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INPUTVoltage

Jeff Child

I ’ve spoken before in this column about the 
commercial drone market, and how it differs 
greatly from both the military drone and 
consumer drone market segments. While the 

military and consumer drone realms have pretty 
well-established design requirements, many of the 
embedded electronics design decisions for commercial 
drones haven’t been nailed down. Drones in this segment 
are performing all sorts of missions for construction, 
agriculture, security, delivery, media and many more. 
And commercial drones have to fly higher and longer 
than consumer drones. Meanwhile, a diverse industry 
of drone software and services has sprung up around 
the commercial drone space. Reliability is a major 
concern in commercial drones, and those service firms 
are very much aware that, if a drone stops working, so 
does their service.

At this years InterDrone show in September, Tom 
Walker, founder and CEO of DroneUp, was among 
the keynote speakers and he provided an interesting 
perspective on the drone industry from a service 
provider point of view. DroneUp is a provider of 
end-to-end aerial data collection services for large, 
autonomous drone missions. The company delivers on-
demand drone services to commercial, government and 
public safety organizations through its patent-pending 
verification platform, Mission Match.

Walker’s InterDrone keynote offered a fresh 
perspective on the huge potential and high stakes of 
today’s commercial drone market. A full transcript of his 
speech is posted on dronelife.com, but I'll share  some 
of the highlights here. Walker started off stressing just 
how young and unique the drone and drone services 
industries are. “We started businesses not knowing 
what it was we would be selling to customers who didn’t 
know what they were buying, in an industry that nobody 
has figured out how to regulate,” said Walker. “You see, 
we aren’t just start-up businesses and organizations in 
a young industry. We are a start-up industry.”

Walker says he views this industry as all part of a 
team. This team is made up of small one- or two-person 
drone shops trying to build revenues, drone services 
providers managing global pilot fleets, brave early-
adopters (users) fighting to integrate drone services 
into your organization, members of academia racing 
to design curricula to ensure we have a sustainable 
workforce and government bodies trying to regulate 
drone operations.

In contrast to other areas of embedded system 
design, drones have to factor in broader issues like the 
many safety and regulatory issues surrounding them. 
Drones have to operate within the same air space as 
manned aircraft. And the drone industry is relatively 
new with a regulatory landscape that’s still evolving and 
with many safety issues still to be resolved.

From his perspective, Walker says he sees an 
industry hungry to evolve and get it right. “I am involved 
with dozens of industry boards, alliances, committees 
and organizations, all of which are in one way or 
another committed to promoting the commercial drone 
industry,” he said, “So far this year, I have received 
more than 7,000 emails covering every imaginable 
topic and program: BVLOS (Beyond Visual Line of Sight), 
Large UAS (unmanned aerial systems), UPP (UAS Pilot 
Program), IPP (UAS Integration Pilot Program), and, 
as always, membership dues. The fonts and words 
have minor differences but the message is consistent: 
Help us influence policy to facilitate adoption of drone 
technology. Help us shape a regulatory environment 
that will pave the way for industry emergence and 
growth. The implication is subtle but clear. Only through 
continued efforts to guide policies and regulations will 
our industry ever really get off the ground.”

In his keynote, Walker also stressed that technology 
innovation is playing a key role in the growth and 
sustainability of the commercial drone industry. “The 
best way to ensure our industry’s stability is to remain 
steadfastly focused on operating responsibly while 
providing tangible value,” said Walker, “BVLOS, 
asymmetric data protocoling, AI-enabled dispatch and 
the many other technologies on the roadmap will extend 
our capabilities and contribute to our industry’s growth 
and sustainability.”

High Stakes Future for Commercial Drones
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A nybody who has experience 
in process control knows that 
4-20 mA current loop devices 
dominate the industry. These 

devices are built to transmit analog signal 
information through varying amounts of 
current, which is then read and interpreted 
by a receiver unit. The receiver can then be 
configured to display the sensor data in a 
human friendly format and/or perform some 
action. This is fundamental for automating 
processes in simple or complex systems.

Why 4-20 mA? The history on how 4-20 mA 
came about is quite interesting—going back to 
pre-electronic process control systems based 
on a 3-18 psi linear measurement scale. The 
low-end value of 4 mA was chosen because 
the necessary equipment consumes about 
3 mA—so, a desire to add some wiggle drove 
the industry to choose 4 mA. And 0 mA wasn’t 
chosen as the lower value so that line faults 
could be detected if it falls below 3.8 mA. The 
high end of 20 mA was chosen because anything 
over 30 mA is very dangerous to humans—and 
because 20 is a nice multiple of 4 [1].

Taking a look at an overly simplified 
example, let’s imagine a water pump 
scenario where a hot water valve must be 
automatically opened or closed depending 
on water temperature in a pipe carrying 
mixed hot and cold water. A temperature 
sensor is installed in the mixed water pipe, 
transmitting an analog signal (most likely a 
signal measured in resistance). The wires 
from the sensor are then connected to a 
transmitter which converts the analog signal 
to a 4-20 mA current signal.

This transmitter is then connected to a 
single board computer (SBC) with on-board 
relays that has been programmed to read the 
4-20 mA current signal of temperature, and 
convert it into units of degrees Celsius. The 
program continually reads the temperature 
value, and when it becomes greater than 41ºC, 
the program will energize the relay connected 
to an electronic valve actuator, thus closing 
the hot water valve until the temperature has 
returned to nominal value. All this without any 
human interaction, using simple, inexpensive 
and low power hardware.

In this article, Derek helps you gain deeper understanding of 4-20 mA current 
loop devices and process control systems. He looks at some history, explains why 
things are the way they are, looks at simple example components of a process 
control system (sensor, transmitter, receiver) and works through a practical 
example with working code.

An SBC-Based Project

By Derek Hildreth, 
Technologic Systems

4-20 mA Current Loop Devices
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LET’S BUILD SOMETHING
Now with basic 4-20 mA current loop 

system principles out of the way, let’s have 
some fun and deepen our understanding so we 
can actually begin to build something! We’re 
going to further explore reading temperature 
data using a sensor and an SBC. So, grab your 
digital multimeter and let’s get rolling!

Project Requirements:

●	 RTD PT100 temperature sensor [2]
●	 PT100 4-20 mA transmitter, -50 to 100ºC, 

24 VDC [3]
●	 SBC or microcontroller (MCU) with ADC 

port. The TS-7680 [4] is used in this article 
because it has built-in 4-20 mA support, 
but the principles can be applied globally. 
The SBC or MCH can have ADC ports with 
4-20 mA loop support or not

●	 Digital multimeter with current 
measurement (mA); Optionally, 
temperature measurements to confirm 
temperature conversion

●	 Small Philips and flathead screwdrivers for 
screw terminals

●	 Hookup wire

The Sensor: We’ll be using a three-
wire resistance temperature detector 
(RTD) temperature sensor (Figure 1). More 
specifically, we’ll be using a PT100, which 
means the resistance at 0ºC is 100 Ω and 
measures from -200ºC to 600ºC. We’ve chosen 
a three-wire RTD sensor mainly because of 
its min and max range, accuracy, availability, 
packaging types and lead wire range. We can 
install this sensor in a pipe a long distance 
away from a facility without accuracy loss.

The third wire in an RTD is used to 
compensate for the resistance added by the 
length of the wires. This allows for maximum 
cable lengths up to 200 feet. If longer cable 
lengths are required, then it is best to use a 
temperature transmitter—like we talk about 
in a moment—which converts temperature 
into a current output or digital signal. Pro Tip: 
The main players in temperature sensors are 
thermocouples, thermistors, RTDs, and one-
wire (DS18B20). Naturally, each have their 
advantages and disadvantages [5]. Think 
about your application requirements when 
choosing.

One advantage of using an RTD sensor is 
that it has a linear temperature vs resistance 
output [6]. That means that it’s easy to 
calculate a slope intercept formula to calculate 
final, human-readable values. Adventurous 
folks who want to build their own circuit (in 
other words, voltage divider or Wheatstone 
bridge) instead of buying a transmitter will 
appreciate the linearity. As for the rest of us, 
we’ll use a transmitter.

The Transmitter: In our application so 
far, we’ve determined that we want to use 
a 4-20  mA current loop signal. We’ve also 
determined that an RTD PT100 sensor suits 
our application nicely. Now, we need to find 
a transmitter that will take an analog signal 
from the sensor and translate it into a nice 
4-20 mA current loop signal. Let’s consider 
our water temperatures. Water will be flowing 
through a pipe, so let’s figure we won’t be 
measuring anything below 0ºC (freezing). 
Let’s also figure we won’t be sending anything 
more than 90ºC through it (water boilers for 
home heating are typically 80ºC). A quick 
trip to the store will yield a PT100, 4-20 mA 
transmitter with a -50 to 100ºC range and 
three-wire input (Figure 2). It will need to 
be supplied with 24 VDC [7], which is very 
common in process control systems.

We’re almost there. Now, we need to 
choose a receiver in order to read and convert 
the 4-20 mA signal into human friendly values 
and then do something with them.

The Receiver: The final piece of equipment 
in our application is the receiver. Its main 
job is to make sense of the 4-20 mA signal 

FIGURE 1
Three-wire RTD PT100 temperature 
sensor

FIGURE 2
RTD PT100 24 VDC transmitter
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by digitizing it so that we can program it to 
perform some action based on the signal. 
Actions include things like displaying the 
temperature in ºC or ºF on a display, toggling 
DIO based on set thresholds, energizing 
relays for system control, serving up a web 
application for the world to see (think Internet 
of Things, IoT or IIoT) or some combination 
of all these things. The receiver could be a 
simple circuit (555 chip, transistors, voltage 
divider, relay), an MCU (Arduino) or am SBC.

It just so happens that the Technologic 
Systems’ TS-7680 [8] falls into this application 
very nicely, with 4× ADC inputs supporting 
4-20 mA current loop (Figure 3). You can 
conveniently power it with the same 24 VDC 
supply as the transmitter. It also has a 
lot of digital output channels available for 
controlling external relays or devices, along 
with a load of other interfaces like Modbus, 
CAN, RS-232, RS-485 and more. The feature 
that captures my attention is the networking 
abilities, including dual Ethernet, Wi-Fi and 
Bluetooth. The TS-7680 is well suitable for 
many interesting applications [9] and meets 
the requirements for this project article.

If you choose to use some other receiver 
device, just make sure it has an ADC port. If 
the ADC port does not support 4-20 mA current 
loops, don’t fret. It’s actually quite simple to 
add support using a single load resistor for 
measurement. By placing a 250 Ω resistor 
between GND and ADC, we can interpret the 
4-20 mA output as a voltage drop across the 
resistor (Figure 4).

Why 250 Ω? Let’s apply Ohm’s Law: 
V = IR, and assume the max voltage we want 
to supply to our ADC channel is 5 VDC. We 
know the max current is 20 mA, so we can 
now apply the formula to come up with a 
resistance value: R = V/I = 5/0.020 = 250 Ω. 
This works out nicely for the low end as well, 
since V = IR = 0.004 × 250 = 1 V. This equates 
to a very nice 1 VDC to 5 VDC range. However, 
going back to fault detection when current is 
below or above 4 and 20 mA, we may opt for a 
lower resistance value, like 225 Ω (0.9 VDC to 
4.5 VDC) or, in the case of the TS-7680’s built-
in load resistors, 240 Ω (0.96 VDC to 4.8 VDC).

CONNECTING THE PIECES
Sensor and Transmitter: Connecting our 

temperature sensor to it is easy enough. 
The two red wires are common and the clear 
wire is what we’ll call the sensor signal. The 
clear wire will be attached to the far right 
terminal while the two red wires will be 
attached to the remaining terminals in that 
row (Figure 5). Hooking the transmitter up to 
power might make your brain twitch a little. 
Instead of negative wire to negative terminal 
and positive to positive, we’re going to be 

FIGURE 3
A TS-7680 single board computer with enclosure

FIGURE 4
Wiring diagram for connecting transmitter to standard ADC port without 4-20 mA current loop support

FIGURE 5
RTD temperature sensor probe 
connected to 4-20 mA transmitter



circuitcellar.com 9
FEATU

RES

connecting the negative terminal in line with 
a receiver in order to measure the current.

Let’s start out simple and use a digital 
multimeter (DMM) to prove the concept and 
get our minds wrapped around it. So, the 
positive wire of your 24 VDC power supply will 
go to the positive terminal as usual, but the 
negative wire will be connected to the COM 
port of your DMM. Then, you’ll connect the 
mA port of your DMM to the negative terminal 
(Figure 6 and Figure 7).

This is the exciting part! Grasp the sensor 
fully with your hand and watch the mA 
measurement rise with the temperature of 
your hand. Dunk the sensor into a mug full 
of ice water and watch it drop. This validates 
everything we’ve been working on so far! 
Now that we have proof of concept out of 
the way and we’ve validated our sensor and 
transmitter, let’s get the receiver, in our case 
the TS-7680 SBC, hooked up.

Transmitter and Receiver: Just as we 
connected our multimeter inline to the 
4-20 mA current loop transmitter, we’re going 
to do the same for the ADC channel of the 
receiver. Remember, it’s here in the receiver 
that we’re going to convert the analog signal 
into a digital one so that we can translate it 
into a meaningful number in ºC and then do 
something with it.

