
IISSSSUUEE 1100 MMAARR 22001133

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hh tt tt pp :: // // ww ww ww .. tt hh ee mm aa gg pp ii .. cc oo mmRaspberry Pi is a trademark of The Raspberry Pi Foundation.
This magazine was created using a Raspberry Pi computer.

GGeett pprriinntteedd ccooppiieess aatt
tthheemmaaggppii..ccoomm

TThhiiss IIssssuuee......

WWeebbIIOOPPii FFrraammeewwoorrkk
EExxppaannssiioonn bbooaarrddss
BBaacckkuupp SSDD ccaarrddss

SSccrraattcchh ffrraaccttaallss
BBAASSHH bbaassiiccss

CChhaarrmm

HH aa
ppppyy BBiirrtthhddaayy!!

Win a 512Mb
Model B

Raspberry Pi
& case!

Ash Stone - Chief Editor / Administration
Chris 'tzj' Stagg - Administration
Matt '0ther0judge0' - Website / Administration
Tim 'meltwater' Cox - Administration
Lix - Administration
Aaron Shaw - Page Design / Graphics
Bryan Butler - Page Design & Theme / Graphics
Ian McAlpine - Page Design / Graphics

The MagPi Team

Isa McKenty - Page Design
Simon Johnson - Page Design
Steve Drew - Page Design
W.H. Bell - Page Design / Administration
Mark Robson - Proof Reading
Michael Beaucage - Graphics

2

10
Welcome to isssue 10,

Thank you to all of those who have ordered volume one (issues 1-8). After
some printing delays, the cordex binder for volume 1 has been submitted for
rapid production. The final pdf files needed for printing each of the magazines
are nearing completion. We expect to be releasing pdfs for printing this week.
We are very grateful for your continued patience. Such delays are not expected
with volume 2, since all of the articles are already in the correct format for
printing.

In this month's issue there is a great selection of hardware and software
projects. We are pleased to present part 2 of the WebIOPi and backup articles,
new programming langauges and our regular Scratch and Python pages. For
those looking for automation solutions, there is one article with a whole range
of extension boards.

We are on the look out for willing volunteers to help with layout, testing and
proof reading activities. If you can dedicate some time, please email
editor@themagpi.com.

Chief Editor of The MagPi

3

4 REMOTE CONTROLLED ROBOT CAM - PART 2
Robot remote control with raspberry Pi REST Framework (WebIOPi)

8 A COCKTAIL OF EXPANSION BOARDS
A selection of different expansion boards for interfacing projects

1 1 THIS MONTH'S COMPETITION
Win a 512mb Rasp. Pi model B and case, from PC Supplies LTD

1 2
BACKING UP - PART 2
Keeping the SD card images safe and restoring backups

1 6 BASH GAFFER TAPE
Learn some lashup scripts with the Bourne-again shell

1 9
WHAT'S ON GUIDE
Find this month's events in your area

20
INTRODUCTION TO CHARM
Encouraging others to get coding with the Raspberry Pi

23 C++ CACHE
Introducing C++ streams, reading and writing files

26
SCRATCH PATCH - GPIO CONTROL PART 2
Celebrate the anniversary of the Raspberry Pi with a LEDborg candle

28 SCRATCH FRACTALS
Generate fractal images with Scratch

33
PYTHON PIT
Using a simple client-server model for parallel calculations

36 FEEDBACK FROM READERS

HAPPY BIRTHDAY RASPBERRY PI!

http://www.themagpi.com

Contents

4

DIFFICULTY : ADVANCED

Eric PTAK

Guest Writer

Remote Controlled

Robot Cam, Part II

WebIOPi - Raspberry Pi REST framework

Building the interface

Building your own interface is also easy, and is
based on a HTML file embedding some
Javascript. You only have to load the webiopi.js
file from your HTML file to use the WebIOPi
power. Create a new index.html file next to your
Python script:

Take note of the starting slash when loading
webiopi.js, to ensure it will be searched in the
root of the server or it may be not found.
I added an empty script section; we will use the
WebIOPi JS library here. There is also a div box,
which will contain controls.

In the script section, we add an init function to
build the interface using WebIOPi library. It
contains many functions to ease creation of
buttons that control GPIO. Here we use a basic
button to call a different function on press and
release. Each function calls a different macro on
the server. Don’t forget to register the init
function to WebIOPi. It will be called when
everything is loaded and ready.

<html>

<head>

<title>CamBot</title>

<script type="text/javascript"

src="/webiopi. js"></script>

<script type="text/javascript">

// Javascript code goes here

</script>

</head>

<body>

<div id=”box" align="center">

</div>

</body>

</html>

function init() {

var button =

webiopi(). createButton(

"bt_up", // id

"/\\", // label

go_forward, // press

stop); // release

$("#box"). append(button);

}

function go_forward() {

w(). callMacro("go_forward");

}

function stop() {

w(). callMacro("stop");

}

webiopi(). ready(init);

5

Be careful that webiopi() is a function and a
reserved word that need brackets to return the
WebIOPi object. You can use w() to short the
webiopi() call.

It’s now time to start the server and enjoy the
interface. Open a terminal in the folder you
created Python and HTML files and execute the
script:

Open a browser to the webiopi to control the
chassis. Hold the button to go forward and
release it to stop. The last piece missing is the
webcam.

Add a webcam stream

There are many possibilities to stream a
webcam, which may depend on the model you
have. In my case, I have a recent webcam which
outputs both RAW and MJPEG formats up to
1280x720@30fps.

First, check your webcam is installed with a
terminal:

Then, to check it’s working, you can install
uvccapture using apt-get or aptitude and take a
single snapshot:

If uvccapture returns without error, we can
continue to stream the webcam.

I use MJPG-STREAMER, which is really easy to
use. It gives me a 320x240@25fps pass-through
MJPEG stream over HTTP. I tried FFMPEG but
it takes the RAW output of the webcam to
encode it in MJPEG with a framerate under 5fps.

You can download MJPG-STREAMER at
http://sourceforge.net/projects/mjpg-streamer/

You will also need libjpeg8-dev you can install
using aptitude/apt-get.

Uncompress and build MJPG-STREAMER using
make command. Then execute it:

Back to HTML file, add a img tag with src set to
http://raspberrypi:8001/?action=stream replacing
raspberrypi by your Pi’s IP. You can also directly
try the URL in your browser.

Conclusion

With this article, you learned how to install
WebIOPi and how to use it in your own Python
scripts to write macros you can call from the web.

$ lsusb

[. . .]

Bus 001 Device 005: ID 046d: 0825

Logitech, Inc. Webcam C270

$ ls /dev/video*

/dev/video0

$ sudo python yourscript. py

$ uvccapture -v

Using videodevice: /dev/video0

Saving images to: snap. jpg

Image size: 320x240

Taking snapshot every 0 seconds

Taking images using mmap

Resetting camera settings

Camera brightness level is 0

Camera contrast level is 255

Camera saturation level is 255

Camera gain level is 255

Saving image to: snap. jpg

$. /mjpg_streamer -i " . /input_uvc. so

–r 320x240 –f 25" -o " . /output_http. so

–n –p 8001" &

. . .

