
w Product Focus: PC/104 Boards w Trends in Code Analysis Tools |

PIC32 Does Real-Time Stock Monitoring | Capacitive vs. Inductive Sensing |

Robotic Arm Plays Beer Pong | Transistor Basics for Today’s Engineer

w Fun with the Itty Bitty Kit | Pressure Sensors | Filtering with Teensy 3.6 |

Attacking USB Gear with EMFI w The Future of Safe Programming

TECHNOLOGIES FOR DIGITAL SIGNAGE
MAY 2019
ISSUE 346CIRCU

IT CELLAR | ISSU
E 346 | M

AY 2019
circuitcellar.com

circuitcellar.com

TECH FEEDS DESIGN NEEDS FOR
 DIGITAL SIGNAGE

Inspiring the Evolution of Embedded Design

Together, we are making security
implementation easier for you

IAR Systems and Secure Thingz are teaming up to make security
implementation part of the development workflow with the release of

Embedded Trust and C-Trust.

Embedded Trust is a security development environment, which simplifies the
configuration of security, from the root of trust and key storage for a connected

device to the creation of security profiles and projects.

C-Trust is an extension to IAR Embedded Workbench that enables application
developers to deliver secure, encrypted code as part of their standard workflow.

Make security a natural part of your day-to-day development

Learn more at iar.com/security

 Industry-leading development tools and
ground-breaking security technology

www.iar.com/security

The Embedded Experts

segger.com

Worldwide: sales@segger.com
 +49 2173 99312 0

U.S. East Coast: us-east@segger.com
 +1 978 874 0299

U.S. West Coast: us-west@segger.com
 +1 408 767 4068

n Real-time compression
n Small footprint
n No static RAM required
n Compression of data streams
n High performance
n High compression ratio
n On-target compression & decompression

emCompress-ToGo
Compress Data in Real-time on any Embedded System!

Data Loggers Internet of Things Space / Avionics

Networking Medical Devices Consumer Electronics

One Professional Compression Solution for All Applications

mailto:sales@segger.com
mailto:us-east@segger.com
mailto:us-west@segger.com
www.segger.com

CIRCUIT CELLAR • MAY 2019 #3462

OUR NETWORK

SUPPORTING COMPANIES

NOT A SUPPORTING COMPANY YET?
Contact Hugh Heinsohn

(hugh@circuitcellar.com, Phone: 757-525-3677, Fax: 888-980-1303)
to reserve space in the next issue of Circuit Cellar.

Accutrace, Inc. C3
AdaCore 29
All Electronics Corp. 77
CCS, Inc. 77
congatec, Inc. 67
Elma Electronic, Inc. 27
EzPCB 51
HuMANDATA, Ltd. 19
IAR Systems, Inc. C2
Mentor, A Siemens Business 51
Measurement Computing Corp. 59
Noritake Co., Inc. 15
RoboBusiness 2019 23
SEGGER Microcontroller Systems 1
Slingshot Assembly 13
Sensors Expo & Conference 2019 55
Technologic Systems, Inc. C4, 77

Issue 346 May 2019 | ISSN 1528-0608

CIRCUIT CELLAR® (ISSN 1528-0608) is published monthly by:

KCK Media Corp.
PO Box 417, Chase City, VA 23924

Periodical rates paid at Chase City, VA, and additional offices.
One-year (12 issues) subscription rate US and possessions

$50, Canada $65, Foreign/ ROW $75. All subscription orders
payable in US funds only via Visa, MasterCard, international

postal money order, or check drawn on US bank.

SUBSCRIPTION MANAGEMENT

Online Account Management: circuitcellar.com/account
Renew | Change Address/E-mail | Check Status

CUSTOMER SERVICE

E-mail: customerservice@circuitcellar.com

Phone: 434.533.0246

Mail: Circuit Cellar, PO Box 417, Chase City, VA 23924

Postmaster: Send address changes to
Circuit Cellar, PO Box 417, Chase City, VA 23924

NEW SUBSCRIPTIONS

circuitcellar.com/subscription

ADVERTISING

Contact: Hugh Heinsohn

Phone: 757-525-3677

Fax: 888-980-1303

E-mail: hheinsohn@circuitcellar.com
Advertising rates and terms available on request.

NEW PRODUCTS

E-mail: editor@circuitcellar.com

HEAD OFFICE

KCK Media Corp.
PO Box 417

Chase City, VA 23924
Phone: 434-533-0246

COPYRIGHT NOTICE

Entire contents copyright © 2019 by KCK Media Corp.
All rights reserved. Circuit Cellar is a registered trademark

of KCK Media Corp. Reproduction of this publication in
whole or in part without written consent from

KCK Media Corp. is prohibited.

DISCLAIMER

KCK Media Corp. makes no warranties and assumes no
responsibility or liability of any kind for errors in these

programs or schematics or for the consequences of any such
errors printed in Circuit Cellar®. Furthermore, because of

possible variation in the quality and condition of materials and
workmanship of reader-assembled projects, KCK Media Corp.
disclaims any responsibility for the safe and proper function

of reader-assembled projects based upon or from plans,
descriptions, or information published in Circuit Cellar®.

The information provided in Circuit Cellar® by KCK Media
Corp. is for educational purposes. KCK Media Corp. makes

no claims or warrants that readers have a right to build
things based upon these ideas under patent or other

relevant intellectual property law in their jurisdiction, or
that readers have a right to construct or operate any of

the devices described herein under the relevant patent or
other intellectual property law of the reader’s jurisdiction.
The reader assumes any risk of infringement liability for

constructing or operating such devices.

© KCK Media Corp. 2019 Printed in the United States

THE TEAM
PRESIDENT
KC Prescott

CONTROLLER
Chuck Fellows

FOUNDER
Steve Ciarcia

COLUMNISTS
Jeff Bachiochi (From the Bench), Bob Japenga (Embedded in Thin Slices),
Robert Lacoste (The Darker Side), Brian Millier (Picking Up Mixed Signals),
George Novacek (The Consummate Engineer), and Colin O’Flynn
(Embedded Systems Essentials)

EDITOR-IN-CHIEF
Jeff Child

SENIOR ASSOCIATE EDITOR
Shannon Becker

TECHNICAL COPY EDITOR
Carol Bower

GRAPHICS
Grace Chen
Heather Rennae

ADVERTISING COORDINATOR
Nathaniel Black

ADVERTISING SALES REP.
Hugh Heinsohn

PROJECT EDITORS
Chris Coulston
Ken Davidson
David Tweed

mailto:hugh@circuitcellar.com
mailto:customerservice@circuitcellar.com
mailto:hheinsohn@circuitcellar.com
mailto:editor@circuitcellar.com
www.circuitcellar.com
www.linuxgizmos.com
www.audioxpress.com
www.voicecoilmagazine.com
www.loudspeakerindustrysourcebook.com
www.circuitcellar.com/subscription

circuitcellar.com 3

INPUTVoltage

Jeff Child

I t’s clear that Bluetooth technology has become
part of our everyday modern lives. When I say
“our” I mean mostly other people. As an old
curmudgeon, I’m still quite attached (literally) to

the wired headphones that I use daily. I’ll eventually
make the shift, I’m sure. My daughter has a winter
hat with Bluetooth headphones built in and that seems
pretty cool. Bluetooth was slow to reach me in the
automotive side of life as well—and that’s because I’m
not a car person.

I’ve noticed throughout my life is that there’s a distinct
difference between someone who is a “car person” or
“not a car person.” I am most definitely am a “not.” Car
people seem to get excited about choosing and buying
a new vehicle and have a keen interest in the different
models and brands—and can easily identify them. But
that’s never been me. That’s probably why our two family
cars are a 1997 model and a 2005 model. Because we
have teenage drivers now, last year we added a third
car—a used 2010 model. Of course, none of the three
have embedded Bluetooth technology.

While I’m indifferent about cars themselves, I do
care about being able to play music from my phone
in the car. Until a few years back, I was among the
last people on the planet that had used one of those
audio jacks that plays from a car’s tape cassette deck.
Now all three of our cars have one of those aftermarket
Bluetooth transmitters that plug into the car’s cigarette
lighter socket. (Can I still call them that?) Every time
the car is started, the transmitter, through the car’s
speakers, says: “Bluetooth connected. The voltage is
normal” and in an embarrassingly loud voice. That’s my
daily reminder that Bluetooth is alive and among us.

Covering Internet of Things (IoT) technologies in
recent years, Bluetooth—and Bluetooth Low Energy
(BLE) in particular—is most definitely front and center
of any discussion of chips and connectivity. Bluetooth
is on track to be as much of a machine-to-machine
wireless interconnect technology as it’s been an end
user, consumer wireless solution.

For its part, the Bluetooth Special Interest Group
(SIG) continues to expand the capabilities for Bluetooth
with new features and subsets. In January, for example,
the SIG announced a direction finding feature that allows
devices to determine the direction of a Bluetooth signal.
This capability is expected to enable the development
of Bluetooth proximity solutions that can understand

device direction as well as Bluetooth positioning
systems that can achieve down to centimeter-level
location accuracy.

According to the Bluetooth SIG, Bluetooth location
services solutions generally fall into two categories:
proximity solutions and positioning systems. Proximity
solutions currently use Bluetooth to understand when
two devices are near each other, and approximately
how far apart. They include item finding solutions such
as personal property tags, as well as point-of-interest
(PoI) information solutions like proximity marketing
beacons. By including the new direction-finding feature,
Bluetooth proximity solutions can add device direction
capability. As an example, an item finding solution could
not only let a user know when a personal property tag
is nearby, but also in what direction.

Meanwhile, positioning systems use Bluetooth to
determine the physical location of devices and include
real-time locating systems (RTLS). This includes those
used for asset tracking, as well as indoor positioning
systems (IPS)—like those for indoor wayfinding. Today’s
Bluetooth positioning systems can achieve meter-level
accuracy when determining the physical location of a
device. But when you add the new the direction finding
feature, these positioning systems could improve their
location accuracy down to the centimeter-level. The
direction finding feature is included in version 5.1 of
the Bluetooth Core Specification, which is available to
developers on the Bluetooth SIG website. In addition,
Launch Studio, the Bluetooth SIG tool used to qualify new
products, has been updated to support this feature.

In so many ways, Bluetooth technology is an on-going
success story that’s still being written. I look forward to
the day when Bluetooth direction finding will point me
toward where I left my headphones.

“The Voltage is Normal”

CIRCUIT CELLAR • MAY 2019 #3464

@editor_cc
@circuitcellar circuitcellar

COLUMNS

PRODUCT FOCUS 40 PC/104 Boards
Legacy That Stacks Up

By Jeff Child

44 Embedded System Essentials
Attacking USB Gear with EMFI
Pitching a Glitch

By Colin O’Flynn

 52 The Consummate Engineer
Pressure Sensors
Terminologies and Technologies

By George Novacek

 56 Picking Up Mixed Signals
Fancy Filtering with the
Teensy 3.6
Arm-ed for DSP

By Brian Millier

 68 From the Bench
An Itty Bitty Education
STEM at Home

By Jeff Bachiochi

TECH THE FUTURE

 79 The Future of Safe Programming
How Programming Languages
Evolve to Reduce Risks

By Quentin Ochem

76 : PRODUCT NEWS
78 : TEST YOUR EQ

PG. 44

PG. 56

PG. 68

circuitcellar.com 5

 6 Capacitive vs. Inductive
Sensing
Touch Trade-Offs

By Nishant Mittal

10 PIC32 Tames Real-Time
Stock Monitoring
Market Matador

By David Valley and Saelig Khattar

16 Transistor Basics
And Their Role Today

By Stuart Ball

24 Robotic Arm Plays
Beer Pong
Using PIC32s and IMUs

By Daniel Fayad, Justin Choi and
Harrison Hyundong Chang

SPECIAL FEATURE 30 Digital Signage Technologies
Gain Momentum
System Solutions

By Jeff Child
TECHNOLOGY SPOTLIGHT 36 Code Analysis Tools Up Their
Game
Quest for Code Quality

By Jeff Child

FEATURES

PG. 10

PG. 24

PG. 30

CIRCUIT CELLAR • MAY 2019 #3466
FE

AT
U

RE
S

T ouch sensing was first implemented
using resistive sensing technology.
But resistive sensing had a number
of disadvantages, including low

sensitivity, false triggering and shorter
operating life. All of that discouraged its use
and led to its eventual downfall in the market.

Today whenever people talk about touch
sensing, they’re usually referring to capacitive
sensing. Capacitive sensing has proven to be
robust not only in a normal environmental use
cases but also underwater, thanks to its water-
resistant capabilities. As with any technology,
capacitive sensing comes with a new set of
disadvantages. These disadvantages tend
to more application-specific. That situation

opened the door for the advent of inductive
sensing technology.

In this article, we’ll discuss capacitive
sensing for embedded applications and how
it can be used in various applications. We
will then explore the use of inductive sensing
in embedded products and why inductive
sensing is preferred over capacitive sensing
in some use cases. Finally, we’ll compare
the advantages of inductive sensing over
capacitive sensing in these applications.

CAPACITIVE SENSING FOR
EMBEDDED

Capacitive sensing operates on the principle
of monitoring the change in parasitic capacitance
due to a finger touch (Figure 1). Capacitive
sensing has been used primarily in two different
forms: self-capacitance and mutual-capacitance.
In self-capacitance mode, the net capacitance
due to a finger touch and board capacitance
is additive. This capacitance includes PCB
traces and PCB materials like FR4, which has
more capacitance compared to Flex materials
and many similar dielectrics. Self-capacitance
mode is useful in general touch application like
buttons for touch-and-respond applications. In
contrast, mutual capacitance is well-suited for
applications involving more complex sensing
such as gestures, multi-touch and sliders.

Mutual capacitance sensing uses
two different lines: TX(Transmitter) and
RX(Receiver). The Transmitter sends a PWM
signal with respect to the system VDD and
GND. The Receiver detects the amount of
charge received on the RX electrode.

One of the difficult use cases of capacitive
sensing is that it cannot operate perfectly

FIGURE 1
Capacitive sensing technique

Touch sensing has become an indispensable technology across a wide range
of embedded systems. In this article, Nishant discusses capacitive sensing and
inductive sensing, each in the context of their use in embedded applications. He
then explores the trade-offs between the two technologies, and why inductive
sensing is preferred over capacitive sensing in some use cases.

Touch Trade-Offs

By
Nishant Mittal

Capacitive vs. Inductive Sensing

circuitcellar.com 7
FEATU

RES

underwater. It also requires relatively strict
design guidelines to be followed for error-free
operation. Capacitive sensing performance
is also impacted by nearby LEDs and power
lines on PCBs. Implementing auto-tuning with
variation in trace capacitance, variation in
capacitive sensing buttons and different slider
sizes and shapes all require different designs.
Implementation challenges in industrial
applications include using capacitive sensing
with thicker glass material (display glass)
and meeting capacitive sensor sensitivity
requirements with those types of materials.

INDUCTIVE SENSING FOR
EMBEDDED

Inductive sensing enables the next-
generation of touch technology in applications
involving metal-over-touch use cases such as
in automotive, industrial and many embedded
and IoT applications. Inductive sensing is
based on the principle of electromagnetic
coupling, between a coil and the target
(Figure 2). When a metal target comes closer
to the coil, its magnetic field is obstructed
and it passes through the metal target before
coupling to its origin. This phenomenon
causes some energy to get transferred to the
metal target—referred to as eddy current—
that causes a circular magnetic field. Eddy
current induces a reverse magnetic field, in
turn leading to a reduction in inductance.

 To cause the resonant frequency to occur,
a capacitor is added in parallel to the coil to
cause the LC tank circuit. As the inductance
starts reducing, the frequency shifts upward
changing the amplitude throughout. In contrast
to a capacitive sensor, inductive sensing is able
to operate reliably in the presence of water
thanks to the removal of a dielectric from the
sensor. This advantage brings inductive sensing
touch sensing to a wide range of applications

that involve liquids such as underwater
equipment, flow meters, RPM detection, medical
instruments and many others. Inductive
sensing also supports biomedical applications.
In general applications, inductive sensing
enables replacement of mechanical switches
and proximity sensing of metal objects. For
example, in automotive applications, inductive
sensing can be used to replace mechanical
handles as well as detect car proximity. Some of
these examples will be discussed in detail later.

Currently, the primary design challenge
for implementing inductive sensing is
designing coils with 100% production yield
where inductive trace spacing is very narrow,

FIGURE 2
Inductive sensing technique [1]

IsensorIsensor
Sensor

coil
Sensor

coil
OscillatorOscillator

IsensorIsensor

Magnetic field induced
by sensor coil

Magnetic field induced
by sensor coil

Magnetic field transferred
to sensor coil from

metal target

Magnetic field transferred
to sensor coil from

metal target

Magnetic field transferred
to metal target
from sensor coil

Magnetic field transferred
to metal target
from sensor coil

Magnetic field induced
by eddy current

Magnetic field induced
by eddy current

Metal
target
Metal
target

Current due to the
magnetic field transferred

from metal target

Current due to the
magnetic field transferred

from metal target

Sensor
coil

Sensor
coil

OscillatorOscillator

Eddy current due to the
magnetic field transferred

from sensor coil

Eddy current due to the
magnetic field transferred

from sensor coil

Inductive sensing subsystemsInductive sensing subsystems

PlayPlay PausePause NextNext PreviousPrevious

ForceForce Metal
overlay
Metal
overlay

SpacerSpacer
PCBPCB

SensorSensorParallel LC TankParallel LC Tank

PSoC
4700S
PSoC
4700S

LL

CoilCoil

VLXVLX VAmpVAmp

RLXRLX

RSRS

Cc =10 pFCc =10 pF

CC

Lx
(GPIO)

Lx
(GPIO)

Rx
(GPIO)

Rx
(GPIO)

FIGURE 3
Shown here is the architecture of a water-resistant Bluetooth speaker using inductive sensing.

CIRCUIT CELLAR • MAY 2019 #3468
FE

AT
U

RE
S

such as using 4-mil spacing. There is also
the consideration of meeting inductive values
with variations in PCB laminate materials.

USE CASES FOR EACH METHOD
Capacitive sensing is undeniably useful in

a great many applications. However, for certain
use cases inductive sensing offers greater
reliability, ruggedness and usability.

Consider the use case of a Bluetooth speaker
that needs to be water resistant and is intended
for use in up to 2’ underwater for half an hour.
This use case requires more than just that

the product is functional underwater. It also
requires that the user can adjust the speaker in
these circumstances. Such operation needs to
be simple, consistent and reliable—even in the
presence of water.

With capacitive sensing, such operation
is partially possible using mutual capacitive
sensing employing complex shielding
techniques. However, the device would offer a
less than ideal user experience. For example,
there would be inconsistent responsiveness
from the touch interface. Due to changes in the
dielectric introduced by the presence of water,
its responsiveness would not be consistent with
how the device operates when it is used out of
water

For this application, metal-over-touch using
inductive sensing would provide a consistent
and reliable user performance (Figure 3).
Alternatively, a mechanical button and/or dial
could be used. However, a mechanical interface
is costly compared to a coil printed on a PCB
and connected to a few passive components.
Additionally, a mechanical button can break or
fail, providing a much shorter useable lifespan
than an inductive button would.

Consider another use case employing
proximity sensing: A vehicle detection system
needs to monitor when another vehicle
approaches within two meters and signal the
driver on the dashboard or navigation panel.
This functionality can be implement using
inductive sensing. A hardware board containing
multiple coils at different locations using a
flex cable—all around the dashboard—can be
designed around the four corners and center
of the headlight areas (Figure 4). Data from
the inductive coils is collected by an inductive
sensing controller such as the PSoC 4700S from
Cypress Semiconductor. The controller would
then analyze the data to determine the presence
or absence of other cars in a 4 m vicinity around
the vehicle.

Capacitive sensing could also be used for
vehicle proximity sensing. Inductive sensing is
rugged, environment-independent, and easy to
design and develop from an engineering point
of view. In addition, little tuning is required to
achieve the desired closed loop for a particular
application.

Note: The controller need not be placed
far away from the coils to improve signal-to-
noise ration (SNR). Individual controllers can
be used to optimize the design. The block
diagram mentioned in Figure 4 is a principle
representation.

COMPARATIVE APPROACH
In general, designing an inductive sensor

is fairly straightforward (Figure 3). A typical
inductive sensor requires one or more inductive
coils, as determined by the requirements of the

Metal
obstacle

Metal
obstacle

Coil
1

Coil
1

Coil
2

Coil
2

Coil
3

Coil
3

Coil 4Coil 4
DetectedDetected

Display
and

buzzer

Display
and

buzzer

PSoC 4700SPSoC 4700S Coil 5Coil 5

Coil 6Coil 6

FIGURE 4
Using inductive sensing to determine vehicle proximity in an automotive application.

FIGURE 5
Inductive sensor block diagram

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
References [1] through [4] as marked in the article can be found there

RESOURCES
Cypress Semiconductor | www.cypress.com

http://www.circuitcellar.com/article-materials
http://www.cypress.com

circuitcellar.com 9
FEATU

RES

application. The sensor needs to be interfaced to
the controller using suitable drivers or controllers
to be understood by the microcontroller. This
interface can be implemented using external
components. However, to reduce system design
and manufacturing complexity, some inductive
controllers integrate driver and converter
circuitry to convert inductive sensor data into
raw counts which can then be processed using
suitable algorithms. To learn more about the
techniques involved in designing the circuitry
around inductive sensing and controller check
out Cypress’ Inductive Sensing Evaluation Kit
product page [2].

To program the inductive sensing controller,
we need a suitable programmer—either on
board or using external programmers. You
need to decide the maximum power to be
provided. Here we have shown the system at
3.3 V, however one can range from 1.8 V to
5 V. Next, all the interfaces in the design—like
LEDs, motor drivers and so forth—need to be
decided and placed accordingly. Figure 5 shows
the system level block diagram of an inductive
sensing board.

Figure 6 shows the design flow involved
in a typical inductive sensing application.
First, assess how sensitive the system needs
to be. Sensitivity determines the coil size
and its number of turns. The application also
impacts the shape of the coil. For example, a
slider interface requires a series of squares
or an elongated rectangle. The next step is to
calculate the tank capacitor and the inductance
based on the number of turns, spacing, width
and diameter. To understand the detailed steps,
refer to Cypress’ Inductive Sensing Design
guide [3].

Capacitive Sensing on the other hand requires
measurement of theoretical capacitance with
the required dielectric constant. During the
layout, the designer is required to follow
strict layout guidelines like ground shielding—
CapSense traces have to have equal length for
constant Cp and so forth. For more details on
CapSense design, refer to Cypress’ CapSense
Design Guide [4].

Once these parameters are decided, the
next step is to begin the mechanical design,
specifically the overlay—also known as the metal
target. An overlay comprises two materials
whose specifications need to be decided: the
metal target and the adhesive. The metal target
material determines the amount of deflection
and response. I recommend using an aluminum
overlay for inductive sensing application
because of its better deflection and response.
For button applications, a higher Newton force
on the overlay causes deflection throughout the
overlay, leading to undesirable false triggering
throughout the coils. For this use case, the user
should only be able to press the buttons just

enough to generate feedback. Pressing the
overlay harder can even deform the overlay.
Once all these things are intact, the board is
designed and fabricated. The advantage of
PSoC Creator IDE is it provides a user-friendly
Inductive Sensing Tuner GUI which can be used
by designers to serve their design needs.

Both capacitive and inductive sensing enable
OEMs to build intuitive, touch-based user
interfaces to make their products more
intuitive and easier to use. Because of its
versatility, capacitive sensing has become the
technology of choice in a great many
applications. However, for applications where
water tolerance is required, inductive sensing
provides a robust and cost-effective
alternative.

StartStart

Decide the coil shape based on
your application

Decide the coil shape based on
your application

Decide the size of coil
depending upon the amount

of sensitivity required

Decide the size of coil
depending upon the amount

of sensitivity required

Determine the series resistance,
tank capacitance based on

the calculation.

Determine the series resistance,
tank capacitance based on

the calculation.

Design the board on the decided
width based on the layout

guidelines for inductive sensing

Design the board on the decided
width based on the layout

guidelines for inductive sensing

Decide the material of
the metal target

Decide the material of
the metal target

Decide the keepout area
between coil and adhesive.

Decide the thickness
of adhesive.

Decide the keepout area
between coil and adhesive.

Decide the thickness
of adhesive.

Tune the board using
the tuner provided with

PSoC Creator

Tune the board using
the tuner provided with

PSoC Creator

Decide the material
of the metal target

Decide the material
of the metal target

Decide the length and
size variations

Decide the length and
size variations

Tune the board using
the tuner provided with

PSoC Creator

Tune the board using
the tuner provided with

PSoC Creator

Is it a button
application?
Is it a button
application?

Is it encoder
application?
Is it encoder
application?

For proximity application,
decide the coil size. Coil

size is directly proportional
to the range.

For proximity application,
decide the coil size. Coil

size is directly proportional
to the range.

StopStop

NoNo

NoNo

YesYes

YesYes

FIGURE 6
Design flow chart for a typical inductive sensing application

ABOUT THE AUTHOR
Nishant Mittal is a Systems Engineer in Hyderabad, India.

CIRCUIT CELLAR • MAY 2019 #34610
FE

AT
U

RE
S

W e challenged ourselves to
build a system using the
PIC32 microcontroller (MCU)
from Microchip Technology

that could track stock prices in real time and
display them. The goal was to create a PIC32
system that connects to the Internet and can
work as a server/client to perform several
functions and eventually serve as a central
home hub. The system can be easily modified
to fetch and display any kind of data from the
Internet, as long as there is an API for it.

The rationale behind this project was that
there are few libraries or applications of the
PIC32 using the Espressif Systems ESP8266.
Both the chips individually are highly capable,
inexpensive and can be used for even large-
scale manufacturing. We wanted to create
a prototype PIC32 system that has Internet
connectivity and can be easily extended
to perform a multitude of things. We used
“Protothreads”, a lightweight threading
library created by Adam Dunkels [1], to make
our system efficient and capable of handling a
variety of tasks simultaneously.

SYSTEM DESIGN
The system works as a TCP server that

connects to a Python Client and fetches real-

time stock information for any company the
user inputs. The input is a 12-digit keypad
that works like a cell phone keyboard. The user
inputs the stock symbol for a company, and
the system displays the stock price on an LCD
monitor, along with the corresponding arrows
for increase or decrease in price relative to
the last fetch. A high-level block diagram for
our system design is given in Figure 1. In
essence, we first wait for the Python Client to
connect to the server. Until this happens, the
server remains idle. The user can then input
a stock symbol using the keyboard at any
time, which triggers an API call. The display
is then updated with the price of the stock,
and refreshes automatically every 5 seconds.

We made use of Sean Carroll’s Development
Board, which contains a TFT LCD, the PIC32
MCU, several peripheral pins and support for
a port expander. We connected the ESP8266
transmit and receive pins to RA1 and RB10,
respectively, on the PIC, as these pins
support UART. We used UART channel 2 for
communication with the ESP8266. The LCD
communicates with the PIC via SPI channel 1
on pin SCK1.

To use the 12-digit keyboard, we made use
of a port expander. This allowed us to wire
the keyboard to a series of seven consecutive

With today’s technology, even simple microcontroller-based devices can
fetch and display data from the Internet. Learn how these two Cornell
students built a system that can track stock prices in real time and display
them conveniently on an LCD screen. For the design, they used an Espressif
Systems ESP8266 Wi-Fi module controlled by a Microchip PIC32 MCU.

Market Matador

By David Valley and Saelig Khattar

PIC32 Tames Real-Time
Stock Monitoring

circuitcellar.com 11
FEATU

RES

pins on the PIC, which helped us to write
more concise code. Additionally, by using the
port expander, we were able to refer to Bruce
Land’s sample code [2], which helped serve
as a template for writing a bitmask lookup
table. The keyboard worked by reading bits
on pins RY0-RY6, which were the seven pins
used by the port expander. They were then
compared against the entries in the bitmask
lookup table. This is how readings were made
by our keyboard thread, which we discuss
further in a later section of this article. The
hardware schematic is shown in Figure 2.
A link to a more detailed diagram of Sean
Carroll’s Development Board is available on
the Circuit Cellar article materials webpage.
We did not use external resistors for pins RY4-
RY6, because the port expander has internal
pull up resistors that we enabled in software.
The bit readings for these three pins were
then active low, so we inverted our logic to
correctly register key presses.

SYSTEM COMMUNICATION
You can program and communicate with

the ESP8266 Wi-Fi Module using AT Commands.
Numerous AT Commands for this module are
provided in the ESP8266 datasheet. See the
Circuit Cellar article materials webpage for
the link. We sent AT commands from the
PIC32 to the ESP module using UART Serial
communication. We would send strings (or
rather, character arrays) from the PIC32 to
the ESP module containing the AT Command,
and would await a response on the receive
line of the PIC.