Without going into analog signal theory too 
much, you can easily have the transmitter and 
receiver installed on opposite sides of several 
football fields and still connect them using a 
shielded wire (to prevent EMI and essentially 
turning the long wires into an antenna). So 
long as there is still voltage potential at the 
receiver for the 240 Ω resistor, the receiver 
can measure the voltage drop. For example, 
using 24 AWG wire [10] and 24 VDC, that turns 
out to be about 35,000 feet (19 VDC drop 
leaving 5 VDC potential at the 240 Ω resistor 
of the receiver).

Since we’re working with the TS-7680 in 
this guide, we’ll be taking advantage of the 
variable input voltage and supply it and the 
transmitter with 24 VDC from a single source. 
We only need to run a single wire to the AN-0 
pin on the bottom connector (Figure 9). This 
simplifies wiring for the case of our TS 7680, 
but we might find that there are a lot of 
systems that do not have a variable input 
voltage as high as 24 VDC. More commonly, 
it’ll be 5 VDC or 12 VDC. So, let’s see what 
a separate power supply would look like in 
Figure 10.

Here’s a pitfall to consider: Keep in mind, 
using separate supplies in this way requires 
them to be able to be grounded together. 
Using separate isolated supplies can cause 
a ground potential which can give incorrect 
readings at best, or damage equipment at 

FIGURE 6
Multimeter measuring current from the transmitter before connecting to the receiver

ABOUT THE AUTHOR
A small-town Montana boy, born and raised, with a passion for programming 
and embedded systems. Derek Hildreth has been working for Technologic 
Systems (in various capacities) since 2010 starting as an intern embedded 
engineer.  Off the clock, he’s an avid skier and backpacker who slays double 
black diamonds, conquers mountain peaks, and just generally loves life at 
10,000 feet. What he loves most about his career at Technologic Systems is 
the extended family cultural feel and the opportunity to wear many hats as 
responsibilities change.

FIGURE 7
Wiring diagram for measuring current from the transmitter
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worst. It would be best to use a supply that’s 
able to offer multiple voltage taps with the 
same reference ground.

There. Now, we have two power supplies—
one for the receiver and one for the transmitter. 
We could opt for a 12 VDC to 24 VDC converter 
[11] as well, but we’ll abstract that away for 
now. At this point, we’re ready to dive into 
programming the receiver, but while we’re 
still on the topic of hooking everything up, 
Figure 11 shows an example of how we’d 
hook up multiple transmitters. Okay! Now, 
we’re ready to move on to even more exciting 
stuff: programming the receiver.

PROGRAMMING THE RECEIVER
If you’re not following along with a 

TS-  7680 or similar Technologic Systems’ 
product, that’s okay because this article is 
generic enough to apply to other boards. Just 
keep your product’s manual handy! For those 
of you who are anxious to see the code, you 
may jump to the TS-7680 4-20 mA Current 

Loop Example Code gist on GitHub [12]. I’ll 
explain it in a little more detail below.

Read the ADC Value: Get your receiver into 
a state where you can program it. For the 
TS- 7680 running Linux, this means powered 
on and connected to a serial console (see also 
TS-7680 getting started guide [13]). Chances 
are, your receiver came with some example 
code for how to read in values from the ADC 
channels. For the TS-7680, we’ll be using the 
mx28adcctl.c example code [14] within the 
TS-7680 Utility Sources repository on GitHub 
[15] as a base.

Copy or download the example code onto 
your receiver and update it with the correct 
pin locations. Since the code will likely be 
reading voltages, you might also want to add 
a conversion back to milliamps or microamps 
based on the load resistor you used for 
measurement. The TS-7680 has a 240 Ω 
load resistor between AN-0 and GND, so the 
conversion from milliamps to microamps 
looks like:

uA = (((meas_mV)*1000)/240); // 
Ohms law: I = V/R

Compile your program and test it! Since we 
have our measurements from our multimeter, 
we can do a sanity check that our ADC value 
is good. On the TS-7680, we’ve named this 
program getadc (getadc.c, Makefile) 
[12]. This is what the output looks like:

root@ts7680:~/getadc# ./getadc 0
mV: 2718
uA: 11325

This is very cool, because so much has 
been building up to this moment! We’re very 
close to finishing up by converting these raw 
numbers into something meaningful. Tip: You 
could stop here if you don’t care what the 
units are and want to use the 4-20 mA signal 
directly, but it does help to have meaningful, 
human-readable values represented.

Convert Signal to Meaningful Units: The 
final piece of code! Instinctively, I separated 
the getadc.c code [12] from the system 
control code called rtdTemp.sh [12]. You 
could tie these two into the same program if 
you wanted, but I find it easier to maintain 
modular code. Plus, you can use the other ADC 
ports for different sensors, each requiring 
their own conversions and set of instructions 
but all rely on the getadc.c code to get there.

Right to the point, the 4-20 mA to 
temperature conversion formula you’ll want 
to use is:

tempC = (mA - 9.333) / .107FIGURE 9
Wiring diagram showing single 24 VDC power supply and 4-20 mA signal connection.
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Why? How? Think back to our high school 
days. We have a linear temperature vs current 
scale thanks to our sensor and transmitter 
choices. We want the slope intercept form of 
this line so we can solve for X (temperature) 
given Y (mA). Using a spreadsheet, we can 
calculate this using INTERCEPT() and 
SLOPE() functions knowing -50ºC is 4 mA 
and 100ºC is 20 mA. Go to [17] and take a 
look at the RTD PT100 4-20 mA Transmitter 
Temperature Conversion spreadsheet I used 
to get this formula if you’re still curious or 
want to verify it. Make a copy of it and modify 
it to fit your needs.

We’ll be applying that formula in our 
system control script, rtdTemp.sh, which 
will read the mA value from the output of 
getadc, convert it to ºC (and ºF), and display 
it. Here’s what the conversion looks like in 
code:

#!/bin/bash

uA=$(getadc 0 | awk ‘FNR == 2 
{print $2}’)
mA=$(echo “scale=3; $uA / 1000” | 
bc)

tempC=$(echo “scale=1; ($mA - 
9.333) / .107” | bc)
tempF=$(echo “scale=1; ($tempC * 
9/5) + 32” | bc)

echo “Temp (C): $tempC”
echo “Temp (F): $tempF”

We’re using bc because it supports 
floating point math whereas eval does not. 

FIGURE 10
Wiring diagram showing multiple power supplies and 4-20 mA signal connection.

FIGURE 11
Wiring diagram showing multiple 
temperature sensors connected.
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Running the script will yield the output:

root@ts7680:~/getadc# ./
rtdTemp.sh

Temp (C): 20.1
Temp (F): 68.1

Momentous! We’re seeing the meaningful 
value for the first time! Congrats and great 
job so far!

Take some time and verify your output. Do 
the values make sense and are they accurate? 
Use other thermometers you might have to do 
sanity checks (Figure 12). For example, use the 
temperature measurement from your DMM. 
Grab cups of water (hot, cold and luke warm) 
and stick the PT100 sensor and DMM sensor 
in each of them. Are they getting the same 
values? I also grabbed a kitchen thermometer 
to get a third opinion. I found that the DMM 
value was about 2ºC higher than what the 
kitchen thermometer and the PT100 sensor was 
reporting, so it’s good to have another opinion 
handy. From here, we can continue smoothly 
sailing through the rest of our application, 
wherever it may take you!

Congratulations! We’ve now reached the 
end of our example application of working 

with a 4-20 mA current loop sensor device 
to get temperature data. At this point, you 
should be ready to move onto the next 
component in your application, whether 
that be hooking the receiver up to a relay 
to open or close a valve or setting up a 
web application to display temperatures in 
JSON format for other systems to consume. 
Whatever it is, you’re well on your way! Pick 
your favorite compiled (C/C++) or scripting 
language (Python, Node.js, Bash and such) 
and keep moving forward.

WRAP UP
This article should have left you with a 

deeper understanding of 4-20 mA current 
loop devices and process control systems. We 
took a look at some history, why things are 
the way they are, looked at simple example 
components of a process control system 
(sensor, transmitter, receiver) and even 
worked through a practical example with 
working code.

There’s still more to learn, and if you’re 
hungry for it, take a look at the excellently 
written and illustrated “Back to Basics: The 
Fundamentals of 4-20 mA Current Loops” 
series on predig.com [18]. Also, be sure and 
review Technologic Systems’ product line, 
because most of its product is fit for 
industrial applications like process control 
systems with multiple ADCs, onboard relays, 
industry standard connectors, industrial 
temperature range and more. Now, go enjoy 
planning and building out the rest of your 
control system! 

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
References [1] through [18] as marked in the article can be found there

RESOURCES
Technologic Systems | www.embeddedarm.com

FIGURE 12
Testing the sensor accuracy and 
mA values using two different 
thermometers.

http://www.circuitcellar.com/article-materials
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I n this project, we created a mesh network 
of Microchip PIC32 microcontrollers 
(MCUs) that were connected to each 
other wirelessly through ESP8266 Wi- Fi 

modules (Figure 1). The primary objective 
for this project was to create a self-contained 
wireless mesh network of MCUs. The criteria 
were that the network should be able to add 
new nodes as they turn on, and should be 
robust to nodes disconnecting.

We considered several different wireless 
technologies when designing this system. 
To create a network of nodes, we needed 
multiple wireless devices that could be 
connected to one another simultaneously. We 
considered several different types of wireless 
technologies, including Bluetooth, packet radio 
and Wi-Fi. Preliminary investigations revealed 
that most hobbyist Bluetooth modules had 
relatively short ranges, and multiple Bluetooth 
modules couldn’t be connected at once. Most 
of the packet radio modules that we found 
could only be configured as transmitters 

or receivers, and multiplexing those nodes 
would have resulted in significant packet drop 
[1]. We settled on the ESP8266 Wi-Fi module 
from Espressif Systems, because it met the 
requirements for this project and has a 
relatively long range.

The hardware for our project was 
designed around the PIC32 MCU. We designed 
a schematic for connecting the PIC32 and the 
ESP8266 through their serial connections. 
Our software was designed as a layered 
architecture. This type of architecture is 
common in network stacks and allows 
independent implementation and optimization 
of individual layers. This approach can help 
simplify the design process and make the 
implementation easier.

HARDWARE DESIGN
The primary hardware components of a 

node were a PIC32 MCU and an ESP8266 Wi-Fi 
module. Given our previous experience with 
the PIC32, it proved to be an inexpensive, 

Gone are the days when networking embedded devices was a big deal. And 
today, such devices can be linked in powerful mesh networks over wireless 
protocols. In this article, learn how these two Cornell students used Microchip 
PIC32 MCUs and Espressif’s ESP8266 Wi-Fi module to create a mesh network of 
wirelessly connected devices. The mesh network is able to configure itself, and 
requires no manual intervention to connect the nodes.

Using PIC32 MCUs

By 
Daniel Weber and Michaelangelo Rodriguez

Self-Organizing 
Wi-Fi Mesh Network

FIGURE 1 (ABOVE)
Two complete nodes. The left one is 
turned on and is actively scanning for 
other nodes.
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powerful chip that would allow us to meet the 
demands of the mesh network. The ESP8266 
Wi-Fi-module is a device that is known for its 
versatility, cost-effectiveness and ease of use.

The PIC32 and the ESP8266 both require a 
3.3 V power supply. To meet these demands, we 
devised a section within our board dedicated 
to regulate any 4.2-12 V power supply to 3.3 V. 
As confirmed with a voltmeter, the output of 
the voltage regulator was a fixed 3.3 V. This 
output was connected to the VCC pin on the 
ESP8266 Wi-Fi module and then connected to 
the appropriate pins on the PIC32.

One of the peripherals added to our nodes 
was an LED. The LED was useful for testing our 
algorithms and visualizing the behavior of our 
system. The LED would constantly blink when 
the node was searching for a connection, and 
then stay lit up when it connected to another 
node. Therefore, if we expected a connection 
to occur or had an unexpected connection, 
the LED would be an easy visual to identify an 
issue. Likewise, if the LED acted according to 
the expected behavior, it would help confirm 
the functionality of our node.

As shown in Figure 2, each of our nodes 
had four sockets: the Microstick socket, the 
UART socket, the Wi-Fi socket and the PIC32 
socket. These sockets were mainly composed 
of DIP (dual in-line package) sockets and 
male headers. Having sockets for our most 
important parts allowed us to easily swap out 
components. The integration of these sockets 
allowed us to replace faulty parts with relative 
ease.

Another key aspect of the hardware design 
was the inclusion of the Wi-Fi debug jumpers. 
As shown in the Figure 2 schematic, pin 1 
of the Wi-Fi debugger is connected to RB7, 
while pin 2 is connected to RA2. This wiring 
is how we intended the node to be connected 
for normal use. Since RB7 was connected to 
TX on the ESP8266, and RA2 was connected 
to RX, the inclusion of Wi-Fi jumpers led to 
fairly easy debugging on the Wi-Fi module. 
However, we could also disconnect the Wi-Fi 
and PIC UART modules and then use a cable to 
communicate directly with the Wi-Fi module 
from a PC. As explained later, one of the times 
we had to use this direct communication with 
the Wi-Fi module was when we flashed the 
firmware.

FIRMWARE AND SOFTWARE
The firmware on an ESP8266 module 

determines the commands we can give to the 
module over UART. To get the most up-to-date 
commands working on the ESP8266 modules, 
we needed to flash the latest firmware from 
Espressif [2]. This required the ESP8266 to be 
put in flash mode, which was done by pulling 
the GPIO_0 pin low during reset. Then, we 

used a serial connection to a computer with 
the firmware-flashing software to load the 
new firmware into the ESP8266. We used a 
USB-to-UART cable to connect the ESP8266’s 
RX and TX pins to a computer, and used 
Espressif’s esptool to flash the firmware.