<img

src="http: //raspberrypi: 8001/?action=s

tream">

</body>

</html>

6

The code is incomplete as it only allows to go
forward and to stop. Just add
left/right_backward, turn_left/right and
go_backward functions to move the robot in all
directions.
You can download the complete code at
http://files.trouch.com/webiopi/cambot.zip. You
will find more information on the project wiki and
in the examples folder of WebIOPi archive.

Eric PTAK, creator of WebIOPi

http://trouch.com

http://code.google.com/p/webiopi/

NOTE:
Part I of this tutorial appeared in the last

issue of the MagPi. Please read Part I

before attempting what is shown here.

You can download Issue 9 at:

www.themagpi.com

7

8

DIFFICULTY : ADVANCED Lloyd Seaton

Guest Writer

TRY A COCKTAIL
OF PROJECTS

This is the first ofa series ofarticles intended to assist Raspberry
Pi users to construct and use expanded I/O capabilities of their Pi.

Suitability

These are relatively advanced constructional
projects and are not recommended for beginners.
There are no kits of parts being offered. Instead,
participants will need to purchase their own
components from their preferred electronic
component suppliers. However, lists of
components and suggested suppliers will be
provided.

"PCBs can be purchased more
economically...if participants combine into

groups of 2 or 3 (or more)"

The Power Of Groups

The economics of component purchasing are
greatly influenced by the quantities involved. For
these projects, participants should be able to
achieve substantial savings if they can band
together with like-minded individuals through
school, Raspberry Jam or other organisations to
combine their purchases.

Printed Circuit Boards (PCBs)

Most constructors shrink from the challenge of
designing and producing a circuit board with any
fineness of detail or complexity. That is the
reason for this series of articles. By grouping
together a "cocktail" of projects with a variety of
PCB designs, the PCBs can be purchased more
economically, especially if participants combine
into groups of 2 or 3 (or more) to arrange their
purchases.

PCB Manufacturing Strategy

The author became involved in the design and
construction of small printed circuit assemblies
(PCAs) late in 2011 when he decided to develop
an electronic supervisory circuit to manage solar
powered pumps on farms and elsewhere. It soon
became apparent that the cost of PCBs needed
to reduce and a decision was made to use the
Mini Board Pro service of ExpressPCB and to
design the project PCBs such that multiple
(initially 2, later 3) project PCBs could fit on each
of the 3 manufactured PCBs per order. The
project PCBs are designed to be separated by
hacksaw prior to assembly. This strategy
achieved a unit price of about $15 Australian per

9

project PCB, seemingly a reasonable price.
More recently, the supervisory circuit has been
redesigned (with the help of a Raspberry Pi) to
employ an ATtiny85 microcontroller instead of
the previously pure analogue circuitry such that 6
project PCBs can now be fitted on each
manufactured PCB, halving the PCB unit price
again to about $7.50, a very satisfactory price.

The Projects

During the coming months it is intended that the
following PCB projects will be covered:

1 . Power I/O

2. Tiny I/O

3. MegaPower

4. Pi Bridge ICSP Interconnect

5. Battery Load Manager 85

6. BatteryLoadManager+

Brief descriptions of each project follow.

Power I/O

This PCB can include a hexadecimal rotary
switch, 7 Darlington drivers with indicator LEDs
and buffered access to the Pi's GPIO ports. A
switching regulator circuit can optionally be
included to allow the Pi to operate from a DC
source of 7 to 20V.

Tiny I/O

This PCB can include an ATtiny84
microcontroller, 7 Darlington drivers with
indicator LEDs and buffered GPIO access.

MegaPower

This PCB is for people who are not interested in
using the Raspberry Pi's GPIO, preferring
instead to have an ATmega328 microcontroller
with 4 indicator LEDs, 7 Darlington drivers and
operating at 5V for broad interfacing capability.
The board can serve as a close companion to a
Raspberry Pi or operate on its own. When
coupled with a Raspberry Pi, the MegaPower's
on-board switching regulator circuit can power
itself and the Pi from a 7 ~ 20V DC source. If not
required, the switching power supply
components can be omitted, leaving the
ATmega328 to rely on the Pi's regulated power
supplies.

Pi Bridge ICSP Interconnect

This little PCB (0.8" x 0.6") provides a convenient
way to connect the Raspberry Pi for
programming of the Battery Load Manager 85,
BatteryLoadManager+ or some Arduino boards
without the use of jumper wires.

1 0

Battery Load Manager 85

This PCB is for a stand-alone ATtiny85-based
design (1.25" x 1.25") that can be programmed
via the Pi Bridge ICSP Interconnect and a
Raspberry Pi set up with Gordon Henderson's
Arduino IDE procedure and extensions together
with ATtiny support. Circuitry is included for
monitoring of battery voltage (+ optionally
another voltage) and switching of a high current
load according to user policy programmed via an
Arduino sketch. There are 3 indicator LEDs. An
example Arduino sketch will be available for use
as a solar pump supervisor.

BatteryLoadManager+

This PCB is for a stand-alone ATtiny84-based
design (1.9" x 1.25") that is otherwise similar to
the Battery Load Manager 85 but has additional
capabilities. Surplus ATtiny84 I/O pins are
brought out to a header for increased flexibility of
application.

The Cocktails - What's In The Mix?

One size rarely fits all. To try to assist in the
most cost-effective purchase of PCBs it is
intended that there will be a choice of "cocktail
files" available so that each constructor or group
of constructors can choose to use the cocktail
files that most closely match their interest in the
various project PCBs. For example, if a
constructor has little interest in stand-alone
ATtiny PCBs, it would not be cost-effective to
choose a cocktail file that commits significant

space/cost to the Battery Load Manager projects.

Pictured below is an ExpressPCB Mini Board Pro
delivery. Each of the 3 manufactured PCBs is
2.5" x 3.8" and is allowed to have no more than
350 holes. These manufactured PCBs will each
yield a pair of different project PCBs which
happen to be equal in size; one for the Tiny I/O
project, the other for MegaPower. There are
guide lines to assist with the hacksawing.

Procedure For Ordering PCBs

Before ordering PCBs it is necessary that you
first install the ExpressPCB free CAD software on
a PC with Internet access. The
ExpressPCB.com software is a free download
from the Internet and is intended for Windows
machines but the author uses it with Wine on a
Linux PC quite satisfactorily. You then need to
choose your cocktail file, download the file and
open it with the ExpressPCB software. Placing
the order is then a straight-forward procedure
whose full description can be found on the
information blog.

Information Blog

An Internet blog has been established at
picocktails.blogspot.com to provide an on-
going information resource for constructors of
these projects. Links to the design
documentation, cocktail files, photo albums, test
programs etc will be readily accessible from the
blog.

To see the large range of PCSL brand Raspberry Pi accessories visit

http://www.pcslshop.com

February's Winners!
The winner of the new pre-assembled Element 1 4 Gertboard is Nicolas Penin

(Mulhouse, France).

The 2nd and 3rd prize winners of the PCSL Raspberry Pi case are Mervyn Burnett

(Maryport, UK) and Beverley Skea (Liverpool, UK).

Congratulations. We wil l be email ing you soon with detai ls of how to claim your prizes!

This month there are three prizes!

The first prize winner wil l receive a new

51 2Mb Raspberry Pi Model B plus a

PCSL Raspberry Pi case!

The second and third prize winners wil l

receive a PCSL LCD VESA mount case.

For a chance to take part in this month's

competition visit:

http://www.pcslshop.com/info/magpi

Closing date is 20th March 201 3.