The ESP communicated with our Python
Client (independent of OS) via a socket
connection. The client connected to the
module at its IP address on port 333 (the
default when the ESP module is set up as a
server). The ESP module sent this client our

custom commands based on user input on the
keypad. The client received these commands,
retrieved the necessary information (described
in the next section), and sent this information
back over the socket connection. The socket
communication client side was handled by the
standard Python socket library.

Next, our Python Client communicated
with the Intrinio Web API using HTTP GET
Requests. Based on the command it received
from the ESP, the client made the necessary

FIGURE 2
Hardware schematic. The row of
connections at the bottom are the
interfaces to Sean Carroll's Large
Development Board PIC32MX25F128B.

FIGURE 1
Shown here is a high-level block
diagram of our system for tracking
stock prices in real time.

CIRCUIT CELLAR • MAY 2019 #34612
FE

AT
U

RE
S

GET request, formatted the response, and
sent it back to the ESP module. The GET
requests were formatted based on the API
requirements, and contained our Intrinio API
key. On an API call, Intrinio returned a JSON
string with the necessary information. The
client then parsed this JSON string to get the
stock price. The overall communication of our
project is shown in Figure 3.

SOFTWARE THREAD STRUCTURE
Our software for this project consisted

of three distinct threads: a main thread, one
to set up the ESP module and one to handle
keyboard input. We also had a function to
make an API call from the PIC MCU.

Main Thread: To make the software design
more structured and the software workflow
clearer, we developed a “main” protothread.
This thread first spawned the ESP Init thread,
and then waited for a connection from our
client, blocking the rest of the system until
this requirement was satisfied. Once it had
detected the client had connected, it would
then check to see if a stock symbol had been
entered. If so, it made an API call which
updated the corresponding stock price on the
LCD in real time.

ESP Init Thread: To set up the ESP module,
we had to send it various AT commands before
we began to use it in our application. To check
if the module worked, simply sending it “AT”
via serial—which can easily be done using
Putty or the Arduino Serial Monitor—and
receiving the string “OK” verified its proper
operation. Next, we reset the module, using

“AT+RST” to ensure any previous settings
would not interfere with our current setup.

Once we ensured the module worked
and was reset, the next step was to connect
the module to a Wi-Fi network. We used
RedRover, a free Wi-Fi network available at
Cornell University. To connect this module to
RedRover, we first registered the device with
Cornell IT, and then sent the AT command
“AT+CWJAP_DEF=RedRover” to the module.
It should be noted that RedRover does not
require a password to join the network, but
the AT Command can accept a password
argument. After it was connected, we got the
IP address of the module using “AT+CIFSR.”
Next, we enabled the ESP module to have
multiple connections using “AT+CIPMUX=1”
and configured the ESP module as a server
using “AT+CIPSERVER=1”. This thread sent
this series of AT commands, and was spawned
once at system start.

Keyboard Thread: Our keyboard thread
works by reading bits from pins RY0-RY3 on
the port expander (which map to horizontal
rows of the keyboard) on the PIC, and then
the bits from RY4-RY6 (which map to vertical
columns). The bit readings from these two
groups are then ORed together and the value
compared against a lookup table, which we
defined locally in our thread. We would have
used a different set of pins RA0-RA3 and RB7-
RB9 on the PIC32. However, due to a usage
conflict with other pins on the ESP module, we
used a port expander.

We could not use a series of seven
consecutive pins on the MCU outright, due to
these conflicts with the ESP. Merely swapping
single pins where conflicts existed would mean
different bit masks and subsequently produce
different values when the row and column
values were ORed together. These would not
match any of the lookup table entries. One
solution to this problem was to manually
calculate the expected values from these OR
operations and create a new bitmask lookup
table. However, we felt a cleaner solution
involved using the port expander. For this,
we referred to the example code in [2], which
initialized and set up the port expander and
the main keypad scanning logic.

To translate keypad number presses
to letters, we made use of a large case
statement. We had 27 cases—one for each
letter of the alphabet, plus an additional space
character. In our logic, once the pound sign
was pressed, which worked as our “enter“’
button, the current value in a running buffer
was passed as the argument to this case
statement. The letter corresponding to the
numbers in the buffer was then stored in a
second ticker symbol buffer. Once a total of
four characters (which is the maximum length

FIGURE 3
Communication from PIC to cloud

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
References [1] through [3] as marked in the article can be found there

RESOURCES
Espressif Systems | www.espressif.com

Microchip Technology | www.microchip.com

SparkFun | www.sparkfun.com

http://www.circuitcellar.com/article-materials
http://www.espressif.com
http://www.microchip.com
http://www.sparkfun.com

WE DO THE
IMPOSSIBLE...
EVERYDAY!
Our 5-Day Turn Includes
Boards, Parts
AND Assembly.

SlingShotAssembly.com

TRY SOMETHING DIFFERENT!
1st time customers receive FREE LABOR, up to $1,000 on your first turn-key order.
OUR ASSEMBLIES START AT $250
DOWNLOAD YOUR OFFER CODE HERE: Circuitcellar.com/SlingShot

We want to see NEW DESIGNS and NEW CUSTOMERS!
No more sacrificing quality for speed or price.

We are your PCB ASSEMBLY SPECIALISTS!

Find out why we’re different at SlingShotAssembly.com/Different
Call for details: 720.778.2400 or Email: sales@sassembly.com
*Free labor, up to $1000, for first-time customers on full turn-key assembly orders only.

©2019 COPYRIGHT SLINGSHOT ASSEMBLY

FREE LABOR

mailto:sales@sassembly.com
www.slingshotassembly.com/different

CIRCUIT CELLAR • MAY 2019 #34614
FE

AT
U

RE
S

for an NYSE stock symbol) had been input, the
buffers reset, and an API call was made using
that ticker. The keypad thread continuously
checked if any input had been received from
the keypad.

Reading and Sending via UART: API Call:
Reading and Sending messages via UART
between the PIC32 chip and the ESP Wi-Fi
Module was tricky. To do these things, we
used the function DMA_PutSerialBuffer
provided by [3] and a heavily modified
version of GetSerialBuffer. The DMA_

PutSerialBuffer function sent the string
placed in PT_send_buffer through UART
to the ESP module using DMA one byte at
a time. Modifying the GetSerialBuffer
function was tricky, because we could not
find any documentation on how the ESP
module responses were terminated. After
experimenting, we concluded that most
responses terminated with a ‘\n’ (new
line) and ‘\r’ (carriage return) character in
succession. We read up to 200 characters
from the buffer (which was slightly more than
the largest response we expected to receive),
and stopped reading as soon as we saw that
terminator. As each character was read, it was
put into a character array that could be used
by other functions. At the beginning of this
function, we also cleared all UART2 errors.

Unfortunately, this method did not work
for receiving stock price responses, which
was the most important function of our
project. To implement this task, we created
a separate function, called APICall(),
which was responsible for sending a custom
command to the ESP via serial, based on
the stock ticker entered on the keypad. The
stock price was returned and displayed with
its symbol and a triangle to indicate how the
price instantaneously changed on the TFT
LCD. To receive stock price responses, we
read a preset number of characters from the
buffer, instead of relying on a terminator. This
was feasible because the response containing
the stock price was always the same number
of characters. We then parsed this response
to get only the stock price, so we could display
it and compare it with the last price.

RESULTS AND CONCLUSION
In conclusion, we finished with a reliable

framework for making API calls to financial
data servers. The latency for a call was
roughly 1 s. The stock prices were updated
every 10 s (manually set to avoid spamming
the API services and reaching the daily call
limit), provided we left the PIC running
without requesting a different stock quote.
Initial configuration of the chip took about
2 s, meaning our system had relatively small
startup costs and could make quick and
accurate updates in real time. Additionally,
stock prices were reported to two decimal
points accuracy.

Figure 4 shows some of the results.
Overall, the results of the project met our
expectations, despite various complexities
along the way. In a broad sense, our project
served as a proof of concept for lightweight
wireless communication projects using Wi-Fi
over the ESP module. Protothreads made our
code more efficient, organized, and easier to
understand.

FIGURE 4
(a) Increase in price; (b) decrease in price; (c) no change in price

c)

b)

a)

circuitcellar.com 15
FEATU

RES

It is important to note the extensibility
of the PIC32 MCU to other projects and
applications. In general, this project served
as demonstration of the PIC32 and the ESP
as a TCP server and client. This manner of
functionality could be easily applied to other
peripheral circuits or additional modules.
Wireless communication makes many new
functions possible, and allows us to increase
the usability and relevance of our smart home
merely by incorporating additional API calls
and data requests to various external servers.

In a similar fashion to our stock quote
requests, we could make API calls to servers
of the national weather service and display
temperature, environmental conditions, and
general weather data on our TFT display.
We could take this even further by then
analyzing the weather data and, based on the
conditions, stream music that fit the mood of
the weather. Streaming would occur via Wi-Fi
communication with the ESP module.

Aside from the incorporation of API calls
and data requests to external servers, Wi-Fi
communication with the PIC could be used in
various other applications. It is extremely
versatile, so any sort of light display,
temperature control circuit, home security
unit, or IoT application could be implemented

using the ESP module and serial
communication over the PIC.

Authors’ Note: Special thanks to our
team member, Shrinidhi Kulkarni, for his
contribution to the development of this project.
Shrinidhi is a second-year masters student
studying Applied and Engineering Physics at
Cornell University. He helped develop some of
the code for this project, and provided some
reference text for this article.

ABOUT THE AUTHORS
A graduate of Cornell University, Saelig Khattar is currently a graduate
student in Electrical Engineering at Stanford University and is a research
assistant in the Stanford AI Lab. In his free time, Saelig enjoys playing tennis
and eating soup dumplings.

David Valley graduated from Cornell last fall with a degree in Electrical
and Computer Engineering. Some of his interests in electronics include
embedded systems programming, PCB design and computer architecture.
When he is not busy with classwork, he enjoys playing guitar, making play-
lists on Spotify and spending time outdoors. He will begin work as a software
engineer this August.

Gloved
Hand

Thick Overlay

Air Gap

Noritake GT Modules
Noritake Touch Works With:

Phone: (847) 439-9020
marketing.ele@noritake.com

www.noritake-elec.comGT-1P Series (pictured)
- HID Compliant Touch
- DVI Video Input
- Plug-and-Play with PC/SBC

GT-CP Series
- Command-based Control

GT-EP Series
- Peripheral Control via iDevOS

Touch TFT Modules

Up to 6mm air gap with
2mm thick glass

(bare hand)*

Up to 15mm thick glass at 1mm
air gap (bare hand)*

*Noritake lab test results using GT800X480A-1303P

Up to 9mm thick
glass at 1mm air gap*

1.4mm Thick

Leather G
love

http://www.noritake-elec.com
mailto:marketing.ele@noritake.com

CIRCUIT CELLAR • MAY 2019 #34616
FE

AT
U

RE
S

W hat good is a transistor? Sure,
integrated circuits (ICs) are
full of transistors, thousands
of them. Before the IC and

microprocessor revolutions, there was a
transistor revolution—where televisions,
radios and computers were built using the
new solid-state devices. The transistor was
the father of the IC. But isn’t a single transistor
obsolete as a circuit element today? What use
does a lowly transistor have in a world where
the current Intel microprocessors have over a
billion transistors each?

It’s true that nearly all the things we used
to do with transistors can be done cheaper,
better and more efficiently with an IC, and we
can do things with ICs that are not possible
with discrete transistors. It would not be
possible to build a modern microprocessor

with discrete transistors—the lead lengths
alone would make the speeds impossible. But
the reverse is also true. A discrete transistor
can be a simple way to solve some problems.
Transistors, for example, typically have much
higher operating voltage and power limits in
simple circuits than those of comparable ICs.
Electronics manufacturers and distributors still
make and sell individual transistors because
the parts still have some uses. In this article, I
want to go over some very basic things about
transistors, how they are used and how you
can include them in your applications.

OVERVIEW
A BJT (bipolar junction transistor) was the

first commonly available transistor, and it
fueled the transition away from vacuum tubes.
BJTs come in two varieties, NPN and PNP. Both
are (usually) silicon devices. The silicon is
modified (doped) with impurities to produce
N-type or P-type material. An NPN transistor
has a P-type layer sandwiched between two
N-type layers, and a PNP is the reverse.

Figure 1 shows an NPN BJT schematic symbol,
a simple diagram of the structure, and a diode
model. The N-P-N structure is just representative.
In an actual transistor, the collector region is
normally larger than the emitter region, and none
of them is square as shown in the diagram. The
diode representation of the transistor indicates
how current flows, not how the actual part is
constructed. You can’t build a transistor out of
two diodes, but using two diodes helps to explain
how the transistor biasing works.

FIGURE 1
Schematic symbol, physical representation and diode model of NPN transistor

In this day and age of highly integrated chips, what is the relevance of the
lone, discrete transistor? It’s true that most embedded system design needs
can be met by chip-level solutions. But electronic component vendors do still
make and sell individual transistors because there’s still a market for them. In
this article, Stuart reviews some important basics about transistors and how
you can use them in your embedded system design.

And Their Role Today

By Stuart Ball

Transistor Basics

circuitcellar.com 17
FEATU

RES

Operation of an NPN transistor is conceptually
easy to understand. Referring to the diode
model, if you connect the collector to a positive
voltage—say 5 V—and the emitter to ground,
you end up with two diodes back-to-back with
their anodes connected together. The junction
of the two anodes represents the base of a
transistor. If you apply a positive voltage greater
than 0.7 V to the base, the emitter diode will be
forward-biased and current will flow from the
base, through the emitter and to ground. The
collector diode will be reverse-biased, and no
current will flow through that diode.

REAL TRANSISTOR OPERATION
Now discard the diode model and look at

a real transistor. If the collector is connected
to +5 V and the emitter to ground, and the
voltage on the base is high enough (0.7 V)
to forward-bias the base-emitter junction,
current will flow from the base to the emitter
and from the collector to the emitter. If the
base-emitter voltage is below 0.7 V, the
transistor is in “cutoff” and no current flows
through the emitter or through the collector.
That’s it. That’s how a BJT works.

The collector-emitter current flow is inherent
in the construction of the transistor. It’s why the
actual transistor differs from the diode model,
and it’s why you can’t build a transistor from
two diodes. If the collector is at +5 V and the
emitter is at ground, bringing the base to about
0.7 V will cause current to flow from the 5 V
supply—through the collector—to the emitter
and to ground. If the emitter is at +2 V, then
you must bring the base to about 2.7 V to get
current to flow from the collector to the emitter.

The magic in a transistor is determining how
to get the amount of current you want flowing
through the collector. If you just connect the
transistor as I’ve described, with nothing to
limit the current, your transistor will quickly
become a smoking, melted bit of plastic.

Generally, if the transistor is operated within
its current, power and voltage ratings, the
current in the emitter will be the current flowing
into the base plus the current flowing from
the collector to the emitter. A very small base
current controls a much larger collector current,
so the collector current is approximately equal to
the emitter current. When no current is flowing
in the collector, the transistor is in “cutoff” as
mentioned earlier. If there is enough current
flowing that the collector-emitter voltage is
as low as it can go (generally around 0.3 V
for a small-signal transistor), the transistor is
considered “saturated”. In this state, changes to
base current no longer affect collector current.

PUTTING IT TO USE
How might we use this transistor? Figure 2

shows a simple circuit. In this circuit, we connect

the collector to +5 V, the emitter to ground
through a 220 Ω resistor and the base to a fixed
value of 1 V. The forward voltage of the 2N3904
is 0.65 V to 0.85 V at 10 mA collector current.
Conventionally, 0.7 V is used for calculations. So,
the voltage at the emitter (VE) will be 1 V - 0.7 V,
or 0.3 V. Here’s where the magic happens: The
voltage at the emitter is fixed, so the current
through the 220 Ω resistor is 0.3V/220Ω, or
1.36 mA. The collector current is the same.
Therefore, by controlling the base voltage, we
control the emitter current and thereby the
collector current.

Figure 3 shows how we can make an
amplifier with this circuit. This circuit is identical
to the circuit in Figure 2, except that now we’ve
added a 1.5 kΩ resistor, R2, between the
collector and the 5 V supply. Since the current
in the emitter is fixed at 1.36 mA, the current in
the collector is also 1.36 mA. This current flows
through R2, producing a voltage across R2 of
1.36 mA x 1.5 kΩ, or 2.04 V. So, the voltage at
the collector, VC, is the 5 V supply minus the
voltage across R2, or 2.95 V.

FIGURE 2
A simple circuit shows the base-
emitter voltage and current
relationship

FIGURE 3
The transistor connected as an
amplifier by adding a resistor in the
collector

CIRCUIT CELLAR • MAY 2019 #34618
FE

AT
U

RE
S

Now, what happens if the voltage at the
base is raised to 1.1 V? When that happens,
the voltage at the emitter is now 0.4 V (1.1 V –
0.7 V), making the emitter current 1.8 mA. The
collector current is also 1.8 mA, so the voltage
across R2 is now 1.8 mA x 1.5 kΩ, or 2.7 V.
VC is now 5 V – 2.73 V, or 2.27 V. So, a 0.1 V
change in the base voltage caused the collector
voltage to drop from 2.95 V to 2.27 V, a change
of -0.68 V. The collector voltage dropped by 6.8
x 0.1 V (the input voltage change).

Here’s the interesting thing: The collector
voltage change is equal to the negative of the
input voltage change times the ratio of the
collector resistor R2 to the emitter resistor
R1, or 1.5 kΩ / 220 = 6.8. If you work through
the math, this makes sense, because the
collector current is the same as the emitter
current. But since the collector resistor R2 is
6.8× the emitter resistor, any current change
in the emitter resistor will result in a voltage
change 6.8× as large at the collector.

If you did the same calculation after
lowering the base voltage from 1 V to 0.9 V,
you would see the collector voltage rise by
0.68 V. This circuit is an inverting amplifier

with a gain of -6.8. A positive voltage change
at the input produces a negative voltage
change at the output and vice-versa.

This circuit has some limitations. If you
put 1.32 V at the base, you will find that the
emitter is at 0.62 V, and the collector voltage
works out to be nearly the emitter voltage.
The transistor can’t drive the collector to
the emitter voltage, so it’s saturated. The
limitation of this specific circuit, therefore, is
a maximum input voltage of about 1.3 V. At
the other end, anything less than 0.7 V causes
the transistor to go into cutoff. So, the useful
input voltage range of this circuit is 0.7 V to
about 1.3 V. Still, that would be adequate for
boosting a low-level audio signal to something
that can be further amplified.

Speaking of audio, how would you connect
audio signals into the circuit? Audio signals
typically swing between negative and positive
voltages. If you put that into the base, the
transistor will be in cutoff most of the time—
all the time if the positive signal peaks never
reach 0.7 V.

This brings us to biasing. Figure 4 is a
modification of Figure 3 with some biasing
resistors added to the base. Resistors R3 and
R4 make a voltage divider that brings the
base to about 1 V. This is halfway between the
0.7 V and 1.3 V lower and upper limits of the
circuit. Now say that we apply a signal to the
input that swings between -0.1 V and +0.1 V.
Because of the DC blocking capacitor C1, this
will become 0.9 V to 1.1 V at the base, and will
be amplified by -6.8 in the circuit.

There are other ways to bias a transistor
base. A voltage reference diode, as shown in
Figure 5, fixes the base at a known voltage.
In this circuit, the emitter voltage, VE, will
be about 1.3 V, so the emitter and collector
current will be 5.9 mA. The point is not to
show all the possible ways to bias a transistor,
just that there are other ways to do it.

TRANSISTOR LIMITATIONS
As with all things in the physical world,

transistors have some limitations. We already
looked at one—the values of the base and
emitter resistors in the amplifier circuit have
to be chosen so that the transistor doesn’t go
into cutoff or saturation with whatever input
signal you are trying to amplify.

Transistors have other characteristics. For
example, the 2N3904 used in these examples
has a maximum collector-emitter voltage of
40 V. Any more than that, and the transistor
fries. The base-emitter reverse voltage—where
the base is taken negative with respect to the
emitter—has a maximum value of 6 V. Beyond
that, the emitter-base junction breaks down.

The collector can handle a maximum
continuous current of 200 mA. The device

FIGURE 4
Biasing resistors allow the transistor
to operate with AC-coupled inputs
such as audio signals.

FIGURE 5
A Zener or reference diode can be
used to create a fixed bias.

circuitcellar.com 19
FEATU

RES

has a maximum power dissipation of about 600 mW. So even
though the collector-emitter can withstand 40 V and the
collector current can be as high as 200 mA, if you try to put
200 mA through it at 40 V, it will fail. 40 V at 200 mA is 8 W,
well beyond the power-handling capability of the device.

The point of all this is that, like any semiconductor device,
your design has to stay within all the maximum ratings: Power,
collector-emitter voltage, collector current, emitter-base
reverse breakdown voltage and so on.

One of the key characteristics of the transistor is the
current gain. This number describes how much the emitter
current changes for a given change in the base current. The
current gain varies with the amount of current flowing in the
collector. For the 2N3904, the minimum current gain at 0.1 mA
collector current is 40. At 10 mA, the minimum gain is 50. The
maximum gain per the datasheet is 300. Just before writing
this paragraph, I measured a handful of 2N3904s All of them
had gain exceeding 300.

The practical implication of the gain is to affect how the
emitter interacts with the base. If the transistor in the amplifier
circuit in Figure 3 had a gain of only 10, the 220 Ω resistor in
the emitter would look like approximately 2 kΩ at the base,
which would affect biasing and the load presented to the driving
circuit. In that case, you would want the biasing resistors to be
a low enough value that the loading effect of the emitter resistor
would change the bias voltage by less than 10% or so. But if you
have to use lower value resistors in your biasing circuit, this in
turn presents more load to whatever is driving it. In the case of
the amplifier, it reduces the overall end-to-end gain.

Fortunately, for most small-signal applications, it isn’t too
hard to find a transistor with a sufficiently high minimum gain
to make this a minor problem. Where you get into difficulty is
when you need a very low value of emitter resistance. Even at
a gain of 300, an emitter resistor of about 10 Ω could have a
significant loading effect on the base that must be considered
in your calculations. Because the transistor has finite gain,
you can’t use very large resistors—such as something in the
megaohm range—to bias the base. If you do, the emitter will
pull down the voltage.

One common addition to an audio amplifier is to bypass the
emitter resistor with an electrolytic capacitor. The capacitor has
a very high impedance (nearly infinite) at DC, but the impedance
decreases as frequency increases. This allows the DC biasing to
work, but it raises the gain for audio signals by making the emitter
impedance (the resistance in parallel with the impedance of the
capacitor) a very low value at audio frequencies. This makes the
ratio of the collector resistance to emitter resistance much higher
at audio than at DC, which raises the gain. (Remember: The
gain is the collector resistor divided by the emitter impedance.)
However, this also has the effect of significantly lowering the
input impedance of the circuit at those audio frequencies. Other
transistor characteristics that affect use in RF circuits, such
as high-speed switching circuits, are beyond the scope of this
article, and won’t be discussed here.

APPLICATIONS
You can build amplifiers with transistors, and a lot of people

do. But it’s also easy to build an amplifier with an op amp or other
IC and I want to focus here on applications where the unique
characteristics of a transistor are useful.

How might you make practical use of a transistor, given what
we’ve done so far? In Figure 6, I have modified Figure 5 by

SAVING COST=TIME with readily available FPGA boards

Basic and simple features, single power supply operation
Free download technical documents before purchasing

See all our products, A/D D/A conversion board,
boards with USB chip from FTDI and accessories at :

www2.hdl.co.jp/CC19B

FPGA Boards from JAPAN

ACM-033

XILINXXILINX

INTELINTEL

SIZE : 3.386" x 2.126" (86 x 54 mm)

Intel Cyclone 10 LP F484 FPGA board

XCM-025
Xilinx Spartan-7 FGGA484 FPGA board

ACM-033 is an FPGA board with
Intel high-performance FPGA Cyclone 10 LP.
It's compact and very simple.
3.3V single power supply operation.

XCM-025 is an FPGA board with
Xilinx high-performance FPGA Spartan-7.
It's compact and very simple.
3.3V single power supply operation.

SIZE : 3.386" x 2.126" (86 x 54 mm)

www2.hdl.co.jp/CC19B

CIRCUIT CELLAR • MAY 2019 #34620
FE

AT
U

RE
S

making the reference voltage 2.5 V, making
R1 120 Ω and adding an LED in the collector
circuit. Because the voltage at the base is fixed
at 2.5 V by the reference diode, the emitter
voltage is 1.8 V and the emitter current is
15 mA. This is true as long as the V+ supply
voltage is high enough to keep the reference
diode and LED turned on. So, the LED will have
15 mA current whether the supply voltage is
5 V or 20 V.

Obviously, there are upper limits to this,
and at some point, the voltage or power
dissipation limit of the 2N3904 will be
exceeded and it will go up in a cloud of smoke.
I’ve shown the bias circuit powered from 5 V.
If you also powered it from the variable V+,
you also would need to take the limitations of
R3 and D1 into account. But if you wanted a
constant current through an LED regardless
of supply voltage (within reasonable limits),
this circuit will do it. You might do this if you
wanted an LED to have constant intensity
regardless of the voltage applied, or just
to keep higher voltages from exceeding the
maximum LED current.

Figure 7 shows a 2N3904 used for logic-
level translation between two different circuits
operating at different voltages. You might use

this to translate between a 3.3 V output of a
microcontroller (MCU) to the input of a circuit
that needs 5 V. V+ in the schematic would be
connected to the supply voltage of the target
system. Whatever is driving the input must
have enough output current capability to drive
the 2.2 kΩ resistor. This circuit inverts the
signal—a high input produces a low output. In
this circuit, the transistor is always in either
cutoff or saturation.

There are plenty of ICs that can do this,
such as open-collector buffers, so why use a
transistor? The transistor can handle higher
voltages than most logic-level translator
circuits. A transistor could translate between
a 3.3 V circuit and a 12 V circuit, for example.

Many voltage-translator circuits require
that you know the supply voltage, and
therefore the drive voltage, of the input. But
I had a situation once where the input could
come from different sources, ranging from
under 2.5 V to 5 V. The transistor solution
works for all logic voltages, because the
transistor will turn on with any drive voltage
above 0.7 V. It could even be used to translate
between a 12 V or 24 V input to a 3.3 V or
5 V output, as long as the input resistor R2
is large enough to prevent excessive current.

The final NPN application is shown in
Figure 8. In Figure 8a, a 2N3904 is driving
a relay. The diode D1 protects the transistor
against overvoltage. When the relay is turned
off by switching the transistor off, a “flyback”
voltage is created as the energy in the relay
coil is dissipated. This voltage can reach levels
sufficient to destroy the transistor due to
excessive collector-emitter voltage—remember
the transistor characteristics section. Diode D1
limits the voltage to 0.7 V above V+ to protect
the transistor. But this has the side effect of
slowing down relay opening.

Figure 8b shows the same circuit, but
with a 12 V Zener, D2, in series with D1. This
allows the flyback voltage to reach 12.7 V
above V+, which allows the coil energy to be
dissipated much more quickly, speeding up
relay operation. But with a 12 V relay, the
collector voltage will exceed 24 V during the
flyback period. This circuit takes advantage of
the high collector-emitter breakdown voltage
to improve the speed. There are some relay
drivers that can do this, but they offer little
advantage over a transistor. Note however
that base resistor R1 must be sized to allow
enough current for the transistor to operate
the relay. A large, high-current relay may
require a pre-driver and a power transistor.
At that point, an IC might be a better solution.

PNP TRANSISTORS
I’ve focused on NPN transistors so far.

Functionally, the PNP is the reverse of the

FIGURE 7
A 2N3904 used as a logic-level
translator

FIGURE 6
A 2N3904 connected as a constant-
current LED driver

circuitcellar.com 21
FEATU

RES

NPN. The collector voltage of the PNP (when
normally biased) is less than the emitter, and
the base is lower than the emitter by 0.7 V to
turn the transistor on. It isn’t necessary to
use negative voltages. As with the NPN, the
voltage with respect to the emitter is what
matters. A PNP transistor can be paired with
an NPN in simple audio amplifiers to make
a headphone or speaker amplifier. The PNP
complement to the 2N3904 is the 2N3906.

Figure 9 shows how a 2N3906 might be
used to create a negative bias voltage in a
system with only a positive supply. You might
need a negative bias to offset an input signal,
or to power an op-amp that needs a negative
supply for some reason.

