
FPGA Digital Music Synthesizer

A Major Qualifying Project Report

Submitted to the Faculty of Worcester Polytechnic Institute

In partial fulfillment of the requirements for the

Degree of Bachelor of Science in Electrical & Computer Engineering

By:

Evan Briggs

Sidney Veilleux

April 16, 2015

Advisor:
Professor R. James Duckworth

ii

Acknowledgements

Many thanks to Professor Duckworth for his invaluable guidance throughout the project.

We appreciate Professor Cyganski’s generosity in granting us laboratory space for project

development.

We would also like to thank Professor Manzo for allowing us to use the resources of the digital

music production lab.

iii

Table of Acronyms

ADSR Attack, Decay, Sustain, Release

AXI Advanced eXtensible Interface

DDS Direct Digital Synthesis

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

GUI Graphical User Interface

IIR Infinite Impulse Response

LFO Low Frequency Oscillator

LFSR Linear Feedback Shift Register

MIDI Musical Instrument Digital Interface

MQP Major Qualifying Project

NCO Numerically Controlled Oscillator

PL Programmable Logic

PS Programmable Software

SoC System-on-Chip

WPI Worcester Polytechnic Institute

iv

Abstract

This project comprised the development of a digital music synthesizer capable of

performing subtractive synthesis with several stages of audio effects processing. The system

was implemented on the Zedboard, a development board with a Xilinx Zynq System-on-Chip

(SoC), a multifunctional device which features a dual-core ARM microprocessor and Field-

Programmable Gate Array (FPGA) logic. The completed synthesizer was capable of producing a

wide variety of musical tones, many aspects of which were completely controllable by the user.

Overall system control was provided by real-time embedded software running on the ARM

microprocessor. Waveform generation and synthesizer effects modules were designed in

Verilog and implemented in custom logic using fixed-point digital signal processing techniques.

v

Executive Summary

This project encompassed the design and realization of a digital music subtractive

synthesizer with various audio processing effects implemented on Field-Programmable Gate

Array (FPGA) hardware. This was accomplished using a Xilinx Zedboard, powered by the Zynq

7000-series System-On-Chip (SoC). The Zynq chip features FPGA logic similar in design to the

Artix-7, which provides custom Programmable Logic (PL), as well as an ARM Cortex-A9 dual-

core embedded processor capable of executing Programmable Software (PS). Input to the

system is provided by a standard USB Musical Input Digital Interface (MIDI) device, which is

connected to a computer running Windows. The computer acts as a mediator for input data

sent to the Zedboard, as well as supplying a Graphical User Interface (GUI) for control of overall

system operation. System output is produced by an audio codec featured on the Zedboard, in

the form of a high resolution 24-bit signal sampled at 96 kHz.

Software running in real-time on the Zynq chip’s Cortex-A9 microprocessor was utilized

to provide overall control of the system. This software handles user input sent by the computer

in the form of USB Universal Asynchronous Receiver/Transmitter (UART) serial data, which is

received and parsed by the Cortex-A9. Controller input, which is formatted according to MIDI

protocol standards, is interpreted and sent to the respective PL effects modules across the Zynq

chip via the Advanced eXtensible Interface (AXI) interconnect. This interconnect was also

utilized for receiving processed samples from the PL component of the chip. Samples are stored

in memory in two 192,000 element arrays for implementation of delay and echo effects,

capable of operating with a depth of up to two seconds. The Cortex-A9’s Floating-Point

Processing Unit (FPU) was utilized to scale the amplitude of outgoing signals according to the

velocity at which the current note was pressed, and to perform precise multiplications for the

exponential decay of the echo effect. Audio codec initialization and control is conducted in

software as well, with output sample rate controlled by a timer-generated interrupt.

Waveform generation and effects processing are performed within the Zynq chip’s FPGA

logic. The system implements Direct Digital Synthesis (DDS) to produce a ten-octave musical

range of 24-bit base waveforms comprising of sine, sawtooth, square, and triangle waves. This

vi

allows for musical notes at 121 discrete fundamental frequencies spanning 8 kHz to be played.

Waveform samples are produced at the signal generation stage at a rate of 96 kHz. These

harmonically-rich signals undergo four sequential stages of variable high- and low-pass filtering

to remove components of the waveform, providing an essential requirement of user-

controllable subtractive synthesis.

Synthesizer effects modules designed in Verilog are utilized to alter the signal, producing

a wide range of user-defined voices. The use of FPGA hardware allows these modules to

perform complex processing in real-time using fixed-point arithmetic. An Attack-Decay-Sustain-

Release (ADSR) amplitude envelope is used to modulate the level of the signal over time,

allowing the system to model the physical amplitude response of a wide range of musical

instruments. Several distortive effects were implemented with the purpose of deconstructing

and obscuring the waveform, to emulate the imperfections of older music production

technology. A Frequency Modulation (FM) module was designed to create a musical Vibrato

effect. Lastly, Low Frequency Oscillator (LFO) modules were implemented to produce

automated effect parameter control, allowing for dynamic changes to synthesizer effects using

basic waveforms. All effect control signals are routed through the LFO modules, which grants

the user the ability to turn any static effect parameter into one which varies over time at a

specified rate and depth.

 Extensive system testing was performed at each stage of the design process. Many

effects were simulated in MATLAB to confirm theoretical functionality before being designed in

Verilog. Hardware module verification was performed using Verilog test benches to confirm

logic implementations and post-synthesis functionality. Finally, the top-level system was tested

via oscilloscope measurements of both analog output signals from the codec and digital internal

signals, which were routed to Zedboard package pins for debugging. Software functionality on

the Cortex-A9 was verified using tools included in the Xilinx Software Development Kit. The

completed synthesizer met all requirements defined at the inception of the project. Overall, the

team was successful in producing a stable and fully-functional subtractive synthesizer.

vii

Table of Contents

Acknowledgements ..ii

Table of Acronyms .. iii

Abstract ... iv

Executive Summary .. v

Table of Contents ... vii

Table of Figures .. x

1 Introduction ... 1

2 Background .. 6

2.1 Origins of Synthesis .. 6

2.2 Synthesis Techniques ... 9

2.3 Synthesizer Effects ... 10

2.4 MIDI Protocol ... 10

2.5 AKAI USB MIDI Controller... 12

2.6 Zedboard Development Board ... 12

2.7 Prior Art .. 14

3 System Design .. 16

3.1 Overall System Block Diagram ... 16

3.2 Zynq SoC and Architecture ... 17

3.3 AXI Peripheral Interconnect ... 17

3.4 Software on the ARM Cortex-A9 .. 18

3.5 IP Module Generation for FPGA Processing .. 19

3.6 MIDI Data Transmission to FPGA ... 20

3.7 Clock Domains .. 22

3.8 Waveform Generation ... 23

3.8.1 Sine Wave ... 25

3.8.2 Sawtooth Wave ... 26

3.8.3 Square Wave ... 27

viii

3.8.4 Triangle Wave ... 28

3.8.5 Complex Waveform Generation ... 28

3.9 Synthesizer Effects ... 30

3.10 Audio Codec for System Output ... 30

4 Synthesizer Effects Implementation .. 32

4.1 ADSR Amplitude Envelope Generator .. 32

4.2 Filtering Stages ... 36

4.3 Distortive Effects .. 41

4.3.1 Amplitude Clipping and Overdrive .. 41

4.3.2 Waveform Resolution Reduction .. 43

4.3.3 Noise Generation .. 44

4.4 Delay Effects ... 46

4.5 Low-Frequency Oscillator and MIDI Control .. 49

4.6 Vibrato .. 51

5 Testing and Results .. 54

5.1 Hardware Testing ... 54

5.1.1 Verilog Test Benches ... 55

5.1.2 Resource Utilization .. 56

5.2 Software Testing... 56

5.2.1 Debugging Techniques .. 57

5.3 System Testing ... 57

5.3.1 Waveform Generation .. 58

5.3.2 ADSR Envelope .. 60

5.3.3 Filter Stages ... 61

5.3.4 Compression and Overdrive ... 63

5.3.5 Waveform Resolution Reduction .. 65

5.3.6 Delay and Echo .. 66

5.3.7 Vibrato .. 67

5.3.8 LFO .. 68

ix

5.4 Signal-to-Noise Ratio .. 70

5.5 Real-Time Capability ... 70

6 Conclusions .. 74

6.1 Future Work ... 76

7 References ... 78

Appendix A: Overall Block Diagram .. 81

Appendix B: Development Code ... 82

MATLAB Scripts ... 82

Direct Digital Synthesis Waveform Modules Generation.. 82

FIR Filter Module Generation .. 90

IIR Filter Module Generation ... 94

Verilog Code .. 99

ADSR Envelope Module ... 99

LFSR Noise Effect Module .. 102

Compression Effect Module .. 106

Embedded Software Excerpts ... 108

Output Sample Processing Interrupt Service Routine ... 108

Controller Value Update Loop ... 109

x

Table of Figures

Figure 1-1: Zedboard Development Board ... 2

Figure 1-2: Zedboard Architecture ... 3

Figure 1-3: System Operation Overview ... 4

Figure 2-1: Musical Telegraph Patent Diagram .. 6

Figure 2-2: Sequential Circuits Prophet-5 [2] ... 8

Figure 2-3: Analog Subtractive Synthesizer .. 9

Figure 2-4: MIDI Data Bytes .. 11

Figure 2-5: AKAI USB MIDI Controller ... 12

Figure 2-6: Overview of Zynq Architecture ... 13

Figure 2-7: FPGA Cyclone Synthesizer Block Diagram [15] ... 15

Figure 3-1: Overall System Block Diagram ... 16

Figure 3-2: Zynq Software-Hardware Interface .. 17

Figure 3-3: AXI Interconnect Signals ... 18

Figure 3-4: Control Software Flowchart ... 19

Figure 3-5: GUI for MIDI Data Program ... 21

Figure 3-6: MIDI Velocity to Amplitude Scale Mapping .. 22

Figure 3-7: DDS Implementation Block Diagram .. 24

Figure 3-8: Sine Wave Sample Table ... 25

Figure 3-9: Sawtooth Wave Sample Table .. 26

Figure 3-10: Square Wave Sample Table .. 27

Figure 3-11: Triangle Wave Sample Table .. 28

Figure 3-12: Sine-Saw Combination in MATLAB ... 29

Figure 3-13: Synthesizer Effects .. 30

Figure 3-14: Audio Codec Implementation ... 31

Figure 4-1: Synthesizer Effects Order ... 32

Figure 4-2: ADSR Envelope Diagram ... 33

Figure 4-3: ADSR Top-Level Implementation .. 34

xi

Figure 4-4: ADSR Module State Transition Diagram ... 35

Figure 4-5 - ADSR Amplitude Envelope Model (A,D,R = .2 seconds, Sustain level = .5) 36

Figure 4-6: MIDI to Frequency Cutoff Mapping .. 38

Figure 4-7: FIR Filter Block Diagram .. 39

Figure 4-8: Sawtooth Waveform with and Without FIR Low-pass Filter 40

Figure 4-9: FIR/IIR Comparison: Sawtooth ... 41

Figure 4-10: Clipping Effect ... 42

Figure 4-11: Bitcrusher Effect ... 44

Figure 4-12: LFSR Noise Generator Frequency Response... 45

Figure 4-13: LFSR Block Diagram .. 46

Figure 4-14: Echo Simulation in MATLAB ... 48

Figure 4-15: LFO Applied to Signal Amplitude .. 50

Figure 4-16: LFO Effect Control ... 51

Figure 4-17: Vibrato Effect .. 52

Figure 4-18: Vibrato System Level Implementation ... 53

Figure 5-1: Verilog for Module Testing ... 54

Figure 5-2: Timing Simulation of FIR Filter .. 55

Figure 5-3: Verification of Hardware Input via Debugging Tool ... 57

Figure 5-4: Sine DDS Output ... 58

Figure 5-5: Sawtooth DDS Output .. 59

Figure 5-6: Square DDS Output ... 59

Figure 5-7: Triangle DDS Output ... 60

Figure 5-8: ADSR Scope Capture ... 61

Figure 5-9 a-c: FIR and IIR FIlters, Sawtooth ... 62

Figure 5-10: FIR Filter Comparison (MATLAB to FPGA) .. 63

Figure 5-11 a-c: Compression and Overdrive ... 65

Figure 5-12: Bitcrusher Effect Test ... 66

Figure 5-13: Echo of Signal over time ... 67

Figure 5-14: Square Signal with Vibrato Effect ... 68

xii

Figure 5-15: Sinusoidal Compression LFO Effect .. 69

Figure 5-16: LFO Applied to FIR High-Pass .. 69

Figure 5-17: Effects Processing Throughput ... 72

Figure 5-18: System Throughput Latency ... 73

Figure 6-1: FPGA Digital Synthesizer System .. 75

1

1 Introduction

 Electronic synthesizers have been experimented with for the better part of the last

century, but have more recently become popular with the introduction of modern digital music

production and universal MIDI standards. Synthesizers are capable of making many unique

sounds that are all completely controlled by the user of the instrument. Through the use of

tonal oscillators and effects modules implementing signal processing techniques, the number of

possible sounds that can be created is seemingly infinite. Due to this high level of tonal

customization available on a singular instrument, synthesizers have become a quintessential

part of production across many genres of music in the modern era. Early electronic instruments

were developed using analog circuits, while modern synthesizers make use of digital systems

such as embedded processors and integrated circuits. Given the increased processing

capabilities of Field-Programmable Gate Arrays (FPGAs) over the past few decades, the design

of a fully-functional synthesizer using this form of programmable logic has become possible.

The goal of this project was to develop a subtractive synthesizer using the Zynq System-

on-Chip (SoC) on a Xilinx Zedboard Development Board to read in musician input, perform

signal generation and effect processing, and output an analog waveform to be amplified and

played through speakers. We designed the system to be capable of producing high-resolution

waveforms and executing real-time effects for audio signal output. The Zedboard Development

Board is pictured in Figure 1-1, with the Zynq SoC visible in the center of the board.

2

Figure 1-1: Zedboard Development Board

Knowledge of several engineering disciplines is necessary in order to create a digital

synthesizer that meets these requirements. Experience with digital design of programmable

logic for FPGAs is essential for the creation of hardware capable of performing high-speed data

manipulation. A working knowledge of signal processing techniques such as filtering is also

required, as well as the ability to apply this knowledge to the paradigm of digital logic. Fixed-

point data is often used for performing precise numerical computations in digital logic,

therefore choosing appropriate word sizes and radix positions is crucial for proper system

functionality. Knowledge of waveform generation methods such as Direct Digital Synthesis

(DDS) is required to generate high-resolution signals in real-time at discrete tonal frequencies

for musical applications.

Many audio processing techniques are implemented on modern synthesizers to alter

the sound of the instrument. This project was developed with the intent to study, design, and

implement a wide variety of effects. These provide the user with a multitude of controllable

modules to utilize during performances, allowing for dynamic transformations of the

instrument’s sound. Implementing these effects in hardware allows for the instantiation of

many different modules running simultaneously to perform complex real-time signal

processing. Many FPGA synthesizer projects have previously been developed, but none made

3

use of a System-on-Chip comprising of both a hardcore microprocessor and FPGA logic. The

Zedboard features a number of peripherals connected to the Zynq SoC, making it an excellent

candidate for synthesizer production. A top-level diagram of the board’s architecture can be

seen in Figure 1-2.

Figure 1-2: Zedboard Architecture

As can be seen in Figure 1-2, the Zedboard features a great number of peripherals for a

wide range of applications. We chose this development board for system development because

of the unique architecture of the Zynq chip, which offers an array of programmable logic

(shown as PL in the figure) connected to a hardcore microprocessor processing system. This

allows for the division of system tasks between these two components, in order to achieve the

4

best possible functionality and quickest overall throughput. Zedboard peripherals used in this

project include the I2S Audio Codec, USB UART bridge, and slider switches.

The synthesizer system we designed is composed of five major parts, displayed

graphically in Figure 1-3. Musician input is captured by a digital keyboard interface and sent to

the Zedboard in the input component of the system. The system control block, implemented on

the Zynq chip’s Dual-Core ARM Cortex-A9 microprocessor, interprets input and provides control

over every component of the system. The waveform generation module, implemented within

programmable logic, produces base periodic waveforms. These waveforms feed into the effects

processing subsystem (also in custom logic) for signal processing and customizable tone

production. The final synthesized signal is converted into an analog waveform at the system

output stage to be amplified and played through speakers.

Figure 1-3: System Operation Overview

While a wide range of synthesizer effects exist, this project sought to implement

modules usually found in the typical modern synthesizer. This includes several stages of

5

filtering, which remove components of harmonically-rich waveforms to perform subtractive

synthesis. Amplitude Modulation envelopes are also essential to any synthesizer, allowing the

device to model the physical response of a specific instrument. Distortive effects, which act to

deconstruct or obscure an audio signal, are often used to model the imperfections present in

early analog amplifiers and synthesizers. Many synthesizers also make use of auxiliary

oscillators operating at low frequencies (0-20Hz), which are applied to the controlling input of

various effects modules. This allows for dynamic changes to virtually any effect implemented

on the device. These Low Frequency Oscillators (LFOs) are also used to apply frequency

modulation to a signal, resulting in a vibrato effect.

 Synthesizers are an excellent tool for musicians who wish to create their own unique

sounds for recording songs or performing on stage. Developments in synthesizer technology

allow these artists to be expressive and show their creativity through the use of waveform

manipulation, made possible by the abundance of effects available to them. One benefit of

creating such a system was the opportunity for us to learn how each of these subsystems

function, providing a tangible application of digital signal processing. As engineers with

backgrounds in music as well as in signal processing, we were able to research and put into

practice the mathematical theory behind our musical training. This helped to conceptualize the

engineering required for the development of a complex musical instrument.

The outline of this report is as follows. The following chapter provides an overview of the

origins of electronic music production and the progression of synthesizer technology, leading

up to the modern era. This chapter also includes a description of current industry standards and

an overview of the Zedboard Development Board. Chapter Three describes the methods of

design and implementation that were utilized in the development of our overall system design,

including system control and waveform generation. Chapter Four outlines in detail each

synthesizer effect, including theory of operation and methods of module development. The

fifth chapter describes methods and results of system testing and verification, and the sixth

chapter provides conclusions drawn from the completion of the project.

6

2 Background

A synthesizer is an electronic musical instrument capable of producing tonal signals that

can be played audibly for the creation of music. The complexity of this instrument has grown

rapidly over the past century, as many advancements were made in the fields of electrical

engineering and signal processing during this time. Synthesizers have become increasingly

popular in recent years, due to an increase in their commercial availability as well as their wide

breadth of applications across the music industry.

2.1 Origins of Synthesis

 In the late 1800s, the first electric musical instrument was developed by Elisha Gray

using electromagnetic circuits to create single-note oscillators [1]. These oscillators were

capable of producing simple sinusoidal tones from vibrations at the circuit’s resonant

frequency. A patent diagram for this device, called the Musical Telegraph, can be found in

Figure 2-1, showing individual oscillators for each musical note.

Figure 2-1: Musical Telegraph Patent Diagram

7

This concept was further developed into what is commonly referred to as a Voltage

Controlled Oscillator (VCO), in which the frequency of oscillation is proportional to the circuit’s

input voltage. VCOs allowed for a more modular and compact design in which one oscillator

could produce a wide range of tonal frequencies, which lead to the development of portable

analog synthesizers. Analog filters, vacuum-tube amplifiers, and other circuits were used to

shape and scale synthesized waveforms, changing the musical timbre of the electronic

instrument. As electrical technology advanced over the course of the 20th century, new designs

for more complex and commercially-available synthesizers became prevalent world-wide. This

expansion grew exponentially in the early 1970’s as the synthesizer became a common

instrument in popular recorded music. The fully-analog synthesizers of this era made use of

continuous time signal processing techniques, with effects subsystems connected in series

using patch cables to create modular designs.

 In early synthesizers, each effect was designed as a standalone analog module that

could be connected to the system sequentially in arbitrary order. This resulted in large,

expensive systems that had to be purchased piece by piece. With advancements in the field of

digital systems and microprocessors, smaller and less expensive systems were able to be

produced. Different methods of synthesis were used to create a wide variety of sounds, to

achieve specific timbres for production across many genres of music.