Winners wil l be notified in next month's

magazine and by email . Good luck!

Once again The MagPi and PC Supplies Limited are proud to announce yet
another chance to win some fantastic Raspberry Pi goodies!

MARCH COMPETITION

1 1

12

DIFFICULTY : MEDIUM Norman Dunbar

Guest Writer

Backing up - part 2

In part 1, I demonstrated how you could make a
backup of your Raspberry Pi's SD card. In part 2, I
shall demonstrate how you may check that the
backup worked and also, I shall show you some of
the "fun" that can be had using the backup image as
a disc drive. You will see how to modify files within
the backup image itself. When you subsequently
write the image to an SD card, all your changes will
be present.

Again, this is simple to do on a Linux computer,
however, for Windows users it's not easy at all.
Windows users should consider using Linux Live CD
or running Linux in a VirtualBox VM (or similar) if you
want to follow along.

Checking the Backup File

Making a backup is simple, normally, but how do you
know that the backup has worked? It is not fun when
you have a trashed Raspberry Pi SD card and you
discover that your backup is not able to be restored.
You have to begin again from scratch by building a
new default distribution and reinstalling and
configuring all your software. Of course, none your
own files will be able to be restored. So you should
always check your backups work.

The simplest method of checking is to write the image
to a spare SD card and plug that in to the Rasberrp Pi
and reboot it. This is also about the quickest method,
and the part 1covered this in some detail.

This article looks at a method whereby you can take
the backup image and pretend that it is a real device,
an SD card if you like, and use it accordingly as if it
was a real SD card.

Please note, all of the following assumes that the
backup image is uncompressed and resides on a
local hard disc. If you have a compressed image,
then you may wish to uncompress it if you are
following along.

The first step, as root – as ever – is to determine
where the partitions begin. Because we have an
image copy of the SD card, we can look at the file
itself and see the partition table within. If you wish to
run all the following commands as the Pi user, the
please prefix each one with sudo. Otherwise, make
life simple and type:

$ sudo sh

This command will start a root shell for you, and there
will be no need to prefix the commands with sudo.

First list the backup image to see where the partitions
begin and the sizes of the sectors. Fdisk reports sizes
in sectors, but handily displays the sector size at the
top.

The command to list the partition details is:

$ fdisk Rpi_8gb_backup. img

13

The output from this command is shown at the top of
the following page.

When the utility has loaded, we use the 'p' command
to print the current partition table. This is the
command that shows details of the current partitions,
where they are located and how big they are.

We can see from the line starting with ‘Units’ or
‘Sector size’ that a sector is 512 bytes. We can also
see that our two partitions start at sectors 8,192 and
122,880. Multiplying these start sectors by 512 gives
the start position in bytes. This works out at
4,194,304 and 62,914,560 bytes respectively,
however, we don't really need these latter figures as
Linux will calculate it for us.

On your Raspberry Pi, the first partition is normally
mounted at /boot while the second is the root (/)
mount point.

To check these, without needing access to the Pi, we
need to create a pair of mount points, as follows:

$ mkdir /mnt/root /mnt/boot

$ chmod a=rwx /mnt/root /mnt/boot

The two commands above only requires to be
executed once, the very first time we attempt this
exercise. Next, and on any subsequent occasion
when we do this, the following two commands should
be typed - on one line each - to mount the backup
image's two partitions as pseudo disc drives:

$ mount -t vfat -o loop, offset=$((8192 * 512))

/BU/Rpi_8gb_backup. img /mnt/boot

$ mount -t ext4 -o loop, offset=$((122880 *

512)) /BU/Rpi_8gb_backup. img /mnt/root

The above creates a couple of mount points
(directories) and then mounts the first partition within
the image file as a vfat file system on /mnt/boot and
then mounts the second partition as an ext4 file
system on /mnt/root.

The first two commands to create the mount points
and set the permissions on them are only required
once, the first time you carry out this exercise.

You can now see the files by opening a file manager
and looking at the /mnt/boot and /mnt/root directories
– you should see your various files as if you were
looking on your Raspberry Pi.

At least you are now sure that your image file could
be restored to an SD card, and that it is at least
mountable - so it should be ok for future use if you
ever require to restore a corrupted card. However,
with the card image currently mounted as a pseudo
drive on your Linux laptop, you can treat it exactly as
if it was a real drive, and edit files, create new ones,
delete ones you no longer require, and so on.

Edit a file

If, for example, you were about to restore this backup
image to a second SD card, but for use in a Pi
connected to a TV that has VGA input rather than
HDMI, you could edit the config.txt file, in the /boot
partition, inside the image before you write it to the
new SD card.

As you have the image's first partition, the one
normally mounted at /boot, mounted on your laptop
as /mnt/boot, then all you have to do is edit
/mnt/boot/config.txt using your favourite editor, and
set hdmi_group and hdmi_mode to 1 and save the

Welcome to fdisk (util-linux 2. 21. 2).

. . .

Command (m for help): p

Disk Rpi_8gb_backup. img: 7948 MB, 7948206080 bytes

255 heads, 63 sectors/track, 966 cylinders, total 15523840 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x000dbfc6

Device Boot Start End Blocks Id System

/BU/Rpi_8gb_backup. img1 8192 122879 57344 c W95 FAT32 (LBA)

/BU/Rpi_8gb_backup. img2 122880 15523839 7700480 83 Linux

14

file.

When you subsequently write this backup image to a
new card, it will be ready to run on a Pi connected to
your VGA TV.

Why would you want to do this? Well, You might have
a couple of Pis running identical setups, but one is in
the main computer room attached to an HDMI TV or
monitor, and another in the Kids bedroom, connected
to a VGA TV or monitor. This method will save you
having to backup one of the devices, write the SD
card for the other, boot it up attached to the "wrong"
display, change the config and then boot it on the
correct display.

Obviously, if you have configured both of the devices
to have a static IP address when connected to your
network, you will have to edit /etv/network/interfaces
to suit the device which is having the SD card re-
imaged, otherwise you will end up with two devices
runing the same IP address, which can only result in
problems.

Restore a single file

This method of mounting a disc image as a device is
useful for times when you manage to delete a file,
accidentally of course, on your Pi, but you know that
you have a backup. If the Pi is on your network, you
can simply mount the backup image as above, locate
the file and check that it is the one you want, then use
scp or sftp to copy the file to your Pi, as demonstrated
below:

$ mount -t ext4 -o loop, offset=$((122880 *

512)) /BU/Rpi_8gb_backup. img /mnt/root

$ cd /mnt/root/home/pi

$ scp Lost_file. txt pi@raspberrypi:

You will be prompted for pi's password, and then the
file will be copied over to the Pi user's home directory
on your Raspberry Pi.

So there you have it, how to mount your backup file
on the backup computer to check that it is ok, and as
a bonus, how to extract a file (or files) for an
individual recover. What else can we do?

Restore a full backup

This is as simple as initialising the SD card for the
first time. You can restore a backup file to your SD
card provided that the SD card is bigger or the same
size as the image file. As ever, the following
command must be executed as root.

$ dd if=Rpi_8gb_backup. img of=/dev/mmcblk0

bs=2M

The command should be all on one line.

It takes a while, but it will restore in the end. All you
have to do is wait for the copy to finish and then boot
the Pi with the restored SD card in the slot. See part 1
for details on restoring compressed and/or split
backup images.