The input is driven by a square wave
input that might come from the timer output
of a MCU or a two-transistor multivibrator
(Google it). I picked values arbitrarily for the
components in this example. You would want
to use component values appropriate for the
input frequency, output current and voltage,
and other requirements of your application.
Note that the input signal must swing close
to the positive supply rail (5 V in the circuit
shown) to fully turn off Q1—otherwise the
transistor will never turn off, and it will get
hot. If you were driving the circuit with a
logic-level output, you might need a pull-up
resistor to be sure the input swings all the
way to the positive rail. You could also use
this circuit in a 3.3 V system.

I include this example to show how a PNP
transistor can be used. This isn’t to say there
aren’t ICs that can do this. For example, the
TPS6735 DC/DC converter made by Texas
Instruments can produce a -5 V output at
200 mA, although it won’t operate at 3.3 V.

MOSFET TRANSISTORS
I’ve looked at BJTs so far, but there is

another class of transistors called MOSFETs
(metal-oxide semiconductor field effect
transistors). Where a BJT has a base, emitter

FIGURE 9
Negative voltage generator using PNP
2N3906

FIGURE 8
Driving a relay with a 2N3904. A basic diode clamp (a) and a higher voltage Zener clamp (b) for faster operation.

ABOUT THE AUTHOR
Stuart Ball is a registered professional engineer with a BSEE and an
MBA. He has more than 30 years of experience in electronics design. He
is currently a principal engineer at Seagate Technologies.

CIRCUIT CELLAR • MAY 2019 #34622
FE

AT
U

RE
S

and collector, the equivalent MOSFET pins are
the gate, source and drain. MOSFET operation
is similar to the BJT, but there are some
important differences.

The MOSFET was sometimes previously
referred to as the IGFET (insulated-gate field
effect transistor). I haven’t seen that term
used for many years, but it is descriptive. The
gate of the MOSFET is electrically insulated
from the rest of the part, and the current
from the drain to the source is controlled
by the electrical field created by applying a
voltage to the gate. The insulated gate means
that the MOSFET has a very high impedance
input, so no current has to flow into the gate
to control the drain-source current. In fact,
if current is flowing into the gate, it probably
means that some limit has been exceeded and
the transistor has failed.

The BJT can be thought of as a current-
controlled current device, where a small
change in base current causes a large change
in collector current. A MOSFET is a voltage-
controlled current device, where a change
in the gate voltage causes a large change in
the drain current. Figure 10 shows a 2N7000
MOSFET connected as a logic-level translator,
similar to the way the BJT was wired in
Figure 7. It will work the same way as the
2N3904 circuit, with the following differences:

1. The high impedance means no series
resistor is needed in the gate to limit
current. This also means that the transistor
input won’t load down whatever output is
driving it.

2. The BJT needs 0.7 V and a little current to
turn the transistor on. The MOSFET needs
the gate to be positive with respect to the
source. In the case of the 2N7000, the
turn-on voltage, Vgs, can range from 0.8 V
to 3 V. This means that using a 2N7000
to translate between a 2.5 V or 3.3 V
input to a higher voltage output might be
problematic, and the transistor might not
turn on. However, going the other way,
from a 5 V or higher system input to 3.3 V
or 2.5 V output, will work the same as it
does with the bipolar circuit.

3. A saturated MOSFET doesn’t have a
saturation voltage—it has a resistance
between the source and drain. For the
2N7000, this can be up to about 6 Ω when
V+ is 5 V for the On Semiconductor version
of the part. For most applications, this
value is small enough that it makes no
difference, but it is something to be aware
of, especially when switching significant
current.

The 2N7000 is normally used as a
switch. You can bias it as an amplifier, but
the varying Vgs threshold value makes that
a bit more complicated than for a BJT. Like
the PNP complement to the NPN transistor,
N-channel MOSFETs have a complement,
which is the P-channel MOSFET. The BS250
from Vishay is an approximate P-channel
equivalent to the 2N7000. You could use such
a transistor instead of a PNP to implement the
negative voltage generator mentioned earlier,
although, of course, you have to be sure the
driving voltage exceeds the gate threshold
voltage.

OTHER TRANSISTORS
I’ve focused on small-signal transistors

to demonstrate the basic principles. In both
bipolar and MOSFET transistors there are
devices designed to handle high currents and
high voltages, parts designed specifically for
RF applications, and other variants. But the
basic principles are the same.

I hope my explanation of how transistors
work has helped you understand them better,
and that the examples are enough to let you
experiment with transistors in your
applications. Sometimes transistors are
useful, even though they’ve been around a
long time. And even in circuits you could build
with ICs, transistors are interesting devices
for tinkering, because you can get down to
the basic component level.

FIGURE 10
2N7000 MOSFET as inverting logic-
level converter

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials

RESOURCES
On Semiconductor | www.onsemi.com

Texas Instruments | www.ti.com

Vishay | www.vishay.com

http://www.circuitcellar.com/article-materials
http://www.onsemi.com
http://www.ti.com
http://www.vishay.com

INNOVATORS
WELCOME

NEW for 2019
■ 2 Innovation & Technology Tracks
■ Expanded networking

opportunities
■ The Emerging Markets Forum
■ Tech Talks at the Expo Theater

Robo Favorites Return
■ 7th Annual Pitchfire Start-up

Competition
■ VC Office Hours at the

Start-Up Incubator
■ Robotic demos on

the expo floor

Don’t Miss These:

REGISTER TODAY! ■ RoboBusiness.com

October 1-3, 2019
Santa Clara Convention Center, Santa Clara, CA

SAVE 20%
Use Code
CCRB19

See the newest and most innovative
technologies in the robotics industry. From
sensors and LiDAR to grippers and motors to mobile robots
and cobot arms, RoboBusiness brings together every corner
of the industry to help you succeed.

■ Innovative Keynotes
■ Educational Breakouts
■ New Technologies on the Expo Floor

RBR19 Ad_CircuitCellar.indd 1 3/25/19 11:31 AM

www.robobusiness.com

CIRCUIT CELLAR • MAY 2019 #34624
FE

AT
U

RE
S

B ecause the electronics industry
is advancing so rapidly, it’s now
easier than ever to build interesting
systems without hurting your wallet.

This has also led to an overwhelming variety of
projects suitable as a final project in a college
class. One of the types of systems we were
interested in from the start was wearables—
but wearables and what? We could attempt to
create something meaningful, something that
would help humanity. Or not. We opted for a
something fun for college students—something
you could talk about at parties without losing
everyone’s attention. That’s how our idea of the
“Pong Bot” came to life.

The project’s focus was to simulate the
movement of a human arm such as aiming
and throwing small objects—for example, a
ping pong ball—with a small robotic arm. We
used the motion-controlled, 3-DoF (degrees
of freedom) robotic arm that takes the user’s
throwing motion as a reference to its own
throw. A robotic arm that mimics the user’s
arm motion has many different applications.
For example, you can use the robot arm to lift
heavy objects that human arms can’t handle, or
use the robotic arm remotely from a distance.

With all that in mind, we hope that, with small
modifications, readers could take the concepts
from this project and create something more

useful—although perhaps less fun. Integrating
both mechanical and electrical components, we
set out to control a beer-pong catapult robot
that simulates the user’s throwing gesture. With
this system, a mini-scale beer pong game can
be played using a robotic arm that throws the
ping pong ball for you—a fun twist enabling you
to play beer pong in style. For those unfamiliar
with the game, beer pong is a drinking game in
which players throw a ping pong ball across a
table with the intent of landing the ball in a cup
of beer on the other end.

THE USER INTERFACE
The user interface for our device relies on a

sleeve (Figure 1) worn on the user’s arm and
adjusted so that IMUs (inertial measurement
units) align with wrist and elbow. This allows
gesture control. The aiming of the catapult and
start position for the throw are determined
using readings from the IMU. The IMU delivers
two angles from the elbow and one angle from
the wrist, so we get the 3 degrees of freedom
needed for our robotic arm. By combining the
data from the gyroscopes and accelerometers
attached on the elbow and wrist, the controller
sends out three current angles from the
calibrated zero. This mapping of user's arm
to the robotic arm will be discussed in a later
section including the implementation of a

Simulating human body motion is a key concept in robotics development. With
that in mind, learn how these three Cornell graduates accurately simulate the
movement of a human arm on a small-sized robotic arm. The Microchip PIC32
MCU-based system enables the motion-controlled, 3-DoF robotic arm to take
a user’s throwing motion as a reference to its own throw. In this way, they
created a robotic arm that can throw a ping pong ball and thus play beer pong.

Using PIC32s and IMUs

By Daniel Fayad, Justin Choi and
Harrison Hyundong Chang

Robotic Arm Plays Beer Pong

circuitcellar.com 25
FEATU

RES

complementary filter using IMU readings.
The controller device itself consists of two

IMUs, a Digi International RF XBee module, an
inexpensive pressure sensor and a Microchip
PIC32 microcontroller (MCU) on the sleeve.
The pressure sensor is implemented as a
digital button. When the user pinches on the
pressure sensor to a certain threshold, the
robotic catapult starts to move according to the
movement of user's arm. This is when the user is
expected to aim. As soon as the pressure sensor
is released, the robotic arm swings very quickly
as it throws the ball—similar to what a catapult
would do. Figure 2 shows the development
board and the circuitry mounted on the sleeve.
The development board used is Sean Carroll’s
PIC32 Small Development Board—a link with
the details of this resource is provided on the
Circuit Cellar article materials webpage.

The release mechanism was designed after
initial testing. Due to a short delay between
the user’s movement and the movement of the
servos, it was difficult to get a rapid movement
that would cause the ball to be thrown. For
maximum enjoyment the user is encouraged
to make the throwing movement after the
pressure sensor has been released. This won’t
affect the throw, but it makes it seem more like
the user is also controlling the throw.

The controller can wirelessly communicate to
the robotic arm by having all the sensors on the
arm hooked up to a local PIC32 MCU that sends
signals via an RF transmitter. On the robotic
arm, we will have an RF receiver that receives
the signals from the controller and moves the
robotic arm accordingly in real-time. Because
of what we believe to be hardware constraints
with the Xbee modules, we were only able to
send a signal from the controller to the robotic
arm every 200 ms. This means that the servo’s
position signal was updated every 200 ms. This
sometimes made the robotic arm seem a little
shaky and unresponsive. For a more reliable
system, our final version didn’t use wireless
communication. Instead, we used two very long
wires to directly connect UART pins between the
two boards. This modified, final version enabled
us to establish a stable and fast communication
interval of 65 ms, providing smooth control of
the robotic arm. The long wires won’t interfere
with the user’s movement as long as the arm is
used as intended.

ROBOTIC ARM
Due to time and budget constraints, we had

to get creative with our materials and assembly.
Most of the materials were collected while we
were in a cafeteria during a break from working
on this. The assembled robotic arm is shown in
Figure 3. Despite the commonplace materials,
it behaves just as we intended, and serves its
purpose. The system requires three servos to

FIGURE 1
Shown here is the sleeve
as worn by the user. The
IMU_elbow is on the other
side and cannot be seen in
this figure. The sleeve is
elastic, so the user can adjust
the location of the IMUs for
calibrations.

FIGURE 2
This is the schematic of the development board and the circuitry mounted on the sleeve shown in Figure 1.
The XBee modules are ignored because they weren’t part of the final demo. Accordingly, we just show the
UART connections as RX and TX that are connected to the second PIC32 MCU (shown in Figure 5) [1].

CIRCUIT CELLAR • MAY 2019 #34626
FE

AT
U

RE
S

translate the IMU readings to motion in different
axes. We gave constraints to each servo so
that we don’t surpass the angle of its physical
limitations. In other words, if a human’s elbow
joint can’t provide 360 degrees of rotation, our
robotic arm shouldn’t be able to do that either.
Servo 1 rotates approximately 180 degrees,
and Servo 2 and Servo 3 rotate 40 degrees and
90 degrees, respectively.

The most sophisticated component in our
robotic arm was the base used to support
Servo 1. It was 3D-printed. That’s because we
realized at the onset that we needed a solid,
stable base to prevent movement from the
other servos from destabilizing our system. The
3D rendering of the base is shown in Figure 4.
Servo 1, which rotates the base, was fitted
into a casing that was laser-cut to minimize
jittering. Later, we attached the base casing to
a plank of wood for greater stability, because
the arms should have imbalance in their center
of gravity. Then Servo 2 was screwed into a
3D-printed mold that fit right into Servo 1. The
arms of the robots were extended by wooden
coffee sticks. Finally, the holder or bowl of
the ball was made with a plastic spoon. The
“shoulder joint” was replicated by Servos 1
and 2. The elbow movement was replicated by
Servo 3, which was attached at the end of the
stick extended from Servo 2. The servos were
connected to a board, which was connected to
the PIC32 MCU used for the robotic arm station
(Figure 5). The development board used here
is Sean Carroll’s PIC32 Large Development
Board—a link with the details of this resource is
provided on the Circuit Cellar article materials
webpage.

COMPONENT BREAKDOWN
The IMUs used in this project were MPU6050

from TDK InvenSense, which uses I2C protocol for
communication with the host device. The PIC32
has capability of two I2C channels. However, we
only used one, because the MPU6050 has a bit
address—0 or 1—which is used for talking to
the specific IMU unit. We used a helper function,
called i2c_helper.h from another project
that also used I2C to communicate successfully
with this sensor [3].

When we started experimenting with the
data being collected, we faced a few problems
with accuracy and drift. This is a common
issue with IMUs, and was remedied by sensor
fusion—using the information from both types
of sensors in our IMU unit to correct the error.
The Kalman Filter is the standard method to
solve these problems, but it is computationally
heavy and at times difficult to implement. A
simpler algorithm is the complementary filter,
which is easier to implement and is “often
applied in systems of limited resources such as
this project [4].

FIGURE 3
The robotic arm is made of coffee sticks, small servos and a spoon—held together by hot glue and tape. The
screw seen on the opposite side of Servo3 served as counterweight, because the weight of Servo3 combined
with the quick movements of Servo2 sometimes made the arm detach from the servo.

FIGURE 4
Shown here is the 3D CAD rendering of our base for the robotic arm. This joint needed to be 3D printed,
because it required two servos to be attached in very close proximity—and hot glue alone wouldn’t provide
enough stability.

circuitcellar.com 27
FEATU

RES

The complementary filter provided a simple
way of getting accurate data and reducing
drift. This was accomplished by combining the
gyroscope and accelerometer data on each
axis. This approach proved to be an efficient,
computationally lightweight alternative to a

Kalman Filter for our system. We implemented the
complementary filter for angle data for each joint.
On the PIC32 attached to the sleeve, we extracted
the most recent value for the accelerometer
and gyroscope, scaled both of them and then
processed them through our algorithm.

FIGURE 5
This is the schematic of the board and
connections to the servos on the PIC32
used for the robotic arm. As shown in
Figure 2, the XBee connections were
ignored, because both PIC32s were
connected physically by two wires
to communicate via UART. These
connections are shown at the top
center of the diagram as RX and TX
[2].

Equipment Cabinet for
Industries that

never stop

The R-Series from
Optima-Stantron
Proven, sturdy,

configurable and
ready to ship

Elma Electronic Inc., USA elma.comWith you at every stage |

www.elma.com

CIRCUIT CELLAR • MAY 2019 #34628
FE

AT
U

RE
S

Listing 1 shows a snippet of C code of
the algorithm on our system to calculate
the “elbow” angle from the sleeve. The
past gyroscope data is integrated and
then multiplied by the constant, COMP_
FILTER_G_COEF, which is then added to
the scaled accelerometer data. Multiplying
this computed value by the other constant,
COMP_FILTER_A_COEF, we get the final,
filtered angle data. The values COMP_
FILTER_G_COEF and COMP_FILTER_A_
COEF (0.98 and 0.02 respectively) were used
to weight the values of the accelerometer
and gyroscope differently because of to two
things. First, the gyroscope drifts a lot when
IMU is not detecting movement. Second, the
accelerometer is easily disturbed, causing
spikes in its readings—especially while facing
movement. But it has data that could be useful
to counteract the drift from the gyroscope.
These can be adjusted, but 0.98 and 0.02
worked fairly well for us.

The pressure sensor was a variable
resistor. To use it as a digital button, we
built a simple voltage divider circuit and set
a threshold. This meant that any time the
output of the circuit exceeded it, we would set
a flag. We used the ADC on the PIC32 to read
voltage values to detect when to follow the
arm and when to release the ball (or launch
the catapult).

When we started debugging and testing
our system, we needed a more reliable way
of communication between PIC32 MCUs than
RF because we also had to debug our RF
communication. For this, we used UART between
the PIC32s. This was convenient because our RF
modules also used UART as a communication
protocol to send data so, theoretically, we could
see them as a UART bridge.

The servo motor controls were all written
on the PIC32 MCU that was hooked up to the

robotic arm. Its purpose was to extract all the
data that were sent from the PIC32 MCU on the
sleeve and turn them into PWM signals. Four
variables were extracted from the PIC32 on
the sleeve. Three represented the tilt of elbow
on Z axis, on Y axis, and tilt of wrist on Z axis.
And the fourth was a flag indicating whether or
not the pressure sensor was pressed.

RESULTS AND USABILITY
We performed sets of testing to deduce

numerical specifications for our system. Drift
tests were done for each servo experimentally,
to observe drift in angles. For each test we
reset the system and performed 20 cycles
of the maximum range of motion allowed
for each degree of freedom. On Servo 1—
which was getting data from the IMU on
the elbow—we observed approximately an
8-degree difference when returning to the
original position. Servo 2 used data from
the same IMU, and we found no measurable
drift after our test. This was reasonable given
that the range of motion for this servo was
only 40 degrees. On Servo 3—which used
data from the IMU on the wrist—we also saw
no significant drift after the 20 cycles and
returning to the original position.

While testing the Servo 2 and Servo 3
rotation, we noticed that Servo 1 was also
rotating slightly, which should have not been
the case. This may have been due to IMU’s
position on the elbow, which wasn’t securely
fixed at one position. The arm movement made
the sleeve elastically extend and contract, and
in this process the IMU might effectively be
moved around. This might also have caused
movement to the base rotation and stacking
up drift angles.

To determine how much weight our
delightfully crafted robotic arm could
handle, we performed a series of tests with
increasingly heavier materials. Although the
arm’s intended use was to throw lightweight
objects such as ping pong balls, we found
that any object lighter than 15 g also could be
thrown in an acceptable way.

Finally, we tested the range of throw to
specify the shortest and longest distance the
throw could cover. We found that by adjusting
the initial position of the throw, we could
cover a range of 6" to 13". This might not be
a lot—especially if you’re trying to play a real
game of beer pong against a real person—
but it could certainly bring some external
entertainment to the game.

As for speed of execution, as noted
previously, wired communication was more
effective. Combining that with the use of
interrupts with UART, we were able to get our
robotic arm to mimic the user’s arm with no
noticeable delay. This is mainly because we

Additional materials from the authors are available at:

www.circuitcellar.com/article-materials
References [1] through [4] as marked in the article can be found there

RESOURCES
Digi International | www.digi.com

Microchip Technology | www.microchip.com

TDK InvenSense | www.invensense.com

// Elbow IMU
accTilty_elbow= -atan2f(xAccel_elbow,
zAccel_elbow)*180.0/M_PI;
tilty_elbow = (COMP_FILTER_G_COEF*(tilty_
elbow + yGyro_elbow*IMU_READ_PERIOD*0.001) +
COMP_FILTER_A_COEF*accTilty_elbow);

LISTING 1
This snippet shows the C code used
to accurately calculate the elbow
angle for the robotic arm. The
variable tiltY_elbow was passed to
the robotic arm.

http://www.circuitcellar.com/article-materials
http://www.digi.com
http://www.microchip.com
http://www.invensense.com

circuitcellar.com 29
FEATU

RES

FIGURE 6
A video with a demo of the final
version of the project can be found by
scanning this QR code.

don’t expect the users to make any sudden
movements while aiming. We noticed that
quick, sudden movements made the robotic
arm struggle to catch up, and in some cases,
it reacted in strange ways that disappeared
when the user started aiming more slowly.

Anyone with an arm and a finger can use
our controller, as long as the IMUs are
adjusted to match the location of the elbow
and the wrist. Also, the robotic arm is quite
fragile because it’s made of birchwood sticks
and cheap generic servos that seem to jitter
slightly in motion. The robustness of the

robotic arm can be improved by replacing the
birchwood sticks with 3D-printed parts and
by using more reliable servos. The arm
controller on the sleeve can also be made
more robust by strapping components more
tightly on the user’s arm. Lastly, the user
must acknowledge and consider the slight
drifting on the base rotation of the robot and
the maximum load the system can take to
throw. A video of the final demo can be found
by scanning the QR code at the end of this
article (Figure 6) or you can find the video on
Circuit Cellar’s article materials webpage.

About the Authors
Daniel Fayad graduated Cornell in May 2018 with a degree in Electrical and Computer Engineering. He now is a Software Devel-
opment Engineer on Amazon's Alexa team. He is interested in Embedded Systems, Speech Recognition, Computer Vision and
he isn’t particularly good at beer pong.

Harrison Hyundong Chang graduated from Cornell University in 2017 with bachelor’s and master’s degrees in Mechanical and
Aerospace Engineering. He worked as an Antenna Engineer for a year at Samsung Electronics, mobile communications business,
and is now working as a Hardware Engineer for an Internal Corporate Venture called C-Lab at Samsung Electronics.

Justin Choi obtained a bachelor’s degree in Mechanical Engineering from Cornell in 2017, followed by a master's degree in Aero-
space Engineering from Cornell in 2018. He now works at Northrop Grumman Innovation Systems as a Guidance Navigation and
Control Engineer, working on development of flight computer algorithms for commercial and science satellites.

www.adacore.com

CIRCUIT CELLAR • MAY 2019 #34630
SP

EC
IA

L
FE

AT
U

RE

Digital signage ranks among the most dynamic areas of today’s embedded
computing space. Vendors involved in this technology continue to roll out
new solutions for developing powerful digital signage implementations.

Digital Signage Technologies
Gain Momentum
System Solutions

D igital signage is one of those
technologies that seemed to
breeze into our modern society
so quickly and smoothly that

it’s hard to image life without it. Today’s
technologies provide users with the ability
to easily update information on large,
high-resolution displays in real-time and
in rugged, outdoor environments. And the
ability to rotate ads even on billboard-sized
displays has multiplied revenue streams for
stakeholders using digital signage systems.

At the heart of today’s landscape of modern
digital signage are a variety of digital signage
players that support advances graphics and
multiple streams of connectivity. Also in the
mix are general-purpose box-level embedded
computing systems that provide solutions for
signage applications. Obviously displays make
up part of the ecosystem too, but this article
focuses strictly on the embedded computing
side of digital signage.

WATERPROOF DESIGN
In March, Ibase Technology launched its

latest SW-101-N waterproof digital signage
player designed for both indoor and harsh

outdoor environments. This rugged fanless
signage player is integrated with a 1.91 GHz
Intel Atom Processor E3845 Quad-Core
Processor and Intel HD graphics (Gen 7-LP) 4EU
(Figure 1). The SW-101-N is built to withstand
dust, water and extreme temperatures. This
ensures the system’s stable operation and
reliability in harsh industrial environments.

The SW-101-N meets IP68 standards,
allowing it to handle submersion in water for
up to 30 minutes at a depth of 1.5 meters.
The black-color waterproof enclosure uses
a C3 HDMI connector and M12 I/O interface
connectors for two USB 2.0, one Gbit LAN,
one RS-232, DC power input and digital I/O.
Two antenna N-jack type connectors have
waterproof designs as well. Aside from
being fanless, the unit has a wide operating
temperature range of -40°C to 75°C.

The SW-101-N supports Ibase’s iControl
and Observer technologies for intelligent
control and remote monitoring functions
that feature auto power on/off scheduling,
power resume, system temperature/voltage
remote monitoring and low temperature
boot protection. The standard model has
4 GB of DDR3L-1333 system memory, 64 GB

By Jeff Child,
Editor-in-Chief

SP
EC

IA
L

FE
AT

U
RE

circuitcellar.com 31
SPECIAL FEATU

RE

mSATA storage, and 12 V DC-in support.
Additional features include a watchdog timer,
wall mounting and Mini PCIe expansion for
optional wireless modules.

TINY SIGNAGE PLAYER
A powerful set of digital signage functionality

can be squeezed into a very small form factor
these days. In an example along those lines, in
September Advantech introduced its USM-110,
an ultra-compact digital signage player. This
fanless system provides support for Android 6.0
and Advantech’s own WISE-PaaS/SignageCMS
digital signage management software. The
compact (156 mm x 110 m x 27 mm) device
follows earlier Advantech signage computers
such as the slim-height, Intel Skylake based
DS-081.

The USM-110, which is also available in a
less feature rich USM-110 Delight model, ships
with 2 GB DDR3L-1333, as well as a microSD
slot. It has 16 GB of eMMC on the standard
version and 8 GB on the Delight. There’s also
a GbE port and an M.2 slot with support for an
optional Wi-Fi module with antenna kit.

The USM-110 has two HDMI ports, both
with locking ports: an HDMI 2.0 port with
H.265-encoded, native 4K at 60 Hz (3840 x
2160) and a 1.4 port with 1080p resolution.
The system enables dual simultaneous

HD displays. The Delight version lacks the
4K-ready HDMI port, as well as the standard
model’s mini-PCIe slot, which is available with
an optional 4G module with antenna kit. The
Delight is also missing the standard version’s
RS232/485/422 port, and it has only one USB
2.0 host port instead of four. Otherwise, the
two models are the same, with a micro-USB
OTG port, audio jack, reset, dual LEDs and
a 12V/3A DC input. The 0.43 kg system has
a 0 to 40°C range, and offers VESA, wall,
desktop, pole, magnet and DIN-rail mounting
(Figure 2).

Advantech’s WISE-PaaS/SignageCMS
digital signage management software—

Figure 2
The USM-110 is a digital signage
player that supports Android 6.0 and
Advantech’s WISE-PaaS/SignageCMS
digital signage management software.
The compact unit measures 156 mm
x 110 m x 27 mm and features VESA,
wall, desktop, pole, magnet and DIN-
rail mounting options as shown here.

FIGURE 1
The SW-101-N is a waterproof, fanless
signage player that is integrated
with a 1.91 GHz Intel Atom Processor
E3845 Quad-Core Processor and Intel
HD graphics (Gen 7-LP) 4EU. The SW-
101-N is built to withstand dust, water
and extreme temperatures in mind.

CIRCUIT CELLAR • MAY 2019 #34632
SP

EC
IA

L
FE

AT
U

RE

also referred to as UShop+ SignageCMS—
supports remote, real-time management. It
allows users to layout, schedule and dispatch
signage contents to the player over the
Internet, enabling remote delivery of media
and media content switching via interactive
APIs. A WISE Agent framework for data
acquisition supports RESTful API web services
for accessing and controlling applications.

CABLE-FREE DESIGN
Like many of today’s embedded

applications, digital signage has entered
the wireless era. Along just those lines, in
February Axiomtek launched the DSP300-318,
an Intel Apollo Lake based digital signage
player promoted for its ultra-slim, 200 mm x
137.8 mm x 20 mm dimensions. The 4K-ready
system is designed for space-constrained
digital menu boards, self-ordering systems,
retail applications, queuing systems,
interactive kiosks and video walls.

The system runs Ubuntu or Debian Linux
or Windows 10 IoT on Intel’s dual-core,
1.1 GHz Celeron N3350 or quad-core, 2.5 GHz
Pentium N4200. Two DDR3L-1600 SO-DIMMs
provide up to 8 GB of system memory. And
there’s an option for 64 GB eMMC 5.0. The

DSP300-318 stands out with its triple M.2 slot
design. In addition to an M.2 M-Key 2280 for
storage, there’s an M.2 E-Key 2230 for Wi-Fi
and Bluetooth and an M.2 B-Key 3042 for 4G
LTE. A SIM card slot and 4x antenna mounts
are also available (Figure 3).

The DSP300-318’s 4K-ready HDMI 1.4
and DisplayPort 1.2 ports support dual
simultaneous displays. Other features include
2x GbE ports, 3x USB 3.0 ports and single USB
2.0 and RS-232 ports. Dual audio jacks are
also available. The DSP300-318 has a 12 VDC
terminal screw input, as well as power, reset,
and remote switches. There’s also a watchdog
timer and a Lithium 3V/220mA-hour battery.
The fanless system supports 0 to 50°C
temperatures and offers humidity resistance
and 3 Grms vibration resistance with M.2
storage (5 to 500 Hz, X, Y, Z).

PLAYERS WITH OPS SUPPORT
In 2010, Intel launched the Open Pluggable

Specification (OPS) to standardize the system
architecture between displays and media
players. According to Intel, OPS allows for
more cost-effective design, deployment, and
management of digital signage and other
display solutions that support advanced
functionality and emerging use cases,
including interactivity and anonymous
audience analytics. OPS began appearing
in signage systems such as the Axiomtek
OPS860 back in 2011. The spec standardizes
mounting and power requirements and
connects to OPS-compatible displays via an
80-pin JAE Electronics TX24/TX25 blind mate
plug and receptacle connector system.

