Nick Mikstas
ELEN 604

Final Report
Winter 2017



Table of Contents

INErOdUCHION.... .ot e s s se s snass sananes 1
System BIock Diagram..........cccceeeecceencceercneesreeneceesscnssenseessnasesnsesssnsassnens 1
BlOCk DeSCriptions........ccecceeeceeirceereceene s esesssnnneseesssnssessnssenneessnnsesnsesssns 1
INIMIPSIMIB ...t sttt ettt s et st s et b e et e st s ek ane st ses et ase st sen st ans seenensesares 1
GENEIAI LAYOUL...ueeieietietie ettt ettt et st s st e e s s et et s eaeate st ste e nannan 2
Command Opcodes and Clock CYCles.......oorieicieieieirece e 2
INSTrUCLION DESCIIPLIONS...uiiie ittt et et s e e e snese e 3
INSTFUCTION LAYOUL... oottt ettt sttt st et ae e saeese e e sbeansaensns sunes 5
CONLIOL BItS.uiiieeietiee sttt sttt st ettt st et s bebesesbeses b aesbenessssanesbesenns 7
Processor INTernal LayOUL........ccceoceueietieicecece ettt ee e st sa e e e enans 10
VGA Controller (Picture Processing UNit).......cccooveveeveieinineirecce e et eerese e 11
PPU HISTOIY ettt ettt et e sttt sttt e saesanese e st sae et e e snnaeen 11
Background Tile ProCESSING.......cccueueieiirtieceee ettt et ess s e etesre e e e sennns 12
PPU Background Tiling EXamPle.......cuececieienie ettt e e st st ere e e sraesaenean 14
PPU SPrite PrOCESSING....cocuiceieeecte ettt et eee e ste et ee e e st e e e s e sreeaeeseeensennesnnenns 14
Memory Addresses Of the PPU.......... ettt eer e e 15
L0 2 IR OO PPRRPRN 15
MiICroOPhONE CONLIOIIE ... .t ettt e e et stestesbesanennanes 16
ClOCK CONTIOIIEI c.cuiiti ettt et e ettt e e st s st e e e e s et e e eeeneenes 16
TIMEIS L ANT 2.ttt ettt sttt st sae st e e es et seb et aneeaesaesee seeneen 17
ROM Controller and LOOKUP ROM.......c.coieiieiiieiierie et ee ettt e eve e sae st stesnesansenenns 17
LED CONtrollers 1 and 2.....ccccceieiiriireireee et sttt ss e s st s s e bes s s eseasssneenes 18
100KHZ ClOCK EN@BI@...ciiieieiee ettt ettt st st s e st eer e e 18
7 SEEMENT CONEIOIBT ...ttt et ettt e et st st s e e r et en e e aneane s 18
DAta MUX ittt st sttt et s b st et ses s e s ses et ee e st b b et es sesses st eaesessassssaneees 19
IMIIMICIML .ottt st et st e et st et e b e et et st s ket sbe sen b e s sbenen s e e ebenentesareabe senn 19
Software Functionality.......ccccceeecceeercricccennceeneceerccee s sreesece s cassenseesnns 20
NMPSM Assembler.........ociiiniiiiiniiiiiccennscse e e 22
Differences between Old Project and New Project...........cccceveveruenneee 23
Meta-Stability.....ccciiiiriieceinecree e e eeese e ssnsee e snseeessnanesans 24
Things Not Implemented.......... e sreeee e eee e ens 24
RESOUICE USQAGE...uueueiiiiiiiiiiiiiisnnnnnnnanieniiisiissssssssssssssnsansanssessssssssssssnsassane 25
TIMING REPOIL...... ittt cerens e snseress s sessssssssasass sesssnsasass sesanns 25
oLV V=T gl 1 =T o o T o PN 25

(00 1ol [ 113 1o ] s PO TR 26



Introduction

This project is an update and extension of a previously built project after taking a class from UCSC
extension several years back. The old project was based on a Nexys 2 board and a Spartan 3 FPGA. The
new project is based on a Basys 3 board and an Artix 7 FPGA. The original design was ported over and
then improved on by taking advantage of higher speeds and additional resources. Several issues were
encountered in the project and had to be overcome. Those issues will be discussed later in the report.

System Block Diagram

From VGA
IRQ 2
a Controller
Microphone = Microphone
Controller
IRQ 1] Timer2 Ao
VGA — utput
Clock Controller L 1o NMPSM3
BUttONS == oc! )
Controller IRQ O] Timer 1 —I_
Nn:;ima c Rct)M” | Lookup  —1 Data MUX
RX/TX=—— UART Data ontroller ROM
Processor
MUX
From Lookup ROM LEDIO1 LEDs 7:0
Switches 15:0 mmm— LED 10 2 LEDs 15:8

Program
| 100.682MHz ROM 7 Segment [ Segments 60
100MHz MMCM  [—50.341MHz Controller ~ p=—Anodes 3:0
[=25.170MHz 100.682MHz == 100KHz Clock Enable

Block Descriptions
NMPSM3

The NMPSM3 is the heart of the system. It is a 16-bit soft processor inspired by the PicoBlaze design. It
has four interrupt lines, flat 16-bit addressing and 16-bit port IDs. The processor is capable of speeds
well over 100MHz in the Artix 7 FPGA.

The NMPSM3 uses a block RAM as a micro-coded controller. It uses another block RAM for the stack
and another for the registers. The NMPSM3 has 1024 16-bit general purpose registers and a 1024-word
stack. At least one more block RAM is required for the program ROM. Each 18K block RAM can hold

512 instructions.

