used is Sean Carroll’s 
PIC32 Small Development Board—a link with 
the details of this resource is provided on the 
Circuit Cellar article materials webpage. 

The release mechanism was designed after 
initial testing. Due to a short delay between 
the user’s movement and the movement of the 
servos, it was difficult to get a rapid movement 
that would cause the ball to be thrown. For 
maximum enjoyment the user is encouraged 
to make the throwing movement after the 
pressure sensor has been released. This won’t 
affect the throw, but it makes it seem more like 
the user is also controlling the throw.

The controller can wirelessly communicate to 
the robotic arm by having all the sensors on the 
arm hooked up to a local PIC32 MCU that sends 
signals via an RF transmitter. On the robotic 
arm, we will have an RF receiver that receives 
the signals from the controller and moves the 
robotic arm accordingly in real-time. Because 
of what we believe to be hardware constraints 
with the Xbee modules, we were only able to 
send a signal from the controller to the robotic 
arm every 200 ms. This means that the servo’s 
position signal was updated every 200 ms. This 
sometimes made the robotic arm seem a little 
shaky and unresponsive. For a more reliable 
system, our final version didn’t use wireless 
communication. Instead, we used two very long 
wires to directly connect UART pins between the 
two boards. This modified, final version enabled 
us to establish a stable and fast communication 
interval of 65 ms, providing smooth control of 
the robotic arm. The long wires won’t interfere 
with the user’s movement as long as the arm is 
used as intended.

ROBOTIC ARM
Due to time and budget constraints, we had 

to get creative with our materials and assembly. 
Most of the materials were collected while we 
were in a cafeteria during a break from working 
on this. The assembled robotic arm is shown in 
Figure 3. Despite the commonplace materials, 
it behaves just as we intended, and serves its 
purpose. The system requires three servos to 

FIGURE 1
Shown here is the sleeve 
as worn by the user. The 
IMU_elbow is on the other 
side and cannot be seen in 
this figure. The sleeve is 
elastic, so the user can adjust 
the location of the IMUs for 
calibrations.

FIGURE 2
This is the schematic of the development board and the circuitry mounted on the sleeve shown in Figure 1. 
The XBee modules are ignored because they weren’t part of the final demo. Accordingly, we just show the 
UART connections as RX and TX that are connected to the second PIC32 MCU (shown in Figure 5) [1].
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translate the IMU readings to motion in different 
axes. We gave constraints to each servo so 
that we don’t surpass the angle of its physical 
limitations. In other words, if a human’s elbow 
joint can’t provide 360 degrees of rotation, our 
robotic arm shouldn’t be able to do that either. 
Servo 1 rotates approximately 180 degrees, 
and Servo 2 and Servo 3 rotate 40 degrees and 
90 degrees, respectively.

The most sophisticated component in our 
robotic arm was the base used to support 
Servo 1. It was 3D-printed. That’s because we 
realized at the onset that we needed a solid, 
stable base to prevent movement from the 
other servos from destabilizing our system. The 
3D rendering of the base is shown in Figure 4. 
Servo 1, which rotates the base, was fitted 
into a casing that was laser-cut to minimize 
jittering. Later, we attached the base casing to 
a plank of wood for greater stability, because 
the arms should have imbalance in their center 
of gravity. Then Servo 2 was screwed into a 
3D-printed mold that fit right into Servo 1. The 
arms of the robots were extended by wooden 
coffee sticks. Finally, the holder or bowl of 
the ball was made with a plastic spoon. The 
“shoulder joint” was replicated by Servos 1 
and 2. The elbow movement was replicated by 
Servo 3, which was attached at the end of the 
stick extended from Servo 2. The servos were 
connected to a board, which was connected to 
the PIC32 MCU used for the robotic arm station 
(Figure 5). The development board used here 
is Sean Carroll’s PIC32 Large Development 
Board—a link with the details of this resource is 
provided on the Circuit Cellar article materials 
webpage.

COMPONENT BREAKDOWN
The IMUs used in this project were MPU6050 

from TDK InvenSense, which uses I2C protocol for 
communication with the host device. The PIC32 
has capability of two I2C channels. However, we 
only used one, because the MPU6050 has a bit 
address—0 or 1—which is used for talking to 
the specific IMU unit. We used a helper function, 
called i2c_helper.h from another project 
that also used I2C to communicate successfully 
with this sensor [3].

When we started experimenting with the 
data being collected, we faced a few problems 
with accuracy and drift. This is a common 
issue with IMUs, and was remedied by sensor 
fusion—using the information from both types 
of sensors in our IMU unit to correct the error. 
The Kalman Filter is the standard method to 
solve these problems, but it is computationally 
heavy and at times difficult to implement. A 
simpler algorithm is the complementary filter, 
which is easier to implement and is “often 
applied in systems of limited resources such as 
this project [4].

FIGURE 3
The robotic arm is made of coffee sticks, small servos and a spoon—held together by hot glue and tape. The 
screw seen on the opposite side of Servo3 served as counterweight, because the weight of Servo3 combined 
with the quick movements of Servo2 sometimes made the arm detach from the servo.

FIGURE 4
Shown here is the 3D CAD rendering of our base for the robotic arm. This joint needed to be 3D printed, 
because it required two servos to be attached in very close proximity—and hot glue alone wouldn’t provide 
enough stability.
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The complementary filter provided a simple 
way of getting accurate data and reducing 
drift. This was accomplished by combining the 
gyroscope and accelerometer data on each 
axis. This approach proved to be an efficient, 
computationally lightweight alternative to a 

Kalman Filter for our system. We implemented the 
complementary filter for angle data for each joint. 
On the PIC32 attached to the sleeve, we extracted 
the most recent value for the accelerometer 
and gyroscope, scaled both of them and then 
processed them through our algorithm.

 

FIGURE 5
This is the schematic of the board and 
connections to the servos on the PIC32 
used for the robotic arm. As shown in 
Figure 2, the XBee connections were 
ignored, because both PIC32s were 
connected physically by two wires 
to communicate via UART. These 
connections are shown at the top 
center of the diagram as RX and TX 
[2].
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Listing 1 shows a snippet of C code of 
the algorithm on our system to calculate 
the “elbow” angle from the sleeve. The 
past gyroscope data is integrated and 
then multiplied by the constant, COMP_
FILTER_G_COEF, which is then added to 
the scaled accelerometer data. Multiplying 
this computed value by the other constant, 
COMP_FILTER_A_COEF, we get the final, 
filtered angle data.  The values COMP_ 
FILTER_G_COEF and COMP_FILTER_A_
COEF (0.98 and 0.02 respectively) were used 
to weight the values of the accelerometer 
and gyroscope differently because of to two 
things. First, the gyroscope drifts a lot when 
IMU is not detecting movement. Second, the 
accelerometer is easily disturbed, causing 
spikes in its readings—especially while facing 
movement. But it has data that could be useful 
to counteract the drift from the gyroscope. 
These can be adjusted, but 0.98 and 0.02 
worked fairly well for us.

The pressure sensor was a variable 
resistor. To use it as a digital button, we 
built a simple voltage divider circuit and set 
a threshold. This meant that any time the 
output of the circuit exceeded it, we would set 
a flag. We used the ADC on the PIC32 to read 
voltage values to detect when to follow the 
arm and when to release the ball (or launch 
the catapult).

When we started debugging and testing 
our system, we needed a more reliable way 
of communication between PIC32 MCUs than 
RF because we also had to debug our RF 
communication. For this, we used UART between 
the PIC32s. This was convenient because our RF 
modules also used UART as a communication 
protocol to send data so, theoretically, we could 
see them as a UART bridge.

The servo motor controls were all written 
on the PIC32 MCU that was hooked up to the 

robotic arm. Its purpose was to extract all the 
data that were sent from the PIC32 MCU on the 
sleeve and turn them into PWM signals. Four 
variables were extracted from the PIC32 on 
the sleeve. Three represented the tilt of elbow 
on Z axis, on Y axis, and tilt of wrist on Z axis. 
And the fourth was a flag indicating whether or 
not the pressure sensor was pressed.

RESULTS AND USABILITY
We performed sets of testing to deduce 

numerical specifications for our system. Drift 
tests were done for each servo experimentally, 
to observe drift in angles. For each test we 
reset the system and performed 20 cycles 
of the maximum range of motion allowed 
for each degree of freedom. On Servo 1—
which was getting data from the IMU on 
the elbow—we observed approximately an 
8-degree difference when returning to the 
original position. Servo 2 used data from 
the same IMU, and we found no measurable 
drift after our test. This was reasonable given 
that the range of motion for this servo was 
only 40 degrees. On Servo 3—which used 
data from the IMU on the wrist—we also saw 
no significant drift after the 20 cycles and 
returning to the original position.

While testing the Servo 2 and Servo 3 
rotation, we noticed that Servo 1 was also 
rotating slightly, which should have not been 
the case. This may have been due to IMU’s 
position on the elbow, which wasn’t securely 
fixed at one position. The arm movement made 
the sleeve elastically extend and contract, and 
in this process the IMU might effectively be 
moved around. This might also have caused 
movement to the base rotation and stacking 
up drift angles.

To determine how much weight our 
delightfully crafted robotic arm could 
handle, we performed a series of tests with 
increasingly heavier materials. Although the 
arm’s intended use was to throw lightweight 
objects such as ping pong balls, we found 
that any object lighter than 15 g also could be 
thrown in an acceptable way.

Finally, we tested the range of throw to 
specify the shortest and longest distance the 
throw could cover. We found that by adjusting 
the initial position of the throw, we could 
cover a range of 6" to 13". This might not be 
a lot—especially if you’re trying to play a real 
game of beer pong against a real person—
but it could certainly bring some external 
entertainment to the game.

As for speed of execution, as noted 
previously, wired communication was more 
effective. Combining that with the use of 
interrupts with UART, we were able to get our 
robotic arm to mimic the user’s arm with no 
noticeable delay. This is mainly because we 

Additional materials from the authors are available at: 

www.circuitcellar.com/article-materials
References [1] through [4] as marked in the article can be found there

RESOURCES
Digi International | www.digi.com

Microchip Technology | www.microchip.com

TDK InvenSense | www.invensense.com

// Elbow IMU
accTilty_elbow= -atan2f(xAccel_elbow, 
zAccel_elbow)*180.0/M_PI;
tilty_elbow = (COMP_FILTER_G_COEF*(tilty_
elbow + yGyro_elbow*IMU_READ_PERIOD*0.001) + 
COMP_FILTER_A_COEF*accTilty_elbow);

LISTING 1
This snippet shows the C code used 
to accurately calculate the elbow 
angle for the robotic arm. The 
variable tiltY_elbow was passed to 
the robotic arm.

http://www.circuitcellar.com/article-materials
http://www.digi.com
http://www.microchip.com
http://www.invensense.com
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FIGURE 6
A video with a demo of the final 
version of the project can be found by 
scanning this QR code.

don’t expect the users to make any sudden 
movements while aiming. We noticed that 
quick, sudden movements made the robotic 
arm struggle to catch up, and in some cases, 
it reacted in strange ways that disappeared 
when the user started aiming more slowly.

Anyone with an arm and a finger can use 
our controller, as long as the IMUs are 
adjusted to match the location of the elbow 
and the wrist. Also, the robotic arm is quite 
fragile because it’s made of birchwood sticks 
and cheap generic servos that seem to jitter 
slightly in motion. The robustness of the 

robotic arm can be improved by replacing the 
birchwood sticks with 3D-printed parts and 
by using more reliable servos. The arm 
controller on the sleeve can also be made 
more robust by strapping components more 
tightly on the user’s arm. Lastly, the user 
must acknowledge and consider the slight 
drifting on the base rotation of the robot and 
the maximum load the system can take to 
throw. A video of the final demo can be found 
by scanning the QR code at the end of this 
article (Figure 6) or you can find the video on 
Circuit Cellar’s article materials webpage. 
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Digital signage ranks among the most dynamic areas of today’s embedded 
computing space. Vendors involved in this technology continue to roll out 
new solutions for developing powerful digital signage implementations.

Digital Signage Technologies 
Gain Momentum
System Solutions

D igital signage is one of those 
technologies that seemed to 
breeze into our modern society 
so quickly and smoothly that 

it’s hard to image life without it. Today’s 
technologies provide users with the ability 
to easily update information on large, 
high-resolution displays in real-time and 
in rugged, outdoor environments. And the 
ability to rotate ads even on billboard-sized 
displays has multiplied revenue streams for 
stakeholders using digital signage systems.

At the heart of today’s landscape of modern 
digital signage are a variety of digital signage 
players that support advances graphics and 
multiple streams of connectivity. Also in the 
mix are general-purpose box-level embedded 
computing systems that provide solutions for 
signage applications. Obviously displays make 
up part of the ecosystem too, but this article 
focuses strictly on the embedded computing 
side of digital signage.

WATERPROOF DESIGN
In March, Ibase Technology launched its 

latest SW-101-N waterproof digital signage 
player designed for both indoor and harsh 

outdoor environments. This rugged fanless 
signage player is integrated with a 1.91 GHz 
Intel Atom Processor E3845 Quad-Core 
Processor and Intel HD graphics (Gen 7-LP) 4EU 
(Figure 1). The SW-101-N is built to withstand 
dust, water and extreme temperatures. This 
ensures the system’s stable operation and 
reliability in harsh industrial environments.

The SW-101-N meets IP68 standards, 
allowing it to handle submersion in water for 
up to 30 minutes at a depth of 1.5 meters. 
The black-color waterproof enclosure uses 
a C3 HDMI connector and M12 I/O interface 
connectors for two USB 2.0, one Gbit LAN, 
one RS-232, DC power input and digital I/O. 
Two antenna N-jack type connectors have 
waterproof designs as well. Aside from 
being fanless, the unit has a wide operating 
temperature range of -40°C to 75°C.

The SW-101-N supports Ibase’s iControl 
and Observer technologies for intelligent 
control and remote monitoring functions 
that feature auto power on/off scheduling, 
power resume, system temperature/voltage 
remote monitoring and low temperature 
boot protection. The standard model has 
4 GB of DDR3L-1333 system memory, 64 GB 

By Jeff Child, 
Editor-in-Chief
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mSATA storage, and 12 V DC-in support. 
Additional features include a watchdog timer, 
wall mounting and Mini PCIe expansion for 
optional wireless modules.

TINY SIGNAGE PLAYER
A powerful set of digital signage functionality 

can be squeezed into a very small form factor 
these days. In an example along those lines, in 
September Advantech introduced its USM-110, 
an ultra-compact digital signage player. This 
fanless system provides support for Android 6.0 
and Advantech’s own WISE-PaaS/SignageCMS 
digital signage management software. The 
compact (156 mm x 110 m x 27 mm) device 
follows earlier Advantech signage computers 
such as the slim-height, Intel Skylake based 
DS-081.

The USM-110, which is also available in a 
less feature rich USM-110 Delight model, ships 
with 2 GB DDR3L-1333, as well as a microSD 
slot. It has 16 GB of eMMC on the standard 
version and 8 GB on the Delight. There’s also 
a GbE port and an M.2 slot with support for an 
optional Wi-Fi module with antenna kit.

The USM-110 has two HDMI ports, both 
with locking ports: an HDMI 2.0 port with 
H.265-encoded, native 4K at 60 Hz (3840 x 
2160) and a 1.4 port with 1080p resolution. 
The system enables dual simultaneous 

HD displays. The Delight version lacks the 
4K-ready HDMI port, as well as the standard 
model’s mini-PCIe slot, which is available with 
an optional 4G module with antenna kit. The 
Delight is also missing the standard version’s 
RS232/485/422 port, and it has only one USB 
2.0 host port instead of four. Otherwise, the 
two models are the same, with a micro-USB 
OTG port, audio jack, reset, dual LEDs and 
a 12V/3A DC input. The 0.43 kg system has 
a 0 to 40°C range, and offers VESA, wall, 
desktop, pole, magnet and DIN-rail mounting 
(Figure 2).

Advantech’s WISE-PaaS/SignageCMS 
digital signage management software— 

Figure 2
The USM-110 is a digital signage 
player that supports Android 6.0 and 
Advantech’s WISE-PaaS/SignageCMS 
digital signage management software. 
The compact unit measures 156 mm 
x 110 m x 27 mm and features VESA, 
wall, desktop, pole, magnet and DIN-
rail mounting options as shown here.

FIGURE 1
The SW-101-N is a waterproof, fanless 
signage player that is integrated 
with a 1.91 GHz Intel Atom Processor 
E3845 Quad-Core Processor and Intel 
HD graphics (Gen 7-LP) 4EU. The SW-
101-N is built to withstand dust, water 
and extreme temperatures in mind.
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also referred to as UShop+ SignageCMS— 
supports remote, real-time management. It 
allows users to layout, schedule and dispatch 
signage contents to the player over the 
Internet, enabling remote delivery of media 
and media content switching via interactive 
APIs. A WISE Agent framework for data 
acquisition supports RESTful API web services 
for accessing and controlling applications.

CABLE-FREE DESIGN
Like many of today’s embedded 

applications, digital signage has entered 
the wireless era. Along just those lines, in 
February Axiomtek launched the DSP300-318, 
an Intel Apollo Lake based digital signage 
player promoted for its ultra-slim, 200 mm x 
137.8 mm x 20 mm dimensions. The 4K-ready 
system is designed for space-constrained 
digital menu boards, self-ordering systems, 
retail applications, queuing systems, 
interactive kiosks and video walls.

The system runs Ubuntu or Debian Linux 
or Windows 10 IoT on Intel’s dual-core, 
1.1 GHz Celeron N3350 or quad-core, 2.5 GHz 
Pentium N4200. Two DDR3L-1600 SO-DIMMs 
provide up to 8 GB of system memory. And 
there’s an option for 64 GB eMMC 5.0. The 

DSP300-318 stands out with its triple M.2 slot 
design. In addition to an M.2 M-Key 2280 for 
storage, there’s an M.2 E-Key 2230 for Wi-Fi 
and Bluetooth and an M.2 B-Key 3042 for 4G 
LTE. A SIM card slot and 4x antenna mounts 
are also available (Figure 3).

The DSP300-318’s 4K-ready HDMI 1.4 
and DisplayPort 1.2 ports support dual 
simultaneous displays. Other features include 
2x GbE ports, 3x USB 3.0 ports and single USB 
2.0 and RS-232 ports. Dual audio jacks are 
also available. The DSP300-318 has a 12 VDC 
terminal screw input, as well as power, reset, 
and remote switches. There’s also a watchdog 
timer and a Lithium 3V/220mA-hour battery. 
The fanless system supports 0 to 50°C 
temperatures and offers humidity resistance 
and 3 Grms vibration resistance with M.2 
storage (5 to 500 Hz, X, Y, Z).

PLAYERS WITH OPS SUPPORT
In 2010, Intel launched the Open Pluggable 

Specification (OPS) to standardize the system 
architecture between displays and media 
players. According to Intel, OPS allows for 
more cost-effective design, deployment, and 
management of digital signage and other 
display solutions that support advanced 
functionality and emerging use cases, 
including interactivity and anonymous 
audience analytics. OPS began appearing 
in signage systems such as the Axiomtek 
OPS860 back in 2011. The spec standardizes 
mounting and power requirements and 
connects to OPS-compatible displays via an 
80-pin JAE Electronics TX24/TX25 blind mate 
plug and receptacle connector system.

In June 2018, Ibase launched its IOPS- 602 
signage player that runs Windows 10 or 
Ubuntu Linux on Intel’s 6th or 7th Gen. Core 
QC/DC processors, with a default to dual-core, 
7th Gen “Kaby Lake” U-series processors 
with 15 W TDPs. The standard SKU is a Core 
i7- 7600U (2.8 GHz/3.9 GHz) with 8 GB RAM 
and 128 GB of M.2 storage.