In June 2018, Ibase launched its IOPS- 602
signage player that runs Windows 10 or
Ubuntu Linux on Intel’s 6th or 7th Gen. Core
QC/DC processors, with a default to dual-core,
7th Gen “Kaby Lake” U-series processors
with 15 W TDPs. The standard SKU is a Core
i7- 7600U (2.8 GHz/3.9 GHz) with 8 GB RAM
and 128 GB of M.2 storage.

The 200 mm x 119 mm x 30 mm IOPS-602
uses an OPS standard 12 V to 19 V DC input
and OPS mounting bracket. The JAE connector
is mounted on the back of the system. An
optional expansion dock with 150 W adapter
is available for using the systems with non-
OPS displays. Up to 32 GB of DDR4-2133 DRAM
can be loaded via dual slots, and there’s an
M.2 M-Key slot for 2280 SSD cards. An M.2
E-Key slot is available for 2230-based Wi-Fi/
Bluetooth cards.

The IOPS-602 also provides 4x USB 3.0,

Figure 3
DSP300-318 is an Intel Apollo Lake
based digital signage player with two
DDR3L-1600 SO-DIMMs providing up
to 8 GB of system memory. There’s an
M.2 E-Key 2230 for Wi-Fi and Bluetooth
and an M.2 B-Key 3042 for 4G LTE. A
SIM card slot and 4x antenna mounts
are also available.

circuitcellar.com 33
SPECIAL FEATU

RE

HDMI 1.4b and Gbit Ethernet ports, as well
as an RS232 serial connection provided via an
RJ45 port. You also get dual audio jacks, LEDs,
a watchdog and iAMT compliance for remote
management. The system supports 0°C to
45°C temperatures and resists vibrations
to the tune of 5 Grms, 5 to 500 Hz random
operation with an SSD.

MOVING ON TO OPS+
Intel developed a follow-on spec called

OPS+ that builds on the benefits and powerful
functionality of the OPS by enabling a broader
range of Intel processors to include the Intel
Xeon processor family, a range of Intel desktop
processors and Intel FPGAs. OPS+ can also
add functionality based on specific industry
needs such as supporting simultaneous
display and broadcast usages, support for
8K resolution displays and the ability to drive
three individual 4K resolution display outputs.

According to Intel, OPS+ defines a
180 mm x 119 mm x 30 mm, fully enclosed
digital signage systems with enhanced
thermal design supports broader range
of Intel processors. The enhanced spec is
optimized for interactive white boards (IWBs),
commercial digital signage, kiosks, visual data
devices, video walls and so on. With OPS+, you
can customize a protocol and simultaneously
support advanced use cases including real-
time analytics and video capture performed
on the display itself. The spec also features a
second high-speed connector and is backward
compatible with previous OPS specifications.

In December Axiomtek released the first
OPS+-compliant digital signage player, the
OPS700-520. The system is powered by the
LGA1151 socket 8th generation Intel Core
i7/i5/i3 and Celeron processors (codename:
Coffee Lake S) with the Intel Q370 chipset.
The player supports Intel Active Management
Technology (Intel AMT) 11.0 as well as
Intel Unite solution for content sharing and
collaboration. It comes with two 260-pin
DDR4-2400 SO-DIMM sockets that can provide
system memory of up to 32 GB (Figure 4).

The OPS700-520 is compatible with
Intel Unite, which allows users to connect
and interact with meeting content in real
time, thus enhancing seamless meeting
experiences and convenience. It also comes
with Intel AMT 11.0. Software issues can be
repaired wirelessly while failed hardware
components can be identified beforehand,
thereby lowering maintenance costs and
improving efficiency. The signage module is

Figure 4
The first OPS+-compliant digital signage player, the OPS700-520 is powered by the LGA1151 socket
8th generation Intel Core i7/i5/i3 and Celeron processors. The player supports Intel Active Management
Technology (Intel AMT) 11.0 as well as Intel Unite solution for content sharing and collaboration.

Figure 5
3D Bare-Eye Content Development Kit and Signage Solution was designed to enable developers of casino
slot machine games and digital signage displays to provide 3D content that can be viewed without special
glasses.

CIRCUIT CELLAR • MAY 2019 #34634
SP

EC
IA

L
FE

AT
U

RE

suitable for multi-display solutions such as
IWBs in meeting rooms, commercial digital
signage, video walls and more.

The digital signage player can be easily
connected to an OPS-plus compliant display
via two high-speed transmission connector
interfaces: JAE TX25A and HRS-FX18. The
JAE plug connector interface supports one
DisplayPort (4K at 60 Hz), one HDMI 2.0 (4K at
60 Hz), one USB 3.0, two USB 2.0, one audio
and UART signals. The HRS plug connector
interface supports one DisplayPort (4K at
60 Hz) and one PCI Express x4. These two
connector interfaces enhance multimedia
performance to meet various requirements.
The OPS700-520 also has one PCIe or SATA
interface for storage, one M.2 Key E for Wi-Fi
modules and one M.2 Key M NVMe SSD slot.

The OPS700-520 maintains the small
form factor with dimensions of just 200 mm
x 119 mm x 30 mm. It comes with rich I/O
connectors including two USB 3.1 Gen2, two
USB 2.0, one RS-232 (COM 2), one Gbit LAN
with Intel i219-LM Ethernet controller and one
HDMI. The unit supports Windows 10 64-bit
and Linux operation systems. Also, it supports
the TPM 2.0 which can provide security and
privacy benefits.

3D DIGITAL SIGNAGE
A unique twist on tradition digital signage

in the emergence of 3D capability. Feeding that
need, in October last year EFCO introduced a
development and signage solution for creating
advanced 3D slot machine games. The

company’s 3D Bare-Eye Content Development
Kit and Signage Solution was designed to
enable developers of casino slot machine
games and digital signage displays to provide
3D content that can be viewed without special
glasses (Figure 5).

3D Bare-Eye is based on the Unity software
environment, which, according to EFCO, is the
defacto standard development toolset among
game developers. When used for casino
games, instead of simply displaying images of
coins on the screen, the coins now appear to
be falling out of the slot machine toward the
player. But the technology can also be used
for any digital signage or progressive display
application, says EFCO.

The 3D Bare-Eye Solution is made up of
a development kit and a broadcast kit. The
content development kit is based on Unity.
Because Unity is the most common gaming
development environment, it’s easy to
adopt. The kit also comes with a monitor,
computer system and a proprietary interface
card that connects the development system
to the playback system. Features of the 3D
Content Development kit include: Intel Core
i5-6500, 4C/4T with boost to 3.6 GHz, NVIDIA
GTX1050Ti (4 GB GDDR5) or GTX1070Ti, 2.5"
SATA SSD 256 GB, an average 190 W power
consumption and 3840 x 2160 display support.

The broadcast kit comes with a ready-to-
use 55" and 65" 3D digital signage 4K display
with playback system. A 3D film on the monitor
provides the third dimension to viewers.
Features of the kit include Intel Pentium CPU,
NVIDIA graphics GTX1050Ti (4GB GDDR5),
2.5" SATA SSD 64 GB storage, power input of
AC 100 V to 240 V, 50 Hz to 60 Hz and power
consumption averaging 150 W.

FANLESS SOLUTION
While dedicated, purpose-built solutions—

like the ones discussed so far in this
article—are one approach to digital signage
applications, another angle is to employ box-
level general purpose embedded computers to
serve the player functionality. This approach
makes sense especially when extreme
environmental conditions are an issue. An
example along these lines is Logic Supply’s
ML100G-31 embedded PC system introduced
last August. This system is built around an
Intel Dawson Canyon NUC board and employs
the company’s Hardshell Fanless Technology
to ensure thermal performance. Logic Supply
says it’s the smallest fanless and ventless NUC
to feature an 8th generation (Kaby Lake) Intel

Figure 6
The ML100G-31 embedded PC system
is built around an Intel Dawson Canyon
NUC board and employs the company’s
Hardshell Fanless Technology to ensure
thermal performance.

RESOURCES
AAEON | www.aaeon.com

Advantech | www.advantech.com

Axiomtek | us.axiomtek.com

EFCO | www.efcotec.com

Ibase Technology | www.ibase.com.tw

Intel | www.intel.com

Logic Supply | www.logicsupply.com

http://www.aaeon.com
http://www.advantech.com
http://www.efcotec.com
http://www.ibase.com.tw
http://www.intel.com
http://www.logicsupply.com
https://us.axiomtek.com

circuitcellar.com 35
SPECIAL FEATU

RE

Core i7 processor (Figure 6).
The ML100G-31 provides a fully solid

state, passively cooled computing solution,
designed for reliability in demanding
environments and measures just 142 mm x
62 mm x 107mm. Logic Supply engineers,
with support from Intel’s thermal design
lab, created a proprietary heatsink for the
NUC717DNBE motherboard and Quad-Core i7-
8650U Kaby Lake CPU. They also collaborated
with Intel to identify a way to ensure that the
ML100G-31 features the 5-year lifecycle that
will allow their industrial computing clients to
standardize on the platform.

The ML100 is able to cool the processor
and other internal components by employing
Logic Supply’s proven Hardshell Fanless
Technology. Through the use of unique
exterior fins and specially machined heatsink
design, the system is able to maintain an
optimal operating temperature without the
need for a cooling fan. Removing the fan
from the system improves overall reliability.
Unlike fanned solutions that are vulnerable
to airborne contaminants, this fanless design
is able to operate in challenging computing
environments across a range of industries
including manufacturing and automation,
industrial digital signage and others.

The system can be configured with up to
32 GB of memory and 1 TB of M.2 storage.
Connectivity includes four USB 3.0 ports, two
HDMI ports supporting dual 4K output, Gbit LAN
and an optional COM port for legacy equipment
connectivity. Operating system options include
both Windows and Linux Ubuntu.

SYSTEM BASED ON MINI-ITX
In another example of a general-purpose

system that’s suited for digital signage, AAEON
in September released the ACS-1U01 Series, a
range of turnkey solutions that embed three of
its bestselling SBCs. By enclosing the boards
inside a tough 1U chassis, the unit provides
a ready-to-go system for use in a variety
of applications including digital signage as
well as industrial automation, POS, medical
equipment and transportation.

The three models—the ACS-1U01-BT4
(Figure 7), ACS-1U01-H110B, and ACS-1U01-
H81B—feature a tough, 44.45 mm-high
chassis with a wall mount kit and 2.5" HDD
tray. The low-profile, low-power-consumption
systems have full Windows and Linux support,
they can be expanded via full- and half-size
Mini-Card slots and heatsinks give them
operating temperature ranges of 0°C to 50°C.

The ACS-1U01-BT4 houses AAEON’s
EMB- BT4 motherboard, which can be fitted
with either an Intel Atom J1900 or N2807
processor. The J1900 can be used with a pair
of DDR3L SODIMM sockets for up to 8 GB
dual-channel memory, while the N2807 can be
used with a single DDR3L SODIMM socket. The
board’s extensive I/O interface provides the
system with a GbE LAN port, dual independent
HDMI and VGA displays, a USB3.0 port, up to
seven USB 2.0 and up to six COM ports.

The ACS-1U01-H110B contains AAEON’s
EMB-H110B, which is built to accommodate
up to 65 W 6th/7th Generation Intel Core i
Series socket-type processors and supports
up to 32 GB dual-channel memory via a pair
of DDR4 SODIMM sockets. Dual independent
display support is possible through two HDMI
ports, or the option of DP connections. The
system also features a GbE LAN port, four
USB 3.0 ports, four USB 2.0 ports and a COM
port.

The ACS-1U01-H81B is built around AAEON’s
EMB-H81B, which is designed for 4th Generation
Intel Core i Series socket-type processors with
TDPs of up to 65 W. Two SODIMM sockets allow
for up to 16 GB dual-channel DDR3 memory,
and HDMI, DisplayPort and optional VGA ports
enable dual independent display. The system
has two GbE LAN ports, two USB3.0 ports and
six USB 2.0 ports.

There’s no doubt that digital signage is an
application that puts high demands on a
variety of technology segments—from
graphics processing to connectivity to form
factor design. To keep pace with demands,
makers of digital signage players and
embedded PCs continue to innovate by adding
more capabilities while also shrinking size,
weight and power.

Figure 7
The ACS-1U01-BT4 houses AAEON’s
EMB-BT4 motherboard, which can be
fitted with either an Intel Atom J1900
or N2807 processor. The J1900 can be
used with a pair of DDR3L SODIMM
sockets for up to 8 GB dual-channel
memory, while the N2807 can be used
with a single DDR3L SODIMM socket.

CIRCUIT CELLAR • MAY 2019 #34636
TE

CH
 S

PO
TL

IG
HT

Code Analysis Tools
Up Their Game

The complexity of today’s embedded software keeps
pushing the goalposts further out in terms of ensuring
good quality code. To keep pace, vendors of code
analysis tools are innovating with highly integrated and
effective solutions.

By Jeff Child,
Editor-in-Chief

Quest for Code Quality

I t is now a given for embedded devices to
have millions of lines of software code.
As these systems get more complex,
the challenge of producing error free

code isn’t getting any easier. To meet the
challenge, development tool vendors continue
to add new features and capabilities to their
code analysis products.

Although they are all addressing a similar
need, the major embedded tool vendors each
have their own twists and nuances when it
comes to providing code analysis features.
Some weave them tightly into their Integrated
Development Environment (IDE), while others
take a more modular approach. Meanwhile,
issues due to programming languages,
standards compliance and even IoT are all
part of the landscape of today’s code analysis
tool features.

RUNTIME CODE ANALYSIS
IAR Systems includes a variety of code

analysis tools as part of its IAR Embedded
Workbench IDE. Among these is its C-RUN
runtime analysis tool. The tool is completely
integrated with the IDE and provides detailed
runtime error information. C-RUN is available

as an add-on to IAR Embedded Workbench
for Arm and for Renesas RX. C-RUN supports
all supported Arm cores in IAR Embedded
Workbench (Figure 1).

Runtime analysis tools work by inserting test
code into an application to enable the tool to
find real and potential errors in the code while
executing the program in a software debugger.
The types of errors found with this method
include out-of-bounds errors, arithmetical
errors and memory inconsistency errors.

By using runtime analysis, embedded
system developers can find potential and
real errors at an early stage, as opposed to
finding errors at a later stage which makes
product development more expensive and time
consuming. It improves cost efficiency and
development time, allowing for a speedier time
to market. C-RUN supports both C and C++.

IAR Embedded Workbench also includes
a tool called C-SPY Debugger. C-SPY provides
an instruction simulator as well as extensive
support for debugging probes and target
systems. It includes RTOS plugins and wide
support for communication stacks and
middleware. A C-like macro system and
integrated code quality control further extends

FIGURE 1
Runtime analysis tools like C-RUN, shown here,
work by inserting test code into an application to
enable the tool to find real and potential errors in
the code while executing the program in a software
debugger. Types of errors found with this method
include out-of-bounds errors, arithmetical errors
and memory inconsistency errors.

circuitcellar.com 37
TECH SPO

TLIG
HT

its capabilities. Developers can use C-RUN in
C-SPY simulator as well as in their actual target
hardware. IAR Systems provides a size-limited
version of C-RUN that is activated for evaluation
when you download IAR Embedded Workbench
for Arm V7.20 (and later versions) or IAR
Embedded Workbench for RX V3.10.

ADA STATIC ANALYSIS
With its main focus on Ada language tools,

AdaCore’s static analysis tool suite is called
CodePeer. CodePeer is an Ada source code
analyzer that detects run-time and logic
errors. It assesses potential bugs before
program execution, serving as an automated
peer reviewer, helping to find errors easily
at any stage of the development life-cycle
(Figure 2).

CodePeer is a stand-alone tool that runs
on Windows and Linux platforms. It may be
used with any standard Ada compiler or fully
integrated into the GNAT Pro development
environment. It can detect several of the “Top
25 Most Dangerous Software Errors” in the
Common Weakness Enumeration. CodePeer
supports all versions of Ada (83, 95, 2005,
2012). CodePeer has been qualified as a
Verification Tool under the DO-178B and EN
50128 software standards.

In February, AdaCore released Version 19.1
of its flagship products including CodePeer as
well as its GNAT Pro, CodePeer, SPARK Pro
and QGen products. The enhancements in
CodePeer 19.1 are focused on user/usability
improvements. These include new entry level
(“level 0”) with fast analysis and minimal false
positives. A simple “getting started quickly”
mode is provided for new users. Other new
features include a security report output,
integration of AdaCore’s GNATcheck tool and
a major documentation update—including
examples of typical workflows.

INTEGRATED WITH COMPILER
As one of the long time veterans in the

embedded software industry, Green Hills
Software provides its MULTI IDE that includes
a rich set of debugging and analysis tools.
Among these are its DoubleCheck integrated
static analysis tool. Green Hills emphasizes the
importance of this tool as being an integrated
tool. In other words, DoubleCheck is built into
the Green Hills C/C++ compiler—unlike other
source code analyzers that run as separate tools.

A typical compiler issues warnings and
errors for some basic potential code problems,
such as violations of the language standard
or use of implementation-defined constructs.
In contrast, DoubleCheck performs a full
program analysis, finding bugs caused by
complex interactions between pieces of code
that may not even be in the same source file.

FIGURE 2
CodePeer is an Ada source code analyzer that detects run-time and logic errors. It assesses potential bugs
before program execution, serving as an automated peer reviewer.

FIGURE 3
DoubleCheck determines potential execution paths through code. As shown there, errors found by DoubleCheck
are displayed inline with the surrounding code, making them easy to understand.

CIRCUIT CELLAR • MAY 2019 #34638
TE

CH
 S

PO
TL

IG
HT

DoubleCheck determines potential execution
paths through code, including paths into and
across subroutine calls, and how the values
of program objects—such as standalone
variables or fields within aggregates—could
change across these paths (Figure 3).

Examples of the types of flaws DoubleCheck
looks for are potential NULL pointer dereferences,
buffer overflow, potential writes to read-only
memory, resource leaks and others. The analyzer
understands the behavior of many standard
runtime library functions. For example, it knows
that subroutines like free should be passed

pointers to memory allocated by subroutines
like malloc. The analyzer uses this information
to detect errors in code that calls or uses the
result of a call to these functions.

Software development organizations
often employ an internal coding standard
which governs programming practices to help
ensure quality, maintainability and reliability.
DoubleCheck can automate the enforcement
of these coding standards. For example,
DoubleCheck has a Green Hills Mode that
adds a range of sensible quality controls to its
bug-finding mission, including several MISRA
compliance checks, enforcement of optional but
important language standards and more.

Metric computations and enforcement of
other coding rules do not incur significant
overhead since DoubleCheck is already
traversing the code tree to find bugs.
DoubleCheck can be configured to generate
a build error that highlights problem code to
keep developers from accidentally submitting
software that violates the coding rules. Using
DoubleCheck as an automated software quality
control saves the time and frustration typically
associated with peer reviews.

PRE-DEBUG ANALYSIS
For its part, Segger Microcontroller also

provides static analysis as part of its IDE,
Embedded Studio (Figure 4). Embedded Studio
is a complete development environment for any
Arm based processor, from legacy Arm7, Arm9
and Arm11 devices to Cortex-A, R and M. It
comes with a system library that is optimized
for embedded systems and GCC and LLVM/Clang
compilers.

Embedded Studio offers various features
and windows that provide you with enough
information to analyze your application
even before debugging. The Memory Usage
Window goes into detail to show you where
the sections—code and data—are placed.
The Code Outline Window presents a clear
structured outline of your source, which eases
navigation through your code. The Source
Navigator feature provides fast access to all
your functions typedefs and variables with
a single click. The Symbol Browser provides
more insight into the compiled application.
You can see how much memory is used by
each symbol and where it will end up in your
target. The Stack Usage Window does a static
stack analysis of your application and shows
the stack use of functions and call paths.

The Code Analyzer in Embedded Studio
goes beyond the typical compiler warnings
of an IDE. A compiler will usually generate
warnings for anything that might break your
application, such as uninitialized variables. To
find further issues which have no immediate
effect but might affect performance—and to

FIGURE 4
A common strategy is to integrate code analysis as part of an IDE. The Embedded Studio IDE does this with
a Code Analyzer feature that goes beyond the typical compiler warnings of an IDE. To increase your code
quality, you can run the IDE’s Code Analyzer tool on your sources and findings will be logged and displayed.

RESOURCES
AdaCore | www.adacore.com

GrammaTech | www.grammatech.com

Green Hills Software | www.ghs.com

IAR Systems | www.iar.com

LDRA | www.ldra.com

Segger Microcontroller | www.segger.com

http://www.adacore.com
http://www.grammatech.com
http://www.ghs.com
http://www.iar.com
http://www.ldra.com
http://www.segger.com

circuitcellar.com 39
TECH SPO

TLIG
HT

increase your code quality—you can run the
Code Analyzer analysis on your sources. All
findings will be shown in the log to easily
navigate to them.

GOING DEEPER FOR IOT
Unlike many of the other vendors covered in

this article, GrammaTech is not an IDE vendor.
Instead, it specializes in code analysis with an
emphasis on deep code analysis. In February,
the company announced the latest release of
its CodeSonar took, version 5.1, with a focus
on the Internet of Things (IoT). The new
version of CodeSonar is designed to provide
IoT developers the capability to support their
multitude of languages and deliver safer and
more secure software products faster.

With CodeSonar, developers can use a
single user interface to find, assess and correct
security vulnerabilities in different programs
using multiple programming languages.
CodeSonar 5.1 is tightly integrated with the
Julia engine from Juliasoft, which provides
high recall, high precision detection of security
vulnerabilities in Java and C#. For developers
of IoT systems, this is critical because IoT
devices and enterprise services are built using
many different programming languages. While
C# or Java are typically the languages used
on the user-interface or enterprise side, the
embedded device itself is built using C/C++,
with Python in the mix for scripting.

CodeSonar’s Qualification Kit is available
as an add-on for software developers that
have requirements to support functional
safety standards such as IEC 61508, DO178B/C
or ISO 26262. The Qualification Kit enables
developers to qualify CodeSonar in their
environment as a preparatory step in the
safety certification process. CodeSonar now
supports the import and export of results in
SARIF (Static Analysis Results Interchange
Format).

A new API Anomaly detection module
is now included CodeSonar, which uses
statistical machine learning to distill checkers
from open source bodies of code. This module
reports reliability and security problems due
to bad use of 3rd party APIs such as the GNU
C Library, OpenSSL, Qt, Glib, GTK, libXML and
others. This module has already been used
to report problems in the Git version control
system, the elinks browser, the Query Object
Framework, Gnome and other projects.

AVOIDING LANGUAGE PITFALLS
Some programming languages,

particularly C and C++, include features that
are prone to causing problems. Figure 5
shows output from LDRA’s static analysis
tools, as it relates to adherence to a MISRA
language subset. MISRA—like other coding

standards—is designed to ensure that
developers avoid using those problem
features. In addition to showing compliance
with coding standards, LDRA static analysis
tools can also help developers in many other
ways such as by ensuring that their code
is clear, easy to maintain and test and not
excessively complex.

While static analysis involves an automatic
“inspection” of the source code, dynamic
analysis involves its compilation and
execution either as a whole, or in part. LDRA’s
unit, integration and system dynamic analysis
tools are used to ensure that the code works
in accordance with project requirements,
and has been exercised adequately. LDRA
requirements traceability tools show that
the code fulfils the requirements of both the
project and any applicable functional safety
standards, and that there is no spurious code.

Like some of the other solutions mentioned
earlier, LDRA’s static analysis, dynamic
analysis and requirements traceability tools
leverage the benefits of being combined into
an integrated tool suite. Some key features
offered by the tool suite such as data coupling
analysis and control coupling analysis draw
upon this integration by leveraging static and
dynamic analysis in tandem.

Data coupling analysis can identify issues
such as mismatches in the sequences of variable
values being set and used, and control coupling
analysis can identify problems including
ambiguities in the intended control flow of the
code. These checks are obligatory for some DO-
178C compliant (aerospace) applications and
although they might not obligatory elsewhere,
that doesn’t make the anomalies any less of a
threat in other safety- or security- critical
systems. Control and data coupling analyses
are particularly significant in the context of
tainted data, for example, because they point to
situations where that data could be inaccurate,
and where there is the very real potential for
bad actors to abuse the situation.

FIGURE 5
This image shows output from LDRA’s
static analysis tools, as it relates to
adherence to a MISRA language subset.

With roots that grew from the ISA-bus era, PC/104 has grown into
an embedded board-level form factor suited to the PCI Express
landscape. For space-constrained applications, PC/104 and all its
follow-on variants continue to meet system design needs.

CIRCUIT CELLAR • MAY 2019 #34640
PR

O
D

U
CT

 F
O

CU
S

Product Focus:

PC/104 Boards

By Jeff Child,
Editor-in-Chief

Legacy That Stacks Up

S ince its creation over 25 ago, PC/104
has enjoyed one of the greatest
success stories in terms of leveraging
technologies from the PC infrastructure.

The well-established PC/104 standard is remarkable
for opening the door to the embedded stackable
computing concept. It began with the ISA bus
and over the years has grown to include the latest
innovations in desktop computing technologies with
PCI and PCI Express. PC/104 evolved through the
era of PCI and PCI Express by spinning off its wider
family of follow on versions including PC/104-Plus,
PCI-104, PCIe/104 and PCI/104-Express.

The PC/104 architecture demonstrates that it’s
possible to successfully implement quickly evolving
PC technology into embedded computing products by
taking advantage of PC market adoption, performance,
scalability and growing silicon availability worldwide.
PC/104 was designed to be simple in design, but
rugged in performance. As a result, PC/104 products
have permeated many industries. A PC/104 board
provides the computing inside Klein’s UUV-3500 high
resolution side scan sonar for unmanned underwater
vehicles. The system is used on OceanServer
Technology’s Iver3 AUV (Figure 1).

A couple years ago the PC/104 Consortium
made a revision to PCI/104-Express and
PCIe/104 that provides an additional option
called “OneBank”. The PCIe/104 OneBank utilizes
a smaller, lower-cost bus connector which is
compatible to the full size PCIe/104 connector
currently in use today. It allows designers to stack
boards using a complimentary format that frees
up PCB real estate for additional components
as well as potential cost savings. The OneBank
connector concept consists of removing two of the
three “banks” of the standard PCIe/104 connector,
resulting in a 52-pin connector as opposed to the
full-size 156-pin connector.

Among the more recent trends in PC/104 has
been roll out of boards that include Mini PCIe
sockets. Mini PCIe lets system designers mix and
match add-on functions, leveraging the emerging
ecosystem of Mini PCIe peripheral cards as they
become available. The product gallery on the next
couple pages shows a mix of board designs
upgraded to sport the latest processor and
memory technologies. These are representative
examples of PC/104, PC/104-Plus and PCI/104-
Express board-level products.

FIGURE 1
PC/104 technology provides the computing inside Klein’s UUV-
3500 high resolution side-scan sonar system. The system is aboard
OceanServer’s Iver3 AUV shown here.

circuitcellar.com 41
PRO

D
U

CT FO
CU

S

PCIe/104 SBC Boasts Extended
Temperature Support

The ADLE3800PC from ADL
Embedded Solutions is based on
Intel’s SoC E3800 Atom product family.
The board is well suited for rugged,
extended temperature intelligent
systems. It has a wide thermal junction
temperature (Tj) ranging from -40°C to
+85°C. Intel’s 7th generation graphics
engine on the processor is capable of
decoding 10 or more streams of 1080p
video and has integrated hardware
acceleration for video decode of H.264,
MVC, VPG8, VC1/WMV9 and others
standards.

• Intel E3800 Series SoC Processors;
Dual/quad

• Up to 8 GB DDR3L-1333;
1.35 V SoDIMM204 socket

• CPU TDP 8 W to 10 W
• Type 2 downward-stacking PCIe/104

V2.01
• 2x Gen2 PCIe x1 lanes
• 2x SATA 3 Gb/s; shared with mSATA

socket
• 2x 10/100/1000 Mbit Ethernet LAN

port
• 2x RS232 COM ports
• 8x USB 2.0 total
• Microsoft Azure certified for loT

ADL Embedded Solutions
www.adl-usa.com

PCI/104-Express Type 1 SBC
Sports 6th Gen Core i3

ADLINK Technology’s CMx-SLx
is a PCI/104-Express Type 1 SBC
featuring the 64-bit Intel 6th gen Core
i3 processor (formerly “Skylake-H”),
supported by the Intel CM236 Chipset.
The CMx-SLx is specifically designed
for customers who need high-level
processing and graphics performance
in a long product life solution. The
CMx-SLx Intel processor supports
Intel Hyper-Threading technology and
8/16 GB of soldered ECC DDR4 memory
at 1866/2133 to achieve optimum
overall performance.