The NMPSM3 supports 63 instructions. Most instructions execute in 2 clock cycles but some of indirect
instructions can take 3 clock cycles.



General Layout

NMPSM3
INSTRUCTION[35:0] == l— ADDRESS[15:0]
IN_PORT[15:0] == f— OUT_PORT[15:0]
IRQD —]| — PORT_ID[15:0]
IRO1 — — READ_STROBE
IRO2 —] — WRITE_STROBE
IRQ3 — — IRQ_ACKO
RESET — — IRQ_ACK1
— IRQ_ACK2
CLK — — IRO_ACK3
Command Opcodes and Clock Cycles
Command Opcode Clock Command Opcode Clock
Cycles Cycles
LOAD rx, #k S01 2 ORrx, ry S63 2
LOAD rx, ry S04 2 XOR rx, #k S66 2
LOAD rx, (ry) S07 3 XOR rx, ry S69 2
STOR rx, ry SOA 2 ADD rx, #k S6C 2
STOR rx, (ry) sSoD 3 ADD rx, ry $70 2
JUMP a S10 2 ADDC rx, #k S73 2
JUMP (rx) S13 2 ADDC rx, ry $76 2
JPNZ a S16 2 SUB rx, #k S79 2
JPZ a S19 2 SUB rx, ry s7C 2
JPNCa S1cC 2 SUBC rx, #k S80 2
JPCa S20 2 SUBC rx, ry $83 2
CALL a S23 2 TEST rx, #k $86 2
CALL (rx) $26 2 TEST rx, ry $89 2
CLNZ a S29 2 COMP rx, #k S8C 2
CLZ a S2C 2 COMP rx, ry $S90 2
CLNC a S30 2 ASL rx $93 2
CLCa S33 2 ROL rx $S96 2
RET $36 3 LSR rx $99 2
RTNZ $39 3 ROR rx $9C 2
RTZ $3C 3 SETC SAO 2
RTNC $40 3 CLRC SA3 2
RTC $43 3 EINO SA6 2
RTIE $46 3 EIN1 SA9 2
RTID $49 3 EIN2 SAC 2
IN rx, #k S4C 2 EIN3 SBO 2
IN rx, ry S50 2 DINO SB3 2
OUT rx, #k $53 2 DIN1 SB6 2
OUT rx, ry $56 2 DIN2 SB9 2
AND rx, #k $59 2 DIN3 SBC 2
AND rx, ry S5C 2 PUSH rx SCo 2
OR rx, #k $60 2 POP rx SC6 3




Instruction Descriptions

Instruction Description Carry Status | Zero Status
LOAD rx, #k Load register rx with constant k No change No change
LOAD rx, ry Load register rx with contents of register ry No change No change
LOAD rx, (ry) Load register rx V\{ith contgnts of register whose No change No change
address is stored in register ry
STOR rx, ry Store contents of register rx in register ry No change No change
STOR rx, (ry) Store register rx in registgr whose address is stored No change No change
in register ry
JUMP a Jump to address a No change No change
JUMP (rx) Jump to address stored in register rx No change No change
IPNZ 3 If zero flag not set, jump Fo addr(?ss a, else increment No change No change
to next instruction
P73 If zero flag is set, jump t(? addre_f,s a, else increment No change No change
to next instruction
JPNC a If carry flag is not set, Jump to address a, else No change No change
increment to next instruction
IPCa If carry flag is set, jump tP addre‘ss a, else increment No change No change
to next instruction
CALLa Call subroutine at address a No change No change
CALL (rx) Call subroutine whose address is stored in register rx No change No change
CLNZ 3 If zero flag not set, call subrou'tme at e.nddress a, else No change No change
increment to next instruction
CLZa If zero flag set, call subroutlr\e at ad.dress a, else No change No change
increment to next instruction
CLNC 3 If carry flag r\ot set, call subrogtme at faddress a, else No change No change
increment to next instruction
CLC 3 If carry fIa'g set, call subroutlrle at ac!dress a, else No change No change
increment to next instruction
RET Return from subroutine No change No change
RTNZ If zero fIa'g not set return fr(?m subr.outme, else No change No change
increment to next instruction
RTZ If zero flag set return from subrOL.Jtme, else No change No change
increment to next instruction
RTNC If carry fl;?g not set return fer subroutme, else No change No change
increment to next instruction
RTC If carry'flag set return from subro.utine, else No change No change
increment to next instruction
RTIE Return from interrupt and enable interrupts No change No change
RTID Return from interrupt and disable interrupts No change No change
IN rx, #k Save data on input port k in RAM address rx No change No change
Save data on input port described in register ry in
IN rx, ry putp . 8 ¥ No change No change
register rx
OUT rx, #k Send data stored in register rx to output port k No change No change
Send data stored in register rx to output port
OUT rx, ry & putp No change No change

