

Nick Mikstas

ELEN 604

Final Report

Winter 2017

Table of Contents

Introduction………………………………………………...………………………………. 1

System Block Diagram………………………………………………………………….. 1

Block Descriptions………………………………………………………………………… 1
 NMPSM3……. 1

 General Layout………………………………………………………………………………………………. 2

 Command Opcodes and Clock Cycles…………………………………………………………….. 2

 Instruction Descriptions………………………………………………………………………………… 3

 Instruction Layout………………………………………………………………………………………….. 5

 Control Bits…………………………………………………………………………………………………….. 7

 Processor Internal Layout………………………………………………………………………………. 10

 VGA Controller (Picture Processing Unit)………………………………………………………………. 11

 PPU History……………………………………………………………………………………………………. 11

 Background Tile Processing……………………………………………………………………………. 12

 PPU Background Tiling Example……………………………………………………………………… 14

 PPU Sprite Processing…………………………………………………………………………………….. 14

 Memory Addresses of the PPU………………………………………………………………………. 15

 UART…….. 15

 Microphone Controller…………………………………………………………………………………………. 16

 Clock Controller……………………………………………………………………………………………………. 16

 Timers 1 and 2………………………………………………………………………………………………………. 17

 ROM Controller and Lookup ROM…………………………………………………………………………. 17

 LED Controllers 1 and 2…………………………………………………………………………………………. 18

 100KHz Clock Enable…………………………………………………………………………………………….. 18

 7 Segment Controller…………………………………………………………………………………………….. 18

 Data MUX…… 19

 MMCM………. 19

Software Functionality…………………………………………………………………. 20

NMPSM Assembler………………………………………………………………………. 22

Differences between Old Project and New Project……………………….. 23

Meta-Stability………………………………………………………………………………. 24

Things Not Implemented……………………………………………………………... 24

Resource Usage……………………………………………………………………………. 25

Timing Report………………………………………………………………………………. 25

Power Report………………………………………………………………………………. 25

Conclusion…………………………………………………………………………………… 26

1

Introduction

This project is an update and extension of a previously built project after taking a class from UCSC

extension several years back. The old project was based on a Nexys 2 board and a Spartan 3 FPGA. The

new project is based on a Basys 3 board and an Artix 7 FPGA. The original design was ported over and

then improved on by taking advantage of higher speeds and additional resources. Several issues were

encountered in the project and had to be overcome. Those issues will be discussed later in the report.

System Block Diagram

Block Descriptions

NMPSM3

The NMPSM3 is the heart of the system. It is a 16-bit soft processor inspired by the PicoBlaze design. It

has four interrupt lines, flat 16-bit addressing and 16-bit port IDs. The processor is capable of speeds

well over 100MHz in the Artix 7 FPGA.

The NMPSM3 uses a block RAM as a micro-coded controller. It uses another block RAM for the stack

and another for the registers. The NMPSM3 has 1024 16-bit general purpose registers and a 1024-word

stack. At least one more block RAM is required for the program ROM. Each 18K block RAM can hold

512 instructions.

The NMPSM3 supports 63 instructions. Most instructions execute in 2 clock cycles but some of indirect

instructions can take 3 clock cycles.