The software design was largely 
influenced by the constraints of the ESP8266 
Wi-Fi modules. Wi-Fi devices typically are 
configured either as stations or access points. 
A station is a device such as a computer, 
which can connect to one Wi-Fi network at 
a time. An access point is something like a 
router, which allows many stations to connect 
to it and acts as a hub for connecting Wi-Fi 
devices. The ESP8266 Wi-Fi modules can be 
put in a third mode, which is a hybrid of the 
two. A single chip can act as both a station 
and an access point. However, it limits the 
total number of connections to five.

A station can only connect to a single access 
point. This means that each Wi-Fi module 
can make only one connection to another 
module. A Wi-Fi module can have up to five 
other modules connect to it, but an individual 
module can only make one connection. If each 
Wi-Fi module is treated as a node in a graph 
and each connection is treated as an edge in 
that graph, this tells us that the number of 

FIGURE 2
Mesh network node schematic
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edges in our network is limited to the number 
of Wi-Fi modules in the network. This means 
we can’t make a very fault-tolerant network, 
since we can have at most one loop in our 
network. For this reason, we decided to focus 
on creating software that tries to interconnect 
as many devices as possible. To accomplish 
this, we split the software into four logically 
separate layers: Serial, Wi-Fi, Routing and 
Application. Now let’s discuss each of these 
four layers.

SERIAL LAYER
At the bottom of the software stack is 

the serial layer. This layer was responsible 
for communicating with the ESP8266 and 
exposing a simplified API for sending and 
receiving data from the Wi-Fi module. The 
UART hardware on the PIC32 has a buffer 
for up to eight characters, but if the buffer 
doesn’t get read, subsequent characters 
will be dropped by the UART module. This 
becomes an issue, because the ESP8266 can 
sometimes send data over UART when we 
aren’t expecting it—such as when it receives 
a message from another Wi-Fi module. To 
ensure that all characters that come in over 
the UART are stored, we used the PIC32’s DMA 
controller.

We configured one of the DMA channels to 
move data from the UART RX queue into a large 
buffer statically allocated in the PIC32’s main 
memory. The DMA controller automatically 
wraps back around to the beginning of the 
buffer once it has been filled. In this sense, 
the buffer is treated as a ring buffer. To keep 
track of the write head of the ring buffer, we 
set up an interrupt that incremented a write 
pointer, which fired whenever a cell/byte was 
transferred using DMA. When we wanted to 
read data from the buffer, we waited until the 
write pointer advanced past the read pointer, 
then marched the read pointer through the 
data of interest.

Subsequently, we abstracted this 
functionality into two functions that could 
be used by the layer above the serial layer 
to communicate with the ESP8266. The first 
function sent a string of characters to the 
ESP8266 over UART. The second used the 

above method of waiting for the write pointer 
to advance past the read pointer to read data 
from the ring buffer and return the data 
to the layer above. This abstraction hid the 
complexity of DMA and UART, and allowed 
the next layer to concern itself only with the 
bidirectional communication stream between 
it and the ESP8266.

Wi-Fi LAYER
The layer above the serial layer is the 

Wi-Fi layer. This layer is mainly concerned 
with setting up the Wi-Fi module, handling 
connections and disconnections from 
stations and access points and receiving 
messages from other Wi-Fi modules. All 
communication with the ESP8266 is done 
by issuing AT commands to the device over 
UART and listening for a response. We were 
able to obtain a full list of the supported AT 
commands for the version of the firmware 
that we flashed onto the devices [3].

The Wi-Fi layer issues several AT commands 
when setting up the ESP8266. First, it sets the 
Wi-Fi module into the hybrid station+access 
point mode we discussed earlier by issuing 
the following command:

AT+CWMODE=3

Next, the Wi-Fi module gets its MAC 
address, which the rest of the software uses 
as a unique identifier for this node. It does 
this by executing the following command and 
listening for a response:

AT+CIPAPMAC_CUR?

During testing, we hard-coded an IP 
address for each access point. However, we 
discovered that there were issues connecting 
two Wi-Fi devices with the same IP addresses. 
To correct these problems, we gave each 
device an IP address based on its MAC 
address, where the %d is the lower 8 bits of 
the MAC address:

AT+CIPAP_CUR=”192.168.%d.1”,”192
.168.%d.1”,”255.255.255.0”

Next, we needed to allow multiple 
connections with the Wi-Fi module. We also 
found in the documentation that the multiple 
connections mode was required to start up a 
TCP server on the Wi-Fi module:

AT+CIPMUX=1

Then, we initialized the TCP server on port 
80:

AT+CIPSERVER=1,80

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
References [1] through [4] as marked in the article can be found there.

RESOURCES
Espressif Systems | www.espressif.com

Microchip Technology | www.microchip.com

SparkFun | www.sparkfun.com
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And finally, we set the SSID of the WiFi 
module so that other nodes could find it, 
where %d is again the lower 8 bits of the MAC 
address:

AT+CWSAP_CUR=”ESP8266-Mesh-%d”

The primary reasons for using a TCP server 
instead of a UDP server were that we wanted 
reliable packet delivery between nodes, and 
we also wanted to have knowledge about 
the state of connections. TCP perfectly fits 
the bill for these requirements as a reliable, 
connection-oriented, message delivery 
protocol. This completed the setup portion of 
our code.

Next, we abstracted several AT commands 
into simple functions. The first was a function 
to scan for Wi-Fi modules to connect to. The 
ESP8266 has a command to return a list of all 
nearby Wi-Fi access points:

AT+CWLAP

We created a function that would invoke 
this command and filter the results to return 
only a list of Wi-Fi access points with SSIDs 
starting with “ESP8266-Mesh-”. When a node 
has found a node to which to connect, it needs 
to do two things. First, it needs to connect 
to the node’s access point, which is given by 
the SSID in the list returned by the scanning 
function:

AT+CWJAP_CUR=”<access point 
SSID>”

Second, it needs to connect to the TCP 
server running on port 80 on that node:

AT+CIPSTART=”TCP”,”<other node’s 
ip address>”,80

Last, we created a function that would send 
messages between two connected nodes. This 
function first invokes the command:

AT+ CIPSEN D B UF = <c o n n e c tio n 
id>,<data length>

This command tells the Wi-Fi module 
which connection it should send the data to, 
and how many bytes the data are. Then, the 
function sends each byte of the message to 
the Wi-Fi module.

When a Wi-Fi module receives data from 
another Wi-Fi module, or when another Wi-Fi 
device connects to it, the ESP8266 sends out 
messages over UART indicating the event. We 
set up a loop in our code to constantly listen 
for these events and invoke event handlers 
when the events were detected.

ROUTING LAYER
The layer above the Wi-Fi layer is the 

routing layer. It stores the network topology 
as a graph, and sends messages to the 
routing layer of other nodes to construct 
the graph. We considered an on-demand 
routing approach, in which each node only 
knows about its direct neighbors and then 
sends out special packets to discover paths to 
other nodes. However, we realized that mesh 
network applications would want to know 
about the topology of the network to optimize 
the connectivity of the network. Therefore, 
we decided to make a custom routing 
algorithm that used special messages to alert 
the network about the addition and removal 
of edges in the network. This is similar to the 
way some link-state routing protocols are 
implemented.

When a station “S” connects to an access 
point “A,” it may be the case that the two 
nodes are on separate sides of a partitioned 

Establish TCP ConnectionEstablish TCP Connection
Send connection information packetSend connection information packet

Send Bootstrap PacketSend Bootstrap Packet

Flood T->S Edge createFlood T->S Edge create
Flood S->A Edge createFlood S->A Edge create

Flood T->S 
Edge create
Flood T->S 
Edge create

Flood S->A 
Edge create
Flood S->A 
Edge create

Flood B->A 
Edge create
Flood B->A 
Edge create

Flood S->A 
Edge create
Flood S->A 
Edge create

Node T Node S Node A Node B

FIGURE 3
The messages created during a connection event. Time flows from top to bottom. All the edge-creation messages originate from Node S.
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network. Therefore, they must exchange their 
current network topology graphs, to merge 
their two network graphs. Instead of having 
both nodes be responsible for this, only the 
station node S receives this so-called “bootstrap 
packet” from the access point (node A). This 
bootstrap packet contains node A’s current 
network topology graph. Node S will then figure 
out the differences between A’s graph and its 
own graph. Edges that are in A’s graph but not 
S’s graph will need to be flooded to S’s side of 
the network. Edges that are in S’s graph but not 
in A’s graph will need to be flooded to A’s side of 
the network. Finally, node S will flood the new 
S-A edge to the whole network.

As a concrete example, consider the 
following scenario. Node T is connected to 
node S and node A is connected to node B. 
The network graph of T and S thus consists 
of nodes S and T connected by an edge. The 
network graph of A and B consists of nodes 
A and B connected by an edge. Next, node 
S connects to node A. An overview of the 
messages sent between the four nodes is 
given in Figure 3.

As described above, the access point A 
sends the bootstrap packet back to node S, and 
then node S initiates the flood of messages to 
get every node in the network up to date on 
the new network topology. After the flood of 
messages has subsided, all four nodes in the 
network contain the same network topology 
graph: node B connected to node A, node A 
connected to node S, and node S connected 
to node T. The resulting topology graph for 

this scenario is shown in Figure 4.
To stop messages from circulating 

infinitely throughout the network, we use 
sequence numbers. Each message that a node 
creates is given a unique sequence number, 
which allows other nodes to identify and 
drop duplicate messages. The routing layer 
also implements an algorithm for sending 
directed messages between two nodes. Since 
the routing layer stores a graph of the mesh 
network, it can use a shortest-path algorithm 
to route messages through the network 
from a source node to a destination node. 
The algorithm we used was a breadth-first 
search algorithm. Whenever a node receives a 
directed message, it first checks to see if it is 
the intended recipient. If it is, then it passes 
the message up to a higher layer. Otherwise, 
it finds the shortest path between it and the 
destination node, and sends it along that 
path. It also checks the sequence number in 
the directed message, to prevent a message 
from being sent in a cycle forever.

APPLICATIONS AND TESTING
The serial, Wi-Fi, and routing layers formed 

the core of our mesh network software. We 
decided to build a few simple applications on 
top of the core software to demonstrate its 
capabilities. The first application we built was 
a way to view the network graphically as nodes 
came online. To do this, we set up a simple 
loop that would constantly use the scanning 
function exposed by the Wi-Fi layer to scan 
for other modules. If a module was found, the 
application would then tell the routing layer 
to connect to that device. Because the nodes 
used Wi-Fi to communicate, we could connect 
to the mesh network using any Wi- Fi-enabled 
device. We connected a laptop to a node in the 
mesh network as if it were a regular access 
point. We implemented the same protocol 
that we created on the nodes for the laptop, 
essentially turning the laptop into another 
node. This allowed the laptop to receive the 
edge-creation messages and have its own 
graph of the network. We then added some 
code to display the network graph on the 
laptop’s screen.

We tested this code by first turning on 
a single node and connecting the laptop to 
the node. We then turned on two additional 
nodes, and gave them some time to find 
each other and establish a connection. We 
observed this self-connecting behavior as the 
graph displayed on the laptop Figure 5. The 
full code used for this project can be found 
on GitHub [4].

To test our network as a communication 
network, we used the same basic auto-
connection functionality from the previous 
application. We added an LED to one of the 

T

S A

B

FIGURE 4
The network topology stored in 
every node after nodes A and S 
are connected. The edges between 
nodes point from a station to the 
access point to which the station is 
connected.
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nodes, along with some code to turn the LED 
on and off, depending on what message the 
node received. We then started up all the 
nodes as before and sent messages from the 
laptop to the node with the LED attached to 
it. We set up the network so that the message 
would have to pass through at least one node 
before it got to the node with the LED. This 
would confirm that our message-routing 
algorithm worked.

We observed that a few seconds after 
sending the command from the computer, 
the LED turned on or off. The primary reason 
for the lag was that we hard-coded a delay 
of 5 seconds between iterations of the 
main application loop. This was chiefly for 
debugging purposes and could have been 
removed. Removal would have made the delay 
less noticeable and ideally seem like the LED 
instantly reacted to the message being sent.

RESULTS
Overall, the hardware performed well. The 

boards we created had no issues and reliably 
connected the ESP8266 modules, the PIC32 
and the UART-to-USB debugging cable. The 
main problem we had with the software was 
that when more than a few modules were 
present in the network, some modules would 
often disconnect. This may have been due to 
the 30 second timeout for the TCP connection 
and the large 5 second delay that was 
introduced to aid debugging. Although we 
would have liked to test our implementation 
without the 5 second delay, this would have 
required rewriting parts of our DMA buffer 
reading code in a non-trivial manner.

Additionally, sometimes the Wi-Fi modules 
were unable to see the access points of other 
Wi-Fi modules on their scans, even when they 
were very close. Furthermore, sometimes the 

Wi-Fi modules failed to set up immediately on 
power up. A hard reset of the Wi-Fi module 
usually resolved these issues, though we were 
unable to identify the cause. Nevertheless, 
we successfully validated the self-organizing 
property of the mesh network and the ability 
of the routing layer to route a message from 
a source node to a destination node.