The 200 mm x 119 mm x 30 mm IOPS-602 
uses an OPS standard 12 V to 19 V DC input 
and OPS mounting bracket. The JAE connector 
is mounted on the back of the system. An 
optional expansion dock with 150 W adapter 
is available for using the systems with non-
OPS displays. Up to 32 GB of DDR4-2133 DRAM 
can be loaded via dual slots, and there’s an 
M.2 M-Key slot for 2280 SSD cards. An M.2 
E-Key slot is available for 2230-based Wi-Fi/
Bluetooth cards.

The IOPS-602 also provides 4x USB 3.0, 

Figure 3
DSP300-318 is an Intel Apollo Lake 
based digital signage player with two 
DDR3L-1600 SO-DIMMs providing up 
to 8 GB of system memory. There’s an 
M.2 E-Key 2230 for Wi-Fi and Bluetooth 
and an M.2 B-Key 3042 for 4G LTE. A 
SIM card slot and 4x antenna mounts 
are also available.



circuitcellar.com 33
SPECIAL FEATU

RE

HDMI 1.4b and Gbit Ethernet ports, as well 
as an RS232 serial connection provided via an 
RJ45 port. You also get dual audio jacks, LEDs, 
a watchdog and iAMT compliance for remote 
management. The system supports 0°C to 
45°C temperatures and resists vibrations 
to the tune of 5 Grms, 5 to 500 Hz random 
operation with an SSD.

MOVING ON TO OPS+
Intel developed a follow-on spec called 

OPS+ that builds on the benefits and powerful 
functionality of the OPS by enabling a broader 
range of Intel processors to include the Intel 
Xeon processor family, a range of Intel desktop 
processors and Intel FPGAs. OPS+ can also 
add functionality based on specific industry 
needs such as supporting simultaneous 
display and broadcast usages, support for 
8K resolution displays and the ability to drive 
three individual 4K resolution display outputs.

According to Intel, OPS+ defines a 
180 mm x 119 mm x 30 mm, fully enclosed 
digital signage systems with enhanced 
thermal design supports broader range 
of Intel processors. The enhanced spec is 
optimized for interactive white boards (IWBs), 
commercial digital signage, kiosks, visual data 
devices, video walls and so on. With OPS+, you 
can customize a protocol and simultaneously 
support advanced use cases including real-
time analytics and video capture performed 
on the display itself. The spec also features a 
second high-speed connector and is backward 
compatible with previous OPS specifications.

In December Axiomtek released the first 
OPS+-compliant digital signage player, the 
OPS700-520. The system is powered by the 
LGA1151 socket 8th generation Intel Core 
i7/i5/i3 and Celeron processors (codename: 
Coffee Lake S) with the Intel Q370 chipset. 
The player supports Intel Active Management 
Technology (Intel AMT) 11.0 as well as 
Intel Unite solution for content sharing and 
collaboration. It comes with two 260-pin 
DDR4-2400 SO-DIMM sockets that can provide 
system memory of up to 32 GB (Figure 4).

The OPS700-520 is compatible with 
Intel Unite, which allows users to connect 
and interact with meeting content in real 
time, thus enhancing seamless meeting 
experiences and convenience. It also comes 
with Intel AMT 11.0. Software issues can be 
repaired wirelessly while failed hardware 
components can be identified beforehand, 
thereby lowering maintenance costs and 
improving efficiency. The signage module is 

Figure 4
The first OPS+-compliant digital signage player, the OPS700-520 is powered by the LGA1151 socket 
8th generation Intel Core i7/i5/i3 and Celeron processors. The player supports Intel Active Management 
Technology (Intel AMT) 11.0 as well as Intel Unite solution for content sharing and collaboration.

Figure 5
3D Bare-Eye Content Development Kit and Signage Solution was designed to enable developers of casino 
slot machine games and digital signage displays to provide 3D content that can be viewed without special 
glasses.
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suitable for multi-display solutions such as 
IWBs in meeting rooms, commercial digital 
signage, video walls and more.

The digital signage player can be easily 
connected to an OPS-plus compliant display 
via two high-speed transmission connector 
interfaces: JAE TX25A and HRS-FX18. The 
JAE plug connector interface supports one 
DisplayPort (4K at 60 Hz), one HDMI 2.0 (4K at 
60 Hz), one USB 3.0, two USB 2.0, one audio 
and UART signals. The HRS plug connector 
interface supports one DisplayPort (4K at 
60 Hz) and one PCI Express x4. These two 
connector interfaces enhance multimedia 
performance to meet various requirements. 
The OPS700-520 also has one PCIe or SATA 
interface for storage, one M.2 Key E for Wi-Fi 
modules and one M.2 Key M NVMe SSD slot.

The OPS700-520 maintains the small 
form factor with dimensions of just 200 mm 
x 119 mm x 30 mm. It comes with rich I/O 
connectors including two USB 3.1 Gen2, two 
USB 2.0, one RS-232 (COM 2), one Gbit LAN 
with Intel i219-LM Ethernet controller and one 
HDMI. The unit supports Windows 10 64-bit 
and Linux operation systems. Also, it supports 
the TPM 2.0 which can provide security and 
privacy benefits.

3D DIGITAL SIGNAGE
A unique twist on tradition digital signage 

in the emergence of 3D capability. Feeding that 
need, in October last year EFCO introduced a 
development and signage solution for creating 
advanced 3D slot machine games. The 

company’s 3D Bare-Eye Content Development 
Kit and Signage Solution was designed to 
enable developers of casino slot machine 
games and digital signage displays to provide 
3D content that can be viewed without special 
glasses (Figure 5).

3D Bare-Eye is based on the Unity software 
environment, which, according to EFCO, is the 
defacto standard development toolset among 
game developers. When used for casino 
games, instead of simply displaying images of 
coins on the screen, the coins now appear to 
be falling out of the slot machine toward the 
player. But the technology can also be used 
for any digital signage or progressive display 
application, says EFCO.

The 3D Bare-Eye Solution is made up of 
a development kit and a broadcast kit. The 
content development kit is based on Unity. 
Because Unity is the most common gaming 
development environment, it’s easy to 
adopt. The kit also comes with a monitor, 
computer system and a proprietary interface 
card that connects the development system 
to the playback system. Features of the 3D 
Content Development kit include: Intel Core 
i5-6500, 4C/4T with boost to 3.6 GHz, NVIDIA 
GTX1050Ti (4 GB GDDR5) or GTX1070Ti, 2.5" 
SATA SSD 256 GB, an average 190 W power 
consumption and 3840 x 2160 display support.

The broadcast kit comes with a ready-to-
use 55" and 65" 3D digital signage 4K display 
with playback system. A 3D film on the monitor 
provides the third dimension to viewers. 
Features of the kit include Intel Pentium CPU, 
NVIDIA graphics GTX1050Ti (4GB GDDR5), 
2.5" SATA SSD 64 GB storage, power input of 
AC 100 V to 240 V, 50 Hz to 60 Hz and power 
consumption averaging 150 W.

FANLESS SOLUTION
While dedicated, purpose-built solutions—

like the ones discussed so far in this 
article—are one approach to digital signage 
applications, another angle is to employ box-
level general purpose embedded computers to 
serve the player functionality. This approach 
makes sense especially when extreme 
environmental conditions are an issue. An 
example along these lines is Logic Supply’s 
ML100G-31 embedded PC system introduced 
last August. This system is built around an 
Intel Dawson Canyon NUC board and employs 
the company’s Hardshell Fanless Technology 
to ensure thermal performance. Logic Supply 
says it’s the smallest fanless and ventless NUC 
to feature an 8th generation (Kaby Lake) Intel 

Figure 6
The ML100G-31 embedded PC system 
is built around an Intel Dawson Canyon 
NUC board and employs the company’s 
Hardshell Fanless Technology to ensure 
thermal performance.

RESOURCES
AAEON | www.aaeon.com

Advantech | www.advantech.com

Axiomtek | us.axiomtek.com

EFCO | www.efcotec.com

Ibase Technology | www.ibase.com.tw

Intel | www.intel.com

Logic Supply | www.logicsupply.com

http://www.aaeon.com
http://www.advantech.com
http://www.efcotec.com
http://www.ibase.com.tw
http://www.intel.com
http://www.logicsupply.com
https://us.axiomtek.com
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Core i7 processor (Figure 6).
The ML100G-31 provides a fully solid 

state, passively cooled computing solution, 
designed for reliability in demanding 
environments and measures just 142 mm x 
62 mm x 107mm. Logic Supply engineers, 
with support from Intel’s thermal design 
lab, created a proprietary heatsink for the 
NUC717DNBE motherboard and Quad-Core i7-
8650U Kaby Lake CPU. They also collaborated 
with Intel to identify a way to ensure that the 
ML100G-31 features the 5-year lifecycle that 
will allow their industrial computing clients to 
standardize on the platform.

The ML100 is able to cool the processor 
and other internal components by employing 
Logic Supply’s proven Hardshell Fanless 
Technology. Through the use of unique 
exterior fins and specially machined heatsink 
design, the system is able to maintain an 
optimal operating temperature without the 
need for a cooling fan. Removing the fan 
from the system improves overall reliability. 
Unlike fanned solutions that are vulnerable 
to airborne contaminants, this fanless design 
is able to operate in challenging computing 
environments across a range of industries 
including manufacturing and automation, 
industrial digital signage and others.

The system can be configured with up to 
32 GB of memory and 1 TB of M.2 storage. 
Connectivity includes four USB 3.0 ports, two 
HDMI ports supporting dual 4K output, Gbit LAN 
and an optional COM port for legacy equipment 
connectivity. Operating system options include 
both Windows and Linux Ubuntu.

SYSTEM BASED ON MINI-ITX
In another example of a general-purpose 

system that’s suited for digital signage, AAEON 
in September released the ACS-1U01 Series, a 
range of turnkey solutions that embed three of 
its bestselling SBCs. By enclosing the boards 
inside a tough 1U chassis, the unit provides 
a ready-to-go system for use in a variety 
of applications including digital signage as 
well as industrial automation, POS, medical 
equipment and transportation.

The three models—the ACS-1U01-BT4 
(Figure 7), ACS-1U01-H110B, and ACS-1U01-
H81B—feature a tough, 44.45 mm-high 
chassis with a wall mount kit and 2.5" HDD 
tray. The low-profile, low-power-consumption 
systems have full Windows and Linux support, 
they can be expanded via full- and half-size 
Mini-Card slots and heatsinks give them 
operating temperature ranges of 0°C to 50°C.

The ACS-1U01-BT4 houses AAEON’s 
EMB- BT4 motherboard, which can be fitted 
with either an Intel Atom J1900 or N2807 
processor. The J1900 can be used with a pair 
of DDR3L SODIMM sockets for up to 8 GB 
dual-channel memory, while the N2807 can be 
used with a single DDR3L SODIMM socket. The 
board’s extensive I/O interface provides the 
system with a GbE LAN port, dual independent 
HDMI and VGA displays, a USB3.0 port, up to 
seven USB 2.0 and up to six COM ports.

The ACS-1U01-H110B contains AAEON’s 
EMB-H110B, which is built to accommodate 
up to 65 W 6th/7th Generation Intel Core i 
Series socket-type processors and supports 
up to 32 GB dual-channel memory via a pair 
of DDR4 SODIMM sockets. Dual independent 
display support is possible through two HDMI 
ports, or the option of DP connections. The 
system also features a GbE LAN port, four 
USB 3.0 ports, four USB 2.0 ports and a COM 
port.

The ACS-1U01-H81B is built around AAEON’s 
EMB-H81B, which is designed for 4th Generation 
Intel Core i Series socket-type processors with 
TDPs of up to 65 W. Two SODIMM sockets allow 
for up to 16 GB dual-channel DDR3 memory, 
and HDMI, DisplayPort and optional VGA ports 
enable dual independent display. The system 
has two GbE LAN ports, two USB3.0 ports and 
six USB 2.0 ports.

There’s no doubt that digital signage is an 
application that puts high demands on a 
variety of technology segments—from 
graphics processing to connectivity to form 
factor design. To keep pace with demands, 
makers of digital signage players and 
embedded PCs continue to innovate by adding 
more capabilities while also shrinking size, 
weight and power. 

Figure 7
The ACS-1U01-BT4 houses AAEON’s 
EMB-BT4 motherboard, which can be 
fitted with either an Intel Atom J1900 
or N2807 processor. The J1900 can be 
used with a pair of DDR3L SODIMM 
sockets for up to 8 GB dual-channel 
memory, while the N2807 can be used 
with a single DDR3L SODIMM socket.
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Code Analysis Tools 
Up Their Game

The complexity of today’s embedded software keeps 
pushing the goalposts further out in terms of ensuring 
good quality code. To keep pace, vendors of code 
analysis tools are innovating with highly integrated and 
effective solutions.

By Jeff Child, 
Editor-in-Chief

Quest for Code Quality

I t is now a given for embedded devices to 
have millions of lines of software code. 
As these systems get more complex, 
the challenge of producing error free 

code isn’t getting any easier. To meet the 
challenge, development tool vendors continue 
to add new features and capabilities to their 
code analysis products.

Although they are all addressing a similar 
need, the major embedded tool vendors each 
have their own twists and nuances when it 
comes to providing code analysis features. 
Some weave them tightly into their Integrated 
Development Environment (IDE), while others 
take a more modular approach. Meanwhile, 
issues due to programming languages, 
standards compliance and even IoT are all 
part of the landscape of today’s code analysis 
tool features.

RUNTIME CODE ANALYSIS
IAR Systems includes a variety of code 

analysis tools as part of its IAR Embedded 
Workbench IDE. Among these is its C-RUN 
runtime analysis tool. The tool is completely 
integrated with the IDE and provides detailed 
runtime error information. C-RUN is available 

as an add-on to IAR Embedded Workbench 
for Arm and for Renesas RX. C-RUN supports 
all supported Arm cores in IAR Embedded 
Workbench (Figure 1).

Runtime analysis tools work by inserting test 
code into an application to enable the tool to 
find real and potential errors in the code while 
executing the program in a software debugger. 
The types of errors found with this method 
include out-of-bounds errors, arithmetical 
errors and memory inconsistency errors.

By using runtime analysis, embedded 
system developers can find potential and 
real errors at an early stage, as opposed to 
finding errors at a later stage which makes 
product development more expensive and time 
consuming. It improves cost efficiency and 
development time, allowing for a speedier time 
to market. C-RUN supports both C and C++.

IAR Embedded Workbench also includes 
a tool called C-SPY Debugger. C-SPY provides 
an instruction simulator as well as extensive 
support for debugging probes and target 
systems. It includes RTOS plugins and wide 
support for communication stacks and 
middleware. A C-like macro system and 
integrated code quality control further extends 

FIGURE 1
Runtime analysis tools like C-RUN, shown here, 
work by inserting test code into an application to 
enable the tool to find real and potential errors in 
the code while executing the program in a software 
debugger. Types of errors found with this method 
include out-of-bounds errors, arithmetical errors 
and memory inconsistency errors.
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its capabilities. Developers can use C-RUN in 
C-SPY simulator as well as in their actual target 
hardware. IAR Systems provides a size-limited 
version of C-RUN that is activated for evaluation 
when you download IAR Embedded Workbench 
for Arm V7.20 (and later versions) or IAR 
Embedded Workbench for RX V3.10.

ADA STATIC ANALYSIS
With its main focus on Ada language tools, 

AdaCore’s static analysis tool suite is called 
CodePeer. CodePeer is an Ada source code 
analyzer that detects run-time and logic 
errors. It assesses potential bugs before 
program execution, serving as an automated 
peer reviewer, helping to find errors easily 
at any stage of the development life-cycle 
(Figure 2).

CodePeer is a stand-alone tool that runs 
on Windows and Linux platforms. It may be 
used with any standard Ada compiler or fully 
integrated into the GNAT Pro development 
environment. It can detect several of the “Top 
25 Most Dangerous Software Errors” in the 
Common Weakness Enumeration. CodePeer 
supports all versions of Ada (83, 95, 2005, 
2012). CodePeer has been qualified as a 
Verification Tool under the DO-178B and EN 
50128 software standards.

In February, AdaCore released Version 19.1 
of its flagship products including CodePeer as 
well as its GNAT Pro, CodePeer, SPARK Pro 
and QGen products. The enhancements in 
CodePeer 19.1 are focused on user/usability 
improvements. These include new entry level 
(“level 0”) with fast analysis and minimal false 
positives. A simple “getting started quickly” 
mode is provided for new users. Other new 
features include a security report output, 
integration of AdaCore’s GNATcheck tool and 
a major documentation update—including 
examples of typical workflows.

INTEGRATED WITH COMPILER
As one of the long time veterans in the 

embedded software industry, Green Hills 
Software provides its MULTI IDE that includes 
a rich set of debugging and analysis tools. 
Among these are its DoubleCheck integrated 
static analysis tool. Green Hills emphasizes the 
importance of this tool as being an integrated 
tool. In other words, DoubleCheck is built into 
the Green Hills C/C++ compiler—unlike other 
source code analyzers that run as separate tools.

A typical compiler issues warnings and 
errors for some basic potential code problems, 
such as violations of the language standard 
or use of implementation-defined constructs. 
In contrast, DoubleCheck performs a full 
program analysis, finding bugs caused by 
complex interactions between pieces of code 
that may not even be in the same source file. 

FIGURE 2
CodePeer is an Ada source code analyzer that detects run-time and logic errors. It assesses potential bugs 
before program execution, serving as an automated peer reviewer.

FIGURE 3
DoubleCheck determines potential execution paths through code. As shown there, errors found by DoubleCheck 
are displayed inline with the surrounding code, making them easy to understand.
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DoubleCheck determines potential execution 
paths through code, including paths into and 
across subroutine calls, and how the values 
of program objects—such as standalone 
variables or fields within aggregates—could 
change across these paths (Figure 3).

Examples of the types of flaws DoubleCheck 
looks for are potential NULL pointer dereferences, 
buffer overflow, potential writes to read-only 
memory, resource leaks and others. The analyzer 
understands the behavior of many standard 
runtime library functions. For example, it knows 
that subroutines like free should be passed 

pointers to memory allocated by subroutines 
like malloc. The analyzer uses this information 
to detect errors in code that calls or uses the 
result of a call to these functions.

Software development organizations 
often employ an internal coding standard 
which governs programming practices to help 
ensure quality, maintainability and reliability. 
DoubleCheck can automate the enforcement 
of these coding standards. For example, 
DoubleCheck has a Green Hills Mode that 
adds a range of sensible quality controls to its 
bug-finding mission, including several MISRA 
compliance checks, enforcement of optional but 
important language standards and more.

Metric computations and enforcement of 
other coding rules do not incur significant 
overhead since DoubleCheck is already 
traversing the code tree to find bugs. 
DoubleCheck can be configured to generate 
a build error that highlights problem code to 
keep developers from accidentally submitting 
software that violates the coding rules. Using 
DoubleCheck as an automated software quality 
control saves the time and frustration typically 
associated with peer reviews.

PRE-DEBUG ANALYSIS
For its part, Segger Microcontroller also 

provides static analysis as part of its IDE, 
Embedded Studio (Figure 4). Embedded Studio 
is a complete development environment for any 
Arm based processor, from legacy Arm7, Arm9 
and Arm11 devices to Cortex-A, R and M. It 
comes with a system library that is optimized 
for embedded systems and GCC and LLVM/Clang 
compilers.

Embedded Studio offers various features 
and windows that provide you with enough 
information to analyze your application 
even before debugging. The Memory Usage 
Window goes into detail to show you where 
the sections—code and data—are placed. 
The Code Outline Window presents a clear 
structured outline of your source, which eases 
navigation through your code. The Source 
Navigator feature provides fast access to all 
your functions typedefs and variables with 
a single click. The Symbol Browser provides 
more insight into the compiled application. 
You can see how much memory is used by 
each symbol and where it will end up in your 
target. The Stack Usage Window does a static 
stack analysis of your application and shows 
the stack use of functions and call paths.