2

General Layout

Command Opcodes and Clock Cycles

Command Opcode
Clock

Cycles
Command Opcode

Clock

Cycles

LOAD rx, #k $01 2 OR rx, ry $63 2

LOAD rx, ry $04 2 XOR rx, #k $66 2

LOAD rx, (ry) $07 3 XOR rx, ry $69 2

STOR rx, ry $0A 2 ADD rx, #k $6C 2

STOR rx, (ry) $0D 3 ADD rx, ry $70 2

JUMP a $10 2 ADDC rx, #k $73 2

JUMP (rx) $13 2 ADDC rx, ry $76 2

JPNZ a $16 2 SUB rx, #k $79 2

JPZ a $19 2 SUB rx, ry $7C 2

JPNC a $1C 2 SUBC rx, #k $80 2

JPC a $20 2 SUBC rx, ry $83 2

CALL a $23 2 TEST rx, #k $86 2

CALL (rx) $26 2 TEST rx, ry $89 2

CLNZ a $29 2 COMP rx, #k $8C 2

CLZ a $2C 2 COMP rx, ry $90 2

CLNC a $30 2 ASL rx $93 2

CLC a $33 2 ROL rx $96 2

RET $36 3 LSR rx $99 2

RTNZ $39 3 ROR rx $9C 2

RTZ $3C 3 SETC $A0 2

RTNC $40 3 CLRC $A3 2

RTC $43 3 EIN0 $A6 2

RTIE $46 3 EIN1 $A9 2

RTID $49 3 EIN2 $AC 2

IN rx, #k $4C 2 EIN3 $B0 2

IN rx, ry $50 2 DIN0 $B3 2

OUT rx, #k $53 2 DIN1 $B6 2

OUT rx, ry $56 2 DIN2 $B9 2

AND rx, #k $59 2 DIN3 $BC 2

AND rx, ry $5C 2 PUSH rx $C0 2

OR rx, #k $60 2 POP rx $C6 3

3

Instruction Descriptions

Instruction Description Carry Status Zero Status

LOAD rx, #k Load register rx with constant k No change No change

LOAD rx, ry Load register rx with contents of register ry No change No change

LOAD rx, (ry)
Load register rx with contents of register whose

address is stored in register ry
No change No change

STOR rx, ry Store contents of register rx in register ry No change No change

STOR rx, (ry)
Store register rx in register whose address is stored

in register ry
No change No change

JUMP a Jump to address a No change No change

JUMP (rx) Jump to address stored in register rx No change No change

JPNZ a
If zero flag not set, jump to address a, else increment

to next instruction
No change No change

JPZ a
If zero flag is set, jump to address a, else increment

to next instruction
No change No change

JPNC a
If carry flag is not set, jump to address a, else

increment to next instruction
No change No change

JPC a
If carry flag is set, jump to address a, else increment

to next instruction
No change No change

CALL a Call subroutine at address a No change No change

CALL (rx) Call subroutine whose address is stored in register rx No change No change