CONCLUSIONS
We were quite pleased with the outcome 

of our work. We met most of our initial goals 
and made some interesting software along 
the way. One consideration for future work on 
this project is to improve the functionality of 
our routing algorithm on a larger scale. We 
tested our routing algorithm with a relatively 
small number of nodes. It likely would not 
scale to a greater number of nodes, because 
each node needs to know about the existence 
of every other node. Furthermore, we would 
have liked to optimize the speed at which the 
network could propagate messages. However, 
this would have required rewriting some of the 
lower-level code and eliminating the 5 second 
debug delay. Unfortunately, we ran out of 
time while creating this project. We also had 
minimal support for handling disconnections 
and link failures. We had some ideas about 
how to solve this problem, but didn’t get a 
chance to adequately implement them.

In future work on this project, we would 
like to implement and test some algorithms 
for keeping the network graph consistent for 
all nodes when edges are removed. Finally, we 
want to test how well our system performs as 
a long-range communication system, by 
having the network bootstrap itself into a 
multi-hop mesh network and try and get two 
computers at the endpoints to communicate 
with each other. 

FIGURE 5
A screenshot from the demo video 
for connecting the three nodes and 
the laptop. The graph on the screen 
shows the laptop’s current view of 
the network topology. The video is 
available on Circuit Cellar’s article 
materials webpage.
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M anufacturing tests are arguably 
the most important aspect in 
any kind of hardware design 
company, be it small or big. 

These tests are essential for ensuring quality. 
Apart from quality, cost is one of the major 
factors that are responsible for defining the 
profit margin of the hardware. For example, if 
a board is manufactured where let’s say out of 
1,000 units there are 200 with a defect. Or, let’s 
say that that the manufacturing test setup is 
so costly that it downsizes the profit. Or, here’s 
the important one: What if the manufacturing 
test misses a defect that a customer finds? 
That could cost the company a lot.

There are a variety of ways to manage quality 
and cost. In this article, I’ll discuss some these 
factors and also look at corner case catching 
scenarios in the context of a manufacturing test 
environment in a board fabrication house. I will 
also discuss architecture for crafting manual, 
semi-automatic and automatic manufacturing 
tests. For these purposes, in the article, I’ll 
look at these issues as applied to FPGA- and 
processor-based board, but the same principles 
apply to less complex boards as well.

The manufacturing test design process 
runs parallel to the board design process. With 

that in mind, the steps involved are similar, but 
involve more critical judgement. Manufacturing 
tests have to consider the cost of development, 
minutes per board to test, corner case reviews 
and so on. All these factors are necessary 
to optimize cost without compromising the 
quality of the product.

The first step toward designing a 
manufacturing test is to choose one of 
three approaches: manual, automatic or 
semiautomatic. This choice depends on the 
organization's budget, the complexity and 
quantity of boards as well as the use case. A 
manual approach has less development time 
while its test execution time is more per board. 
In contrast, an automatic approach has more 
development time, however the test execution 
time is much less, thereby increasing the 
productivity. Semi-automated systems are 
generally in between the two others, and are 
generally appropriate done for situations where 
some processes require human intervention.

FPGA EXAMPLE
Let’s consider an example of a one-of-a-

kind Xilinx Zynq Ultrascale plus FPGA Evaluation 
board. This board has the FPGA loaded on 
board with peripherals such as temperature 
sensors, infrared sensors, power supply, FTDI 
chip, IO header, SD card and DIP Switch.

In a system like this, we can think of different 
ways of testing this board. However, when 
we test a board that is going to thousands of 

Manufacturing tests are vital to ensuring high-
quality products. Quality is a factor that no 
company or individual wants to compromise 
because quality defines the product and ultimately 
is the main thing that retains a customer. In this 
article, Xilinx’s Nishant Mittal discusses various 
techniques to manage quality, cost and “corner 
case catching” scenarios in the manufacturing test 
environment of a board fabrication house.

Quality and Cost

By 
Nishant Mittal

Designing Manufacturing 
Test Systems
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customers, many things need to be documented 
such as board test coverage, corner cases, time 
to test and production test cost. Let’s focus on 
each of these points, and then complete the 
manufacturing test design.

Board test coverage doesn’t necessarily 
mean the test should cover each and every 
component on the board. A standard rule 
in this kind of environment is divide and 
conquer. A standard board can be divided into 
its major sections. A board like this contains 
a power supply—which is given input either 
through a power jack/USB—an analog region, 
a digital region, filtering circuits, I/Os and 
communication blocks.

The first step is to create a block diagram 
of the system as shown in Figure 1. Based 
on this diagram, we should make a table of 
coverage showing the number of components, 
which are actually affected during test and 
the ones which are not affected. This gives 
us a fair idea about the percentage coverage 
and failure scenarios. This not only helps in 
getting an error-free board out of production, 
but also creates a “database,” which is helpful 
in future to debug the board when same issue 
may occur. Figure 2 shows a format of the 
table that could be used to create a clean 
database along these lines.

With the table in Figure 2 in mind, 
let us consider the design of a typical 
microcontroller board that contains lot of 
decoupling capacitors and RC networks which 
are required for proper decoupling of ground 
noise in the PCB. In a typical manufacturing 
test environment, it is very difficult to test 
the presence or absence of each and every 
decoupling capacitor, so they generally are 
considered to be in the “not covered category.“

DFMEA
When we say not covered, that doesn’t 

necessarily mean we are ignoring how critical 

the presence or absence of that particular 
component is. To judge the criticality of 
failure, coverage goals and actions to be taken. 
For this, the team needs to perform DFMEA 
(design failure mode and effect analysis). 
For DFMEA, an Excel sheet is prepared that 
looks like the one shown in Figure 3. This is a 
standard format for DFMEA, with a few things 
here and there that may differ for different 
organizations.

In this analysis, the design team finds out 
the potential causes of failure, their impact 
on the design from a user and board safety 
point of view and the possible workaround. 
Based on this, the designer rates all these 
parameters and the average of all these 
parameters are then judged to determine that 
critical test coverages to be made. DFMEA not 
only makes the manufacturing test foolproof, 
but also identifies loopholes in the design 
and even helps you fine tune your design, 
if done in the early stage. Once the DFMEA 
is completed, the next step is to design the 
test system. The type of test system can be 

FIGURE 1
Block-based bifurcation of components
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FIGURE 2
Format for planning the bill-of-materials (BOM) coverage in the manufacturing test
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dependent upon the complexity of the board. 
A system could be manual test, automated or 
semi-automated.

Manual Tests: Manual tests are done for 
very low complexity, lesser volume boards 
which have fewer interfaces to be tested. A 
pure manual test involves extensive human 

involvement, which can lead to human 
errors. Proper documentation is the key to a 
successful manual test system. That said, these 
tests require lot of time per board, putting 
both efficiency and cost at stake. Generally, 
manual tests are preferred when some kind of 
observation or calibration is required.

Automated Tests: The next method is the 
one that is mostly preferred throughout the 
industry: automated test. Automated tests are 
performed to test the board automatically—
without human intervention. This is achieved 
both in the product’s hardware and software.

Figure 4 shows what a typical automated 
test looks like for hardware. For the board 
picked as an example, there are metal beads 
running all around the I/Os, which will perform 
loopback tests between each other. If any of 
the I/O presents a short- or an open-circuit, 
the result is a fail status. For LEDs, we use light 
sensors on the test systems that detect the 
light intensity. There are actuators that press 
the buttons and report the operating status of 
the buttons. Sensors—such as light sensors, 
infra-red sensors and so on—can be tested by 
providing potential stimuli and and then the 
results can be analyzed in the software using 
the ADC.

Software such as Mathwork’s MATLAB, 
National Instruments' Labview, python and 
pearl scripts can be used to create UI-based 
interfaces to that display pass and fail status. 
The UI is basically used to monitor what’s 
happening and to trigger the tests. Once 
the test is completed, the UI is supposed to 
report all the data in the log file, which may 
be exported to a pdf file.

Semi-Automated Tests: The next category 
of test systems is essentially the combination of 
manual and automated tests: semi-automated 
systems. Semi-automated systems are used 
in cases where human intervention becomes 
necessary. Human intervention doesn’t have to 
mean triggering tests, putting the board into 
the proper location or even sitting in front of 
the system to monitor the events going on. 
Rather, it applies to whenever there’s any 
human intervention impacting the result of 
the particular test—then it becomes a semi-
automated system.

Let’s look at an example of a board that 
has a microphone, a capacitive touch sensor 
and the rest of the interfaces I mentioned 
earlier. The tester is supposed to test the 
mic sensitivity by feeding it sound from 
different directions and at different volumes. 
Meanwhile, a capacitive touch sensor needs 
to be touched by a human hand to see if it’s 
sensitive to human touch. These tests can be 
automated, but for optimum performance it 
has to have some human intervention. These 
types of use cases could force a designer to 

FIGURE 4
Complete automated manufacturing test rig (left); A tear down of a DUT and a test board (right), (Image left 
courtesy Brioconcept.com; image right courtesy Adafruit).

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
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FIGURE 3
DFMEA format (Image courtesy of Superfactory)
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make the system semi-automated.
Once the test design is complete, the 

designer needs to validate whether the 
coverage really matches what’s theoretically 
stated. To validate this, the tester would remove 
the major components on board to test and see 
if the manufacturing test it really is doing its 
job correctly. Figure 5 shows the algorithm that 
displays the entire design flow.

There are other techniques such as JTAG 
scan chain. This uses system controllers on 
board that can equally perform the board 
testing as well as control the interfaces—either 
by themselves or along with traditional test 
techniques. It’s open for debate whether the 
amount of cost reduction, visibility of the board 
and test coverage that such controllers can 
provide compared with the traditional approach 
of external test systems. I’ll plan to discuss that 
question further in future articles.

CONCLUSION
In this article, we discussed the concepts 

of how manufacturing tests are developed 
and analyzed in order to cater to the 
requirements of cost, efficiency and accuracy. 
We also discussed how the test system 
designer would decide whether the board 
should be tested using a manual, automated 
or semi-automated approach.

Start

Board and BOM Analysis

Block wise bifurcation of the components
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Test system mechanical design and tester board design

UI Design
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FIGURE 5
Design flow
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O ur goal for this project was to 
build an electronic flute that can 
play in any key. The first step in 
this project was understanding the 

design of a bamboo flute, which differs greatly 
from Western concert flutes. A typical bamboo 
flute can be played in only one key. It has a total 
of seven holes, six of which are used to play 
different notes. The seventh hole is for the inlet 
of wind (the player’s breath). The strength of air 
blown into it determines the octave of the note.

If the strength of the air blown exceeds a 
certain threshold, the flute produces sound in 
a higher octave. Otherwise, the flute produces 
sound in a lower octave. The arrangement of the 
player’s fingers over the six holes distinguishes 
the different notes. Whether a hole is open, 
half-covered or fully covered by a finger also 
differentiates the note being played. For example, 
if a fully covered hole generates a note C major 
key, the half-covered hole generates a note in C 
minor key.

PHYSICAL/HARDWARE DESIGN
Our electronic flute, shown in Figure 1, is built 

to be comparable in size, design and spectral 
dynamics to a typical bamboo flute. We simulated 
the six finger holes of a typical flute using 
capacitive touch sensors. A seventh hole holds 
the microphone and simulates a flute’s blow hole. 

Physically, these switches are pieces of copper 
tape connected to wires. We used a total of 13 
capacitive touch sensors—two for each hole 
and one for the “chin sensor.” The chin sensor 
determines when someone is playing the flute. 
It is positioned directly under the microphone 
hole, and needs to be touched when playing. The 
microphone detects if air is blown into the flute, 
indicating that a sound should be produced. Note 
that the words button, switch and sensor used 
throughout this article functionally refer the same 
general mechanism.

At the heart of our electronic flute is a PIC32 
microcontroller (MCU) from Microchip Technology, 
which reads the inputs from the copper tape 
buttons and microphone to produce the correct 
notes and sound. The sound is outputted to a 
speaker after going through a digital-to-analog 
converter (DAC).

A detailed breakdown of the hardware 
components of our electronic flute is shown in 
the block diagram in Figure 2. The 13 copper-
tape touch sensors, the microphone, the key 
control switch and the octave control switch are 
inputs into the PIC32 MCU. The outputs from the 
PIC32, after running direct digital synthesis, are 
sent through the DAC to the amplified speaker to 
produce the flute sounds. Two buttons are used to 
control the key and octave of the flute, which get 
displayed on the TFT Display.

Musical instruments such as the piano allow musicians to play in different keys on a single 
instrument. In contrast, bamboo flutes are designed for only one key. This means flute 
players must own a different flute for every additional key in which they want to play in. 
Learn how these three Cornell students built an PIC32 MCU-based electronic flute that 
reduces the need for owning multiple flutes by incorporating two buttons that allow a flute 
player to change the key and octave.

Sensors and Synthesis

By Trisha Ray, Parth Bhatt and Qing Yu

Multi-Key 
Electronic Flute

FIGURE 1
Electronic flute
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One unique feature on the PIC32 is the 
Charge Time Measurement Unit (CTMU). 
Our first step when designing our electronic 
flute was determining how to use the CTMU 
to create the capacitive touch sensors. The 
CTMU peripheral is available for use on all 
the ADC pins of the MCU. It is essentially a 
settable current source that can measure 
resistance, capacitance and more. To 
understand how we used a settable current 
source to measure capacitance, recall that 
the formula for capacitance is C = q/V, where 
C is the capacitance, V is the voltage across 
the capacitor and q is the charge. Charge 
can also be denoted as the product of the 
current (I) and time (t). Hence, the formula 
can be rewritten as C = (I × t) / V. Using 
the CTMU, if the pin is provided with a fixed 
current for a fixed amount of time, we get 
C as inversely proportional to V. This logic is 
used to measure the voltage on an ADC pin, 
which changes when the pin is touched and 
released. This is how CTMU can be used to 
create touch sensors.