The Code Analyzer in Embedded Studio 
goes beyond the typical compiler warnings 
of an IDE. A compiler will usually generate 
warnings for anything that might break your 
application, such as uninitialized variables. To 
find further issues which have no immediate 
effect but might affect performance—and to 

FIGURE 4
A common strategy is to integrate code analysis as part of an IDE. The Embedded Studio IDE does this with 
a Code Analyzer feature that goes beyond the typical compiler warnings of an IDE. To increase your code 
quality, you can run the IDE’s Code Analyzer tool on your sources and findings will be logged and displayed.

RESOURCES
AdaCore | www.adacore.com

GrammaTech | www.grammatech.com

Green Hills Software | www.ghs.com

IAR Systems | www.iar.com

LDRA | www.ldra.com

Segger Microcontroller | www.segger.com

http://www.adacore.com
http://www.grammatech.com
http://www.ghs.com
http://www.iar.com
http://www.ldra.com
http://www.segger.com
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increase your code quality—you can run the 
Code Analyzer analysis on your sources. All 
findings will be shown in the log to easily 
navigate to them.

GOING DEEPER FOR IOT
Unlike many of the other vendors covered in 

this article, GrammaTech is not an IDE vendor. 
Instead, it specializes in code analysis with an 
emphasis on deep code analysis. In February, 
the company announced the latest release of 
its CodeSonar took, version 5.1, with a focus 
on the Internet of Things (IoT). The new 
version of CodeSonar is designed to provide 
IoT developers the capability to support their 
multitude of languages and deliver safer and 
more secure software products faster.

With CodeSonar, developers can use a 
single user interface to find, assess and correct 
security vulnerabilities in different programs 
using multiple programming languages. 
CodeSonar 5.1 is tightly integrated with the 
Julia engine from Juliasoft, which provides 
high recall, high precision detection of security 
vulnerabilities in Java and C#.  For developers 
of IoT systems, this is critical because IoT 
devices and enterprise services are built using 
many different programming languages. While 
C# or Java are typically the languages used 
on the user-interface or enterprise side, the 
embedded device itself is built using C/C++, 
with Python in the mix for scripting.

CodeSonar’s Qualification Kit is available 
as an add-on for software developers that 
have requirements to support functional 
safety standards such as IEC 61508, DO178B/C 
or ISO 26262. The Qualification Kit enables 
developers to qualify CodeSonar in their 
environment as a preparatory step in the 
safety certification process. CodeSonar now 
supports the import and export of results in 
SARIF (Static Analysis Results Interchange 
Format).

A new API Anomaly detection module 
is now included CodeSonar, which uses 
statistical machine learning to distill checkers 
from open source bodies of code. This module 
reports reliability and security problems due 
to bad use of 3rd party APIs such as the GNU 
C Library, OpenSSL, Qt, Glib, GTK, libXML and 
others. This module has already been used 
to report problems in the Git version control 
system, the elinks browser, the Query Object 
Framework, Gnome and other projects.

AVOIDING LANGUAGE PITFALLS
Some programming languages, 

particularly C and C++, include features that 
are prone to causing problems. Figure 5 
shows output from LDRA’s static analysis 
tools, as it relates to adherence to a MISRA 
language subset. MISRA—like other coding 

standards—is designed to ensure that 
developers avoid using those problem 
features. In addition to showing compliance 
with coding standards, LDRA static analysis 
tools can also help developers in many other 
ways such as by ensuring that their code 
is clear, easy to maintain and test and not 
excessively complex.

While static analysis involves an automatic 
“inspection” of the source code, dynamic 
analysis involves its compilation and 
execution either as a whole, or in part. LDRA’s 
unit, integration and system dynamic analysis 
tools are used to ensure that the code works 
in accordance with project requirements, 
and has been exercised adequately. LDRA 
requirements traceability tools show that 
the code fulfils the requirements of both the 
project and any applicable functional safety 
standards, and that there is no spurious code.

Like some of the other solutions mentioned 
earlier, LDRA’s static analysis, dynamic 
analysis and requirements traceability tools 
leverage the benefits of being combined into 
an integrated tool suite. Some key features 
offered by the tool suite such as data coupling 
analysis and control coupling analysis draw 
upon this integration by leveraging static and 
dynamic analysis in tandem.

Data coupling analysis can identify issues 
such as mismatches in the sequences of variable 
values being set and used, and control coupling 
analysis can identify problems including 
ambiguities in the intended control flow of the 
code. These checks are obligatory for some DO-
178C compliant (aerospace) applications and 
although they might not obligatory elsewhere, 
that doesn’t make the anomalies any less of a 
threat in other safety- or security- critical 
systems. Control and data coupling analyses 
are particularly significant in the context of 
tainted data, for example, because they point to 
situations where that data could be inaccurate, 
and where there is the very real potential for 
bad actors to abuse the situation. 

FIGURE 5
This image shows output from LDRA’s 
static analysis tools, as it relates to 
adherence to a MISRA language subset.



With roots that grew from the ISA-bus era, PC/104 has grown into 
an embedded board-level form factor suited to the PCI Express 
landscape. For space-constrained applications, PC/104 and all its 
follow-on variants continue to meet system design needs.
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Product Focus:  

PC/104 Boards

By Jeff Child, 
Editor-in-Chief

Legacy That Stacks Up

S ince its creation over 25 ago, PC/104 
has enjoyed one of the greatest 
success stories in terms of leveraging 
technologies from the PC infrastructure. 

The well-established PC/104 standard is remarkable 
for opening the door to the embedded stackable 
computing concept. It began with the ISA bus 
and over the years has grown to include the latest 
innovations in desktop computing technologies with 
PCI and PCI Express. PC/104 evolved through the 
era of PCI and PCI Express by spinning off its wider 
family of follow on versions including PC/104-Plus, 
PCI-104, PCIe/104 and PCI/104-Express.

The PC/104 architecture demonstrates that it’s 
possible to successfully implement quickly evolving 
PC technology into embedded computing products by 
taking advantage of PC market adoption, performance, 
scalability and growing silicon availability worldwide. 
PC/104 was designed to be simple in design, but 
rugged in performance. As a result, PC/104 products 
have permeated many industries. A PC/104 board 
provides the computing inside Klein’s UUV-3500 high 
resolution side scan sonar for unmanned underwater 
vehicles. The system is used on OceanServer 
Technology’s Iver3 AUV (Figure 1).

A couple years ago the PC/104 Consortium 
made a revision to PCI/104-Express and 
PCIe/104 that provides an additional option 
called “OneBank”. The PCIe/104 OneBank utilizes 
a smaller, lower-cost bus connector which is 
compatible to the full size PCIe/104 connector 
currently in use today. It allows designers to stack 
boards using a complimentary format that frees 
up PCB real estate for additional components 
as well as potential cost savings. The OneBank 
connector concept consists of removing two of the 
three “banks” of the standard PCIe/104 connector, 
resulting in a 52-pin connector as opposed to the 
full-size 156-pin connector.

Among the more recent trends in PC/104 has 
been roll out of boards that include Mini PCIe 
sockets. Mini PCIe lets system designers mix and 
match add-on functions, leveraging the emerging 
ecosystem of Mini PCIe peripheral cards as they 
become available. The product gallery on the next 
couple pages shows a mix of board designs 
upgraded to sport the latest processor and 
memory technologies. These are representative 
examples of PC/104, PC/104-Plus and PCI/104-
Express board-level products. 

FIGURE 1
PC/104 technology provides the computing inside Klein’s UUV-
3500 high resolution side-scan sonar system. The system is aboard 
OceanServer’s Iver3 AUV shown here.
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PCIe/104 SBC Boasts Extended 
Temperature Support

The ADLE3800PC from ADL 
Embedded Solutions is based on 
Intel’s SoC E3800 Atom product family. 
The board is well suited for rugged, 
extended temperature intelligent 
systems. It has a wide thermal junction 
temperature (Tj) ranging from -40°C to 
+85°C. Intel’s 7th generation graphics 
engine on the processor is capable of 
decoding 10 or more streams of 1080p 
video and has integrated hardware 
acceleration for video decode of H.264, 
MVC, VPG8, VC1/WMV9 and others 
standards.

• Intel E3800 Series SoC Processors; 
Dual/quad

• Up to 8 GB DDR3L-1333;  
1.35 V SoDIMM204 socket

• CPU TDP 8 W to 10 W
• Type 2 downward-stacking PCIe/104 

V2.01
• 2x Gen2 PCIe x1 lanes
• 2x SATA 3 Gb/s; shared with mSATA 

socket
• 2x 10/100/1000 Mbit Ethernet LAN 

port
• 2x RS232 COM ports
• 8x USB 2.0 total
• Microsoft Azure certified for loT

ADL Embedded Solutions
www.adl-usa.com

PCI/104-Express Type 1 SBC 
Sports 6th Gen Core i3

ADLINK Technology’s CMx-SLx 
is a PCI/104-Express Type 1 SBC 
featuring the 64-bit Intel 6th gen Core 
i3 processor (formerly “Skylake-H”), 
supported by the Intel CM236 Chipset. 
The CMx-SLx is specifically designed 
for customers who need high-level 
processing and graphics performance 
in a long product life solution. The 
CMx-SLx Intel processor supports 
Intel Hyper-Threading technology and 
8/16 GB of soldered ECC DDR4 memory 
at 1866/2133 to achieve optimum 
overall performance.

• 6th gen Intel Core processor 
(formerly codenamed Skylake)

• Up to 16 GB DDR4-ECC soldered 
memory

• 3x DDI channels, 1x micro HDMI, 
1x mini DP and 1x 18/24 bit single 
channel LVDS

• 4x PCIe x1 and 1x PCIe x 16 (PEG)
• 2x GbE LAN, 2x SATA 6 Gb/s, 1x USB 

3.1, 6x USB 2.0, 2x COM, 8x GPIO
• Supports Smart Embedded 

Management Agent (SEMA) functions
• Extreme rugged operating 

temperature -40°C to +85°C variant

ADLINK Technology
www.adlinktech.com

Atom-based PC/104-Plus SBC 
Boasts Low Power Operation

Advantech’s PCM-3365 is a PC/104-
Plus SBC with an Intel Atom E3825/ 
E3845/ N2930 processor, supporting 
DDR3L SDRAM and soldered flash up 
to 64 GB. PCM-3365 offers an extend 
temperature SKU with E3825/E3845 
SoC. The Thermal Design Power (TDP) 
rating for the SoC is only 5.7 W for 
E3825 (the lowest), and 7.7 W for E3845 
(the highest). The card is PC/104-Plus 
form factor which means it supports 
both ISA and PCI bus through PC/104 
and PCI-104 connectors.

• Intel Atom E3825/E3845 and Celeron 
N2930, DDR3L-1066/1333 SODIMM 
up to 8 GB

• DirectX11, OpenGL3.2, OpenCL1.1, 
3 independent displays: VGA+LVDS/ 
HDMI+LVDS/ DVI+LVDS/ VGA+LVDS

• Support PC/104-Plus expansion
• 1 Gbit Ethernet, 3x COM, SATA,  

6x USB2.0, SMBus/I2C, GPIO, full-
size Mini PCIe/full-size mSATA

• Supports SUSIAccess and Embedded 
Software APIs

Advantech
www.advantech.com

http://www.adl-usa.com
http://www.adlinktech.com
http://www.advantech.com
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PCI/104-Express SBC Marries 
1.9 GHz Atom and 32 GB SSD

The CML24BT from RTD Embedded 
Technologies is an advanced PC/104 
single board computer with a PCI/104-
Express stackable bus structure. This 
Intel Atom based CPU is exceptionally 
suited for intelligent systems requiring 
low power consumption in harsh 
thermal conditions. The surface-mount 
Type 2 PCI Express connectors enable 
users to stack multiple peripheral 
modules above and below the CPU.

• PC/104 form factor, PCI/104-Express 
stackable bus structure, PCIe Type 2 
expansion buses

• Intel Atom E3800 Series Processor; 
1.33 GHz, 1.46 GHz and 1.91 GHz 
options

• Single-Channel DDR3 SDRAM 
surface-mounted with ECC

• Surface-mounted industrial-grade 
SATA 32 GB flash drive

• 4 x1 PCIe Links; 1 SATA Port; 4 Serial 
Ports (RS-232/422/485); 7 USB; Gbit 
Ethernet; DisplayPort, DVI and HDMI

• -40°C to +85°C standard operating 
temperature

RTD Embedded Technologies
www.rtd.com

PC/104 Boards

1 GHz Vortex86DX3 PC/104 
Board has On-board Data Acq

Diamond Systems’ HELIX PC/104 
SBC is based on the DMP Vortex86DX3 
system-on-chip (SoC) processor. It 
offers high feature density in a compact 
size and providing optional integrated 
high-quality data acquisition circuitry, 
PCIe MiniCard I/O expansion and 
rugged construction. Two standard 
Helix models are available off-the-shelf; 
one aimed low-cost basic applications 
and the other targeting data acquisition 
applications.

• 1 GHz dual core DMP Vortex86DX3
• Up to 2 GB of on-board 64-bit DDR3 

SDRAM
• 24-bit LVDS LCD and VGA CRT display 

support; 1920 x 1080 maximum 
resolution.

• A broad range of system I/O, 
including 4 multiprotocol serial 
ports, 6 USB ports, 2 10/100/1000 
Ethernet ports, and 1 SATA port

• PC/104 (ISA) and PCIe MiniCard / 
mSATA sockets

• Optional data acquisition circuitry: 
16 16-bit A/D channels, 4 16-bit D/A 
channels, and 11 programmable 
digital I/O lines

Diamond Systems
www.diamondsystems.com

PCI/104-Express Card 
Provides 20- or 8-Port Gbit 
Ethernet Switch

The Parvus SWI-22-10 from Curtiss 
Wright Defense Solutions is a rugged 
Gbit Ethernet switch card optimized 
for SWaP sensitive embedded military 
and civilian computer network systems 
applications. Featuring advanced 
Layer 2 networking features with 
from 8- to 20-ports of 10/100/1000 
Mbps connectivity, an integrated 
management processor, low power 
consumption, and robust carrier 
Ethernet software features, the SWI-
22-10 enables reliable LAN switching 
across -40°C to +85°C temperature 
ranges.

• Rugged embedded Gigabit Ethernet 
switch

• 20 port and 8 port versions
• Layer 2 fully managed network 

switch with Layer 3 static routing 
capability

• Low-power, Energy Efficient Ethernet 
(802.az) compliant

• IEEE-1588v2 Precision Timing 
Protocol (PTP) support

• Qual tested to MIL-STD-810 for 40°C 
to +85°C and high shock/vibration

Curtiss-Wright Defense 
Solutions

www.curtisswrightds.com

http://www.rtd.com
http://www.diamondsystems.com
http://www.curtisswrightds.com
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Low Power PC/104-Plus SBC 
has Rich I/O

Winsystems’ PPM-C412 is a PC/104-
Plus form factor SBC featuring the 
latest generation DMP Vortex86DX3 
SoC processor. Its small size, low 
power, rugged design and extended 
operational temperature make it well 
suited for industrial IoT applications 
and embedded systems in the industrial 
control, transportation, Mil/COTS and 
energy markets.

• Low Power 1 GHz DMP Vortex86DX3 
processor (dual core)

• PC/104-Plus form factor
• 2 GB DDR3-LV System RAM
• 4x USB 2.0 ports, 4x serial ports, 

Dual Ethernet
• CompactFlash, SATA
• Dual video output (VGA, LVDS with 

digital backlight dimmer)
• -40°C to +85°C temperature 

operation

Winsystems
www.winsystems.com

PC/104-Plus SBC Sports Dual 
Core Bay Trail SoC

The SandCat from VersaLogic 
is a low-power dual-core SBC with 
an industry-standard PC/104-Plus 
expansion interface. This combination 
enables easy upgrades to existing 
PC/104 systems to Intel’s long-life Bay 
Trail processor, while preserving plug-
in expansion to existing specialty I/O 
boards. The board also contains on-
board I/O interfaces, including USB, a 
mini PCIe expansion socket and digital 
I/O ports.

• 1.33 GHz Intel Bay Trail Processor, 
dual core

• Integrated Intel Gen 7 graphics core 
supports DirectX 11, OpenGL 4, and 
H.264, MPEG-2 encoding/decoding. 
Mini DisplayPort video output

• Up to 8 GB DDR3L DRAM
• Ethernet interface,  

2x RS-232/422/485 serial ports;  
4x USB 2.0 ports, three 8254 timer/
counters, I2C and audio support

• Industry-standard PC/104 and 
PC/104-Plus expansion

• -40°C to +85°C operation
• MIL-STD-202G qualified for high 

shock and vibration

VersaLogic
www.versalogic.com

PCIe/104 OneBank SBC with 
FPGA and Two Dual-DSPs

The SMT6657 DSP+FPGA module 
from Sundance Multiprocessor 
Technology is a reliable and flexible 
platform for DSP applications requiring 
high-performance integer and floating-
point computation. It is applicable 
to both symmetric multiprocessing 
applications in which the computational 
load is shared by the two DSPs and 
asymmetric applications where one of 
the DSPs is responsible for hard real-
time processing and the other acts as 
a supervisor.

• PCIe/104 OneBank SBC
• Two TI dual-core 1.24 GHz 

TMS320C6657 floating-point DSPs
• Xilinx Kintex-7 UltraScale KU35 FPGA
• Serial RapidIO and Hyperlink 

connectivity between DSPs
• Accepts one VITA57.1 FMC-LPC 

Mezzanine Card data acq add-on 
module

• Additional stack-down Serial RapidIO 
connector to SMT-Carrier-GSI

• Front panel I/O connector carrying 
Gbit Ethernet and flexible FPGA I/O

Sundance Multiprocessor 
Technology

www.sundance.com

http://www.winsystems.com
http://www.versalogic.com
http://www.sundance.com
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By 
Colin O’Flynn

Embedded System Essentials

Attacking USB Gear with EMFI
Pitching a Glitch

I n past articles I’ve taken you through 
various theoretical attacks on embedded 
systems, demonstrated various attacks 
in standard systems and summarized 

recent work from relevant conferences. 
This article is something new. I’m going to 
be presenting a new attack. While it’s been 
disclosed to the vendor—and should have 
been fixed by the time you read this—you are 
getting as close to the bleeding edge of attack 
information as I can present in this article.

Our victim will be a Trezor bitcoin wallet. 

This little device can be used to store Bitcoins, 
which ultimately means a method of securely 
storing a private key used for cryptographic 
operations. We don’t need to dig into details 
of the wallet operation, but a critical piece 
of information to understand is the idea of a 
“recovery seed”. This recovery seed is a series 
of words which encodes a recovery key, and 
knowing that recovery seed is sufficient to 
recover the secret key.

This means someone who steals only that 
recovery seed—without further access to the 
wallet—could access funds stored on the wallet 
itself. It goes without saying that an attack 
finding that key would be rather detrimental 
to our experience using the wallet.

It should be noted that there has been 
some other work that inspired this attack. 
The “wallet.fail” presentation at the Chaos 
Communication Congress (CCC) by Dmitry 
Nedospasov, Josh Datko and Thomas Roth 
demonstrated how one could break the 
STMicroelectronics (ST) STM32F2 security 
protection, allowing the dumping of its SRAM 
contents. Instead, I’m going to be showing you 
how to directly dump flash memory where the 
seed is stored. So, it’s a different attack but 
with similar end results.

I’m going to be using electromagnetic 
fault injection (EMFI), enabling us to actually 
perform the attack without even removing 
the enclosure. This means someone can 
perform the attack without leaving a trace of 

Many products use USB, but have you ever considered there may be a 
critical security vulnerability lurking in your USB stack? In this article, 
Colin walks you through an example product that could be broken using 
electromagnetic fault injection (EMFI) to perform this attack without 
even removing the device enclosure.