CLNZ a
If zero flag not set, call subroutine at address a, else

increment to next instruction
No change No change

CLZ a
If zero flag set, call subroutine at address a, else

increment to next instruction
No change No change

CLNC a
If carry flag not set, call subroutine at address a, else

increment to next instruction
No change No change

CLC a
If carry flag set, call subroutine at address a, else

increment to next instruction
No change No change

RET Return from subroutine No change No change

RTNZ
If zero flag not set return from subroutine, else

increment to next instruction
No change No change

RTZ
If zero flag set return from subroutine, else

increment to next instruction
No change No change

RTNC
If carry flag not set return from subroutine, else

increment to next instruction
No change No change

RTC
If carry flag set return from subroutine, else

increment to next instruction
No change No change

RTIE Return from interrupt and enable interrupts No change No change

RTID Return from interrupt and disable interrupts No change No change

IN rx, #k Save data on input port k in RAM address rx No change No change

IN rx, ry
Save data on input port described in register ry in

register rx
No change No change

OUT rx, #k Send data stored in register rx to output port k No change No change

OUT rx, ry
Send data stored in register rx to output port

described in register ry
No change No change

4

AND rx, #k AND register rx with k. Store results in register rx 0 Varies

AND rx, ry
AND register rx with register ry. Store results in

register rx
0 Varies

OR rx, #k OR register rx with k. Store results in register rx 0 Varies

OR rx, ry
OR register rx with register ry. Store results in

register rx
0 Varies

XOR rx, #k XOR register rx with k. Store results in register rx 0 Varies

XOR rx, ry
XOR register rx with register ry. Store results in

register rx
0 Varies

ADD rx, #k Add register rx with k. Store results in register rx Varies Varies

ADD rx, ry
Add register rx with register ry. Store results in

register rx
Varies Varies

ADDC rx, #k
Add with carry register rx with k. Store results in

register rx
Varies Varies

ADDC rx, ry
Add with carry register rx with register ry. Store

results in register rx
Varies Varies

SUB rx, #k
Subtract register rx with k. Store results in register

rx
Varies Varies

SUB rx, ry
Subtract register rx with register ry. Store results in

register rx
Varies Varies

SUBC rx,#k
Subtract with carry register rx with k. Store results

in register rx
Varies Varies

SUBC rx, ry
Subtract with carry register rx with register ry. Store

results in register rx
Varies Varies

TEST rx, #k Bit test register rx with constant k
If rx and k =

0, zero = 1

Carry = odd

parity of rx

AND k

TEST rx, ry Bit test register rx with register ry
If rx and ry =

0, zero = 1

Carry = odd

parity of rx

AND ry

COMP rx, #k Compare register rx with constant k
If rx < k,

carry = 1

If rx = k, zero

= 1

COMP rx, ry Compare register rx with register ry
If rx < ry,

carry = 1

If rx = ry,

zero = 1

ASL rx Shift register rx left into carry. Backfill with zero Varies Varies

ROL rx Rotate register rx left into carry. Backfill with carry Varies Varies

LSR rx Shift register rx right into carry. Backfill with zero Varies Varies

ROR rx Rotate register rx right into carry. Backfill with carry Varies Varies

SETC Set carry bit 1 No change

CLRC Clear carry bit 0 No change

EIN0 Enable interrupt 0 No change No change

EIN1 Enable interrupt 1 No change No change

EIN2 Enable interrupt 2 No change No change

EIN3 Enable interrupt 3 No change No change

DIN0 Disable interrupt 0 No change No change

DIN1 Disable interrupt 1 No change No change

5

DIN2 Disable interrupt 2 No change No change

DIN3 Disable interrupt 3 No change No change

PUSH rx Push contents of register rx on to stack No change No change

POP rx Pop top of stack and store contents in rx No change No change

Instruction Layout

6

7

Control Bits

Section # Bit #(s) Description

A 0 1 = Load next instruction address from decoder ROM.

0 = Load next instruction from IRQ or program ROM.

B 1 PC register control bit.

1 = Load program counter.

C 4,3,2 Address MUX control bits in program counter.

000 = addr.

001 = addrp1.

010 = INSTRUCTION.

011 = Port A.

100 = IRQload.

101 = portB.

D 8,7,6,5 IRQ register control bits in decoder.

0001 = Enable IRQ0.

0010 = Enable IRQ1.

0011 = Enable IRQ2.

0100 = Enable IRQ3.

0101 = Disable IRQ0.

0110 = Disable IRQ1.

0111 = Disable IRQ2.

1000 = Disable IRQ3.

1001 = Enable IRQ master control. (RTIE)

1010 = Enable IRQ master control, disable all IRQs.

(RTID)

1011 = Disable IRQ master control. (IRQ called)

E 10,9 Port ID MUX control bits in port controller.

00 = 16’b0.

01 = Port B.

10 = INSTRUCTION.

8

F 11 Out port MUX control bits in port controller.

0 = 16’b0.

1 = Port A.

G 16,15,14,13,12 ALU control bits.

00000 = No change.

00001 = LOAD

00010 = OR rx, #k

00011 = OR rx, (ry)

00100 = AND rx, #k

00101 = AND rx, (ry)

00110 = XOR rx, #k

00111 = XOR rx, (ry)

01000 = ADD rx, (ry)

01001 = ADDC rx, (ry)

01010 = SUB rx, (ry)

01011 = SUBC rx, (ry)

01100 = ADD rx, #k

01101 = ADDC rx, #k

01110 = SUB rx, #k

01111 = SUBC rx, #k

10000 = TEST rx, #k

10001 = TEST rx, ry

10010 = COMP rx, #k

10011 = COMP rx, (ry)

10100 = ASL rx

10101 = ROL rx

10110 = LSR rx

10111 = ROR rx

11000 = CLRC

11001 = SETC

H 19,18,17 Data A MUX control bits in RAM controller.

000 = INSTRUCTION.

001 = Port A.

010 = Port B.

011 = wresult.

100 = IN_PORT.

I 21,20 Address B MUX control bits in RAM controller.

00 = INSTRUCTION.

01 = Stack register.

10 = Port B.

11 = Stackm1.

J 23, 22 Data B MUX control bits in RAM controller.

00 = Port A.

01 = Addrp1.

10 = ADDRESS.

K 25,24 01 = Increment stack register.

10 = Decrement stack register.

9

L 26 1 = Write enable port A.

M 27 1 = Write enable port B.

N 28 Upper address bit of port B. Used to access the stack.

O 30,29 01 = write strobe.

10 = read strobe.

P 34,33,32,31 0001 = IRQ0 ack.

0010 = IRQ1 ack.

0100 = IRQ2 ack.

1000 = IRQ3 ack.