described in register ry




AND rx, #k AND register rx with k. Store results in register rx 0 Varies
AND rx, ry AND register rx with rgg|ster ry. Store results in 0 Varies
register rx
OR rx, #k OR register rx with k. Store results in register rx 0 Varies
OR x, ry OR register rx with reglster ry. Store results in 0 Varies
register rx
XOR rx, #k XOR register rx with k. Store results in register rx 0 Varies
XOR rx, ry XOR register rx with rgglster ry. Store results in 0 Varies
register rx
ADD rx, #k Add register rx with k. Store results in register rx Varies Varies
ADD rx, ry Add register rx with re.glster ry. Store results in Varies Varies
register rx
ADDC rx, #k Add with carry reglster. rx with k. Store results in Varies Varies
register rx
ADDC rx, ry Add with carry reglstgr rx V\{Ith register ry. Store Varies Varies
results in register rx
SUB rx, #k Subtract register rx with rkx Store results in register Varies Varies
SUB rx, 1y Subtract register rx Wlth. register ry. Store resultsin Varies Varies
register rx
SUBC rx #k Subtract with carry'reglst.er rx with k. Store results Varies Varies
in register rx
SUBC rx, ry Subtract with carry regl_f,ter rx' with register ry. Store Varies Varies
results in register rx
Carry = odd
If dk=
TEST rx, #k Bit test register rx with constant k an parity of rx
0,zero=1
AND k
Carry = odd
. . . . If rxandry = .
TEST rx, ry Bit test register rx with register ry parity of rx
0,zero=1
AND ry
If rx <k If rx =k
COMP rx, #k Compare register rx with constant k DR X=X, 2ero
carry=1 =1
COMP rx, r Compare register rx with register r Ifrx<ry, Ifrx=ry,
Y P & & Y carry=1 zero=1
ASL rx Shift register rx left into carry. Backfill with zero Varies Varies
ROL rx Rotate register rx left into carry. Backfill with carry Varies Varies
LSR rx Shift register rx right into carry. Backfill with zero Varies Varies
ROR rx Rotate register rx right into carry. Backfill with carry Varies Varies
SETC Set carry bit 1 No change
CLRC Clear carry bit 0 No change
EINO Enable interrupt O No change No change
EIN1 Enable interrupt 1 No change No change
EIN2 Enable interrupt 2 No change No change
EIN3 Enable interrupt 3 No change No change
DINO Disable interrupt 0 No change No change
DIN1 Disable interrupt 1 No change No change




DIN2 Disable interrupt 2 No change No change
DIN3 Disable interrupt 3 No change No change
PUSH rx Push contents of register rx on to stack No change No change
POP rx Pop top of stack and store contents in rx No change No change

Instruction Layout

D Opcode . Address

D Register D Constant

D Register ry D Unused

Register Load Commands
3534 3332313029282726252423 2221 20191817161514131211109 8 7 6 5 4 3 2 1 0
wapm #k (o]olololololol1] r

oaDrx, ry [0]o]ololalilalo] | I 7 7 O 71 5 1 7 5 X
LoaD k. iy} [ofofofofefa]o o] | [ T T T T In]o]ev]n oo v [rv v ev]
stornry [ofefofef1fefafe] | [ T T T T In]o]ev]n oo v [rv v ev]
stor e () [0fefofefaf1fo]a] | I I I (72 57 (572 3 (7 50 2 (57 571 5

Program Flow Commands
3534 33 32 3130 29 28 2726 25 2423 22 21 2019 18 17 161514 13121110 3 8 7 6 5 4 3 2 1 0
JUMP & lofaofolajolojo|o] &l m[=T: AlETaTaT i

umpring ololjolalofol1]1]

IPNZ & lolojol1lo]1|1]o]
IPZ & lojolo]al1]lo]ola]
IPNC & lojojolalala]o]o]
IPCa (ojol1lo]ofolo]o]
CALL 3 [o]oj1]ofofof1]1]
calling  [o]el1lololafala]
CLNZ & [ojol1lol1lolol1]
ClZ a loJof1]of1]1]o]o]
CLNC & lolol1fa]lofolo]o]
ClCa lojolal2jofofa]1]
RET loflolafajof1]1]o]
RTNZ [ofof1l1]1fofef1]
RTZ lolofifaf1f1]olof
RTNC lol1]ofofofofofo]
RTC (of1]o|ojo]oj1]1]
RTIE lol1]ofofof1f1]o]
RTID (of1]o|oj1]ofo]1]




Port Commands

3534333231302928272025 4232221 20191817161514131211109 8 7 6 5 4 3 2 1 0

nnc#k [o]afofofaafofo] | [efefefecfex]ex]rxfrfecfex] k[ kT [ [« [k &k [k [& [k [T &[] & ]K]
iwnory  [ofafof1ofofofo] | [m[ecfecfexfrxfocdecfefede] | [ [ [ [ [nelrv]refev]ov]ov]ovfre e
outm, #k  (ofifefalofela]a] | [m]ec]ee]e]e]r]m]m]m]m] ] e[ e« [ e] e ]l e] ] ] &]«] & ] &]
oUTrery  [ofafofafofaf1fo] | [efecfefe]e]mededede] [ [ [ [ [ [o]ofoefedofofo]n]nle]
AL Commands

35341332313029232?261524232221201!131?161514131211109 B 76 54 3210
anor, #k [ofafefaf1fofof1] | lelKIKIKIKIKIKIKIKIKIKIK[KIKIKI
anom, ry  [olalolaalalele] T e
orm #k [0[1]1]elelelale] | '
orm,ry [0fafafofofef1]a] | : I A A 7 (57 170 (47 (57 5 2 G 4
xornm #k [0fafafofofaf1]o] | EREARHBERANENENEENNEENEENENEEN
xorn,ry [ofafafof1fofof1] | [ T T T T TndnTolalndnn o ]
aopm#k [of1lafafafa]alo] | Jrafesl el el ule]elele]u]u]x] k] a]x]k]
ApDr,ry [of1fafafofofofo] | |13 1 I 7 71 £ 71 ) [ 0 4 7
aoocm, #k [of 1l alaTelol 1o 1
aoocr, ry [of 1lalafelal1]o] 1 B
subm #k [0 1]a]a]a]ofoa] |
suemry [0f1fe1f1]1fofe] | 0 [ T T T T Inloedadadaadn mdm]
suscn, #k [1]ofofofofofefo] | JIE&LEII AONANNEENENEEEENEN
susCrnerv [1fofofofofof1]a] | I I A 7 (57 (571 71 (5 (57 6 X 5
TesTre #k [ 1]0lolelalaf1fo] | :.[f AR GERERAEEEAE
TesTogry |[1]ofofef1]ofof1] | [ T 1T T T Iednisladads]nln]m]m]
comp e, #k [ 1]0]olof1]2]alo] T
comproxry [1]ofof1]ofofofo] | I 7 57 71 1 (51 5 T e e
ASL [1]o]of1fofofafa] | ] [ [ T T T TTTTTTTTTT]
ROL rx [L]ofef1fofafafa] | dEAEEEEEEEEEEEEEEE
LSR [1]ofof1f1]ofof1] | eesfe] | [ T T T T T T TTTTTTT1]
rorme  [1fofof1f1[1fofe] | feefes] [ T [T T T T T TITTTT1]
SETC [tTo]zlo]o]0]olo] | [TTTITTITTITTITTT
CLRC [1]o]afofofofa]a] | ENEEEEEEEEEEEEE