• 6th gen Intel Core processor
(formerly codenamed Skylake)

• Up to 16 GB DDR4-ECC soldered
memory

• 3x DDI channels, 1x micro HDMI,
1x mini DP and 1x 18/24 bit single
channel LVDS

• 4x PCIe x1 and 1x PCIe x 16 (PEG)
• 2x GbE LAN, 2x SATA 6 Gb/s, 1x USB

3.1, 6x USB 2.0, 2x COM, 8x GPIO
• Supports Smart Embedded

Management Agent (SEMA) functions
• Extreme rugged operating

temperature -40°C to +85°C variant

ADLINK Technology
www.adlinktech.com

Atom-based PC/104-Plus SBC
Boasts Low Power Operation

Advantech’s PCM-3365 is a PC/104-
Plus SBC with an Intel Atom E3825/
E3845/ N2930 processor, supporting
DDR3L SDRAM and soldered flash up
to 64 GB. PCM-3365 offers an extend
temperature SKU with E3825/E3845
SoC. The Thermal Design Power (TDP)
rating for the SoC is only 5.7 W for
E3825 (the lowest), and 7.7 W for E3845
(the highest). The card is PC/104-Plus
form factor which means it supports
both ISA and PCI bus through PC/104
and PCI-104 connectors.

• Intel Atom E3825/E3845 and Celeron
N2930, DDR3L-1066/1333 SODIMM
up to 8 GB

• DirectX11, OpenGL3.2, OpenCL1.1,
3 independent displays: VGA+LVDS/
HDMI+LVDS/ DVI+LVDS/ VGA+LVDS

• Support PC/104-Plus expansion
• 1 Gbit Ethernet, 3x COM, SATA,

6x USB2.0, SMBus/I2C, GPIO, full-
size Mini PCIe/full-size mSATA

• Supports SUSIAccess and Embedded
Software APIs

Advantech
www.advantech.com

http://www.adl-usa.com
http://www.adlinktech.com
http://www.advantech.com

CIRCUIT CELLAR • MAY 2019 #34642
PR

O
D

U
CT

 F
O

CU
S

PCI/104-Express SBC Marries
1.9 GHz Atom and 32 GB SSD

The CML24BT from RTD Embedded
Technologies is an advanced PC/104
single board computer with a PCI/104-
Express stackable bus structure. This
Intel Atom based CPU is exceptionally
suited for intelligent systems requiring
low power consumption in harsh
thermal conditions. The surface-mount
Type 2 PCI Express connectors enable
users to stack multiple peripheral
modules above and below the CPU.

• PC/104 form factor, PCI/104-Express
stackable bus structure, PCIe Type 2
expansion buses

• Intel Atom E3800 Series Processor;
1.33 GHz, 1.46 GHz and 1.91 GHz
options

• Single-Channel DDR3 SDRAM
surface-mounted with ECC

• Surface-mounted industrial-grade
SATA 32 GB flash drive

• 4 x1 PCIe Links; 1 SATA Port; 4 Serial
Ports (RS-232/422/485); 7 USB; Gbit
Ethernet; DisplayPort, DVI and HDMI

• -40°C to +85°C standard operating
temperature

RTD Embedded Technologies
www.rtd.com

PC/104 Boards

1 GHz Vortex86DX3 PC/104
Board has On-board Data Acq

Diamond Systems’ HELIX PC/104
SBC is based on the DMP Vortex86DX3
system-on-chip (SoC) processor. It
offers high feature density in a compact
size and providing optional integrated
high-quality data acquisition circuitry,
PCIe MiniCard I/O expansion and
rugged construction. Two standard
Helix models are available off-the-shelf;
one aimed low-cost basic applications
and the other targeting data acquisition
applications.

• 1 GHz dual core DMP Vortex86DX3
• Up to 2 GB of on-board 64-bit DDR3

SDRAM
• 24-bit LVDS LCD and VGA CRT display

support; 1920 x 1080 maximum
resolution.

• A broad range of system I/O,
including 4 multiprotocol serial
ports, 6 USB ports, 2 10/100/1000
Ethernet ports, and 1 SATA port

• PC/104 (ISA) and PCIe MiniCard /
mSATA sockets

• Optional data acquisition circuitry:
16 16-bit A/D channels, 4 16-bit D/A
channels, and 11 programmable
digital I/O lines

Diamond Systems
www.diamondsystems.com

PCI/104-Express Card
Provides 20- or 8-Port Gbit
Ethernet Switch

The Parvus SWI-22-10 from Curtiss
Wright Defense Solutions is a rugged
Gbit Ethernet switch card optimized
for SWaP sensitive embedded military
and civilian computer network systems
applications. Featuring advanced
Layer 2 networking features with
from 8- to 20-ports of 10/100/1000
Mbps connectivity, an integrated
management processor, low power
consumption, and robust carrier
Ethernet software features, the SWI-
22-10 enables reliable LAN switching
across -40°C to +85°C temperature
ranges.

• Rugged embedded Gigabit Ethernet
switch

• 20 port and 8 port versions
• Layer 2 fully managed network

switch with Layer 3 static routing
capability

• Low-power, Energy Efficient Ethernet
(802.az) compliant

• IEEE-1588v2 Precision Timing
Protocol (PTP) support

• Qual tested to MIL-STD-810 for 40°C
to +85°C and high shock/vibration

Curtiss-Wright Defense
Solutions

www.curtisswrightds.com

http://www.rtd.com
http://www.diamondsystems.com
http://www.curtisswrightds.com

circuitcellar.com 43
PRO

D
U

CT FO
CU

S

Low Power PC/104-Plus SBC
has Rich I/O

Winsystems’ PPM-C412 is a PC/104-
Plus form factor SBC featuring the
latest generation DMP Vortex86DX3
SoC processor. Its small size, low
power, rugged design and extended
operational temperature make it well
suited for industrial IoT applications
and embedded systems in the industrial
control, transportation, Mil/COTS and
energy markets.

• Low Power 1 GHz DMP Vortex86DX3
processor (dual core)

• PC/104-Plus form factor
• 2 GB DDR3-LV System RAM
• 4x USB 2.0 ports, 4x serial ports,

Dual Ethernet
• CompactFlash, SATA
• Dual video output (VGA, LVDS with

digital backlight dimmer)
• -40°C to +85°C temperature

operation

Winsystems
www.winsystems.com

PC/104-Plus SBC Sports Dual
Core Bay Trail SoC

The SandCat from VersaLogic
is a low-power dual-core SBC with
an industry-standard PC/104-Plus
expansion interface. This combination
enables easy upgrades to existing
PC/104 systems to Intel’s long-life Bay
Trail processor, while preserving plug-
in expansion to existing specialty I/O
boards. The board also contains on-
board I/O interfaces, including USB, a
mini PCIe expansion socket and digital
I/O ports.

• 1.33 GHz Intel Bay Trail Processor,
dual core

• Integrated Intel Gen 7 graphics core
supports DirectX 11, OpenGL 4, and
H.264, MPEG-2 encoding/decoding.
Mini DisplayPort video output

• Up to 8 GB DDR3L DRAM
• Ethernet interface,

2x RS-232/422/485 serial ports;
4x USB 2.0 ports, three 8254 timer/
counters, I2C and audio support

• Industry-standard PC/104 and
PC/104-Plus expansion

• -40°C to +85°C operation
• MIL-STD-202G qualified for high

shock and vibration

VersaLogic
www.versalogic.com

PCIe/104 OneBank SBC with
FPGA and Two Dual-DSPs

The SMT6657 DSP+FPGA module
from Sundance Multiprocessor
Technology is a reliable and flexible
platform for DSP applications requiring
high-performance integer and floating-
point computation. It is applicable
to both symmetric multiprocessing
applications in which the computational
load is shared by the two DSPs and
asymmetric applications where one of
the DSPs is responsible for hard real-
time processing and the other acts as
a supervisor.

• PCIe/104 OneBank SBC
• Two TI dual-core 1.24 GHz

TMS320C6657 floating-point DSPs
• Xilinx Kintex-7 UltraScale KU35 FPGA
• Serial RapidIO and Hyperlink

connectivity between DSPs
• Accepts one VITA57.1 FMC-LPC

Mezzanine Card data acq add-on
module

• Additional stack-down Serial RapidIO
connector to SMT-Carrier-GSI

• Front panel I/O connector carrying
Gbit Ethernet and flexible FPGA I/O

Sundance Multiprocessor
Technology

www.sundance.com

http://www.winsystems.com
http://www.versalogic.com
http://www.sundance.com

CIRCUIT CELLAR • MAY 2019 #34644
CO

LU
M

NS

By
Colin O’Flynn

Embedded System Essentials

Attacking USB Gear with EMFI
Pitching a Glitch

I n past articles I’ve taken you through
various theoretical attacks on embedded
systems, demonstrated various attacks
in standard systems and summarized

recent work from relevant conferences.
This article is something new. I’m going to
be presenting a new attack. While it’s been
disclosed to the vendor—and should have
been fixed by the time you read this—you are
getting as close to the bleeding edge of attack
information as I can present in this article.

Our victim will be a Trezor bitcoin wallet.

This little device can be used to store Bitcoins,
which ultimately means a method of securely
storing a private key used for cryptographic
operations. We don’t need to dig into details
of the wallet operation, but a critical piece
of information to understand is the idea of a
“recovery seed”. This recovery seed is a series
of words which encodes a recovery key, and
knowing that recovery seed is sufficient to
recover the secret key.

This means someone who steals only that
recovery seed—without further access to the
wallet—could access funds stored on the wallet
itself. It goes without saying that an attack
finding that key would be rather detrimental
to our experience using the wallet.

It should be noted that there has been
some other work that inspired this attack.
The “wallet.fail” presentation at the Chaos
Communication Congress (CCC) by Dmitry
Nedospasov, Josh Datko and Thomas Roth
demonstrated how one could break the
STMicroelectronics (ST) STM32F2 security
protection, allowing the dumping of its SRAM
contents. Instead, I’m going to be showing you
how to directly dump flash memory where the
seed is stored. So, it’s a different attack but
with similar end results.

I’m going to be using electromagnetic
fault injection (EMFI), enabling us to actually
perform the attack without even removing
the enclosure. This means someone can
perform the attack without leaving a trace of

Many products use USB, but have you ever considered there may be a
critical security vulnerability lurking in your USB stack? In this article,
Colin walks you through an example product that could be broken using
electromagnetic fault injection (EMFI) to perform this attack without
even removing the device enclosure.

FIGURE 1
The Trezor wallet is shown here with the enclosure removed.

circuitcellar.com 45
CO

LU
M

NS

modifying the wallet, no matter how carefully
you inspect it. Before we get to the real
attack, we need to cover some background.

POWERFUL EMFI
EMFI is a powerful method of performing

fault injection attacks. Typically, we use some
sort of pulse generator to drive an inductor
and the inductor will generate a strong
magnetic field. If you bring this magnetic field
near a chip, this will induce voltages inside
metal on the chip. The result is an ability
to manipulate internal voltage levels and

insert ringing onto the power bus, causing
the device to misbehave. These misbehaving
activities are what we refer to as faults or
glitches. Such faults or glitches could corrupt
data (registers, SRAM) or corrupt program
flow.

The Trezor wallet is open-source, which
makes this attack a wonderful demonstration
to teach you about EMFI and fault injection.
You can freely modify the code, program
old versions before they patched the bug,
and generally perform other useful work to
demonstrate this attack.

LISTING 1
memory.h showing FLASH_META_
START occurs after the bootloader
and before the application

#define FLASH_BOOT_START (FLASH_ORIGIN)
#define FLASH_BOOT_LEN (0x8000)

#define FLASH_META_START (FLASH_BOOT_START + FLASH_BOOT_LEN)
#define FLASH_META_LEN (0x8000)

#define FLASH_APP_START (FLASH_META_START + FLASH_META_LEN)

LISTING 2
The function winusb_control_vendor_request from winusb.c responds to requests for various information related to WinUSB over the control USB endpoint. Note the call
“MIN(*len, guid.header.dwLength)” which decides on the length of the returned response.

static int winusb_control_vendor_request(usbd_device *usbd_dev,
 struct usb_setup_data *req,
 uint8_t **buf, uint16_t *len,
 usbd_control_complete_callback* complete) {
 (void)complete;
 (void)usbd_dev;

 if (req->bRequest != WINUSB_MS_VENDOR_CODE) {
 return USBD_REQ_NEXT_CALLBACK;
 }

 int status = USBD_REQ_NOTSUPP;
 if (((req->bmRequestType & USB_REQ_TYPE_RECIPIENT) == USB_REQ_TYPE_DEVICE) &&
 (req->wIndex == WINUSB_REQ_GET_COMPATIBLE_ID_FEATURE_DESCRIPTOR)) {
 buf = (uint8_t)(&winusb_wcid);
 *len = MIN(*len, winusb_wcid.header.dwLength);
 status = USBD_REQ_HANDLED;

 } else if (((req->bmRequestType & USB_REQ_TYPE_RECIPIENT) == USB_REQ_TYPE_INTERFACE) &&
 (req->wIndex == WINUSB_REQ_GET_EXTENDED_PROPERTIES_OS_FEATURE_DESCRIPTOR) &&
 (usb_descriptor_index(req->wValue) == winusb_wcid.functions[0].bInterfaceNumber))
{

 buf = (uint8_t)(&guid);
 *len = MIN(*len, guid.header.dwLength);
 status = USBD_REQ_HANDLED;

 } else {
 status = USBD_REQ_NOTSUPP;
 }

 return status;
}

CIRCUIT CELLAR • MAY 2019 #34646
CO

LU
M

NS

You can see the sources for Trezor on
github. See the Circuit Cellar article materials
webpage for the specific github link. If you
want to follow this article, be sure to select the
“v1.7.3” tag on GitHub. These flaws are fixed
in a firmware release that will be available by
the time you read this article, so you should
look at the older (vulnerable) code to better
understand the exact attack. The Trezor is
based on ST’s STM32F205 and you can see
with Trezor sans enclosure in Figure 1. Note
that the STM32F205 is just below the surface
of the enclosure—a feature we will use to
improve our attack.

The actual sensitive recovery seed is
stored in flash memory. It’s located just after
the bootloader, as shown in Listing 1. The
bootloader can be entered by holding down
the two buttons on the front of the Trezor,
and allows a firmware update to be loaded
over USB. Since a malicious firmware update
could simply read out this flash location, the
bootloader will verify that various signatures
are present on a firmware update to prevent
such an attack. Loading unverified firmware
would be one method of attack, but isn’t what
we are going to use. The problem with all of
these attacks is that the design of the Trezor
erases the flash memory before loading and
validating the new file, storing the sensitive
metadata in SRAM during this process. The
wallet.fail disclosure actually attacked this,
since it’s possible to glitch the STM32 to go
from code read protection level RDP2 (which

completely disables JTAG) to level RDP1 (which
enables JTAG to read from the SRAM, but not
from the code).

If our attack corrupted the SRAM—
or needed a power cycle to recover from
error states—performing that erase is very
dangerous. The wallet.fail attack was able to
recover the SRAM, but the attack method we
will use could corrupt the SRAM. That means
any mistake would permanently destroy the
recovery seed. Instead, we are going to try
and directly read out the flash memory. This
is much safer since we never perform an
erase command, meaning the data is safely
stored in memory waiting for us to extract it.

USB READ REQUEST
Because the bootloader contains USB, it

also contains very standard USB processing
code. Part of this is shown in Listing 2, which
comes from the file winusb.c. I’ve chosen
this particular request because there are
actually two data structures present that are
returned by this code—one is stored in FLASH
and one is stored in SRAM. The USB request
being processed first checks some information
sent about the request. It looks for a matching
bRequest, bmRequestType and wIndex
which are all attributes of a USB request. Finally,
the USB request itself contains a wLength
field, which is how much data the computer is
requesting be sent back. I can freely request
up to 0xFFFF bytes of data—and that is exactly
what I will do. But, as you can see, the code
does a MIN() operation to limit the length of
the actual data sent back to be the minimum
of either the requested length or the size of the
descriptor I will send back.

So, what happens if that check was
wrong? While it would let me send back the
descriptor, along with all the 64K (0xFFFF)
bytes of data that lies after the descriptor
itself. This includes our precious metadata—
the USB stack simply sends back the block of
data as the computer requested. The entire
security of the system depends on one simple
length check!

If you’ve read a few of my articles, you
might guess I’ve got a plan. We will be using
fault injection to bypass the check that
depends on a single instruction. Before we
dive into details of performing the actual
fault, let’s do a bit of “sanity check” on my
claims. You can use these sanity checks in
your own code to help understand the impact
of similar vulnerabilities.

DISASSEMBLING CODE
The first sanity check is to confirm that

a simple fault model can cause our intended
operation. This can be trivially confirmed by
inspecting a disassembly of the code, done

FIGURE 2
IDA disassembly of the function in question ultimately shows a single assembly instruction separates your
sensitive data from being politely sent back on the USB port.

circuitcellar.com 47
CO

LU
M

NS

with IDA in Figure 2. Note in particular that
due to the resulting code flow, we need to
skip only a single instruction to accomplish
our goal of having the user-supplied length
field be accepted.

The second sanity check will be to confirm
there is not some higher-layer protection.
For example, maybe the USB stack does not
actually accept such a large response given
that there’s no actual need for this? This is
a little harder to prove by simple inspection,
but the open-source nature of the Trezor
makes this possible. What we can do is modify
the code to simply comment out the security
check. If you didn’t want to recompile the
code, but did have debugger access, you

could also use an attached debugger. Use the
debugger to set a breakpoint before the new
value is copied over and toggle the status of
the flag, or manipulate the program counter
to bypass the instruction.

Validating this sanity check will be done in
the same way as the actual attack. This will
use the code from Listing 2. This code sends
the WinUSB control request which should
return with the guid structure. It sends a
length request of 0xFFFF for the request,
which should be paired down to 146 bytes
by the code. As you can see from Figure 3,
when I do not modify the instruction, the
USB request results in the expected-size
response. Modifying the instruction (or using

FIGURE 3
Using a debugger to step over the single check (or recompiling the code) shows that large chunks of memory will be sent back on request.

LOOKING TO

Be a part of one of the
top Electrical Engineering
programs in country
and experience the
Bearcat Promise!

Fall registration is
open nowonline.uc.edu

ADVANCE
YOUR
CAREER?

https://online.uc.edu

CIRCUIT CELLAR • MAY 2019 #34648
CO

LU
M

NS

a debugger to manually clear the comparison
flag) to bypass this check results in a full-size
response. This demonstrates that there is
no “hidden feature” that will fundamentally
prevent the attack from working. With that
knowledge, let’s move onto getting this thing
talking to us!

USB TRIGGERING AND TIMING
Before we can talk about how we insert

the glitch, we need to know where to insert the
glitch. We do know the exact code that triggers
the glitch, and we do know the command we
sent over USB. But we need to get better than
that to introduce the exact instruction. In
my case, since I have access to the software
I’m going to “cheat” during my first test and
measure the actual execution time. If I didn’t
have this capability, I would end up with a
much slower sweep of possible locations.

The first thing I’ll do is get a more solid
trigger on the USB data itself. The entire area
of using USB for glitch triggering was actually
started by Micah Scott, who demonstrated
voltage glitching to dump the firmware from
a drawing tablet and developed a simple
module to perform real-time glitching (which
she called the FaceWhisperer). Instead I’m

going to use a Total Phase Beagle 480, which
can perform triggering based on physical data
going over the USB line. The setup for that is
shown in Figure 4. The Total Phase Beagle 480
also has a beautiful sniffer interface, so I can
sniff the traffic and better understand what
malformed packets are coming back. This
capability is very useful since I can see, for
example, the exact portion of the USB request
being interrupted/corrupted. That might give
me some hints about how far into the code
the program has executed.

Besides FaceWhisperer and the Beagle
480, there are other methods of triggering
the glitch. Great Scott Gadgets offers its
GreatFET device that has a module called
GlitchKit. GlitchKit provides similar triggering
capabilities, but generates the requests from
the GreatFET itself. As of this writing the
GlitchKit has more limited response capability,
so I wasn’t able to read the entire response
back. Finally, you could look into a simple
circuit using a USB PHY—such as Microchip
Technology’s USB3500—and an FPGA. Watch
for the future open-source PhyWhisperer-USB
from NewAE Technology which will give you
that capability.

Once we have a trigger based on the
USB request going “over the wire”, we can
insert a trigger by setting an I/O pin high
when the sensitive code runs. We use this for
characterizing the system, since we can use
an oscilloscope to measure the time from the
USB packet going over the wire to the sensitive
code operating. In this case, the time ends up
being around 4.2 µs to 5.5 µs. It’s not perfect
timing, because there appears to be some
jitter due to the USB packets being processed
by a queue. We have just learned that, when
performing the fault injection demo, we
should expect that we do not achieve perfect
reliability.

GLITCHING THROUGH THE CASE
For inserting the glitch, I’m using a

setup as shown in Figure 5. This includes
a ChipSHOUTER EMFI platform, a manual
XY table for positioning the coil, the Trezor
target, the Beagle 480 to generate a trigger,
a ChipWhisperer to generate the timing offset
and a Yepkit USB hub which provides a simple
API to power cycle attached devices. The
power cycle capability is useful as we will be
very frequently crashing the target device.

A very simple script (shown in Listing 3)
enables me to power-cycle the device and
issue the WinUSB request. The physical “jig”
that holds the Trezor actually holds the two
power buttons down, ensuring it always
enters bootloader mode on start-up. We want
to use the bootloader since the bootloader
is at a lower address then the metadata,

FIGURE 4
The USB protocol analyzer is setup to
trigger on a specific packet related to
our request.

Additional materials from the author are available at:
www.circuitcellar.com/article-materials

RESOURCES
Great Scott Gadgets | www.greatscottgadgets.com
Microchip Technology | www.microchip.com
NewAE Technology | www.newae.com
STMicroelectronics | www.st.com
Total Phase | www.totalphase.com
Trezor | www.trezor.io
Yepkit | www.yepkit.com

http://www.circuitcellar.com/article-materials
http://www.greatscottgadgets.com
http://www.microchip.com
http://www.st.com
http://www.totalphase.com
http://www.trezor.io
http://www.yepkit.com
www.newae.com

circuitcellar.com 49
CO

LU
M

NSso dumping any memory from within the
bootloader is more useful when it comes time
to recover the metadata.

The success rate is low—less than 0.1%
of glitches are successful. We can however
achieve a successful glitch within about 1-2
hours on average, making it a relatively
useful attack in practice. A successful glitch
is one where the USB request comes through
with the full length of data, since I was able
to bypass the length check. Finding the exact
location takes some experimentation—you
will get many system crashes due to memory
errors, hard faults and resets. But if you are
using a hardware USB analyzer such as the
Beagle 480 you can see where these errors
are happening, which helps you understand
the glitch timing. If we didn’t have the inside
knowledge of the I/O pin we could toggle, this
would be very valuable.

Figure 6 shows such an example. Note the
USB transaction when performed correctly
has a few steps. The upper part of that figure
shows a number of correct 146-byte control
transfers. The first part is the SETUP phase.
The Trezor has ACK’d the SETUP packet, but
then never sends the follow-up data. The
Trezor entered an infinite loop as it jumped
to one of the various interrupt handlers for
error detection. As the location of the fault is
shifted along in time, various effects on the
USB traffic are observed: moving the glitch
earlier often prevents the ACK of the setup
packet, moving the glitch later allows the first
packet of follow-up data to be sent but not
the second, and moving the glitch much later

allows the complete USB transaction but then
crashes the device. This knowledge helps me
understand which part of the USB code the
fault is being inserted into, even if that fault
is still a sledgehammer causing a device reset
instead of an intended single instruction skip.

The final step of fine-tuning the fault to
get a useful effect again is helped with our
protocol analyzer. I physically moved the coil
around over the surface, along with adjusting
the glitch width and power level. It was
possible—from the LCD screen—to visually
see when the device entered an error handler
or seemed to continue unaffected. Finding a
location that did not always enter an error
is typically a useful starting point, and from
there I searched through various parameters
until a successful glitch occurred. Again, note
that due to the deterministic nature of the
glitch timing, you must be careful to search
sufficiently long in possible candidate glitch
settings.

ABOUT THE AUTHOR
Colin O’Flynn (colin@oflynn.com) has been
building and breaking electronic devices for
many years. He is an assistant professor
at Dalhousie University, and also CTO of
NewE Technology both based in Halifax, NS,
Canada. Some of his work is posted on his
website at www.colinoflynn.com.

FIGURE 5
Complete setup of the EMFI attack
including Beagle 480 for trigger
generation, ChipWhisperer for timing
modifications, ChipSHOUTER for EMFI
insertion and a USB hub to power
cycle the target.

mailto:colin@oflynn.com
http://www.colinoflynn.com

CIRCUIT CELLAR • MAY 2019 #34650
CO

LU
M

NS

import time
import time
import usb
import usb.core
import chipwhisperer as cw

def get_winusb(dev, scope):
 “””WinUSB Request is most useful for glitch attack”””
 scope.io.glitch_lp = True #Enable glitch (actual trigger comes from Total Phase USB Analyzer)
 scope.arm()
 resp = dev.ctrl_transfer(int(‘11000001’, 2), ord(‘!’), 0x0, 0x05, 0xFFFF, timeout=1)
 resp = list(resp)
 scope.io.glitch_lp = False #Disable glitch
 return resp

def reset_trezor():
 “””Requires a YK USB Hub - has power control of each port”””
 subprocess.check_output([r’ykushcmd.exe’,’-d’, ‘1’])
 time.sleep(0.5)
 subprocess.check_output([r’ykushcmd.exe’, ‘-u’, ‘1’])
 time.sleep(1)

ChipWhisperer used for trigger delay only
scope = cw.scope()
target = cw.target(scope)

Values found from sweeping around
scope.clock.clkgen_freq = 147E6
scope.adc.basic_mode = “rising_edge”
scope.adc.samples = 500
scope.glitch.clk_src = “clkgen”
scope.glitch.output = “enable_only”
scope.glitch.trigger_src = “ext_single”
scope.glitch.repeat = 1
Original extclock was 100MHz, so we scale offset
relative to our actual clock to maintain 4.4uS
scope.glitch.ext_offset = 440
scope.glitch.ext_offset = (scope.glitch.ext_offset / 100.0E6) * scope.clock.clkgen_freq

dev = None

#Loop until we get too large a response
while True:
 if dev is None:
 dev = usb.core.find(idProduct=0x53c0)
 dev.set_configuration()

 try:
 #Perform USB request - glitch trigger happens via
 # TotalPhase Beagle 480
 res = get_winusb(dev, scope)
 if(len(res)) > 146:
 print(“Data Over-Run Detected - DONE”)
 break
 except usb.USBError:
 reset_trezor()
 res = None
 dev = None
f = open(“outputresults.bin”, “wb”)
f.write(bytearray(res))
f.close()

LISTING 3
Shown here is a complete attack script in Python, which sends the USB requests while inserting faults.

circuitcellar.com 51
CO

LU
M

NS

PREVENTING THE ATTACK
While it’s all good to cause the attack,

how would you prevent against it? The first
thing is to evaluate if your USB stack can
be modified to prevent sending such large
responses. If you never need to perform
transfers of more than say 256 bytes, why
not use an 8-bit number internally, or mask
off the upper bits? Such a mask can be
applied at multiple locations to complicate
glitch attacks.

The second easy fix is to take advantage
of memory protection, if your specific device
supports it. This fault saw me slide from the
USB descriptors in flash memory and read
beyond them into sensitive metadata. But if
we had bounded the sensitive metadata with
invalid memory segments, our “slide” would
have caused an exception due to the memory
access error. When storing sensitive data in
memory—either flash or SRAM—, bounding

it with traps can be useful to catch any sort
of attack that reads beyond an array. More
generic countermeasures to fault attacks can
also be applied, but I wanted to concentrate
on specific countermeasures relevant to the
memory ready attack shown here.

USE THE (MAGNETIC) FORCE
I hope you enjoyed this case study on

electromagnetic fault injection. I’ve taken
you through how EMFI could be used to
attack a real product, with an exploit that
has recently been disclosed to the Trezor
team. Many other USB stacks use an almost
identical code flow however, so I suspect
you’ll find this vulnerability could exist in
your own system. Ultimately it depends on
the use-case, but anything where sensitive
data is stored in standard internal memory
needs great care to keep that data inside
your device.

FIGURE 6
A physical USB analyzer (compared
to attempting to use a software-only
solution) is critical to see mangled
packets on the bus, which lets us
understand how far into requests the
target got before freezing.