Q 35 1 = Load the load register in decoder.

R 43,42,41,40,39,38,37,36 Address of next decoder state.

10

Processor Internal Layout

11

VGA Controller (Picture Processing Unit)

PPU History

The PPU was first created by Nintendo for use in the Nintendo Entertainment System (NES). The NES

was an eight-bit gaming console that was popular in the 1980s. The NES used a 6502 processor for its

main processor and needed a second processor to handle the game graphics as the 6502 was not

powerful enough for both tasks. The picture processing unit was developed for this purpose.

The PPU is a tile based processor and does not have the ability to draw geometric images directly to the

screen. All graphics must be reduced to a series of 8 by 8 pixel tiles. The tiles are then arranged into a

screen buffer (called a name table) and sent out to the display.

The PPU has two main functions: background tile processing and sprite processing. The background tiles

are fairly static and can only start in columns and rows that are a multiple of eight. Because of these

limitations, background tiles require only minimal processing to be displayed on the screen. The second

function of the PPU is to do sprite processing. Each sprite is also composed of 8 by 8 pixel tiles. Up to

256 sprites can be displayed on the screen at any one time. The original Nintendo could only handle 32

sprites and only 8 could be on the same scanline at a time. Sprites can appear at any location on the

display. Because sprites can appear anywhere at any time, the amount of processing required to render

the sprites is considerably more than that required to render the background.

The PPU developed for this project is not an exact recreation of the Nintendo PPU and is missing some

of its features, such as multiple name tables and the ability to scroll between those name tables. The

PPU in this project also has some improvements over the original, including the ability to handle 256

different colors. The original PPU could only handle 64 colors.

Background Tile Processing

The following graphics describe the general theory behind how the background tiles are drawn on the

display:

12

13

14

PPU Background Tiling Example

The following is an example of how the background tiling is done for the numbers on the clock:

First, the numbers are broken down into 4 by 4 tile squares. The individual tiles are loaded into the

pattern tables. In this example, the numbers are a single color so only pattern table A is loaded with the

number tiles while pattern table B is left blank. Below is what the patterns look like when they are

divided into individual tiles:

The 48 tiles above contain all the tiles necessary to draw any of the ten digits into the name table. The

numbers above the tiles represent the index numbers for each of the corresponding tiles. The index

numbers are the actual data that is written into the name tables.

PPU Sprite Processing

Sprite processing is similar to background tile processing in that the sprite patterns come from a pair of

pattern tables. The pattern tables used by the sprites are separate from the pattern tables used by the

background. Also, the palette used by the sprites is a sixteen-byte palette and is separate from the

background palette. Sprites differ from background tiles in that there is no name table that contains

15

sprite information. Instead of a name table, sprites use their own RAM which is integrated into the PPU.

There are 256 bytes of sprite RAM and each sprite requires 4 bytes of RAM each. This allows for a

maximum of 64 sprites to be displayed on the screen at any one time. Below is a description of the four

bytes used by each sprite:

Byte0: YYYYYYYY

Byte1: VHNNNNCC

Byte2: PPPPPPPP

Byte3: XXXXXXXX

Y: Y coordinates of upper left hand corner of sprite.

V: 1 = Flip sprite vertically, 0 = draw sprite normally.

H: 1 = Flip sprite horizontally, 0 = draw sprite normally.

P: 8-bit address for tile pattern.

X: X coordinates of upper left hand corner of sprite.

N: Not used.

Once it is determined that a sprite is within range of the current scan line, the pixels for the sprite are

drawn in the scan line buffer. Any background data already in the buffer will be overwritten.

Overwriting background tile data in the scan line buffer has the effect of always drawing sprites on top

of the background. The color black in the sprite tiles is transparent and does not overwrite background

tile color information.

Memory addresses of the PPU

0x8000 - 0x87FF Background pattern table A.

0x8800 - 0x8FFF Background pattern table B.

0x9000 - 0x97FF Sprite pattern table A.

0x9800 - 0x9FFF Sprite pattern table B.

0xA000 - 0xA3FF Name table.

0xA400 - 0xA4FF Unused.

0xA500 - 0xA5FF Background attribute table.

0xA600 - 0xA60F Background palettes 0 through 15.

0xA610 - 0xA61F Sprite palettes 0 through 15.