Interrupt Commands
3534333231309 28272625 24232221 20191817161514131211109 8 7 6 5 4 3 2 1 0

EIND [ifofafefofafafof T I T T TP OO PP T U T TP OOTITTITTTTT]
EIN1 [ifofafefefofofaf T I T T TP OO PP T 0TI PRI ITTITTTTT]
EIN2 [afofafofefafoefof T T T T TP OO PP T U T T IOTTITITITITTTT]
EIN3 [ifofafafofefofe] T I T T T P OO PP IO U T T PROTITITTTTT]
DIND o s Al IEEEEEEEEEEEEEEEEEEEEEEE
DIN1 dradran o  IIIISEEEEEEEEEEEEEEEEEEEEEEE
DIN2 [efofafafafefofaf [ [ T T TP D VT T OOITTTRLTTTITIITTTT]
DIN3 [efofafafafafofof [ [ T T TP T VT IO OLTITO LT TTTIILTTT]
Stack Commands
pusime  [L]1[efofolofofol | [efecfefefrladededadel | [ [ [ | [ [ [ [ [ T 1 [ []
poprx  [1]1fefefofafafo] | |eededefededededede] | | | [ | [ [ [ [ [ 1 1]
Control Bits
Section # Bit #(s) Description
A 0 1 = Load next instruction address from decoder ROM.
0 = Load next instruction from IRQ or program ROM.
B 1 PC register control bit.
1 = Load program counter.
C 4,3,2 Address MUX control bits in program counter.
000 = addr.
001 = addrpl.
010 = INSTRUCTION.
011 =Port A.
100 = IRQload.
101 = portB.
D 8,7,6,5 IRQ register control bits in decoder.
0001 = Enable IRQO.
0010 = Enable IRQ1.
0011 = Enable IRQ2.
0100 = Enable IRQ3.
0101 = Disable IRQQ.
0110 = Disable IRQ1.
0111 = Disable IRQ2.
1000 = Disable IRQ3.
1001 = Enable IRQ master control. (RTIE)
1010 = Enable IRQ master control, disable all IRQs.
(RTID)
1011 = Disable IRQ master control. (IRQ called)
E 10,9 Port ID MUX control bits in port controller.
00 =16’b0.
01 =Port B.
10 = INSTRUCTION.




11

Out port MUX control bits in port controller.
0=16'b0.
1="PortA.

16,15,14,13,12

ALU control bits.
00000 = No change.
00001 = LOAD
00010 = OR rx, #k
00011 = OR rx, (ry)
00100 = AND rx, #k
00101 = AND rx, (ry)
00110 = XOR rx, #k
00111 = XOR rx, (ry)
01000 = ADD rx, (ry)
01001 = ADDC rx, (ry)
01010 =SUB rx, (ry)
01011 =SUBC rx, (ry)
01100 = ADD rx, #k
01101 = ADDC rx, #k
01110 = SUB rx, #k
01111 = SUBC rx, #k
10000 = TEST rx, #k
10001 =TEST rx, ry
10010 = COMP rx, #k
10011 = COMP rx, (ry)
10100 = ASL rx
10101 =ROL rx
10110 =LSR rx
10111 =ROR rx
11000 = CLRC

11001 = SETC

19,18,17

Data A MUX control bits in RAM controller.
000 = INSTRUCTION.

001 = Port A.

010 = Port B.

011 = wresult.

100 = IN_PORT.

21,20

Address B MUX control bits in RAM controller.
00 = INSTRUCTION.

01 = Stack register.

10 = Port B.

11 = Stackm1.

23,22

Data B MUX control bits in RAM controller.
00 = Port A.

01 = Addrpl.

10 = ADDRESS.

25,24

01 = Increment stack register.
10 = Decrement stack register.




L 26 1 = Write enable port A.
M 27 1 = Write enable port B.
N 28 Upper address bit of port B. Used to access the stack.
0] 30,29 01 = write strobe.
10 = read strobe.
P 34,33,32,31 0001 = IRQO ack.
0010 = IRQ1 ack.
0100 = IRQ2 ack.
1000 = IRQ3 ack.
Q 35 1 = Load the load register in decoder.

43,42,41,40,39,38,37,36

Address of next decoder state.