FIGURE 1
The Trezor wallet is shown here with the enclosure removed.



circuitcellar.com 45
CO

LU
M

NS

modifying the wallet, no matter how carefully 
you inspect it. Before we get to the real 
attack, we need to cover some background.

POWERFUL EMFI
EMFI is a powerful method of performing 

fault injection attacks. Typically, we use some 
sort of pulse generator to drive an inductor 
and the inductor will generate a strong 
magnetic field. If you bring this magnetic field 
near a chip, this will induce voltages inside 
metal on the chip. The result is an ability 
to manipulate internal voltage levels and 

insert ringing onto the power bus, causing 
the device to misbehave. These misbehaving 
activities are what we refer to as faults or 
glitches. Such faults or glitches could corrupt 
data (registers, SRAM) or corrupt program 
flow.

The Trezor wallet is open-source, which 
makes this attack a wonderful demonstration 
to teach you about EMFI and fault injection. 
You can freely modify the code, program 
old versions before they patched the bug, 
and generally perform other useful work to 
demonstrate this attack.

LISTING 1
memory.h showing FLASH_META_
START occurs after the bootloader 
and before the application

#define FLASH_BOOT_START (FLASH_ORIGIN)
#define FLASH_BOOT_LEN  (0x8000)

#define FLASH_META_START (FLASH_BOOT_START + FLASH_BOOT_LEN)
#define FLASH_META_LEN  (0x8000)

#define FLASH_APP_START  (FLASH_META_START + FLASH_META_LEN)

LISTING 2
The function winusb_control_vendor_request from winusb.c responds to requests for various information related to WinUSB over the control USB endpoint. Note the call 
“MIN(*len, guid.header.dwLength)” which decides on the length of the returned response.

static int winusb_control_vendor_request(usbd_device *usbd_dev,
                         struct usb_setup_data *req,
                         uint8_t **buf, uint16_t *len,
                         usbd_control_complete_callback* complete) {
     (void)complete;
     (void)usbd_dev;

     if (req->bRequest != WINUSB_MS_VENDOR_CODE) {
          return USBD_REQ_NEXT_CALLBACK;
     }

     int status = USBD_REQ_NOTSUPP;
     if (((req->bmRequestType & USB_REQ_TYPE_RECIPIENT) == USB_REQ_TYPE_DEVICE) &&
          (req->wIndex == WINUSB_REQ_GET_COMPATIBLE_ID_FEATURE_DESCRIPTOR)) {
          *buf = (uint8_t*)(&winusb_wcid);
          *len = MIN(*len, winusb_wcid.header.dwLength);
          status = USBD_REQ_HANDLED;

     } else if (((req->bmRequestType & USB_REQ_TYPE_RECIPIENT) == USB_REQ_TYPE_INTERFACE) &&
          (req->wIndex == WINUSB_REQ_GET_EXTENDED_PROPERTIES_OS_FEATURE_DESCRIPTOR) &&
          (usb_descriptor_index(req->wValue) == winusb_wcid.functions[0].bInterfaceNumber)) 
{

          *buf = (uint8_t*)(&guid);
          *len = MIN(*len, guid.header.dwLength);
          status = USBD_REQ_HANDLED;

     } else {
          status = USBD_REQ_NOTSUPP;
     }

     return status;
}
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You can see the sources for Trezor on 
github. See the Circuit Cellar article materials 
webpage for the specific github link. If you 
want to follow this article, be sure to select the 
“v1.7.3” tag on GitHub. These flaws are fixed 
in a firmware release that will be available by 
the time you read this article, so you should 
look at the older (vulnerable) code to better 
understand the exact attack. The Trezor is 
based on ST’s STM32F205 and you can see 
with Trezor sans enclosure in Figure 1. Note 
that the STM32F205 is just below the surface 
of the enclosure—a feature we will use to 
improve our attack.

The actual sensitive recovery seed is 
stored in flash memory. It’s located just after 
the bootloader, as shown in Listing 1. The 
bootloader can be entered by holding down 
the two buttons on the front of the Trezor, 
and allows a firmware update to be loaded 
over USB. Since a malicious firmware update 
could simply read out this flash location, the 
bootloader will verify that various signatures 
are present on a firmware update to prevent 
such an attack. Loading unverified firmware 
would be one method of attack, but isn’t what 
we are going to use. The problem with all of 
these attacks is that the design of the Trezor 
erases the flash memory before loading and 
validating the new file, storing the sensitive 
metadata in SRAM during this process. The 
wallet.fail disclosure actually attacked this, 
since it’s possible to glitch the STM32 to go 
from code read protection level RDP2 (which 

completely disables JTAG) to level RDP1 (which 
enables JTAG to read from the SRAM, but not 
from the code).

If our attack corrupted the SRAM—
or needed a power cycle to recover from 
error states—performing that erase is very 
dangerous. The wallet.fail attack was able to 
recover the SRAM, but the attack method we 
will use could corrupt the SRAM. That means 
any mistake would permanently destroy the 
recovery seed. Instead, we are going to try 
and directly read out the flash memory. This 
is much safer since we never perform an 
erase command, meaning the data is safely 
stored in memory waiting for us to extract it.

USB READ REQUEST
Because the bootloader contains USB, it 

also contains very standard USB processing 
code. Part of this is shown in Listing 2, which 
comes from the file winusb.c. I’ve chosen 
this particular request because there are 
actually two data structures present that are 
returned by this code—one is stored in FLASH 
and one is stored in SRAM. The USB request 
being processed first checks some information 
sent about the request. It looks for a matching 
bRequest, bmRequestType and wIndex 
which are all attributes of a USB request. Finally, 
the USB request itself contains a wLength 
field, which is how much data the computer is 
requesting be sent back. I can freely request 
up to 0xFFFF bytes of data—and that is exactly 
what I will do. But, as you can see, the code 
does a MIN() operation to limit the length of 
the actual data sent back to be the minimum 
of either the requested length or the size of the 
descriptor I will send back.

So, what happens if that check was 
wrong? While it would let me send back the 
descriptor, along with all the 64K (0xFFFF) 
bytes of data that lies after the descriptor 
itself. This includes our precious metadata—
the USB stack simply sends back the block of 
data as the computer requested. The entire 
security of the system depends on one simple 
length check!

If you’ve read a few of my articles, you 
might guess I’ve got a plan. We will be using 
fault injection to bypass the check that 
depends on a single instruction. Before we 
dive into details of performing the actual 
fault, let’s do a bit of “sanity check” on my 
claims. You can use these sanity checks in 
your own code to help understand the impact 
of similar vulnerabilities.

DISASSEMBLING CODE
The first sanity check is to confirm that 

a simple fault model can cause our intended 
operation. This can be trivially confirmed by 
inspecting a disassembly of the code, done 

FIGURE 2
IDA disassembly of the function in question ultimately shows a single assembly instruction separates your 
sensitive data from being politely sent back on the USB port.
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with IDA in Figure 2. Note in particular that 
due to the resulting code flow, we need to 
skip only a single instruction to accomplish 
our goal of having the user-supplied length 
field be accepted.

The second sanity check will be to confirm 
there is not some higher-layer protection. 
For example, maybe the USB stack does not 
actually accept such a large response given 
that there’s no actual need for this? This is 
a little harder to prove by simple inspection, 
but the open-source nature of the Trezor 
makes this possible. What we can do is modify 
the code to simply comment out the security 
check. If you didn’t want to recompile the 
code, but did have debugger access, you 

could also use an attached debugger. Use the 
debugger to set a breakpoint before the new 
value is copied over and toggle the status of 
the flag, or manipulate the program counter 
to bypass the instruction.

Validating this sanity check will be done in 
the same way as the actual attack. This will 
use the code from Listing 2. This code sends 
the WinUSB control request which should 
return with the guid structure. It sends a 
length request of 0xFFFF for the request, 
which should be paired down to 146 bytes 
by the code. As you can see from Figure 3, 
when I do not modify the instruction, the 
USB request results in the expected-size 
response. Modifying the instruction (or using 

FIGURE 3
Using a debugger to step over the single check (or recompiling the code) shows that large chunks of memory will be sent back on request.
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a debugger to manually clear the comparison 
flag) to bypass this check results in a full-size 
response. This demonstrates that there is 
no “hidden feature” that will fundamentally 
prevent the attack from working. With that 
knowledge, let’s move onto getting this thing 
talking to us!

USB TRIGGERING AND TIMING
Before we can talk about how we insert 

the glitch, we need to know where to insert the 
glitch. We do know the exact code that triggers 
the glitch, and we do know the command we 
sent over USB. But we need to get better than 
that to introduce the exact instruction. In 
my case, since I have access to the software 
I’m going to “cheat” during my first test and 
measure the actual execution time. If I didn’t 
have this capability, I would end up with a 
much slower sweep of possible locations.

The first thing I’ll do is get a more solid 
trigger on the USB data itself. The entire area 
of using USB for glitch triggering was actually 
started by Micah Scott, who demonstrated 
voltage glitching to dump the firmware from 
a drawing tablet and developed a simple 
module to perform real-time glitching (which 
she called the FaceWhisperer). Instead I’m 

going to use a Total Phase Beagle 480, which 
can perform triggering based on physical data 
going over the USB line. The setup for that is 
shown in Figure 4. The Total Phase Beagle 480 
also has a beautiful sniffer interface, so I can 
sniff the traffic and better understand what 
malformed packets are coming back. This 
capability is very useful since I can see, for 
example, the exact portion of the USB request 
being interrupted/corrupted. That might give 
me some hints about how far into the code 
the program has executed.

Besides FaceWhisperer and the Beagle 
480, there are other methods of triggering 
the glitch. Great Scott Gadgets offers its 
GreatFET device that has a module called 
GlitchKit. GlitchKit provides similar triggering 
capabilities, but generates the requests from 
the GreatFET itself. As of this writing the 
GlitchKit has more limited response capability, 
so I wasn’t able to read the entire response 
back. Finally, you could look into a simple 
circuit using a USB PHY—such as Microchip 
Technology’s USB3500—and an FPGA. Watch 
for the future open-source PhyWhisperer-USB 
from NewAE Technology which will give you 
that capability.

Once we have a trigger based on the 
USB request going “over the wire”, we can 
insert a trigger by setting an I/O pin high 
when the sensitive code runs. We use this for 
characterizing the system, since we can use 
an oscilloscope to measure the time from the 
USB packet going over the wire to the sensitive 
code operating. In this case, the time ends up 
being around 4.2 µs to 5.5 µs. It’s not perfect 
timing, because there appears to be some 
jitter due to the USB packets being processed 
by a queue. We have just learned that, when 
performing the fault injection demo, we 
should expect that we do not achieve perfect 
reliability.

GLITCHING THROUGH THE CASE
For inserting the glitch, I’m using a 

setup as shown in Figure 5. This includes 
a ChipSHOUTER EMFI platform, a manual 
XY table for positioning the coil, the Trezor 
target, the Beagle 480 to generate a trigger, 
a ChipWhisperer to generate the timing offset 
and a Yepkit USB hub which provides a simple 
API to power cycle attached devices. The 
power cycle capability is useful as we will be 
very frequently crashing the target device.

A very simple script (shown in Listing 3) 
enables me to power-cycle the device and 
issue the WinUSB request. The physical “jig” 
that holds the Trezor actually holds the two 
power buttons down, ensuring it always 
enters bootloader mode on start-up. We want 
to use the bootloader since the bootloader 
is at a lower address then the metadata, 

FIGURE 4
The USB protocol analyzer is setup to 
trigger on a specific packet related to 
our request.

Additional materials from the author are available at:
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bootloader is more useful when it comes time 
to recover the metadata.

The success rate is low—less than 0.1% 
of glitches are successful. We can however 
achieve a successful glitch within about 1-2 
hours on average, making it a relatively 
useful attack in practice. A successful glitch 
is one where the USB request comes through 
with the full length of data, since I was able 
to bypass the length check. Finding the exact 
location takes some experimentation—you 
will get many system crashes due to memory 
errors, hard faults and resets. But if you are 
using a hardware USB analyzer such as the 
Beagle 480 you can see where these errors 
are happening, which helps you understand 
the glitch timing. If we didn’t have the inside 
knowledge of the I/O pin we could toggle, this 
would be very valuable.

Figure 6 shows such an example. Note the 
USB transaction when performed correctly 
has a few steps. The upper part of that figure 
shows a number of correct 146-byte control 
transfers. The first part is the SETUP phase. 
The Trezor has ACK’d the SETUP packet, but 
then never sends the follow-up data. The 
Trezor entered an infinite loop as it jumped 
to one of the various interrupt handlers for 
error detection. As the location of the fault is 
shifted along in time, various effects on the 
USB traffic are observed: moving the glitch 
earlier often prevents the ACK of the setup 
packet, moving the glitch later allows the first 
packet of follow-up data to be sent but not 
the second, and moving the glitch much later 

allows the complete USB transaction but then 
crashes the device. This knowledge helps me 
understand which part of the USB code the 
fault is being inserted into, even if that fault 
is still a sledgehammer causing a device reset 
instead of an intended single instruction skip.

The final step of fine-tuning the fault to 
get a useful effect again is helped with our 
protocol analyzer. I physically moved the coil 
around over the surface, along with adjusting 
the glitch width and power level. It was 
possible—from the LCD screen—to visually 
see when the device entered an error handler 
or seemed to continue unaffected. Finding a 
location that did not always enter an error 
is typically a useful starting point, and from 
there I searched through various parameters 
until a successful glitch occurred. Again, note 
that due to the deterministic nature of the 
glitch timing, you must be careful to search 
sufficiently long in possible candidate glitch 
settings.

ABOUT THE AUTHOR
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at Dalhousie University, and also CTO of  
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FIGURE 5
Complete setup of the EMFI attack 
including Beagle 480 for trigger 
generation, ChipWhisperer for timing 
modifications, ChipSHOUTER for EMFI 
insertion and a USB hub to power 
cycle the target.
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import time
import time
import usb
import usb.core
import chipwhisperer as cw

def get_winusb(dev, scope):
    “””WinUSB Request is most useful for glitch attack”””  
    scope.io.glitch_lp = True #Enable glitch (actual trigger comes from Total Phase USB Analyzer)
    scope.arm()    
    resp = dev.ctrl_transfer(int(‘11000001’, 2), ord(‘!’), 0x0, 0x05, 0xFFFF, timeout=1)
    resp = list(resp)    
    scope.io.glitch_lp = False #Disable glitch
    return resp
    
def reset_trezor():
    “””Requires a YK USB Hub - has power control of each port”””
    subprocess.check_output([r’ykushcmd.exe’,’-d’, ‘1’])
    time.sleep(0.5)
    subprocess.check_output([r’ykushcmd.exe’, ‘-u’, ‘1’])
    time.sleep(1)
    
# ChipWhisperer used for trigger delay only
scope = cw.scope()
target = cw.target(scope)

# Values found from sweeping around
scope.clock.clkgen_freq = 147E6
scope.adc.basic_mode = “rising_edge”
scope.adc.samples = 500
scope.glitch.clk_src = “clkgen”
scope.glitch.output = “enable_only”
scope.glitch.trigger_src = “ext_single”
scope.glitch.repeat = 1
# Original extclock was 100MHz, so we scale offset
# relative to our actual clock to maintain 4.4uS
scope.glitch.ext_offset = 440
scope.glitch.ext_offset = (scope.glitch.ext_offset / 100.0E6) * scope.clock.clkgen_freq 

dev = None
    
#Loop until we get too large a response
while True:
    if dev is None:
        dev = usb.core.find(idProduct=0x53c0)   
        dev.set_configuration()
        
    try:
        #Perform USB request - glitch trigger happens via
        # TotalPhase Beagle 480
        res = get_winusb(dev, scope)    
        if(len(res)) > 146:
            print(“Data Over-Run Detected - DONE”)
            break
    except usb.USBError:
        reset_trezor()
        res = None
        dev = None
f = open(“outputresults.bin”, “wb”)
f.write(bytearray(res))
f.close()

LISTING 3
Shown here is a complete attack script in Python, which sends the USB requests while inserting faults.
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PREVENTING THE ATTACK
While it’s all good to cause the attack, 

how would you prevent against it? The first 
thing is to evaluate if your USB stack can 
be modified to prevent sending such large 
responses. If you never need to perform 
transfers of more than say 256 bytes, why 
not use an 8-bit number internally, or mask 
off the upper bits? Such a mask can be 
applied at multiple locations to complicate 
glitch attacks.

The second easy fix is to take advantage 
of memory protection, if your specific device 
supports it. This fault saw me slide from the 
USB descriptors in flash memory and read 
beyond them into sensitive metadata. But if 
we had bounded the sensitive metadata with 
invalid memory segments, our “slide” would 
have caused an exception due to the memory 
access error. When storing sensitive data in 
memory—either flash or SRAM—, bounding 

it with traps can be useful to catch any sort 
of attack that reads beyond an array. More 
generic countermeasures to fault attacks can 
also be applied, but I wanted to concentrate 
on specific countermeasures relevant to the 
memory ready attack shown here.

USE THE (MAGNETIC) FORCE
I hope you enjoyed this case study on 

electromagnetic fault injection. I’ve taken 
you through how EMFI could be used to 
attack a real product, with an exploit that 
has recently been disclosed to the Trezor 
team. Many other USB stacks use an almost 
identical code flow however, so I suspect 
you’ll find this vulnerability could exist in 
your own system. Ultimately it depends on 
the use-case, but anything where sensitive 
data is stored in standard internal memory 
needs great care to keep that data inside 
your device. 

FIGURE 6
A physical USB analyzer (compared 
to attempting to use a software-only 
solution) is critical to see mangled 
packets on the bus, which lets us 
understand how far into requests the 
target got before freezing.
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G reat efforts are expended by 
numerous R&D laboratories on 
development of new sensors 
capable of detection of just 

about any physical aspect of our world. After 
all, sensors are what give systems their 
intelligence. An important physical quantity 
whose measurement we have not yet discussed 
in the past is pressure. In this article I’ll look at 
sensors capable of providing electrical output 
signal so that it can become a part of an 
electronic monitoring or control system.

By definition a pressure sensor is a 
transducer whose purpose is to measure 
pressure of gases or liquids. A gas or a liquid 
pressure is equal to the force required to 
stop that gas or fluid from expanding. It is 
expressed as a force per unit area.

PHYSICS AND UNITS
Let’s start with the fundamental physics. 

The SI (metric) system designates pressure 
as a derived unit called Pascal (Pa), named 
after the French mathematician and physicist 
Blaise Pascal (1623–1662). The pressure of 
1 Pa represents the force of one Newton (N) 
exerted per one square meter (m2) area. In 
the metric system, Pa, as the measure of gas 
or liquid pressure, is frequently substituted 
by units called atmosphere (atm) or a Torr—
where 1 atm = 101,325 Pa = 760 Torr. In the 
industry 1 atm is often considered to be a 
reference pressure.

A bar is a metric unit of pressure equaling 
to exactly 100,000 Pa. That said, bar hasn’t 
been approved by the International System of 
Units for use as a bona fide metric unit. A bar 
is slightly less than the average atmospheric 
pressure on Earth at sea level. A common 
unit of pressure used in North America is 
PSI, which stands for “pounds per square 
inch” and is equivalent to 6.894 × 103 Pa in 
SI units. In North America you always can 
encounter a unit referred to as PSIA, which 
represents the absolute pressure in pounds 
per square inch relative to vacuum—as 
opposed to the atmospheric pressure at sea 
level, which is 14.7 PSIA = 1 bar. Similarly, 
the PSIG (PSI gauge) designation indicates 
that the atmospheric pressure is included in 
the measurement.