By the end of the 1970s, the first microprocessor-controlled digital synthesizers had

become commercial available. These systems sought to recreate the signature sounds of analog

synthesizers, with much more compact designs. Tonal generation and effects modules were

implemented in embedded software, allowing for more complex signal processing to be

performed. This allowed for a wider range of effects to be developed on a single system,

implementing the latest developments in the field of digital signal processing. One such device

which became quite popular in recorded music of that era, The Prophet-5, is pictured in Figure

2-2 [2]. This system featured analog and digital components, utilizing a microprocessor to for

patch memory and effects control. Early digital synthesizer systems were limited by the speed

and memory available to microprocessors, which has grown logarithmically over the past 30

years [3].

8

Figure 2-2: Sequential Circuits Prophet-5 [2]

Modern digital synthesizers make use of high-speed microprocessors to accomplish a

multitude of real-time effects processing techniques. The decreased cost of custom silicon

production has allowed for the development of many Application-Specific Integrated Circuit

(ASIC) powered synthesizers as well. As the name suggests, ASIC designs are custom-tailored to

fit a specific application, allowing for the implementation of hardware accelerators for Fast

Fourier Transforms and concurrent processing of multiple signals at rates unachievable in

software. When considering designs not outrageous in complexity, FPGAs have many of the

same capabilities of an ASIC, at reduced speed and much lower cost [4]. Given the schedule

limitations of the project, this functionality makes FPGAs an excellent medium for custom

synthesizer design.

Through the use of different effects modules, analog or digital, musicians are able to

create a wide range of dynamic and interesting sounds to match their style of music. Effects

that feature user-controlled parameters allow for many different possible tones that can be

used across many genres of music. These effect modules introduce different types of signal

processing techniques to create additional sounds that add harmonic complexity to the original

signal. Some modules introduce noise to add distortive frequencies to the waveform, while

others remove parts of the signal using filtering techniques. Modern synthesizers can feature

9

hundreds of effects subsystems, allowing for a seemingly infinite number of attainable musical

timbres.

2.2 Synthesis Techniques

 There are many different forms of synthesis that have been developed for musical

applications in both analog and digital synthesizers. The origins of waveform synthesis stem

from Additive Synthesis [5]. This method allows the user to add specific harmonics of a base

frequency into the desired signal, through the use of multiple oscillators. The Hammond Organ

is one of the earliest examples of an additive synthesizer, which implemented analog sinusoidal

additive synthesis. With the development of the VCO and Voltage Controlled Filters (VCF), a

new synthesis method was developed, known as Subtractive Synthesis [6]. This allows the user

to start with a more complex waveform (such as a sawtooth or square signal) and filter off

undesired harmonics, resulting in a wide variety of possible sounds. A simple analog subtractive

synthesizer is described graphically by the diagram in Figure 2-3. This system also makes use of

an Amplitude Modulation Envelope to allow for dynamic control of the gain of the output

amplifier.

Figure 2-3: Analog Subtractive Synthesizer

Other synthesis methods, such as Frequency Modulation Synthesis, were implemented

into synthesizers to create even more possibilities of timbres and sounds [7]. This technique

involves modulating the frequency of a base waveform with multiple carrier frequencies in

several stages, allowing for high orders of frequency modulation to be performed. This results

in the creation of a wide range of different complex tones.

10

A common replacement for VCOs in the realm of digital synthesizers is the use of Direct

Digital Synthesis (DDS). This method of waveform generation makes use of high-resolution

tables containing one period of each base waveform, which are stepped through at discrete

rates defined by a Numerically Controlled Oscillator (NCO). Stepping through a wavetable at

variable rates allows for notes of many frequencies to be produced, essentially replacing the

sinusoidal VCO with any desired periodic waveform. The VCF implemented in analog

synthesizers is generally replaced by digital filtering techniques. Through the use of DDS and

digital filters, the method of subtractive synthesis can be accomplished on a digital system.

2.3 Synthesizer Effects

Countless synthesizer effects have been developed since the origin of electronic

instruments. The focus of this project was on the implementation of some of the most common

effects, considered essential to any modern synthesizer. Amplitude modulation envelopes,

which allow an electronic system to model the physical response of an acoustic instrument,

introduce smooth transitions between waveform amplitudes [8]. The Vibrato effect creates an

oscillating modulation of a waveform’s frequency, simulating the vibrato created by an opera

singer [9]. Distortive effects act to reduce the quality of a waveform, to simulate the effects of

older analog synthesizers. Noise generation adds broad-spectrum static to the signal, simulating

the cracking sound produced by cathode-ray tube amplifiers. Amplitude clipping and pre-

amplification effects imitate analog amplifier systems operating beyond their maximum output

voltages, resulting in an overdrive effect [10]. The Bitcrusher effect reduces the resolution of a

digital waveform, creating grainy sounds associated with early digital systems of inferior sound

quality [11].

2.4 MIDI Protocol

The standard protocol for communication between modern digital music devices and

computers is Musical Instrument Digital Interface (MIDI). Data transmitted using this protocol is

composed of three-byte messages, sent asynchronously over a serial communication port as

24-bits of data. Bytes whose MSB are one correspond to control status signals, while bytes

beginning in zero represent parameter values. The following seven bits represent unsigned

11

values between 0 and 127. In a three-byte message, the first byte is a status signal which alerts

the system to the type of input that is being changed. For the purposes of this project, this

includes note on/off messages and controller changes. The second byte is a parameter relevant

to the type of message being sent. For a note message, this byte represents the value of the

MIDI note being played. For a controller change, the second byte corresponds to the number

assigned to the particular controller being modified. The final byte of data is a second

parameter, which corresponds to either the velocity at which a note was pressed, or the new

value of the controller being modified. The selected input device for this project, an AKAI MPK

Mini controller, connects to a host via USB, and sends MIDI protocol input for interpretation by

the system. [12] Figure 2-4 shows the MIDI data bytes described above in order or transmission.

Figure 2-4: MIDI Data Bytes

MIDI parameters utilize the lower seven bits of the data bytes to effectively achieve 128

different parameters per byte. A MIDI device is assigned one MIDI channel to operate on

capable of sending and receiving data. For MIDI note data, each integer of the first data byte

represents a pitch in the chromatic scale in chromatic order, where MIDI note 60 is

representative of Middle C (C4). With this format, increasing a note value by 12 will produce the

octave of the note, as there are 12 notes in the chromatic scale. For each pressed note, the

velocity (how hard the note was pressed) value is sent over in the second data byte, allowing a

synthesizer to alter the volume of the pressed note. For controller data, the format is similar as

it allows for 128 different controllers to operate per channel. This allows for control over a

multitude of parameters within synthesizer systems.

12

2.5 AKAI USB MIDI Controller

The AKAI is a 25-key two-octave USB device capable of producing MIDI input data to

music systems. Through the use of octave control buttons, the device is able to send note input

for MIDI notes 0 to 120, and features 8 controller knobs for the parameterization of effects.

MIDI note input from the AKAI includes velocity sensitivity, allowing sophisticated systems to

take into account the force at which each note is played. Other MIDI input devices feature more

keys and additional control knobs, at much greater monetary cost. This device, which was

chosen for our system due to its low cost and USB connectivity is pictured in Figure 2-5.

Figure 2-5: AKAI USB MIDI Controller

2.6 Zedboard Development Board

 The Zedboard is a development board produced by Xilinx featuring the Zynq-7000 series

SoC, an ADAU1761 24-bit audio codec, and numerous peripherals. The device also features

eight binary slider switches, LEDs, five push-button switches, and USB UART (Universal

Asynchronous Receiver/Transmitter) connectivity, among other peripherals not used in this

project. The Zynq-7000 contains a 667 MHz dual-core Arm Cortex-A9 embedded

microprocessor, as well as an Artix-7-equivalent FPGA with 53,200 LUTs (Lookup Tables) and

106,400 Flip-Flops for the creation of complex digital logic. Lookup tables allow for the creation

13

of any perceivable array of combinational logic, using truth tables to recreate boolean logic

gates [13]. The Cortex-A9 processor is capable of running XiLinux, a Xilinx distribution of the

Linux Operating System. Communication on the Zynq between the Cortex-A9 and the FPGA is

accomplished using the Advanced eXtensible Interface (AXI) Interconnect, a 100MHz bus, which

acts as a medium for the control of many system peripherals as well. The ADAU1761 Audio

Codec is capable of receiving and transmitting a 24-bit audio signal at sampling rates of up to 96

kHz, via four onboard 3.5mm two-channel audio ports. Figure 2-6 shows a diagram of the

overall Zynq architecture and some of the peripherals available on the chip.

Figure 2-6: Overview of Zynq Architecture

14

 This board was chosen by the team for synthesizer development after much

consideration. The team required a board that would be able to accomplish the goals laid out

for system design. The Zynq chip boasts a great deal of processing power in both hardware and

software, which exceeded the requirements for signal generation and effects processing. The

AXI Interconnect allows for high-speed transmission of an arbitrary number of signals between

the Cortex-A9 and the Programmable Logic, meeting the requirement of sufficient

communication of control signals from software to hardware. The ADAU1761 is capable of

producing high quality waveforms, meeting the requirement for system output, with the added

bonus of audio jacks for convenient connection of the synthesizer to speakers.

2.7 Prior Art

 Several FPGA-based synthesizer projects have been developed by engineers in recent

years. Due to the ever-increasing functionality of FPGAs per unit cost, it has become much

more feasible to create complex synthesizers which produce high-quality sounds. One such

synthesizer, the “FPGA-Synth” was produced on a Xilinx Spartan 3E and featured two NCOs for

two simultaneous voices, and a simple filtering stage to perform subtractive synthesis [14].

Another synthesizer, called “FPGA Cyclone Synthesizer”, made use of an Altera C5 FPGA and

featured several effects implemented in hardware, including several filtering stages as well as a

Vibrato effect [15]. This device, described graphically in Figure 2-7, made use of duplicated

hardware modules to produce 16 independent synthesizer voices to implement polyphony.

15

Figure 2-7: FPGA Cyclone Synthesizer Block Diagram [15]

None of the digital synthesizer projects we researched were completed on systems that

contained both an embedded microprocessor and programmable logic. Many of the effects

chosen for implemented in our system were found in use on these developed projects, but

none of the synthesizers utilized as many effects processing stages as our proposed design,

likely due to the system limitations of older FPGAs and the lack of a hard-core microprocessor.

The next chapter provides a complete description of the theory and methods of our

synthesizer design, as well as system implementation on the Zedboard. This includes overall

system throughput, embedded software development, and waveform synthesis module design.

16

3 System Design

This chapter describes the theory and methods of the overall synthesizer system design

and its implementation on the Zedboard Development Board. System control and signal

generation methods are discussed, as well as overall synthesizer throughput. This encompasses

system input, digital waveform synthesis, and analog signal output.

3.1 Overall System Block Diagram

The system layout is defined graphically by the diagram in Figure 3-1. From a top-level

throughput standpoint, the synthesizer operates as follows. MIDI protocol input is produced by

the USB input controller, which is connected to a computer running a GUI to multiplex controls.

Modified input data is sent serially to the Zedboard and captured by the microprocessor on the

Zynq chip, which acts as an overall system control block. Within real-time software, updates to

control signals are sent across the Zynq chip to FPGA hardware. In programmable logic,

waveform generation and several stages of effects processing take place, with new samples

sent back to the software at a rate of 96 kHz. On the microprocessor, a final stage of processing

is implemented before the sample is sent to audio codec for system output.

Figure 3-1: Overall System Block Diagram

17

3.2 Zynq SoC and Architecture

 The Zynq SoC was chosen for this project due to the inherent design flexibility that

comes with having access to both a microprocessor core and programmable logic on one chip.

This allows for high-speed signal processing to be performed in hardware on the FPGA, while

memory-intensive tasks (such as delay effect generation) are accomplished in software. The

microprocessor component of the chip is used for overall system control, while the generation

of waveforms and synthesizer effects are implemented in hardware modules on the FPGA. A

top-level view of these two components and the interface between them can be seen in Figure

3-2.

Figure 3-2: Zynq Software-Hardware Interface

3.3 AXI Peripheral Interconnect

The Advanced eXtensible Interface (AXI) Interconnect is used to connect the Zynq SoC

with each of the peripherals on the ZedBoard. The AXI Interconnect also facilitates high-speed

communication between the two main components of the SoC, the Cortex-A9 and FPGA logic,

allowing for the seamless integration of a multifaceted system. This interconnect is utilized for

sending MIDI-format note and controller values from the Programmable Software (PS) to FPGA

hardware, as well as transmitting 24-bit synthesized waveform samples from the

Programmable Logic (PL) to the PS. This is accomplished through the use of a number of AXI

General Purpose Input/Output (GPIO) modules, each of which allow for two unidirectional 32-

bit channels of data to be transmitted over this 100MHz bus. GPIO value reads and writes are

18

controlled in software on the Cortex-A9. A graphical representation of the signals transmitted

over this interconnect can be observed in Figure 3-3.

Figure 3-3: AXI Interconnect Signals

3.4 Software on the ARM Cortex-A9

 The Cortex-A9 has three main functions in its role as overall synthesizer system

controller. The first function is to handle audio codec initialization and create a software

interface for transmission of output samples to the codec. Secondly, the PS handles UART data

from the host computer containing the MIDI input data from the AKAI Mini. Controller changes

and note press events are parsed, with updates to these values stored in buffers in

microprocessor data memory. The routine also checks for changes in the controller values and

formats the values for transmission to the FPGA over AXI. The third main responsibility of

Programmable Software is the implementation of delay effect functions. This is accomplished

by storing and manipulating values as each new sample is read into the microprocessor, prior to

codec output. The FPU on the Cortex-A9 is utilized to scale output amplitude according to the

19

velocity at which the user pressed the current note with the precision of floating-point

multiplication. Figure 3-4 provides a flowchart describing the three main tasks performed in

software.

Figure 3-4: Control Software Flowchart

3.5 IP Module Generation for FPGA Processing

 Each stage of effects processing was designed as a standalone module using the Verilog

HDL. Xilinx Vivado Design Suite, which is used to create the top-level hardware design of the

system, allows for easy integration of lower-level system parts using a GUI for connecting IP

modules in a system block diagram. In order to integrate effects processing modules into the

design, every module was created as a standalone project, which was published as a Xilinx IP

block and imported into the top-level system design. In this manner, modules could be easily

interchanged and version-controlled as the project progressed. This also facilitated module

20

testing, as each element of the system was a standalone digital circuit that could be tested

individually or disconnected and bypassed in the top-level design.

3.6 MIDI Data Transmission to FPGA

 MIDI data transmission is handled by a host computer running Windows. The MIDI

controller is connected to the computer so data can be received as new notes are being

pressed. A Python script was developed to handle reading data from the MIDI controller and

sending it to the Zedboard via UART serial connection. The PyGame MIDI library was used to

poll serial data from the MIDI Controller. As the three-byte sets of data all read in, the script

sends each byte separately over to the Zedboard.

 The Akai Mini only features eight controller knobs for MIDI controller data transmission

to the synthesizer. Data routed through the Python-powered serial communication script was

altered before transmission to the synthesizer system to multiplex these controllers. Using this

method, the current controller number can be changed for any given controller knob. We

accomplished this through the development of a GUI that allows the user to select different

groups of functions to be controlled by the limited USB input device. As new effects were added

to the system, this interface was expanded to allow for complete customization of effects

controls.

Controllers are labeled individually to show the effect that each knob is currently

controlling. The GUI also allows for selection of the base waveforms for LFO signals. This user

interface is run independently of the MIDI serial data transmission script, through the use of

multithreading application libraries built into Python. Figure 3-5 shows a screen image of the

GUI we developed for the project.

21

Figure 3-5: GUI for MIDI Data Program

For every new note that is pressed, the MIDI velocity parameter reflects how hard the

key was struck. This gives the system a parameter that allows for the scaling of the output

waveform to model the volume response of a keyed instrument when it is being played. The 7-

bit velocity parameter is mapped to a floating point value that is then used to scale audio

samples before sending them to the codec. We chose to use an exponential mapping of scale

values between 0 and 1 to better represent the nonlinear relationship between force applied

and output amplitude typical of pianos and other keyed instruments. This mapping scheme

provides the user with more precision when applying softer key presses. This relationship is

defined mathematically in Equation 3-1, in which x represents the MIDI velocity and α is a scalar

used to modify the sharpness of the exponential curve.

 𝑦 =
𝑒

(
𝑥∗ ∝
127

)
−1

𝑒∝−1
 (3-1)

22

For our system, α was set to 2.5, a value which meets our requirement of 75% of the

velocity values below the half-amplitude mapped value of 0.5. Figure 3-6 graphically depicts the

relationship between note velocity and output amplitude on the synthesizer.

Figure 3-6: MIDI Velocity to Amplitude Scale Mapping

3.7 Clock Domains

The system made use of two clock domains for timing of programmable logic state

elements. A 100 MHz clock was used as the main clock domain for all effects processing and

much of the waveform generation hardware. This clock speed was chosen due to its frequency

being sufficiently high to allow for all effects processing to be performed serially within

waveform samples, thus meeting the development goals of a real-time system. This clock

frequency also simplifies overall timing of the design, as the AXI interconnect operates on the

same 100 MHz clock domain as well. A 200 MHz clock was derived from the same Phase-Locked

Loop (PLL) module located on the Cortex-A9 microprocessor. This clock was used to allow for

increased precision of wavetable stepping and signal generation, with successive samples

synchronized to the 100 MHz clock for synchronous operation with the rest of the system.

A 96 kHz interrupt signal is generated by an AXI timer peripheral, which is used to signal

the programmable software ISR to output the next sample to the codec. This interrupt is also

23

used in hardware to signal the waveform generation block, requesting the next sample for

output. The signal then propagates through each effects processing block, allowing each

module to alert the next effect that the current sample output is ready for sequential

processing.

3.8 Waveform Generation

The generation of base waveforms is performed entirely in hardware on the

programmable logic component of the Zynq. MIDI note data is transmitted to hardware from

the system control block when a new note is pressed by the user. Each MIDI note corresponds

to a discrete frequency from 8 Hz (note zero) to 12.5 kHz (note 127). The Akai MIDI controller

chosen for system input is capable of producing MIDI note values from 0 to 120 (8.37 kHz).

Equation 3-2 defines the conversion from MIDI note value to its respective frequency in Hz [16].

𝑓𝑛𝑜𝑡𝑒 =
440

32
∗ 2

𝑥−9

12 (3-2)

Using DDS for waveform generation, wavetables containing predetermined values for

one period of each base waveform were created using MATLAB and implemented with LUTs on

programmable logic. For this project, wavetables of 4096 samples were created to achieve high

resolution waveforms, especially at low frequencies. The waveform generation module utilizes

a 200MHz clock from the Cortex-A9 Phase-Locked Loop (PLL) to achieve accurate clock

divisions. Slower clocks at discrete frequencies are derived within the module to achieve the

correct wavetable step rate for MIDI notes. This allows the system to step through the

wavetable at variable rates, producing the correct frequency response of the current input

note. Equation 3-3 outlines how many clock cycles the waveform generator should wait before

stepping to the next sample for a given frequency.

𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 𝑟𝑜𝑢𝑛𝑑(
𝐹𝑐𝑙𝑘

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠∗𝐹𝐷𝑒𝑠𝑖𝑟𝑒𝑑
) (3-3)

The frequencies of the waveforms generated by the DDS module are defined by an 8-bit

MIDI note, which is routed to the NCO clock division module. This module makes use of the

logarithmic property of music notes to produce only twelve discrete clock divisions while still

24

producing all 128 MIDI notes. While the chromatic scale contains twelve notes, each

subsequent set of twelve (octave) is double the frequency of the previous set. The DDS module

features an input for the step size of the waveform being generated. Keeping the clock division

constant and doubling the size of the incremental wavetable step doubles the frequency of the

output waveform. By doubling this step size for each musical octave, the system is able to

produce notes of any MIDI frequency while preserving the accuracy of notes at the higher range

of the instrument. Using Equation 3-3 to divide a 200MHz clock for the production of notes in

higher MIDI octaves (above note 84) would have resulted in an increased frequency error due

to the rounding of dividends associated with dividing a clock by a whole number. This issue is

avoided by dividing the 200MHz input clock to very low frequencies (notes 0 through 11) and

using the step size method. Figure 3-7 shows a block diagram of the hardware modules used to

implement DDS using this technique.

Figure 3-7: DDS Implementation Block Diagram

25

Four different base signals can be generated by the DDS module. These include sinusoid,

sawtooth, square, and triangle waveforms. Multiple signals can be selected simultaneously, and

the module produces a signal containing each of the base waveforms selected by the user,

combined in a weighted addition to prevent value overflow. This allows for any combination of

the four base waveforms to be produced, resulting in 15 different synthesizer signals able to be

produced before any filtering or effects processing is applied.