Processor Internal Layout

PROGRAM COUNTER

losssgi:

PROGRAM
R

addr15:0]

[adepI15:0]

RUCTION[35:0]

atio—]

PORT CONTROLLER

DECODER ©* DECODER
RQose15:0] ROM

®oo[ ] [iowien]

portA(150]
Controlle30]
concrolfez:0

(om0

RAM CONTROLLER @
BLOCK RAM ALU
INSTRUCTIONE3S )
sonBL1 ponA150]
resutiisol | sx 1026
IN_PORT: regsrs s
o g toa 160
sack{s0]
= == 5 2 [rrseimion)
Controlfs30) Control[53]
it o
= When bit s igh,  commandisin the process ofexecuting ADDRESS[150 addcB 100 se3000] :'k
5 - Used s the pps addes it on por to aces the stack ‘ ea[15.0] 16x 1024 mveTiongsal B
- lporp1s.0) sorB150]
22,23)

10



VGA Controller (Picture Processing Unit)

WITE e
id[15:0] m— blank
l— vblan
data[15:0] =
PPU = VSYNC
—hsync
f—vga[7:0]
clk25MHz —»
clk —

PPU History

The PPU was first created by Nintendo for use in the Nintendo Entertainment System (NES). The NES
was an eight-bit gaming console that was popular in the 1980s. The NES used a 6502 processor for its
main processor and needed a second processor to handle the game graphics as the 6502 was not
powerful enough for both tasks. The picture processing unit was developed for this purpose.

The PPU is a tile based processor and does not have the ability to draw geometric images directly to the
screen. All graphics must be reduced to a series of 8 by 8 pixel tiles. The tiles are then arranged into a
screen buffer (called a name table) and sent out to the display.

The PPU has two main functions: background tile processing and sprite processing. The background tiles
are fairly static and can only start in columns and rows that are a multiple of eight. Because of these
limitations, background tiles require only minimal processing to be displayed on the screen. The second
function of the PPU is to do sprite processing. Each sprite is also composed of 8 by 8 pixel tiles. Up to
256 sprites can be displayed on the screen at any one time. The original Nintendo could only handle 32
sprites and only 8 could be on the same scanline at a time. Sprites can appear at any location on the
display. Because sprites can appear anywhere at any time, the amount of processing required to render
the sprites is considerably more than that required to render the background.

The PPU developed for this project is not an exact recreation of the Nintendo PPU and is missing some
of its features, such as multiple name tables and the ability to scroll between those name tables. The
PPU in this project also has some improvements over the original, including the ability to handle 256
different colors. The original PPU could only handle 64 colors.

Background Tile Processing

The following graphics describe the general theory behind how the background tiles are drawn on the
display:

11



1. The location of the current tile is accessed in the name table

The name table is a screen buffer that divides the
screen into tiles. The screen is divided into 32 by 30
tiles. Each tile is 8 by B pixels. This creates a screen
resolution of 256 by 240 pixels.

Name table layout (screen buffer)

2. pattern table A and B access

2

Pattern table A data

Pattern table B data

12



An B bitvalue if loaded from an entry in the name table into the A and B
pattern tables. That value is an index into the pattern tables which extract 8
bytes of data that represent the tile battern. The two patterns are overlayed
to create a single tile.

3. Attribute table access

At the same time the pattern tables are being accessed, the attribute table
is being accessed. The attribute table is being accessed. Each byte in the
attribute table contains the upper two color bits of four tiles in the name
table.

D:I:l:' 4 tiles in the name table

AN

01 2 3 4 5 6 7

|ﬁ.ttribute table byte

4. Palette table access

Once the two attribute table bits and the color bits from each of the
pattern tables are loaded, they are used as an index into the color
palette. Bits 3 and 2 are taken from the attribut table, bit 1 is taken
from pattern table B and bit 0 is taken from pattern table A.

XXX > H

4 bit index built from the —
pattern tables and
attribute table

16 byte palette

13



5. Scanline buffer write

Once the palette color is selected, the byte is written to the
scanline buffer. The scanline buffer is 256 bytes long and
buffers the contents of the next row to be drawn on the

screen.

6. VEA out

Scanline buffer contents

The contents of the scanline buffer are then placed on the output of
the ViGA port which causes a pixel to be placed on the display.

PPU Background Tiling Example

The following is an example of how the background tiling is done for the numbers on the clock:

First, the numbers are broken down into 4 by 4 tile squares. The individual tiles are loaded into the

% VGA color out

pattern tables. In this example, the numbers are a single color so only pattern table A is loaded with the

number tiles while pattern table B is left blank. Below is what the patterns look like when they are

divided into individual tiles:

40414243 444546474845 44 4B 4C 4D 4E4F
(1 0] Cod ] 0 N o [ ] LG
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 3E 5F
L1 (55 [ == (P[]
60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
B e ol [ Ll i ] (L] (5T @

The 48 tiles above contain all the tiles necessary to draw any of the ten digits into the name table. The

numbers above the tiles represent the index numbers for each of the corresponding tiles. The index
numbers are the actual data that is written into the name tables.

PPU Sprite Processing

Sprite processing is similar to background tile processing in that the sprite patterns come from a pair of

pattern tables. The pattern tables used by the sprites are separate from the pattern tables used by the

background. Also, the palette used by the sprites is a sixteen-byte palette and is separate from the
background palette. Sprites differ from background tiles in that there is no name table that contains

14



sprite information. Instead of a name table, sprites use their own RAM which is integrated into the PPU.
There are 256 bytes of sprite RAM and each sprite requires 4 bytes of RAM each. This allows for a
maximum of 64 sprites to be displayed on the screen at any one time. Below is a description of the four
bytes used by each sprite:

ByteO: YYYYYYYY

Bytel: VHNNNNCC

Byte2: PPPPPPPP

Byte3: XXXXXXXX

Y: Y coordinates of upper left hand corner of sprite.

V: 1 = Flip sprite vertically, 0 = draw sprite normally.