TOUCH SENSORS
The PIC32 does not provide enough ADC 

channels for the 13 touch sensors in our 
design, so we chose to connect the touch 
sensors to two analog multiplexers (Figure 2). 
The multiplexers enable us to connect the 
touch sensors to only one ADC channel and five 
other GPIO pins, which saves plenty of pins 
on the PIC32. We used the CD4051xB analog 
8×1 multiplexer from Texas Instruments. 
With this multiplexer, if the select lines are 
000, for example, then the input connects to 
the output 0. And if the select lines are 111, 
then the input connects to the output 7. Its 
chip-select line has the ability to turn off 
the entire chip, so that none of the outputs 
are connected to the input. This feature was 
useful to our project, since the outputs from 
the two different multiplexers are connected 
to one ADC pin, meaning that one chip is 
always off.

The breath-detecting microphone we 
used is the Electret Microphone Amplifier 

from Adafruit. In our circuit, the microphone 
is connected to a peak detector circuit to 
obtain the absolute value of the signal. The 
absolute value of the signal is needed to get 
a proper ADC reading. When we tested this 
microphone, the ADC readings obtained from 
its circuit were either in the range of the 500s 
(when no air was blown into it) or 900s (when 
air was blown into it). We later realized this 
observation was probably due to a calibration 
issue, since the ADC readings should increase 
linearly with the amount of air blown into the 
microphone. Because of the binary behavior 
of the microphone that we first observed, 
we used the microphone only to control the 
octave being played by the flute.

The uniqueness of our electronic flute 
design comes from the two buttons (switches) 
(SW1 and SW2 in Figure 3), which can be 
used to adjust the key and octave of the flute. 
When the user presses switch SW1, the key 
goes up—for instance from B to C. When the 
user presses button SW2, the octave goes 
up by number—for instance from C3 to C4. 
Both buttons can be used to circle back to the 
lowest key and octave. Then, the TFT display 
in our design lets users see the current key 
and octave being played.

The last main hardware component in 
our circuit is the DAC. As the name suggests, 
it converts the digital signal of the sound 
generated by the MCU into an analog signal, 
so it can be fed into the amplified speaker. The 
schematic in Figure 3 shows all the hardware 
components in our design. The schematic 
for the PIC32 development board was first 
created by Sean Carroll. A link to more 
information about Sean Carroll’s development 
board can be found on Circuit Cellar’s article 
materials webpage. The 13 touch sensors are 
indicated by the 13 circles on the left side of 
the schematic.

SOFTWARE DESIGN
The entire software design was coded in 

C and consists of four different threads and 
an interrupt service routine (ISR). The ISR 
uses additive synthesis and direct digital 

FIGURE 2
Block diagram of the electronic flute
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synthesis to output the sound to the DAC. 
The Display Thread displays the current key 
and octave that the flute is playing. The 
ADC/CTMU Thread runs CTMU and reads the 
ADC value of the switches. The Frequency 
Thread determines what note to play. Last, 
the Debouncing Thread debounces the two 
buttons that change the octave and key of the 
flute. The Display Thread and the Debouncing 
Thread are straightforward to implement, so 
they will not be discussed in detail here.

ADC/CTMU Thread: The main purpose 
of the ADC/CTMU Thread is to read the ADC 
values of the 13 capacitance touch sensors, to 
determine which sensors are being pressed. 
As noted in the previous section, we used two 
multiplexers connected to the ADC channel 
AN11. The chip-select line of the multiplexers 
ensures that only one multiplexer is turned 
on at a time. A threshold of about 90% of 
the full ADC value is used to determine if a 
finger is touching any of the 12 buttons. The 
thread starts off by setting the ADC channel 
to AN11. Next, the CTMU is turned on, and a 
for-loop measures the voltage on each of the 
capacitive touch sensors, using CTMU. In this 
for-loop, the thread also determines which 

multiplexer to turn on using chip-select. The 
first eight values in the for-loop correspond to 
the first multiplexer, and the rest correspond 
to the second multiplexer.

For the CTMU to work correctly, the 
following sequence of events must occur in 
the ADC/CTMU Thread:

1) The internal discharge switch is closed 
to drain the external circuit of any charge, by 
connecting the ADC channel to ground.

2) The internal discharge switch is opened, 
and the internal charge switch is closed for 
2 µs, to allow charge to build up.

3) During the charging period, the 
interrupts corresponding to the ISR are 
turned off to ensure that the program was 
not interrupted while charging. Since the 
interrupts are only turned off for 2 µs, the 
direct digital synthesis (DDS) that takes place 
in the ISR isn’t affected.

4) After the 2 µs, the internal charge 
switch is opened and the ADC value is read.

This sequence of events is placed inside a 
for-loop in our code so that CTMU can run for 
all 13 capacitive touch sensors.

FIGURE 3
Schematic of two switches and TFT display
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There’s one more important aspect of 
the ADC/CTMU Thread. Outside the for-loop 
that runs CTMU, the thread sets the ADC 
channel to AN3, enabling the ADC value of the 
microphone to be read. The corresponding 
CTMU circuit is shown in Figure 4, where S1 
is the internal charge switch and S2 is the 
internal discharge switch.

Frequency Thread: One of the main 
functions of the ISR is to run direct digital 
synthesis. We used DDS to produce sound 
waves from the PIC32. DDS works by creating 
a sine table of one sample frequency that 
contains the signal’s amplitude values at 
evenly spaced phase values. Then, by moving 
through the sine table at different rates, 
different frequencies can be produced. 
Because every note has a different frequency, 
the following equation shows how to generate 
different notes using one DDS sample 
frequency:

(inc)
F

2
=FS

32 out

In this equation, Fout is the frequency 
trying to be produced, and Fs is the sample 
frequency. Manipulating this equation, 
we can solve for the phase increment 
value (inc), which determines the rate of 

movement through the sine table. In our 
ISR, every time an interrupt occurs, a phase 
accumulator variable is incremented by the 
phase increment value. The top byte of the 
phase accumulator variable is then used as 
the reference index for the sine table matrix, 
such that incrementing through one sine table 
using different-sized increments produces 
different frequencies.

The following method was used to 
determine how the Frequency Thread 
works and how we selected which note to 
play. Outside the Frequency Thread, each 

Finger
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S1

I1
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FIGURE 4
Charge Time Measurement Unit 
(CTMU) circuit
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frequency value from A2 to G4# is defined. 
A 12 × 7 matrix holds 12 different keys, 
from A to G#. Inside the Frequency Thread, 
the program first checks if the chin sensor 
(indicating whether someone is playing the 
flute) is being touched. This equates to an if-
statement that checks if the 13th bit of the 
button integer is set to 1. The rest of the 
thread consists of a switch-statement that 
determines if we play the lower or higher 
octave of Do, Re, Mi, Fa, So, La, Ti, Do in any 
key. An exact combination of capacitive touch 
sensors must be pressed to play a certain 
note, such as Do. The exact combination is 
represented by 12 bits, since each simulated 
“hole” in the flute comprises two capacitive 
touch sensors. This combination is identical 
to the combination of holes that need to be 
covered on a bamboo flute.

SOUND SYNTHESIS
The most difficult part of the software 

design was sound synthesis. This was due to 
the fine tuning required for additive synthesis 
to create a flute-like sound. Additive synthesis 
is a technique that sums sine waves to mimic 
the natural sound spectrum of an instrument. 
Our main challenge with additive synthesis 
was determining how many harmonics to use, 
and how to adjust the amplitudes of those 
harmonics to create the most realistic sound. 
Another challenge was experimenting with FM 
modulation to create a vibrato effect.

The first step in our process was 
understanding the spectrum of harmonics 
that a flute makes. As a starting point, we 
used a sound spectrum of a flute, published 
by the University of New South Wales, which 
showed that a flute has a series of peaks at 
f, 2f, 3f, 4f and so on. The amplitudes of the 
peaks for 2f, 3f, and 4f are approximately 
-15 dB, -5 dB and -20 dB, respectively, from 
the fundamental f.

We first implemented the sound synthesis 
as stated above in Mathwork’s MATLAB. 
We started with a fundamental and four 
harmonics, and noticed that the sound didn’t 
improve much more when we added more 
harmonics to our additive synthesis. Moving 
the other way, the sound also didn’t change 
much with three harmonics, but did sound less 
flute-like with two harmonics. So, we decided 
that a fundamental and three harmonics 
was optimal. We then ran a variety of tests 
changing the amplitude of the harmonics. 
Figure 5, shows one test that was close to 
the flute sound we wanted. The ratio of our 
amplitudes changed slightly from our initial 
test, to create what we considered a more 
flute-like sound.

After fine tuning the amplitudes of our 
three harmonics, we still were not satisfied 

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
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with the sound being generated. For this reason, we used amplitude modulation 
(AM) sound synthesis to create a vibrato effect. AM sound synthesis works 
by multiplying a wave function with a very small frequency to the main wave 
function. Therefore, we multiplied a cosine function with a frequency of 1 Hz to 
the sum of the four harmonics as shown by the following equation:

f t t a n tn
n

o( ) cos( ) ( cos( ))= ×
=

∑2 2
1

4

π ω π

After we finished testing in MATLAB, we implemented our additive synthesis 
into the ISR and PlaySound method. The PlaySound method first determines the 
correct note to play by adjusting the phase increment value for the fundamental 
frequency. The increment values for the three harmonics are 2, 3 and 4  times 
greater, since the harmonics are at 2f, 3f and 4f from the fundamental frequency, 
f. The phase increment for the frequency modulation (FM) wave never changes, 
because the frequency of the wave is always 1 Hz. The ISR then uses the 
constantly updating increment values from the PlaySound method to implement 
additive synthesis to produce the final sound wave. Figure 6 shows the output of 
the sound spectrum produced by playing our flute after implementing this code.

RESULTS
Overall, we are satisfied with the performance of our electronic flute. With a 

total cost of $38.64, this project was an inexpensive way to explore MCU design 
and sound synthesis. One of our authors, Parth, is a flute player, and he believes 
the sound is realistic. We encourage readers to listen to Parth play the Theme 
from Titanic on our electronic flute. You can watch and listen to this on the 
YouTube video of our project, which is posted on Circuit Cellar’s article materials 
webpage. You can judge for yourself how our electronic flute sounds compared 
to a real flute!

We learned some lessons while working on this project. First, with additional 
time to improve the design of our electronic flute, we would enhance the flute’s 
volume dynamics and sound quality. We didn’t use the microphone’s ADC 
readings to control the volume of the flute’s sound. If implemented correctly, 
the ADC readings of the microphone should increase linearly with how much air 
is blown into it. We could use this relationship to linearly increase the flute’s 
sound volume. When testing our sound synthesis design, we also tried to base 
our design on the Wind Instruments Synthesis Toolbox. Due to the complexity 
of the toolbox and our time constraints, we did not implement its algorithm. If 
we had more time, we believe this toolbox would have helped us create an even 
more realistic sound.
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While many IoT edge devices often need to be extremely low power, having an 
ability to harvest their own power is an even better scenario. Chip solutions 
continue to emerge aimed at the energy harvesting challenge.

Chip Solutions Tackle the Energy 
Harvesting Challenge
Self-Sufficiency at 
the IoT Edge

F orecasts predict that there’s likely 
to be a trillion IoT sensor nodes 
deployed in the world by 2025. 
Powering those devices is going to 

be a challenge because many of those will be 
low power modules residing in remote areas. 
Energy harvesting will be critical in those 
applications because it just won’t be practical 
to replace trillions of batteries that only last a 
year or two.

To help you meet that challenge, there’s 
a variety of chip and development platform 
solutions available that attack various parts 
of the energy harvesting puzzle. These include 
specialized microcontrollers (MCUs), power 
management chips, power regulator ICs as well 
as complete platform solutions and reference 
designs—all aimed at energy harvesting.

The three most popular types of energy 
harvesting are solar, piezoelectric (vibration/
rotation) and thermoelectric. Of the three, 
solar is the most widely used today and it 
relies on photovoltaic cells to provide energy. 
It’s the best fit for typical smart home, smart 
agriculture, smart industrial and similar 
applications. Piezoelectric energy harvesting 
leverages vibration/rotation types of energy, 
and is practical if you’re monitoring motors, 
generators or turbines—anything that moves 

or vibrates. Finally, thermoelectric energy 
harvesting is great for systems involving 
pipes—such as gas pipes or water pipes—where 
one side is hot and one side is cold, and energy 
can be harvested from heat transfer.

No matter what the power source, a module 
powered by energy harvesting relies on either a 
harvesting power supply or an alternative set of 
external components that converts input from 
a solar, piezoelectric or thermoelectric source 
into some voltage range and current. Some 
devices even accept multiple types of power 
source interfaces. But the key issue is that the 
system has to be efficient enough to be viable 
for the situation.

LOCAL EDGE PROCESSING
For its part, Eta Compute’s approach to 

the energy harvesting challenge is to provide 
high performance local edge processing at 
low power levels. The idea is that it’s the RF 
communication portion of an IoT edge device 
that’s the most power hungry. If you can limit 
the amount of data communication needed, 
then you can more easily achieve a solution that 
can run off an energy harvesting power source.