3.8.1 Sine Wave

The sine wave is the most fundamental of the waveforms, as it is made up of only one

harmonic component in the frequency spectrum. Due to this harmonic singularity, the timbre

of this waveform is very hollow compared to other more complex signals [17]. Sinusoids are

particularly useful in creating sub-octave oscillators for a more bass-driven sound. Other

complex waveforms can be recreated through the combination of sine waves at different

frequencies and amplitudes to recreate the frequency composition of a tone. Figure 3-8 shows

the 4096-sample wavetable of the sine wave used in the DDS block, with a maximum amplitude

of 4.19e5, or 2^23.

Figure 3-8: Sine Wave Sample Table

26

3.8.2 Sawtooth Wave

The Sawtooth is a common waveform featured in many synthesizers. This signal

produces a much richer tone than others, as it is made up of many sinusoids across the

frequency spectrum. In the time domain, a sawtooth is simply a repeating ramp function,

producing sharp transitions from the maximum to minimum peak once per period. This sharp

transition creates the “blades” that give the waveform its name. The signal is composed of both

even and odd harmonics of the fundamental frequency, giving it a ‘full’ sound. The MATLAB

plot for this waveform can be found in Figure 3-9. The harsh sound generated by the sawtooth

is similar to that of a trumpet, an instrument which also produces many harmonics of the

fundamental frequency being played. A mathematical representation of the Fourier Series

summation of each harmonic sinusoidal component that defines a sawtooth waveform’s

distribution across the frequency spectrum can be seen in Equation 3-4 [18].

𝑥(𝑡) =
𝐴

2
−

𝐴

𝜋
∑

𝑠𝑖𝑛(2𝜋𝑓𝑖𝑡)

𝑖

∞
𝑖=1 (3-4)

Figure 3-9: Sawtooth Wave Sample Table

27

3.8.3 Square Wave

The square wave is an uncomplicated waveform in the time domain, as it simply

switches between its maximum and minimum peaks with near infinite slope. In the frequency

domain, the signal is much more complex, containing only odd harmonics of the fundamental

frequency, with the subsequent higher frequencies of decreasing amplitude. This creates a

sound similar to the sawtooth waveform, but is much hollower in timbre. This makes the

square wave an excellent candidate for mimicking wind instruments using subtractive synthesis,

as these instruments produce a similar hollow tone. The square wave was implemented with a

modular duty-cycle, which allows for different timbres to be generated from the same type of

waveform. The wavetable for one period of the square wave (at 50% duty cycle) can be found

in Figure 3-10. Equation 3-5 provides the Fourier Series representation of a square wave,

containing the summation of sinusoidal terms that make up each of its harmonics [19]. The

process of subtractive synthesis acts to attenuate components at the beginning and/or end of

this summation.

𝑥(𝑡) =
4

𝜋
∑

𝑠𝑖𝑛(2𝜋𝑓𝑡(2𝑖−1))

2𝑖−1

∞
𝑖=1 (3-5)

Figure 3-10: Square Wave Sample Table

28

3.8.4 Triangle Wave

The final waveform our system is capable of generating is the triangle wave. This signal

is similar to the sawtooth in the time domain, consisting of two ramp functions of inverted

slopes. In the frequency domain, it is made up of odd harmonics, with a much steeper roll-off in

amplitude of high harmonics than the square wave. Additionally, every 4th harmonic of the

triangle wave is 180 degrees out of phase with the other present sinusoids. This produces a

sound similar to the square wave, but much richer in timbre. The wavetable for the triangle

wave can be seen in Figure 3-11. The Fourier Series representation containing the sinusoidal

terms that make up each of the harmonic components of a triangle wave can be seen in

Equation 3-6 [20].

𝑥(𝑡) =
8

𝜋2
∑ (−1)𝑖 𝑠𝑖𝑛(2𝜋𝑓𝑡(2𝑖+1))

2𝑖+1

∞
𝑖=1 (3-6)

Figure 3-11: Triangle Wave Sample Table

3.8.5 Complex Waveform Generation

Other input parameters used by the DDS block include phase shift and pulse-width

modulation (PWM) controls. The phase shift control is in the form of four MIDI controller

values, each of which controls the independent phase angle of the four base waveforms. This

allows for many different waveform shapes to be created by the user, simply by shifting the

29

base signals in and out of phase. This is implemented in the DDS module by scaling the MIDI

inputs by a factor of 32 and adding them to the current wavetable index for their respective

base signals. In this manner, the phase shift is linearly mapped to nearly the entire 4096-sample

period of the waveform.

The user is able to select any or all of the four base waveforms to be active concurrently.

This, when combined with independent phase-shift parameterization, allows for the production

of a wide range of complex base waveforms. As an example, Figure 3-12 shows a 440Hz

sinusoid, shifted 90 degrees in phase, and a sawtooth at the same frequency with no phase

shift. The resulting combination of these two signals, called a sine-saw, is visible in the lower

plot of the figure. This complex waveform has a musical timbre that is different from the

original signals.

Figure 3-12: Sine-Saw Combination in MATLAB

30

The PWM input allows the user to control the duty cycle of the square wave. This alters

the shape of the waveform, effectively changing its tone. Within the DDS module, the PWM

input is used to simply change the wavetable index at which the signal switches from high to

low using combinational logic. Similar to the phase shift implementation, the value is scaled by

a factor of 32 to allow for a fully-customizable duty cycle from 0% to 100%.

3.9 Synthesizer Effects

The signal generated by the combination of base waveforms is routed through four

stages of filtering in order to perform subtractive synthesis. The signal also passes through

several synthesizer effects stages connected in series before being sent to the audio codec for

system output. These effects include a frequency modulation stage, which creates musical

vibrato, and various distortive effects to introduce additional harmonics and alter the

waveform. An amplitude modulation envelope scales the volume of the signal to model the

amplitude response of various physical instruments. Finally, delay and echo effects are

implemented in software as the last stage before signal output. Synthesizer effects

implemented on the system are discussed in more detail in Chapter Four. A top-level diagram

of these effects and their order can be seen in Figure 3-13.

Figure 3-13: Synthesizer Effects

3.10 Audio Codec for System Output

The ADAU 1761 supplied on the Zedboard is capable of using either 16 or 24-bit data at

standard data rates of 44.1 kHz, 48 kHz, and 96 kHz. For this project, the codec was initialized to

use 24-bit data at a rate of 96 kHz to achieve the highest possible resolution on the output of

the system. The codec receives configuration signals via I2C protocol and features a separate

I2S connection to handle the transmission of audio signal data to and from the processor.

31

Libraries provided by The Zynq Book Tutorial were used to aid in configuration of the registers

and initialization of the PLL on the ADAU1761 [21]. An AXI peripheral controlled by software

was utilized to allow for Integrated Interchip Sound (I2S) serial data transmission to the codec

on the Zedboard. The I2S AXI Peripheral resides in the programmable logic and receives sample

data from the Cortex-A9 at a rate of 96 kHz. This module sends the 24-bit audio sample serially

to the DAC of the audio codec for analog output. Figure 3-14 provides a block diagram of the

audio codec data transmission between the Zynq components and the codec.

Figure 3-14: Audio Codec Implementation

The following chapter provides a detailed description of synthesizer effects implemented

on our system. This includes the operational theory behind each effects processing stage, as

well as programmable logic implementation of each synthesizer component module.

32

4 Synthesizer Effects Implementation

 This section describes each of the synthesizer effects implemented on the system. These

effects are arranged serially, with the first effect connected to a 96 kHz pulse signal that

signifies a new sample has been generated by the DDS block and is ready for processing. The

pulse propagates sequentially through each module, such that each effects block can alert the

next module that its current output sample is ready for processing. This ensures that effects

processing occurs in order, with the most recently-generated sample propagating through the

entire system. Figure 4-1 graphically depicts the order of operations of each effect module

implemented on the system.

Figure 4-1: Synthesizer Effects Order

4.1 ADSR Amplitude Envelope Generator

The ADSR (Attack-Decay-Sustain-Release) Amplitude Modulation Envelope is an

essential component of any modern synthesizer. This time-based envelope is used to alter the

amplitude of a signal over the duration at which a selected note is being held down. This is used

in practice to model the physical response of an instrument, and its change in volume over

time. For example, the pluck of a guitar string can be represented by a sharp increase in

amplitude followed by a long, drawn out attenuation as the vibrating string loses energy. An

ADSR envelope is comprised of four stages which give it its name, outlined in Figure 4-2. Attack,

the first stage, begins the moment a note is pressed. During this phase, the amplitude of the

signal rises from its idle state at zero to a maximum value of one. Once the maximum value is

reached, the envelope enters the decay stage, during which the amplitude falls to a user-

defined level, called sustain. The envelope remains in the sustain stage with constant amplitude

until the user stops playing the note. At this point, the release stage begins, during which the

33

amplitude decays back to zero. The shape of the envelope is chosen by four parameters, three

of which control the rates of ascent and descent for attack, decay, and release stages. The

fourth parameter allows for control of the constant sustain level.

Figure 4-2: ADSR Envelope Diagram

A properly implemented ADSR envelope allows for the development of a synthesizer

that is able to model a wide variety of musical instruments. For example, an envelope used to

model the physical response of a piano would have a very short attack stage, and a slightly

longer decay. This would be followed by a relatively high sustain as the note is being held down,

and a very short release, due to damping felt quickly absorbing vibrations in the instrument’s

strings.

The ADSR envelope generator was designed as a standalone Verilog module which was

published into a Xilinx IP block to be incorporated into the top-level design. All processing for

this effect is performed using fixed-point multiplication on the programmable logic hardware.

The envelope module generates a 16-bit signal in Q-15 fixed-point number format. This

unsigned value is used to represent a scale factor between zero and one. The value is then

multiplied by the synthesized waveform signal using a Xilinx Multiplier Block, effectively

34

modulating its amplitude over time. Figure 4-3 shows the top-level design of this effect module,

including MIDI control logic inputs and integration with the Multiplier Block to produce an

output signal for processing by the next stage of effects.

Figure 4-3: ADSR Top-Level Implementation

The module was designed as a finite state machine with each envelope stage as well as

the idle stage corresponding to a different state. During each of the four active states, the scale

factor is updated with 1ms resolution. This allows for smooth changes in signal amplitude while

still maintaining a 16-bit representation of the scalar. State logic is controlled by the note_on

signal, which is asserted high whenever a note is being pressed. A graphical representation of

this logic can be seen in the state transition diagram in Figure 4-4.

35

Figure 4-4: ADSR Module State Transition Diagram

Four different MIDI controller signals are mapped to control these four parameters in

hardware, which can be selected under the ADSR menu in the GUI. The ADSR IP module

handles data parsing of the four individual bytes that make up the ADSR parameter data. Each

of the parameters that control the four stages can be modified independently, allowing for the

user to program a specific amplitude response. This allows for a wide range of possible

envelope shapes, which can be used to model the physical response of a variety of instruments.

Figure 4-5 shows an example of the ADSR envelope, simulated in MATLAB. In this example, the

note is first pressed at time t=0, and released at t=0.8 seconds. Accordingly, the amplitude of

the output signal is modulated over the course of the four envelope stages, separated by

dashed lines in the center graph.

36

Figure 4-5 - ADSR Amplitude Envelope Model (A,D,R = .2 seconds, Sustain level = .5)

4.2 Filtering Stages

In order to perform subtractive synthesis, it is necessary to include filter stages in the

synthesizer design to attenuate certain portions of the frequency spectrum, thus subtracting

harmonic components of the base waveforms. When applied to a simple sinusoid, filters merely

reduce the amplitude of the entire waveform, as the signal only exists at one discrete location

on the frequency spectrum. However, filters can produce much more interesting effects when

applied to complex signals. This is true for sawtooth, square, and triangle waveforms, as these

signals are made up of many harmonics of their fundamental frequency, occupying a much

larger bandwidth. When applied to these complex waveforms, filter stages act to attenuate

each of the harmonics differently, which can dramatically alter the shape of the waveform.

We were able to develop a Finite Impulse Response (FIR) filter module as well as an

Infinite Impulse Response (IIR) module. Each module was duplicated to create both Low-pass

and High-pass filters, with variable discrete cutoff frequencies between 0 and 48 kHz. These

filters were implemented in serial, resulting in the base waveforms passing through a total of

37

four filtering stages before continuing on to other effects. The filters were designed using the

Filter Design and Analysis tool in MATLAB, and MATLAB scripts were written to automate the

production of Verilog files describing their hardware implementation. These filters made use of

Xilinx Multiply-Accumulate blocks, which supplied the fixed-point multiplication and addition

hardware necessary for signal filtering in digital logic.

An FIR filter is implemented using a weighted sum of its past input values. The

implemented FIR modules made use of a 65-point weighted sum, which is defined

mathematically as a 64th-order filter. Use of a higher order filter results in a sharper pass- to

stop-band transition at the expense of longer computation time, due to the increased number

of required Multiply-Accumulates (MACs). One important characteristic of FIR filters is that

their phase response across the frequency spectrum is generally linear in slope. Due to this

effect, the input signal is filtered in amplitude without introducing any of the distortion brought

about by nonlinear phase shifting. Equation 4-1 shows the mathematical definition of the Direct

Form Implementation for an Nth-order FIR filter, in which the vector b represents the filter

coefficients, and the vector x represents the previous N inputs to the system. This

implementation served as the basis for this module’s logic design.

𝑦[𝑛] = ∑ 𝑏𝑖 ∗ 𝑥[𝑛 − 𝑖]𝑁
𝑖=0 (4-1)

 An IIR filter is similar in implementation to the FIR filter, with the addition n of a

weighted sum of previous system output values. This feedback component results in much

sharper frequency transitions at lower order filters, which can greatly save computation time in

comparison to FIR filters. Due to this property of the IIR filter, the modules were implemented

as 4th order filters. A common side-effect of the IIR filter is a nonlinear phase response in the

frequency domain. This results in a filtered signal containing some frequencies shifted in phase.

This is often undesired in practice, as it merely adds distortion to the waveform. However, in

the application of digital music synthesis, phase distortion can add extra flair to the sound being

created by the user, and is considered a useful effect. Equation 4-2 shows the mathematical

definition of the Direct Form implementation of an IIR filter.

𝑦[𝑛] = ∑ 𝑏𝑖 ∗ 𝑥[𝑛 − 𝑖]𝑁
𝑖=0 + ∑ 𝑎𝑗 ∗ 𝑦[𝑛 − 𝑗]𝑁

𝑗=1 (4-2)

38

The cutoff frequencies for the implemented filters were chosen taking into account the

limitations of MIDI parameter data. With 128 possible values of a MIDI controller, an equal

number of frequencies had to be mapped to these values, across 32 kHz of bandwidth. Figure 4-

6 depicts the mapping of the MIDI values to their corresponding cutoff frequencies. The

frequencies were mapped using Equation 3-1, scaling the maximum possible cutoff to 32 kHz.

This logarithmic mapping allows for higher precision cutoff frequencies in the lower range of

the frequency spectrum, since all 128 note frequencies as well as the range of human hearing

lie below 20 kHz, which is less than half of the system’s Nyquist rate. A MIDI value of 0

corresponds to a signal pass-through, in which no filter is applied to the signal to allow for

bypassing of any or all filter stages.

Figure 4-6: MIDI to Frequency Cutoff Mapping

For each of the four filter modules, coefficients for the desired cutoff frequencies were

generated in MATLAB to achieve double precision floating point values. These values were then

quantized and set to a corresponding fixed point number for hardware fixed point processing.

The FIR filter coefficients were implemented at 16 bit Q-15 fixed point integers. The IIR

coefficients were implemented as signed 34 bit 3.Q-30 values. The higher bit bus was required

for IIR to maintain precision of low valued fractional coefficients, thus avoiding filter instability.

39

 Verilog sub-modules were designed to read MIDI controller data representing the

desired filter cutoff frequency and select the appropriate set of coefficients. These modules

were produced by a MATLAB script, written to calculate sets of coefficients for each of the four

filters. For the IIR filters, additional functionality was added to allow for the clearing of registers

containing the previous inputs and outputs from the filter block. This is actuated by the

application of a synchronous reset signal whenever the filter cutoff frequency is changed. The

purpose of this is to prevent filter instability resulting from changing filter coefficients part-way

through sample processing. If the switching of coefficients causes an unstable response, the

error could then persist indefinitely, due to the infinite response characteristic defined in name

by the IIR filter. Figure 4-7 shows the system implementation of an IIR filter with the

corresponding inputs and outputs of the filter stage.

Figure 4-7: FIR Filter Block Diagram

Figure 4-8 displays the result of applying a 64th order Low-pass FIR filter module with a

cutoff frequency of 10 kHz to a sawtooth waveform, generated and simulated within MATLAB.

The unfiltered waveform was plotted in the frequency spectrum as well, to demonstrate the

frequency response of the filter. The same sawtooth waveform, with the FIR Low-pass filter

applied to the signal, can be seen in green, with the high-frequency harmonics greatly

attenuated. This creates a smoother timbre of sound at the output of the system, reducing the

sharpness of the blades of the sawtooth.

40

Figure 4-8: Sawtooth Waveform with and Without FIR Low-pass Filter

As a comparison of the different effects produced by FIR and IIR filters, a sawtooth

waveform was generated in MATLAB and passed through two independent filter stages. Each

filter was a low-pass, designed at a cutoff frequency of 1500 Hz. An unfiltered sawtooth at 440

Hz can be seen in the upper plot of Figure 4-9. The center plot shows the result of passing the

waveform through the 64-order FIR filter stage. The sharp peaks of the signal have become

more round, as the high harmonics of the waveform are filtered off. The lower plot in the figure

shows the result of applying the 4-order IIR filter, in which nonlinear phase shifts across the

frequency spectrum has caused the waveform to begin to lose its signature shape.

41

Figure 4-9: FIR/IIR Comparison: Sawtooth

4.3 Distortive Effects

Several effects that were developed and implemented on the synthesizer fall into the

classification of Distortive Effects. This type of effect is categorized by its reduction of the

quality of a waveform, through either the removal of components of the signal or the addition

of other waveforms. These modifications to the waveform alter the harmonics present in the

signal, effectively changing the tone of the note being played. Distortive effects implemented

on our system include amplitude clipping, overdrive, bit reduction, and noise addition.

4.3.1 Amplitude Clipping and Overdrive

The first implemented distortive effect is amplitude clipping, or Compression, in which

the top and bottom peaks of a waveform are capped at a maximum absolute value, resulting in

the removal of any components of the waveform above the desired amplitude level. An ideal

system is designed such that the amplitude of a waveform is never able to exceed the full-scale

range of its output. However, any time a waveform is routed through an amplification stage,

42

the risk of signal clipping becomes a possibility, as the waveform is increased in amplitude to

above the maximum output of the system. The Compression effect acts to emulate this

phenomenon in a controlled environment. Figure 4-10 shows a simulation of the clipping effect

in the time domain using MATLAB generated sine wave with a clipping level of half of the

maximum amplitude.

Figure 4-10: Clipping Effect

In order to model clipping in a digital system, an adjustable clipping effect module was

designed. This was accomplished using a programmable logic module which simply prevented

the amplitude of the input signal from surpassing the current clip threshold using

combinational logic. User input is applied to control the clipping threshold, which greatly

distorts the waveform when lowered. This was implemented using a linear mapping of the MIDI

controller input to the level of clipping of the signal. If the signal amplitude rises above the

defined threshold or below the negation of this threshold, the output of the module for that

sample is simply equal to the threshold level (or its negation).

43

The clipping effect was modified to include a pre-amplification (signal gain) stage before

amplitude clipping was performed. This increases the amplitude of the waveform, resulting in a

larger portion of the signal being clipped. This type of distortive effect, which makes use of both

stages, is referred to as Overdrive, and models the response of an analog guitar amplifier circuit

turned past its recommended level of operation, resulting in a distortive clipping at the positive

and negative power rails of the circuit. This was also implemented using linear mapping of the

MIDI controller value to a 16 bit Q-15 number, which was routed into a Xilinx Multiplier Block to

effectively scale the signal. The maximum effective gain was defined as 10 times the amplitude

of the original signal, which allows for clipping to occur even when the compression threshold is

at its maximum level.