H: 1 = Flip sprite horizontally, 0 = draw sprite normally.
P: 8-bit address for tile pattern.

X: X coordinates of upper left hand corner of sprite.

N: Not used.

Once it is determined that a sprite is within range of the current scan line, the pixels for the sprite are
drawn in the scan line buffer. Any background data already in the buffer will be overwritten.
Overwriting background tile data in the scan line buffer has the effect of always drawing sprites on top
of the background. The color black in the sprite tiles is transparent and does not overwrite background
tile color information.

Memory addresses of the PPU

0x8000 - 0x87FF Background pattern table A.
0x8800 - Ox8FFF Background pattern table B.
0x9000 - 0x97FF Sprite pattern table A.
0x9800 - OX9FFF Sprite pattern table B.
0xA000 - OXA3FF Name table.

0xA400 - OXA4FF Unused.

0xA500 - OxA5FF Background attribute table.
0xA600 - OxA60F Background palettes 0 through 15.
0xA610 - OXA61F Sprite palettes 0 through 15.
O0xA700 Base color (background color).
0xB0O0O0 - 0xB3FF Sprite RAM (256 sprites).

UART
WHTE e
id[15:0] m—
e X
data[15:0] =
~ UART l——dout[7:0]

= txcount[11:0]

f—rxcount[11:0]
reset ——

clk ——t

15



The UART uses two block RAMs. One block RAM for the receive buffer and one for the transmit buffer.
Each block RAM can hold 4096 bytes. The UART can handle any baud rate up to half the system clock
frequency. The baud rate control register is set by the following equation:

System Clock Frequency / Desired Baud Rate / 2

Control registers for the UART

0x0200 Set baud rate.

0x0201 Buffer byte to transmit.

0x0202 Flush transmit buffer.

0x0203 Purge transmit buffer.

0x0204 Get next byte in the receive buffer.
0x0205 Purge the receive buffer.

Microphone Controller

Microphone  ==nenable

serialdata
Control

f—-sclk

= micdata[11:0]

reset m—
o

The microphone controller is an SPI based controller. The SPI clock runs at 25 MHz and continuously
samples the digital output of the microphone at 1.5 MSPS. The digital output is made available on the
micdata port and is automatically written over every time a new sample is available. There are no
controls other than reset for this module.

Clock Controller

button[3:0] == — hour[7:0]
—min[7:0
ce 1KHz — Clock min[7:0]
Controller L — sec[7:0]
= blink
clk —»

The clock controller is used to keep track of the time. The output of the controller is visible on the VGA
display. A hardware controller was used to keep track of the time as an accurate clock using software
would have been more complicated. The input buttons are used to set the time. The base clock

frequency is controlled by the 1KHz clock enable pin. The NMPSM3 has no direct control over the clock
controller.

16



Timers 1 and 2

Wte m—
id[15:0] m—
data[15:0] =

COIN mm—

reset

ClK et

Timer

e O UT

The timers are set by the NMPSM3 through the id and data ports. The timers each have a 16-bit
countdown register and a time resolution of 1 ms. The outputs of the timers are tied to the interrupts
on the processor and provide the timing pulses used to update the 7-segment display and the LEDs.

Control registers for the timers

0x0010 Set timer 1.
0x0011 Set timer 2.

ROM Controller and Lookup ROM

id[15:0] =
ain[15:0]=—

ClK m—y

ROM
Controller

e 30U[10:0]

The ROM controller brakes the lookup ROM into eight 256 byte blocks. This allows the address to the
lookup ROM to be latched while the processor performs a read.

ID values for the ROM controller

0x0000 ROM bank 0.
0x0001 ROM bank 1.
0x0002 ROM bank 2.
0x0003 ROM bank 3.
0x0004 ROM bank 4.
0x0005 ROM bank 5.
0x0006 ROM bank 6.
0x0007 ROM bank 7.

17



LED Controllers 1 and 2

WIHTE mme]
id[15:0] m—

data[15:0] m—
LED IO p—edsout[7:0]

reset =
clk =ty

There are two LED controllers in the system. Each controller controls eight LEDs. LED controller 1
controls the lower eight LEDs and is runs through a set pattern loaded in the Lookup ROM. The second
LED controller controls the upper eight LEDs and displays the ASCII value of the last byte to be received
on the UART.

Control registers for the LED controller

0x0020 Set LED pattern on controller 1.
0x0021 Set LED pattern on controller 2.

100KHz Clock Enable

Clk=—= 100KHz Clock Enable | celk

The 100KHz clock enable block is a simple module that takes the 100MHz system clock and generates a
100KHz clock enable pulse. No other controls are part of this block.

7 Segment Controller

The 7 segment displays on the Nexys 3 board are configured with a common anode. There is only one
set of control signals for all four displays. The anodes for the displays are separate. Because of this
configuration, the 7 segments can only be turned on one at a time. This is accomplished by rapidly
cycling through the anode control pins. The controller takes care of this operation in a way invisible to
the user. The values to be displayed are the only thing required. The 100KHz clock enable signal is
required for the timing of the anode cycling.

WILE mmme
i0[15:0] m—
data[15:0] =

75egment L cegselect[3:0]

CeLK mm—
Controller segs[7:0]

rESET m—
clk —»

18



Control registers for the 7-segment display controller

0x0024 7-segment O.
0x0024 7-segment 1.
0x0024 7-segment 2.
0x0024 7-segment 3.

