
Introduction to ROS
Programming

March 5, 2013

Today

● We'll go over a few C++ examples of nodes communicating
within the ROS framework

● We will recap the concepts of ROS nodes, topics and
messages.

● We'll also take a look at the rosbuild repository structure and
creating and building a simple package using rosmake

Review - ROS Overview

● ROS is a peer-to-peer robot middleware package
● We use ROS because it allows for easier hardware

abstraction and code reuse
● In ROS, all major functionality is broken up into a number of

chunks that communicate with each other using messages
● Each chunk is called a node and is typically run as a

separate process
● Matchmaking between nodes is done by the ROS Master

camera node

cmvision
node control node

create node

USB USB-
Serial

ROS Master

I will publish
images on

topic "image"

I will receive
images on topic

"image" and
publish blobs on

topic "blobs"

I will receive blobs
on topic "blobs"

and publish
velocities on topic

"cmd_vel"

I will receive
velocities on

topic "cmd_vel"

[adapted from slide by Chad Jenkins]

Review - How ROS works

Review - How ROS works

[adapted from slide by Chad Jenkins]

camera node

cmvision
node control node

create node

USB USB-
Serial

ROS Master

SETS UP
COMMUNICATION

images
on

"image"

blobs on
"blobs"

velocities
on

"cmd_vel"

ROS Nodes

● A node is a process that performs some computation.
● Typically we try to divide the entire software functionality into

different modules - each one is run over a single or multiple
nodes.

● Nodes are combined together into a graph and communicate
with one another using streaming topics, RPC services, and
the Parameter Server

● These nodes are meant to operate at a fine-grained scale; a
robot control system will usually comprise many nodes

[http://www.ros.org/wiki/Nodes]

http://www.ros.org/wiki/Nodes

ROS Topics

● Topics are named buses over which nodes exchange
messages

● Topics have anonymous publish/subscribe semantics - A
node does not care which node published the data it
receives or which one subscribes to the data it publishes

● There can be multiple publishers and subscribers to a topic
○ It is easy to understand multiple subscribers
○ Can't think of a reason for multiple publishers

● Each topic is strongly typed by the ROS message it
transports

● Transport is done using TCP or UDP

[http://www.ros.org/wiki/Topics]

http://www.ros.org/wiki/Topics

ROS Messages

● Nodes communicate with each other by publishing
messages to topics.

● A message is a simple data structure, comprising typed
fields. You can take a look at some basic types here
○ std_msgs/Bool
○ std_msgs/Int32
○ std_msgs/String
○ std_msgs/Empty (huh?)

● In week 8 we will look into creating our own messages
● Messages may also contain a special field called header

which gives a timestamp and frame of reference

[http://www.ros.org/wiki/Messages]

http://www.ros.org/wiki/std_msgs
http://www.ros.org/doc/api/std_msgs/html/msg/Bool.html
http://www.ros.org/doc/api/std_msgs/html/msg/Bool.html
http://www.ros.org/doc/api/std_msgs/html/msg/Int32.html
http://www.ros.org/doc/api/std_msgs/html/msg/Int32.html
http://www.ros.org/doc/api/std_msgs/html/msg/String.html
http://www.ros.org/doc/api/std_msgs/html/msg/String.html
http://www.ros.org/doc/api/std_msgs/html/msg/Empty.html
http://www.ros.org/doc/api/std_msgs/html/msg/Empty.html
http://www.ros.org/wiki/Messages

Getting the example code

● These tutorials are based on the beginner ROS tutorials
● All of today's tutorials available here:

○ http://farnsworth.csres.utexas.edu/tutorials/

● Use the following commands to install a tarball in your workspace

○ roscd

○ wget http://farnsworth.csres.utexas.edu/tutorials/intro_to_ros.tar.gz

○ tar xvzf intro_to_ros.tar.gz

○ rosws set intro_to_ros

○ <restart terminal>

○ rosmake intro_to_ros

http://farnsworth.csres.utexas.edu/tutorials/
http://farnsworth.csres.utexas.edu/tutorials/

talker.cpp (intro_to_ros)
#include "ros/ros.h"
#include "std_msgs/String.h"
#include <sstream>

int main(int argc, char **argv) {
 ros::init(argc, argv, "talker");
 ros::NodeHandle n;
 ros::Publisher chatter_pub = n.advertise<std_msgs::String>("chatter", 1000);
 ros::Rate loop_rate(1);
 int count = 0;

 while (ros::ok()) {
 std_msgs::String msg;
 std::stringstream ss;
 ss << "hello world " << count;
 msg.data = ss.str();
 ROS_INFO("%s", msg.data.c_str());
 chatter_pub.publish(msg);
 ros::spinOnce();
 loop_rate.sleep();
 ++count;
 }
 return 0;
}

listener.cpp (intro_to_ros)
#include "ros/ros.h"
#include "std_msgs/String.h"

void chatterCallback(const std_msgs::String::ConstPtr msg) {
 ROS_INFO("I heard: [%s]", msg->data.c_str());
}

int main(int argc, char **argv) {
 ros::init(argc, argv, "listener");
 ros::NodeHandle n;
 ros::Subscriber sub =
 n.subscribe<std_msgs::String>("chatter", 1000, chatterCallback);
 ros::spin();
 return 0;
}

talker.cpp
#include "ros/ros.h"
#include "std_msgs/String.h"
#include <sstream>

● ros/ros.h is a convenience header that includes most of the
pieces necessary to run a ROS System

● std_msgs/String.h is the message type that we will need to
pass in this example
○ You will have to include a different header if you want to

use a different message type
● sstream is responsible for some string manipulations in

C++

talker.cpp
 ros::init(argc, argv, "talker");
 ros::NodeHandle n;

● ros::init is responsible for collecting ROS specific information
from arguments passed at the command line
○ It also takes in the name of our node
○ Remember that node names need to be unique in a

running system
○ We'll see an example of such an argument in the next

example
● The creation of a ros::NodeHandle object does a lot of work

○ It initializes the node to allow communication with other
ROS nodes and the master in the ROS infrastructure

○ Allows you to interact with the node associated with this
process

talker.cpp
 ros::Publisher chatter_pub = n.advertise<std_msgs::String>("chatter", 1000);
 ros::Rate loop_rate(1);

● NodeHandle::advertise is responsible for making the
XML/RPC call to the ROS Master advertising std_msgs::
String on the topic named "chatter"

● loop_rate is used to maintain the frequency of publishing at 1
Hz (i.e., 1 message per second)

talker.cpp
 int count = 0;
 while (ros::ok()) {

● count is used to keep track of the number of messages
transmitted. Its value is attached to the string message that
is published

● ros::ok() ensures that everything is still alright in the ROS
framework. If something is amiss, then it will return false
effectively terminating the program. Examples of situations
where it will return false:
○ You Ctrl+c the program (SIGINT)
○ You open up another node with the same name.
○ You call ros::shutdown() somewhere in your code

talker.cpp
 std_msgs::String msg;
 std::stringstream ss;
 ss << "hello world " << count;
 msg.data = ss.str();

● These 4 lines do some string manipulation to put the count
inside the String message
○ The reason we do it this way is that C++ does not have a

good equivalent to the toString() function
● msg.data is a std::string
● Aside: I typically use boost::lexical_cast() in place of the

toString() function. lexical_cast() pretty much does the thing
above for you (Look up this function if you are interested)

talker.cpp
 ROS_INFO("%s", msg.data.c_str());
 chatter_pub.publish(msg);

● ROS_INFO is a macro that publishes a information message
in the ROS ecosystem. By default ROS_INFO messages are
also published to the screen.
○ There are debug tools in ROS that can read these

messages
○ You can change what level of messages you want to be

have published

● ros::Publisher::publish() sends the message to all
subscribers

talker.cpp
 ros::spinOnce();
 loop_rate.sleep();
 ++count;

● ros::spinOnce() is analogous to the main function of the ROS
framework.
○ Whenever you are subscribed to one or many topics, the

callbacks for receiving messages on those topics are not
called immediately.