4.3.2 Waveform Resolution Reduction

Another distortive effect is waveform resolution reduction, commonly referred to as

Bitcrushing. This type of effect is implemented by simply removing the lower bits of a waveform

and replacing them with zeros, thus reducing the bitwise resolution of the signal. As samples

are quantized to increasingly fewer discrete values, the resulting tone becomes simpler, similar

to early computer-generated sound effects. The Bitcrusher effect essentially emulates a system

of lower bit-resolution, allowing a user to produce timbres associated with early digital

synthesizers.

Figure 4-11 displays graphically the effects of reducing the resolution of a 24-bit

waveform. The upper plot shows a 440 Hz pure sinusoid at 24 bits of resolution. The center

graph is the result of applying the Bitcrusher effect in MATLAB with reduction to 3 bits of

resolution (and one sign bit). Increasing the level of reduction to two bits results in the entire

range of the sinusoid quantized to eight discrete values, resulting in a much hollower sound.

44

Figure 4-11: Bitcrusher Effect

The waveform resolution reduction module was developed in Verilog for

implementation in programmable logic. Input to the system allows for a user-controlled level of

waveform reduction, from full-scale resolution down to just the upper two most significant bits

of the signal (for up to 21 bits of reduction). This module implements linear mapping of the

MIDI controller input value to the number of bits to be truncated. The lower “crushed” bits in

each sample are essentially bitwise ANDed with zero to remove the appropriate portion of data

from the signal.

4.3.3 Noise Generation

The final distortive effect implemented in the system was a noise generator. This effect

models the added noise that is often observed at the outputs of older analog synthesizers and

amplifiers. White noise was often present in these systems due to the use of vacuum tubes,

which often degrade over time, allowing for an increased thermal flow of electrons. Many

modern synthesizers produce very little uncontrollable noise, as semiconductor transistors are

much more effective for the control of electric current. In order to introduce this noise

45

component back into modern systems, a standalone noise production module must be

designed.

A linear-feedback shift register (LFSR) is used to produce a pseudorandom 24-bit signal,

the amplitude of which is user-controllable through scalar multiplication [22]. Figure 4-12

shows the frequency response of the noise generator, as the quality of pure noise is defined by

how evenly distributed its power magnitude appears across all relevant frequency bands. This

LFSR uses three XOR feedback taps and three XOR feed-forward taps to induce an even

distribution of noise across the frequency domain. An LFSR with only feedback taps generally

features a less even distribution of frequencies present in the noise generator signal, while

using both feedback and feed-forward components increases the overall randomness of the

signal.

Figure 4-12: LFSR Noise Generator Frequency Response

The LFSR noise signal is scaled through the use of fixed point multiplication. A MIDI

controller is routed through a linear mapping module to scale the 8-bit controller value up to a

16-bit unsigned integer. This scalar and the noise signal are used as inputs to a multiplication

block to produce a scaled version of the noise signal. This allows the user to control how much

46

noise is to be applied to the synthesizer signal. The scaled noise is then fed back into the IP

module to perform signal addition with the base synthesizer waveform. Figure 4-13 shows the

block diagram of the noise effect as it is implemented on our system and connected to a

Multiplier Block.

Figure 4-13: LFSR Block Diagram

4.4 Delay Effects

Several common synthesizer effects make use of delay modules, which store previous

values of a signal for a variable length of time, usually for up to several seconds. This allows for

simple delay between user input and system output, as well as more complex effects that

create echoes and reverberations. Echo effects make use of a delay module to store previous

echo values, which are combined with the current sample in weighted addition. This signal

mixing is typically adjustable, allowing for user-defined echo amplitude and rate of decay.

These variable parameters result in a customizable echo effect that can be used to model echo

chambers of arbitrary size and level of noise dampening.

Two types of delay effects were implemented on the synthesizer. Unlike many of the

other effects, these were implemented in software on the Cortex-A9 microprocessor.

47

Implementation of a delay module requires storing many previous samples in order to recall

them later to be added back into the outgoing signal. For these implementations, two seconds

(192,000 samples) of previous outputs were required to be stored for each effect. This is

possible to accomplish in hardware with a Direct Memory Access (DMA) block to a large source

of memory, but is more efficient to implement in software, as samples pass through the

microprocessor before codec output. The Cortex-A9 has access to 512MB of Random Access

Memory (RAM), allowing for large arrays of samples to be easily stored for quick access.

Between each codec output interrupt, which occurs at a rate of 96kHz, there is sufficient time

to process the delay effects as well as the MIDI controller data coming into the system.

 The first effect is a basic delay function, implemented using a 32x192000-bit circular

array. Each new incoming sample from the FPGA hardware is stored, and the array index is

updated to the newest position. The effect simply delays the signal by a certain number of

samples, defined by 8-bit user input. The user is then able to select how much of the delayed

signal is present in the outgoing signal by changing the ‘Dry/Wet’ input. This allows for a

weighted addition of the two samples with a full range of selection, in which the user can feed

the original signal (100% Dry), the delayed signal (100% Wet), or an arbitrary combination of

the two.

The second delay-based effect is Echo, with acts to emulate the physical phenomenon

of an echo. A second array that is equal in size to the original delay effect array is utilized to

store previous echo output values, resulting in decaying signal feedback. This feedback effect

creates a digital echo, similar to the physical response produced in an echo chamber. Equations

4-3 and 4-4 mathematically define the theory of operation for echo effect as it implemented in

the system. The current output sample, denoted at y[n], is dependent upon the input sample

x[n] and the echo sample e[m] stored from previous echo iterations. The amount that the echo

sample influences the output is the feedback coefficient α. The new echo sample to be stored is

equal to the output sample multiplied by the decay constant γ. These two mapped parameters

allow for numerous combinations to alter the echo response of the system.

48

𝑦[𝑛] = 𝑥[𝑛] + 𝑒[𝑚] ∗∝ (4-3)

𝑒[𝑚] = 𝑦[𝑛] ∗ 𝛾 (4-4)

This echo effect implementation was simulated in MATLAB prior to system development in

software. A digital echo with the decay constant set to 0.5 was applied to a short pulse of a 440

Hz sine wave. The resulting series of decaying pulses can be seen in Figure 4-14, in which the

amplitude of each echoed pulse is half that of the previous.

Figure 4-14: Echo Simulation in MATLAB

The user is able to select the feedback ratio of the previously delayed samples, as well

as the rate of decay of the echo, using 8-bit MIDI controls. This allows for a variation of how

quickly the previous samples will fade away and the length of time between a noise and its

corresponding echo, which corresponds to being able to change both the size and dampening

constant of an echo chamber. The decay and feedback MIDI controllers are linearly mapped to

floating point values between 0 and 1. The Delay Times are linearly mapped to an amount of

samples that that allows for up to two seconds of delay buffer storage. This module makes use

49

of the Cortex-A9’s FPU, performing floating-point multiplication, which provides more precise

results than would the same calculations in fixed-point arithmetic.

4.5 Low-Frequency Oscillator and MIDI Control

A Low Frequency Oscillator (LFO) module was created to allow the user to modulate

effect parameters continuously, without having to physically turn the controller knobs. This

type of module is common to many analog synthesizers, resulting in dynamic changes in

effects. In early synthesizers, the user was required to physically plug an LFO module patch into

the effect to be controlled each time a new effect was to be made dynamic. This system

features a hardware module which applies the same selection process via digital multiplexing.

The LFO module allows the user to select the rate (frequency), the depth (amplitude) and the

pulse width (for square wave) of the oscillator. The user is also capable of choosing from

different waveforms to modulate the effects (sine, square, saw, and triangle), providing

different patterns of parameter manipulation. LFO rate can be controlled within the range of 0-

20 Hz.

 The controls for the LFO can be found in the GUI. Two independent LFO modules are

implemented into the system to allow the user to modulate two different effects within the

system. The modules are connect in series to allow for the possibility of both LFOs controlling

the same effect. The user can select one of the following parameters to control:

 IIR High-Pass Filter Cutoff Frequency

 IIR Low-Pass Filter Cutoff Frequency

 FIR High-Pass Filter Cutoff Frequency

 FIR Low-Pass Filter Cutoff Frequency

 Compression Amplitude Clipping Threshold

 Compression Pre-Amp Gain Level

 Bitcrusher Number of LSBs to nullify

 Pulse Width of Signal Square Wave

Figure 4-15 shows the simulation of an LFO effect controller, with a 40Hz sinusoidal

oscillation applied to a compression effect threshold level. This oscillation is applied to a 440 Hz

sine wave, resulting in periodic compression of the signal.

50

Figure 4-15: LFO Applied to Signal Amplitude

The LFO is constructed using a DDS oscillator similar to the one used in base waveform

generation. This features the four different 24-bit resolution waveforms generated using 4096-

sample periods. The module utilizes 8-bit MIDI data for frequency input, but instead of mapping

the MIDI values to note frequencies, the values are linearly mapped frequencies between 0 and

20Hz. The user can define the rate of the LFO using controllers multiplexed by the GUI. The 24-

bit waveform is then scaled down to 8-bits of resolution (1 sign bit and 7 data bits) using a

bitwise slice of the upper 8-bits of sample data. This converts the LFO waveform into a MIDI-

standard format oscillation to be used alongside data from the MIDI controllers for effects

parameterization.

The 8-bit waveform is then sent through a multiplication stage for signal scaling, allowing

the user to change the amplitude of the oscillation, thus altering the depth of the modulation. A

second module was created to receive an 8-bit MIDI signal representing LFO depth, and linearly

map this data to a 16-bit scalar value between zero and one. This is multiplied by the 8-bit LFO

waveform using fixed-point multiplication. The output of the multiplication is a scaled version

of the LFO waveform. This scaled signal is then utilized by a second module, implemented to

51

continuously add the waveform to the user-selected effect control parameter. This results in a

continuously oscillating MIDI parameter, fully controllable by the user. Figure 4-16 graphically

depicts the operation of the LFO effects control module, simplified to the application of one

effect.

Figure 4-16: LFO Effect Control

4.6 Vibrato

A common synthesizer element that affects the frequency of a waveform is Vibrato. This

effect makes use of an LFO to perform phase-driven Frequency Modulation (FM) on a signal,

causing the fundamental period of the signal to expand and contract repeatedly. The

modulation can be performed using an LFO signal to control a variable delay applied to the

generated note waveform. Delay modulation in discrete time is a form of Phase Modulation

(PM), defined mathematically in Equation 4-5.

𝑦[𝑡] = 𝑠𝑖𝑛(2𝜋𝑓(𝑡 + 𝑥𝐿𝐹𝑂[𝑡])) (4-5)

 Applying a variable phase delay to a waveform is one of the simplest methods of

achieving FM. In order to calculate the changes in the fundamental waveform frequency f,

Equation 4-5 is manipulated using simple algebra to achieve the sinusoid defined in Equation 4-

52

6, which defines the dynamic frequency of the modulated waveform as the sum of f and the

delay function divided by time.

𝑦[𝑡] = 𝑠𝑖𝑛 (2𝜋𝑡 (𝑓 +
𝑥𝐿𝐹𝑂[𝑡]

𝑡
)) (4-6)

Figure 4-17 shows a simulation of the Vibrato effect, with a 20Hz sinusoidal oscillation

controlling the shift in the effect’s delay index value. The effect is applied to a 440 Hz sinusoid,

which can be seen unchanged in the upper plot. The lower plot shows the result of applying the

Vibrato effect to the waveform, in which the signal period can be clearly seen increasing, as the

delay index increases.

Figure 4-17: Vibrato Effect

The Vibrato effect is accomplished on FPGA hardware by introducing delay elements to

store 42ms (4096 samples) of previous waveform samples, and modulating an index

determining which delay element to send as the current output. An LFO output is routed to the

8-bit delay input to this module. While the amount of delay is increasing, the period of the

waveform is increased, causing the signal frequency to decrease. While the delay factor

53

decreases, the opposite occurs, and frequency increases. Figure 4-18 shows the block diagram

of the vibrato effect as it is implemented in the system.

Figure 4-18: Vibrato System Level Implementation

This chapter provided a complete description of all effects modules implemented on our

synthesizer system, and their integration within our top-level design. The following chapter

contains a summary of methods and results of module and system testing.

54

5 Testing and Results

No design is sufficiently ready to be put into practice until it has undergone extensive

testing. The synthesizer system was tested using several methods at every stage of the design

process. System hardware was tested using computer-generated test benches, as well as using

oscilloscope readings of internal signals and analog outputs. Software was tested using

debugging tools built-in to the Xilinx SDK. This chapter outlines the methods used and results

obtained from system testing.

5.1 Hardware Testing

At each stage in the development process of this project, new modules were tested as

standalone units before they were integrated into the top-level system design. This was

accomplished through the use of Verilog test benches, which allow an engineer to instantiate a

designed hardware module under very specific input conditions. Using Verilog for Simulation,

an engineer can model changes in input to a system and verify the circuit’s behavior by

observing its output. The use of test benches allowed the team to not only test the functionality

of a digital circuit, but also to aid the process of debugging nonfunctional circuits. Verilog

testing comprises writing a test fixture and instatiating a module as the Unit Under Test (UUT),

which can be seen in Figure 5-1.

Figure 5-1: Verilog for Module Testing

55

5.1.1 Verilog Test Benches

After the hardware description of each module was completed, a test bench was

designed for verifying that synthesized hardware matched the intended functionality of the

component. Simulations were conducted within Vivado Design Suite running XSim. In some

cases of debugging, it proved useful to conduct behavioral simulation as well as post-synthesis

simulation, to determine if the cause of a functional flaw was inherent of the design or simply a

result of implicit synthesis. For example, a module which passes all tests in behavioral

simulation but fails post-synthesis is generally the cause of synthesizable Verilog code that

could be written more explicitly, such that the synthesis tool interprets the correct netlist.

In order to fully test a hardware module, one must simulate all possible combinations of

inputs. Test benches created in this project sought to produce as many input combinations as

possible, while still meeting the scheduled goals of development. For this reason, much of the

testing was focused on simulating normal expected system operations rather than extreme

cases of input corruption or system error. Figure 5-2 shows simulation data for the testing of a

fixed-coefficient FIR filter that was used to confirm proper timing synchronization with a Xilinx

Multiply Accumulate block. This test bench simulates an input sample applied to a simple

second-order filter, testing the circuit’s ability to properly time multiplies using the Xilinx IP, and

to confirm the validity of accumulation data.

Figure 5-2: Timing Simulation of FIR Filter

56

 Hardware testing was a critical component of Term C project development. During this

term, a rigid schedule of effects module completion was laid out, with the intent of

implementing several hardware-driven synthesizer effects per week. In order to confirm that

the team had accomplished the goals of a given week, extensive testing was performed on each

newly-developed module. This allowed the team to confidently continue with project

development, knowing that each effect had been completed and was functioning properly.

5.1.2 Resource Utilization

The Zynq features an Artix-7-equivalent FPGA with 53,200 LUTs and 106,400 Flip-Flops for

the creation of complex digital logic. As the complexity of the project grew, so did the

importance of not exceeding the resources available to us for further development. At the

conclusion of project development, the system occupied less than 30% of all Look-up Tables

and 11% of Flip Flop state memory devices. This exemplifies the logical efficiency implemented

in the design of a complex system. The vast remainder of unused logic cells allow for much

expansion to be made in future project development, including additional synthesizer effects.

Detailed resource utilization can be found in Table 5-1.

Resource Utilization Available Utilization %

Flip Flops 11830 106400 11.12

Look-Up Tables 14611 53200 27.46

Memory LUTs 1588 17400 9.13

I/O 32 200 16.00

BRAM 31.50 140 22.50

DSP48 Slices 16 220 7.27
Table 5-1: System Resource Utilization

5.2 Software Testing

The functionality of control software is not only dependent on the team’s coding ability,

but also on the ability to find and fix problems present at any time during code development.

Testing of software is also necessary to ensure that the interface to FPGA hardware is

functional as well. With the software providing overall system control, it is crucial to confirm

the accuracy and reliability of every aspect of this component of the project. With the use of

57

debugging tools present in Xilinx SDK, code stability was tested extensively to ensure proper

execution as the system developed in complexity.

5.2.1 Debugging Techniques

The software debugging tools included in Xilinx SDK allow for verification of inputs to the

system as well as bitwise manipulations of data. The ability to pause the execution of the

system and check the state of software and memory at any given moment is quintessential for

this process. For example, the debugging tool was utilized to confirm functionality of the UART

serial input from the host computer. This ensured that the MIDI data bytes were coming in and

correctly being parsed, even with many sequential inputs. The debugger was also used to check

the sample output from FPGA hardware to verify that the signed 24-bit integer was received by

the system from the AXI peripheral in the correct format and interpreted properly.

Debugging techniques were used to verify the functionality of the delay and echo

functions, to ensure sample data was correctly loaded into the respective arrays. The SDK

debug tool was utilized at many development steps through the course of the project, and

proved to be an essential part of embedded software testing. Figure 5-3 provides an example of

the debug tool in use, with the Expressions window utilized to confirm the functionality of GPIO

readings of new samples produced in hardware.

Figure 5-3: Verification of Hardware Input via Debugging Tool

5.3 System Testing

The oscilloscope used for testing system audio output was an Agilent Infiniium 54833D,

capable of sampling at a rate of 4 GSa/s. This sampling rate allows for fine details of the analog

output waveform to be captured and observed in high resolution. The oscilloscope is also

58

capable of performing a Fast Fourier Transform (FFT) in software for spectral analysis of the

signal. This was utilized for testing the functionality of filter modules, for verification of signal

attenuation across the frequency spectrum. Digital oscilloscope inputs were also utilized in the

verification of several internal logic signals, including the clock divider module for DDS

synthesis. This was used to verify that the waveform generation block was provided step signals

at precise frequencies, matching their corresponding note frequencies. Supplemental to

oscilloscope testing, speakers were used to listen to system output and confirm audibly the

results each synthesizer effect. System output sounds were compared to those produced by

software synthesizers emulated on the laboratory computer.

5.3.1 Waveform Generation

Functionality of the DDS waveform generation stage was verified for each of the four

base waveforms. This ensured that each of the waveforms were being generated at the correct

frequency, and no instability or waveform abnormalities were present. The following figures

show oscilloscope captures of the four waveform types at the same note frequency 261.63 Hz,

or MIDI note 60 (C4 on a musical scale). Figure 5-4 depicts a pure sinusoid at this frequency.

Figure 5-4: Sine DDS Output

59

Figure 5-5 shows a sawtooth wave at MIDI note 60. The sharpness of the waveform’s saw

blades can be observed once per period, indicating near-infinitely-sloped transitions from the

signal’s minimum value to its maximum.

Figure 5-5: Sawtooth DDS Output

Figure 5-6 depicts a square waveform played at MIDI note 60. In this figure, the duty cycle of

the waveform is set to just under 50%, with the lower portion of the signal slightly longer in

duration than the upper part.

Figure 5-6: Square DDS Output

60

Figure 5-7 contains an oscillogram of a triangle waveform, at the same frequency as the above

plots. Each of the four waveforms feature the same minimum and maximum values,

corresponding to identical waveform amplitudes.

Figure 5-7: Triangle DDS Output

5.3.2 ADSR Envelope

The amplitude modulation envelope was tested on the oscilloscope as well. Using a

prolonged scope timescale, many samples of a synthesized waveform were captured. The ADSR

parameters were set to mid-range values, to exaggerate each stage of the amplitude envelope.

Figure 5-8 shows an annotated oscillogram generated by the envelope when applied to a sine

wave. This verifies the operation of the ADSR module and can be further exaggerated using

higher valued parameters.

61

Figure 5-8: ADSR Scope Capture

5.3.3 Filter Stages

The four filter modules were tested extensively using three methods of verification.

First, the cutoff frequencies of each filter were modulated across their full-scale ranges and

confirmed audibly to be both stable and capable of producing their intended synthesizer

sounds. Next, the filters were tested using computer capture of waveforms and MATLAB

processing for spectral analysis of the signal before and after filtering. Finally, both FIR and IIR

type filter stages were verified to be functional using the oscilloscope in the time domain,

where the different properties of each filtering method could be observed.

Figure 5-9 shows an oscillogram of a sawtooth wave, with various filter stages applied.

Figure 5-9-a features a pure sawtooth waveform, in which the unmodified sharpness of the saw

blades can be clearly observed. An FIR Low-pass filter was applied to the same sawtooth signal

with the cutoff frequency set to 4.076 kHz. This filter attenuates the high harmonic components

of the waveform, resulting in a reduction in the sharpness of the signal. In the oscillogram of

Figure 5-9-b, the blades appear duller, with smoother transitions from the minimum to

62

maximum signal values. An IIR filter set to the same cutoff frequency was applied to the same

sawtooth wave. The high harmonics are attenuated at a similar level to that of the FIR filter, but

the waveform is much more visibly distorted. This exemplifies the non-linear phase response

effect observed with IIR filters. This nonlinearity causes harmonic components of the waveform

to be shifted at different phases, causing to sawtooth to begin to lose its signature shape, as

can be seen in Figure 5-9-c. Increasing the cutoff frequency further results in more reduction of

the sawtooth peaks and further phase distortion to harmonic components of the signal.