Restore to a larger card

We can also use the smaller backup files to initialize
a larger SD card, if we were perhaps upgrading. This
is what I had to do when I restored a 4Gb backup to
my 8Gb card. Once the restore completed I had a
4Gb image on an 8Gb SD card. In order to reclaim
the missing 4Gb all I did was to boot the Pi with the
restored 8Gb card in place, and login as the pi user
as normal.

Once logged in, I executed the sudo raspi-config
command, selected the option to "Expand root
partition to fill SD card" and the system happily
extended the 4Gb partition to fill up the remaining free
space on the card. The actual resizing is carried out
as part of the next reboot of the Pi - it doesn't happen
immediately.

You can see that it worked by executing the df
command, which does not need to be executed as
root!

$ df -h /

Filesystem Size Used Avail Use% Mounted on

/dev/root 7. 3G 1. 6G 5. 4G 23% /

The output above shows my root file system,
mounted on /, is 7.3 Gb in size so I know it cannot
possibly be the same size as it was when I restored
from the 4Gb backup image.

1 5

1 6

DIFFICULTY : BEGINNER W. H. Bell

MagPi Writer

1 - BASH basics

Bash (Bourne Again Shell) has been the default LINUX
shell for several years. The aim of this series is to give an
overview of the Bash shell, providing a description of the
syntax and built in functions. Bash is great for lashing
together several different programs with minimal overhead.
For this reason, this of series of articles is called "Bash
Gaffer Tape".

When reading these articles, it may prove useful to consult
the Bash manual page by typing man bash. The search
commands available within man and other commands can
be found in the less manual page. Some Bash commands
have already been discussed in the Command Line Clinic
series in Issues 2 to 5.

Running Bash

When a terminal window is opened a shell interpreter is
started. The default shell for the current user can be
printed by typing,

echo $SHELL

The default shell is set for each user within /etc/passwd or
via NIS or LDAP. For example,

grep pi /etc/passwd

returns

pi: x: 1000: 1000: , , , : /home/pi: /bin/bash

Scripts can be run by typing the commands directly into a
terminal window or by using a shell script text file. A shell
script file can be run in two ways: by sourcing the script

source script. sh

which is equivalent to

. script. sh

or by executing the script,

. /script. sh

When a file is sourced, it is as if the file was typed into the
current shell. Any variables which are declared in the
script remain set when the script finishes. The script also
has access to all of the variables declared in the current
shell. In contrast, when a script is executed a new bash
interpreter session is started. At the end of the bash
session any local variables are cleaned up.

To execute a script, the path to the Bash interpreter should
be given at the top of the file:

#! /bin/bash

Then the file should be made executable

chmod u+x script. sh

Finally, it is possible to type ./script.sh to execute the script.

Use nano (documented in the issue 3 C cave article) to
create a hello.sh file containing:

#! /bin/bash
A simple script to print a string.
echo "In the beginning. . "

Then make the file executable and execute the script. The

1 7

echo command prints the string on the screen using the
standard out. Strings starting with "#" are comments.
Comments can be added on a separate line or at the end
of a line.

Pipe operator

A series of commands can be chained together using the
pipe "|" operator. A pipe has the effect of passing the
standard out from one command to the standard in of
another command. This is especially useful when handling
strings,

Print "Hello Joe", replace Joe with Fred.
echo "Hello Joe" | sed ' s/Joe/Fred/g'

Replace Hello with Goodbye too.
echo "Hello Joe" | sed ' s/Joe/Fred/g' | sed

' s/Hello/Goodbye/g'

In this example the sed command is used to replace a part
of the string. The sed command (stream editor) is a
program in its own right and has a separate manual page.

Redirection

The standard output from a program can be directed to a
file or a device,

Print a string to a file
echo "This is a file" > file. txt

Print the contents of the file on the screen
cat file. txt

The operator ">" truncates the file and then appends the
standard output to the file. To append to a file without
truncation, the ">>" operator should be used.

If a command produces a lot of output which is not needed,
the output can be sent to /dev/null instead:

Run a command, but throw away the output
rm /tmp &> /dev/null # This command will fail.

A file can be used as the standard input of a command by
using "<". This will be discussed later in the context of
loops.

Variables

A variable is defined by assigning it a value,

myName="JohnDoe"

Bash is very sensitive to the use of white spaces. For the
declaration to be interpreted correctly there must not be
any spaces between the variable name and the equals

sign or the equals sign and the value.

Once a variable has been defined, it is used by prepending
the name with a dollar sign,

echo $myName

Variables which are defined in one shell are not available in
a sub-shell unless they are exported,

export myName="JohnDoe"

where the variable can be exported when it is declared or
afterwards.

if-else conditions

Logic conditions are inclosed in "[[]]" parentheses. The
status of a variable can be tested using a logic condition,

#! /bin/bash
if [[-z $myName]] ; then

echo "myName is not defined"
else

echo "myName is defined as \"$myName\""
fi

In this case the first condition is true if the variable is not
set. At least one white space must separate the pieces of
the logic condition. Save this script, change its
permissions and execute it. Then try

export myName=$HOSTNAME

and run the program again. Then type

unset myName

and run the program again. The unset command removes
the variable myName. Bash also provides else-if
statements:

if [[$var == 1]] ; then
cat /proc/cpu # Check the CPU type

elif [[$var == 2]] ; then
cat /proc/meminfo # Memory information

else
date -I # The current date

fi

1 8

A summary table of logic tests which can be applied to a
variable are given below,

The logic comparisons of equal and not equal can also be
used with wildcard syntax, to check if a sub-string is found
in another string.

#! /bin/bash
str1="Raspberry"
str2="berry"
if [[$str1 == "$str2"*]] ; then

echo "$str1 begins with $str2"
fi
if [[$str1 == *"$str2"]] ; then

echo "$str1 ends with $str2"
fi
if [[$str1 == *"$str2"*]] ; then

echo "$str1 contains $str2"
fi

The 'for' loop

Bash provides many familiar loop structures. The for loop
is most commonly used with input files or variables,

#! /bin/bash
A string with values and spaces
list="a b c"
print each character in the ' list' variable.
for l in $list; do

echo $l
done

This can also be written on one line as

list="a b c"; for l in $list; do echo $l; done

where several of the newline characters in the script file
are replaced with semi-colons. The variable list can be
replaced with an input file,

#! /bin/bash
Fill a file with some strings
echo "Apple Orange" > list # Truncate, append
echo "Pear" >> list # Append
print each word in the input file.
for l in $(<list); do

echo $l
done

This example uses a redirection from an input file to read
each word. Bash separates the words using the space or

the new line character.

For loops also support C-like iteration,

#! /bin/bash
Print all numbers from 1 to 10
for ((i=1; i<=10; i++)); do

echo $i
done

Notice that the variable i is not prefixed by a dollar sign
within the (()) parentheses of the for loop. This is an
exception for this type of for loop.

Evaluating commands

A command can be evaluated by writing it within $(). For
example,

dir_list=$(ls)

fills the variable dir_list with the text returned by the ls
command. The syntax $() can be directly used as a
variable. This can be useful within a for loop,

#! /bin/bash
for file in $(ls *. txt); do

gzip $file
done

where this example gzips all of the text files in the present
working directory.