Data MUX

id[15:0]=——

rea( —

blink[15:0]
uartdata[15:0]
txcount[15:0
rxcount[15:0
romdata[15:0
switches[15:0
sec[15:0
min[15:0
hour[15:0
micdata[15:0

Data
MUX

— dout

All the input data to the processor passes through the data MUX. The processor only has one input port
so the data MUX is necessary to control the data flow. The data MUX is purely combinational logic. The
ID port and read bit act as the select logic for the MUX.

ID values for the data MUX

0x0001 - 12C data (Not used in this design).

0x0002 - 12C status (Not used in this design).

0x0003 - UART data.

0x0004 - UART transmit buffer bytes.

0x0005 - UART receive buffer bytes.

0x0006 - Joystick X position (Not used in this design).
0x0007 - Joystick y position (Not used in this design).
0x0012 - ROM data.

0x0013 - Switches.

0x0030 - Clock controller seconds.

0x0031 - Clock controller minutes.

0x0032 - Clock controller Hours.

0x0033 - Clock controller blink bit.

0x0034 - Microphone data.

MMCM

The Mixed Mode Clock Controller (MMCM) takes the system clock as an input and divides it into three
output frequencies. The MMCM is an IP core and was generated using built-in Xilinx tools. The input

19



clock is 100MHz and the three output clocks are 100.682MHz, 50.341MHz and 25.170MHz. The
25.170MHz clock runs the VGA circuits in the system. The standard frequency for a 640 x 480 x 60Hz
VGA signal is 25.175MHz. The 100.682MHz clock runs the rest of the system and is 4 times the
frequency of the VGA clock.

Software Functionality
Tiled Clock

The tiled clock is a tiled based clock that displays on the VGA output. The hours, upper minutes and
lower minutes can be set by using the three middle buttons on the Basys board. Below is a screenshot
of a sample output.

Sprite Audio

The sprite audio takes periodic samples from the microphone and displays them on the VGA output.
There is a total of 128 audio sprites. The sample rate can be adjusted by pressing the upper button on
the Basys board. The sample rate doubles every time the button is pressed and wraps around to 1x
after going to 32x. Below is a screenshot sample of the audio sprites.

= o i
S
0 e e 5
" E-\. "=
—amen ",
e .5::_
= e = ﬁ- e, o eoanas; ‘%
e o S = e - e
e e e e
SRS

Base Color

The background color of the screen can be one of 256 VGA colors. Enabling the base color
demonstration increments the background through all possible colors.

Bouncing Sprites

There are eight sprites that bounce around the VGA display at 45 degree angles. Enabling the bouncing
sprite demonstration produces the following result:

20



Attribute Table

Color information is applied to 8x8 pixel blocks of the display. The attribute table demonstration shows
the color blocks. Below is a sample of the on-screen text without the attribute table demonstration
applied.

Sprite Priority

The sprite priority demonstration shows the ability of the sprites to be drawn in front of or behind the
background tiles. A character runs across the bottom of the screen and passes in front of pillars and
then behind them.

Palette Change
The palette change demonstration changes periodically rotates through the selected palettes for the

screen graphics. This creates a flashing effect.

21



Sprite Mirroring

The PPU has the ability to mirror sprites vertically, horizontally, in both directions or not at all. A set of
three objects on the screen have their sprites mirrored creating a rotating effect. The following is a
screenshot sample of the sprite mirroring demonstration:

UART Echo and LED Control

One final functionality of the software is to echo back any information typed on the UART. The binary
ASCII code of the typed character is also displayed on the eight upper LEDs on the Basys board.

NMPSM Assembler

Assembler Syntax

The NMPSM assembler is a Java based command line assembler. The assembler requires at least one
argument to be passed to it during execution. The argument is the name of the assembly language
source file and the optional second argument is the name of the destination file. If the second
argument is not provided, the name of the output file will have the same name as the input file. The
source file contains NMPSM code and the destination file is a coe file. Once the assembler has
completed its task, it will either display a message saying it assembled the code successfully or display
an error message with a description of the error and line number.

The assembler uses whitespaces as token separators in the source file. This means that one or more
white spaces must appear between the commands and any arguments. For example, LOAD rx kis a
valid command while LOAD rxk is not. All syntax for each command is given in the instruction set table.
Semicolons are used as comments within the source file. Everything on a line after a semicolon will be
ignored by the assembler. Instructions are case insensitive and can be either lowercase or uppercase or
a combination of both. The assembler can understand numbers written in binary, decimal and
hexadecimal. Binary numbers need to be preceded with a % symbol while hexadecimal numbers need
to be preceded with a $ symbol. Decimal numbers do not need to be preceded with any symbol.

Assembler Directives

In addition to the processor commands listed in the instruction set table, the assembler also has a small
set of assembler directives that can be used to alter its operation. The assembler directives are: .alias,
.org, .size and line labels.

The .alias directive is used to provide human readable names to various RAM addresses. For example,
the following code will substitute S11F into “regName”:

22



.alias regName S1FF
LOAD regName $0001

The .org directive moves the current address to which the next lines of code will be written in the .coe
file. If the code is moved to an address that already has code in it or an address that exceeds the
maximum size of the program, an error will occur and the assembler will not assemble the program.

The .size directive tells the assembler the maximum size of the program. The minimum size of a
program is 1 instruction while the maximum size of a program is 65536 instructions. If no size directive
is stated in the program, the size of the program defaults to 512 instructions. 512 instructions will fit
into a single block RAM.

Labels are not technically assembler directives, but they are used by the assembler to make identifying
functions easier. Labels must start with a letter and contain only numbers or letters and the underscore
character (_). Any other characters will cause the assembler to report an error. Label names must be
unique within the program and cannot be commands. Label names are case sensitive so the labels
“Label” and “label” are unique labels. Only one label may appear on a line, but labels may appear on
consecutive lines. Labels may be on a line of their own or may appear at the beginning of a line that
contains a command. Labels must end with a colon.