○ Instead they are placed in a queue which is processed
when you call ros::spinOnce()

○ What would happen if we remove the spinOnce() call?
● ros::Rate::sleep() helps maintain a particular publishing

frequency
● count is incremented to keep track of messages

listener.cpp - in reverse!
int main(int argc, char **argv) {
 ros::init(argc, argv, "listener");
 ros::NodeHandle n;
 ros::Subscriber sub =
 n.subscribe<std_msgs::String>("chatter", 1000, chatterCallback);
 ros::spin();
 return 0;
}

● ros::NodeHandle::subscribe makes an XML/RPC call to the
ROS master
○ It subscribes to the topic chatter
○ 1000 is the queue size. In case we are unable to process

messages fast enough. This is only useful in case of
irregular processing times of messages. Why?

○ The third argument is the callback function to call
whenever we receive a message

● ros::spin() a convenience function that loops around ros::
spinOnce() while checking ros::ok()

listener.cpp
#include "ros/ros.h"
#include "std_msgs/String.h"

void chatterCallback(const std_msgs::String::ConstPtr msg) {
 ROS_INFO("I heard: [%s]", msg->data.c_str());
}

● Same headers as before
● chatterCallback() is a function we have defined that gets

called whenever we receive a message on the subscribed
topic

● It has a well typed argument.

Running the code

● You will have to execute the following steps to get this
example working

● After you download our code, build the example package
○ rosmake intro_to_ros

● In separate terminal windows, run the following programs:
○ roscore
○ rosrun intro_to_ros talker
○ rosrun intro_to_ros listener

Example 2 - Adding a Messenger node

● A number of times in ROS you will have a bunch of nodes
processing data in sequence. For instance a blob detection
node provides the location of blobs for every camera image it
receives

● To demonstrate this, we'll change our previous example in
the following ways:
○ Introduce a messenger node that listens for messages on

the topic chatter and forwards them on the topic chatter2.
(I couldn't think of a cute name for this topic)

○ At the command line remap the listener to subscribe to
chatter2 instead of chatter

messenger.cpp (intro_to_ros)
#include "ros/ros.h"
#include "std_msgs/String.h"

ros::Publisher chatter_pub;
std_msgs::String my_msg;

void chatterCallback(const std_msgs::String::ConstPtr msg) {
 ROS_INFO("I heard: [%s]", msg->data.c_str());
 my_msg.data = msg->data + ". Dont kill the messenger!";
 chatter_pub.publish(my_msg);
}

int main(int argc, char **argv) {
 ros::init(argc, argv, "messenger");
 ros::NodeHandle n;
 ros::Subscriber sub =
 n.subscribe<std_msgs::String>("chatter", 1000, chatterCallback);
 chatter_pub = n.advertise<std_msgs::String>("chatter2", 1000);
 ros::spin();
 return 0;
}

Running the code

● You will have to execute the following steps to get this
example working

● In separate terminal windows, run the following programs:
○ roscore
○ rosrun intro_to_ros talker
○ rosrun intro_to_ros listener chatter:=chatter2
○ rosrun intro_to_ros messenger

ROS code hierarchy

● Repository: Contains all the code from a particular
development group (We have 3 repositories from utexas)

● Stack: Groups all code on a particular subject / device
● Packages: Separate modules that provide different services
● Nodes: Executables that exist in each model (You have seen

this already)

Repository

Stacks

Packages

Nodes

utexas-art-ros-pkg - 3 branches

trunk

art_vehicle

velodyne

sandbox

android

gps_drivers

spr12

art_examples

...

projects

art_experimental

velodyne_experimental

art_vehicle stack
utexas-art-ros-pkg

art_vehicle

applanix

art_common

art_image

art_msgs

art_nav

art_observers

art_pilot

art_map

art_run

art_servo

art_teleop

simulator_art

velodyne velodyne_common

read

cloud
velodyne velodyne_common

roscore

height_map
velodyne velodyne_heightmap

/velodyne/cloud
sensor_msgs::PointCloud

/velodyne/obstacles
sensor_msgs::PointCloud

/velodyne/raw_scan

Example velodyne runtime

Command line tools - rospack

● rospack is a command-line program used to find packages
among the "forest" of code in a typical ROS distribution,
calculate dependencies, mangle Makefiles, and in general
promote peace and harmony in a ROS distribution.