Command evaluations can be nested,

touch /tmp/t1 # Create empty
$(basename $(ls /tmp/t1)) # File name only

and can include variables,

file=/tmp/t1
$(basename $(ls $file))

Each of the commands can include pipe operations,

files_to_gzip=$(ls * | grep -v . gz)

where this command excludes file names which include
".gz" from the variable. The pipe operator "|" passes the
standard output from one command to the standard input
of another command.

Challenge problem

Write a program to gzip all of the files in the present
working directory. The program should not gzip files which
have the .gz ending. The solution to the problem will be
given in the next tutorial.

Syntax

-z string True if length of string is zero

-n string True if the length of string is non-zero

var1 == var2 True if equal

var1 != var2 True if not equal

Meaning

Want to keep up to date with al l things Raspberry Pi in your area?
Then this section of the MagPi is for you! We aim to l ist Raspberry Jam events in your area,

providing you with a RPi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

CPC Raspberry Jamboree 201 3
When: Saturday 9th March 201 3 @ 1 0:30am

Where: Manchester Central Conference Centre, Manchester, UK

This major event wil l run from 1 0:30am unti l 4:00pm. I f you cannot attend you can register for a
webcast recording. Further information is avai lable at http://raspberryjamboree.eventbrite.com

Bermuda Raspberry Jam
When: First Tuesday of each month @ 6:00pm
Where: Admiralty House, Pembroke, Bermuda

The meeting wil l run from 6:00pm unti l 8:00pm. Further information is avai lable at
http://bermudaraspberryusergroup.teamsnap.com or email rpi@sainib.com

Norwich Raspberry Jam
When: Saturday 9th March 201 3 @ 1 2:00pm

Where: The Soup Lab, 5 St. Benedict's View, Grapes Hil l , Norwich, NR2 4HH, UK

The meeting wil l run from 1 2:00pm onwards.
Further information is avai lable at http://norwichrpi.org

Raspberry Pi Oxford Geek Night
When: Wednesday 1 3th March 201 3 @ 7:30pm

Where: The Jericho Tavern, 56 Walton Street, Jericho, Oxford, OX2 6AE, UK

The meeting wil l run from 7:30pm with guest speakers featuring Eben Upton .
Further information is avai lable at http://oxford.geeknights.net

1 9

20

DIFFICULTY : ADVANCED

Peter Nowosad

Guest Writer

CHARM

An Intoduction to

Charm on the Raspberry Pi

This and follow on articles are intended to
promote interest in and understanding of the
Charm language on the Raspberry Pi. As the
author of the language, this is a goal I am keen to
encourage, particularly among the younger
generation of Raspberry Pi owners and users
who are looking to learn a little about the
mysterious world of programming.

The Charm tools are light on resource yet
powerful and highly suited to an agile
development environment. Applications of any
complexity can be rapidly developed in small
incremental changes without waiting around for
the code to build;
for instance the
whole of the
Charm
distribution can
be rebuilt in well
under a minute!

Here I would like
to cover the
practical aspects
of using Charm. I
hope this will
encourage
people to take up
writing Charm
programs for

themselves and join the over 1,200 people from
around the world that have visited the Charm
web site so far.

Installation

Charm version 2.6.1 is already bundled in the
Programming folder of the RC6 release of Risc
OS for the Raspberry Pi. I would however
recommend updating to the latest version
(currently 2.6.4) which is freely distributed under
the Gnu Public License as a simple zip file from
the Charm website charm.qu-bit.co.uk. There
you can read more, get in touch with me through

the Charm forum
and view
screenshots of
the various
Charm demos, of
which the most
fun is Decapedes,
a shoot'em up
somewhat akin to
Pacman with
some nice sound
and graphics.

You may
optionally wish to
utilise the vector
floating point

21

(VFP) capabilities of the ARM 11 chip which is
off by default for people running Charm on
emulators or older variants of the ARM chip. This
will involve enabling the VFP option in the Charm
shell and re-building the distribution as described
on the web site. Doing this will for instance speed
up the included Mandelbrot explorer program by
an order of magnitude by replacing floating point
emulator (FPE) instuctions with native VFP
coprocessor instructions.

Tools

The set of Charm tools for Risc OS contains the
following principal applications:

* !Charm - A desktop shell application for

running the tool set. The shell supports drag and

drop for files and folders, command logging and

error reporting.

* edit - A general purpose editor that is useful

forwriting anddeveloping Charm source code

(drag files or folders to edit on to the Charm shell

icon with the shift key pressed).

* armc - A compiler that generates an object file

in binary form from a source code file written in

the Charm programming language.

* arma - An assembler that generates an object

file in binary form from a source code file written

in ARMassembly language.

* arml - A linker that combines Charm object

files into an executable Risc OS application or

module.

New Projects

Creating new template projects in Charm is easy
using the !NewProject utility application. Simply
select New Project from the menu, name the
project as you wish (default is MyProject) and
drag the folder icon to the folder in which you
wish it to reside. You can then build the project
by dragging the project folder on to the Charm
icon. You should then see the following in the
Charm log:

Required project folders are created
automatically, namely:

* src - Charm language source files

* obj - object files created by the compiler or

assembler

In case you don't want to inline ARM assembler
inside Charm source you can create the
additional folder:

* arm - Arm assembler source files

Applications that live inside an application folder
are usually linked directly to the correct
!RunImage location from inside the project 'build
file using the program command.

22

Modular Programming

The concept of modules is key to an
understanding of Charm (N.B. in this context
Charm modules are different from Risc OS
modules!). Each module is introduced with the
keyword module, and each source file that
Charm compiles contains a single module
definition. It may however import exported
declarations from any number of other modules
on which it is dependent.

References are usually to other modules in the
containing project and to run time library (RTL)
modules that provide essential functions such as
managing windows, files, the keyboard and
screen. The latter are further documented on the
Charm website. The order in which modules are
compiled is determined by the project 'build file
which also specifies the name and location of the
linked application or module.

Getting Started

So now for the first few snippets of the Charm
language. Each project must contain one and
only one module in which a ~start procedure with
one of two specific signatures is exported.

If no command line parameters are required, the
~start procedures is defined like this:

Hence, the classic hello world program in Charm
which uses the vdu stream of the Out run time
library module can be coded in file src.hello as:

though you will need the project 'build file to
contain:

in order to build the program before you can run
it (the linker will find the Out library automatically
for you).

A Practical Project

If you are up for a challenge, I suggest replacing
the default !NewProject MyProject module with
the following code to output the first dozen
factorial numbers:

This code illustrates the use of recursion to
calculate each value from the previous value via
multiplication while utilising the axiom 1! = 1.

Finally as an exercise, try changing the program
so that the first 20 factorials can be calculated
without running into the 32-bit limitation on
integer size (Hint: return a real from a factorial
and use .float instead of .num to output it).

Next Time

Next time I intend to cover Charm data types,
variables, strings and scoping.

module Main

{

export proc ~start() {. . . startup code }

}

import lib. Out;

module Hello {

export proc ~start () {

Out. vdu. str ("Hello World! \n");

}

}

module hello

program hello

import lib. Out;

module MyProject

{

proc factorial (int n) int

{

if n <= 1 return 1;

return n * factorial (n - 1);

}

export proc start (ref array ref array char

argv)

{

for int i : = 1 step inc (i) while i <= 12

Out. vdu. num_fld (i, 2). str (" ! = "). num

(factorial (i)). nl ();

}

}

23

DIFFICULTY: MEDIUM

Alex Kerr

Guest Writer

Introducing streams

We've covered some of the basics now, and you
may be starting to notice some similarities
between C++ and C. From this issue onwards,
we will be covering what makes C++ and C
different. For the basics like if statements and
loops, have a read of The C Cave.