Figure 5-9 a-c: FIR and IIR FIlters, Sawtooth

Figure 5-10 shows a comparison between the FPGA filter implementation and a similar

64th order FIR filter generated in MATLAB using FDA tool. The cutoff frequencies of both filters

63

were set to 2.7 kHz and are nearly identical, except the FPGA implementation uses 16-bit fixed-

point coefficients while MATLAB implementation utilizes more precise 64-bit floating-point

values. Error between the two filter implementations can be seen at the higher end of the

frequency spectrum, where the FPGA filter is only able to attenuate the signal by -55dB, while

the MATLAB implementation is able to reduce the harmonic amplitudes even further. This level

of attenuation is acceptable for this application, as -55dB corresponds to multiplying these

harmonics by a factor of 3e-6, reducing signal harmonics to fractional amplitudes that are lost

due to the use of a fixed-point waveform.

Figure 5-10: FIR Filter Comparison (MATLAB to FPGA)

5.3.4 Compression and Overdrive

The compression and gain modules were tested in the time domain using the

oscilloscope. The amplitude clipping effect is very well-defined on oscilloscope output and can

easily be seen observed using sine wave for testing purposes. Increasing the clip level visibly

reduces the overall waveform amplitude, replacing the smooth sinusoid with flat peaks. When

64

the gain factor is introduced to produce Overdrive, the sinusoid increased in amplitude, causing

it to become even less smooth. With sufficient gain applied to the signal, the waveform

becomes nearly a square, which is known to be much richer in harmonics. Figure 5-11 shows

oscillograms of several stages of clipping and Overdrive. Figure 5-11-a depicts a pure sinusoid,

with no distortive effects applied.

The Compression effect was applied to the sine wave with the threshold level set to 62,

corresponding to 48% of the original full-scale amplitude range. The round peaks of the

waveform were capped, creating a signal that appears trapezoidal, as can be seen in Figure 5-

11-b. The waveform peak-to-peak voltage was reduced from 6.4 to 3.19, corresponding to a

48% reduction. With the clipping threshold held constant, the pre-amplification gain was

increased to near its maximum value, resulting in the nearly-square waveform observed in

Figure 5-11-c.

65

Figure 5-11 a-c: Compression and Overdrive

5.3.5 Waveform Resolution Reduction

The Bitcrusher effect was tested at various levels of waveform resolution reduction to

confirm module functionality. Figure 5-12 shows an oscillogram of a 440 Hz sine wave with two

bits of waveform resolution. In this test, the original 24-bit signal now occupies four discrete

amplitude levels, resulting in a great reduction in tonal quality.

66

Figure 5-12: Bitcrusher Effect Test

5.3.6 Delay and Echo

The delay-based effects were verified through the use of the desktop speakers, as the

delayed signal could easily be verified in its repetition over time. They were also verified on the

oscilloscope, where the delayed signal can be seen following the original signal over time. An

oscillogram of the echo effect in practice over the course five seconds can be seen in Figure 5-

13. In the figure, a sawtooth note of short duration is played once (at t=500ms), and is echoed

with a low decay rate, allowing for multiple echoes to be seen decaying for several seconds

after the note has been released.

67

Figure 5-13: Echo of Signal over time

5.3.7 Vibrato

The vibrato effect modulates the frequency of the signal at a user defined rate and

depth. The functionality of this effect was confirmed audibly as well as visually on the

oscilloscope. Using a maximum depth parameter to exaggerate the frequency change of the

signal, many different frequencies can be observed on the oscilloscope for a single input note.

Figure 5-14 shows a scope capture of the vibrato effect on a static note, with a square wave

selected. A rate of modulation was chosen such that changes in the period of the waveform can

be observed, thus indicating changes in frequency. From left to right, the periods of the square

waves can be observed to be increasing, as the sinusoidal LFO controlling the Vibrato module

reaches a peak, and the resulting square wave becomes increasingly lower in frequency.

68

Figure 5-14: Square Signal with Vibrato Effect

5.3.8 LFO

The Low Frequency Oscillator effect control modules allow for dynamic changes in every

effect parameter on the system. Extensive testing was performed to ensure that these modules

were successful in their ability to modulate each effect parameter. This is best demonstrated

using an LFO to change the clipping threshold of the compression effect. An LFO sinusoid was

used to modulate the compression threshold, resulting in the oscillogram shown in Figure 5-15.

The dynamic changes to this effect parameter can be clearly observed, resulting in a sinusoidal

change in signal amplitude over time.

69

Figure 5-15: Sinusoidal Compression LFO Effect

 An LFO effect control module was then applied to the controlling input of the FIR high-

pass filter module. This caused the cutoff frequency of this filter to oscillate, resulting in the

waveform shown in the oscilloscope capture of Figure 5-16. As the cutoff frequency increases,

the low frequency harmonics that make up the fundamental shape of the sawtooth can be seen

attenuating until the center of the plot, when the cutoff frequency begins to decrease and the

sawtooth regains its signature shape.

Figure 5-16: LFO Applied to FIR High-Pass

70

5.4 Signal-to-Noise Ratio

The analog signal produced by the codec is susceptible to noise, as it is transmitted

through an auxiliary audio cable to the speakers. This noise is undesired and can have a

negative effect on the signal being generated. Using the root mean square (RMS) voltages of

the noise and the signal, it is possible to calculate the signal to noise ratio (SNR). The measured

RMS voltage for the noise was 6.3mV and the best case signal RMS voltage was measured to be

229mV. Using Equation 5-1, the SNR was calculated to be 1321.26. Equation 5-2 is the

conversion from SNR to SNR dB, which is represented logarithmically using decibels. Using this

conversion, the SNRdB of the final signal was determined to be 31.21dB.

𝑆𝑁𝑅 = (
𝑅𝑀𝑆𝑠𝑖𝑔𝑛𝑎𝑙

𝑅𝑀𝑆𝑛𝑜𝑖𝑠𝑒
)

2

 (5-1)

𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔10(𝑆𝑁𝑅) (5-2)

5.5 Real-Time Capability

A digital instrument cannot be deemed useable if there is any delay in overall

throughout, as this can be frustrating to the musician. The user should not need to compensate

his actions at the cost of the hardware. A digital system not running in real-time is prone to

error, and can result in instability and missed output samples, reducing the quality of output.

The synthesizer’s input-to-output delay is so minute that it is undetectable by a human user.

However, the overall real-time performance was examined to determine the throughput

capabilities of both the hardware and software. There are limitations to the real-time ability of

the system, as input data is polled via UART at a rate of 115200 baud. UART protocol utilizes

one start and two stop bits in addition to the 8-bit MIDI message data, resulting in 11 bits per

data byte transmission. Three bytes of MIDI data are sent to the system for every key press,

resulting in a 286µs delay at this transmission rate. This allows for over 3000 notes to be

transmitted per second, which is sufficient for any level of user playing music at any humanly –

possible tempo.

The second concern when determining real-time operation is ensuring that both the

hardware and software are able to complete their tasks in the allotted time between each 96

71

kHz interrupt. This is crucial, as processing deadlines must be met in order for the system

output to represent the current sample in time.

Effects processing logic, operating on a 100MHz clock, has a deadline of 1041 clock

cycles (10us) to complete all signal processing in time for concurrent sample output. Some

modules are able to complete processing in as few as 2 clock cycles, while more

computationally complex effects can take hundreds of cycles. Filtering effects take many clock

cycles due to the sequentially implemented filter coefficient multiply-accumulation stages.

Table 5-2 shows the number of clock cycles for each effect implemented on the programmable

logic, and the total calculated computation time for effects processing on each waveform

sample.

Effect Module 100 MHz Clock Cycles Time (ns)

ADSR 3 30

LFSR 7 70

FIR Filter x2 (64-order) 266 + 266 5320

IIR Filter x2 (4-order) 86 + 86 1760

Gain 4 40

Compression 2 20

Bitcrusher 2 20

Vibrato 2 20

Total Effects Throughput 728 7280
Table 5-2 - Clock Cycle Count of Hardware Effects

The effect processing throughput was confirmed in practice on the completed system by

determining the time taken for a sample to pass through each of the effects modules. Using an

oscilloscope, the time difference between new waveform sample generation (determined by

the assertion of the output_enable signal on the DDS block) and the assertion of the

output_enable signal on the final effects stage. With all effects active, this time was measured

to be 7205 ns, as can be seen in the oscillogram of Figure 5-17.

72

Figure 5-17: Effects Processing Throughput

Overall system throughput was determined by measuring the difference in time

between the note_on pulse, which generated when a user presses a key, and the moment the

first sample of a waveform appears at the system’s analog output. This encompasses the time

required to generate a waveform sample, complete effects processing, transmit sample over

AXI, perform software effects processing, and send the sample to the codec for system output.

This delay was measured to be 3.309 ms, as can be seen in the oscillogram of Figure 5-18, in

which the green signal represents note_on and the yellow waveform is the synthesizer output.

73

Figure 5-18: System Throughput Latency

 An ideal electronic instrument has a throughout delay near zero seconds, to

appropriately model the response of an acoustic instrument. The measured system delay was

compared to the latency response of a similar keyed instrument, a Grand Piano. This acoustic

instrument contains several moving mechanical parts that introduce a 30ms delay between key

press and string vibration [23]. Thus, a latency of 3.309 ms is more than acceptable for the

development of a musical instrument.

 This chapter provided a summary of low-level testing of hardware modules developed

for our system, as well as top-level synthesizer functionality testing. This included system

throughput testing, from USB MIDI input to waveform output. The final chapter contains a

summary of project accomplishments and a discussion of future expansion to the system.

74

6 Conclusions

This project consisted of the design and implementation of a digital music synthesizer

on a Xilinx Zynq SoC, capable of performing subtracting synthesis and producing a multitude of

effects. The finalized system met all design goals, which are outlined below in Table 6-1.

Goal Implementation
Input delivered to system for user control MIDI controller, Python-powered GUI on host computer

Complete real-time system control ARM Cortex-A9 executes software for top-level control

High quality waveform generation DDS using 4096-sample 24-bit wavetables on PL

Multiple effects processing stages Real-time DSP techniques implemented on PL

Real-time system operation 96 kHz signal output powered by ADAU Audio codec
Table 6-1: Project Goals

The completed system offered the high-speed control throughput of a modern digital

synthesizer, successfully meeting all requirements laid out at the beginning of the project.

Project development on the Zynq SoC allowed for the design of a system containing both

embedded software and programmable logic components. The use of embedded software

allowed for execution of memory-intensive tasks and implementation of control logic.

Performing signal generation and processing in programmable logic allowed for the creation of

many separate effects modules, carried out independently from software for real-time

operation. This project sought to implement many synthesizer effects featured on modern

systems. This goal was accomplished, though the implemented modules represent only a

subset of the vast multitude of well-known synthesizer effects. The completed system can be

seen pictured in Figure 6-1.

75

Figure 6-1: FPGA Digital Synthesizer System

The act of meeting the above requirements was not without its challenges. The original

design for input implementation featured the USB MIDI device connected directly to the

Zedboard, with embedded software on the Zynq chip configuring the device as its USB host.

This proved to be a rather arduous task, requiring the design of bare-metal device drivers and

the study of USB protocol. The Zedboard is designed to act as a USB host through the use of

XiLinux running on the Cortex-A9, which would require the entire system control block to be

implemented in Linux instead of using a bare-metal embedded system. In order to avoid the

overhead of running an operating system and to simplify the embedded C design component of

the project, USB host functionality was outsourced to the computer. This implementation was

later expanded to also feature the GUI for enhanced system control.

Another development challenge was encountered during design of the filter modules.

Rather than calculate each set of filter coefficients in MATLAB and store them permanently in

combinational logic, the team had originally desired to calculate these constants in real-time.

Fixed-point filter design using windowing techniques was simulated in MATLAB to determine if

stable, high-quality filters could be produced. Within the system, two MIDI input parameters

would set the upper and lower bounds of a rectangular window, upon which an Inverse Fast

Fourier Transform (IFFT) would be performed to generate the impulse response of an FIR filter.

The resulting filters did not produce the same sharp pass- to stop-band transitions observed

from filters developed using MATLAB’s FDA tool. Due to the high level of importance of this

76

filter characteristic, the modules were designed using FDA tool-generated coefficients, which

were stored in combinational logic on the FPGA. This method proved to be a simple solution to

the problem, considering an 8-bit MIDI control parameter only allows for 128 discrete input

values, limiting the number of possible filter cutoff frequencies.

Timing closure across multiple clock domains also proved to be a challenge. The original

system design featured every programmable logic module operating on one 100 MHz clock. In

practice, it was found that using a 100 MHz clock to operate the NCO clock divider module for

DDS did not provide sufficiently accurate frequencies for waveform generation. Using the PLL to

derive a second clock at 200 MHz allowed for this module to generate waveform step interrupts

with twice the precision, at the cost of timing synchronization. The timing issue was solved by

using the 100 MHz clock and several state elements to create a synchronizer circuit, which

reduced the risk of metastability occurring at the clock domain crossing.

 This project proved to be an excellent learning experience for the team. The

development of a complex digital music synthesizer required independent study of many topics

not presented in undergraduate coursework at this university. Over the course of the first term

of the project, the team learned much about Zynq SoC architecture and development using

Vivado Design Suite. Real-time two-way communication between logic hardware and

embedded software on this chip was necessary for system operation. The team was able to

apply real-time fixed-point processing techniques learned in signals courses to digital logic, a

paradigm in which even the smallest of timing mistakes can cause a system to be unstable or

even inoperable. As musicians, the team was familiar with the basic concepts of many of the

synthesizer effects implemented, but learning the mathematics and theory behind each of the

effects was essential for system development. This allowed the team to apply concepts learned

as engineering undergraduates to a field in which we were personally interested, bridging the

gap between computer engineering and music.

6.1 Future Work

For future development on this project or MQPs of a similar nature, several additional

expansions are possible. One optional system component that was not completed due to time

77

limitations was polyphony, in which multiple notes can be played simultaneously. Many

synthesizers are monophonic, but the addition of polyphony allows the user to play chords for

increased musical functionality. The development of this component would require additional

control logic, the duplication of several hardware modules, and hardware multipliers for the

scaled addition of each individual synthesizer voice.

 Another possible addition to this project is the implementation of a system capable of

performing effects processing on external signals. The ADAU1761 codec features an analog

input, capable of capturing high-quality 24-bit samples at 96 kHz. This could be utilized to allow

for a user to play an acoustic instrument or sing into a microphone, with audio effects

processing performed on the analog signal. A synthesizer that features a microphone input for

this purpose is called a Vocoder, and generally includes additional effects tailored to voice

processing, such as pitch shifting.

This MQP resulted in the development of a small subset of the vast number of synthesizer

effects that exist in modern systems. Due to the schedule limitations of a three-term project,

the project implemented some of the most common modules considered essential to any

synthesizer. Future work could focus on the development of more of these effects, which would

be limited by the amount of programmable logic available on the Zynq chip. Some effects that

would be possible to add to the system include flanger, chorus, and phasor effects. These are

well-known and are desirable features found in many synthesizers.

78

7 References

[1] "The 'Musical Telegraph'," [Online]. Available: http://120years.net/the-musical-

telegraphelisha-greyusa1876/.

[2] Wikpedia, "Wikipedia, the Free Encyclopedia," 2015. [Online]. Available:

http://en.wikipedia.org/wiki/Sequential_Circuits_Prophet-5.

[3] V. Beal, "Moore's Law," [Online]. Available:

http://www.webopedia.com/TERM/M/Moores_Law.html.

[4] Xilinx Inc., "FPGA vs ASIC," 2015. [Online]. Available: http://www.xilinx.com/fpga/asic.htm.

[5] G. Reid, "Synthesizing Tonewheel Organs," November 2003. [Online]. Available:

http://www.soundonsound.com/sos/nov03/articles/synthsecrets.htm.

[6] M. Ottewill, "Subtractive Synthesis," [Online]. Available:

www.planetoftunes.com/synthesis/subtractive-synthesis.htm. [Accessed 13 April 2015].

[7] Burk, Polansky, Repetto, Roberts and Rockmore, "FM Synthesis," Columbia University, [Online].

Available: http://music.columbia.edu/cmc/musicandcomputers/chapter4/04_07.php.

[Accessed 19 November 2014].

[8] Wikipedia, "Synthesizer, ADSR," [Online]. Available:

http://en.wikipedia.org/wiki/Synthesizer#ADSR_envelope. [Accessed 12 April 2015].

[9] Sound on Sound, "Synth Secrets: Modulation," February 2000. [Online]. Available:

http://www.soundonsound.com/sos/feb00/articles/synthsecrets.htm.

[10] G. Reid, "Synthesizer Secrets," Sound on Sound, January 2004. [Online]. Available:

http://www.soundonsound.com/sos/jan04/articles/synthsecrets.htm.

79

[11] Test Tone, "What is Bitcrusher Effect," [Online]. Available:

http://testtone.com/fundamentals/what-bitcrusher-effect.

[12] MIDI Manufacturers Association, "MIDI Messages," [Online]. Available:

www.midi.org/techspecs/midimessages.php.

[13] All About Circuits, "Look-up Tables," All About Circuits, 2015. [Online]. Available:

http://www.allaboutcircuits.com/vol_4/chpt_16/2.html.

[14] N. Wooster, "FPGA-Synth," August 2010. [Online]. Available: http://woosteraudio.com/fpga-

synth.html.

[15] R. Sassinger, "Cyclone 5 Music Synthesizer," [Online]. Available:

http://fpgasynth.beepworld.de/cyclone.htm.

[16] J. Wolfe, "Note names, MIDI numbers and frequencies," June 2005. [Online]. Available:

http://newt.phys.unsw.edu.au/jw/notes.html.

[17] Burk, Polanski, Repetto, Roberts and Rockmore, "Timbre," Columbia University, [Online].

Available: http://music.columbia.edu/cmc/musicandcomputers/chapter1/01_04.php.

[18] E. W. Weisstein, "Fourier Series- Sawtooth Wave," 2 April 2015. [Online]. Available:

http://mathworld.wolfram.com/FourierSeriesSawtoothWave.html.

[19] E. W. Weisstein, "Fourier Series- Square Wave," 2 April 2015. [Online]. Available:

http://mathworld.wolfram.com/FourierSeriesSquareWave.html.

[20] E. W. Weisstein, "Fourier Series-Triangle Wave," 2 April 2015. [Online]. Available:

http://mathworld.wolfram.com/FourierSeriesTriangleWave.html.

[21] L. H. Crocket, R. A. Elliot, M. A. Enderwitz and R. W. Stewart, "The Zynq Book," July 2014.

[Online]. Available:

http://mediagoblin.tami.org.il/mgoblin_media/media_entries/660/The_Zynq_Book_ebook.pdf.

80

[22] C. Stroud, "Linear Feedback Shift Registers," October 2004. [Online]. Available:

http://www.eng.auburn.edu/~strouce/class/elec6250/LFSRs.pdf.

[23] A. Askenfelt and E. Jansson, "Royal Swedish Academy of Music," [Online]. Available:

http://www.speech.kth.se/music/5_lectures/askenflt/measure.html.