Torr is a unit of pressure named in honor 
of the 17th century Italian mathematician 
and physicist Evangelista Torricelli (1608 
–1647). Torricelli is the inventor of the 
Mercury (Hydrargyrum - Hg) barometer. The 
principle of the Torricelli barometer is shown 
in Figure 1. Atmospheric pressure acting 
on a pool of Mercury in a vessel causes the 
Mercury to rise inside an evacuated tube to 
a height corresponding to the atmospheric 
pressure. This is typically 760 mm at the sea 
level but it also depends on the temperature 
and altitude. In fact, barometric pressure has 
been commonly used to establish altitude. 
Typically, an altitude of an object is:
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This measurement is quite accurate 
up to about 11,000 m (36,090’). Altitude 
measurement even with an inexpensive 
barometric sensor [1] can achieve resolution 
of about 0.3 m (approximately 1’)—better than 
most GPS systems. In general, however, just 
remember that “normal” barometric pressure 
is around 760 mm Hg, that is 760 Torr or 
1 atm.

I have fond memories of my high school 
days when building the Torricelli barometer 
was the first experiment we conducted in the 
physics class. Those were the “good old days” 
when the teacher didn’t mind us splashing 
our bare hands in Mercury in an open vat. 
Fortunately, those days are over—but the 
barometer worked and I never forgot how 
and why.

A millimeter of mercury is also used as 
a manometric unit of pressure. Most of us 
are familiar with blood pressure monitors, 
although most modern instruments use 
electronic transducers rather than a column 
of Mercury. The unit was originally defined 
as the required pressure to raise a column 
of Mercury by 1 mm, but the definition has 
been changed to exactly 133.322387415 Pa. 
It is denoted by the symbol “mmHg.” As one 
might expect, the inch-of-Mercury pressure is 
also used and can still be found in aviation 
and some industries in North America.

PRESSURE-BASED ELECTRONICS
Confused? Even though we’ve been talking 

the same physical quantity, numerous units 
and methods of measurement have been used 
over the time based on history, convenience 
or application. And there are more—we just 
don’t have the space to discuss them all here. 
If you are interested, do your research. There 
are many articles on the Internet explaining 
different pressure gauges, units, their 
conversion and practical use.

All those details are secondary for the 
engineer faced with a task of designing a 
pressure-based electronic system. The sensor 
type, its specification and electrical interface 
should—and usually is—selected by the 
system designer and included in the system 
specification. The circuit designer just has to 
make sure the specification and especially the 
units of pressure are correct.

Pressure sensors, whether we call them 
transducers, gauges, indicators or something 
else have many uses in automatic control. 
Besides direct measurement and control 

of pressure their outputs can be used to 
determine altitude, tire pressure, liquid level, 
fluid or gas flow speed and many others.

Two subcategories I should mention at 
this time are similar to ones I mentioned with 
many other transducers. Many transducers 
can be divided between sensors and switches. 
Sensors provide continuous analog or digital 
signal in some defined way proportional to the 
magnitude of the measured quantity. Switches, 
on the other hand, generate a discrete on/off 
signal when a specific magnitude threshold 
has been reached. Since the switches are 
primarily just sensors equipped with some 
kind of a threshold detecting logic, we can 
concentrate on sensors only.

When selecting a pressure sensor, you 
need to consider a number of characteristics. 
Pressure range, operating temperature, the 
type of pressure, liquid or gas, size, cost, 
output signal and others are among the 
most obvious ones. Do we need an absolute 

FIGURE 1
The principle of the Torricelli’s 
barometer
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or relative measurement? Absolute sensors 
provide pressure measurement with respect 
to perfect vacuum. Relative pressure gauges 
measure pressure with respect to the 
existing atmospheric pressure. The relative 
measurement can be both above or below 
the atmospheric pressure. In the latter case 
we usually call such transducers vacuum 
sensors. If you need to measure differential 
pressure—such as occurring across pumps, 
blowers, filters and so forth—differential 
pressure transducers will do the job.

PRESSURE TRANSDUCERS
Pressure transducers can be divided 

into two basic categories. Force collector 
and special. Force collector transducers use 
some mechanical arrangement to convert 
the pressure acting on a known area into 
a movement, displacement, strain or a 
distortion of a mechanical component which 
can be subsequently converted into an 
electrical signal. Typical examples would be 
diaphragms, pistons, bourdon tubes, bellows 

and others. Various technologies are used 
to convert the results of the mechanical 
movement or strain into electrical, usually 
analog signal, which can be and quite 
often is these days, digitized. Special type 
transducers are, as their name suggests, 
not very common. Some rely on resonant 
frequency changing with pressure, thermal 
conductivity, ionization stream and so forth.

Strain or displacement conversion 
methods are similar to the ones I described 
in my previous articles on transducers, such 
as “Accelerometers Revisited” (Circuit Cellar 
334, May 2018) [2]. Piezoresistive strain 
gauge is a popular technology, commonly 
employed for general purpose measurement. 
However, it is sensitive to temperature and, 
therefore requires appropriate compensation. 
Consequently, piezoresistive transducers such 
as NXP Semiconductors’ MPL115A2 must 
contain a temperature sensor as well.

Internally, the strain gauge is usually 
a part of a Wheatstone bridge (Figure 2). 
Its resistance increases with the increasing 
strain. Capacitive sensors rely on a diaphragm 
being a part of a variable capacitor. Here, the 
capacitance usually decreases with the rising 
pressure. Many other methods of displacement 
or distortion detection are used—some of which 
I described in my previous articles. Among 
these are LVDT (linear variable differential 
transformer), inductance change Hall Effect 
and others. Imagination has no limits. 
Piezoelectric effect—due to its very nature—
makes piezoelectric sensors unsuitable for 
measurement of static forces and relegates 
those transducers to dynamic measurements.

In practical terms, it is easy to experiment 
with pressure measurement. Various pressure 
sensors on break-out boards can be purchased 
from vendors such as Adafruit [1], SparkFun 
[3] and others for literally just a few dollars. 
Most break-out boards, such as the MPL115A2 
I²C Barometric Pressure/Temperature Sensor 
Board in Figure 3 are available with I2C 
interface and can be readily used with 
platforms such as Arduino. Order one of these 
break-out boards and have fun! 

FIGURE 2
Principle of MPL115A2 operation

FIGURE 3
Barometric pressure/temperature 
sensor board with NXP MPL115A2 
transducer and I2C interface
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Picking Up Mixed Signals

Fancy Filtering
with the Teensy 3.6

S ignal filtering can be done either 
with analog circuitry or digitally 
using a microcontroller (MCU) 
coupled with analog-to-digital and 

digital-to-analog converters. The strength 
of analog filters is that they can cover wide 
frequency ranges. If they are designed entirely 
with passive components, the range of signal 
amplitudes that can be handled is limited only 
by the voltage rating of the various capacitors 
that are used. Additionally, they don’t add 
much, if any, noise to the signal. However, a 
limitation of analog filters is that they can’t 
provide a sharp cut-off rate at their corner 
frequency (Fc), unless you cascade many filter 
sections and use close-tolerance components.

If you need high-performance filters, then 
digital filters might be the way to go. You can 
design very sharp low-pass, high-pass, notch 
and band-pass filters using digital techniques, 
if you use high-resolution ADC/DACs to convert 
the analog signal into the digital domain 
and (optionally) back to the analog domain. 
However, the MCU that you use must be fast 
and, in general, feature hardware-based 
floating-point operations. Two years ago, I 
discovered a line of Arm-based MCU modules 
that fill the bill nicely.

In Circuit Cellar issues 324 (July 2017) and 

325 (August 2017), I described a digital guitar 
amplifier based upon the Teensy 3.2 Module, 
which contains an Arm Cortex-M4 MCU. The 
analog guitar signal was converted to a 16-bit 
digital signal for processing, and then back 
to an analog signal for power amplification, 
by an NXP Semiconductor SGTL5000 Codec 
contained on the PJRC Audio Shield. This 
project was made possible largely due to the 
extremely powerful Audio library provided 
by the manufacturer of the Teensy modules. 
This library consists of many audio functions, 
all of which operate using DMA transfers 
and interrupt service routines (that is, as a 
background task). The sampling is done at CD 
quality (44,100 samples/s at 16-bit resolution).

That project involved many different 
audio functions—some from the Teensy Audio 
Library, and some that I wrote myself. The 
filtering I used for the project was in the form 
of a 5-band parametric equalizer (EQ). This 
consists of five blocks of band-pass filters, 
each one centered on a specific frequency 
in the audible range. Such an EQ is basically 
a sophisticated “tone control” for the guitar 
signal. While most of the other guitar signal 
processing was done within the Teensy 3.2 
MCU, using the Audio library, the 5-band 
parametric EQ was handled by a DSP block 

Signal filtering entails some tricky tradeoffs. A fast MCU 
that provides hardware-based floating-point capability 
eases some of those trade-offs. Here, Brian has used the 
Arm-based Teensy MCU modules to serve those needs. 
Here, Brian taps the Teensy 3.6 Arm MCU module to 
perform real-time audio FFT-convolution filtering.

Arm-ed for DSP

By 
Brian Millier

FIGURE 1
Top view of the Teensy 3.6 Arm MCU 
module. To the right is the on-board 
MicroSD socket, which accepts the MicroSD 
card containing the Cabinet Impulse 
Response file.
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contained within the SGTL5000 Codec on the 
Teensy Audio Shield.

After finishing that project, I became 
interested in more sophisticated filtering 
algorithms that could be performed by the 
Arm MCU found on the Teensy modules. The 
Teensy Audio Library routines work with all 
the Arm-based MCUs in the Teensy module 
family (except the lowest-cost LC model). The 
Audio library contains three types of digital 
filters:

1) Biquad (low pass, high pass, band pass, 
notch)

2) FIR (up to 200 taps)
3) State-variable (Chamberlin)

The Biquad algorithm executes quickly, 
and its coefficients are easy to calculate on 
the fly, which makes it easy to change the 
filter bandwidth and Fc quickly. Finite impulse 
response (FIR) filters can provide much better 
filter characteristics, if you configure them 
with enough “taps”. However, as you increase 
the number of taps used, the execution time 
increases proportionately.

All the above filters use 16-bit, fixed-
point math (Arm Cortex M4 DSP instructions 
using the Q15 data format). This is fast and 
reasonably accurate, but not enough to 
provide very sharp filter “skirts”. When you 
attempt to cascade several sections of such 
filters, you start to see the limitations in the 
precision of the fixed-point math.

The higher-end Teensy modules (Teensy 
3.5 and 3.6) contain the more powerful Arm 
Cortex M4F core. These devices have hardware 
floating-point instructions, which basically 
allow you to do floating-point operations as 
quickly as you could do the 16-bit fixed-point 
operations with the DSP instructions available 
on Teensy 3.2’s Arm Cortex M4 MCU.

By using a Teensy 3.6 with hardware 
floating-point instructions, I figured that I 
could handle more sophisticated filtering 
algorithms. Another consideration was 
that the Teensy 3.6 MCU runs at 180 MHz, 
compared to the 72 MHz clock speed of the 
Teensy 3.2. Also, the Teensy 3.6 can be safely 
over-clocked at 240 MHz, compared to the 
120 MHz maximum overclocked speed of the 
Teensy 3.2. Figure 1 shows the Teensy 3.6 
module. Figure 2 shows the Audio Shield 
that I used. It contains the NXP SGTL5000 
Codec device (A/D and D/A converters, mic 
preamplification, headphone driver and 
digital signal processing).

CONVOLUTION FILTERING
Although I have used digital filters in 

FIR and Biquad configurations, prior to 
this project I wasn’t familiar with the term 

“convolution” filtering. As part of my music/
recording hobby, I had encountered the term 
convolution regarding:

1) Guitar amplifier cabinet simulation
2) High-end, “space-accurate” reverberation 

processors

Convolution reverberation processors 
are not relevant to this discussion. However, 
guitar amplifier cabinet simulation is basically 
a fancy way of saying that you are simulating 
the exact frequency/phase response of a 
guitar amplifier and its loudspeaker(s), 
mounted in a specific cabinet, with the 
recording microphone oriented a specific way.

The “shape” of the frequency response 
curve of any given guitar amplifier/speaker 
combination will not be a “flat” response over 
the useful range of guitar notes. Instead it 
will consist of many small peaks and dips 
over the frequency range of interest. These 
“aberrations” provide the distinctive sound of 
interest to the musician. To some extent, one 
can simulate a given guitar amplifier/speaker 
by using a multiband parametric equalizer 
(EQ) and fiddling with it until it sounds the 
way you know the actual amplifier/speaker 
sounds. However, experts in the field learned 
that they could go one step further using the 
following method.

Rather than feeding an actual guitar 
signal into the amplifier/speaker cabinet, they 
feed it a short pulse, with rise/fall times as 
fast as possible. This short pulse is called a 
“finite-impulse signal.” The sound emitted by 
the speaker cabinet is then picked up by a 
professional-quality microphone, amplified, 
converted to digital form and stored in a 

FIGURE 2
Top view of the Teensy Audio Shield. The two rows of 14 holes 
are fitted with header pins that plug directly into the Teensy 3.6 
MCU module. All interconnections between the two boards are 
via these 28 pins.
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file. This file represents the FIR of the guitar 
amplifier/speaker cabinet. I admit that I 
don’t have the best understanding of the 
mathematical “magic” involved here, but 
suffice it to say that all the frequency response 
“personality” of the guitar amplifier/speaker 
cabinet is contained in the finite-impulse-
response (FIR) file that has been collected. 
The higher the sample rate used to record the 
impulse, the better the simulation, and the 
larger this FIR file will be.

Once you have this FIR file, you can use it 
to provide the coefficients needed for a digital 
FIR filter. If you pass your “raw” guitar signal 
through this FIR filter, it will be modified in 
virtually the same way that it would be if it 
were sent out to the specifically modeled guitar 
amplifier/speaker cabinet. Effectively, you can 
digitally record a “raw” guitar signal, which, 
when converted back to analog and listened 
to, will sound as if you were listening to it 
“live,” through the specific guitar amplifier/
speaker that you have modeled. The FIR filter 
routine does what’s called a “convolution” 
of the guitar’s time-domain signal with the 
FIR array of coefficients—which is also time-
domain data.

FOCUSING ON FIR
Once you absorb the idea behind this 

simulation technique, it becomes clear that 
you could implement a complex digital filter 
to reproduce almost any complex frequency 
response with this technique. I’m certain that 
mathematicians and electronics engineers 
in the communication field discovered and 
used this technique to design complex filters 
long before guitar players saw its usefulness. 
However, it was the guitar cabinet simulation 
concept that led me to investigate the FIR 
filtering technique more fully.

It turns out that implementing a FIR filter 
with enough “taps” or coefficients to perform 
realistic guitar amplifier/cabinet simulation 
generally requires a FIR filter with 512 taps 
or more. The Teensy 3.6, running at 240 MHz 
(overclocked)—and using its built-in DSP 16-
bit fixed-point instructions—can process a 
100-tap FIR filter (using the Teensy Audio 
library’s FIR filter block), using only 7% of 
available MCU time. This is for 16-bit data at 
a 44,100 Hz sample rate. That 7% figure is 
strongly influenced by the fact that most of 
the SGTL5000 Codec data transfers (in and 
out) are done under DMA, which frees up 
the main MCU from performing this time-
consuming task.

Because FIR filter’s execution time is 
directly proportional to the number of taps 
[1], a 512-tap FIR should require 36% of 
available execution time. This timing seems 
reasonable, but implementing a FIR filter with 
such a large number of taps is impractical 
when using 16-bit fixed-point numbers. The 
accuracy is not nearly good enough to achieve 
proper results.

What is needed is a way to implement a 
floating-point 512-tap convolution process 
that is fast enough to handle 16-bit signals 
at a 44,100-Hz sample rate, in real time. A 
powerful set of math/DSP routines for Arm 
Cortex devices is contained within the Cortex 
Microcontroller Software Interface Standard 
(CMSIS) library. I made use of several 
floating-point math functions contained in the 
CMSIS-DSP library.

TIME VS. FREQUENCY
The previous discussion involved 

processing signals in the time domain. That 
is, we sample a signal at a fixed sample rate, 
process these data and then send the data out 
at the same sample rate. We could also do the 
electronic filter processing in the frequency 
domain. This would involve converting our 
time-domain signal into the frequency 
domain. This means doing basically the same 
filtering (but in a different way), converting 
the frequency-domain signal back into the 
time domain, and then sending it out. On the 

FIGURE 4
Shown here is a representative plot of the coefficients of a FIR low-pass filter. Notice that it is symmetrical 
around the half-way point in the number of taps.

FIGURE 3
Block diagram of the algorithm used in the Convolution Filter. The details of the overlap-add operations are 
not shown here, but are explained in the article.
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surface, it would seem that this unnecessarily complicates the 
procedure, but there is a good reason to do it this way.

Converting the time-domain signal into the frequency 
domain can be done with a Fast Fourier Transform (FFT) routine. 
Converting it back into the time domain can be done with an 
Inverse Fast Fourier Transform routine (iFFT). Both the FFT and 
iFFT routines are available in the CMSIS DSP library available 
for Arm MCUs. For the Cortex M4F cores with built-in floating-
point operations, the applicable CMSIS libraries perform those 
operations in floating point, very efficiently.

The big advantage to doing the filtering in the frequency 
domain rather than the time domain is that the computationally 
intensive convolution routine can be replaced by a matrix multiply 
routine. I referenced Steven Smith’s The Scientist and Engineer’s 
Guide to Digital Signal Processing [1] while doing this project. 
A link to it is available on the Circuit Cellar article materials 
webpage. In Chapter 18 he mentions that the execution time for 
a standard FIR convolution routine is proportional to the number 
of FIR “taps,” whereas an FFT convolution routine’s execution 
time increases only as the logarithm of the number of FIR taps. 
Smith assumes that equivalent floating-point math instructions 
are used for both methods, and the following holds true:

1) For < 64 taps, standard convolution routines are faster.
2) For > 64 taps, FFT convolution routines are faster.

In figure #18-3 of Smith’s text [1], he shows that a 512-
tap standard convolution is almost 4 times slower than a 
512-tap FFT convolution. I had no idea how much slower the 
Teensy 3.6’s floating point instructions would be compared to its 
highly-optimized DSP 16-bit fixed-point instructions. Therefore, 
I couldn’t tell whether it would be possible to implement a 
standard 512-tap floating-point FIR filter in real time (at 16-bit, 
44,100 Hz sample rate). Considering that the FFT convolution 
routine should be 4 times faster, I decided to use that technique. 
Looking at the result that I show later in the article, this proved 
to be a wise choice.

BASIC IMPLEMENTATION
Figure 3 shows the basic algorithm used for a 513-tap FFT 

FIR convolution filter. First let’s consider the 513-tap figure. 
When doing a convolution, the filter “kernel” that is used must 
be symmetrical around its central point (Figure 4). That is why 
a 513-tap value (an odd number) is used rather than 512. 512 is 
29 (FFTs are generally 2n in size).

Before doing any processing on the audio input stream, 
we must first obtain a “filter mask.” This is derived from the 
array containing the FIR filter coefficients—after it has been 
processed by a floating-point complex FFT routine, which brings 
it into the frequency domain. In Figure 3, I show the 513-point 
FIR coefficients as a 16-bit integer array. That is how a guitar 
cabinet impulse response file is structured—it is supplied as a 
WAV file in 16-bit signed format. I convert this to a floating-point 
array (using CMSIS arm_q15_to_float), so that it can be 
processed by the 1024-point, floating-point complex FFT routine 
(CMSIS arm_cfft_f32). Note that if you were instead trying 
to implement a FIR filter using coefficients from a FIR filter 
calculator [2], they would be normalized floating-point numbers. 
My FIR Filter Mask processing routine expects 16-bit integer 
values, so you would have to multiply those normalized floating-
point coefficients by 32,768. The FIR Filter Mask, as described 
above, needs to be calculated only once for any given FIR filter 
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profile. You might wonder why I am using a 
1024-point complex FFT routine, when I have 
only 513 data-points. I’ll discuss that later.