Compatibility with C

Several of the standard C library header files are
accessible from C++. To use them, include them
as you would any other header, but add a 'c' to
the front of the name and take away the '.h'. For
example, the C code:

Becomes the following in C++:

This will give you access to all the functions
inside these libraries, such as printf(), and

rand(), which allows C++ to borrow a lot of useful
features from C.

I /O Streams

Not everything is the same though, as you will
have noticed. For example, when we were
outputting, we used cout instead of printf(). This
is because C++ uses I/O (short for Input/Output)
streams.

What this really means is that the things that
control input and output are just fancy objects,
instead of functions. Objects and classes will be
covered in depth later on, as that is the
fundamental difference between C and C++.

There are three main I/O stream headers. These
are <iostream>, which controls output and input
to and from the console, <fstream> which is used
for files, and <sstream>, which is used for
strings.

We already know how <iostream> works, so let
us look at <fstream>.

Reading and Writing Files

Continued Over Page...

#include <stdlib. h>
#include <stdio. h>

#include <cstdlib>
#include <cstdio>

24

#include <iostream>
#include <fstream>
#include <string>
using namespace std;

int main()
{

// Create an input file stream named ' reader' :
ifstream reader(“test. txt”);
while(reader. good())
{

string temp;
getline(reader, temp);
cout << temp << endl;

}
reader. close();
return 0;

}

#include <iostream>
#include <fstream>
#include <string>
using namespace std;

int main()
{

// Creates an output file stream named ' writer' :
ofstream writer(“test. txt”);

// Write some text to the file:
writer << “Hello” << endl;
writer << “This is a test file” << endl;
writer. close();
return 0;

}

That code allows you to read in a file named
'test.txt' (in the same directory as the executable)
and output its contents. You could use the '>>'
symbol, as we do with cin, but you will find it only
reads up to a space.

You get this issue with cin as well, so if you're
trying to get something like a name which needs

spaces, you could use:

And that will read the whole input and save it to
'variable', which needs to be a string.

For outputting, we can use it just like cout:

getline(cin, variable);

25

ios::app Appends to an existing file,
instead of overwriting it.

ios::in Gets input from a file.
Default when used with

ifstream(filename)

ios::out Outputs to a file
Default when used with

ofstream(filename)

ios::binary
Reads the file in as binary,

instead of text.

Option Description Notes

This program creates a file named 'test.txt' – in
the same directory as the executable – with the
text you see. However, this will overwrite any
files already there, so be careful!

To avoid this happening, and to do some other
interesting things, there are various options we
can use when making our file stream objects:

These can be added as options when you first make the stream. For example:

// Makes a stream that can input and output.

fstream(filename, ios: : in, ios: : out);

// Makes a stream that appends to a file:

ofstream(filename, ios: : app);

When a stream is created is it associated with a
memory buffer. When information is written into
the stream or read from the stream, information
is read from or written to the memory. This
means that if an output file is used, but the file is
not closed some of the data may not be written to
the output file. When a file is closed, the any
information in the associated buffer is flushed to
the file. While the fstream close function does
flush the stream, some streams may require
explicit flushing.

C++ streams are said to be "type safe", since
they can be used to read an input value into a
type without the need to necessarily use that

type. In C, this is not the case and sscanf
functions require projection.

Next time we will look at strings and <sstream>,
allowing you to convert strings to different data
types. Hopefully you can begin to see how all the
streams are similar, but suited to their job. Try
inputting and outputting from files, and see what
interesting things you could do.

Scratch Controlling GPIO 2 - Birthday Pi

This month's article is a continuation of the previous Scratch GPIO

article in Issue 9. Here we will describe further GPIO functionality for

Scratch, including use with the popular LEDborg RGB LED module.

Last month we explored how to connect an LED to the GPIO using a

breadboard and a resistor with the help of Simon Walters' Scratch GPIO

program (http: //wp.me/p2C0q1-27). This month we wi l l explore some more

sophisticated ways to control the GPIO with Scratch including adding LEDborg

support. To start with you wi l l need to download the updated Scratch GPIO

handler by typing the fol lowing into an LX Terminal window:

$ sudo wget http: //themagpi. com/files/issue10/scratch_gpio_handler. py

$ sudo mv scratch_gpio_handler. py ~/simplesi_scratch_handler

You wi l l need to be connected to the internet for that to work. Once the above

has completed, you are al l set.

Advanced GPIO with Scratch

You wi l l now be able to control seven GPIO pins as outputs (pins 11, 12, 13, 15,

16, 18 and 21) and treat another seven as simple inputs (pins 7, 8, 10, 19, 22,

24 and 26). You may have noticed from last month's bl ink11 script that you

can simply use broadcast messages to turn pins on or off.

Since March is the month of the Raspbery Pi 's 1st Birthday, we thought that

this would be the perfect opportunity to play with some cake, LEDs and

programming. What better way to celebrate this awesome l ittle computer?

To fol low this article ful ly, you wi l l need an LEDborg module from the PiBorg

site at http: //piborg.com/ledborg and also a cheap LED candle which we found

on eBay. Total cost for both is ~£7. Alternatively you can just use a single LED

as described in last month's Scratch GPIO article. Lastly, you also need to have

completed last month's Scratch GPIO setup for this to work.

26

Broadcast messages are found in the "control" block of Scratch. With

broadcast messages you can use commands such as allon or alloff to turn

al l the pins on or off at once. Alternatively you can change the state of single

pins using commands l ike pin11on or pin11off, replacing the number with

the pin number you are trying to alter. You can also combine messages

together l ike so:

broadcast alloff pin11on pin13on

Birthday Pi

You wi l l now need to have your LEDborg module plugged in (do not plug in

when the Raspberry Pi is on, turn the Raspberry Pi off first) .

For this next part, we wi l l be using a more advanced

method cal led variables. To set up a variable, you

need to go to the "variables" block and cl ick on

Make a Variable. You wi l l then need to name your

variable according to what you want to do. As before

you can create variables for certain pins, such as

pin11 and you can also create a variable cal led

al lpins to change them al l at once. For this example

we wi l l be using three variables cal led ledborgr,

ledborgg and ledborgb - these can be seen in the

dark orange colour variable boxes to the left.

Once you have created the variables, you can then

change the brightness of each of the red, green and

blue channels of the LEDborg by altering the value

of each of the corresponding variables.

The script shown to the left starts by setting al l the

variable values to 0. I t then goes on to ramp up the

blue part of the LEDborg unti l i t is at its ful l

brightness (value 100). I t then waits for half a

second and ramps the brightness down to 0 again

and then waits another half second before it is then

repeated for the green and red channels. Eventual ly

it starts again at the beginning. This wi l l repeat itself

unti l the red stop button is pressed.

The front cover of this issue shows the Pi and

LEDborg in action! In the next Scratch GPIO edition,

we wi l l d iscuss some simple inputs to complement

the outputs discussed so far.

Article by Aaron Shaw

27

The Julia Set

Over the next two articles, we are going to use Scratch to draw

some fractal patterns.