81

Appendix A: Xilinx Vivado Block Diagram

82

Appendix B: Development Code

MATLAB Scripts

Direct Digital Synthesis Waveform Modules Generation

%Sidney Veilleux

%Evan Briggs

%MQP Digital Synthesizer

function hardware_nco_fast_phase(clk,samples)

%This function creates q-sample wavetables for synthesis

close all

t=0:1:(samples-1);

sample_bits = ceil(log(samples)/log(2));

sample_msb = sample_bits -1;

%% Sine Wave

x(1,:)=sin(2*pi*t./samples);

x(1,:)=round(x.*2^22);

%% Sawtooth Wave

x(2,:) = t*2^(23-log2(samples))-2^22; %% 15 for 256 samples, 13 for 1024

%% Square Wave

x(3,1:(samples/2)) = 2^22;

x(3,(samples/2+1):samples) = -(2^22);

%% Triangle Wave

x(4,1:samples/2) = t(1:samples/2)*(2^(23-(log2(samples)))-1); %% 15 for

256 samples, 13 for 1024

x(4,(samples/2+1):samples) = (2^22-t(1:(samples/2))*(2^(23-(log2(samples)))-

1)); %% 15 for 256 samples, 13 for 1024

x(4,:) = 2*x(4,:) - 2^22;

x = round(x/4); %scale down by four

%% Plots

 figure;

 plot(t,x(1,:),'.');

 title('Sinusoid');

 figure;

 plot(t,x(2,:),'.');

 title('Sawtooth');

83

 figure;

 plot(t,x(3,:),'.');

 title('Square');

 figure;

 plot(t,x(4,:),'.');

 title('Triangle');

%% Counter Module

sample_bits = ceil(log(samples)/log(2));

nco_sine = fopen('hardware_nco_sine_fast_phase.v','w');

fprintf(nco_sine, '`timescale 1ns / 1ps\n\n');

fprintf(nco_sine, '//MATLAB Generated Verilog\n');

fprintf(nco_sine, '//Sidney Veilleux and Evan Briggs\n');

fprintf(nco_sine, '//Worcester Polytechnic Institute 2015\n\n\n');

fprintf(nco_sine, 'module hardware_nco_sine_fast_phase(\n');

fprintf(nco_sine, ' input clk_100M,\n');

fprintf(nco_sine, ' input clk_200M,\n');

fprintf(nco_sine, ' input clk_96k,\n');

fprintf(nco_sine, ' input sample_interrupt,\n');

fprintf(nco_sine, ' input [3:0] wave_select,\n');

fprintf(nco_sine, ' input [5:0] step_size,\n'); %up to 16 step size

fprintf(nco_sine, ' input [7:0] phase,\n');

fprintf(nco_sine, ' output output_enable,\n');

fprintf(nco_sine, ' output[23:0] sample\n);\n\n');

fprintf(nco_sine, 'reg signed[23:0] sine_sample;\n');

fprintf(nco_sine, 'reg[23:0] syncronous_sample;\n');

fprintf(nco_sine, 'wire[23:0] unscaled_sample;\n');

fprintf(nco_sine, 'wire[2:0] active_waveforms;\n');

fprintf(nco_sine, 'reg [%i:0] sample_count;\n',sample_msb);

fprintf(nco_sine, 'wire [%i:0] sample_count_phased;\n\n',sample_msb);

fprintf(nco_sine, 'assign sample_count_phased = sample_count + {phase[6:0],

%i''b0};\n',(sample_msb-6));

fprintf(nco_sine, '\n//Create 1ns pulse from 96kHz clock\n');

fprintf(nco_sine, 'reg clk_96k_q;\n');

fprintf(nco_sine, 'reg clk_96k_qq;\n');

fprintf(nco_sine, 'wire clk_96_pulse;\n');

fprintf(nco_sine, 'always @(posedge clk_100M)\n');

fprintf(nco_sine, ' begin\n');

fprintf(nco_sine, ' clk_96k_q <= clk_96k;\n');

fprintf(nco_sine, ' clk_96k_qq <= clk_96k_q;\n');

fprintf(nco_sine, ' end\n');

fprintf(nco_sine, 'assign clk_96_pulse = (clk_96k_q && ~(clk_96k_qq));\n\n');

fprintf(nco_sine, '\n//Create 1ns pulse from interrupt signal\n');

fprintf(nco_sine, 'reg interrupt_q;\n');

fprintf(nco_sine, 'reg interrupt_qq;\n');

fprintf(nco_sine, 'wire interrupt_pulse;\n');

fprintf(nco_sine, 'always @(posedge clk_100M)\n');

fprintf(nco_sine, ' begin\n');

fprintf(nco_sine, ' interrupt_q <= sample_interrupt;\n');

fprintf(nco_sine, ' interrupt_qq <= interrupt_q;\n');

fprintf(nco_sine, ' end\n');

84

fprintf(nco_sine, 'assign interrupt_pulse = (interrupt_q &&

~(interrupt_qq));\n\n');

fprintf(nco_sine, 'always @(posedge clk_100M)\n');

fprintf(nco_sine, ' if(interrupt_pulse)\n');

fprintf(nco_sine, ' sample_count = sample_count + step_size;\n');

fprintf(nco_sine, ' else\n');

fprintf(nco_sine, ' sample_count = sample_count;\n\n');

fprintf(nco_sine, 'always @(posedge clk_200M)\n');

fprintf(nco_sine, ' case(sample_count_phased)\n');

for k=1:1:samples

fprintf(nco_sine, ' %i: sine_sample = %i;\n',(k-1),x(1,k));

end

fprintf(nco_sine, ' default: sine_sample = 24''b0;\n');

fprintf(nco_sine, ' endcase\n\n');

fprintf(nco_sine, 'always @(posedge clk_100M)\n');

fprintf(nco_sine, ' if(clk_96_pulse)\n');

fprintf(nco_sine, ' syncronous_sample = sine_sample;\n');

fprintf(nco_sine, ' else\n');

fprintf(nco_sine, ' syncronous_sample = syncronous_sample;\n\n');

fprintf(nco_sine, 'assign unscaled_sample = (wave_select[0]) ?

syncronous_sample : 24''b0;\n');

fprintf(nco_sine, 'assign active_waveforms = wave_select[0] + wave_select[1]

+ wave_select[2] + wave_select[3];\n');

fprintf(nco_sine, 'assign sample = (active_waveforms == 1) ?

{unscaled_sample[23], unscaled_sample[20:0], 2''b0} : \n');

fprintf(nco_sine, '(active_waveforms == 2) ? {unscaled_sample[23:22],

unscaled_sample[20:0], 1''b0} : \n');

fprintf(nco_sine, '(active_waveforms == 3) ? {unscaled_sample[23:22],

unscaled_sample[20:0], 1''b0} : \n');

fprintf(nco_sine, '(active_waveforms == 4) ? unscaled_sample : \n');

fprintf(nco_sine, '24''b0;\n\n');

fprintf(nco_sine, 'assign output_enable = clk_96_pulse;\n');

fprintf(nco_sine, 'endmodule\n');

fclose(nco_sine);

%% Sawtooth

nco_saw = fopen('hardware_nco_saw_fast_phase.v','w');

fprintf(nco_saw, '`timescale 1ns / 1ps\n\n');

fprintf(nco_saw, '//MATLAB Generated Verilog\n');

fprintf(nco_saw, '//Sidney Veilleux and Evan Briggs\n');

fprintf(nco_saw, '//Worcester Polytechnic Institute 2015\n\n\n');

fprintf(nco_saw, 'module hardware_nco_saw_fast_phase(\n');

fprintf(nco_saw, ' input clk_100M,\n');

fprintf(nco_saw, ' input clk_200M,\n');

85

fprintf(nco_saw, ' input clk_96k,\n');

fprintf(nco_saw, ' input sample_interrupt,\n');

fprintf(nco_saw, ' input [3:0] wave_select,\n');

fprintf(nco_saw, ' input [5:0] step_size,\n'); %up to 16 step size

fprintf(nco_saw, ' input [7:0] phase,\n');

fprintf(nco_saw, ' output output_enable,\n');

fprintf(nco_saw, ' output[23:0] sample\n);\n\n');

fprintf(nco_saw, 'reg signed[23:0] saw_sample;\n');

fprintf(nco_saw, 'reg[23:0] syncronous_sample;\n');

fprintf(nco_saw, 'wire[23:0] unscaled_sample;\n');

fprintf(nco_saw, 'wire[2:0] active_waveforms;\n');

fprintf(nco_saw, 'reg [%i:0] sample_count;\n',sample_msb);

fprintf(nco_saw, 'wire [%i:0] sample_count_phased;\n\n',sample_msb);

fprintf(nco_saw, 'assign sample_count_phased = sample_count + {phase[6:0],

%i''b0};\n',(sample_msb-6));

fprintf(nco_saw, '\n//Create 1ns pulse from 96kHz clock\n');

fprintf(nco_saw, 'reg clk_96k_q;\n');

fprintf(nco_saw, 'reg clk_96k_qq;\n');

fprintf(nco_saw, 'wire clk_96_pulse;\n');

fprintf(nco_saw, 'always @(posedge clk_100M)\n');

fprintf(nco_saw, ' begin\n');

fprintf(nco_saw, ' clk_96k_q <= clk_96k;\n');

fprintf(nco_saw, ' clk_96k_qq <= clk_96k_q;\n');

fprintf(nco_saw, ' end\n');

fprintf(nco_saw, 'assign clk_96_pulse = (clk_96k_q && ~(clk_96k_qq));\n\n');

fprintf(nco_saw, '\n//Create 1ns pulse from interrupt signal\n');

fprintf(nco_saw, 'reg interrupt_q;\n');

fprintf(nco_saw, 'reg interrupt_qq;\n');

fprintf(nco_saw, 'wire interrupt_pulse;\n');

fprintf(nco_saw, 'always @(posedge clk_100M)\n');

fprintf(nco_saw, ' begin\n');

fprintf(nco_saw, ' interrupt_q <= sample_interrupt;\n');

fprintf(nco_saw, ' interrupt_qq <= interrupt_q;\n');

fprintf(nco_saw, ' end\n');

fprintf(nco_saw, 'assign interrupt_pulse = (interrupt_q &&

~(interrupt_qq));\n\n');

fprintf(nco_saw, 'always @(posedge clk_100M)\n');

fprintf(nco_saw, ' if(interrupt_pulse)\n');

fprintf(nco_saw, ' sample_count = sample_count + step_size;\n');

fprintf(nco_saw, ' else\n');

fprintf(nco_saw, ' sample_count = sample_count;\n\n');

fprintf(nco_saw, 'always @(posedge clk_200M)\n');

fprintf(nco_saw, ' case(sample_count_phased)\n');

for k=1:1:samples

fprintf(nco_saw, ' %i: saw_sample = %i;\n',(k-1),x(2,k));

end

fprintf(nco_saw, ' default: saw_sample = 24''b0;\n');

fprintf(nco_saw, ' endcase\n\n');

86

fprintf(nco_saw, 'always @(posedge clk_100M)\n');

fprintf(nco_saw, ' if(clk_96_pulse)\n');

fprintf(nco_saw, ' syncronous_sample = saw_sample;\n');

fprintf(nco_saw, ' else\n');

fprintf(nco_saw, ' syncronous_sample = syncronous_sample;\n\n');

fprintf(nco_saw, 'assign unscaled_sample = (wave_select[1]) ?

syncronous_sample : 24''b0;\n');

fprintf(nco_saw, 'assign active_waveforms = wave_select[0] + wave_select[1] +

wave_select[2] + wave_select[3];\n');

fprintf(nco_saw, 'assign sample = (active_waveforms == 1) ?

{unscaled_sample[23], unscaled_sample[20:0], 2''b0} : \n');

fprintf(nco_saw, '(active_waveforms == 2) ? {unscaled_sample[23:22],

unscaled_sample[20:0], 1''b0} : \n');

fprintf(nco_saw, '(active_waveforms == 3) ? {unscaled_sample[23:22],

unscaled_sample[20:0], 1''b0} : \n');

fprintf(nco_saw, '(active_waveforms == 4) ? unscaled_sample : \n');

fprintf(nco_saw, '24''b0;\n\n');

fprintf(nco_saw, 'assign output_enable = clk_96_pulse;\n');

fprintf(nco_saw, 'endmodule\n');

fclose(nco_saw);

%% Square

nco_square = fopen('hardware_nco_square_fast_phase.v','w');

fprintf(nco_square, '`timescale 1ns / 1ps\n\n');

fprintf(nco_square, '//MATLAB Generated Verilog\n');

fprintf(nco_square, '//Sidney Veilleux and Evan Briggs\n');

fprintf(nco_square, '//Worcester Polytechnic Institute 2015\n\n\n');

fprintf(nco_square, 'module hardware_nco_square_fast_phase(\n');

fprintf(nco_square, ' input clk_100M,\n');

fprintf(nco_square, ' input clk_200M,\n');

fprintf(nco_square, ' input clk_96k,\n');

fprintf(nco_square, ' input [7:0] pwm_control,\n');

fprintf(nco_square, ' input sample_interrupt,\n');

fprintf(nco_square, ' input [3:0] wave_select,\n');

fprintf(nco_square, ' input [5:0] step_size,\n'); %up to 16 step size

fprintf(nco_square, ' input [7:0] phase,\n');

fprintf(nco_square, ' output output_enable,\n');

fprintf(nco_square, ' output[23:0] sample\n);\n\n');

fprintf(nco_square, 'reg signed[23:0] square_sample;\n');

fprintf(nco_square, 'reg[23:0] syncronous_sample;\n');

fprintf(nco_square, 'wire[23:0] unscaled_sample;\n');

fprintf(nco_square, 'wire[2:0] active_waveforms;\n');

fprintf(nco_square, 'reg [%i:0] sample_count;\n',sample_msb);

fprintf(nco_square, 'wire [%i:0] sample_count_phased;\n\n',sample_msb);

fprintf(nco_square, 'assign sample_count_phased = sample_count +

{phase[6:0], %i''b0};\n',(sample_msb-6));

fprintf(nco_square, '\n//Create 1ns pulse from 96kHz clock\n');

87

fprintf(nco_square, 'reg clk_96k_q;\n');

fprintf(nco_square, 'reg clk_96k_qq;\n');

fprintf(nco_square, 'wire clk_96_pulse;\n');

fprintf(nco_square, 'always @(posedge clk_100M)\n');

fprintf(nco_square, ' begin\n');

fprintf(nco_square, ' clk_96k_q <= clk_96k;\n');

fprintf(nco_square, ' clk_96k_qq <= clk_96k_q;\n');

fprintf(nco_square, ' end\n');

fprintf(nco_square, 'assign clk_96_pulse = (clk_96k_q &&

~(clk_96k_qq));\n\n');

fprintf(nco_square, '\n//Create 1ns pulse from interrupt signal\n');

fprintf(nco_square, 'reg interrupt_q;\n');

fprintf(nco_square, 'reg interrupt_qq;\n');

fprintf(nco_square, 'wire interrupt_pulse;\n');

fprintf(nco_square, 'always @(posedge clk_100M)\n');

fprintf(nco_square, ' begin\n');

fprintf(nco_square, ' interrupt_q <= sample_interrupt;\n');

fprintf(nco_square, ' interrupt_qq <= interrupt_q;\n');

fprintf(nco_square, ' end\n');

fprintf(nco_square, 'assign interrupt_pulse = (interrupt_q &&

~(interrupt_qq));\n\n');

fprintf(nco_square, 'always @(posedge clk_100M)\n');

fprintf(nco_square, ' if(interrupt_pulse)\n');

fprintf(nco_square, ' sample_count = sample_count + step_size;\n');

fprintf(nco_square, ' else\n');

fprintf(nco_square, ' sample_count = sample_count;\n\n');

fprintf(nco_square, 'always @(posedge clk_200M)\n');

fprintf(nco_square, ' if(sample_count[%i:5] < pwm_control)\n',sample_msb);

fprintf(nco_square, ' square_sample = 4194304;\n');

fprintf(nco_square, ' else \n');

fprintf(nco_square, ' square_sample = -4194304;\n\n');

fprintf(nco_square, 'always @(posedge clk_100M)\n');

fprintf(nco_square, ' if(clk_96_pulse)\n');

fprintf(nco_square, ' syncronous_sample = square_sample;\n');

fprintf(nco_square, ' else\n');

fprintf(nco_square, ' syncronous_sample = syncronous_sample;\n\n');

fprintf(nco_square, 'assign unscaled_sample = (wave_select[2]) ?

syncronous_sample : 24''b0;\n');

fprintf(nco_square, 'assign active_waveforms = wave_select[0] +

wave_select[1] + wave_select[2] + wave_select[3];\n');

fprintf(nco_square, 'assign sample = (active_waveforms == 1) ?

{unscaled_sample[23], unscaled_sample[20:0], 2''b0} : \n');

fprintf(nco_square, '(active_waveforms == 2) ? {unscaled_sample[23:22],

unscaled_sample[20:0], 1''b0} : \n');

fprintf(nco_square, '(active_waveforms == 3) ? {unscaled_sample[23:22],

unscaled_sample[20:0], 1''b0} : \n');

fprintf(nco_square, '(active_waveforms == 4) ? unscaled_sample : \n');

fprintf(nco_square, '24''b0;\n\n');

88

fprintf(nco_square, 'assign output_enable = clk_96_pulse;\n');

fprintf(nco_square, 'endmodule\n');

fclose(nco_square);

%% Triangle

nco_triangle = fopen('hardware_nco_triangle_fast_phase.v','w');

fprintf(nco_triangle, '`timescale 1ns / 1ps\n\n');

fprintf(nco_triangle, '//MATLAB Generated Verilog\n');

fprintf(nco_triangle, '//Sidney Veilleux and Evan Briggs\n');

fprintf(nco_triangle, '//Worcester Polytechnic Institute 2015\n\n\n');

fprintf(nco_triangle, 'module hardware_nco_triangle_fast_phase(\n');

fprintf(nco_triangle, ' input clk_100M,\n');

fprintf(nco_triangle, ' input clk_200M,\n');

fprintf(nco_triangle, ' input clk_96k,\n');

fprintf(nco_triangle, ' input sample_interrupt,\n');

fprintf(nco_triangle, ' input [3:0] wave_select,\n');

fprintf(nco_triangle, ' input [5:0] step_size,\n'); %up to 16 step size

fprintf(nco_triangle, ' input [7:0] phase,\n');

fprintf(nco_triangle, ' output output_enable,\n');

fprintf(nco_triangle, ' output[23:0] sample\n);\n\n');

fprintf(nco_triangle, 'reg signed[23:0] triangle_sample;\n');

fprintf(nco_triangle, 'reg[23:0] syncronous_sample;\n');

fprintf(nco_triangle, 'wire[23:0] unscaled_sample;\n');

fprintf(nco_triangle, 'wire[2:0] active_waveforms;\n');

fprintf(nco_triangle, 'reg [%i:0] sample_count;\n',sample_msb);

fprintf(nco_triangle, 'wire [%i:0] sample_count_phased;\n\n',sample_msb);

fprintf(nco_triangle, 'assign sample_count_phased = sample_count +

{phase[6:0], %i''b0};\n',(sample_msb-6));

fprintf(nco_triangle, '\n//Create 1ns pulse from 96kHz clock\n');

fprintf(nco_triangle, 'reg clk_96k_q;\n');

fprintf(nco_triangle, 'reg clk_96k_qq;\n');

fprintf(nco_triangle, 'wire clk_96_pulse;\n');

fprintf(nco_triangle, 'always @(posedge clk_100M)\n');

fprintf(nco_triangle, ' begin\n');

fprintf(nco_triangle, ' clk_96k_q <= clk_96k;\n');

fprintf(nco_triangle, ' clk_96k_qq <= clk_96k_q;\n');

fprintf(nco_triangle, ' end\n');

fprintf(nco_triangle, 'assign clk_96_pulse = (clk_96k_q &&

~(clk_96k_qq));\n\n');

fprintf(nco_triangle, '\n//Create 1ns pulse from interrupt signal\n');

fprintf(nco_triangle, 'reg interrupt_q;\n');

fprintf(nco_triangle, 'reg interrupt_qq;\n');

fprintf(nco_triangle, 'wire interrupt_pulse;\n');

fprintf(nco_triangle, 'always @(posedge clk_100M)\n');

fprintf(nco_triangle, ' begin\n');

89

fprintf(nco_triangle, ' interrupt_q <= sample_interrupt;\n');

fprintf(nco_triangle, ' interrupt_qq <= interrupt_q;\n');

fprintf(nco_triangle, ' end\n');

fprintf(nco_triangle, 'assign interrupt_pulse = (interrupt_q &&

~(interrupt_qq));\n\n');

fprintf(nco_triangle, 'always @(posedge clk_100M)\n');

fprintf(nco_triangle, ' if(interrupt_pulse)\n');

fprintf(nco_triangle, ' sample_count = sample_count + step_size;\n');

fprintf(nco_triangle, ' else\n');

fprintf(nco_triangle, ' sample_count = sample_count;\n\n');

fprintf(nco_triangle, 'always @(posedge clk_200M)\n');

fprintf(nco_triangle, ' case(sample_count_phased)\n');

for k=1:1:samples

fprintf(nco_triangle, ' %i: triangle_sample = %i;\n',(k-1),x(4,k));

end

fprintf(nco_triangle, ' default: triangle_sample = 24''b0;\n');

fprintf(nco_triangle, ' endcase\n\n');

fprintf(nco_triangle, 'always @(posedge clk_100M)\n');

fprintf(nco_triangle, ' if(clk_96_pulse)\n');

fprintf(nco_triangle, ' syncronous_sample = triangle_sample;\n');

fprintf(nco_triangle, ' else\n');

fprintf(nco_triangle, ' syncronous_sample = syncronous_sample;\n\n');

fprintf(nco_triangle, 'assign unscaled_sample = (wave_select[3]) ?

syncronous_sample : 24''b0;\n');

fprintf(nco_triangle, 'assign active_waveforms = wave_select[0] +

wave_select[1] + wave_select[2] + wave_select[3];\n');

fprintf(nco_triangle, 'assign sample = (active_waveforms == 1) ?