To illustrate the point, Eta Compute’s Chet 
Jewan cites an example of a low power image 
detection module designed to detect cars in your 

By Jeff Child, 
Editor-in-Chief
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driveway. A module without much intelligence 
would only be able to send a full image or video 
data of the driveway, consuming a lot of power 
by the RF transmitter. But with sophisticated 
local processing, the module could decide 
whether to send an image of a car, or just a 
simple text saying whether a car is present 
or not. Moreover, the local processing could 
even decide to take some local action itself, 
requiring no RF data transmission at all. “A 
high level of local processing can sense, infer 
and act locally,” says Jewan.

Eta Compute’s flagship product is its 
ECM3531 ASIC chip for machine learning 
algorithms based on the Arm Cortex-M3 and 
NXP Coolflux DSP processors. The SoC includes 
an analog-to-digital converter (ADC) sensor 
interface and highly efficient PMIC circuits. 
The chip also includes I2C, I2S, GPIOs, RTC, 
PWM, POR, BOD, SRAM and flash.

The ECM3551 has a dual-core architecture 
based on the M3 and Coolflux DSP that 
is designed for low power edge AI IoT 
applications (Figure 1). The device makes use 
of the company’s patented delay insensitive 
asynchronous logic (DIAL), which enables 
dynamic voltage frequency scaling and near 
threshold voltage operation. The MCU uses 
an Arm Cortex-M3 processor and operates 
below 1 MHz to over 100 MHz with power 
consumption as low as 4.5 μA/MHz. By using 
asynchronous processing of all digital logic, 
the architecture enables rapid interrupt 
response for low latency applications.

SOTB TECHNOLOGY
Renesas Electronics has approached 

the challenge of meeting extreme low 
power demands by applying innovations in 
semiconductor process development. A year 
ago, the company unveiled an innovative 
energy-harvesting embedded controller that 
can eliminate the need to use or replace 
batteries in a device. The R7F0E embedded 
controller—Renesas’ first commercial product 
using SOTB (silicon on thin buried oxide) 
technology—is a 32-bit, Arm Cortex-based 
embedded controller. The device is capable 
of operating up to 64 MHz for rapid local 
processing of sensor data and execution 
of complex analysis and control functions. 
The R7F0E consumes just 20 μA/MHz active 
current, and only 150 nA deep standby 
current, approximately one-tenth that of 
conventional low-power MCUs.

The extreme low current levels of the 
SOTB-based embedded controller enables 

system designers to completely eliminate the 
need for batteries in some of their products 
through harvesting ambient energy sources 
such as light, vibration and flow (Figure 2). 
Although the solution was developed with 
IoT devices in mind, the controller is more 
broadly aimed at what they call the new 
market of maintenance-free, connected IoT 
sensing devices with endpoint intelligence. 
This includes health and fitness apparel, 
shoes, wearables, smart watches and drones. 

In June of this year, Renesas followed 
up with the development of new low-power 
technology for use in embedded flash memory 
based on a 65 nm SOTB process. Available 
with 1.5 MB capacity, it is the first embedded 
2T-MONOS (2 transistors-metal oxide nitride 
oxide silicon) flash memory based on 65 nm 
SOTB technology.

BLE SENSOR PLATFORM
As mentioned earlier, solar power is 

the most popular form energy harvesting 
used today. There are a growing number 
of IoT sensor applications where the duty 

FIGURE 2
The extreme low current levels of the SOTB-based embedded controller enables system designers to 
completely eliminate the need for batteries in some of their products through harvesting ambient energy 
sources such as light, vibration and flow.

FIGURE 1
The ECM3551 chip has a dual-core architecture based on the M3 and Coolflux DSP that is designed for 
low power edge AI IoT applications. The device makes use of Eta Compute’s patented delay insensitive 
asynchronous logic (DIAL), which enables dynamic voltage frequency scaling and near threshold voltage 
operation.
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cycle is low enough to support intermittent 
communications, allowing the energy needed 
to support operation to be harvested using 
renewable sources such as solar. Applications 
are expected to include smart home and 
building automation such as HVAC control, 
window/door sensors and air quality 
monitoring. Asset tracking including package 
open/close detection, shock monitoring, and 
temperature and humidity data logging are 
also possible applications.

Offering a complete platform solution, in 
May, ON Semiconductor introduced its RSL10 
Multi-Sensor Platform powered only with a 
solar cell. This complete solution supports the 
development of IoT sensors using continuous 
solar energy harvesting to gather and 
communicate data through Bluetooth Low 
Energy (BLE), without the need for batteries 
or other forms of non-renewable energy.

The combination of ultra-low-power 
wireless communications, small form-
factor solar cell and low duty cycle sensing 
applications makes it possible to develop 

and deploy totally maintenance-free IoT 
sensor nodes. The RSL10 Solar Cell Multi-
Sensor Platform is enabled by the RSL10 SIP, 
a complete System-in-Package (SiP) solution 
featuring the RSL10 radio, integrated antenna 
and all passive components.

The platform combines the RSL10 SIP with 
a solar cell and a host of low power sensors 
from Bosch Sensortec, including the BME280 
all-in-one environmental sensor (pressure, 
temperature, humidity) and the BMA400 
ultra-low-power 3-axis accelerometer 
(Figure 3). Together, they enable developers 
and manufacturers to create complete IoT 
nodes that are entirely powered through 
renewable energy or energy harvested 
from the sensor’s surroundings. For easy 
development, the platform is supplied with all 
design files (Gerber, schematic and BoM) and 
customizable source code as part of a CMSIS 
software package.

HIGH-EFFICIENCY BATTERY 
CHARGER

Energy efficiency can make or break an 
energy harvesting implementation. Offering a 
battery charging solution, STMicroelectronics 
provides its SPV1050 chip, an ultralow power 
and high-efficiency energy harvester and 
battery charger, which implements the MPPT 
(maximum power point tracking) function and 
integrates the switching elements of a buck-
boost converter. MPPT is a common function 
used in solar electric charge controllers.

The SPV1050 device allows the charge of 
any battery, including the thin film batteries, 
by tightly monitoring the end-of-charge and 
the minimum battery voltage in order to 
avoid the over-discharge and to preserve the 
battery life (Figure 4). The power manager is 
suitable for both PV cells and TEG harvesting 
sources, because it covers the input voltage 
range from 75 mV up to 18 V and guarantees 
high efficiency in both buck-boost and boost 
configurations.

Meanwhile, the SPV1050 device boasts 
very high flexibility thanks also to the 
trimming capability of the end-of-charge and 
undervoltage protection voltages. That enables 
any source and battery to be matched. The MPPT 
is programmable by a resistor input divider and 
allows maximizing the source power under any 
temperature and irradiance condition.

An unregulated voltage output is available 
(for example, to supply an MCU), while two 
fully independent LDOs are embedded for 
powering sensors and RF transceivers. Both 

FIGURE 4
The SPV1050 device allows the charge 
of any battery, including the thin 
film batteries, by tightly monitoring 
the end-of-charge and the minimum 
battery voltage in order to avoid the 
over-discharge and to preserve the 
battery life. The power manager is 
suitable for both PV cells and TEG 
harvesting sources.

FIGURE 3
The RSL10 Solar Cell Multi-
Sensor Platform includes the 
RSL10 SIP, a solar cell and a host 
of low power sensors from Bosch 
Sensortec, including the BME280 
all-in-one environmental 
sensor (pressure, temperature, 
humidity) and the BMA400 ultra-
low-power 3-axis accelerometer.
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LDOs (1.8 V and 3.3 V) can be independently 
enabled through two dedicated pins.

THERMAL-BASED PMIC
Among the latest energy harvesting 

solutions from E-peas is its latest power 
management IC (PMIC) announced in February. 
The device is specifically optimized for energy 
harvesting from thermal sources in wireless 
sensor applications. Supplied in a space-
saving 28-pin QFN package, the AEM20940 is 
a highly advanced device based on proprietary 
technology that is capable of extracting 
available input current up to levels of 110 mA.

Taking DC power from a connected thermal 
electric generator (TEG), it can supervise the storing of energy in a rechargeable 
element and simultaneously supply energy to the system via 2 different regulated 
voltages. This is done through its built-in low noise, high stability 1.2/1.8 V and 
2.5/3.3 V LDO voltage regulators. The lower voltage can be employed for driving the 
system MCU, while the higher voltage is intended for the RF transceiver.

Through the AEM20940’s deployment, it will be possible to extend the system 
battery life or, in many cases, eliminate the primary power source from the system 
completely. In this way any dependence on having to regularly replace batteries (which 
often has serious logistical challenges associated with it, as well as adding to the 
overall expense) can be removed.

In more recent news from E-peas, in April, the company confirmed that its 
AEM10941 devices for photovoltaic energy harvesting are being incorporated into 

FIGURE 5
A key design requirement of the mOOvement smart 
tracker project was that the size and weight of the 
unit had to be kept as low as possible, in order to 
minimize the impact on the animal. This placed 
severe restrictions on the surface of the solar panel 
that could be accommodated.

http://www.iar.com
www.circuitcellar.com/iar
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tracking equipment employed in Australian 
cattle ranches. E-peas engineers worked in 
conjunction with the team at Dutch systems 
integrator SODAQ on the development and 
implementation of energy efficient livestock 
monitoring hardware for Brisbane-based 
client mOOvement.

Through use of mOOvement’s smart tracker, 
valuable data on cattle herds can be acquired 
concerning their position and grazing patterns, 
with the ability to set alarms if individual 
animals are not moving or fenced boundaries 
have been breached (Figure 5). Attached to one 
of the cattle’s ears, each tracker comprises an 
accelerometer, a LoRa communication module 
(with built-in MCU) and a GPS transceiver, as 
well as a passive NFC tag.

A key design requirement of the project 
was that the size and weight of the unit 
had to be kept as low as possible, in order 
to minimize the impact on the animal. This 
placed severe restrictions on the surface of 
the solar panel that could be accommodated 
(with it measuring slightly less than 19 mm 
x 43 mm in total and capable of generating 

0.125 W). Consequently, the power system 
needed to be ultra-efficient.

COLD START-UP PMU
IoT devices relying on energy harvesting 

in low energy conditions often have to slowly 
accumulate enough energy to turn on, 
resulting in long delays before the device can 
start sensing, processing and transmitting. 
This can result in missed data collection, 
slow operation and poor user experience. 
With that in mind, Analog Devices provides 
its ADP509x power management unit (PMU) 
that’s designed to solve these problems with 
a multiple-power-path design, which enables 
faster startups and smoother operation.

ADI says that a key barrier for energy 
harvesting is that in many applications energy 
from the environment is only available at 
very low levels (for example, low-light indoor 
solar harvesting), and periodically not at all. 
This requires power management solutions 
that can not only enable satisfactory system 
operation with very little energy, but also 
efficiently manage energy storage devices 
to satisfy energy demand at times when no 
energy is being harvested.

Due to its unique circuit design, ADI claims 
the ADP509x as among the most efficient 
energy harvesting PMUs on the market, 
converting harvested power down to the 16 μW 
to 100 mW range with only sub-μW operation 
losses. The ADP509x also delivers the fastest 
cold-startup time available, according to ADI. 

BOOST/BUCK CONVERTER
Among the solutions for energy harvesting 

from Texas Instruments (TI) is its bq25570 
chip, a nano power boost charger and buck 
converter for energy harvester powered 
applications. 

The bq25570 device is specifically 
designed to efficiently extract microwatts 
(µW) to milliwatts (mW) of power generated 
from a variety of high output impedance DC 
sources like photovoltaic (solar) or thermal 
electric generators (TEG) without collapsing 
those sources.

The battery management features ensure 
that a rechargeable battery is not overcharged 
by this extracted power, with voltage 
boosted, or depleted beyond safe limits by a 
system load. In addition to the highly efficient 
boosting charger, the bq25570 integrates a 
highly efficient, nano- power buck converter 
for providing a second power rail to systems 
such as wireless sensor networks (WSN), 

FIGURE 6
The TIDA-00242 reference design 
supports MPPT to provide optimal 
energy extraction from solar panels. 
It also has internal battery charging 
and protection circuits. It makes use 
of the buck and boost capabilities of 
the bq25570 chip.
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which have stringent power and operational 
demands. All the capabilities of bq25570 are 
packed into a small foot-print 20-lead 3.5 mm 
x 3.5-mm QFN package (RGR).

TI also offers a reference design based 
on the bq25570. The TIDA-00242 reference 
design is a solar charger and energy harvester, 
using a highly integrated power management 
solution that is well-suited for ultra-low 
power applications (Figure 6). The product is 
specifically designed to efficiently acquire and 
manage the microwatts to milliwatts needed 
to power your design. The storage method 
is a 47 nF super capacitor that is charged 
and maintained by 4 series low power solar 
elements using MPPT.

The TIDA-00242 reference design supports 
MPPT to provide optimal energy extraction 
from solar panels. It also has internal 
battery charging and protection circuits. It 
makes use of the buck and boost capabilities 
of the bq25570. Input voltage regulation 
prevents collapsing high impedance input 
sources (boost). And support is provided 
for programmable step-down regulated 
output (buck). Energy is stored in a super 
capacitor, for use in low power applications. 
The reference design is a complete solution, 
including the solar current source, charge 
management solution, super cap and a built-
in LDO regulator.