0xA700 Base color (background color).

0xB000 - 0xB3FF Sprite RAM (256 sprites).

UART

16

The UART uses two block RAMs. One block RAM for the receive buffer and one for the transmit buffer.

Each block RAM can hold 4096 bytes. The UART can handle any baud rate up to half the system clock

frequency. The baud rate control register is set by the following equation:

System Clock Frequency / Desired Baud Rate / 2

Control registers for the UART

 0x0200 Set baud rate.

0x0201 Buffer byte to transmit.

0x0202 Flush transmit buffer.

0x0203 Purge transmit buffer.

0x0204 Get next byte in the receive buffer.

0x0205 Purge the receive buffer.

Microphone Controller

The microphone controller is an SPI based controller. The SPI clock runs at 25 MHz and continuously

samples the digital output of the microphone at 1.5 MSPS. The digital output is made available on the

micdata port and is automatically written over every time a new sample is available. There are no

controls other than reset for this module.

Clock Controller

The clock controller is used to keep track of the time. The output of the controller is visible on the VGA

display. A hardware controller was used to keep track of the time as an accurate clock using software

would have been more complicated. The input buttons are used to set the time. The base clock

frequency is controlled by the 1KHz clock enable pin. The NMPSM3 has no direct control over the clock

controller.

17

Timers 1 and 2

The timers are set by the NMPSM3 through the id and data ports. The timers each have a 16-bit

countdown register and a time resolution of 1 ms. The outputs of the timers are tied to the interrupts

on the processor and provide the timing pulses used to update the 7-segment display and the LEDs.

Control registers for the timers

0x0010 Set timer 1.

0x0011 Set timer 2.

ROM Controller and Lookup ROM

The ROM controller brakes the lookup ROM into eight 256 byte blocks. This allows the address to the

lookup ROM to be latched while the processor performs a read.

ID values for the ROM controller

0x0000 ROM bank 0.

0x0001 ROM bank 1.

0x0002 ROM bank 2.

0x0003 ROM bank 3.

0x0004 ROM bank 4.

0x0005 ROM bank 5.

0x0006 ROM bank 6.

0x0007 ROM bank 7.

18

LED Controllers 1 and 2

There are two LED controllers in the system. Each controller controls eight LEDs. LED controller 1

controls the lower eight LEDs and is runs through a set pattern loaded in the Lookup ROM. The second

LED controller controls the upper eight LEDs and displays the ASCII value of the last byte to be received

on the UART.

Control registers for the LED controller

0x0020 Set LED pattern on controller 1.

0x0021 Set LED pattern on controller 2.

100KHz Clock Enable

The 100KHz clock enable block is a simple module that takes the 100MHz system clock and generates a

100KHz clock enable pulse. No other controls are part of this block.

7 Segment Controller

The 7 segment displays on the Nexys 3 board are configured with a common anode. There is only one

set of control signals for all four displays. The anodes for the displays are separate. Because of this

configuration, the 7 segments can only be turned on one at a time. This is accomplished by rapidly

cycling through the anode control pins. The controller takes care of this operation in a way invisible to

the user. The values to be displayed are the only thing required. The 100KHz clock enable signal is

required for the timing of the anode cycling.

19

Control registers for the 7-segment display controller

0x0024 7-segment 0.

0x0024 7-segment 1.

0x0024 7-segment 2.

0x0024 7-segment 3.

Data MUX

All the input data to the processor passes through the data MUX. The processor only has one input port

so the data MUX is necessary to control the data flow. The data MUX is purely combinational logic. The

ID port and read bit act as the select logic for the MUX.

ID values for the data MUX

0x0001 - I2C data (Not used in this design).

0x0002 - I2C status (Not used in this design).

0x0003 - UART data.

0x0004 - UART transmit buffer bytes.

0x0005 - UART receive buffer bytes.

0x0006 - Joystick X position (Not used in this design).

0x0007 - Joystick y position (Not used in this design).

0x0012 - ROM data.

0x0013 - Switches.

0x0030 - Clock controller seconds.

0x0031 - Clock controller minutes.

0x0032 - Clock controller Hours.

0x0033 - Clock controller blink bit.

0x0034 - Microphone data.