● Some examples
○ rospack find intro_to_ros
○ rospack list | grep ros
○ rospack depends intro_to_ros

[http://www.ros.org/wiki/rospack]

http://www.ros.org/wiki/rospack

Command line tools - rosstack

● rosstack is a command-line tool for retrieving information
about ROS stacks available on the filesystem. It implements
a wide variety of commands ranging from locating ROS
stacks in the filesystem, to listing available stacks, to
calculating the dependency tree of stacks.

● Some examples
○ rosstack contains intro_to_ros
○ rosstack list-names | grep examples
○ rosstack depends art_examples

[http://www.ros.org/wiki/rosstack]

http://www.ros.org/wiki/rosstack

Command line tools - roscd

● roscd is part of the rosbash suite. It allows you to change
directory (i.e., cd) directly to a package or stack by name
rather than having to know the filesystem path.

● Some examples
○ roscd art_examples
○ roscd intro_to_ros
○ roscd intro_to_ros/src

[http://www.ros.org/wiki/roscd]

http://www.ros.org/wiki/roscd

rosbuild

● rosbuild contains scripts for managing the CMake-based
build system for ROS.

● 3 files are used to build your ROS package
○ CMakeLists.txt - standard CMake build file, but allows ROS

macros
○ manifest.xml - specifies your dependencies. also provides

compiler and linker flags.
○ Makefile - 1 single line that invokes CMake. You should

never have to change this.

[http://ros.org/wiki/rosbuild]

http://ros.org/wiki/rosbuild

CMakeLists.txt

● CMakeLists.txt is the equivalent of a Makefile. It is used by
cmake to build code.

● Let us take a look at the CMakeLists.txt file for our
intro_to_ros package - available here

● There are a number of good examples of CMakeLists.txt:
○ http://www.ros.org/wiki/rosbuild/CMakeLists/Examples

● We will quickly see some of the parameters and functions
that can be used in CMakeLists.txt

http://code.google.com/p/utexas-art-ros-pkg/source/browse/branches/sandbox/stacks/art_examples/intro_to_ros/CMakeLists.txt
http://code.google.com/p/utexas-art-ros-pkg/source/browse/branches/sandbox/stacks/art_examples/intro_to_ros/CMakeLists.txt
http://www.ros.org/wiki/rosbuild/CMakeLists/Examples
http://www.ros.org/wiki/rosbuild/CMakeLists/Examples
http://www.ros.org/wiki/rosbuild/CMakeLists/Examples

rosbuild flags
●ROS_BUILD_TYPE: Set the build type. Options are

(default: RelWithDebInfo):
○Debug : w/ debug symbols, w/o optimization
○Release : w/o debug symbols, w/ optimization
○RelWithDebInfo : w/ debug symbols, w/ optimization
○RelWithAsserts : w/o debug symbols, w/ optimization, w/ assertions (i.e.,

w/o -DNDEBUG). New in ros 1.1.
○MinSizeRel : w/o debug symbols, w/ optimization, stripped binaries

●ROS_BUILD_STATIC_EXES: Build static-only executables (e.g., for
copying over to another machine)? true or false; default: false

●ROS_BUILD_SHARED_LIBS: Build shared libs? true or false; default: true
●ROS_BUILD_STATIC_LIBS: Build static libs? true or false; default: false
●ROS_COMPILE_FLAGS: Default compile flags for all source files; default: "-

W -Wall -Wno-unused-parameter -fno-strict-aliasing"
●ROS_LINK_FLAGS: Default link flags for all executables and libraries;

default: ""
[http://ros.org/wiki/rosbuild]

http://ros.org/wiki/rosbuild

CMakeLists.txt (contd)

The main ROS macros that you will end up using:
● rosbuild_add_library

○ Creates a library from the given C++ file
○ Places library by default in lib folder