RF ENERGY HARVESTING
While one viewpoint is that RF 

communication is major power problem for 
energy harvesting applications, start-up Wiliot 
takes an entirely different approach. Wiliot’s 
technology seeks to harvest energy from 
the RF transmissions themselves. According 
to the company, there are two approaches 
to harvesting RF energy: RF scavenging and 
intentional RF energy transfer. The first mode 
of operation taps into existing sources of 
energy from devices being used without the 
intention of generating energy, the energy 
available over-the-air is intermittent and 
unpredictable. The resulting applications this 
mode can enable are stochastic in nature.

Wiliot says that in the latter approach, the 
source of energy is deterministic in terms of 
power levels and time, with a specific duty 
cycle pattern delivered from an infrastructure 
planned to provide it. As such the resulting 
energy output is also more predictable, and the 
transmission of packets from radio powered are 
transmitted at a predictable cadence.

Wiliot uses RF harvesting techniques to power 

its chip, consisting of a Bluetooth radio, the Arm 
Cortex M0+ core, a set of sensors and a security 
element (Figure 7). It can work in both modes 
of operations, though the one it’s designed for 
is the first. When considering the increase in 
the background interaction of products and 
consumer devices that are battery-powered like 
smartphones, the prospect of harvesting power 
without the need for infrastructure is attractive.

TECHNOLOGY RELEASE PLAN
In August, Wiliot announced an update 

on its release plan for its technology. So 
far this year, Wiliot has designed and built 
5 prototype chips. With each version, the 
company has increased robustness, and also 
added encryption, multiple on-chip sensing 
capabilities, and harvesting from three 
radio bands simultaneously. Its most recent 
milestone was the completion of the first 
production chip design, a “release candidate,” 
which should power the Version 1.0 Wiliot tag 
and move them from making small batches of 
product to volume production.

The rest of this year will be focused on taking 
this release candidate chip from wafer, through 
processing, testing, configuration, all the way to 
conversion into the final tag form factor, ready 
for the first field tests next year. By the end 
of 2019, Wiliot expects to have a good sense 
of the performance of the release candidate. 
In Q2  2020, it plans to roll out some of the 
existing Early Advantage Program projects its 
been working on this year. During 2020, the 
company will continue a controlled release of 
that product.

Clearly, the stakes are high for future 
development of energy harvesting technology. 
As designers of IoT edge modules strive for 
lower power operation, energy harvesting 
solutions expand the conditions in which that 
can operate. The battery-free advantages of 
energy harvesting will open up new areas of 
IoT implementations that would otherwise not 
be practical. Chips developers will continue to 
address that challenge with a variety of 
energy harvesting solutions.  

FIGURE 7
Wiliot uses RF harvesting techniques 
to power its chip, consisting of a 
Bluetooth radio, the Arm Cortex M0+ 
core, a set of sensors and a security 
element.
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Analog ICs Feed Needs 
of Industrial Systems

By Jeff Child, 
Editor-in-Chief

Advances for Automation
Industrial automation and process control applications rely 
heavily on a variety of analog ICs to ensure smooth, reliable 
system operations. Chip vendors are responding with 
new solutions across the spectrum of analog 
ICs, including amplifiers, data converters, 
motor drivers and more.

FIGURE 1
The ADuM4122 is a simple dual-drive strength output driver that efficiently toggles between two slew rates controlled by a digital 
signal. The device can control how fast or slow a MOSFET or IGBT turns on or off by user command, on the fly, thereby controlling 
motor currents.

A s factories migrate to ever more automated 
and “smart” operations, system developers are 
hungry for new advances in a variety of analog 
IC product areas. Advances span everything 

from data converters to comparators to motor drivers. These 
devices must meet the particular performance levels for 
industrial designs while meeting the harsh environmental 
demands of the factory floor.

To keep pace with the needs of industrial system developers, 
over the past 12 months analog ICs vendors have continued 
to roll out new chips designed to meet a variety of industrial 
design needs, including factory robotics, instrumentation 
systems and control automation systems. Products include 
both ICs specifically designed for the industrial market and 
those for which industrial is one among a range of other 
applications targeted.

ENERGY-EFFICIENT DRIVER
Exemplifying these trends, in September, Analog Devices 

(ADI) announced the ADuM4122, an isolated, dual-drive 
strength output driver that uses iCoupler technology. It’s 
designed to empower designers to harness the benefits 
of higher efficiency power switch technologies. Electric 
motor-driven systems account for 40% of global electricity 

consumption, according to the International Energy Agency, 
and improvements in motor efficiency can have wide-reaching 
economic and environmental benefits.

With the increased adoption of industrial automation and 
IoT within smart factories, there is a growing demand for 
intelligent technology and features within systems to ensure 
maximum efficiency, says ADI. The ADuM4122 is claimed 
to be the first simple solution that accomplishes this by 
controlling how fast or slow a MOSFET or IGBT turns on or 
off by user command, on the fly, thereby controlling motor 
currents (Figure 1).

The new ADuM4122 is a simple dual-drive strength 
output driver that efficiently toggles between two slew rates 
controlled by a digital signal. Smaller than existing discrete or 
complex integrated solutions that have 20 or more pins, the 
ADuM4122 features only eight pins and works in a variety of 
operating conditions. The ADuM4122 further improves system 
capabilities with high common-mode transient immunity and 
low propagation delay for high performance applications such 
as motion control, robotics and energy.

HIGH-ACCURACY ADCs 
Analog-to-digital converter (ADC) technology continues to 

be critical in industrial applications, particularly for precision 
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instrumentation system designs. With that in 
mind, in June, Microchip Technology rolled out 
a new family of compact ADCs that offer high 
programmable data rates of up to 153.6 Ksps. 
According to the company, the 24-bit MCP356x 
and 16-bit MCP346x delta-sigma ADC families 
offer faster programmable data rates than 
similar devices on the market while providing 
high accuracy and lower noise performance 
(Figure 2). Available in a tiny 3 mm x 3 mm 
UQFN-20 package, these integrated ADCs 
are designed to meet the increasing demand 
for small packaging in space-constrained 
applications such as portable instrumentation 
devices.

Most high-resolution delta-sigma ADCs 
on the market have slower programmable 
data rates of a few Ksps, says Microchip. 
The MCP356x and MCP346x families offer a 
much faster data rate, making the devices 
ideal for a variety of precision applications 
that require different data speeds, including 
industrial process control, factory automation 
and sensor transducers and transmitters. 
The ADCs also offer integrated features to 
eliminate the need for external components 
and reduce the overall cost of a system, 
including an internal oscillator, temperature 
sensor and burnout current source.

The new families provide 24-bit or 16-bit 
resolution, two/four/eight single-ended or one/
two/four differential channel options, allowing 
developers to choose the most suitable 
ADC for their designs. For development 
tools, Microchip provides the MCP3564 ADC 
evaluation kit (ADM00583). The kit includes 
a MCP3564 ADC Evaluation Board for PIC32 
MCUs (ADM00583), a PIC32MX795F512L PIM 
(processor plug-in module) and a USB cable.

AMPLIFIERS AND COMPARATORS
Current-sense amplifiers and comparators 

are among the list of analog ICs important 
to many industrial electronic systems. 
Addressing those needs, in June, Texas 
Instruments (TI) introduced what it claims is 
the industry’s smallest current-sense amplifier 
in a leaded package and the smallest, most 
accurate comparators with an internal 1.2-V 
or 0.2-V reference. Offered in industry-leading 
package options, the INA185 current-sense 
amplifier, and open-drain TLV4021 and push-
pull TLV4041 comparators enable engineers to 
design smaller, simpler and more integrated 
systems while maintaining high performance. 
In addition, pairing the amplifier with one 
of the comparators produces the smallest, 
highest performing overcurrent detection 
solution in the industry, says TI. Figure 3 
shows the INA185 in a typical circuit.

These new devices are optimized for a 
variety of industrial and communications 

applications and well as personal electronics. 
With a small-outline transistor (SOT)-563 
package measuring 1.6 mm by 1.6 mm 
(2.5 mm2), the amplifier is 40% smaller than 
the closest competitive leaded packages. 
Featuring a 55-µV input offset that enables 
higher precision measurements at low 
currents, the INA185 enables the use of 
lower-value shunt resistors to cut system 
power consumption. Additionally, its 350 kHz 
bandwidth and 2-V/µS slew rate enable 
phase-current reproduction to enhance motor 
efficiency and save system power.

The precisely matched resistive gain 
network in the amplifier enables a maximum 
gain error as low as 0.2%, which contributes 
to robust performance over temperature 
and process variations. The device’s typical 
response time of 2 µs enables fast fault 
detection to prevent system damage. System 
designers can add functionality in the same 
form factor and enable high-performance 
design with the TLV4021 and TLV4041 
comparators. Available in an ultra-small 
die-size ball-grid array (DSBGA) 0.73 mm by 
0.73 mm package, the comparators’ integrated 
voltage reference saves board space while 
supporting precise voltage monitoring, which 
optimizes system performance.

The comparators can monitor voltages 
as low as the 0.2-V internal reference, and 
feature a high threshold accuracy of 1% 
across a full temperature range from -40°C 
to +125°C. Low 2.5-µA quiescent current 

FIGURE 2
The 24-bit MCP356x and 16-bit MCP346x delta-sigma ADC families offer high programmable data rates of 
up to 153.6 Ksps. Available in a tiny 3 mm x 3 mm UQFN-20 package, these integrated ADCs are designed to 
meet the increasing demand for small packaging in space-constrained applications.
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delivers extended battery life for smart, 
connected devices. Fast propagation delay 
as low as 450 ns reduces latency, enabling 
power-conscious systems to monitor signals 
and respond quickly to fault conditions.

When using both the INA185 and the 
TLV4021 or TLV4041, engineers can shrink 
their total footprint to enable smaller 
systems. In combination, these devices 
produce the smallest, highest-performing 
overcurrent detection solution–15% smaller 
and 50 times faster than competitive devices, 
says TI. Pairing the amplifier with one of the 
comparators to support overcurrent detection 
on rails as high as 26 V delivers more 
headroom to better manage current spikes.

Production quantities of the INA185 are now 
available through the TI store and authorized 
distributors in a SOT-563 package, measuring 
1.6 mm by 1.6 mm. Production quantities of the 
push-pull TLV4041 and preproduction samples 
of the open-drain TLV4021 comparators are now 
available through the TI store and authorized 
distributors in an ultra-small DSBGA package, 
measuring 0.73 mm by 0.73 mm. 

SMART SHUT DOWN
The ability to reliably shut down factory 

equipment in industrial applications is 
important for safety as well as ensuring 

smooth operations. Along those lines, in 
July, STMicroelectronics (ST) announced 
the STDRIVE601, a 3-phase gate driver for 
600  V N-channel power MOSFETs and IGBTs. 
It was designed to provide state-of-the-art 
ruggedness against negative voltage spikes 
down to -100 V and responds to logic inputs in 
a class-leading 85 ns.

Featuring smart-shutdown circuitry for 
fast-acting protection, the STDRIVE601 turns 
off the gate-driver outputs immediately 
after detecting overload or short-circuit, 
for a period determined using an external 
capacitor and resistor. Designers can set the 
required duration, using large C-R values 
if needed, without affecting the shutdown 
reaction time. An active-low fault indicator 
pin is provided. The STDRIVE601 replaces 
three half-bridge drivers to ease PCB layout 
and optimize the performance of 3-phase 
motor drives for equipment such as home 
appliances, industrial sewing machines and 
industrial drives and fans.

All outputs can sink 350  mA and source 
200  mA, with gate-driving voltage range 
of 9  V to 20 V, for driving N-channel power 
MOSFETs or IGBTs. Matched delays between 
the low-side and high-side sections eliminate 
cycle distortion and allow high-frequency 
operation, while interlocking and deadtime 
insertion are featured to prevent cross 
conduction.

Fabricated in ST’s BCD6S offline process, 
the STDRIVE601 operates from a logic supply 
voltage up to 21 V and high-side bootstrap 
voltage up to 600 V. Bootstrap diodes are 
integrated, saving the bill of materials, and 
under-voltage lockout (UVLO) on each of 
the low-side and high-side driving sections 
prevents the power switches operating in 
low-efficiency or dangerous conditions. 
An evaluation board, EVALSTDRIVE601, is 
available to help users explore the features 
of the STDRIVE601 and quickly get first 
prototypes up and running.

INDUSTRIAL PHOTOCOUPLERS
While photocouplers are used in a variety 

of applications, they must meet special 
requirements to be used in the harsh 
environment of a factory setting. Offering 
a solution, in July, Renesas Electronics 
announced three new 15 Mbps photocouplers 
designed to withstand the harsh operating 
environments of industrial and factory 
automation equipment. The trend toward 
higher voltage, compact systems is driving 
stricter international safety standards and 
eco-friendly solutions that require smaller 
ICs with lower power consumption. The 
RV1S9x60A family meets this need with  
low threshold input current (IFHL) ratings: 

RESOURCES
Analog Devices | www.analog.com

Microchip Technology | www.microchip.com

Renesas Electronics | www.renesas.com

STMicroelectronics | www.st.com

Texas Instruments | www.ti.com

FIGURE 3
Shown here in a typical circuit, the 
INA185 current-sense amplifier 
features a 55-µV input offset 
that enables higher precision 
measurements at low currents. The 
INA185 enables the use of lower-value 
shunt resistors to cut system power 
consumption. Its 350-kHz bandwidth 
and 2-V/µS slew rate enable phase-
current reproduction to enhance 
motor efficiency and save system 
power.

http://www.analog.com
http://www.microchip.com
http://www.renesas.com
http://www.st.com
http://www.ti.com
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the RV1S9160A (SO5) operates at 2.0  mA, 
the RV1S9060A (LSO5) at 2.2 mA, and the 
RV1S9960A (LSDIP8) at 3.8 mA (Figure 4).