MMCM

The Mixed Mode Clock Controller (MMCM) takes the system clock as an input and divides it into three

output frequencies. The MMCM is an IP core and was generated using built-in Xilinx tools. The input

20

clock is 100MHz and the three output clocks are 100.682MHz, 50.341MHz and 25.170MHz. The

25.170MHz clock runs the VGA circuits in the system. The standard frequency for a 640 x 480 x 60Hz

VGA signal is 25.175MHz. The 100.682MHz clock runs the rest of the system and is 4 times the

frequency of the VGA clock.

Software Functionality

Tiled Clock

The tiled clock is a tiled based clock that displays on the VGA output. The hours, upper minutes and

lower minutes can be set by using the three middle buttons on the Basys board. Below is a screenshot

of a sample output.

Sprite Audio

The sprite audio takes periodic samples from the microphone and displays them on the VGA output.

There is a total of 128 audio sprites. The sample rate can be adjusted by pressing the upper button on

the Basys board. The sample rate doubles every time the button is pressed and wraps around to 1x

after going to 32x. Below is a screenshot sample of the audio sprites.

Base Color

The background color of the screen can be one of 256 VGA colors. Enabling the base color

demonstration increments the background through all possible colors.

Bouncing Sprites

There are eight sprites that bounce around the VGA display at 45 degree angles. Enabling the bouncing

sprite demonstration produces the following result:

21

Attribute Table

Color information is applied to 8x8 pixel blocks of the display. The attribute table demonstration shows

the color blocks. Below is a sample of the on-screen text without the attribute table demonstration

applied.

And the following is the same text with the attribute table demonstration active.

Sprite Priority

The sprite priority demonstration shows the ability of the sprites to be drawn in front of or behind the

background tiles. A character runs across the bottom of the screen and passes in front of pillars and

then behind them.

Palette Change

The palette change demonstration changes periodically rotates through the selected palettes for the

screen graphics. This creates a flashing effect.

22

Sprite Mirroring

The PPU has the ability to mirror sprites vertically, horizontally, in both directions or not at all. A set of

three objects on the screen have their sprites mirrored creating a rotating effect. The following is a

screenshot sample of the sprite mirroring demonstration:

UART Echo and LED Control

One final functionality of the software is to echo back any information typed on the UART. The binary

ASCII code of the typed character is also displayed on the eight upper LEDs on the Basys board.

NMPSM Assembler

Assembler Syntax

The NMPSM assembler is a Java based command line assembler. The assembler requires at least one

argument to be passed to it during execution. The argument is the name of the assembly language

source file and the optional second argument is the name of the destination file. If the second

argument is not provided, the name of the output file will have the same name as the input file. The

source file contains NMPSM code and the destination file is a coe file. Once the assembler has

completed its task, it will either display a message saying it assembled the code successfully or display

an error message with a description of the error and line number.

The assembler uses whitespaces as token separators in the source file. This means that one or more

white spaces must appear between the commands and any arguments. For example, LOAD rx k is a

valid command while LOAD rxk is not. All syntax for each command is given in the instruction set table.

Semicolons are used as comments within the source file. Everything on a line after a semicolon will be

ignored by the assembler. Instructions are case insensitive and can be either lowercase or uppercase or

a combination of both. The assembler can understand numbers written in binary, decimal and

hexadecimal. Binary numbers need to be preceded with a % symbol while hexadecimal numbers need

to be preceded with a $ symbol. Decimal numbers do not need to be preceded with any symbol.

Assembler Directives

In addition to the processor commands listed in the instruction set table, the assembler also has a small

set of assembler directives that can be used to alter its operation. The assembler directives are: .alias,

.org, .size and line labels.

The .alias directive is used to provide human readable names to various RAM addresses. For example,

the following code will substitute $11F into “regName”:

23

.alias regName $1FF

LOAD regName $0001

The .org directive moves the current address to which the next lines of code will be written in the .coe

file. If the code is moved to an address that already has code in it or an address that exceeds the

maximum size of the program, an error will occur and the assembler will not assemble the program.

The .size directive tells the assembler the maximum size of the program. The minimum size of a

program is 1 instruction while the maximum size of a program is 65536 instructions. If no size directive

is stated in the program, the size of the program defaults to 512 instructions. 512 instructions will fit

into a single block RAM.