{unscaled_sample[23], unscaled_sample[20:0], 2''b0} : \n');

fprintf(nco_triangle, '(active_waveforms == 2) ? {unscaled_sample[23:22],

unscaled_sample[20:0], 1''b0} : \n');

fprintf(nco_triangle, '(active_waveforms == 3) ? {unscaled_sample[23:22],

unscaled_sample[20:0], 1''b0} : \n');

fprintf(nco_triangle, '(active_waveforms == 4) ? unscaled_sample : \n');

fprintf(nco_triangle, '24''b0;\n\n');

fprintf(nco_triangle, 'assign output_enable = clk_96_pulse;\n');

fprintf(nco_triangle, 'endmodule\n');

fclose(nco_triangle);

90

FIR Filter Module Generation

%Sidney Veilleux

%Evan Briggs

%FPGA Synthesizer MQP

function VerilogFirFilter3()

fileID = fopen('verilog_fir_filter3.v','w');

M=64;

state_size = ceil(log(M+1)/log(2));

state_bits = state_size + 1;

msb = state_size + 2;

max_state = ((M+2)*4)+ 3;

fprintf(fileID, '`timescale 1ns / 1ps\n\n');

fprintf(fileID, '//MATLAB Generated Verilog\n');

fprintf(fileID, '//Sidney Veilleux and Evan Briggs\n');

fprintf(fileID, '//Worcester Polytechnic Institute 2015\n\n\n');

%% Inputs/Outputs

fprintf(fileID, 'module adjustable_fir_filter(\n');

fprintf(fileID, ' input [23:0] sample_in,\n');

fprintf(fileID, ' input clk_100M,\n');

fprintf(fileID, ' input clk_96k,\n');

fprintf(fileID, ' input[47:0] accumulate_in,\n');

fprintf(fileID, ' input[7:0] controller_in,\n');

fprintf(fileID, ' output clock_enable,\n');

fprintf(fileID, ' output sync_clear,\n');

fprintf(fileID, ' output reg[23:0] multiply_x,\n');

fprintf(fileID, ' output reg[15:0] multiply_b,\n');

fprintf(fileID, ' output reg[47:0] accumulate_out,\n');

fprintf(fileID, ' output subtract,\n');

fprintf(fileID, ' output output_enable,\n');

fprintf(fileID, ' output reg[23:0] filtered_out\n);\n\n');

fprintf(fileID, 'reg[47:0] accumulate_in_temp;\n');

fprintf(fileID, 'assign sync_clear = 1''b0;\n\n');

%% Clock Divisions

fprintf(fileID, '//Create 1ns pulse from 96kHz clock\n');

fprintf(fileID, 'reg clk_96k_q;\n');

fprintf(fileID, 'reg clk_96k_qq;\n');

fprintf(fileID, 'wire clk_96_pulse;\n');

fprintf(fileID, 'always @(posedge clk_100M)\n');

fprintf(fileID, ' begin\n');

fprintf(fileID, ' clk_96k_q <= clk_96k;\n');

fprintf(fileID, ' clk_96k_qq <= clk_96k_q;\n');

fprintf(fileID, ' end\n');

fprintf(fileID, 'assign clk_96_pulse = (clk_96k_q && ~(clk_96k_qq));\n\n');

fprintf(fileID, 'assign subtract = 1''b0;\n');

fprintf(fileID, 'assign clock_enable = (current_state[%i:2] == %i''b0) ?

1''b0 : (current_state[%i:2] <= %i) ? 1''b1 : 1''b0;\n',msb, state_bits, msb,

M+1);

91

fprintf(fileID, '//%i Order Fir Filter\n',M);

%% Coefs

fprintf(fileID, '//Coefficient Registers\n');

for k=0:1:M

 fprintf(fileID, 'wire signed [15:0] coef_%i;\n',k);

end

fprintf(fileID, 'coef_switch coef_switch_i(\n');

fprintf(fileID, ' .controller_value(controller_in),\n');

for k=0:1:M-1

 fprintf(fileID, ' .coef_%i(coef_%i),\n',k, k);

end

 fprintf(fileID, ' .coef_%i(coef_%i));\n\n',M,M);

%% Previous Input

fprintf(fileID, '//Previous Input Registers\n');

for k=1:1:M

 fprintf(fileID, 'reg[23:0] x_delayed_%i;\n',k);

end

fprintf(fileID, '\n\n');

%% Next State Logic

fprintf(fileID, 'reg[%i:0] current_state;\n', msb);

fprintf(fileID, 'wire[%i:0] next_state;\n', msb);

fprintf(fileID, 'always @(posedge clk_100M)\n');

fprintf(fileID, ' current_state = next_state;\n\n');

fprintf(fileID, '//Next state logic \n');

fprintf(fileID, 'assign next_state = ((current_state == 0) && (clk_96_pulse

== 1''b1))? 1:\n');

fprintf(fileID, ' ((current_state == 0) && (clk_96_pulse == 1''b0)) ?

0:\n');

fprintf(fileID, ' (current_state < %i) ? (current_state + 1''b1):\n',

max_state);

fprintf(fileID, ' 0;\n\n');

%% Shift Delay

fprintf(fileID, '//Shift delayed inputs with every new sample \n');

fprintf(fileID, 'always @ (posedge clk_100M)\n');

fprintf(fileID, ' if(current_state == %i)\n', max_state);

fprintf(fileID, ' begin\n');

fprintf(fileID, ' x_delayed_1 <= sample_in;\n');

for k=2:1:M

 fprintf(fileID, ' x_delayed_%i <= x_delayed_%i;\n', k, k-1);

end

fprintf(fileID, ' end\n\n');

%% Multiply

fprintf(fileID, '//Multiply Logic\n');

fprintf(fileID, 'always @(posedge clk_100M)\n');

fprintf(fileID, ' if(current_state[%i:2] == 0)\n', msb);

92

fprintf(fileID, ' begin\n');

fprintf(fileID, ' multiply_x = 24''b0;\n');

fprintf(fileID, ' multiply_b = 16''b0;\n');

fprintf(fileID, ' end\n');

fprintf(fileID, ' else if(current_state[%i:2] == 1)\n', msb);

fprintf(fileID, ' begin\n');

fprintf(fileID, ' multiply_x = sample_in;\n');

fprintf(fileID, ' multiply_b = coef_0;\n');

fprintf(fileID, ' end\n');

for k=2:1:M+1

 fprintf(fileID, ' else if(current_state[%i:2] == %i)\n', msb, k);

 fprintf(fileID, ' begin\n');

 fprintf(fileID, ' multiply_x = x_delayed_%i;\n', k-1);

 fprintf(fileID, ' multiply_b = coef_%i;\n', k-1);

 fprintf(fileID, ' end\n\n');

end

fprintf(fileID, ' else\n');

fprintf(fileID, ' begin\n');

fprintf(fileID, ' multiply_x = 24''b0;\n');

fprintf(fileID, ' multiply_b = 16''b0;\n');

fprintf(fileID, ' end\n\n');

%% Accumulate

fprintf(fileID, '//Accumulate Logic \n');

fprintf(fileID, 'always @ (posedge clk_100M)\n');

fprintf(fileID, ' if(current_state <= 4)\n');

fprintf(fileID, ' accumulate_in_temp = 48''b0;\n');

fprintf(fileID, ' else if (current_state[1:0] == 2''b00)\n');

fprintf(fileID, ' accumulate_in_temp = accumulate_in;\n');

fprintf(fileID, ' else\n');

fprintf(fileID, ' accumulate_in_temp = accumulate_in_temp;\n\n');

fprintf(fileID, 'always @(posedge clk_100M)\n');

fprintf(fileID, ' if(current_state == 0)\n');

fprintf(fileID, ' accumulate_out = 48''b0;\n');

fprintf(fileID, ' else if((current_state[%i:2] != %i) &&

(current_state[1:0] == 2''b01))\n',msb, M+2);

fprintf(fileID, ' accumulate_out = accumulate_in_temp;\n');

fprintf(fileID, ' else if(current_state[%i:2] != %i)\n', msb, M+2);

fprintf(fileID, ' accumulate_out = accumulate_out;\n');

fprintf(fileID, ' else\n');

fprintf(fileID, ' accumulate_out = 48''b0;\n\n');

%% Output

fprintf(fileID, '//Output Logic \n');

fprintf(fileID, 'always @(posedge clk_100M)\n');

fprintf(fileID, ' if(current_state == %i)\n', max_state-3);

fprintf(fileID, ' filtered_out = {accumulate_in[47],

accumulate_in[37:15]};\n');

fprintf(fileID, ' else\n');

fprintf(fileID, ' filtered_out = filtered_out;\n\n');

fprintf(fileID, 'assign output_enable = (current_state == %i) ? 1''b1 :

1''b0;\n\n',max_state-3);

fprintf(fileID, 'endmodule\n');

93

fclose(fileID);

end

94

IIR Filter Module Generation

%Sidney Veilleux

%Evan Briggs

%FPGA Synthesizer MQP

function VerilogIIRFilter_flush()

fileID = fopen('verilog_iir_filter_flush.v','w');

% 4th order IIR

% 5 b's, 4 a's

numB = 5;

numA = 4;

M= numA + numB;

state_size = ceil(log(M+1)/log(2));

state_bits = state_size + 1;

msb = state_size + 3;

max_state = ((M+1)*8)+ 7; % ?????? M+2????????????

fprintf(fileID, '`timescale 1ns / 1ps\n\n');

fprintf(fileID, '//MATLAB Generated Verilog\n');

fprintf(fileID, '//Sidney Veilleux and Evan Briggs\n');

fprintf(fileID, '//Worcester Polytechnic Institute 2015\n\n\n');

%% Inputs/Outputs

fprintf(fileID, 'module adjustable_iir_filter(\n');

fprintf(fileID, ' input [23:0] sample_in,\n');

fprintf(fileID, ' input clk_100M,\n');

fprintf(fileID, ' input clk_96k,\n');

fprintf(fileID, ' input[63:0] accumulate_in,\n');

fprintf(fileID, ' input[7:0] controller_in,\n');

fprintf(fileID, ' output clock_enable,\n');

fprintf(fileID, ' output sync_clear,\n');

fprintf(fileID, ' output reg[23:0] multiply_x,\n');

fprintf(fileID, ' output reg[33:0] multiply_b,\n');

fprintf(fileID, ' output reg[63:0] accumulate_out,\n');

fprintf(fileID, ' output subtract,\n');

fprintf(fileID, ' output output_enable,\n');

fprintf(fileID, ' output[23:0] filter_output\n);\n\n');

fprintf(fileID, 'reg[63:0] accumulate_in_temp;\n');

fprintf(fileID, 'reg[7:0] controller_current;\n');

fprintf(fileID, 'reg reset;\n');

fprintf(fileID, 'reg[23:0] filtered_out;\n');

fprintf(fileID, 'assign sync_clear = 1''b0;\n\n');

%%Reset Flush Logic

fprintf(fileID, 'always @(posedge clk_100M)\n');

fprintf(fileID, ' if(controller_current != controller_in)\n');

fprintf(fileID, ' begin\n');

fprintf(fileID, ' controller_current <= controller_in;\n');

fprintf(fileID, ' reset <= 1''b1;\n');

fprintf(fileID, ' end\n');

fprintf(fileID, ' else\n');

95

fprintf(fileID, ' begin\n');

fprintf(fileID, ' controller_current <= controller_current;\n');

fprintf(fileID, ' reset <= 1''b0;\n');

fprintf(fileID, ' end\n');

%% Clock Divisions

fprintf(fileID, '//Create 1ns pulse from 96kHz clock\n');

fprintf(fileID, 'reg clk_96k_q;\n');

fprintf(fileID, 'reg clk_96k_qq;\n');

fprintf(fileID, 'wire clk_96_pulse;\n');

fprintf(fileID, 'always @(posedge clk_100M)\n');

fprintf(fileID, ' begin\n');

fprintf(fileID, ' clk_96k_q <= clk_96k;\n');

fprintf(fileID, ' clk_96k_qq <= clk_96k_q;\n');

fprintf(fileID, ' end\n');

fprintf(fileID, 'assign clk_96_pulse = (clk_96k_q && ~(clk_96k_qq));\n\n');

fprintf(fileID, 'assign subtract = ((current_state[%i:3] >=

%i)&&(current_state[%i:3] <= %i)) ? 1''b1 : 1''b0;\n', msb, 1, msb, numA);

fprintf(fileID, 'assign clock_enable = (current_state[%i:3] == %i''b0) ?

1''b0 : (current_state[%i:3] <= %i) ? 1''b1 : 1''b0;\n',msb, state_bits, msb,

M+1);

fprintf(fileID, '//%i th Order IIR Filter\n',numB);

%% Coefs

fprintf(fileID, '//Coefficient Registers\n');

for k=0:1:numB-1

 fprintf(fileID, 'wire signed [33:0] coef_b_%i;\n',k);

end

for k=1:1:numA

 fprintf(fileID, 'wire signed [33:0] coef_a_%i;\n',k);

end

fprintf(fileID, 'coef_switch coef_switch_i(\n');

fprintf(fileID, ' .controller_value(controller_in),\n');

for k=0:1:numB-1

 fprintf(fileID, ' .coef_b_%i(coef_b_%i),\n',k, k);

end

for k = 1:1:numA-1

 fprintf(fileID, ' .coef_a_%i(coef_a_%i),\n',k, k);

end

fprintf(fileID, ' .coef_a_%i(coef_a_%i));\n\n',numA,numA);

%% Previous Input/Output

fprintf(fileID, '//Previous Input Registers\n');

for k=1:1:numB

 fprintf(fileID, 'reg[23:0] x_delayed_%i;\n',k);

end

fprintf(fileID, '\n');

fprintf(fileID, '//Previous Output Registers\n');

for k=1:1:numA

 fprintf(fileID, 'reg[23:0] y_delayed_%i;\n',k);

end

fprintf(fileID, '\n\n');

96

%% Next State Logic

fprintf(fileID, 'reg[%i:0] current_state;\n', msb);

fprintf(fileID, 'wire[%i:0] next_state;\n', msb);

fprintf(fileID, 'always @(posedge clk_100M)\n');

fprintf(fileID, ' current_state = next_state;\n\n');

fprintf(fileID, '//Next state logic \n');

fprintf(fileID, 'assign next_state = ((current_state == 0) && (clk_96_pulse

== 1''b1))? 1:\n');

fprintf(fileID, ' ((current_state == 0) && (clk_96_pulse == 1''b0)) ?

0:\n');

fprintf(fileID, ' (current_state < %i) ? (current_state + 1''b1):\n',

max_state);

fprintf(fileID, ' 0;\n\n');

%% Shift Delay

fprintf(fileID, '//Shift delayed inputs with every new sample \n');

fprintf(fileID, 'always @ (posedge clk_100M)\n');

fprintf(fileID, ' if(reset)');

fprintf(fileID, ' begin\n');

fprintf(fileID, ' x_delayed_1 <= 24''b0;\n');

for k=2:1:numB

 fprintf(fileID, ' x_delayed_%i <= 24''b0;\n', k);

end

fprintf(fileID, ' end\n\n');

fprintf(fileID, ' else if((current_state == %i) && (controller_in

!=0))\n', max_state);

fprintf(fileID, ' begin\n');

fprintf(fileID, ' x_delayed_1 <= sample_in;\n');

for k=2:1:numB

 fprintf(fileID, ' x_delayed_%i <= x_delayed_%i;\n', k, k-1);

end

fprintf(fileID, ' end\n\n');

fprintf(fileID, ' else if(controller_in == 0)\n');

fprintf(fileID, ' begin\n');

fprintf(fileID, ' x_delayed_1 <= 24''b0;\n');

for k=2:1:numB

 fprintf(fileID, ' x_delayed_%i <= 24''b0;\n', k);

end

fprintf(fileID, ' end\n\n');

fprintf(fileID, ' else\n');

fprintf(fileID, ' begin\n');

for k=1:1:numB

 fprintf(fileID, ' x_delayed_%i <= x_delayed_%i;\n',k,k);

end

fprintf(fileID, ' end\n\n');

fprintf(fileID, 'always @ (posedge clk_100M)\n');

97

fprintf(fileID, ' if(reset)');

fprintf(fileID, ' begin\n');

fprintf(fileID, ' y_delayed_1 <= 24''b0;\n');

for k=2:1:numA

 fprintf(fileID, ' y_delayed_%i <= 24''b0;\n', k);

end

fprintf(fileID, ' end\n\n');

fprintf(fileID, ' else if((current_state == %i) && (controller_in !=

0))\n', max_state);

fprintf(fileID, ' begin\n');

fprintf(fileID, ' y_delayed_1 <= filtered_out;\n');

for k=2:1:numA

 fprintf(fileID, ' y_delayed_%i <= y_delayed_%i;\n', k, k-1);

end

fprintf(fileID, ' end\n\n');

fprintf(fileID, ' else if(controller_in == 0)\n');

fprintf(fileID, ' begin\n');

fprintf(fileID, ' y_delayed_1 <= 24''b0;\n');

for k=2:1:numA

 fprintf(fileID, ' y_delayed_%i <= 24''b0;\n', k);

end

fprintf(fileID, ' end\n\n');

fprintf(fileID, ' else\n');

fprintf(fileID, ' begin\n');

for k=1:1:numA

 fprintf(fileID, ' y_delayed_%i <= y_delayed_%i;\n',k,k);

end

fprintf(fileID, ' end\n\n');

%% Multiply

fprintf(fileID, '//Multiply Logic\n');

fprintf(fileID, 'always @(posedge clk_100M)\n');

fprintf(fileID, ' if(current_state[%i:3] == 0)\n', msb);

fprintf(fileID, ' begin\n');

fprintf(fileID, ' multiply_x = 24''b0;\n');

fprintf(fileID, ' multiply_b = 34''b0;\n');

fprintf(fileID, ' end\n');

for k=1:1:(numA)

 fprintf(fileID, ' else if(current_state[%i:3] == %i)\n', msb, k);

 fprintf(fileID, ' begin\n');

 fprintf(fileID, ' multiply_x = y_delayed_%i;\n', k);

 fprintf(fileID, ' multiply_b = coef_a_%i;\n', k);

 fprintf(fileID, ' end\n\n');

end

fprintf(fileID, ' else if(current_state[%i:3] == %i)\n', msb,numA+1);

fprintf(fileID, ' begin\n');

fprintf(fileID, ' multiply_x = sample_in;\n');

fprintf(fileID, ' multiply_b = coef_b_0;\n');

fprintf(fileID, ' end\n');

for k=(numA+2):1:(numB+numA)

98

 fprintf(fileID, ' else if(current_state[%i:3] == %i)\n', msb, k);

 fprintf(fileID, ' begin\n');

 fprintf(fileID, ' multiply_x = x_delayed_%i;\n', k-numA-1);

 fprintf(fileID, ' multiply_b = coef_b_%i;\n', k-numA-1);

 fprintf(fileID, ' end\n\n');

end

fprintf(fileID, ' else\n');

fprintf(fileID, ' begin\n');

fprintf(fileID, ' multiply_x = 24''b0;\n');

fprintf(fileID, ' multiply_b = 34''b0;\n');

fprintf(fileID, ' end\n\n');