Gaston Jul ia, the French mathematician, did the early work on

fractals which is why the patterns we wi l l be creating are known

as " Jul ia Sets" . He was badly injured in World War One, which is

why he wore a patch over the centre of his face.

The program to draw these patterns is actual ly quite simple! Let's

start by deleting the cat sprite and making a new sprite with two

tiny costumes.

Gaston Julia

(1893 - 1978)

Cl ick on the paint new sprite button and then zoom in

as far as possible. Erase what's there already and

draw the smal lest possible square (with the rectangle

tool) and fi l l i t in with red.

Cal l this costume "colour" and then make another

one the same, except black, and cal l that "black".

Mandelbrot continues Julia's work on Fractals

In the 1970s, the Pol ish mathematician, Benoit B.

Mandelbrot, began to use computers to create images

based on fractal mathematics. His book, "The Fractal

Geometry of Nature", was very popular and introduced

fractals to a much wider audience.

28

c = -0.7467 + 0.3515i

The Main Drawing Script

This is the main script that draws the fractal image.

It's crucial to create the variables correctly.

These variables MUST be "For this sprite only":

i terations, ZI , ZI2 , ZR, ZR2, Z_Im, Z_Re, x, y.

These must be "For all sprites" :

C_Im, C_Real , Col_offset, Max_It, X_zoom, Y_zoom.

Here's an example of

the type of images you

wi l l be able to create.

Scratch On!

This al lows the program to draw to several

parts of the screen at the same time, which

wi l l speed things up a lot. I 've gone with 20

"strips" , you could try experimenting with

other arrangements.

In the first few l ines of the script, we set up which

area of the screen this sprite wi l l draw on.

This one does a strip 20 pixels wide: from x = -200

to x = -180.

When you have made this script, you need

to "dupl icate" it 20 times.

Then change the values for x so that each

sprite does another 20 pixels.

The last sprite should be in charge of

x = 180 to x = 200.

29

i - the Imaginary Number

The imaginary number, i, is the square root of -1.

The difficulty with i is that it is impossible to find a "normal"

number that, when multipl ied by itself, becomes -1 .

Descartes did not l ike i and he gave it the name "imaginary

number" as a kind of insult. However, after the work of Euler

and Gauss, i quickly became an accepted part of

mathematics.

Complex Numbers

When we work with i, we often use it as part of a "complex number". A complex

number has a real part and an imaginary part.

C = a + bi

In this equation, C is a complex number and it is made by adding the real part, a,

to the imaginary part, b, multipl ied by i.

The mathematics of the Jul ia set requires us to use complex numbers. When we

make our fractal images, you should picture the x axis of the screen as

representing the real part of the complex number (a) and the y axis as showing us

the value of the imaginary part (b).

Generating a Julia Set

As you wi l l see on the next page, we give the program the values for the real and

imaginary parts of C. Then the sprites visit every "pixel" in the region of the screen we

are drawing on, treating it as a graph of the complex plane (this is what we cal l the

visual isation of complex numbers that I explained above).

The current values for x and y are taken as the initia l real and imaginary parts of Z

(Z_Real and Z_Im), Then we iterate over a function:

z1 = z2 + c

I f the value of the sum of the squares of the real and imaginary parts of z is more than 4,

we consider that this location has "escaped" (if we carried on iterating, the number

would get bigger and bigger) and we use the number of iterations completed so far to

set the colour of the pixel .

I f the values stay lower than 4 within the maximum iterations we have chosen, the

location is considered to be part of the Jul ia set and the pixel is coloured black.

The wikipedia article on the Jul ia set is useful , i f this (rather skimpy) explanation has not

made the maths clear enough.

2930

Douady's Rabbit

The Green Flag Script

This script is run when the green flag is cl icked. You

can give it to any of the sprites you've made (I 'd

suggest giving it to the first.)

The most important thing is to enter the values or

the real and imaginary part of "C".

The colour image lower down on this page is

known as "Douady's Rabbit" and has the fol lowing

values for C:

Real : -0.123

Imaginary: 0.746

Next, you can specify the maximum number of

iterations. I 'd suggest you try about 20 at first. I f

you choose more, you' l l get a smoother range of

shades in the picture, but it wi l l take longer to

draw.

Setting the "zoom" al lows you to focus in on a

smal ler area. A zoom of 1 is "normal size" . You

could see what happens when you enter 2 or 3

instead.

Complex Numbers to try

I f you search on-l ine for Jul ia Set fractals, you wi l l

find plenty of values for C to use in this program.

Here are a few that I have used whi le testing this

program:

Real : -0.4 Real : -0.8

Imaginary: 0.6 Imaginary: 0.156

Real : -0.1

Imaginary: 0.651

Real : -0.7467

Imaginary: 0.3515

A monochrome image

from an earlier version

of the program.

Download

I f you get stuck, you can get the

code here:

http: //tinyurl .com/gastonjul ia/

31

SAFE AND SIMPLE

CONNECTION TO YOUR

RASPBERRY PI

Find out more at quick2wire.com

• Interface board
• I2C Port Extender
• Analogue board

• Articles
• Tutorials
• Forum

• For GPIO, I2C, SPI
• Device Libraries
• Examples

SUPPORTHARDWARE SOFTWARE

Interface board: £1 3.86 | Port Extender: £9.80 | Combo: £22.66 (save £1 .00)

Prices include UK VAT but exclude Postage and Packaging: from £2.70

32

33

DIFFICULTY : ADVANCED W. H. Bell

TheMagPi

Parallel calculations part 1

Previous Python examples have discussed web server access to programs. However, sometimes other client server
relationships can be useful. This month's article is the first part of a demonstration of a basic client server application, which
shows how other applications might be written.

The Raspberry Pi can be deployed with solar panels or batteries and connected to a network using a Wifi dongle. In this
manner, it can be used for remote monitoring or robotics. Alternatively, the Raspberry Pi could be used as the control centre
of a computational system. In the first example, the Raspberry Pi could be a client or a server. In the section example, the
Raspberry Pi is likely to be a server.

Servers are processes which listen for clients to connect to them. When a server receives a request from a client, it is
common for a thread to be allocated to the client connection. A thread is the smallest sequence of programmed instructions
which can be managed independently by an operating system. Often the server listening process runs as one thread and
gives the clients each a thread from a limited pool. When the client is finished, the thread in the server should be released for
a new connection. If the server created a new thread for each client connection it would quickly run out of memory.

Sometimes calculations require more than one computer to find a result quickly. When a physics or engineering problem is
described by an equation with many variables, finding a global minimum for the equation can be impossible on paper and
take too long with one computer. To solve this problem, a network of computers can be connected together to calculate
many points and numerically solve the equation much more quickly. While the Raspberry Pi does not have the fastest CPU,
it can be used to demonstrate this principle. For the client-server parts of this problem another Raspberry Pi or another
computer will be needed. If you have many other computers to play with or can invite many friends around, all the better.