Discover Unknown
PCB Design Issues with DRC

Learn More in this White Paper

www.circuitcellar.com/mentor

Design habits that expedite design
completion, improve design quality, and
enhance productivity are instrumental to

highly efficient PCB design.

Learn what you can do to succeed!
Learn More in th is FREE White Paper

www.circuitcellar.com/mentor

7 Habits of Highly
Efficient PCB Designers

mailto:sales @ezpcb.com
www.ezpcb.com
www.circuitcellar.com/mentor

CIRCUIT CELLAR • MAY 2019 #34652
CO

LU
M

NS

G reat efforts are expended by
numerous R&D laboratories on
development of new sensors
capable of detection of just

about any physical aspect of our world. After
all, sensors are what give systems their
intelligence. An important physical quantity
whose measurement we have not yet discussed
in the past is pressure. In this article I’ll look at
sensors capable of providing electrical output
signal so that it can become a part of an
electronic monitoring or control system.

By definition a pressure sensor is a
transducer whose purpose is to measure
pressure of gases or liquids. A gas or a liquid
pressure is equal to the force required to
stop that gas or fluid from expanding. It is
expressed as a force per unit area.

PHYSICS AND UNITS
Let’s start with the fundamental physics.

The SI (metric) system designates pressure
as a derived unit called Pascal (Pa), named
after the French mathematician and physicist
Blaise Pascal (1623–1662). The pressure of
1 Pa represents the force of one Newton (N)
exerted per one square meter (m2) area. In
the metric system, Pa, as the measure of gas
or liquid pressure, is frequently substituted
by units called atmosphere (atm) or a Torr—
where 1 atm = 101,325 Pa = 760 Torr. In the
industry 1 atm is often considered to be a
reference pressure.

A bar is a metric unit of pressure equaling
to exactly 100,000 Pa. That said, bar hasn’t
been approved by the International System of
Units for use as a bona fide metric unit. A bar
is slightly less than the average atmospheric
pressure on Earth at sea level. A common
unit of pressure used in North America is
PSI, which stands for “pounds per square
inch” and is equivalent to 6.894 × 103 Pa in
SI units. In North America you always can
encounter a unit referred to as PSIA, which
represents the absolute pressure in pounds
per square inch relative to vacuum—as
opposed to the atmospheric pressure at sea
level, which is 14.7 PSIA = 1 bar. Similarly,
the PSIG (PSI gauge) designation indicates
that the atmospheric pressure is included in
the measurement.

Torr is a unit of pressure named in honor
of the 17th century Italian mathematician
and physicist Evangelista Torricelli (1608
–1647). Torricelli is the inventor of the
Mercury (Hydrargyrum - Hg) barometer. The
principle of the Torricelli barometer is shown
in Figure 1. Atmospheric pressure acting
on a pool of Mercury in a vessel causes the
Mercury to rise inside an evacuated tube to
a height corresponding to the atmospheric
pressure. This is typically 760 mm at the sea
level but it also depends on the temperature
and altitude. In fact, barometric pressure has
been commonly used to establish altitude.
Typically, an altitude of an object is:

The Consummate Engineer

Pressure Sensors

Over the years, George has done articles examining numerous types of sensors
that measure various physical aspects of our world. But one measurement
type he’s not yet discussed in the past is pressure. Here, George looks at
pressure sensors in the context of using them in an electronic monitoring or
control system. He looks at the math, physics and technology associated with
pressure sensors.

By
George Novacek

Terminologies and Technologies

circuitcellar.com 53
CO

LU
M

NS

h
P

P
ref

= −

 ×1 145366 45

0 190284.

. ft.

This measurement is quite accurate
up to about 11,000 m (36,090’). Altitude
measurement even with an inexpensive
barometric sensor [1] can achieve resolution
of about 0.3 m (approximately 1’)—better than
most GPS systems. In general, however, just
remember that “normal” barometric pressure
is around 760 mm Hg, that is 760 Torr or
1 atm.

I have fond memories of my high school
days when building the Torricelli barometer
was the first experiment we conducted in the
physics class. Those were the “good old days”
when the teacher didn’t mind us splashing
our bare hands in Mercury in an open vat.
Fortunately, those days are over—but the
barometer worked and I never forgot how
and why.

A millimeter of mercury is also used as
a manometric unit of pressure. Most of us
are familiar with blood pressure monitors,
although most modern instruments use
electronic transducers rather than a column
of Mercury. The unit was originally defined
as the required pressure to raise a column
of Mercury by 1 mm, but the definition has
been changed to exactly 133.322387415 Pa.
It is denoted by the symbol “mmHg.” As one
might expect, the inch-of-Mercury pressure is
also used and can still be found in aviation
and some industries in North America.

PRESSURE-BASED ELECTRONICS
Confused? Even though we’ve been talking

the same physical quantity, numerous units
and methods of measurement have been used
over the time based on history, convenience
or application. And there are more—we just
don’t have the space to discuss them all here.
If you are interested, do your research. There
are many articles on the Internet explaining
different pressure gauges, units, their
conversion and practical use.

All those details are secondary for the
engineer faced with a task of designing a
pressure-based electronic system. The sensor
type, its specification and electrical interface
should—and usually is—selected by the
system designer and included in the system
specification. The circuit designer just has to
make sure the specification and especially the
units of pressure are correct.

Pressure sensors, whether we call them
transducers, gauges, indicators or something
else have many uses in automatic control.
Besides direct measurement and control

of pressure their outputs can be used to
determine altitude, tire pressure, liquid level,
fluid or gas flow speed and many others.

Two subcategories I should mention at
this time are similar to ones I mentioned with
many other transducers. Many transducers
can be divided between sensors and switches.
Sensors provide continuous analog or digital
signal in some defined way proportional to the
magnitude of the measured quantity. Switches,
on the other hand, generate a discrete on/off
signal when a specific magnitude threshold
has been reached. Since the switches are
primarily just sensors equipped with some
kind of a threshold detecting logic, we can
concentrate on sensors only.

When selecting a pressure sensor, you
need to consider a number of characteristics.
Pressure range, operating temperature, the
type of pressure, liquid or gas, size, cost,
output signal and others are among the
most obvious ones. Do we need an absolute

FIGURE 1
The principle of the Torricelli’s
barometer

ABOUT THE AUTHOR
George Novacek was a retired president of an
aerospace company. He was a professional
eng ineer w i th degrees in Automat ion
and Cybernet ics. George’s d issertat ion
project was a design of a portable ECG
(electrocardiograph) with wireless interface.
George has contributed articles to Circuit
Cellar since 1999, penning more than 120
articles over the years.

CIRCUIT CELLAR • MAY 2019 #34654
CO

LU
M

NS

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
Reference [1] through [4] as marked in the article can be found there.

RESOURCES

Adafruit | www.adafruit.com
NXP Semiconductors | www.nxp.com
Sparkfun | www.sparkfun.com

or relative measurement? Absolute sensors
provide pressure measurement with respect
to perfect vacuum. Relative pressure gauges
measure pressure with respect to the
existing atmospheric pressure. The relative
measurement can be both above or below
the atmospheric pressure. In the latter case
we usually call such transducers vacuum
sensors. If you need to measure differential
pressure—such as occurring across pumps,
blowers, filters and so forth—differential
pressure transducers will do the job.

PRESSURE TRANSDUCERS
Pressure transducers can be divided

into two basic categories. Force collector
and special. Force collector transducers use
some mechanical arrangement to convert
the pressure acting on a known area into
a movement, displacement, strain or a
distortion of a mechanical component which
can be subsequently converted into an
electrical signal. Typical examples would be
diaphragms, pistons, bourdon tubes, bellows

and others. Various technologies are used
to convert the results of the mechanical
movement or strain into electrical, usually
analog signal, which can be and quite
often is these days, digitized. Special type
transducers are, as their name suggests,
not very common. Some rely on resonant
frequency changing with pressure, thermal
conductivity, ionization stream and so forth.

Strain or displacement conversion
methods are similar to the ones I described
in my previous articles on transducers, such
as “Accelerometers Revisited” (Circuit Cellar
334, May 2018) [2]. Piezoresistive strain
gauge is a popular technology, commonly
employed for general purpose measurement.
However, it is sensitive to temperature and,
therefore requires appropriate compensation.
Consequently, piezoresistive transducers such
as NXP Semiconductors’ MPL115A2 must
contain a temperature sensor as well.

Internally, the strain gauge is usually
a part of a Wheatstone bridge (Figure 2).
Its resistance increases with the increasing
strain. Capacitive sensors rely on a diaphragm
being a part of a variable capacitor. Here, the
capacitance usually decreases with the rising
pressure. Many other methods of displacement
or distortion detection are used—some of which
I described in my previous articles. Among
these are LVDT (linear variable differential
transformer), inductance change Hall Effect
and others. Imagination has no limits.
Piezoelectric effect—due to its very nature—
makes piezoelectric sensors unsuitable for
measurement of static forces and relegates
those transducers to dynamic measurements.

In practical terms, it is easy to experiment
with pressure measurement. Various pressure
sensors on break-out boards can be purchased
from vendors such as Adafruit [1], SparkFun
[3] and others for literally just a few dollars.
Most break-out boards, such as the MPL115A2
I²C Barometric Pressure/Temperature Sensor
Board in Figure 3 are available with I2C
interface and can be readily used with
platforms such as Arduino. Order one of these
break-out boards and have fun!

FIGURE 2
Principle of MPL115A2 operation

FIGURE 3
Barometric pressure/temperature
sensor board with NXP MPL115A2
transducer and I2C interface

http://www.circuitcellar.com/article-materials
http://www.adafruit.com
http://www.nxp.com
http://www.sparkfun.com

The industry’s largest event dedicated to

Sensors, Connectivity,
And Systems.
Sensors Expo & Conference is where you’ll find the best of the best in the
sensors industry, along with new and innovative ways to jump start your
sensor solutions. Be a part of the ONLY event where technologists find
opportunities and engineers innovate solutions. This year’s event features
three exciting days of all-new Pre-Conference Symposia, Conference
Technical Sessions across 10 updated tracks, visionary Keynote Presentations,
Networking Events, Exhibits, and much more!

 June 25-27

2019
MCENERY CONVENTION CENTER / SAN JOSE, CA

INDUSTRY SPONSOR CO-LOCATED WITHOFFICIAL PUBLICATION

www.sensorsexpo.com #Sensors19

7,000+ ATTENDEES // 330+ EXHIBITORS // 100+ SPEAKERS //
65+ CONFERENCE TECHNICAL SESSIONS // 5 PRE-CONFERENCE SYMPOSIA // 2 KEYNOTES

Register today!
Use code CC100 for $100 off Conference Passes

or a FREE Expo Hall Pass!

http://www.sensorsexpo.com

CIRCUIT CELLAR • MAY 2019 #34656
CO

LU
M

NS

Picking Up Mixed Signals

Fancy Filtering
with the Teensy 3.6

S ignal filtering can be done either
with analog circuitry or digitally
using a microcontroller (MCU)
coupled with analog-to-digital and

digital-to-analog converters. The strength
of analog filters is that they can cover wide
frequency ranges. If they are designed entirely
with passive components, the range of signal
amplitudes that can be handled is limited only
by the voltage rating of the various capacitors
that are used. Additionally, they don’t add
much, if any, noise to the signal. However, a
limitation of analog filters is that they can’t
provide a sharp cut-off rate at their corner
frequency (Fc), unless you cascade many filter
sections and use close-tolerance components.

If you need high-performance filters, then
digital filters might be the way to go. You can
design very sharp low-pass, high-pass, notch
and band-pass filters using digital techniques,
if you use high-resolution ADC/DACs to convert
the analog signal into the digital domain
and (optionally) back to the analog domain.
However, the MCU that you use must be fast
and, in general, feature hardware-based
floating-point operations. Two years ago, I
discovered a line of Arm-based MCU modules
that fill the bill nicely.

In Circuit Cellar issues 324 (July 2017) and

325 (August 2017), I described a digital guitar
amplifier based upon the Teensy 3.2 Module,
which contains an Arm Cortex-M4 MCU. The
analog guitar signal was converted to a 16-bit
digital signal for processing, and then back
to an analog signal for power amplification,
by an NXP Semiconductor SGTL5000 Codec
contained on the PJRC Audio Shield. This
project was made possible largely due to the
extremely powerful Audio library provided
by the manufacturer of the Teensy modules.
This library consists of many audio functions,
all of which operate using DMA transfers
and interrupt service routines (that is, as a
background task). The sampling is done at CD
quality (44,100 samples/s at 16-bit resolution).

That project involved many different
audio functions—some from the Teensy Audio
Library, and some that I wrote myself. The
filtering I used for the project was in the form
of a 5-band parametric equalizer (EQ). This
consists of five blocks of band-pass filters,
each one centered on a specific frequency
in the audible range. Such an EQ is basically
a sophisticated “tone control” for the guitar
signal. While most of the other guitar signal
processing was done within the Teensy 3.2
MCU, using the Audio library, the 5-band
parametric EQ was handled by a DSP block

Signal filtering entails some tricky tradeoffs. A fast MCU
that provides hardware-based floating-point capability
eases some of those trade-offs. Here, Brian has used the
Arm-based Teensy MCU modules to serve those needs.
Here, Brian taps the Teensy 3.6 Arm MCU module to
perform real-time audio FFT-convolution filtering.

Arm-ed for DSP

By
Brian Millier

FIGURE 1
Top view of the Teensy 3.6 Arm MCU
module. To the right is the on-board
MicroSD socket, which accepts the MicroSD
card containing the Cabinet Impulse
Response file.

circuitcellar.com 57
CO

LU
M

NS

contained within the SGTL5000 Codec on the
Teensy Audio Shield.

After finishing that project, I became
interested in more sophisticated filtering
algorithms that could be performed by the
Arm MCU found on the Teensy modules. The
Teensy Audio Library routines work with all
the Arm-based MCUs in the Teensy module
family (except the lowest-cost LC model). The
Audio library contains three types of digital
filters:

1) Biquad (low pass, high pass, band pass,
notch)

2) FIR (up to 200 taps)
3) State-variable (Chamberlin)

The Biquad algorithm executes quickly,
and its coefficients are easy to calculate on
the fly, which makes it easy to change the
filter bandwidth and Fc quickly. Finite impulse
response (FIR) filters can provide much better
filter characteristics, if you configure them
with enough “taps”. However, as you increase
the number of taps used, the execution time
increases proportionately.

All the above filters use 16-bit, fixed-
point math (Arm Cortex M4 DSP instructions
using the Q15 data format). This is fast and
reasonably accurate, but not enough to
provide very sharp filter “skirts”. When you
attempt to cascade several sections of such
filters, you start to see the limitations in the
precision of the fixed-point math.

The higher-end Teensy modules (Teensy
3.5 and 3.6) contain the more powerful Arm
Cortex M4F core. These devices have hardware
floating-point instructions, which basically
allow you to do floating-point operations as
quickly as you could do the 16-bit fixed-point
operations with the DSP instructions available
on Teensy 3.2’s Arm Cortex M4 MCU.

By using a Teensy 3.6 with hardware
floating-point instructions, I figured that I
could handle more sophisticated filtering
algorithms. Another consideration was
that the Teensy 3.6 MCU runs at 180 MHz,
compared to the 72 MHz clock speed of the
Teensy 3.2. Also, the Teensy 3.6 can be safely
over-clocked at 240 MHz, compared to the
120 MHz maximum overclocked speed of the
Teensy 3.2. Figure 1 shows the Teensy 3.6
module. Figure 2 shows the Audio Shield
that I used. It contains the NXP SGTL5000
Codec device (A/D and D/A converters, mic
preamplification, headphone driver and
digital signal processing).

CONVOLUTION FILTERING
Although I have used digital filters in

FIR and Biquad configurations, prior to
this project I wasn’t familiar with the term

“convolution” filtering. As part of my music/
recording hobby, I had encountered the term
convolution regarding:

1) Guitar amplifier cabinet simulation
2) High-end, “space-accurate” reverberation

processors

Convolution reverberation processors
are not relevant to this discussion. However,
guitar amplifier cabinet simulation is basically
a fancy way of saying that you are simulating
the exact frequency/phase response of a
guitar amplifier and its loudspeaker(s),
mounted in a specific cabinet, with the
recording microphone oriented a specific way.

The “shape” of the frequency response
curve of any given guitar amplifier/speaker
combination will not be a “flat” response over
the useful range of guitar notes. Instead it
will consist of many small peaks and dips
over the frequency range of interest. These
“aberrations” provide the distinctive sound of
interest to the musician. To some extent, one
can simulate a given guitar amplifier/speaker
by using a multiband parametric equalizer
(EQ) and fiddling with it until it sounds the
way you know the actual amplifier/speaker
sounds. However, experts in the field learned
that they could go one step further using the
following method.

Rather than feeding an actual guitar
signal into the amplifier/speaker cabinet, they
feed it a short pulse, with rise/fall times as
fast as possible. This short pulse is called a
“finite-impulse signal.” The sound emitted by
the speaker cabinet is then picked up by a
professional-quality microphone, amplified,
converted to digital form and stored in a

FIGURE 2
Top view of the Teensy Audio Shield. The two rows of 14 holes
are fitted with header pins that plug directly into the Teensy 3.6
MCU module. All interconnections between the two boards are
via these 28 pins.

CIRCUIT CELLAR • MAY 2019 #34658
CO

LU
M

NS

file. This file represents the FIR of the guitar
amplifier/speaker cabinet. I admit that I
don’t have the best understanding of the
mathematical “magic” involved here, but
suffice it to say that all the frequency response
“personality” of the guitar amplifier/speaker
cabinet is contained in the finite-impulse-
response (FIR) file that has been collected.
The higher the sample rate used to record the
impulse, the better the simulation, and the
larger this FIR file will be.

Once you have this FIR file, you can use it
to provide the coefficients needed for a digital
FIR filter. If you pass your “raw” guitar signal
through this FIR filter, it will be modified in
virtually the same way that it would be if it
were sent out to the specifically modeled guitar
amplifier/speaker cabinet. Effectively, you can
digitally record a “raw” guitar signal, which,
when converted back to analog and listened
to, will sound as if you were listening to it
“live,” through the specific guitar amplifier/
speaker that you have modeled. The FIR filter
routine does what’s called a “convolution”
of the guitar’s time-domain signal with the
FIR array of coefficients—which is also time-
domain data.

FOCUSING ON FIR
Once you absorb the idea behind this

simulation technique, it becomes clear that
you could implement a complex digital filter
to reproduce almost any complex frequency
response with this technique. I’m certain that
mathematicians and electronics engineers
in the communication field discovered and
used this technique to design complex filters
long before guitar players saw its usefulness.
However, it was the guitar cabinet simulation
concept that led me to investigate the FIR
filtering technique more fully.

It turns out that implementing a FIR filter
with enough “taps” or coefficients to perform
realistic guitar amplifier/cabinet simulation
generally requires a FIR filter with 512 taps
or more. The Teensy 3.6, running at 240 MHz
(overclocked)—and using its built-in DSP 16-
bit fixed-point instructions—can process a
100-tap FIR filter (using the Teensy Audio
library’s FIR filter block), using only 7% of
available MCU time. This is for 16-bit data at
a 44,100 Hz sample rate. That 7% figure is
strongly influenced by the fact that most of
the SGTL5000 Codec data transfers (in and
out) are done under DMA, which frees up
the main MCU from performing this time-
consuming task.

Because FIR filter’s execution time is
directly proportional to the number of taps
[1], a 512-tap FIR should require 36% of
available execution time. This timing seems
reasonable, but implementing a FIR filter with
such a large number of taps is impractical
when using 16-bit fixed-point numbers. The
accuracy is not nearly good enough to achieve
proper results.

What is needed is a way to implement a
floating-point 512-tap convolution process
that is fast enough to handle 16-bit signals
at a 44,100-Hz sample rate, in real time. A
powerful set of math/DSP routines for Arm
Cortex devices is contained within the Cortex
Microcontroller Software Interface Standard
(CMSIS) library. I made use of several
floating-point math functions contained in the
CMSIS-DSP library.

TIME VS. FREQUENCY
The previous discussion involved

processing signals in the time domain. That
is, we sample a signal at a fixed sample rate,
process these data and then send the data out
at the same sample rate. We could also do the
electronic filter processing in the frequency
domain. This would involve converting our
time-domain signal into the frequency
domain. This means doing basically the same
filtering (but in a different way), converting
the frequency-domain signal back into the
time domain, and then sending it out. On the

FIGURE 4
Shown here is a representative plot of the coefficients of a FIR low-pass filter. Notice that it is symmetrical
around the half-way point in the number of taps.

FIGURE 3
Block diagram of the algorithm used in the Convolution Filter. The details of the overlap-add operations are
not shown here, but are explained in the article.

circuitcellar.com 59
CO

LU
M

NS

surface, it would seem that this unnecessarily complicates the
procedure, but there is a good reason to do it this way.

Converting the time-domain signal into the frequency
domain can be done with a Fast Fourier Transform (FFT) routine.
Converting it back into the time domain can be done with an
Inverse Fast Fourier Transform routine (iFFT). Both the FFT and
iFFT routines are available in the CMSIS DSP library available
for Arm MCUs. For the Cortex M4F cores with built-in floating-
point operations, the applicable CMSIS libraries perform those
operations in floating point, very efficiently.

The big advantage to doing the filtering in the frequency
domain rather than the time domain is that the computationally
intensive convolution routine can be replaced by a matrix multiply
routine. I referenced Steven Smith’s The Scientist and Engineer’s
Guide to Digital Signal Processing [1] while doing this project.
A link to it is available on the Circuit Cellar article materials
webpage. In Chapter 18 he mentions that the execution time for
a standard FIR convolution routine is proportional to the number
of FIR “taps,” whereas an FFT convolution routine’s execution
time increases only as the logarithm of the number of FIR taps.
Smith assumes that equivalent floating-point math instructions
are used for both methods, and the following holds true:

1) For < 64 taps, standard convolution routines are faster.
2) For > 64 taps, FFT convolution routines are faster.

In figure #18-3 of Smith’s text [1], he shows that a 512-
tap standard convolution is almost 4 times slower than a
512-tap FFT convolution. I had no idea how much slower the
Teensy 3.6’s floating point instructions would be compared to its
highly-optimized DSP 16-bit fixed-point instructions. Therefore,
I couldn’t tell whether it would be possible to implement a
standard 512-tap floating-point FIR filter in real time (at 16-bit,
44,100 Hz sample rate). Considering that the FFT convolution
routine should be 4 times faster, I decided to use that technique.
Looking at the result that I show later in the article, this proved
to be a wise choice.

BASIC IMPLEMENTATION
Figure 3 shows the basic algorithm used for a 513-tap FFT

FIR convolution filter. First let’s consider the 513-tap figure.
When doing a convolution, the filter “kernel” that is used must
be symmetrical around its central point (Figure 4). That is why
a 513-tap value (an odd number) is used rather than 512. 512 is
29 (FFTs are generally 2n in size).

Before doing any processing on the audio input stream,
we must first obtain a “filter mask.” This is derived from the
array containing the FIR filter coefficients—after it has been
processed by a floating-point complex FFT routine, which brings
it into the frequency domain. In Figure 3, I show the 513-point
FIR coefficients as a 16-bit integer array. That is how a guitar
cabinet impulse response file is structured—it is supplied as a
WAV file in 16-bit signed format. I convert this to a floating-point
array (using CMSIS arm_q15_to_float), so that it can be
processed by the 1024-point, floating-point complex FFT routine
(CMSIS arm_cfft_f32). Note that if you were instead trying
to implement a FIR filter using coefficients from a FIR filter
calculator [2], they would be normalized floating-point numbers.
My FIR Filter Mask processing routine expects 16-bit integer
values, so you would have to multiply those normalized floating-
point coefficients by 32,768. The FIR Filter Mask, as described
above, needs to be calculated only once for any given FIR filter

Bring Your Pi to Work!

Measurement Computing
now offers

DAQ HATs for Raspberry Pi®

www.mccdaq.com/DAQ-HAT

©2019 Measurement Computing Corporation • info@mccdaq.com

MCC Raspberry Pi measurement HATs were
designed to bring high-quality measurements to

the ubiquitous low-cost computer. MCC DAQ HATs
are the perfect solution for adding professional

quality DAQ capabilities to the Pi platform.

MCC DAQ HATs include:
• Complete SW library for easy programming

• Full set of examples in C® and Python™

• Stackable for high-channel count

• Quality from a trusted source

• Perfect for: embedded system design,

 industrial IoT, end-of-line test, and more...

1 YEAR

MCC 118
Analog Input
• 8 channels
• 100 kS/s
• 12-bit resolution

MCC 152
Analog Output
• 2 channels
• 8 DIO

MCC 118
Analog Input
 8 channels

MCC 152
Analog Output
 2 channels

http://www.mccdaq.com/DAQ-HAT
mailto:info@mccdaq.com

CIRCUIT CELLAR • MAY 2019 #34660
CO

LU
M

NS

profile. You might wonder why I am using a
1024-point complex FFT routine, when I have
only 513 data-points. I’ll discuss that later.

Next, let’s look at the processing needed
for filtration of the signal in real time. The
Teensy Audio library does all its audio data
transfer and processing in 128 blocks of 16-bit
audio data. This means the incoming digital
audio signal (from the SGTL5000 Codec) is
transferred into Teensy 3.6 SRAM by a DMA
burst transaction of 128 words (256 bytes).
Similarly, these 128-word blocks are moved
between various SRAM memory locations
under DMA control for processing. Finally, the
output data also are sent back to the Codec
under DMA control.

This block size is a compromise chosen to
minimize latency time (2.9 ms per 128-sample
block,) while still allowing for efficient DMA
transfers and other data-processing chores.
However, for the 513-tap FIR routine to work,
we need our 16-bit audio data to be available
in 512-sample blocks. Without going into
any detail yet, let’s just say that four of the
Teensy Audio library’s 128-sample blocks are
concatenated into one 512-sample block. An
integer-to-float routine (CMSIS arm_q15_
to_float) is used to convert this into a
512-element floating-point array.

This 512-sample array of time-domain audio
data must now be converted into the frequency
domain. This is done using a 1024-point
complex floating-point FFT (CMSIS arm_
cfft_f32). Why do we need a 1024-point
complex FFT when we are processing only a
512-sample audio block? To begin, the audio
signal data coming in consists of only the real
part, not the imaginary part of a complex
array. The math behind this is beyond my pay
grade. But I know from experience that the
sound coming out of the filter won’t be correct
if you don’t use a complex FFT routine, and
you must fill the imaginary portion of the input
array with the same audio data that you have
in the real portion. The complex FFT routine
expects its input array to have the real and
imaginary values interweaved, so when you are
transferring the incoming audio data into the
FFT array, you write each value twice before
advancing to the next incoming data point.

The second question here is why are we
doing a 1024-point FFT on only 512 input
samples? Where are we getting the extra
512-points that we need to present to the
1024-point FFT? Here again, the theory is
somewhat above my pay grade, but this is
how I understand it.

BACK TO TIME DOMAIN
Let’s go back to thinking in terms of a

time-domain signal. If we are considering a
continuous stream of digital audio data, it

is obvious that the MCU cannot process the
continuous data stream all at once. We must
break the signal into smaller blocks and do the
filtering on each block individually. Without
getting into any math, I think it’s intuitive that
filtering is just doing some form of weighted
averaging over several data-points. At the
very start of the datastream, there won’t be
any “past history,” so the averaging process
won’t be accurate. But that only happens once,
at start of processing. The middle section of
the block will filter okay, but as we get toward
the end of the block, we’ll be missing the
data present at the start of the next block,
so that the averaging (filtering) will again be
inaccurate. We therefore need to process the
data in a way that takes into consideration
the data from the next 512-sample block of
data.

When a FIR digital filter with a 100-point
filter kernel processes 100 incoming data
points, it will result in an output of 200
data-points. Obviously, we can’t send out
200 data-points for every 100 data-points
coming in, given that the input and output
sample rates are identical. If you analyze the
math involved, it turns out that to provide an
accurate filtered signal you must:

1) Break the incoming signal into a block half
the size of the FIR filter kernel.

2) Add a block of zeros to the end of these
signal data, to make the total length equal
to the size of the filter kernel.

3) Perform the FIR filtering on this block,
resulting in an output block equal to twice
the size of the filter kernel.

4) Send the first half of this output block out
to the Codec, and save the last half of this
block for later.

5) Perform steps 1, 2 and 3 again on the next
incoming block of data. However, for step
4, recover the saved block of data from
before, add it to the first half of the output
block, then send this composite first half
block out to Codec. Save the second half of
the block for later (as in 4).

This process is referred to as the overlap-
add method in DSP texts.