%% Accumulate

fprintf(fileID, '//Accumulate Logic \n');

fprintf(fileID, 'always @ (posedge clk_100M)\n');

fprintf(fileID, ' if(current_state <= 8)\n');

fprintf(fileID, ' accumulate_in_temp = 64''b0;\n');

fprintf(fileID, ' else if (current_state[2:0] == 3''b000)\n');

fprintf(fileID, ' accumulate_in_temp = accumulate_in;\n');

fprintf(fileID, ' else\n');

fprintf(fileID, ' accumulate_in_temp = accumulate_in_temp;\n\n');

fprintf(fileID, 'always @(posedge clk_100M)\n');

fprintf(fileID, ' if(current_state == 0)\n');

fprintf(fileID, ' accumulate_out = 64''b0;\n');

fprintf(fileID, ' else if((current_state[%i:3] != %i) &&

(current_state[2:0] == 3''b100))\n',msb, M+1);

fprintf(fileID, ' accumulate_out = accumulate_in_temp;\n');

fprintf(fileID, ' else if(current_state[%i:3] != %i)\n', msb, M+1);

fprintf(fileID, ' accumulate_out = accumulate_out;\n');

fprintf(fileID, ' else\n');

fprintf(fileID, ' accumulate_out = 64''b0;\n\n');

%% Output

fprintf(fileID, '//Output Logic \n');

fprintf(fileID, 'always @(posedge clk_100M)\n');

fprintf(fileID, ' if(current_state == %i)\n', max_state-7);

fprintf(fileID, ' filtered_out = {accumulate_in[63],

accumulate_in[52:30]};\n');

fprintf(fileID, ' else\n');

fprintf(fileID, ' filtered_out = filtered_out;\n\n');

fprintf(fileID, 'assign output_enable = (current_state == %i) ? 1''b1 :

1''b0;\n\n',max_state-2);

fprintf(fileID, 'assign filter_output = (reset) ? sample_in :

filtered_out;\n');

fprintf(fileID, 'endmodule\n');

fclose(fileID);

end

99

Verilog Code

ADSR Envelope Module

`timescale 1ns / 1ps

//

// Company: WPI

// Engineer: Evan Briggs and Sidney Veilleux

//

// Create Date: 01/17/2015 03:36:17 PM

// Design Name:

// Module Name: adsr_envelope

// Project Name:

// Target Devices:

// Tool Versions:

// Description: ADSR Amplitude Envelope

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module adsr_envelope_3(

 input clk_100M,

 input [31:0] envelope_control,

 input note_on,

 output reg[15:0] scalar

);

 //split inputs

 wire[7:0] attack_control;

 wire[7:0] decay_control;

 wire[7:0] sustain_control;

 wire[7:0] release_control;

 assign attack_control = (127 - envelope_control[31:24]);

 assign decay_control = (127 - envelope_control[23:16]);

 assign sustain_control = envelope_control[15:8];

 assign release_control = (127 - envelope_control[7:0]);

 //Clocking and state registers

 wire pulse_1k;

 reg[2:0] envelope_state;

 reg[2:0] next_state;

 //Define Each State for Amplitude Envelope Stages

 parameter idle_param = 3'b000;

 parameter attack_param = 3'b001;

 parameter decay_param = 3'b010;

 parameter sustain_param = 3'b011;

 parameter release_param = 3'b100;

 //Scalars for state machine

 reg signed [16:0] scalar_temp;

 //Scalars for rates and sustain level

 wire[15:0] attack_scalar;

 wire[15:0] decay_scalar;

100

 wire[15:0] sustain_scalar;

 wire[15:0] release_scalar;

 assign sustain_scalar = {sustain_control, 8'b0};

 //Exponentially Map Controller Values to Scalars

 controller_map attack_cntrl(.ctlr_in(attack_control), .ctlr_out(attack_scalar));

 controller_map decay_cntrl(.ctlr_in(decay_control), .ctlr_out(decay_scalar));

 controller_map release_cntrl(.ctlr_in(release_control),

.ctlr_out(release_scalar));

 //Create 1k Clock Signal for counting milliseconds in envelope stages

 clk_div_100M_1k div_clk(.clk_100M(clk_100M), .clk_1k(pulse_1k));

 always @(posedge clk_100M)

 if(pulse_1k)

 case(envelope_state)

 idle_param:

 if(note_on)

 next_state <= attack_param;

 else

 next_state <= idle_param;

 attack_param:

 if(scalar_temp >= 16'h7FFF)

 next_state <= decay_param;

 else if(note_on == 0)

 next_state <= release_param;

 else

 next_state <= attack_param;

 decay_param:

 if(scalar_temp <= sustain_scalar)

 next_state = sustain_param;

 else if(note_on == 0)

 next_state <= release_param;

 else

 next_state <= decay_param;

 sustain_param:

 if(note_on)

 next_state <= sustain_param;

 else

 next_state <= release_param;

 release_param:

 if(scalar_temp <= 0)

 next_state = idle_param;

 else if(note_on)

 next_state <= attack_param;

 else

 next_state <= release_param;

 endcase

 else

 next_state <= next_state;

 always @(posedge clk_100M)

 if(pulse_1k)

 envelope_state <= next_state;

 else

 envelope_state <= envelope_state;

 always @(posedge clk_100M)

 if(pulse_1k)

 case(envelope_state)

 idle_param:

 begin

101

 scalar_temp = 16'h0000;

 scalar = 16'h0000;

 end

 attack_param:

 begin

 scalar_temp = scalar_temp + attack_scalar;

 if(scalar_temp > 16'h7FFF)

 begin

 scalar_temp = 16'h7FFF;

 scalar = scalar_temp[15:0];

 end

 else

 scalar = scalar_temp[15:0];

 end

 decay_param:

 begin

 scalar_temp = scalar_temp - decay_scalar;

 if (scalar_temp <= sustain_scalar)

 begin

 scalar_temp = sustain_scalar;

 scalar = scalar_temp[15:0];

 end

 else if (scalar_temp <= 0)

 begin

 scalar_temp = 16'h0000;

 scalar = scalar_temp[15:0];

 end

 else

 scalar = scalar_temp[15:0];

 end

 sustain_param:

 begin

 scalar = scalar_temp; //sustain_scalar;

 end

 release_param:

 begin

 scalar_temp = scalar_temp - release_scalar;

 if (scalar_temp <= 0)

 begin

 scalar_temp = 16'h0000;

 scalar = scalar_temp[15:0];

 end

 else

 scalar = scalar_temp[15:0];

 end

 endcase

 else

 begin

 scalar <= scalar;

 scalar_temp <= scalar_temp;

 end

endmodule

102

LFSR Noise Effect Module

`timescale 1ns / 1ps

//

// Company: Worcester Polytechnic Institute MQP

// Engineer: Sidney Veilleux and Evan Briggs

//

// Create Date: 02/18/2015 01:37:33 PM

// Design Name: RJD MQP 2015

// Module Name: lfsr_24bit

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module lfsr_24bit(

 input clk_100M,

 input clk_96k,

 input signed [23:0] nco_in,

 input signed [23:0] mult_result,

 input sync_reset,

 output reg [23:0] noise_mult,

 output clock_en,

 output reg [23:0] noise_out,

 output output_enable

);

 //State machine consts

 parameter IDLE = 3'b000;

 parameter SHIFT = 3'b001;

 parameter MULT = 3'b010;

 parameter ADD = 3'b011;

 parameter OUT = 3'b100;

 reg [23:0] total;

 //Create 1ns pulse from 96kHz clock

 reg clk_96k_q;

 reg clk_96k_qq;

 wire clk_96_pulse;

 always @(posedge clk_100M)

 begin

 clk_96k_q <= clk_96k;

 clk_96k_qq <= clk_96k_q;

 end

 assign clk_96_pulse = (clk_96k_q && ~(clk_96k_qq));

 assign clock_en = (current_state == MULT) ? 1'b1 : 1'b0;

 assign output_enable = (current_state == OUT) ? 1'b1 : 1'b0;

 always @(posedge clk_100M)

 if(current_state == OUT)

 noise_out = total;

103

 else

 noise_out = noise_out;

 always @ (posedge clk_100M)

 if(current_state == MULT)

 noise_mult[23:0] = noise[23:0];

 else

 noise_mult = 24'b0;

 always @ (posedge clk_100M)

 if(current_state == ADD)

 total = mult_result + nco_in;

 else

 total = total;

// assign total = (current_state == ADD) ? (mult_result + nco_in) : total;

 //State registers

 reg [2:0] current_state;

 wire [2:0] next_state;

 reg [1:0] mult_delay_count;

 //Next state logic

 always @ (posedge clk_100M)

 current_state = next_state;

 assign next_state = ((current_state == IDLE) && (clk_96_pulse == 1'b1)) ? SHIFT :

 ((current_state == IDLE) && (clk_96_pulse == 1'b0)) ? IDLE :

 (current_state == SHIFT) ? MULT :

 ((current_state == MULT) && (mult_delay_count == 2'b11)) ? ADD

:

 ((current_state == MULT) && (mult_delay_count != 2'b11)) ?

MULT :

 (current_state == ADD) ? OUT :

 (current_state == OUT) ? IDLE :

 IDLE;

 // always @ (posedge clk_100M)

 // case(current_state)

 // IDLE: if(clk_96_pulse)

 // next_state = SHIFT;

 // else

 // next_state = IDLE;

 // SHIFT: next_state = MULT;

 // MULT: if(mult_delay_count == 2'b11)

 // next_state = ADD;

 // else

 // next_state = MULT;

 // ADD: next_state = OUT;

 // OUT: next_state = IDLE;

 // default: next_state = IDLE;

 // endcase

 //Count clock cycles for multiply stage

 always @ (posedge clk_100M)

 if(current_state == MULT)

 mult_delay_count = mult_delay_count + 1'b1;

 else

 mult_delay_count = 2'b00;

 reg [23:0] noise;

104

 always @ (posedge clk_100M)

 if(~sync_reset)

 noise = 24'b101010111010101010101010;

 else if(current_state == SHIFT)

 begin

 noise[0] <= noise[19]^noise[13]^noise[3];

 noise[1] <= noise[0];

 noise[2] <= noise[1]^noise[0];

 noise[3] <= noise[2];

 noise[4] <= noise[3]^noise[0];

 noise[5] <= noise[4];

 noise[6] <= noise[5];

 noise[7] <= noise[6]^noise[0];

 noise[8] <= noise[7];

 noise[9] <= noise[8];

 noise[10] <= noise[9]^noise[0];

 noise[11] <= noise[10];

 noise[12] <= noise[11]^noise[0];

 noise[13] <= noise[12];

 noise[14] <= noise[13];

 noise[15] <= noise[14];

 noise[16] <= noise[15]^noise[0];

 noise[17] <= noise[16];

 noise[18] <= noise[17]^noise[0];

 noise[19] <= noise[18];

 noise[20] <= noise[19];

 noise[21] <= noise[20]^noise[0];

 noise[22] <= noise[21];

 noise[23] <= noise[22];

 end

 else

 noise = noise;

// always @ (posedge clk_100M)

// if(~sync_reset)

// noise = 24'b101010111010101010101010;

// else if(current_state == SHIFT)

// begin

// noise[0] <= noise[19]^noise[13]^noise[3];

// noise[1] <= noise[0];

// noise[2] <= noise[1];

// noise[3] <= noise[2];

// noise[4] <= noise[3];

// noise[5] <= noise[4];

// noise[6] <= noise[5];

// noise[7] <= noise[6];

// noise[8] <= noise[7];

// noise[9] <= noise[8];

// noise[10] <= noise[9];

// noise[11] <= noise[10];

// noise[12] <= noise[11];

// noise[13] <= noise[12];

// noise[14] <= noise[13];

// noise[15] <= noise[14];

// noise[16] <= noise[15];

// noise[17] <= noise[16];

// noise[18] <= noise[17];

// noise[19] <= noise[18];

// noise[20] <= noise[19];

// noise[21] <= noise[20];

// noise[22] <= noise[21];

// noise[23] <= noise[22];

105

// end

// else

// noise[23:0] = noise[23:0];

endmodule

106

Compression Effect Module

`timescale 1ns / 1ps

//

// Company: Worcester Polytechnic Institute

// Engineer: Evan Briggs and Sidney Veilleux

//

// Create Date: 02/17/2015 01:22:41 PM

// Design Name: RJD MQP 2015

// Module Name: waveform_compression

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module waveform_compression(

 input clk_100M,

 input clk_96k,

 input signed [27:0] sample_in,

 input [7:0] effect_control,

 output output_enable,

 output signed [23:0] sample_out

);

parameter IDLE = 2'b00;

parameter CLIP_HIGH = 2'b01;

parameter CLIP_LOW = 2'b10;

reg[1:0] current_state;

reg[1:0] next_state;

wire signed [23:0] threshold_high;

wire signed [23:0] threshold_low;

assign threshold_high = {1'b0, effect_control[6:0], 16'h0000};

assign threshold_low = {1'b1, ~effect_control[6:0], 16'hFFFF};

 //Create 96k pulse synchronized to clk_100M

reg clk_96k_q;

reg clk_96k_qq;

wire clk_96_pulse;

always @(posedge clk_100M)

 begin

 clk_96k_q <= clk_96k;

 clk_96k_qq <= clk_96k_q;

 end

assign clk_96_pulse = (clk_96k_q && ~(clk_96k_qq));

assign output_enable = clk_96_pulse;

always @(posedge clk_100M)

107

 current_state = next_state;

always @(posedge clk_100M)

 if(clk_96_pulse)

 next_state = (sample_in > threshold_high) ? CLIP_HIGH :

 (sample_in < threshold_low) ? CLIP_LOW :

 IDLE;

 else

 next_state = current_state;

assign sample_out = (current_state == CLIP_HIGH) ? threshold_high :

 (current_state == CLIP_LOW) ? threshold_low :

 {sample_in[27],sample_in[22:0]};

endmodule

108

Embedded Software Excerpts

Output Sample Processing Interrupt Service Routine

void Timer_InterruptHandler(void *data, u8 TmrCtrNumber) {

 //Pull in sample

 u32 processedIn = XGpio_DiscreteRead(&GpioData, 2);

 //Change to int format
 int processedInInt = u32toint(processedIn);

 //Calculate Velocity
 int post_vel = (int)(velocity_current*processedInInt);

 //Calculate Delay Function
 delay_store = post_vel;
 int post_delay = (delayedSamples[delayedSamplesIndex]*delayWet) +
(post_vel*delayDry);

// //Calculate Echo
// int post_echo = (post_delay) + (echoSamples[echoIndex]*echoWet); //echo dry
// echo_store = post_echo*echoDecay;

 //Calculate Echo
 int post_echo = (post_delay) + (echoSamples[echoIndex]*echoWet); //echo dry
 echo_store = post_echo*echoDecay;

 //Clip if above Max
 if(echo_store > MAXAMPLITUDE)
 echo_store = MAXAMPLITUDE;
 else if(echo_store < MINAMPLITUDE)
 echo_store = MINAMPLITUDE;

 //Change back to 24bit u32
 u32 final_24b = inttou32(post_echo);

 //Output sample to codec
 Xil_Out32(I2S_DATA_TX_L_REG, final_24b);
 Xil_Out32(I2S_DATA_TX_R_REG, final_24b);

 InterruptFlag = 1;
 delayFlag = 1;

}

109

Controller Value Update Loop

 //Status In
 do{

 adsr_out =
((controller_buffer[ATTACK]<<24)|(controller_buffer[DECAY]<<16)|(controller_buffer[SU
STAIN]<<8)|(controller_buffer[RELEASE]));
 filters_out =
((controller_buffer[FIRHP]<<24)|(controller_buffer[FIRLP]<<16)|(controller_buffer[IIR
HP]<<8)|(controller_buffer[IIRLP]));
 delay_values =
((controller_buffer[DELAYDEPTH]<<8)|controller_buffer[DELAYWET]);
 echo_depth = controller_buffer[ECHODEPTH];
 echo_values =
((controller_buffer[ECHODEPTH]<<16)|(controller_buffer[ECHODECAY]<<8)|controller_buff
er[ECHOWET]);
 pwm_value = controller_buffer[PWM];
 compression_value =
((controller_buffer[REDUX]<<24)|(controller_buffer[NOISEAMP]<<16)|(controller_buffer[
COMPGAIN]<<8)|controller_buffer[COMPCLIP]);
 lfo_values =
((controller_buffer[LFOAMPPWM]<<16)|(controller_buffer[LFOAMPDEPTH]<<8)|controller_bu
ffer[LFOAMPRATE]);
 lfo1_values =
((lfo1<<24)|(controller_buffer[LFO1PWM]<<16)|(controller_buffer[LFO1DEPTH]<<8)|contro
ller_buffer[LFO1RATE]);
 lfo2_values =
((lfo2<<24)|(controller_buffer[LFO2PWM]<<16)|(controller_buffer[LFO2DEPTH]<<8)|contro
ller_buffer[LFO2RATE]);
 lfoWaveSel = (((u32)lfo2Wave<<4)|(u32)lfo1Wave);
 wavephase =
((controller_buffer[TRIPHASE]<<24)|(controller_buffer[SQUAREPHASE]<<16)|(controller_b
uffer[SAWPHASE]<<8)|controller_buffer[SINEPHASE]);

 //Delay Buffer
 if(delayFlag == 1){
 intMasterDisable();

 //Update current Index
 currentSamplesIndex++;
 if(currentSamplesIndex >= 192000)
 currentSamplesIndex = currentSamplesIndex - 192000;

 //Update current Index of Delay
 delayedSamplesIndex = currentSamplesIndex - delay;
 if(delayedSamplesIndex < 0)
 delayedSamplesIndex = 192000 + delayedSamplesIndex;

 //Store sample in delay buffer
 delayedSamples[currentSamplesIndex] = delay_store;
 echoSamples[echoIndex] = echo_store;

 //Update current Echo Index
 echoIndex++;

110

 if(echoIndex >= maxEchoIndex)
 echoIndex = 0;

 delayFlag = 0;

 intMasterEnable();
 }
 if(wavephase != wavephase_prev){
 XGpio_DiscreteWrite(&GpioLfoWaveSel,2,wavephase);
 wavephase_prev = wavephase;
 }
 if(lfoWaveSel != lfoWaveSel_prev){
 XGpio_DiscreteWrite(&GpioLfoWaveSel,1,lfoWaveSel);
 lfoWaveSel_prev = lfoWaveSel;
 }
 else if(lfo1_values != lfo1_values_prev){
 XGpio_DiscreteWrite(&GpioLfo1,1,lfo1_values);
 lfo1_values_prev = lfo1_values;
 }
 else if(lfo2_values != lfo2_values_prev){
 XGpio_DiscreteWrite(&GpioLfo1,2,lfo2_values);
 lfo2_values_prev = lfo2_values;
 }
 else if(compression_value != compression_value_prev){
 XGpio_DiscreteWrite(&GpioFilter,2,(u32)compression_value);
 compression_value_prev = compression_value;
 }
 else if(lfo_values != lfo_values_prev){
 XGpio_DiscreteWrite(&GpioLfo,1,lfo_values);
 lfo_values_prev = lfo_values;
 }
 else if(pwm_value != pwm_value_prev){
 XGpio_DiscreteWrite(&Gpio2,2,controller_buffer[PWM]);
 pwm_value_prev = pwm_value;
 }
 else if(delay_values != delay_values_prev){
 intMasterDisable();
 delayWet = wetDry[controller_buffer[DELAYWET]];
 delayDry = wetDry[127 -controller_buffer[DELAYWET]];
 delay = delayDepth[controller_buffer[DELAYDEPTH]];
 intMasterEnable();
 delay_values_prev = delay_values;
 }
 else if(echo_values != echo_values_prev){
 intMasterDisable();
 echoWet = wetDry[controller_buffer[ECHOWET]];
 echoDry = wetDry[127 -controller_buffer[ECHOWET]];
 if(echo_depth > echo_depth_prev){
 for(i=delayDepth[echo_depth_prev];
i<delayDepth[echo_depth]; i++){
 echoSamples[i] = 0;
 }
 }
 maxEchoIndex = delayDepth[controller_buffer[ECHODEPTH]];
 echoDecay = wetDry[controller_buffer[ECHODECAY]];

111

 intMasterEnable();
 echo_depth_prev = echo_depth;
 echo_values_prev = echo_values;

 }
 else if(adsr_out != adsr_out_prev){
 XGpio_DiscreteWrite(&GpioNote, 2, (u32)adsr_out);
 adsr_out_prev = adsr_out;
 }
 else if(filters_out != filters_out_prev){
 XGpio_DiscreteWrite(&GpioFilter, 1,(u32)filters_out);
 filters_out_prev = filters_out;
 }
 else if(switch_in!=XGpio_DiscreteRead(&Gpio, SWITCH_CHANNEL)){
 switch_in = XGpio_DiscreteRead(&Gpio, SWITCH_CHANNEL);
 Xil_Out32(LED_BASE, switch_in);
 XGpio_DiscreteWrite(&GpioWave,1,switch_in);
 }
 }while (!XUartPs_IsReceiveData(UART_BASEADDR));