Differences between Old Project and New Project
Faster System Clock

The original Nexys 2 board used a 50MHz system clock. The Basys board has a 100MHz system clock.
This allows for a more powerful PPU.

Single crystal operation

The original project required two clock crystals: 50MHz system clock and a 25.175MHz VGA clock. The
effects of meta-stability had to be taken into account and is discussed below.

MEMS microphone

The original project used an electret microphone. The old microphone PMOD was replaced by a MEMs
microphone PMOD. The replacement required no modifications to the control hardware and was a
direct replacement.

Upgraded PPU

The old PPU was only able to handle 64 sprites on the display at one time. Due to the increased clock
frequency and more efficient coding techniques, 256 sprites are now able to be displayed at a time.

Block RAM Wrapper Bug

A problem was experienced when upgrading the project from the old Spartan 3 part to the new Artix 7
part. Several block RAM primitives were instantiated in the PPU. The macros used to instantiate the
block RAMs have changed. Wrappers have been provided to automatically change the macros when
they are encountered. The wrappers work for several different configurations of block RAM but there is
one configuration where the wrapper does not work. The following macro does not translate to a new
design properly:

23



RAMB16_S9_S36
The block RAM primitive had to be changed manually to the following:
BRAM_TDP_MACRO
UART Implementation

The old design did not have UART functionality. The new design has a UART as described previously in
this report.

Improved Audio Sprite Software Routine

Due to the limited number of sprites the original PPU could display, the sprite audio demonstration was
limited to 32 sprites. The new sprite audio demonstration has 128 sprites.

DCM to MMCM conversion

The old design used a DCM to provide clock signals to the various modules. The new chip uses an
MMCM instead of a DCM. The IP core for the clock manager needed to be changed. As a result of the
new MMCM, a BUFG also had to be implemented as the MMCM needed to be isolated from the system
clock in order to be instantiated. Because of the enhanced operation of the MMCM, the separate VGA
clock crystal was no longer necessary. A clock frequency of 25.170 was able to be generated by the
MMCM. This is very close to the VGA specification of 25.175MHz.

Meta-Stability

An interesting note about this project is that it was first implemented with two separate clock crystals.
The first clock was the 50MHz system clock. The second was a 25.175 MHz VGA clock. The two crystals
were uncorrelated to each other and would cause the processor to hang under certain timing instances.
This was due to interrupt signals from the VGA controller (running at 25.175MHz) arriving at the
processor (running at 50MHz) at a critical time. The solution to keeping the system stable was to add
meta-stability hardening flip-flops in series with the interrupts. A flip-flop was also added in series with
the reset line. The current project uses a single crystal and an MMCM to produce the required
operating frequencies so meta-stability is no longer an issue with the interrupts but still a potential issue
with the reset as it is controlled by a user accessible button.

Things Not Implemented

Two modules were under development for this project but were not included in the final design as there
was not enough time to implement them properly. An I2C control module was created and verified to
work in other projects but it was not working when applied to this system. The 12C module was going to
control an alphanumeric display and show various messages. The I12C module appeared to be working
properly when hooked up to an oscilloscope, but the display was not initializing properly. The control
unit in the display was providing an ACK response to requests from the controller but no response was
visible from the display.

A joystick control module was also created for the project. The control module was receiving a stream
of digital SPI information from the joystick but the data was not being shifted properly so the joystick
position was not being reported accurately.

24



Resource Usage

LUT 7 6%
FF 18 2%
BRAM 18%0
IO 67%
BLIFG 13%
MMCM 20%0
T T T 1
0 25 S0 75 100
LItilization (%)
Resource Utilization Available Utilization %
LT 1273 20800 65,12
H Foi 41600 1.83
BRAM 9 50 13.00
0 71 106 05,98
BUFG 4 32 12,50
MMCM 1 5 20.00
Timing Report
Setup Hold Pulse Width

Worst Negative Slack (WNS): 0.285ns Worst Hold Sladk (WHS): 0.038 nz Worst Pulse Width Slack (WPWSs): 3.000 ns

Total Negative Slack (TNS):  0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Megative Slack (TPWS): 0.000 ns

Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 1]

Total Mumber of Endpoints: 2147 Total Mumber of Endpoints: 2147 Total Mumber of Endpoints: 753

All user specified timing constraints are met.

Power Report

Power analysis from Implemented netlist, Activity
derived from constraints files, simulation files ar

vectorless analysis,

Total On-Chip Power:

Junction Temperature:

Thermal Margin:
Effective dJA;

Power supplied to off-chip devices:

Confidence level:

0.301W
26.5°C

58,5 °C (116 W)
5.0 "C/W

ow

Low

On-Chip Power

R

249%

[] Dynamic: 0.229wW  (75%%)
8% | W clocks: 0.004W (2%)
5% _

[ signals:  0.018W  (3%)
O Logic: 0011w (5%)
W ERAM:  0.021W (2%
B MMCM: 0,129 W
O Lo: 0.044 W
[ Device Static: 0.073W  (24%)

25



Conclusion

Converting this project over from a Spartan 3 part provided a few challenges. The first was that the
DCM had to be replaced with an MMCM. The replacement of the clock manager allowed for the VGA
crystal to be removed from the design. Another challenge was introduced because of the non-
functional block RAM wrapper and required a block RAM primitive to be replaced by hand. The faster
clock frequency of the new system provided an opportunity to enhance the features of the PPU by
quadrupling the number of sprites it can handle at any given time. Functionality of the overall system
was enhanced by adding a UART to the design.

26