Labels are not technically assembler directives, but they are used by the assembler to make identifying

functions easier. Labels must start with a letter and contain only numbers or letters and the underscore

character (_). Any other characters will cause the assembler to report an error. Label names must be

unique within the program and cannot be commands. Label names are case sensitive so the labels

“Label” and “label” are unique labels. Only one label may appear on a line, but labels may appear on

consecutive lines. Labels may be on a line of their own or may appear at the beginning of a line that

contains a command. Labels must end with a colon.

Differences between Old Project and New Project

Faster System Clock

The original Nexys 2 board used a 50MHz system clock. The Basys board has a 100MHz system clock.

This allows for a more powerful PPU.

Single crystal operation

The original project required two clock crystals: 50MHz system clock and a 25.175MHz VGA clock. The

effects of meta-stability had to be taken into account and is discussed below.

MEMS microphone

The original project used an electret microphone. The old microphone PMOD was replaced by a MEMs

microphone PMOD. The replacement required no modifications to the control hardware and was a

direct replacement.

Upgraded PPU

The old PPU was only able to handle 64 sprites on the display at one time. Due to the increased clock

frequency and more efficient coding techniques, 256 sprites are now able to be displayed at a time.

Block RAM Wrapper Bug

A problem was experienced when upgrading the project from the old Spartan 3 part to the new Artix 7

part. Several block RAM primitives were instantiated in the PPU. The macros used to instantiate the

block RAMs have changed. Wrappers have been provided to automatically change the macros when

they are encountered. The wrappers work for several different configurations of block RAM but there is

one configuration where the wrapper does not work. The following macro does not translate to a new

design properly:

24

RAMB16_S9_S36

The block RAM primitive had to be changed manually to the following:

BRAM_TDP_MACRO

UART Implementation

The old design did not have UART functionality. The new design has a UART as described previously in

this report.

Improved Audio Sprite Software Routine

Due to the limited number of sprites the original PPU could display, the sprite audio demonstration was

limited to 32 sprites. The new sprite audio demonstration has 128 sprites.

DCM to MMCM conversion

The old design used a DCM to provide clock signals to the various modules. The new chip uses an

MMCM instead of a DCM. The IP core for the clock manager needed to be changed. As a result of the

new MMCM, a BUFG also had to be implemented as the MMCM needed to be isolated from the system

clock in order to be instantiated. Because of the enhanced operation of the MMCM, the separate VGA

clock crystal was no longer necessary. A clock frequency of 25.170 was able to be generated by the

MMCM. This is very close to the VGA specification of 25.175MHz.

Meta-Stability

An interesting note about this project is that it was first implemented with two separate clock crystals.

The first clock was the 50MHz system clock. The second was a 25.175 MHz VGA clock. The two crystals

were uncorrelated to each other and would cause the processor to hang under certain timing instances.

This was due to interrupt signals from the VGA controller (running at 25.175MHz) arriving at the

processor (running at 50MHz) at a critical time. The solution to keeping the system stable was to add

meta-stability hardening flip-flops in series with the interrupts. A flip-flop was also added in series with

the reset line. The current project uses a single crystal and an MMCM to produce the required

operating frequencies so meta-stability is no longer an issue with the interrupts but still a potential issue

with the reset as it is controlled by a user accessible button.

Things Not Implemented

Two modules were under development for this project but were not included in the final design as there

was not enough time to implement them properly. An I2C control module was created and verified to

work in other projects but it was not working when applied to this system. The I2C module was going to

control an alphanumeric display and show various messages. The I2C module appeared to be working

properly when hooked up to an oscilloscope, but the display was not initializing properly. The control

unit in the display was providing an ACK response to requests from the controller but no response was

visible from the display.

A joystick control module was also created for the project. The control module was receiving a stream

of digital SPI information from the joystick but the data was not being shifted properly so the joystick

position was not being reported accurately.

25

Resource Usage

Timing Report

Power Report

26

Conclusion

Converting this project over from a Spartan 3 part provided a few challenges. The first was that the

DCM had to be replaced with an MMCM. The replacement of the clock manager allowed for the VGA

crystal to be removed from the design. Another challenge was introduced because of the non-

functional block RAM wrapper and required a block RAM primitive to be replaced by hand. The faster

clock frequency of the new system provided an opportunity to enhance the features of the PPU by

quadrupling the number of sprites it can handle at any given time. Functionality of the overall system

was enhanced by adding a UART to the design.