When we consider the FIR convolution
process being done in the frequency domain,
similar considerations will apply. We take 512
samples of the audio data and place it in the
first half of the 1024-point FFT input array,
filling both the real and imaginary elements
with the audio data as mentioned above. We
then fill the second half of the array with zeros
(for both the real and imaginary elements).
After the 1024-point FFT is performed, we
will have a 1024-element of complex data in
the frequency domain. In a similar fashion,

circuitcellar.com 61
CO

LU
M

NS

LISTING 1
Most of the actual computation is performed in this section of the program. The complexity is hidden by the use of high-level, DSP-like routines contained in the Arm CMSIS library.

the 513 FIR coefficients are padded out
to 1024-points before undergoing the
1024-point FFT—which produces the Filter
Mark.

The FIR convolution process in the time
domain is equal to an array multiplication in
the frequency domain. So, we take the FFT
array from the incoming signal and multiply
it with the FFT array from the FIR filter
coefficients (the Filter Mark that were pre-
calculated). The resulting 1024-point array,
still in the frequency domain, must now be
converted back into the time domain. This is
done using a 1024-point iFFT routine (CMSIS
arm_cfft_f32). Note that both the CMSIS
FFT and iFFT routines are called using the
same “arm_cfft_f32” label, but there is a

parameter passed to this routine for which a
“0” designates an FFT and a “1” designates
an iFFT routine.

We are now back in the time domain with
an array of 1024 floating-point digital audio
samples. We take the first half of this array
and add it to the 512 points of data saved
from the last block. These 512 floating-point
numbers are then converted back to 16-bit
integers (CMSIS arm_float_to_q15) and
sent out to the Codec to be converted to an
analog signal. We then save the second half of
this array to a temporary array, which will be
added into the output stream the next time
around. You can see that the overlap-add
method that I discussed in terms of the time-
domain FIR convolution is also performed, in

// 4 blocks are in- now do the FFT1024,complex multiply and iFFT1024 on 512samples of data
// using the overlap/add method
// 1st convert Q15 samples to float
arm_q15_to_float(buffer, float_buffer_L, 512);
// float_buffer samples are now standardized from > -1.0 to < 1.0
if (passThru ==0) {
 memset(FFT_buffer + 1024, 0, sizeof(FFT_buffer) / 2);
// zero pad last half of array- necessary to prevent aliasing in FFT
//fill FFT_buffer with current audio samples
k = 0;
for (i = 0; i < 512; i++)
 {
 FFT_buffer[k++] = float_buffer_L[i]; // real
 FFT_buffer[k++] = float_buffer_L[i]; // imag
}
// calculations are performed in-place in FFT routines
arm_cfft_f32(&arm_cfft_sR_f32_len1024, FFT_buffer, 0, 1); // perform complex FFT
arm_cmplx_mult_cmplx_f32(FFT_buffer, FIR_filter_mask, iFFT_buffer, FFT_length);
// complex multiplication in Freq domain = convolution in time domain
arm_cfft_f32(&arm_cfft_sR_f32_len1024, iFFT_buffer, 1, 1); // perform complex inverse FFT
k = 0;
l = 1024;
for (int i = 0; i < 512; i++) {
 float_buffer_L[i] = last_sample_buffer_L[i] + iFFT_buffer[k++];
 // this performs the “ADD” in overlap/Add
last_sample_buffer_L[i] = iFFT_buffer[l++];
//this saves 512 samples (overlap) for next time around
 k++;
 l++;
 }
} //end if passTHru
// convert floats to Q15 and save in temporary array tbuffer
arm_float_to_q15(&float_buffer_L[0], &tbuffer[0], BUFFER_SIZE*4);

CIRCUIT CELLAR • MAY 2019 #34662
CO

LU
M

NS

a similar way, in the frequency-domain FIR
convolution process. Note that in Figure 3,
I’ve simplified the diagram somewhat by not
including the zeroing of the second of the
signal input array (and Filter Mask routine)
nor have I shown the addition of the saved
arrays from the previous block calculations.
Listing 1 shows the “C” program code to
perform the filtering as explained above.

IMPLEMENTATION DETAILS
The above description assumes that 512

audio samples are available to filter, all at
once. However, the Teensy Audio library
doesn’t work this way. It operates with a
timed interrupt service routine (ISR) that
occurs every 2.9 ms and processes a single,
128-sample block of audio data.

All the Teensy Audio processing libraries
must contain a routine called “update.” This
routine is responsible for receiving one of
these blocks, doing whatever processing is
required, and then transmitting that block and
releasing its memory. You can use numerous

Audio library functions in series, if so desired.
So, every 2.9 ms, the Audio ISR fires, and the
update code for each of the audio functions
that the programmer has used in the
program will be executed in sequence. Each
one is processing a single, 128-sample block
of audio data, and then passing it along.

Obviously, I had to write some code to
adapt this 128-sample block processing into
one that works with 512 samples at a time. To
do this, I define a variable called “state,” which
persists between these Audio ISR “update”
calls. At each update, “state” is incremented
by 1. For states 0 to 3, I store the incoming
128-samples of audio data in a temporary
512-element integer buffer (incrementing the
buffer pointer by 256 bytes each time).

When state=3, this temporary buffer is full,
so I call the 512-point FFT convolution routine
(described in the last section and shown in
Listing 1). That fills up a 512-element integer
transmit buffer. The state variable is now set
to zero, to start the process over again. In
addition, for states 0 through 3, I point to

FIGURE 5
A screen-capture of the Web-based program TFilter. This program can be used to generate FIR filter coefficients for various types of digital filters. To the right, you can see I’ve
selected integer coefficients, because that is what my program expects. But floating-point numbers can also be chosen.

circuitcellar.com 63
CO

LU
M

NS

successive one-quarter sections of this transmit buffer, and send a 128-sample block from
this buffer section back out to the Audio library’s queue, where it will either undergo further
processing (if required by the program) or be sent out to the Codec to be converted to an analog
audio signal. The transmit buffer will have no valid data in it the first four times that the Audio
update occurs, since no filter processing has yet taken place. So, you could get a short “blip” of
noise (around 12 ms) when the program first starts processing audio data.

If you’ve carefully followed the above explanation, you can see that out of four consecutive,
ISR-driven “updates,” three of them do no processing apart from moving data from one buffer
to another. It is the fourth update that does all the filter processing. Using the Audio library’s
AudioProcessorUsage() function, I found that the percentage of available MCU processing
power used by updates 1 through 3 was less than 1%, and update 4 was 47%. These figures are
obtained with the Teensy 3.6 overclocked at 240 MHz. The figures—quoted on my original GitHub
site for this project [3]—are for a Teensy 3.6 clocked at 180 MHz, and are proportionately higher.

GENERATING THE FILTER MASK
Earlier, I explained that the desired FIR coefficients must be converted into what’s called the

Filter Mask, for frequency-domain filtering. Basically, I was interested in two sources for these
FIR coefficients:

1) FIR filter coefficients for standard types of filters, obtained by filter calculation programs—
either web-based tools or dedicated programs running on either a PC or an embedded MCU

2) Guitar Cabinet Impulse files

Let’s look at #1 first, because this type of filtering could be used more widely. If you need
a filter with specific parameters that will seldom or never change, you are probably best
served using a FIR filter design application, either web-based or a PC application that can be
downloaded. A common web-based program is TFilter [2].

Using this program, there are a few considerations to note. For use with the Teensy Audio
library/Audio Shield, the sample frequency must be set to 44,117 Hz. The Teensy Audio library
actually runs at a sample rate of 44,117 Hz, slightly different from the CD standard of 44,100 Hz.
Also, the filter coefficients will be output in either double-precision floating-point or integer. You
would choose integer in this case, as my program is designed to work primarily with Guitar
Cabinet Impulse files, which are normally formatted as Microsoft WAV files. These files use a
16- bit waveform format. Figure 5 is a screenshot of TFilter showing a low-pass filter.

If the parameters of the filter must be changeable while the Teensy 3.6/Audio Shield is
running, then another approach must be taken. If you needed only a few FIR filter profiles,
it would be possible to pre-calculate them using TFilter, and then load several banks of FIR
coefficients into flash memory, to be switched in and out of SRAM as needed. The Teensy 3.6
contains 1 MB of flash memory, so there’s plenty of room for filter coefficient banks.

Another approach is to embed a FIR filter calculation routine in the Teensy 3.6’s code,
itself. I have included a Teensy program that includes the calc_FIR_coeffs function. This
routine calculates floating-point FIR coefficients for Low-pass, High-Pass and Band-pass filters,
for a user-selected number of FIR taps. Since this routine provides normalized floating-point
coefficients, I multiply all the values by 32,768 before sending them to the “cabinet_impulse”
array (a 16-bit integer array).

The parameters passed to this routine are as follows:

calc_FIR_coeffs (float * coeffs, int numCoeffs, float32_t fc,
float32_t Astop, int type, float dfc, float Fsamprate)

float * coeffs: a pointer to a float32_t array large enough to handle
the designated number of coefficients (taps)

int numCoeffs: an integer specifying the number of coefficients
float32_t fc: a floating-point number specifying center or cutoff

frequency
float32_t Astop: a floating-point number specifying expected stopband

attenuation in dB
int type: type of filter- 0-Low-Pass 1-High Pass 2-BandPass
float dfc: a floating-point number specifying half-filter bandwidth

(for BandPass only)
float Fsamplerate: a floating-point number specifying the sample rate

in Hz.

CIRCUIT CELLAR • MAY 2019 #34664
CO

LU
M

NS

For Cabinet Impulse FIR coefficients, the coefficients are generally stored in a Microsoft WAV
file. The ones I have seen contain enough data to fill a 513-tap FIR filter coefficient array. For
some reason, the ones I have seen are often very long files—many hundreds of thousands of
bytes or more. Of this, only the first 512 or so data points in the “wave” chunk of the file contain
actual coefficient data. The rest are zero-padded. Microsoft WAV files do not just contain raw
wave data—they also include a header section at the beginning of the file. This header section
contains “meta-data” about the format of the file, a pointer to the start of the wave data, and
the length of the wave.

For my Teensy 3.6 application, I place the WAV file containing the Cabinet Impulse file onto
an SD card. This card must be inserted into the SD CARD socket on the Teensy 3.6, itself—not in
the SD card socket found on the Audio Shield. In the program, I open the file “MG.WAV,” which
is the name of the sample file I used. You must modify this line of my program to match the
filename you have, or rename your file to match.

To find the start of the wave data, I open the file and search for the string “data.” Assuming it
is a true WAV file, the string “data” should be found. I then skip over the next 4 bytes (the wave
data size field) and then read in 513 integer values. These are stored in the array cabinet_
impulse (type int16_t). Whichever method you use to generate the FIR coefficients, the
coefficient data in the cabinet_impulse array must be converted into a frequency-domain
Filter Mask. This is done, in the Setup portion of the program as follows:

convolution.begin(0);
// set to zero to disable audio processing until impulse has been loaded
convolution.impulse(cabinet_impulse);
// generates Filter Mask and enables the audio stream

Once convolution.impulse has executed, a valid Filter Mask array will exist, and the
real-time processing (filtering) of the incoming audio stream will begin. Listing 2 shows the

void AudioFilterConvolution::impulse(int16_t *coefs) {
 arm_q15_to_float(coefs, FIR_coef, 513); // convert int_buffer to float 32bit
 int k = 0;
 int i = 0;
 enabled = 0; // shut off audio stream while impulse is loading
 for (i = 0; i < (FFT_length / 2) + 1; i++)
 {
 FIR_filter_mask[k++] = FIR_coef[i];
 FIR_filter_mask[k++] = 0;
 }

 for (i = FFT_length + 1; i < FFT_length * 2; i++)
 {
 FIR_filter_mask[i] = 0.0;
 }
 arm_cfft_f32(&arm_cfft_sR_f32_len1024, FIR_filter_mask, 0, 1);
 for (int i = 0; i < 1024; i++) {
 // Serial.println(FIR_filter_mask[i] * 32768);
 }
 // for 1st time thru, zero out the last sample buffer to 0
 memset(last_sample_buffer_L, 0, sizeof(last_sample_buffer_L));
 state = 0;
 enabled = 1; //enable audio stream again
}

LISTING 2
The convolution.impulse routine takes a 513-element FIR array (integer) and converts it into a 1024-element Filter Mask (floating-point). The CMSIS complex FFT routine is used
for this purpose.

circuitcellar.com 65
CO

LU
M

NS

convolution.impulse routine. The routine
is passed a pointer to the 513 element FIR
coefficient array generated as described
above. It first converts this integer array
to a floating-point array. Then it fills up the
first 513 real elements of the 1024 element
FIR_filter_mask array with those 513
coefficients. Since the FIR_filter_mask
array must hold complex values, every second
element is set to zero—in other words, zeroing
out the imaginary part. The final 511 complex
elements of this array are also zeroed out.
The rationale for zeroing out of the last part
of the array is explained in Smith’s text [1].
The filter produces a lot of artifacts in the
signal if this is not done!

After the 1024 element array has been
prepared as above, a complex FFT is
performed on the array (CMSIS arm_cfft_
f32). Part of the “magic” in these CMSIS FFT
routines is that they do the FFT process “in
place”—in other words, no separate array
is needed for the transformed result. As a
last step, this routine zeroes out the last_
sample_buffer array, which is used in the
overlap-add process mentioned earlier. The
first time through the overlap-add process,
there is no valid last_sample_buffer
array data, so it needs to be zeroed out.

PROGRAM DETAILS
A few program details merit discussion.

The FFT convolution filter that I wrote is
structured to work with the Teensy Audio
library. When the Teensyduino Arduino add-
in is installed, this Audio library will be
installed by default—unless you specifically
un-check the box corresponding to it during
the installation routine.

Two things must be done to the Audio
library to include this convolution filter:

1) You must install some CMSIS files to the
Teensy core library. The exact procedure
for doing this can be found in the text file
“Adding CMSIS 4 library files” located at
Circuit Cellar’s article code & files download
webpage. Alternately, instructions can be
found on my GitHub site [3]. I also include
alternate instructions to incorporate the
newest CMSIS 5.3 library. Either one will
work properly.

2) The convolution filter code consists of
2 files: filter_convolution.h and
filter_convolution_cpp
These files must be added to the folder
containing the Teensy Audio library. This
folder will be located under whatever
folder you have installed the Arduino/
Teensyduino IDE. The path is: c:\your
arduino folder\hardware\teensy\avr\
libraries\Audio

Also, in that folder, edit Audio.h by adding
the following line at the end:

#include “filter_convolution.h”
// library file added by Brian
Millier

Like any custom Audio library objects
that you add yourself, this one will not show

FIGURE 6
An easy way to familiarize yourself with the SGTL5000 Codec used in the project is to refer to its Help file in
PJRC’s online Audio System Design Tool.

FIGURE 7
The Audio System Design Tool’s workspace for this project. Note that the FIR object is shown. See article
text for explanation.

ABOUT THE AUTHOR
Brian Millier runs Computer Interface Consultants. He was an instrumen-
tation engineer in the Department of Chemistry at Dalhousie University
(Halifax, NS, Canada) for 29 years.

CIRCUIT CELLAR • MAY 2019 #34666
CO

LU
M

NS

up in the Audio System Design Tool found on
the PJRC site. Probably the easiest way to
generate the setup/connection code needed
to incorporate this filter into your audio
configuration, is to draw your configuration
using the Design Tool Web program, but place
a FIR filter. Import this configuration into
your sketch. Then, within the “// GUItool:
begin automatically generated
code” replace “AudioFilterFIR
fir1” with “AudioFilterConvolution
convolution”. Also, on two of the
AudioConnection lines, replace instances
of “fir1” with “convolution”

In my sample program, this configuration
has already been done. The above procedure
is only needed if you are writing your own
program using additional Audio library objects.
If you want the convolution filter keywords to
be highlighted in orange in the Arduino IDE
(like all the other Audio library objects), you

can add the following line to the keywords file
(contained in the Audio folder):

AudioFilterConvolution<TAB>
KEYWORD2.

Note that you must separate these two
words with a TAB character, not with spaces.

THE SGTL5000 CODEC
I’ll just mention a few details about the

NXP SGTL5000 Codec found on the Teensy
Audio Shield. It contains both Line input and
Microphone inputs. The Microphone input is
configured for an electret microphone (DC bias
is provided). The SGTL5000 has a programmable
gain preamplifier for the Microphone input.
Both Line out and Headphone outputs (stereo)
are available, and the Headphone output
channel has a wide-range volume control,
which is adjusted under program control.
The SGTL5000 contains its own Digital Audio
Processor (DAP)—basically a specialized DSP
that can perform various EQ and Auto Level
Control functions. An easy way to become
familiar with the capabilities/settings for this
device, is to access the online program Teensy
Audio Library Design Tool. See the Circuit Cellar
article materials webpage for the link.

When using the Audio Shield, your sketch
must contain the SGTL5000 control object. When

FIGURE 8
Schematic diagram of the hardware
used for this project. It consists of
only a Teensy 3.6 module with a PJRC
Teensy Audio Shield mounted on it.

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
References [1] through [3] as marked in the article can be found there.

RESOURCES

NXP Semiconductors | www.nxp.com

PJRC | www.pjrc.com

http://www.circuitcellar.com/article-materials
http://www.nxp.com
http://www.pjrc.com

circuitcellar.com 67
CO

LU
M

NS

this is included, all the necessary initialization
code will we added to set up the SGTL5000
in a default configuration. The SGTL5000 is
configured via the I2C bus. Its I2C address is
0x0A, which shouldn’t conflict with most other
I2C devices that you might also want to use.

The easiest way to learn about the
SGTL5000’s capabilities and programming
is to use the Teensy Audio Library Design
Tool. Figure 6 is a screenshot of the Audio
Library Design Tool, showing a bit of the
SGTL5000 info screen on the right. Figure 7
is a screenshot of the Audio Library Design
Tool configured for this project. Note that a
standard fir1 filter object is placed in the
workspace. See the explanation in the prior
section on how to replace the code generated
by the fir1 object, with code that implements
the Convolution filter instead.

Figure 8 is the schematic of the project.
As you can see, it comprises two modules:
A Teensy 3.6 MCU module and the Teensy
Audio Shield. The Audio shield is designed so
that it can be mounted on the Teensy 3.2,
3.5 or 3.6 MCU modules directly—eliminating
any interconnecting wiring. The audio Line
In and Line Out are available on a 10-pin IDC
header. The signal designations are shown
on the bottom of the board, and the pinout

matches that of a PC motherboard’s audio
Line in/out connector. A filter In/Out switch
is connected to the Teensy Digital 37 GPIO
pin. A 5-V power source can be applied either
via the micro-USB port, or the Vin pin on the
Teensy 3.6 module.

CONCLUSIONS
I believe I spent more time figuring out

how to write this code than on any other non-
work-related program I’ve tackled. The final
code seems very simple, because it makes
extensive use of the CMSIS library routines.
However, learning how they worked and how
to integrate them into the pre-existing Teensy
Audio Library was quite challenging. On the
other side of the coin, building the circuit
was trivial due to the easy integration of the
Teensy 3.6 MCU module with the PJRC Audio
Shield.

Author's Note: I’d like to acknowledge all
the programming effort of Paul Stoffregen,
who wrote the Teensyduino Arduino add-in
and the core of the Audio Library. I also
referenced work done by Frank (DD4WH) on
his Teensy SDR project, which included similar
FFT convolution routines. A link to Frank's
Teensy SDR project can be found on the Circuit
Cellar article materials webpage.

Embedded in your success.

www.congatec.com/us
info@congatec.com
Phone: 858-457-2600

http://www.congatec.com/us
mailto:info@congatec.com

CIRCUIT CELLAR • MAY 2019 #34668
CO

LU
M

NS

From the Bench

An Itty Bitty Education

I don’t know a kid who hasn’t played with Legos.
I even know adults who still enjoy building
something with Legos. I know because I’m
one of them. When Christmas comes around,

I always try to incorporate my love of Legos and
fascination with robots into gifts for my grandkids.
I wish I had the bucks to give every one of them
Mindstorm EV3s. But at $350 each (times 13)
there’s just no way I can swing that and eat too.
So, I keep my eyes peeled for things that are a little
less expensive but still seem to have a good value to
them. This year I found the Itty Bitty Buggy (IBB).

This is a product put out by Microduino. You
may know that Microduino makes a similar product
that’s about one-fourth the size of an Arduino Uno
yet has a similar bus structure. In other words,
you can stack expansion boards atop the core
microcontroller (MCU) board. There are more
than 100 modules, sensors and actuators to solve
most application requirements. As you might have
guessed, you can use the Arduino IDE to program
the Microduino series of parts. In addition, they offer
mDesigner, which is Scratch-based and designed
for young minds with no programming experience.

The IBB is Microduino’s newest product.
They’ve taken the best of what they’ve learned and
incorporated it into an inexpensive learning tool.
Listed at $59, it fits my requirements for immediate
fun, with a path for educational growth. First, we’ll
take a quick look at the fun part.

CELL PHONE = FUN
The Itty Bitty Buggy is a mobile vehicle controlled

via Bluetooth using your Android or iOS device. The
app provides instructions for building and playing
with the Buggy in one of five scenarios: Buggy
movement (wheels), Dodo Bird (flapping wings),
Sloth (suspended rope walker), Ladybug (legs) and
Alien (arms). There are on-screen instructions for
the simple “build” of each of the five critters. Each
build instructs the user on how to assemble each
character, in easy-to-follow pictorial steps. It has
four modes: remote control (joy stick), line following
(color sensors), voice control (phone microphone)
and music (joy stick and color sensors). The other
four scenarios are based on the buggy scenario—
the difference being that each creature has different
movements, based on similar controls.

No programming knowledge is needed for any
of these scenarios. The hardest part is pairing
your phone to the Buggy’s Bluetooth module! Once
you’ve done this, the Buggy will make contact with
your phone and is ready to perform its control of
any of the preprogrammed scenarios.

If you’ve looked at the app’s screen in Figure 1,
you may have noticed the word “program” at the top
right of the screen. This button brings up the next
level of control available to a user. So, after you had
enough fun playing with all the scenarios prewritten
on the IBB, hit “program” and let’s dive deeper.

Let’s assume we have the simple buggy built and it

There’s no doubt that we’re
living in a golden age when it
comes to easily available and
affordable development kits for
fun and education. With that in
mind, Jeff shares his experiences
programming and playing with the
Itty Bitty Buggy from Microduino.
Using the product, you can combine
Lego-compatible building blocks
into mobile robots controlled via
Bluetooth with your smartphone.

STEM at Home

By
Jeff Bachiochi

FIGURE 1
The Itty Bitty Buggy phone app provides both “build”: step-by-step assembly of each
creature and “play“: the Bluetooth controls to make your creature come alive.

circuitcellar.com 69
CO

LU
M

NS

only has wheels. You can start a new project by
tapping “+.” But instead tap “project1”, which
has already been created for you (Figure 2).
In programming mode, you create or alter
projects using drag-and-drop selections from
one of the menu icons: Switch (procedures),
Control (repeat), Calculation (comparisons),
Light (colors), Sound (beeps), Movement (drive)
and Sensor (colors). Each project is a program
made up of blocks placed on the project field.
On the field’s left are two buttons: Stop (yellow
square inside a red button) and Start (yellow
right pointing triangle inside a blue button). On
the field’s right are menu icons.

Each project should begin with the Start
block. This has an icon of the start button on it
and is found in the procedure group displayed
when the switch icon is touched. Project1 has
the Start block already on the project field,
along with a few other blocks. Just below
the Start block you’ll find two Light blocks
and one Sound block. If you look at the Light
blocks, you’ll see each one uses a different
sensor: A (the driver-side LED/sensor) and
B (the passenger-side LED/sensor). Each of
these has an associated color. You can choose
a different color by tapping the color swatch,
tapping a new color from the pop-up menu
and tapping the project field to select it. The
Sound block allows you to select a note and to
adjust its duration using similar taps.

To have the IBB execute this program, just
tap the Start button in the lower left of the
field. The blocks are executed from the top
down, turning on the left LED, turning on the
right LED and playing a note. You’ll see that
when the note has finished playing, it sits there
waiting to execute more blocks, but since we
have run out of blocks to execute, the buggy
waits. Tapping on the Stop button will halt the
program—the LEDs are turned off.

You can alter this project to investigate all
the menu groups, and when you leave (Exit),

the project will be saved if it has been changed.
There is plenty here for a kid to really begin
to understand how programming is simply a
list of instructions to follow. You will note that
the Start button is grayed while the program
is executing. Presently, the scrollable project
field can’t be resized, which means that larger
projects can’t be seen without scrolling. This
makes them a bit difficult to see. When you
need your phone back, you can move the
learning from the phone app to a PC. We’ll
explore those options right after looking more
closely at the actual hardware.

BREAKING DOWN BUGGY
The Buggy is divided into two modules,

which I call the head and body (Figure 3).
The head contains a CPU with USB (wired)
and Bluetooth (wireless) interfaces. All I/O
is through two bus systems: the “mCookie”
bus, which uses “pogo pins” and magnets to
ensure connectivity between snap-together
modules, and the sensor bus, which offers a
number of 4-pin connectors carrying power/

FIGURE 2
Should boredom set in, switch to the
programming mode. Here you will
drag and drop instructions to make
the creature do your bidding.

FIGURE 3
The Buggy has many built-in features.
I like the lithium ion power source.
You can add features by stacking a
“cookie” or cabling a sensor via the
top of the Buggy’s expansion buses.

CIRCUIT CELLAR • MAY 2019 #34670
CO

LU
M

NS

ground and two analog or digital I/Os. And
speaking of power, an integrated lithium
battery—which charges from the USB port—
provides long run times and so there’s no
worries about replacing batteries (Figure 4).

The mCookie is a modular, stackable,
building-block-compatible electronics
platform that supports Arduino. The original
series consisted of a CPU “core” module
and several stackable expansion modules
such as communication, functions and
sensors. Because several modules have been
incorporated onto the Buggy’s “mCenter+”
PCB—CPU, communication, battery
management, sound and so on—the stackable
expansion can be used to add module-like
GPS, RTC or Lego NXT interfacing. A typical
module—such as the 128 × 64 OLED—is
priced at $15.

The sensor bus breaks out all the CPU’s
I/O ports. The tiny connector is a 4-pin
JST 1.25 mm. This connector is compatible
with the Microduino line of sensors. You can
choose from a long list of inexpensive switch,
LED, environment and other input and output
sensors. The only downside I see is that,
unlike Lego sensors that are integrated into
Lego bricks, these are tiny PCBs with exposed
sensors. A typical sensor—such as the digital
temperature sensor—costs $4.

The body of the Buggy contains two motors,
two LEDs and two color sensors. All this is
multiplexed through one dedicated 4-pin I/O
connector. Note in Figure 5 that the wheel
shafts are gear-driven 1:1 from the motors,
and each axle has a mechanical clutch to
prevent breakage. This connector could have
been eliminated—or at least internalized—if the
Buggy had been a one-piece unit. I’m not sure of
the reasoning for breaking this into two pieces.

You may have noticed that you didn’t see any
way for the phone app to handle any of these
additional I/O thingies. And you’d be correct.
For some kids, just beginning to learn about
programming and playing with the available
blocks on the phone app will be sufficient for a
good while. In fact, not every child will develop
the curiosity to come out and ask: “What now?”
And that’s OK! That said, don’t toss out the
Buggy just yet because there is plenty more
for those interested in learning more. You can
find additional information about the modules
and sensors I have already mentioned on the
Microduino website.

GRADUATION
Those who wish to graduate on to bigger

and better adventures should grab their
imaginations and download mDesigner from
Microduino. After starting the application,
you will find a screen divided into five areas:
a toolbar (top-open/save/kit/port/settings),

FIGURE 4
Multiple cookies were
combined to create a
single PCB inside the
top of the Buggy. The
back of the PCB holds
the two expansion
buses. The front
side holds most of
the electronics (see
inset).

FIGURE 5
The lower half of the Buggy contain motors and wheels, along with the color LEDs and sensors. The motor
and color functions are controlled by one 4-pin cable (2-I/Os).

circuitcellar.com 71
CO

LU
M

NS

panes (left-code blocks/costume/sound), scripts (center-build area), stage (upper left-stop/start/
sprite) and sprites (lower right-selecting sprites and backdrops). Realize that this environment
was created to teach someone how to program by dragging and dropping instruction blocks
onto the script area, not necessarily for the IBB. With that in mind, say you have a child that
could not care less about robots. Invite them in right now. This is for them.

You can set aside the Buggy for now—it’s not required for this exercise. Make sure it says
“online” on the right side of the toolbar. If it says offline, just click it. I’ll explain this later. Let’s
begin by creating a new project that any kid will have fun with. Click “Create a new Project”
in the toolbar. Now click the Costume tab in panes. Click “Choose a Costume” at the bottom of
panes. Scroll through the icons and pick “Dog2.” This will be our Sprite. Next, click Stage on the
right in sprites and the Costume tab will change to Backgrounds. Click “Choose a Backdrop” at
the bottom of panes. Scroll through the icons and pick Theater. Again click “Choose a Backdrop”
at the bottom of panes. Scroll through the icons and pick Farm. Okay, now we can start coding.