Next, let’s look at the processing needed 
for filtration of the signal in real time. The 
Teensy Audio library does all its audio data 
transfer and processing in 128 blocks of 16-bit 
audio data. This means the incoming digital 
audio signal (from the SGTL5000 Codec) is 
transferred into Teensy 3.6 SRAM by a DMA 
burst transaction of 128 words (256 bytes). 
Similarly, these 128-word blocks are moved 
between various SRAM memory locations 
under DMA control for processing. Finally, the 
output data also are sent back to the Codec 
under DMA control.

This block size is a compromise chosen to 
minimize latency time (2.9 ms per 128-sample 
block,) while still allowing for efficient DMA 
transfers and other data-processing chores. 
However, for the 513-tap FIR routine to work, 
we need our 16-bit audio data to be available 
in 512-sample blocks. Without going into 
any detail yet, let’s just say that four of the 
Teensy Audio library’s 128-sample blocks are 
concatenated into one 512-sample block. An 
integer-to-float routine (CMSIS arm_q15_
to_float) is used to convert this into a 
512-element floating-point array.

This 512-sample array of time-domain audio 
data must now be converted into the frequency 
domain. This is done using a 1024-point 
complex floating-point FFT (CMSIS arm_
cfft_f32). Why do we need a 1024-point 
complex FFT when we are processing only a 
512-sample audio block? To begin, the audio 
signal data coming in consists of only the real 
part, not the imaginary part of a complex 
array. The math behind this is beyond my pay 
grade. But I know from experience that the 
sound coming out of the filter won’t be correct 
if you don’t use a complex FFT routine, and 
you must fill the imaginary portion of the input 
array with the same audio data that you have 
in the real portion. The complex FFT routine 
expects its input array to have the real and 
imaginary values interweaved, so when you are 
transferring the incoming audio data into the 
FFT array, you write each value twice before 
advancing to the next incoming data point.

The second question here is why are we 
doing a 1024-point FFT on only 512 input 
samples? Where are we getting the extra 
512-points that we need to present to the 
1024-point FFT? Here again, the theory is 
somewhat above my pay grade, but this is 
how I understand it.

BACK TO TIME DOMAIN
Let’s go back to thinking in terms of a 

time-domain signal. If we are considering a 
continuous stream of digital audio data, it 

is obvious that the MCU cannot process the 
continuous data stream all at once. We must 
break the signal into smaller blocks and do the 
filtering on each block individually. Without 
getting into any math, I think it’s intuitive that 
filtering is just doing some form of weighted 
averaging over several data-points. At the 
very start of the datastream, there won’t be 
any “past history,” so the averaging process 
won’t be accurate. But that only happens once, 
at start of processing. The middle section of 
the block will filter okay, but as we get toward 
the end of the block, we’ll be missing the 
data present at the start of the next block, 
so that the averaging (filtering) will again be 
inaccurate. We therefore need to process the 
data in a way that takes into consideration 
the data from the next 512-sample block of 
data.

When a FIR digital filter with a 100-point 
filter kernel processes 100 incoming data 
points, it will result in an output of 200 
data-points. Obviously, we can’t send out 
200 data-points for every 100 data-points 
coming in, given that the input and output 
sample rates are identical. If you analyze the 
math involved, it turns out that to provide an 
accurate filtered signal you must:

1) Break the incoming signal into a block half 
the size of the FIR filter kernel.

2) Add a block of zeros to the end of these 
signal data, to make the total length equal 
to the size of the filter kernel.

3) Perform the FIR filtering on this block, 
resulting in an output block equal to twice 
the size of the filter kernel.

4) Send the first half of this output block out 
to the Codec, and save the last half of this 
block for later.

5) Perform steps 1, 2 and 3 again on the next 
incoming block of data. However, for step 
4, recover the saved block of data from 
before, add it to the first half of the output 
block, then send this composite first half 
block out to Codec. Save the second half of 
the block for later (as in 4).

This process is referred to as the overlap-
add method in DSP texts.

When we consider the FIR convolution 
process being done in the frequency domain, 
similar considerations will apply. We take 512 
samples of the audio data and place it in the 
first half of the 1024-point FFT input array, 
filling both the real and imaginary elements 
with the audio data as mentioned above. We 
then fill the second half of the array with zeros 
(for both the real and imaginary elements). 
After the 1024-point FFT is performed, we 
will have a 1024-element of complex data in 
the frequency domain. In a similar fashion, 
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LISTING 1
Most of the actual computation is performed in this section of the program. The complexity is hidden by the use of high-level, DSP-like routines contained in the Arm CMSIS library.

the 513 FIR coefficients are padded out 
to 1024-points before undergoing the 
1024-point FFT—which produces the Filter 
Mark.

The FIR convolution process in the time 
domain is equal to an array multiplication in 
the frequency domain. So, we take the FFT 
array from the incoming signal and multiply 
it with the FFT array from the FIR filter 
coefficients (the Filter Mark that were pre-
calculated). The resulting 1024-point array, 
still in the frequency domain, must now be 
converted back into the time domain. This is 
done using a 1024-point iFFT routine (CMSIS 
arm_cfft_f32). Note that both the CMSIS 
FFT and iFFT routines are called using the 
same “arm_cfft_f32” label, but there is a 

parameter passed to this routine for which a 
“0” designates an FFT and a “1” designates 
an iFFT routine.

We are now back in the time domain with 
an array of 1024 floating-point digital audio 
samples. We take the first half of this array 
and add it to the 512 points of data saved 
from the last block. These 512 floating-point 
numbers are then converted back to 16-bit 
integers (CMSIS arm_float_to_q15) and 
sent out to the Codec to be converted to an 
analog signal. We then save the second half of 
this array to a temporary array, which will be 
added into the output stream the next time 
around. You can see that the overlap-add 
method that I discussed in terms of the time-
domain FIR convolution is also performed, in 

// 4 blocks are in- now do the FFT1024,complex multiply and iFFT1024 on 512samples of data
// using the overlap/add method
// 1st convert Q15 samples to float
arm_q15_to_float(buffer, float_buffer_L, 512); 
// float_buffer samples are now standardized from > -1.0 to < 1.0
if (passThru ==0) {
 memset(FFT_buffer + 1024, 0, sizeof(FFT_buffer) / 2);
// zero pad last half of array- necessary to prevent aliasing in FFT
//fill FFT_buffer with current audio samples
k = 0;
for (i = 0; i < 512; i++)
 {
 FFT_buffer[k++] = float_buffer_L[i];   // real
 FFT_buffer[k++] = float_buffer_L[i];   // imag
}
// calculations are performed in-place in FFT routines
arm_cfft_f32(&arm_cfft_sR_f32_len1024, FFT_buffer, 0, 1);  // perform complex FFT
arm_cmplx_mult_cmplx_f32(FFT_buffer, FIR_filter_mask, iFFT_buffer, FFT_length);    
// complex multiplication in Freq domain = convolution in time domain
arm_cfft_f32(&arm_cfft_sR_f32_len1024, iFFT_buffer, 1, 1);  // perform complex inverse FFT
k = 0;
l = 1024;
for (int i = 0; i < 512; i++) {
 float_buffer_L[i] = last_sample_buffer_L[i] + iFFT_buffer[k++];
       // this performs the “ADD” in overlap/Add
last_sample_buffer_L[i] = iFFT_buffer[l++]; 
//this saves 512 samples (overlap) for next time around
 k++;
 l++;
 }
} //end if passTHru
// convert floats to Q15 and save in temporary array tbuffer
arm_float_to_q15(&float_buffer_L[0], &tbuffer[0], BUFFER_SIZE*4);
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a similar way, in the frequency-domain FIR 
convolution process. Note that in Figure 3, 
I’ve simplified the diagram somewhat by not 
including the zeroing of the second of the 
signal input array (and Filter Mask routine) 
nor have I shown the addition of the saved 
arrays from the previous block calculations. 
Listing 1 shows the “C” program code to 
perform the filtering as explained above.

IMPLEMENTATION DETAILS
The above description assumes that 512 

audio samples are available to filter, all at 
once. However, the Teensy Audio library 
doesn’t work this way. It operates with a 
timed interrupt service routine (ISR) that 
occurs every 2.9 ms and processes a single, 
128-sample block of audio data.

All the Teensy Audio processing libraries 
must contain a routine called “update.” This 
routine is responsible for receiving one of 
these blocks, doing whatever processing is 
required, and then transmitting that block and 
releasing its memory. You can use numerous 

Audio library functions in series, if so desired. 
So, every 2.9 ms, the Audio ISR fires, and the 
update code for each of the audio functions 
that the programmer has used in the 
program will be executed in sequence. Each 
one is processing a single, 128-sample block 
of audio data, and then passing it along.

Obviously, I had to write some code to 
adapt this 128-sample block processing into 
one that works with 512 samples at a time. To 
do this, I define a variable called “state,” which 
persists between these Audio ISR “update” 
calls. At each update, “state” is incremented 
by 1. For states 0 to 3, I store the incoming 
128-samples of audio data in a temporary 
512-element integer buffer (incrementing the 
buffer pointer by 256 bytes each time).

When state=3, this temporary buffer is full, 
so I call the 512-point FFT convolution routine 
(described in the last section and shown in 
Listing 1). That fills up a 512-element integer 
transmit buffer. The state variable is now set 
to zero, to start the process over again. In 
addition, for states 0 through 3, I point to 

FIGURE 5
A screen-capture of the Web-based program TFilter. This program can be used to generate FIR filter coefficients for various types of digital filters. To the right, you can see I’ve 
selected integer coefficients, because that is what my program expects. But floating-point numbers can also be chosen.
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successive one-quarter sections of this transmit buffer, and send a 128-sample block from 
this buffer section back out to the Audio library’s queue, where it will either undergo further 
processing (if required by the program) or be sent out to the Codec to be converted to an analog 
audio signal. The transmit buffer will have no valid data in it the first four times that the Audio 
update occurs, since no filter processing has yet taken place. So, you could get a short “blip” of 
noise (around 12 ms) when the program first starts processing audio data.

If you’ve carefully followed the above explanation, you can see that out of four consecutive, 
ISR-driven “updates,” three of them do no processing apart from moving data from one buffer 
to another. It is the fourth update that does all the filter processing. Using the Audio library’s 
AudioProcessorUsage() function, I found that the percentage of available MCU processing 
power used by updates 1 through 3 was less than 1%, and update 4 was 47%. These figures are 
obtained with the Teensy 3.6 overclocked at 240 MHz. The figures—quoted on my original GitHub 
site for this project [3]—are for a Teensy 3.6 clocked at 180 MHz, and are proportionately higher.

GENERATING THE FILTER MASK
Earlier, I explained that the desired FIR coefficients must be converted into what’s called the 

Filter Mask, for frequency-domain filtering. Basically, I was interested in two sources for these 
FIR coefficients:

1) FIR filter coefficients for standard types of filters, obtained by filter calculation programs—
either web-based tools or dedicated programs running on either a PC or an embedded MCU

2) Guitar Cabinet Impulse files

Let’s look at #1 first, because this type of filtering could be used more widely. If you need 
a filter with specific parameters that will seldom or never change, you are probably best 
served using a FIR filter design application, either web-based or a PC application that can be 
downloaded. A common web-based program is TFilter [2].

Using this program, there are a few considerations to note. For use with the Teensy Audio 
library/Audio Shield, the sample frequency must be set to 44,117 Hz. The Teensy Audio library 
actually runs at a sample rate of 44,117 Hz, slightly different from the CD standard of 44,100 Hz. 
Also, the filter coefficients will be output in either double-precision floating-point or integer. You 
would choose integer in this case, as my program is designed to work primarily with Guitar 
Cabinet Impulse files, which are normally formatted as Microsoft WAV files. These files use a 
16- bit waveform format. Figure 5 is a screenshot of TFilter showing a low-pass filter.

If the parameters of the filter must be changeable while the Teensy 3.6/Audio Shield is 
running, then another approach must be taken. If you needed only a few FIR filter profiles, 
it would be possible to pre-calculate them using TFilter, and then load several banks of FIR 
coefficients into flash memory, to be switched in and out of SRAM as needed. The Teensy 3.6 
contains 1 MB of flash memory, so there’s plenty of room for filter coefficient banks.

Another approach is to embed a FIR filter calculation routine in the Teensy 3.6’s code, 
itself. I have included a Teensy program that includes the calc_FIR_coeffs function. This 
routine calculates floating-point FIR coefficients for Low-pass, High-Pass and Band-pass filters, 
for a user-selected number of FIR taps. Since this routine provides normalized floating-point 
coefficients, I multiply all the values by 32,768 before sending them to the “cabinet_impulse” 
array (a 16-bit integer array).

The parameters passed to this routine are as follows:

calc_FIR_coeffs (float * coeffs, int numCoeffs, float32_t fc, 
float32_t Astop, int type, float dfc, float Fsamprate)

float * coeffs: a pointer to a float32_t array large enough to handle 
the designated number of coefficients (taps)

int numCoeffs: an integer specifying the number of coefficients
float32_t fc: a floating-point number specifying center or cutoff 

frequency
float32_t Astop: a floating-point number specifying expected stopband 

attenuation in dB
int type: type of filter- 0-Low-Pass 1-High Pass 2-BandPass
float dfc: a floating-point number specifying half-filter bandwidth 

(for BandPass only)
float Fsamplerate: a floating-point number specifying the sample rate 

in Hz.
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For Cabinet Impulse FIR coefficients, the coefficients are generally stored in a Microsoft WAV 
file. The ones I have seen contain enough data to fill a 513-tap FIR filter coefficient array. For 
some reason, the ones I have seen are often very long files—many hundreds of thousands of 
bytes or more. Of this, only the first 512 or so data points in the “wave” chunk of the file contain 
actual coefficient data. The rest are zero-padded. Microsoft WAV files do not just contain raw 
wave data—they also include a header section at the beginning of the file. This header section 
contains “meta-data” about the format of the file, a pointer to the start of the wave data, and 
the length of the wave.

For my Teensy 3.6 application, I place the WAV file containing the Cabinet Impulse file onto 
an SD card. This card must be inserted into the SD CARD socket on the Teensy 3.6, itself—not in 
the SD card socket found on the Audio Shield. In the program, I open the file “MG.WAV,” which 
is the name of the sample file I used. You must modify this line of my program to match the 
filename you have, or rename your file to match.

To find the start of the wave data, I open the file and search for the string “data.” Assuming it 
is a true WAV file, the string “data” should be found. I then skip over the next 4 bytes (the wave 
data size field) and then read in 513 integer values. These are stored in the array cabinet_
impulse (type int16_t). Whichever method you use to generate the FIR coefficients, the 
coefficient data in the cabinet_impulse array must be converted into a frequency-domain 
Filter Mask. This is done, in the Setup portion of the program as follows:

convolution.begin(0);
// set to zero to disable audio processing until impulse has been loaded
convolution.impulse(cabinet_impulse);
// generates Filter Mask and enables the audio stream

Once convolution.impulse has executed, a valid Filter Mask array will exist, and the 
real-time processing (filtering) of the incoming audio stream will begin. Listing 2 shows the 

void AudioFilterConvolution::impulse(int16_t *coefs) {
 arm_q15_to_float(coefs, FIR_coef, 513); // convert int_buffer to float 32bit
 int k = 0;
 int i = 0;
 enabled = 0; // shut off audio stream while impulse is loading
 for (i = 0; i < (FFT_length / 2) + 1; i++)
 {
  FIR_filter_mask[k++] = FIR_coef[i];
  FIR_filter_mask[k++] = 0;
 }

 for (i = FFT_length + 1; i < FFT_length * 2; i++)
 {
  FIR_filter_mask[i] = 0.0;
 }
 arm_cfft_f32( &arm_cfft_sR_f32_len1024, FIR_filter_mask, 0, 1);
 for (int i = 0; i < 1024; i++) {
 // Serial.println(FIR_filter_mask[i] * 32768);
 }
 // for 1st time thru, zero out the last sample buffer to 0
 memset(last_sample_buffer_L, 0, sizeof(last_sample_buffer_L));
 state = 0;
 enabled = 1;  //enable audio stream again
}

LISTING 2
The convolution.impulse routine takes a 513-element FIR array (integer) and converts it into a 1024-element Filter Mask (floating-point). The CMSIS complex FFT routine is used 
for this purpose.
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convolution.impulse routine. The routine 
is passed a pointer to the 513 element FIR 
coefficient array generated as described 
above. It first converts this integer array 
to a floating-point array. Then it fills up the 
first 513 real elements of the 1024 element 
FIR_filter_mask array with those 513 
coefficients. Since the FIR_filter_mask 
array must hold complex values, every second 
element is set to zero—in other words, zeroing 
out the imaginary part. The final 511 complex 
elements of this array are also zeroed out. 
The rationale for zeroing out of the last part 
of the array is explained in Smith’s text [1]. 
The filter produces a lot of artifacts in the 
signal if this is not done!

After the 1024 element array has been 
prepared as above, a complex FFT is 
performed on the array (CMSIS arm_cfft_
f32). Part of the “magic” in these CMSIS FFT 
routines is that they do the FFT process “in 
place”—in other words, no separate array 
is needed for the transformed result. As a 
last step, this routine zeroes out the last_
sample_buffer array, which is used in the 
overlap-add process mentioned earlier. The 
first time through the overlap-add process, 
there is no valid last_sample_buffer 
array data, so it needs to be zeroed out.

PROGRAM DETAILS
A few program details merit discussion. 

The FFT convolution filter that I wrote is 
structured to work with the Teensy Audio 
library. When the Teensyduino Arduino add-
in is installed, this Audio library will be 
installed by default—unless you specifically 
un-check the box corresponding to it during 
the installation routine.

Two things must be done to the Audio 
library to include this convolution filter:

1) You must install some CMSIS files to the 
Teensy core library. The exact procedure 
for doing this can be found in the text file 
“Adding CMSIS 4 library files” located at 
Circuit Cellar’s article code & files download 
webpage. Alternately, instructions can be 
found on my GitHub site [3]. I also include 
alternate instructions to incorporate the 
newest CMSIS 5.3 library. Either one will 
work properly.

2) The convolution filter code consists of 
2 files: filter_convolution.h and 
filter_convolution_cpp
These files must be added to the folder 
containing the Teensy Audio library. This 
folder will be located under whatever 
folder you have installed the Arduino/
Teensyduino IDE. The path is: c:\your 
arduino folder\hardware\teensy\avr\
libraries\Audio

Also, in that folder, edit Audio.h by adding 
the following line at the end:

#include “filter_convolution.h” 
// library file added by Brian 
Millier

Like any custom Audio library objects 
that you add yourself, this one will not show 

FIGURE 6
An easy way to familiarize yourself with the SGTL5000 Codec used in the project is to refer to its Help file in 
PJRC’s online Audio System Design Tool.

FIGURE 7
The Audio System Design Tool’s workspace for this project. Note that the FIR object is shown. See article 
text for explanation.

ABOUT THE AUTHOR
Brian Millier runs Computer Interface Consultants. He was an instrumen-
tation engineer in the Department of Chemistry at Dalhousie University  
(Halifax, NS, Canada) for 29 years.
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up in the Audio System Design Tool found on 
the PJRC site. Probably the easiest way to 
generate the setup/connection code needed 
to incorporate this filter into your audio 
configuration, is to draw your configuration 
using the Design Tool Web program, but place 
a FIR filter. Import this configuration into 
your sketch. Then, within the “// GUItool: 
begin automatically generated 
code” replace “AudioFilterFIR 
fir1” with “AudioFilterConvolution 
convolution”. Also, on two of the 
AudioConnection lines, replace instances 
of “fir1” with “convolution”

In my sample program, this configuration 
has already been done. The above procedure 
is only needed if you are writing your own 
program using additional Audio library objects. 
If you want the convolution filter keywords to 
be highlighted in orange in the Arduino IDE 
(like all the other Audio library objects), you 

can add the following line to the keywords file 
(contained in the Audio folder):

AudioFilterConvolution<TAB> 
KEYWORD2. 