Classes and function evaluation

Create a file called FunctionCalculator. py and add to it,

A class to calculate the value of a function string
class FunctionCalculator:

def evaluate(self, cmd):
y = 0.
print "exec \"%s\"" % cmd
exec cmd
print "y = %e" % y
return y

A class to calculate many the result of many equations at once.
class SynchronousCalculator:

34

def __init__(self):
self. calculator = FunctionCalculator()

def evaluate(self, cmds):
results=[]
for cmd in cmds:

results. append(self. calculator. evaluate(cmd))
return results

The FunctionCalculator is a simple class which has one member function that executes the value of a string as a
python command. The SynchronousCalculator includes an instance of the FunctionCalculator class to evaluate
many commands one after another. In the case of the FunctionCalculator, the evaluate method takes one string
whereas the SynchronousCalculator function takes a list of strings.

To test FunctionCalculator. py open a python shell by typing python. Then type:

from FunctionCalculator import FunctionCalculator
f = FunctionCalculator()
f. evaluate("y=5*100")

This evaluate function prints the command and the result of evaluating the command. Many points of a mathematical
function can be evaluated using the SynchronousCalculator. For example, ten points on the curve y=x^2 can be
calculated by typing,

from FunctionCalculator import *
import math
f_sync = SynchronousCalculator()
cmds = []
for x in xrange(11):

cmds. append("import math; y = math. pow(%f, 2)" % (x))

f_sync. evaluate(cmds)

Notice that the FunctionCalculator class, which is used by the SynchronousCalculator class, does not need to
import the math functions until they are needed during the command evaluation. This becomes very powerful when used
with many computers, where the function to be evaluated remotely might not be known before runtime.

The next step needed to improve the speed of calculations is to use more than one computer. To do this, one Raspberry Pi
will be needed as a server and another Raspberry Pi or other computer will be needed as a client. Connect both Raspberry
Pis or the Raspberry Pi and other computer to the network. Then find the IP addresses for the two machines. On LINUX or
OSX type ifconfig, or on Windows type ipconfig.

To avoid any difficulties with network address translation (NAT), make sure that the two computers are on the same
network. Then test the network path using ping from one machine to the other. For example,

ping -c 5 192. 168. 1. 12

If this is successful, it will return the time the ping took five times. Use ping from both machines to be absolutely sure the
network path is as hoped. Now create a SimpleServer. py file containing

import socket
import threading

class SimpleServer:
def __init__(self, host, port):

self. host = host
self. port = port
self. sock = socket. socket(socket. AF_INET, socket. SOCK_STREAM)
self. sock. settimeout(None)
self. client_sockets = []

35

def initialise(self):
try:

self. sock. bind((self. host, self. port))
except socket. error:

return

self. sock. listen(5)
self. server_thread = threading. Thread(target=self. serve_forever)
self. server_thread. setDaemon(True)
self. server_thread. start()
print "Server running on %s and listening on %d" % (self. host, self. port)

def serve_forever(self):
try:

request, client_address = self. sock. accept()
except socket. error:

return

self. client_sockets. append(request)
print "Received connection from ", client_address

To start up the simple server, open a python shell and type:

from SimpleServer import SimpleServer
import socket
server = SimpleServer("192. 168. 1. 3" , 20000)
server. initialise()

Then go to the other Raspberry Pi and open a python shell and type:

import socket
sock = socket. socket(socket. AF_INET, socket. SOCK_STREAM)
sock. connect(("192. 168. 1. 3" , 20000)) # The IP address of the server machine
sock. close()

Now look on the server machine. The server machine reports that the client machine has connected to it.

In the example program, the server address is explicitly used in the server startup, since the host name of a Raspberry Pi
using DHCP resolves to the local address 127. 0. 0. 1. If the server's host name is associated with an address on the local
network, then the command socket. getfqdn() can be used instead of "192. 168. 1. 3" .

The SimpleServer class contains several member variables which are initialised in the constructor __init__. These
member variables contain the values for the host name, port number, socket and client connections. The port number has to
be high enough to be accessible to a non-root user. Each server binds to a given port number. Once the port number is in
use, it cannot be used by another server. Therefore, the server has to be shutdown before it can re-bind to the same port.
The instantiation socket. socket(socket. AF_INET, socket. SOCK_STREAM) creates a socket. The AF_INET
refers to the address family, which in this case is an Internet Protocol address. There other types of socket for bluetooth.
The SOCK_STREAM is the socket type, which is a reliable two-way connection-based byte stream. The available address
family names and the socket types are also found within standard LINUX C libraries. The client_sockets variable is a
list for holding each client connection.

The SimpleServer class contains two other member functions initialise and serve_forever. The initialise
function tries to bind to the allocated socket. If this is successful, it configures the socket as a listening socket. Then a
thread is created which executes the server_forever member function. The thread is configured as a daemon and
started. The serve_forever member function is the listening process which accepts connections from clients. The client
socket associated with a connection is then added to the list of client sockets.

The next article will show how to send and receive commands from clients, using threads for each associated connection.

Testedwith Python 2.7.3 (Raspbian) & 2.6.1 (OSX10.6.8)

I am newtoRPi. It is great. Thanks for

your mag. I download it and then

transfer tomyKindlewhere it iseasyto

read.

- DrDavid C Cusworth

Very well done for everything

Raspberry Pi that you are doing. I

am finding it very interesting and in-

formative.

- TerryHardy.

Thanks you for the great project

regarding the pi magazine. When I

was a child my father used to buy

these kind of magazines and I

miss them, not only for me, but for

the new children who think the only

OS in existence is that thing called

windows, and when they look at

linux just don't know what to do,

even when they are computer re-

lated students. Don't askwhen they

are confronted with the command

line.

- AlvaroMendoza

I love you!

- PetrMasopust

Im a big fan of the raspberry and

also appreciate all the work you put

in the MagPi magazine. Its a pleas-

ure to read the articles and feel the

energy and love your team of vo-

lunteers put into that. Thank you

verymuch

- Dominik

from Munich, Germany

I have read your current issues of

the mag and am delighted with it. It

has been a while since this sort of

publication was available, and I

have been wanting to get into pro-

gramming for years, even up to the

point of attending college. But with

this I can study at my own pace

and start my own projects. I dont

have a pie as of yet, but intend to

buy the starter pack from Maplin as

soon as I can. Again, thanks.

- Ryan Hunter

I was wondering if I could write for

The Mag Pi magazine, I love the

magazine, and I of course love

technology and writing. I was also

one of the first Raspberry Pi users.

Thankyou.

- Arman Bhalla

I just wanted you to know that I love

your magazine. It is well laid out

and highly informative. It is the per-

fect introduction for students, and

also hobbyists to the wonderful

world of Raspberry Pi. Believe me

when I say, you are helping create

the next generation of Engineers,

makers, hackers, and artists. Keep

up the greatwork.

- David Sanders

The MagPi is a trademark of The MagPi Ltd. Raspberry Pi is a trademark of the Raspberry Pi foundation. The MagPi magazine is
collaboratively produced by an independent group of Raspberry Pi owners, and is not affiliated in any way with the Raspberry Pi
Foundation. It is prohibited to commercially produce this magazine without authorization from The MagPi Ltd. Printing for non commercial
purposes is agreeable under the Creative Commons license below. The MagPi does not accept ownership or responsibility for the content
or opinions expressed in any of the articles included in this issue. All articles are checked and tested before the release deadline is met but
some faults may remain. The reader is responsible for all consequences, both to software and hardware, following the implementation of
any of the advice or code printed. The MagPi does not claim to own any copyright licenses and all content of the articles are submitted with
the responsibility lying with that of the article writer. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Alternatively, send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041 , USA.

Feedback & Question Time

36