Click the Code tab in panes. One the left of side of panes there is a column of functions that
you can hit to scroll the associated instruction “blocks” into view in panes. These are similar to
those in the phone app described earlier. Here I’ll describe a selected block by using the syntax
“function:block” to help you find it. Then place it in the script area and edit items in parentheses
as necessary.

Events:when clicked
Looks:Say ‘You click the mouse and I’ll follow.’
Control:wait until <>
(Place Sensing:mouse down? into <>)
Looks:think ‘Hmm’ for ‘2’ seconds
Sensing:glide ‘1’ secs to ‘Mouse Pointer’

Your desktop application should look like Figure 6. Now click the green flag at the top of the
Stage. You should see the Dog sprite, with a speech balloon that says “You click the mouse and
I’ll follow.” After you click the mouse button, the dog’s speech balloon will say “Hmm.” Then, two

FIGURE 6
Here we’ve set the stage, so to speak, with our actor—a dog—front and center. Just a few function blocks are required to bring our furry friend to life.

CIRCUIT CELLAR • MAY 2019 #34672
CO

LU
M

NS

seconds later—after contemplating where the click came from—the sprite will float toward where the mouse pointer was clicked,
but will remain inside the Stage area. Add the remaining blocks shown here, and the project is finished.

Control:repeat ()
(Place Operators:pick random ‘1’ to ‘5’ into ())
Sensing:Mouse Down?
(Place previous code into repeat)
Looks:switch backdrop to ‘Farm’
Looks:say ‘I need a rest’ for ‘2’ seconds
Looks:say ‘Zzzzzz’ for ‘10’ seconds
(Place each of the following blocks between ‘when clicked’ and ‘say You click the mouse and I’ll follow.’)
Looks:switch backdrop to ‘Theater’
Motion:goto x: ‘0’ y: ‘0’
Looks:say ‘OK, let’s play’ for ‘2’ seconds
(Place ‘Control:forever around all the code block, with ‘when clicked’ at the top)

Remember the “When Clicked” block must always stay as the topmost block! You should now have what looks like Figure 7.
Save by clicking “Save Project.” Let your kids play. Fido will tell you when he’s had enough, right? If you haven’t dragged and
dropped before, it takes a while to figure out what to grab and where in order to rearrange blocks. There’s a bunch of different
codes in this little project. Please feel free to play around. It’s a perfect opportunity to show your kids how easy it is to program.
You can build and run at various stages to really get an understanding. Now, on with the show.

BRING ON THE BUGGY
Let’s begin with the difference between “online” and “offline.” When the Buggy is involved, a wired USB connection must always

be used. I’m not sure whether the Bluetooth will be incorporated in the future. The online mode will download a small program,
which runs on the Buggy and allows your projects to be run/stopped/edited from mDesigner. This is fine if you do not include any
movement. Otherwise it’s like having a lively puppy on a leash. The offline mode downloads an executable copy of your project to

be run even when unplugged and every time the Buggy is powered up.
If the last project is still loaded into mDesigner, click online to toggle to the

offline mode. Two things happen: a notice pops up stating there are blocks that
are unsupported in this mode, and on the right side of the screen, the stage
and sprite areas are replaced by an area that looks an awful lot like the Arduino
IDE! This is about to turn into an educational moment.

Click on “Create New Project” on the toolbar. Add the following blocks to
the project:

Events:when clicked
Control:repeat ‘10’
(Place the following inside ‘repeat 10’)
Buggy:car ‘forward’ speed ‘255’ duration ‘1’ s
Buggy:buzzer note ‘c4’ duration ‘1’ s
Buggy:car turn ‘left’ speed ‘255’ duration ‘1’ s
Buggy:buzzer note ‘b4’ duration ‘1’ s

Note that as you add blocks, the code is generated on the right side of the
screen. While mDesigner was always writing code when blocks were added, now
you get to see that actual code. This makes it obvious what actual code must be
written in an Arduino IDE to perform a described task. Whether or not the user is
interested in this presentation, it is an effective learning tool for those interested
in tackling the programming hurdle. Save the project and click “flash firmware.”
You will need to have the Buggy connected with the included USB cable. If you
don’t know which serial COM port to use, run the “Computer Management”
application on your PC. On my PC, the port is COM18, as shown in Figure 8.
When the download is finished, the project will begin running immediately. Note:
you may wish to place the Buggy atop something to keep its wheels off the
ground. Remove the USB cable and place the Buggy in an open area. It should
begin to move and beep, turn and boop 10 times and then stop. The program will
run every time you turn on the Buggy with its power switch.

CUSTOMIZING YOUR CODE
You may have noticed while playing with the Buggy and your smartphone

that, although you can drive the Buggy around using the joysticks or keep

FIGURE 7
Here I’ve expanded on the theme and given the pup a bit of
random behavior, along with a change of scenery.

circuitcellar.com 73
CO

LU
M

NS

the Buggy within the playing area when line-
following with the color sensor, it has no other
input device. I looked at the tiny microswitch
offered as a crash sensor and thought “That
looks tough to work with. I can do better.” I
dug through my “junk” boxes and found some
small levered E-Switch microswitches that
looked promising. The lever not only reduces
the required force to engage the contacts
(small, less than 1 oz), but also offers an easy
way to affix “crash” extensions.

I grabbed a small piece of protoboard
cut to around 0.3” × 1.5”—which is about
the size of one of the 1 × 5 orange girders
supplied in the Buggy’s extra parts bag. Two
of these microswitches and pull-up resistors
are mounted on the extreme ends of the PCB.
I grounded the N.O. (normally open) switch
contacts with the wiper connected to the
pull-up and the Buggy input lines of a 4-pin
connector. Although I wanted to add the
appropriate connector so I could use one of
the extra jumpers supplied with the Buggy,
I didn’t have one. So, I clipped off one end
of a jumper cable and soldered it to the PCB
directly. I hope Microduino offers these male
connectors for sale in the future for us DIYers.

A piece of double-sided foam tape holds
the PCB securely to the girder, which is
easily mounted to the front (or rear) of the
Buggy. You can see the assembly added to
my Buggy in Figure 9. Attached to the switch
levers are cardboard ovals, which cover the
total width of the Buggy and then some for
complete protection of most frontal assaults.
In robotics, many would say that your
sensors should prevent any kind of collision,
but even insects use their antennae to make
contact with obstacles. Touch is an important

FIGURE 8
Under “Windows Administration
Tools” you will find “Computer
Management”, which shows your
active COM ports. If you can’t figure
out which one you need, try plugging
and unplugging the device, to see
what is added or removed from the
list.

FIGURE 9
These tiny lever-action microswitches are just what we need to get this Buggy roaming the range. Arduino
blocks let us use external sensors that we connect via the expansion buses.

ABOUT THE AUTHOR
Jeff Bachiochi (pronounced BAH-key-AH-
key) has been writing for Circuit Cellar
since 1988. His background includes product
design and manufacturing. You can reach
him at:
jeff.bachiochi@imaginethatnow.com or at:
www.imaginethatnow.com.

mailto:jeff.bachiochi@imaginethatnow.com
http://www.imaginethatnow.com

CIRCUIT CELLAR • MAY 2019 #34674
CO

LU
M

NS

sensation that we all use every day. The jumper cable is plugged into the Buggy connector marked D4/D5. This
means the N.O. switches with pull-ups to VCC look like a logic-level high until an obstacle has closed a switch,
which shorts the input to ground (logic low).

FREE TO ROAM
Now we can remove the walls of the Buggy arena and let it roam freely on the range. We’ve added the

hardware to prevent it from getting stuck once its run into a wall, furniture or other obstacle in its landscape.
How can we incorporate this sensor into the Buggy’s programming? You’ve probably noticed that the “red”
Buggy blocks do not include any mention of any I/O other than motor, color and buzzer. We will need to use the
“blue” Arduino blocks, just above the Buggy blocks.

Start by entering the following Buggy block program:

Events:when clicked
Control:forever
(Place the following inside ‘forever’)
Buggy:car ‘forward’ speed ‘255’ duration ‘1’ s
Buggy:buzzer note ‘c4’ duration ‘1’ s

If you then download the program by clicking “flash firmware,” the buggy will begin executing your program.
It will drive forward for 1 s before pausing 1 s to play “C4” (that’s note C in the fourth musical octave). You can
set it free on the floor. Just realize it will eventually crash into something, but attempt to keep going.

A few more lines of code will solve that problem:

(Place the following inside ‘forever’, just under ‘buzzer c4 1s’)
Control:if ‘<>’
(Place the following inside ‘<>’)
Arduino:pin ‘5’ is ‘low’
(Place the following inside ‘if’)
Buggy:car ‘backward’ speed ‘255’ duration ‘1’ s
Buggy:buzzer note ‘c5’ duration ‘1’ s
Buggy:left ‘left’ speed ‘255’ duration ‘1’ s
Buggy:buzzer note ‘e4’ duration ‘1’ s
(Repeat the following, note the minor, but important changes)
Control:if ‘<>’
(Place the following inside ‘<>’)
Arduino:pin ‘4’ is ‘low’
(Place the following inside ‘if’)
Buggy:car ‘backward’ speed ‘255’ duration ‘1’ s
Buggy:buzzer note ‘c5’ duration ‘1’ s
Buggy:turn ‘right’ speed ‘255’ duration ‘1’ s
Buggy:buzzer note ‘g4’ duration ‘1’ s

Your blocks should now look like Figure 10. I saved this project as Buggy Bumpers, and then “flashed the
firmware” and set this Buggy free. Note that if the left Buggy switch closes, the Buggy will back up before
turning right, away from the obstacle, by executing one “if” statement. A right switch closure should turn the
Buggy left (Figure 11). If the turns are wrong, that’s because your switches are wired or placed the opposite of
mine. Then you need to change pins 4 to 5, and pins 5 to 4 in the “if” blocks.

I’ve included the playing of notes, so you can easily identify which line in the program is executing. You will
observe that these “notes” interrupt the movements of the Buggy. To make the movements smoother, eliminate
those blocks. Once you do that, you might find that 1 s is too long for some movement—especially the forward
movement. Referring back to an earlier project written on the cell phone app, you might say let’s shorten them
up to some fraction of a second. But fractions of a second are not recognized in mDesigner. Hmm.... A look at
the Arduino code (on the left of the screen) written when the blocks are placed will reveal the reason for this.

In the loop() code, you’ll find the function BuggyCarTime(1, 255, 1)—the numbers being values
for the variables (direction, speed, duration).
We placed the block “car () speed () duration
() s” into our project three times. The same
function is called each time with different
parameters. If you look at this function, which
was placed early on in the Arduino code, you
find each variable type (_dir, _speed, and
_time) has been typecast as uint8_t, or an

Additional materials from the author are available at:
www.circuitcellar.com/article-materials

RESOURCES

Microduino | www.microduinoinc.com

E-Switch | www.e-switch.com

http://www.circuitcellar.com/article-materials
http://www.microduinoinc.com
http://www.e-switch.com

circuitcellar.com 75
CO

LU
M

NS

FIGURE 11
My Buggy has run into the leg of a high chair. It’s tough creating avoidance routines that will work for all
situations. That’s why more sophisticated robots typically have many levels of avoidance.

8-bit byte (0-255). So, the only legal values
that these variables can take on are integers
between 0-255. If the provider of the routines
had defined _time as float (floating point),
we could have used fractions of a second. You
might want to try replacing all the “1”s with
0.1 and see what happens. Then, you can
directly alter the Arduino code by replacing
the text uint8_t with the text float, and
then recompiling (flashing firmware). Does it
act differently? What about the turns? That’s
a separate function, but you can replace the
uint8_t with float there also. Don’t forget
to recompile.

Note: This is not a permanent change.
And because the saved project only saves
the blocks, when you reload your project the
Arduino code is built again from its libraries.
As a result, any changes you made in the code
go away. To make this change permanent,
you need to do so in the library, where the
function is permanently stored.

CONCLUSION
Now you may be able to see that the Itty

Bitty Buggy—while an inexpensive and fun
“first robot”—is not limiting to your child (or
the child in you) in any way. It introduces one
to building and operating a number of fun
projects that can stimulate one’s imagination
and lead to a curious desire to dominate the
universe—or at least improve on the program!

A couple things bother me, beyond what
I may have already mentioned. Some of the
application help is not available in English.
However, the Microduino website does have
an English Wiki link that is constantly being
improved. I’m sure that as the popularity of
IBB increases, so will the support.

The sensors available from Microduino
were not designed specifically for integration
into the Buggy—except for those cookie
modules that plug on and have no physical
position demands. I think some sensors could
be integrated into the mechanical building
system, so they could be easily secured to the
vehicle/creature being built. Using the tiny
connectors may save some real estate, but if
they’re going to be made available, a more
standard connector would be a plus.

It’s only fair that I praise those areas in
which I think Microduino has done things
right. The cost of entry is reasonable, and
includes many immediately gratifying
features. Their redesign of existing hardware
has miniaturized what would otherwise
be a growing stack of individual products.
The inclusion of additional programming
environments allows the Buggy’s shelf life to
be extended after boredom has set in. The
lithium ion battery is extremely important.
I’ve seen many abandon any interest in a

device just because low batteries unknowingly
introduced erratic operations that didn’t make
sense, creating unwarranted frustration.

If you want to provide someone with a fun
toy that can encourage learning, I recommend
the Itty Bitty Buggy. And don’t forget to add
the Buggy Bumper, just to be safe!

FIGURE 10
With just a few added blocks, our
bumper switches can redirect the
program flow to back the Buggy away
from danger.

CIRCUIT CELLAR • MAY 2019 #34676
PR

O
D

U
CT

 N
EW

S

PRODUCT NEWS

COMe Type 7 Card Sports AMD EPYC Embedded 3000 Processor
Congatec has introduced its first Server-on-Module (SoM)

with AMD embedded server technology. The new conga-B7E3
Server-on-Module with AMD EPYC Embedded 3000 processor
offers up to 52% more instructions per clock compared to
legacy architectures, according to the company. Use cases
include Industry 4.0, smart robot
cells with collaborative robotics,
autonomous robotic and logistics
vehicles, as well as virtualized
on-premise equipment in harsh
environments to perform functions
such as industrial routing, firewall
security and VPN technologies.

The conga-B7E3 COM Express
Type 7 modules are equipped
with AMD EPYC Embedded 3000
processors with 4, 8, 12, or 16
high-performance cores, support

simultaneous multi-threading (SMT) and up to 96 GB of DDR4
2666 RAM in the COM Express Basic form factor and up to 1 TB
in full custom designs. Measuring just 125 x 95 mm, the COM
Express Basic Type 7 module supports up 4x 10 GbE and up to
32 PCIe Gen 3 lanes. For storage the module even integrates an

optional 1 TB NVMe SSD and offers 2x
SATA Gen 3.0 ports for conventional
drives. Further interfaces include
4x USB 3.1 Gen 1, 4x USB 2.0 as
well as 2x UART, GPIO, I2C, LPC and
SPI. Attractive features also include
seamless support of dedicated high-
end GPUs and improved floating-point
performance, which is essential for
emerging AI and HPC applications.

Congatec
www.congatec.com

960 W DIN Rail Supply Boasts 95% Efficiency
TDK has announced the addition of a 960 W rated model

to its DRF series of AC-DC DIN rail mount power supplies. The
high 95% efficiency produces less internal waste heat enabling
electrolytic capacitors to run cooler, providing a calculated life
of in excess of eleven years with a 75% load at 230Vac input.
The unit can supply a peak load of 1440W (24V 60A) for up to 4
seconds to power capacitive and inductive loads. Applications
include industrial process control, factory automation, and
test and measurement equipment. The power supply has a
24 V output, adjustable from 24 V to 28 V, using either the
front panel mounted trim potentiometer or an external 5 to
6V source. The input range is 180 to 264 VAC, withstanding
surges of up to 300 VAC for 5 seconds. The operating ambient
temperature is -25°C to +70oC, -40°C cold start, derating
linearly above 50°C to 75% load at 70°C.

The DRF960-24-1 is 123.4 mm tall, 139 mm deep and has
a narrow 110 mm width saving both space on the rail and in
the cabinet. Remote on/off and a 30 V 1 A rated DC OK relay
contact are provided as standard. The DRF960 is certified to
the safety standards of IEC/UL/CSA/EN 60950-1, UL508 and is

CE marked in accordance to the Low Voltage, EMC and RoHS
Directives. The unit is compliant to EN 55032-B (radiated
and conducted emissions), EN 61000-3-2 harmonics and IEC
61000-4 immunity standards.

TDK-Lambda | www.tdk-lambda.com

MCU-Based Solution is Qualified with Alexa Voice Service
NXP Semiconductors has unveiled an MCU based voice control solution qualified with Amazon’s Alexa Voice Service (AVS). This

enables original equipment manufacturers (OEMs) to quickly, easily and inexpensively add voice control to their products, giving
their customers access to rich voice experiences with Alexa. Built on an NXP i.MX RT
crossover platform, this MCU-based AVS solution enables low latency, far-field, “wake
word” detection; embeds all necessary digital signal processing capabilities; runs on
Amazon FreeRTOS; and includes an Alexa client application.

This MCU-based AVS solution provides OEMs with a self-contained, turnkey offering
that enables them to quickly add Alexa to their products. It includes the MCU, the
TFA9894D smart audio amplifier, optional A71CH secure element and comes with
fully integrated software. It also features noise suppression, echo cancellation, beam
forming and barge-in capabilities that enable use in acoustically difficult environments.

NXP offers at its Mougins, Sophia-Antipolis facilities a product testing service for
Alexa Built-in products, available to its customers desiring to test their devices before
submitting to Amazon for final evaluation.

NXP Semiconductors | www.nxp.com

http://www.congatec.com
http://www.tdk-lambda.com
http://www.nxp.com

circuitcellar.com 77

TS-7250-V2

Single Board Computer

1GHz ARM Computer with
Customizable FPGA-Driven

PC/104 Connector
and Several Interfaces

at Industrial Temp

www.embeddedARM.com

IDEA BOX
The Directory of
PRODUCTS & SERVICES

AD FORMAT:
Advertisers must furnish digital files that meet our specifications (circuitcellar.com/mediakit).

All text and other elements MUST fit within a 2" x 3" format.
E-mail adcopy@circuitcellar.com with your file.

For current rates, deadlines, and more information contact
Hugh Heinsohn at 757-525-3677 or Hugh@circuitcellar.com.

Surplus & New Parts & Supplies
Since 1967

Discount Prices
Fast Shipping

LEDS . CONNECTORS . RELAYS
SOLENOIDS . FANS . ENCLOSURES
MOTORS . WHEELS . MAGNETS
PC BOARDS . POWER SUPPLIES
SWITCHES . LIGHTS . BATTERIES
and many more items...

We have what you need for your next project.

SERVER TEST

The Textbook, Hardware, and Compiler
bundle is the perfect combination

to achieve a hands-on learning
experience for any skill level ranging

from beginner to advanced!
Check It Out at
www.ccsinfo.com/E3M19
sales@ccsinfo.com (262) 522-6500 X 35

PIC® MCU is a registered trademark of Microchip Technology Inc.

LearnC ®on a PIC
Micro ontroller

Only $84.95!

cc-webshop.com

Circuit Cellar
2018 Archive

Order yours today

mailto:adcopy@circuitcellar.com
http://www.embeddedARM.com
mailto:Hugh@circuitcellar.com
http://www.ccsinfo.com/E3M19
mailto:sales@ccsinfo.com
www.circuitcellar.com/mediakit
www.allelectronics.com
www.cc-webshop.com

CIRCUIT CELLAR • MAY 2019 #34678
TE

ST
S

YO
U

R
EQ

TEST YOUR EQ
Contributed by David Tweed

For more information:
circuitcellar.com/category/test-your-eq/

Problem 1— Back in the days of stand-alone UART chips
that required separate baud rate generators, one way to
generate the 3.6864 MHz clock for the baud rate generator
was to take the 16.000 MHz system clock and feed it to a
synchronous 4-bit counter that was configured to divide by

13 by forcing it to load the value 3 when it got to 15, giving
the following waveforms:

As you can see, the QB output of the counter produces 3
pulses for every 13 input clocks, and it turns out that this
comes very close to the required frequency. What is the exact
error, expressed as a percentage?

Problem 2— Obviously, there is some jitter in the timing of
the individual pulses produced by this circuit, relative to an
evenly-spaced clock at the same frequency. What is the peak-
to-peak magnitude of this jitter?

Problem 3— Modern UARTs usually include internal baud
rate generators that can divide the input clock by an arbitrary
integer N. Given an input clock of 16.000 MHz, and assuming
that the output of the baud rate generator needs to be 16× the
actual baud rate, what is the highest standard baud rate for
which the frequency error is no greater than that generated
by the scheme above?

Problem 4— What is the maximum frequency error that a
baud rate generator for a UART can produce? Assumptions:

• 8N1 data format
• Error equally distributed between transmitter and receiver
• Generator output is 16× the baud rate

www.circuitcellar.com/category/test-your-eq
www.cc-webshop.com

circuitcellar.com 79
TECH THE FUTURE

How Programming
Languages Evolve to
Reduce Risks

By
Quentin Ochem,
Lead of Technical Account
Management and
Business Development,
AdaCore

The Future of Safe Programming

T he future of microcontroller- and embedded processor-
based systems is clear. While there is definitely a large
amount of logic that can be directly encoded in the
silicon or FPGA, there is also an increasing need for more

complex or easier-to-update features to be developed in software
on top of it. And these systems may have extremely demanding
requirements for safety and/or security. Trends in the automotive
domain with assisted or automated driving are a very good example.

The bad news is that programming is much more an empirical
process than a deterministic science. Developers can write up to
hundreds of lines of code per day—shared with potentially hundreds
of other developers—all having slightly different appreciation of
what the program should do or how software engineering principles
should be applied. Considering that some of these applications will
be maintained by generations of developers, it’s no surprise to hear
that there is roughly one bug per hundred lines of code [1]. Spread
over millions of lines running on the simplest device nowadays, this
means tens of thousands of lurking bugs, opening doors to hackers
and potentially jeopardizing life or property.

Traditional industry response has been a combination of
processes and tools. These have been successful, but also come at
a cost in terms of verification effort. However, this also comes at a
cost in terms of verification effort. As a result, outside of domains
such as aerospace and defense, almost no industry has been able
to justify the effort.

The tide is turning, though. As software is getting more and more
tightly involved in almost every device, so are demands for safety
and security. The automotive domain with assisted or autonomous
driving is a good example (Figure 1). The
increased cost may look prohibitive at first, but
fortunately, there are other ways to improve
the situation: starting by improving the
programming language itself.

BEYOND THE INFAMOUS C
A painful number of bug reports are

linked to vulnerabilities associated with the C
programming language, or C-based relatives
such as C++. Many tools exist for no other
reason than to try to offset these shortcomings,
which can be split into two main categories:

• Error-prone language definition: These relate
to constructs that may either be ambiguous,
or be difficult to interpret. Something like:
“int * i; i = i + 1” may mean pointer
arithmetic to a careful developer, or be
mistaken for an integer increment. While
simple issues can be identified through static

FIGURE 1
The automotive domain with assisted or autonomous driving is a good example application where
safety and security challenges are becoming more complex and dependent on software.

80 CIRCUIT CELLAR • MAY 2019 #346
TE

CH
 T

HE
 F

UT
UR

E

analysis, their accumulation may eventually
render the code very difficult to analyze.

• Lack of specification capabilities: While C fully
allows a developer to express how a program
works, it doesn’t provide much capability
for expressing what it should do, or under
which constraints it should operate. Lack
of such specification means many missed
opportunities to check software against its
intended functionality. External tools exist to
work around this issue, but because they’re
not integrated in the language, they’re facing
many limitations.

The good news is that there seems to be a
renewed effort in the programming language
community to provide alternatives to C. For the
first issue, an extremely promising example is
the Rust language [2] which seems to be getting
lot of traction with an imaginative approach to
pointer safety. Even within the C community
there’s a growing understanding that “trusting
the developer” shouldn’t be a design principle
anymore [3].

Initiatives also exist on the second aspect.
The “easy” answer is programming by assertion,
for example by adding intermediate verification
checks in the software that can be enabled
or disabled depending on the situation. But
there is also progress through the evolution of
programming languages. A very good example
is the work on the new C++ 202X [4] standard
which is looking at extending specification with
contracts.

ADA & SPARK: THE NEW WAVE?
There’s no doubt that programming

languages at large are improving at meeting
safety and security concerns. However, a
programming language was designed 35 years
ago to solve these very issues, and today is
still one of the most credible alternatives to
C for safety and security purposes: the Ada
programming language. Like others, it has
come through many revisions, with contract-
based programming introduced in its 2012
revision for example. From the start, it has
offered a very precise and explicit semantics,
and has provided mechanisms for specifying
code constraints such as scalar type ranges,
array bounds, data mapping on memory,
floating point value precision and many others.

Having a precise definition and constraints
in the language gave rise to the formally
analyzable SPARK subset [5] of Ada. With Ada as
with any other languages, processes and tools
will be needed. But with a strong foundation,
it’s possible to go much further. Most C static
analysis tools are in the business of identifying
potential bugs while being unable to guarantee
that all have been caught.

Using the SPARK subset of Ada together with
the corresponding tool support can guarantee
that all errors of a certain category have been
found, with a very low rate of false alarms.
Demonstrating a property such as absence of
buffer overflow for example becomes a practical
matter, opening the door to much more
advanced functional analysis, such as proving a
program against some of its requirements. This
is not just an advantage in theory; an analysis
conducted by market research firm VDC in 2018
[6] demonstrated that Ada could lead to cost
reduction up to 40% over C in certain industries.

It's therefore no surprise that the Ada and
SPARK, which were still a few years ago mostly
used within the aerospace domain, are now being
adopted by a new wave of users, in industries
such as medical devices [7] [8], automotive [9],
security [10] and semiconductors [11].

THE DAUNTING LEGACY
There is, however, an important point that

all of the above assumes. Adopting Ada or
SPARK, going the Rust route or switching to a
future version of C or C++ will require you to
deal with legacy software, which wasn’t written
for these standards. While it may be reasonable
to take on some minimal rewrite, the cost of
rewriting these millions of lines of code will be
prohibitive.

As always, there’s a reasonable alternative.
Most of these languages interface well with
legacy C software. With C or C++ this is obvious,
but for example, Rust and Ada/SPARK also
provide specific support for interfacing with C.
So, the idea that the industry is going towards
to is: keep the legacy software, rewrite what’s
highly critical or sensitive, and develop new
modules with whichever new language is
selected. This will allow the new code to reach
proper levels of safety more effectively, giving
some more time to find solutions to improving
what can’t change.

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
Reference [1] through [11] as marked in the article can be
found there.

RESOURCES
AdaCore | www.adacore.com

Quentin Ochem has a software engineering background, specialized
in software development for critical applications. He has over 10
years of experience in Ada development. He responsibilities at
AdaCore include leading technical account management as well as
driving business development, following projects related to avionics,
railroad, space and the defense industries.

http://www.circuitcellar.com/article-materials
http://www.adacore.com

Materials:
Fr4
Metal Core
Isola
Rogers
Polyimide - Flex
MagtronMagtron

Technology:
Up to 50 Layers
Any Layer HDI
Sequential Lamination
Blind / Buried Vias
Laser Drilling / Routing
Heavy CopperHeavy Copper

Whether you are an
EMS, CM or OEM,

let our bare boards be the foundation
you build your reputation upon!

We will make only what is needed,
when it’s needed,

and in the amount needed.
You no longer have to worry about long shelf life

or tie your capital in bare board inventory.

www.PCB4u.com sales@PCB4u.com

http://www.PCB4u.com
mailto:sales@PCB4u.com

FROM THE DEEP BLUE SEA
TO THE WILD BLUE YONDER

The TS-7680 is designed to provide
extreme performance for applications demanding

high reliability, fast boot-up/startup, and
connectivity at low cost and

low power. Because there are so many features packed
on to one single board computer you will see a

 reduction in payload weight since there is no need for
additional boards, micro-controllers, or peripherals.

Rated for industrial temperature range of -40°C to +85°C
 the TS-7680 is deployed in �eet management,

pipeline monitoring, and industrial controls
and is working in some of the most demanding

places on Earth.

The TS-7680 will help you perform at your
very best in a variety of critical missions.

 Qty 100

Low Power Industrial
Single Board Computer with

WiFi and Bluetooth

$159

TS-7680

www.embeddedarm.com