Note that you must separate these two 
words with a TAB character, not with spaces.

THE SGTL5000 CODEC
I’ll just mention a few details about the 

NXP SGTL5000 Codec found on the Teensy 
Audio Shield. It contains both Line input and 
Microphone inputs. The Microphone input is 
configured for an electret microphone (DC bias 
is provided). The SGTL5000 has a programmable 
gain preamplifier for the Microphone input. 
Both Line out and Headphone outputs (stereo) 
are available, and the Headphone output 
channel has a wide-range volume control, 
which is adjusted under program control. 
The SGTL5000 contains its own Digital Audio 
Processor (DAP)—basically a specialized DSP 
that can perform various EQ and Auto Level 
Control functions. An easy way to become 
familiar with the capabilities/settings for this 
device, is to access the online program Teensy 
Audio Library Design Tool. See the Circuit Cellar 
article materials webpage for the link.

When using the Audio Shield, your sketch 
must contain the SGTL5000 control object. When 

FIGURE 8
Schematic diagram of the hardware 
used for this project. It consists of 
only a Teensy 3.6 module with a PJRC 
Teensy Audio Shield mounted on it.

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
References [1] through [3] as marked in the article can be found there.

RESOURCES

NXP Semiconductors | www.nxp.com

PJRC | www.pjrc.com

http://www.circuitcellar.com/article-materials
http://www.nxp.com
http://www.pjrc.com
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this is included, all the necessary initialization 
code will we added to set up the SGTL5000 
in a default configuration. The SGTL5000 is 
configured via the I2C bus. Its I2C address is 
0x0A, which shouldn’t conflict with most other 
I2C devices that you might also want to use.

The easiest way to learn about the 
SGTL5000’s capabilities and programming 
is to use the Teensy Audio Library Design 
Tool. Figure 6 is a screenshot of the Audio 
Library Design Tool, showing a bit of the 
SGTL5000 info screen on the right. Figure 7 
is a screenshot of the Audio Library Design 
Tool configured for this project. Note that a 
standard fir1 filter object is placed in the 
workspace. See the explanation in the prior 
section on how to replace the code generated 
by the fir1 object, with code that implements 
the Convolution filter instead.

Figure 8 is the schematic of the project. 
As you can see, it comprises two modules: 
A Teensy 3.6 MCU module and the Teensy 
Audio Shield. The Audio shield is designed so 
that it can be mounted on the Teensy 3.2, 
3.5 or 3.6 MCU modules directly—eliminating 
any interconnecting wiring. The audio Line 
In and Line Out are available on a 10-pin IDC 
header. The signal designations are shown 
on the bottom of the board, and the pinout 

matches that of a PC motherboard’s audio 
Line in/out connector. A filter In/Out switch 
is connected to the Teensy Digital 37 GPIO 
pin. A 5-V power source can be applied either 
via the micro-USB port, or the Vin pin on the 
Teensy 3.6 module.

CONCLUSIONS
I believe I spent more time figuring out 

how to write this code than on any other non-
work-related program I’ve tackled. The final 
code seems very simple, because it makes 
extensive use of the CMSIS library routines. 
However, learning how they worked and how 
to integrate them into the pre-existing Teensy 
Audio Library was quite challenging. On the 
other side of the coin, building the circuit 
was trivial due to the easy integration of the 
Teensy 3.6 MCU module with the PJRC Audio 
Shield.

Author's Note: I’d like to acknowledge all 
the programming effort of Paul Stoffregen, 
who wrote the Teensyduino Arduino add-in 
and the core of the Audio Library. I also 
referenced work done by Frank (DD4WH) on 
his Teensy SDR project, which included similar 
FFT convolution routines. A link to Frank's 
Teensy SDR project can be found on the Circuit 
Cellar article materials webpage. 

Embedded in your success.

www.congatec.com/us
info@congatec.com
Phone: 858-457-2600

http://www.congatec.com/us
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From the Bench

An Itty Bitty Education

I don’t know a kid who hasn’t played with Legos. 
I even know adults who still enjoy building 
something with Legos. I know because I’m 
one of them. When Christmas comes around, 

I always try to incorporate my love of Legos and 
fascination with robots into gifts for my grandkids. 
I wish I had the bucks to give every one of them 
Mindstorm EV3s. But at $350 each (times 13) 
there’s just no way I can swing that and eat too. 
So, I keep my eyes peeled for things that are a little 
less expensive but still seem to have a good value to 
them. This year I found the Itty Bitty Buggy (IBB).

This is a product put out by Microduino. You 
may know that Microduino makes a similar product 
that’s about one-fourth the size of an Arduino Uno 
yet has a similar bus structure. In other words, 
you can stack expansion boards atop the core 
microcontroller (MCU) board. There are more 
than 100 modules, sensors and actuators to solve 
most application requirements. As you might have 
guessed, you can use the Arduino IDE to program 
the Microduino series of parts. In addition, they offer 
mDesigner, which is Scratch-based and designed 
for young minds with no programming experience.

The IBB is Microduino’s newest product. 
They’ve taken the best of what they’ve learned and 
incorporated it into an inexpensive learning tool. 
Listed at $59, it fits my requirements for immediate 
fun, with a path for educational growth. First, we’ll 
take a quick look at the fun part.

CELL PHONE = FUN
The Itty Bitty Buggy is a mobile vehicle controlled 

via Bluetooth using your Android or iOS device. The 
app provides instructions for building and playing 
with the Buggy in one of five scenarios: Buggy 
movement (wheels), Dodo Bird (flapping wings), 
Sloth (suspended rope walker), Ladybug (legs) and 
Alien (arms). There are on-screen instructions for 
the simple “build” of each of the five critters. Each 
build instructs the user on how to assemble each 
character, in easy-to-follow pictorial steps. It has 
four modes: remote control (joy stick), line following 
(color sensors), voice control (phone microphone) 
and music (joy stick and color sensors). The other 
four scenarios are based on the buggy scenario—
the difference being that each creature has different 
movements, based on similar controls.

No programming knowledge is needed for any 
of these scenarios. The hardest part is pairing 
your phone to the Buggy’s Bluetooth module! Once 
you’ve done this, the Buggy will make contact with 
your phone and is ready to perform its control of 
any of the preprogrammed scenarios.

If you’ve looked at the app’s screen in Figure 1, 
you may have noticed the word “program” at the top 
right of the screen. This button brings up the next 
level of control available to a user. So, after you had 
enough fun playing with all the scenarios prewritten 
on the IBB, hit “program” and let’s dive deeper.

Let’s assume we have the simple buggy built and it 

There’s no doubt that we’re 
living in a golden age when it 
comes to easily available and 
affordable development kits for 
fun and education. With that in 
mind, Jeff shares his experiences 
programming and playing with the 
Itty Bitty Buggy from Microduino. 
Using the product, you can combine 
Lego-compatible building blocks 
into mobile robots controlled via 
Bluetooth with your smartphone.

STEM at Home

By 
Jeff Bachiochi

FIGURE 1
The Itty Bitty Buggy phone app provides both “build”: step-by-step assembly of each 
creature and “play“: the Bluetooth controls to make your creature come alive. 
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only has wheels. You can start a new project by 
tapping “+.” But instead tap “project1”, which 
has already been created for you (Figure 2). 
In programming mode, you create or alter 
projects using drag-and-drop selections from 
one of the menu icons: Switch (procedures), 
Control (repeat), Calculation (comparisons), 
Light (colors), Sound (beeps), Movement (drive) 
and Sensor (colors). Each project is a program 
made up of blocks placed on the project field. 
On the field’s left are two buttons: Stop (yellow 
square inside a red button) and Start (yellow 
right pointing triangle inside a blue button). On 
the field’s right are menu icons. 

Each project should begin with the Start 
block. This has an icon of the start button on it 
and is found in the procedure group displayed 
when the switch icon is touched. Project1 has 
the Start block already on the project field, 
along with a few other blocks. Just below 
the Start block you’ll find two Light blocks 
and one Sound block. If you look at the Light 
blocks, you’ll see each one uses a different 
sensor: A (the driver-side LED/sensor) and 
B (the passenger-side LED/sensor). Each of 
these has an associated color. You can choose 
a different color by tapping the color swatch, 
tapping a new color from the pop-up menu 
and tapping the project field to select it. The 
Sound block allows you to select a note and to 
adjust its duration using similar taps.

To have the IBB execute this program, just 
tap the Start button in the lower left of the 
field. The blocks are executed from the top 
down, turning on the left LED, turning on the 
right LED and playing a note. You’ll see that 
when the note has finished playing, it sits there 
waiting to execute more blocks, but since we 
have run out of blocks to execute, the buggy 
waits. Tapping on the Stop button will halt the 
program—the LEDs are turned off.

You can alter this project to investigate all 
the menu groups, and when you leave (Exit), 

the project will be saved if it has been changed. 
There is plenty here for a kid to really begin 
to understand how programming is simply a 
list of instructions to follow. You will note that 
the Start button is grayed while the program 
is executing. Presently, the scrollable project 
field can’t be resized, which means that larger 
projects can’t be seen without scrolling. This 
makes them a bit difficult to see. When you 
need your phone back, you can move the 
learning from the phone app to a PC. We’ll 
explore those options right after looking more 
closely at the actual hardware.

BREAKING DOWN BUGGY
The Buggy is divided into two modules, 

which I call the head and body (Figure 3). 
The head contains a CPU with USB (wired) 
and Bluetooth (wireless) interfaces. All I/O 
is through two bus systems: the “mCookie” 
bus, which uses “pogo pins” and magnets to 
ensure connectivity between snap-together 
modules, and the sensor bus, which offers a 
number of 4-pin connectors carrying power/

FIGURE 2
Should boredom set in, switch to the 
programming mode. Here you will 
drag and drop instructions to make 
the creature do your bidding.

FIGURE 3
The Buggy has many built-in features. 
I like the lithium ion power source. 
You can add features by stacking a 
“cookie” or cabling a sensor via the 
top of the Buggy’s expansion buses.
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ground and two analog or digital I/Os. And 
speaking of power, an integrated lithium 
battery—which charges from the USB port—
provides long run times and so there’s no 
worries about replacing batteries (Figure 4).

The mCookie is a modular, stackable, 
building-block-compatible electronics 
platform that supports Arduino. The original 
series consisted of a CPU “core” module 
and several stackable expansion modules 
such as communication, functions and 
sensors. Because several modules have been 
incorporated onto the Buggy’s “mCenter+” 
PCB—CPU, communication, battery 
management, sound and so on—the stackable 
expansion can be used to add module-like 
GPS, RTC or Lego NXT interfacing. A typical 
module—such as the 128 × 64 OLED—is 
priced at $15.

The sensor bus breaks out all the CPU’s 
I/O ports. The tiny connector is a 4-pin 
JST 1.25 mm. This connector is compatible 
with the Microduino line of sensors. You can 
choose from a long list of inexpensive switch, 
LED, environment and other input and output 
sensors. The only downside I see is that, 
unlike Lego sensors that are integrated into 
Lego bricks, these are tiny PCBs with exposed 
sensors. A typical sensor—such as the digital 
temperature sensor—costs $4.

The body of the Buggy contains two motors, 
two LEDs and two color sensors. All this is 
multiplexed through one dedicated 4-pin I/O 
connector. Note in Figure 5 that the wheel 
shafts are gear-driven 1:1 from the motors, 
and each axle has a mechanical clutch to 
prevent breakage. This connector could have 
been eliminated—or at least internalized—if the 
Buggy had been a one-piece unit. I’m not sure of 
the reasoning for breaking this into two pieces.

You may have noticed that you didn’t see any 
way for the phone app to handle any of these 
additional I/O thingies. And you’d be correct. 
For some kids, just beginning to learn about 
programming and playing with the available 
blocks on the phone app will be sufficient for a 
good while. In fact, not every child will develop 
the curiosity to come out and ask: “What now?” 
And that’s OK! That said, don’t toss out the 
Buggy just yet because there is plenty more 
for those interested in learning more. You can 
find additional information about the modules 
and sensors I have already mentioned on the 
Microduino website.

GRADUATION
Those who wish to graduate on to bigger 

and better adventures should grab their 
imaginations and download mDesigner from 
Microduino. After starting the application, 
you will find a screen divided into five areas: 
a toolbar (top-open/save/kit/port/settings), 

FIGURE 4
Multiple cookies were 
combined to create a 
single PCB inside the 
top of the Buggy. The 
back of the PCB holds 
the two expansion 
buses. The front 
side holds most of 
the electronics (see 
inset).

FIGURE 5
The lower half of the Buggy contain motors and wheels, along with the color LEDs and sensors. The motor 
and color functions are controlled by one 4-pin cable (2-I/Os).
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panes (left-code blocks/costume/sound), scripts (center-build area), stage (upper left-stop/start/
sprite) and sprites (lower right-selecting sprites and backdrops). Realize that this environment 
was created to teach someone how to program by dragging and dropping instruction blocks 
onto the script area, not necessarily for the IBB. With that in mind, say you have a child that 
could not care less about robots. Invite them in right now. This is for them.

You can set aside the Buggy for now—it’s not required for this exercise. Make sure it says 
“online” on the right side of the toolbar. If it says offline, just click it. I’ll explain this later. Let’s 
begin by creating a new project that any kid will have fun with. Click “Create a new Project” 
in the toolbar. Now click the Costume tab in panes. Click “Choose a Costume” at the bottom of 
panes. Scroll through the icons and pick “Dog2.” This will be our Sprite. Next, click Stage on the 
right in sprites and the Costume tab will change to Backgrounds. Click “Choose a Backdrop” at 
the bottom of panes. Scroll through the icons and pick Theater. Again click “Choose a Backdrop” 
at the bottom of panes. Scroll through the icons and pick Farm. Okay, now we can start coding.

Click the Code tab in panes. One the left of side of panes there is a column of functions that 
you can hit to scroll the associated instruction “blocks” into view in panes. These are similar to 
those in the phone app described earlier. Here I’ll describe a selected block by using the syntax 
“function:block” to help you find it. Then place it in the script area and edit items in parentheses 
as necessary. 

Events:when clicked
Looks:Say ‘You click the mouse and I’ll follow.’
Control:wait until <>
(Place Sensing:mouse down? into <>)
Looks:think ‘Hmm’ for ‘2’ seconds   
Sensing:glide ‘1’ secs to ‘Mouse Pointer’

Your desktop application should look like Figure 6. Now click the green flag at the top of the 
Stage. You should see the Dog sprite, with a speech balloon that says “You click the mouse and 
I’ll follow.” After you click the mouse button, the dog’s speech balloon will say “Hmm.” Then, two 

FIGURE 6
Here we’ve set the stage, so to speak, with our actor—a dog—front and center. Just a few function blocks are required to bring our furry friend to life.
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seconds later—after contemplating where the click came from—the sprite will float toward where the mouse pointer was clicked, 
but will remain inside the Stage area. Add the remaining blocks shown here, and the project is finished. 

Control:repeat ()
(Place Operators:pick random ‘1’ to ‘5’ into () )
Sensing:Mouse Down?
(Place previous code into repeat)
Looks:switch backdrop to ‘Farm’
Looks:say ‘I need a rest’ for ‘2’ seconds
Looks:say ‘Zzzzzz’ for ‘10’ seconds
(Place each of the following blocks between ‘when clicked’ and ‘say You click the mouse and I’ll follow.’)
Looks:switch backdrop to ‘Theater’
Motion:goto x: ‘0’ y: ‘0’
Looks:say ‘OK, let’s play’ for ‘2’ seconds
(Place ‘Control:forever around all the code block, with ‘when clicked’ at the top)

Remember the “When Clicked” block must always stay as the topmost block! You should now have what looks like Figure 7. 
Save by clicking “Save Project.” Let your kids play. Fido will tell you when he’s had enough, right? If you haven’t dragged and 
dropped before, it takes a while to figure out what to grab and where in order to rearrange blocks. There’s a bunch of different 
codes in this little project. Please feel free to play around. It’s a perfect opportunity to show your kids how easy it is to program. 
You can build and run at various stages to really get an understanding. Now, on with the show.

BRING ON THE BUGGY
Let’s begin with the difference between “online” and “offline.” When the Buggy is involved, a wired USB connection must always 

be used. I’m not sure whether the Bluetooth will be incorporated in the future. The online mode will download a small program, 
which runs on the Buggy and allows your projects to be run/stopped/edited from mDesigner. This is fine if you do not include any 
movement. Otherwise it’s like having a lively puppy on a leash. The offline mode downloads an executable copy of your project to 

be run even when unplugged and every time the Buggy is powered up.
If the last project is still loaded into mDesigner, click online to toggle to the 

offline mode. Two things happen: a notice pops up stating there are blocks that 
are unsupported in this mode, and on the right side of the screen, the stage 
and sprite areas are replaced by an area that looks an awful lot like the Arduino 
IDE! This is about to turn into an educational moment.

Click on “Create New Project” on the toolbar. Add the following blocks to 
the project:

Events:when clicked
Control:repeat ‘10’
(Place the following inside ‘repeat 10’)
Buggy:car ‘forward’ speed ‘255’ duration ‘1’ s
Buggy:buzzer note ‘c4’ duration ‘1’ s
Buggy:car turn ‘left’ speed ‘255’ duration ‘1’ s
Buggy:buzzer note ‘b4’ duration ‘1’ s

Note that as you add blocks, the code is generated on the right side of the 
screen. While mDesigner was always writing code when blocks were added, now 
you get to see that actual code. This makes it obvious what actual code must be 
written in an Arduino IDE to perform a described task. Whether or not the user is 
interested in this presentation, it is an effective learning tool for those interested 
in tackling the programming hurdle. Save the project and click “flash firmware.” 
You will need to have the Buggy connected with the included USB cable. If you 
don’t know which serial COM port to use, run the “Computer Management” 
application on your PC. On my PC, the port is COM18, as shown in Figure 8. 
When the download is finished, the project will begin running immediately. Note: 
you may wish to place the Buggy atop something to keep its wheels off the 
ground. Remove the USB cable and place the Buggy in an open area. It should 
begin to move and beep, turn and boop 10 times and then stop. The program will 
run every time you turn on the Buggy with its power switch.

CUSTOMIZING YOUR CODE
You may have noticed while playing with the Buggy and your smartphone 

that, although you can drive the Buggy around using the joysticks or keep 

FIGURE 7
Here I’ve expanded on the theme and given the pup a bit of 
random behavior, along with a change of scenery.
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the Buggy within the playing area when line-
following with the color sensor, it has no other 
input device. I looked at the tiny microswitch 
offered as a crash sensor and thought “That 
looks tough to work with. I can do better.” I 
dug through my “junk” boxes and found some 
small levered E-Switch microswitches that 
looked promising. The lever not only reduces 
the required force to engage the contacts 
(small, less than 1 oz), but also offers an easy 
way to affix “crash” extensions.

I grabbed a small piece of protoboard 
cut to around 0.3” × 1.5”—which is about 
the size of one of the 1 × 5 orange girders 
supplied in the Buggy’s extra parts bag. Two 
of these microswitches and pull-up resistors 
are mounted on the extreme ends of the PCB. 
I grounded the N.O. (normally open) switch 
contacts with the wiper connected to the 
pull-up and the Buggy input lines of a 4-pin 
connector. Although I wanted to add the 
appropriate connector so I could use one of 
the extra jumpers supplied with the Buggy, 
I didn’t have one. So, I clipped off one end 
of a jumper cable and soldered it to the PCB 
directly. I hope Microduino offers these male 
connectors for sale in the future for us DIYers.