● rosbuild_add_executable
○ Creates an executable from the given C++ file - should

have main
○ executables are placed in bin folder

● target_link_libraries
○ Link an executable in your package to a library inside the

same package.
○ Not required for libraries in other packages.
○ Required for external libraries

manifest.xml

● manifest.xml provides dependency information to the
rosbuild system - the intro_to_ros manifest.xml is here

● Provides some basic documentation for the package. This is
good for published packages. For instance the manifest.xml
of the ROS package velodyne common is used to auto-
generate section 1 on the wiki page

● Provides the system dependencies of a package
○ <rosdep name="libpcap" />

● Provides other ROS package dependencies
○ <depend package="sensor_msgs" />

● Exports compiler and linker flags
○ These are used when some other ROS package depends

on your package.

http://code.google.com/p/utexas-art-ros-pkg/source/browse/branches/sandbox/stacks/art_examples/intro_to_ros/manifest.xml
http://code.google.com/p/utexas-art-ros-pkg/source/browse/trunk/stacks/velodyne/velodyne_common/manifest.xml
http://www.ros.org/wiki/velodyne_common

manifest.xml (contd)

● Compiler flags
○ -I<path to include directory>

● Linker flags
○ -L<path to static/shared object libraries>
○ -l<library name> (multiple times for multiple libraries)
○ -Wl,-rpath,${prefix}/lib (path to dynamically linked libraries)

● So the velodyne_common manifest has these lines. It has a
library (velodyne) and a system dependency (pcap):

 <export>
 <cpp cflags="-I${prefix}/include" lflags="-L${prefix}/lib
 -Wl,-rpath,${prefix}/lib -lvelodyne -lpcap"/>
 </export>

What is rosmake?
● rosmake is a dependency aware build tool for ros packages

and stacks

● Some common use cases:
○ rosmake <package-name> - will build the ROS packages

along with the ROS dependencies
○ rosmake <stack-name> - will build all the packages in that

stack
○ rosmake <name> --pre-clean - runs make clean && make

on all the packages in the dependency tree
○ rosmake <name> --rosdep-install - installs any required

system dependencies

● Run: rosmake --help to see all options

rosmake vs make
● To build a package, you can also go to that package

directory and type make
○ roscd intro_to_ros
○ make

● make will only build the package (i.e. not the dependencies)
● make is faster than rosmake

○ the entire dependency tree is not checked
● I typically use rosmake when building a package for the first

time, or am unclear about the dependencies. After that, I use
make

Command line tools - roscreate-pkg

● roscreate-pkg creates a new package in your current
directory. For this course, you will only be creating new
packages in the spr12 directory inside sandbox.

● This auto-generates standard files inside the package:
CMakeLists.txt, Makefile, manifest.xml and mainpage.dox
(don't worry about the last one)

● Example:
○ roscd spr12
○ roscreate-pkg piyush_khandelwal_p2

[http://www.ros.org/wiki/roscreate]

http://www.ros.org/wiki/roscreate

How to write the intro_to_ros package

● Create the package
○ roscd art_examples
○ roscreate-pkg intro_to_ros

● Inside the package, create a folder to contain the source files
○ roscd intro_to_ros OR cd intro_to_ros
○ mkdir src
○

● Inside the src directory, write the 3 files:
○ roscd intro_to_ros/src OR cd src
○ gedit talker.cpp
○ gedit messenger.cpp
○ gedit listener.cpp

How to write the intro_to_ros package

● Build these 3 files into executables; update CMakeLists.txt
○ roscd intro_to_ros OR cd ../
○ gedit CMakeLists.txt
○ Use the rosbuild_add_executable macro to create

executables for these 3 files

● Run make; you will get an error message that ros.h was not
found.
○ Update manifest.xml to add roscpp dependency
○ gedit manifest.xml

● Run make and continue editing code to solve compilation
and runtime issues

Review (continued)
With this material, you should:
● Be able to create new ROS packages
● Write basic ROS code, and be able to update CMakeLists.txt

and manifest.xml based on your code
● (Extra Credit) Be able to write libraries through the ROS build

system, to be used by your code and other packages
● Use some basic command line tools to move around the

ROS ecosystem, and display basic information about stacks
and packages.

Think about what steps you are comfortable with. Discuss with
us during office hours.