A piece of double-sided foam tape holds 
the PCB securely to the girder, which is 
easily mounted to the front (or rear) of the 
Buggy. You can see the assembly added to 
my Buggy in Figure 9. Attached to the switch 
levers are cardboard ovals, which cover the 
total width of the Buggy and then some for 
complete protection of most frontal assaults. 
In robotics, many would say that your 
sensors should prevent any kind of collision, 
but even insects use their antennae to make 
contact with obstacles. Touch is an important 

FIGURE 8
Under “Windows Administration 
Tools” you will find “Computer 
Management”, which shows your 
active COM ports. If you can’t figure 
out which one you need, try plugging 
and unplugging the device, to see 
what is added or removed from the 
list.

FIGURE 9
These tiny lever-action microswitches are just what we need to get this Buggy roaming the range. Arduino 
blocks let us use external sensors that we connect via the expansion buses.

ABOUT THE AUTHOR
Jeff Bachiochi (pronounced BAH-key-AH-
key) has been writing for Circuit Cellar 
since 1988. His background includes product 
design and manufacturing. You can reach 
him at:
jeff.bachiochi@imaginethatnow.com or at:
www.imaginethatnow.com.
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sensation that we all use every day. The jumper cable is plugged into the Buggy connector marked D4/D5. This 
means the N.O. switches with pull-ups to VCC look like a logic-level high until an obstacle has closed a switch, 
which shorts the input to ground (logic low).

FREE TO ROAM
Now we can remove the walls of the Buggy arena and let it roam freely on the range. We’ve added the 

hardware to prevent it from getting stuck once its run into a wall, furniture or other obstacle in its landscape. 
How can we incorporate this sensor into the Buggy’s programming? You’ve probably noticed that the “red” 
Buggy blocks do not include any mention of any I/O other than motor, color and buzzer. We will need to use the 
“blue” Arduino blocks, just above the Buggy blocks.

Start by entering the following Buggy block program:

Events:when clicked
Control:forever
(Place the following inside ‘forever’)
Buggy:car ‘forward’ speed ‘255’ duration ‘1’ s
Buggy:buzzer note ‘c4’ duration ‘1’ s

If you then download the program by clicking “flash firmware,” the buggy will begin executing your program. 
It will drive forward for 1 s before pausing 1 s to play “C4” (that’s note C in the fourth musical octave). You can 
set it free on the floor. Just realize it will eventually crash into something, but attempt to keep going.

A few more lines of code will solve that problem:

(Place the following inside ‘forever’, just under ‘buzzer c4 1s’)
Control:if ‘<>’
(Place the following inside ‘<>’)
Arduino:pin ‘5’ is ‘low’
(Place the following inside ‘if’)
Buggy:car ‘backward’ speed ‘255’ duration ‘1’ s
Buggy:buzzer note ‘c5’ duration ‘1’ s 
Buggy:left ‘left’ speed ‘255’ duration ‘1’ s
Buggy:buzzer note ‘e4’ duration ‘1’ s  
(Repeat the following, note the minor, but important changes)
Control:if ‘<>’
(Place the following inside ‘<>’)
Arduino:pin ‘4’ is ‘low’
(Place the following inside ‘if’)
Buggy:car ‘backward’ speed ‘255’ duration ‘1’ s
Buggy:buzzer note ‘c5’ duration ‘1’ s 
Buggy:turn ‘right’ speed ‘255’ duration ‘1’ s
Buggy:buzzer note ‘g4’ duration ‘1’ s

Your blocks should now look like Figure 10. I saved this project as Buggy Bumpers, and then “flashed the 
firmware” and set this Buggy free. Note that if the left Buggy switch closes, the Buggy will back up before 
turning right, away from the obstacle, by executing one “if” statement. A right switch closure should turn the 
Buggy left (Figure 11). If the turns are wrong, that’s because your switches are wired or placed the opposite of 
mine. Then you need to change pins 4 to 5, and pins 5 to 4 in the “if” blocks. 

I’ve included the playing of notes, so you can easily identify which line in the program is executing. You will 
observe that these “notes” interrupt the movements of the Buggy. To make the movements smoother, eliminate 
those blocks. Once you do that, you might find that 1 s is too long for some movement—especially the forward 
movement. Referring back to an earlier project written on the cell phone app, you might say let’s shorten them 
up to some fraction of a second. But fractions of a second are not recognized in mDesigner. Hmm.... A look at 
the Arduino code (on the left of the screen) written when the blocks are placed will reveal the reason for this. 

In the loop() code, you’ll find the function BuggyCarTime(1, 255, 1)—the numbers being values 
for the variables (direction, speed, duration). 
We placed the block “car () speed () duration 
() s” into our project three times. The same 
function is called each time with different 
parameters. If you look at this function, which 
was placed early on in the Arduino code, you 
find each variable type (_dir, _speed, and 
_time) has been typecast as uint8_t, or an 

Additional materials from the author are available at: 
www.circuitcellar.com/article-materials

RESOURCES

Microduino | www.microduinoinc.com

E-Switch | www.e-switch.com

http://www.circuitcellar.com/article-materials
http://www.microduinoinc.com
http://www.e-switch.com
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FIGURE 11
My Buggy has run into the leg of a high chair. It’s tough creating avoidance routines that will work for all 
situations. That’s why more sophisticated robots typically have many levels of avoidance.

8-bit byte (0-255). So, the only legal values 
that these variables can take on are integers 
between 0-255. If the provider of the routines 
had defined _time as float (floating point), 
we could have used fractions of a second. You 
might want to try replacing all the “1”s with 
0.1 and see what happens. Then, you can 
directly alter the Arduino code by replacing 
the text uint8_t with the text float, and 
then recompiling (flashing firmware). Does it 
act differently? What about the turns? That’s 
a separate function, but you can replace the 
uint8_t with float there also. Don’t forget 
to recompile. 

Note: This is not a permanent change. 
And because the saved project only saves 
the blocks, when you reload your project the 
Arduino code is built again from its libraries. 
As a result, any changes you made in the code 
go away. To make this change permanent, 
you need to do so in the library, where the 
function is permanently stored.

CONCLUSION
Now you may be able to see that the Itty 

Bitty Buggy—while an inexpensive and fun 
“first robot”—is not limiting to your child (or 
the child in you) in any way. It introduces one 
to building and operating a number of fun 
projects that can stimulate one’s imagination 
and lead to a curious desire to dominate the 
universe—or at least improve on the program!

A couple things bother me, beyond what 
I may have already mentioned. Some of the 
application help is not available in English. 
However, the Microduino website does have 
an English Wiki link that is constantly being 
improved. I’m sure that as the popularity of 
IBB increases, so will the support. 

The sensors available from Microduino 
were not designed specifically for integration 
into the Buggy—except for those cookie 
modules that plug on and have no physical 
position demands. I think some sensors could 
be integrated into the mechanical building 
system, so they could be easily secured to the 
vehicle/creature being built. Using the tiny 
connectors may save some real estate, but if 
they’re going to be made available, a more 
standard connector would be a plus. 

It’s only fair that I praise those areas in 
which I think Microduino has done things 
right. The cost of entry is reasonable, and 
includes many immediately gratifying 
features. Their redesign of existing hardware 
has miniaturized what would otherwise 
be a growing stack of individual products. 
The inclusion of additional programming 
environments allows the Buggy’s shelf life to 
be extended after boredom has set in. The 
lithium ion battery is extremely important. 
I’ve seen many abandon any interest in a 

device just because low batteries unknowingly 
introduced erratic operations that didn’t make 
sense, creating unwarranted frustration.

If you want to provide someone with a fun 
toy that can encourage learning, I recommend 
the Itty Bitty Buggy. And don’t forget to add 
the Buggy Bumper, just to be safe!

FIGURE 10
With just a few added blocks, our 
bumper switches can redirect the 
program flow to back the Buggy away 
from danger.
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PRODUCT NEWS

COMe Type 7 Card Sports AMD EPYC Embedded 3000 Processor
Congatec has introduced its first Server-on-Module (SoM) 

with AMD embedded server technology. The new conga-B7E3 
Server-on-Module with AMD EPYC Embedded 3000 processor 
offers up to 52% more instructions per clock compared to 
legacy architectures, according to the company. Use cases 
include Industry 4.0, smart robot 
cells with collaborative robotics, 
autonomous robotic and logistics 
vehicles, as well as virtualized 
on-premise equipment in harsh 
environments to perform functions 
such as industrial routing, firewall 
security and VPN technologies.

The conga-B7E3 COM Express 
Type 7 modules are equipped 
with AMD EPYC Embedded 3000 
processors with 4, 8, 12, or 16 
high-performance cores, support 

simultaneous multi-threading (SMT) and up to 96 GB of DDR4 
2666 RAM in the COM Express Basic form factor and up to 1 TB 
in full custom designs. Measuring just 125 x 95 mm, the COM 
Express Basic Type 7 module supports up 4x 10 GbE and up to 
32 PCIe Gen 3 lanes. For storage the module even integrates an 

optional 1 TB NVMe SSD and offers 2x 
SATA Gen 3.0 ports for conventional 
drives. Further interfaces include 
4x USB 3.1 Gen 1, 4x USB 2.0 as 
well as 2x UART, GPIO, I2C, LPC and 
SPI. Attractive features also include 
seamless support of dedicated high-
end GPUs and improved floating-point 
performance, which is essential for 
emerging AI and HPC applications.

Congatec 
www.congatec.com

960 W DIN Rail Supply Boasts 95% Efficiency
TDK has announced the addition of a 960 W rated model 

to its DRF series of AC-DC DIN rail mount power supplies. The 
high 95% efficiency produces less internal waste heat enabling 
electrolytic capacitors to run cooler, providing a calculated life 
of in excess of eleven years with a 75% load at 230Vac input. 
The unit can supply a peak load of 1440W (24V 60A) for up to 4 
seconds to power capacitive and inductive loads. Applications 
include industrial process control, factory automation, and 
test and measurement equipment. The power supply has a 
24 V output, adjustable from 24 V to 28 V, using either the 
front panel mounted trim potentiometer or an external 5 to 
6V source. The input range is 180 to 264 VAC, withstanding 
surges of up to 300 VAC for 5 seconds. The operating ambient 
temperature is -25°C to +70oC, -40°C cold start, derating 
linearly above 50°C to 75% load at 70°C. 

The DRF960-24-1 is 123.4 mm tall, 139 mm deep and has 
a narrow 110 mm width saving both space on the rail and in 
the cabinet. Remote on/off and a 30 V 1 A rated DC OK relay 
contact are provided as standard. The DRF960 is certified to 
the safety standards of IEC/UL/CSA/EN 60950-1, UL508 and is 

CE marked in accordance to the Low Voltage, EMC and RoHS 
Directives. The unit is compliant to EN 55032-B (radiated 
and conducted emissions), EN 61000-3-2 harmonics and IEC 
61000-4 immunity standards.

TDK-Lambda | www.tdk-lambda.com

MCU-Based Solution is Qualified with Alexa Voice Service
NXP Semiconductors has unveiled an MCU based voice control solution qualified with Amazon’s Alexa Voice Service (AVS). This 

enables original equipment manufacturers (OEMs) to quickly, easily and inexpensively add voice control to their products, giving 
their customers access to rich voice experiences with Alexa. Built on an NXP i.MX RT 
crossover platform, this MCU-based AVS solution enables low latency, far-field, “wake 
word” detection; embeds all necessary digital signal processing capabilities; runs on 
Amazon FreeRTOS; and includes an Alexa client application.

This MCU-based AVS solution provides OEMs with a self-contained, turnkey offering 
that enables them to quickly add Alexa to their products. It includes the MCU, the 
TFA9894D smart audio amplifier, optional A71CH secure element and comes with 
fully integrated software. It also features noise suppression, echo cancellation, beam 
forming and barge-in capabilities that enable use in acoustically difficult environments.

NXP offers at its Mougins, Sophia-Antipolis facilities a product testing service for 
Alexa Built-in products, available to its customers desiring to test their devices before 
submitting to Amazon for final evaluation.

NXP Semiconductors | www.nxp.com

http://www.congatec.com
http://www.tdk-lambda.com
http://www.nxp.com
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TEST YOUR EQ 
Contributed by David Tweed 

For more information: 
circuitcellar.com/category/test-your-eq/

Problem 1— Back in the days of stand-alone UART chips 
that required separate baud rate generators, one way to 
generate the 3.6864 MHz clock for the baud rate generator 
was to take the 16.000 MHz system clock and feed it to a 
synchronous 4-bit counter that was configured to divide by 

13 by forcing it to load the value 3 when it got to 15, giving 
the following waveforms:

As you can see, the QB output of the counter produces 3 
pulses for every 13 input clocks, and it turns out that this 
comes very close to the required frequency. What is the exact 
error, expressed as a percentage?

Problem 2— Obviously, there is some jitter in the timing of 
the individual pulses produced by this circuit, relative to an 
evenly-spaced clock at the same frequency. What is the peak-
to-peak magnitude of this jitter?

Problem 3— Modern UARTs usually include internal baud 
rate generators that can divide the input clock by an arbitrary 
integer N. Given an input clock of 16.000 MHz, and assuming 
that the output of the baud rate generator needs to be 16× the 
actual baud rate, what is the highest standard baud rate for 
which the frequency error is no greater than that generated 
by the scheme above?

Problem 4— What is the maximum frequency error that a 
baud rate generator for a UART can produce? Assumptions:

• 8N1 data format
• Error equally distributed between transmitter and receiver
• Generator output is 16× the baud rate

www.circuitcellar.com/category/test-your-eq
www.cc-webshop.com
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How Programming 
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Reduce Risks

By 
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Lead of Technical Account 
Management and 
Business Development, 
AdaCore

The Future of Safe Programming

T he future of microcontroller- and embedded processor-
based systems is clear. While there is definitely a large 
amount of logic that can be directly encoded in the 
silicon or FPGA, there is also an increasing need for more 

complex or easier-to-update features to be developed in software 
on top of it. And these systems may have extremely demanding 
requirements for safety and/or security. Trends in the automotive 
domain with assisted or automated driving are a very good example.

The bad news is that programming is much more an empirical 
process than a deterministic science. Developers can write up to 
hundreds of lines of code per day—shared with potentially hundreds 
of other developers—all having slightly different appreciation of 
what the program should do or how software engineering principles 
should be applied. Considering that some of these applications will 
be maintained by generations of developers, it’s no surprise to hear 
that there is roughly one bug per hundred lines of code [1]. Spread 
over millions of lines running on the simplest device nowadays, this 
means tens of thousands of lurking bugs, opening doors to hackers 
and potentially jeopardizing life or property.

Traditional industry response has been a combination of 
processes and tools. These have been successful, but also come at 
a cost in terms of verification effort. However, this also comes at a 
cost in terms of verification effort. As a result, outside of domains 
such as aerospace and defense, almost no industry has been able 
to justify the effort.

The tide is turning, though. As software is getting more and more 
tightly involved in almost every device, so are demands for safety 
and security. The automotive domain with assisted or autonomous 
driving is a good example (Figure 1). The 
increased cost may look prohibitive at first, but 
fortunately, there are other ways to improve 
the situation: starting by improving the 
programming language itself. 

BEYOND THE INFAMOUS C
A painful number of bug reports are 

linked to vulnerabilities associated with the C 
programming language, or C-based relatives 
such as C++. Many tools exist for no other 
reason than to try to offset these shortcomings, 
which can be split into two main categories:

•  Error-prone language definition: These relate 
to constructs that may either be ambiguous, 
or be difficult to interpret. Something like: 
“int * i; i = i + 1” may mean pointer 
arithmetic to a careful developer, or be 
mistaken for an integer increment. While 
simple issues can be identified through static 

FIGURE 1
The automotive domain with assisted or autonomous driving is a good example application where 
safety and security challenges are becoming more complex and dependent on software.
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analysis, their accumulation may eventually 
render the code very difficult to analyze.

•  Lack of specification capabilities: While C fully 
allows a developer to express how a program 
works, it doesn’t provide much capability 
for expressing what it should do, or under 
which constraints it should operate. Lack 
of such specification means many missed 
opportunities to check software against its 
intended functionality. External tools exist to 
work around this issue, but because they’re 
not integrated in the language, they’re facing 
many limitations.

The good news is that there seems to be a 
renewed effort in the programming language 
community to provide alternatives to C. For the 
first issue, an extremely promising example is 
the Rust language [2] which seems to be getting 
lot of traction with an imaginative approach to 
pointer safety. Even within the C community 
there’s a growing understanding that “trusting 
the developer” shouldn’t be a design principle 
anymore [3].

Initiatives also exist on the second aspect. 
The “easy” answer is programming by assertion, 
for example by adding intermediate verification 
checks in the software that can be enabled 
or disabled depending on the situation. But 
there is also progress through the evolution of 
programming languages. A very good example 
is the work on the new C++ 202X [4] standard 
which is looking at extending specification with 
contracts.

ADA & SPARK: THE NEW WAVE?
There’s no doubt that programming 

languages at large are improving at meeting 
safety and security concerns. However, a 
programming language was designed 35 years 
ago to solve these very issues, and today is 
still one of the most credible alternatives to 
C for safety and security purposes: the Ada 
programming language. Like others, it has 
come through many revisions, with contract-
based programming introduced in its 2012 
revision for example. From the start, it has 
offered a very precise and explicit semantics, 
and has provided mechanisms for specifying 
code constraints such as scalar type ranges, 
array bounds, data mapping on memory, 
floating point value precision and many others.

Having a precise definition and constraints 
in the language gave rise to the formally 
analyzable SPARK subset [5] of Ada. With Ada as 
with any other languages, processes and tools 
will be needed. But with a strong foundation, 
it’s possible to go much further. Most C static 
analysis tools are in the business of identifying 
potential bugs while being unable to guarantee 
that all have been caught. 

Using the SPARK subset of Ada together with 
the corresponding tool support can guarantee 
that all errors of a certain category have been 
found, with a very low rate of false alarms. 
Demonstrating a property such as absence of 
buffer overflow for example becomes a practical 
matter, opening the door to much more 
advanced functional analysis, such as proving a 
program against some of its requirements. This 
is not just an advantage in theory; an analysis 
conducted by market research firm VDC in 2018 
[6] demonstrated that Ada could lead to cost 
reduction up to 40% over C in certain industries.

It's therefore no surprise that the Ada and 
SPARK, which were still a few years ago mostly 
used within the aerospace domain, are now being 
adopted by a new wave of users, in industries 
such as medical devices [7] [8], automotive [9], 
security [10] and semiconductors [11].

THE DAUNTING LEGACY
There is, however, an important point that 

all of the above assumes. Adopting Ada or 
SPARK, going the Rust route or switching to a 
future version of C or C++ will require you to 
deal with legacy software, which wasn’t written 
for these standards. While it may be reasonable 
to take on some minimal rewrite, the cost of 
rewriting these millions of lines of code will be 
prohibitive.

As always, there’s a reasonable alternative. 
Most of these languages interface well with 
legacy C software. With C or C++ this is obvious, 
but for example, Rust and Ada/SPARK also 
provide specific support for interfacing with C. 
So, the idea that the industry is going towards 
to is: keep the legacy software, rewrite what’s 
highly critical or sensitive, and develop new 
modules with whichever new language is 
selected. This will allow the new code to reach 
proper levels of safety more effectively, giving 
some more time to find solutions to improving 
what can’t change.  

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
Reference [1] through [11] as marked in the article can be 
found there.

RESOURCES
AdaCore | www.adacore.com

Quentin Ochem has a software engineering background, specialized 
in software development for critical applications. He has over 10 
years of experience in Ada development. He responsibilities at 
AdaCore include leading technical account management as well as 
driving business development, following projects related to avionics, 
railroad, space and the defense industries.
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