Lower power consumption allows the 
RV1S9x60A photocouplers to meaningfully 
suppress power supply heat generation. 
And high temperature operation up to 125°C 
enables board space savings by mounting 
the photocoupler near the IGBT or MOSFET 
power device. The devices are targeted at 
DC to AC power inverters, AC servo motors, 
programmable logic controllers (PLCs), 
robotic arms, solar and wind input power 
conditioners, and battery management 
systems for energy storage and charging.

The RV1S9x60A photocouplers feature high 
common mode rejection (noise tolerance) up 
to 50 kV/µs (min) to protect MCUs and other 
I/O logic circuits from high voltage spikes 
while transferring high-speed signals. The 
RV1S9x60A family also offers a variety of 
packages with the smallest footprint for each 
reinforced isolation (up to 690 VRMS), and 
minimum creepage distances of 4.2 mm to 
14.5 mm to ensure safe operation.

The RV1S9160A, RV1S9060A and RV1S9960A 
photocouplers provide low voltage power supply 
operation of 2.7 V to 5.5 V. Isolation voltages 
for the devices are as follows: 3750  VRMS 
(RV1S9160A), 5000 VRMS (RV1S9060A) and 
7500 VRMS (RV1S9960A). The devices operate 
in high temperatures from -40°C to +125°C 
(RV1S9160A and RV1S9060A), and from -40°C 
to +110°C (RV1S9960A). Supply current of 
2.0 mA maximum, while pulse width distortion 
at is a low 20 ns maximum. Propagation delay 
for the devices is of 60 ns max with propagation 
delay skew of 25 ns max.

POWER FACTOR CONTROLLER
For industrial equipment to operate 

efficiently, system designers need power-
factor control suited today’s digital power 
system configurations. With that in mind, in 
August, STMicroelectronics announced the 
STNRGPF12, a dual-channel interleaved boost-
PFC controller that aims to blend the flexibility 
of digital power with the responsiveness of 
analog algorithms. The device can be easily 
configured and optimized using the ST’s 
eDesignSuite software. Suited to applications 
over 600 W, the STNRGPF12 enhances 
efficiency and reliability in equipment as 
diverse as industrial motor controls, charging 
stations, uninterruptable power supplies, 
4G and 5G base stations, welding machines, 
telecom switches, home appliances and data-
center power supplies.

The STNRGPF12 operates in continuous-
conduction mode (CCM) at fixed frequency 
with average-current-mode control (Figure 5). 
The best of both digital and analog worlds 

meets in the STNRGPF12’s inner and outer 
control loops. The inner current loop utilizes 
a hardware analog Proportional-Integral (PI) 
compensator, while the outer voltage loop 
is performed by a digital PI controller with 
fast dynamic response. This enables the 
STNRGPF12 to manage cascaded control of 
the voltage and current loops to regulate the 
output voltage by acting on the total average 
inductor current.

Integrated features include digital inrush-
current limiting, which leverages silicon-
controlled rectifiers (SCR) in the high-side 
switching circuitry to facilitate soft-start 
management and enhance system robustness. 
The STNRGPF12 also supports load feed-
forward, current balancing, phase shedding, 
and fan control. An integrated UART allows 
access to non-volatile memory for user 
configuration of PFC parameters to meet 
specific application needs and permits 
monitoring of parameters in the field. In 
support of the STNRGPF12, ST provides an 
extensive ecosystem that includes the STEVAL-
IPFC12V1 dual-channel 2 kW interleaved PFC 
reference design, as well as the configuration 
software. 

FIGURE 4
These three 15 Mbps photocouplers 
are designed to withstand the harsh 
operating environments of industrial 
and factory automation equipment. 
The RV1S9x60A family offers low 
threshold input current (IFHL) ratings: 
the RV1S9160A (SO5) operates at 
2.0  mA, the RV1S9060A (LSO5) at 
2.2 mA, and the RV1S9960A (LSDIP8) 
at 3.8 mA.

FIGURE 5
The STNRGPF12 is a dual-channel 
interleaved boost-PFC controller 
designed to blend the flexibility of 
digital power with the responsiveness 
of analog algorithms. Suited to 
applications over 600 W, the 
STNRGPF12 enhances efficiency 
and reliability in equipment such as 
industrial motor controls.
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Panel PCs are a category of display systems that are meant to be mounted 
on a factory wall or on the side of an industrial machine. They’re also well 
suited for transportation systems like railway user interfaces. Rather than 
simply being a display, panel PCs embed complete single board computing 
functionality, providing a comprehensive embedded solution.

Product Focus:  

Panel PCs
HMI Intelligence

B y providing a complete, all-in-one, 
embedded computing and HMI 
(human-machine interface), Panel 
PCs enable any embedded system to 

display information and enable user control. Most 
modern Panel PCs are touchscreen displays unless 
they are basically digital signage displays. In this 
article, the product album of representative Panel 
PCs shows a wide variety of products that vary 
in size and feature sets. Panel PCs embed full 
blown SBCs, often using the latest and greatest 
embedded microprocessors, including Intel Kaby 
Lake, AMD Embedded G-Series, NXP i.MX8M and 
others. Because Panel PCs tend to be installed 
in long-life cycle applications, using embedded 
processors makes sense.

Industrial systems such as factory automation 
and process control are among the most 
common uses for Panel PCs. And because 
industrial applications come in all types, today’s 
crop of Panel PCs are available for a variety of 
environmental conditions, for example extreme 
heat environments, high-hygiene environments 
and more benign applications like retail systems. 
Panel PCs are also attractive for transportation 
applications like railway systems. As the product 
album shows, some Panel PCs are even designed 
with railway needs in mind. In recent years, 

wireless communication support has become more 
universal in Panel PCs, providing Wi-Fi or Bluetooth 
technology for remote applications where cabling 
connections aren’t practical.

Illustrating an example application, iNOEX 
needed a Panel PC for an ultrasonic measurement 
that they developed for pipe centering to achieve 
optimum pipe wall thickness. With this new 
measurement technology, the die head used 
to produce large-sized and thick-walled pipes 
could be quickly centered, reducing start-up 
scrap and saving considerable costs. Engineers 
at iNOEX needed a Panel PC to serve as the 
systems’ visualization client and HMI. Because 
of the environment the machine is used in, they 
required a 10" Panel PC with a robust, fanless and 
completely-sealed IP66-rated design (Figure 1).

iNOEX chose the Kontron’s Intel Atom processor-
based Kontron Nano Client panel PC with stainless 
steel housing. At the time, the Atom processor was 
the optimum choice for a low power system that 
could be fully enclosed and cooled without the use 
of fans. The unit offers all required interfaces for 
HMI or terminal applications. Essential for pipe 
extruding equipment was its Compact Flash port 
for data storage. Unlike a traditional rotating hard 
drive, Compact Flash features no moving parts and 
excellent shock and vibration protection.

FIGURE 1
iNOEX used a Panel PC for an ultrasonic measurement that they developed for 
pipe centering to achieve optimum wall thickness. They needed a Panel PC to 
serve as the systems’ visualization client and HMI. Because of the environment 
the machine is used in, they required a 10" Panel PC with a robust, fanless and 
completely-sealed IP66-rated design.
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Rugged Touch Panel PC for 
Railway Systems

The DMI-1210 from ADLINK 
Technology is a 12.1" Driver Machine 
Interface (DMI) panel PC designed 
specifically for the railway industry, 
equipped with Intel Atom x5-E3930 
processor (formerly Apollo Lake), 
resistive touch and MVB interface. 
It can be applied as an HMI unit 
for driver’s desks, control panel for 
passenger information systems, 
surveillance system control/display 
unit or in railway diagnostics and 
communications applications.

• Intel Atom x5-E3930 processor, up 
to 1.8 GHz

• 12.1" color display: 4:3, 1024×768 
pixels, 600 cd/m2, 5-wire resistive 
touch

• Isolated 2x M12 GbE, 2x DB-9 serial 
and 1x M8 USB 1.1 ports

• MVB/CAN bus support by PC/104 or 
Mini PCI Express add-on module

• Built in GNSS and two Mini PCI 
Express card slots for cellular 
modem with USIM

• Nominal Voltage: 24 VDC, 36 VDC, 
72 VDC and 110 VDC (EN50155 
compliant)

• IP65 front and IP20 rear ingress 
ratings

ADLINK Technology
www.adlinktech.com

Industrial Panel PC Supports 
Wide Temp Range

Advantech’s TPC-71W is a compact 
touch panel computer equipped with an 
NXP i.MX 6 Cortex-A9 dual/quad-core 
processor, 7" TFT LCD display, multi-
touch glass sensor, 2 GB of DDR3L RAM 
and 8 GB of eMMC storage. TPC-71W 
supports a wide operating temperature 
range (-20°C to 60°C /-4°F to 140°F) and 
VESA mounting and features an IP66-
rated front panel that protects against 
water and dust ingress.

• 7” 16:9 WSVGA LCD with multi-touch 
P-CAP control and true-flat IP66-
rated front panel

• Up to 2 GB DDR3L RAM and 8 GB 
eMMC storage onboard

• 10/100/1000 Mbps LAN with IEEE 
802.3at PoE-PD support

• 1 MB FRAM backup memory for 
unexpected power interruptions

• Serial port with 120 Ω termination 
resistor that supports the CAN 2.0B

• Embedded browser and VNC tool for 
rapid Web App development

• Compatible with VESA and panel 
mounting

Advantech
www.advantech.com

10.4" Fanless Panel PC 
Features Stainless Steel 
Design

The GOT810-845 from Axiomtek is a 
10.4” stainless steel fanless touch panel 
computer. Its full IP66 and IP69K-rated 
enclosure and IP66-rated M12-type 
connectors are designed for harsh 
industrial and outdoor environments. 
The unit is powered by the Intel 
Celeron processor N3060 (codename: 
Braswell). It has a 10.4” XGA TFT LCD 
display with 350 nits of brightness.

• 10.4” XGA TFT LCD flat bezel 
projected capacitive (or resistive) 
touch

• IP66/IP69K-rated (NEMA 4X) water/
dust/corrosion-proof design

• Full stainless-steel enclosure with 
type 316

• -10°C to +50°C wide operating 
temperature range

• Fanless system with Intel Celeron 
N3060

• Optional Wi-Fi/3G kit for wireless 
network connectivity

• 9 to 36 VDC wide range power input
• M12 type I/O connectors for harsh 

environments

Axiomtek
www.axiomtek.com

http://www.adlinktech.com
http://www.advantech.com
http://www.axiomtek.com
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Light Industrial Interactive 
Panel PC has PoE

IEI Integration’s AFL3-W10A-AL is 
panel PC based on Intel’s Celeron J3455 
(quad core, 1.5 GHz up to 2.3 GHz) 
processor. The unit supports PoE which 
allows electronic devices to receive 
both power and data through one 
Ethernet plug-in. The ability to receive 
both power and data through one cord 
means less cabling and less cost for the 
factory automation.

• 10.1" light industrial interactive 
panel PC

• 9 V to 30 V wide range DC input with 
lockable DC jack

• Selectable AT/ATX power mode
• Built-in speakers
• Support PoE PD IEEE803.2 af/at/bt
• IP64/IP65 compliant front panel
• Touch screen with anti-UV / anti-

glare coating

IEI Integration
www.ieiworld.com

21.5" Kaby Lake-Based Panel 
PCs for Smart Retail

The UPC-7210 from Ibase is a fanless 
21.5" panel PC is created for smart 
retail applications. It features a full flat 
bezel design and a 1920×1080 IPS LCD 
with projected capacitive touch screen 
that allows multi touch and gesture 
touch functionalities. The unit has high 
reliability and sealed housing, with 
IP65 rated front panel for waterproof 
resistance and are powered by 7th Gen 
Intel Core Processors.

• 21.5" IPS LCD, 1920×1080
• Projected capacitive touch screen, 

supports multi touch
• IP65 front-panel waterproof 

protection
• Supports a variety of processor 

platforms, from performance to 
entry level

• Optional wireless solution

Ibase
www.ibase.com.tw

10.1" WUXGA Panel PC Sports 
i.MX8M Processor

Estone Technology’s PPC-4310 is an 
all-in-one industrial PoE (power over 
Ethernet) touch Panel PC with WUXGA 
1920×1200 touch screen. The system 
equips with NXP’s i.MX8M Quad Core 
Arm processor with a guaranteed ten 
year lifespan. Edge to edge glass front 
panel meets IP65 rating. The Gbit 
Ethernet PoE option makes it perfect for 
industrial control, building automation, 
HMI and more.

• NXP i.MX8M application processor 
with long life cycle support

• IEEE 802.3af PoE Gbit Ethernet port, 
second PCIe GbE option

• 10.1" IPS LCD panel with projected 
capacitive touch screen

• On-board Wi-Fi/BT, RS-232/485 and 
GPIO ports

• Smart codec with dual-core DSP for 
digital MICs and voice control

• Camera, digital MICs and light 
sensor options

• Support Android 8.1, 9.0, Yocto 
Embedded Linux, Ubuntu

Estone Technology
www.estonetech.com

Panel PCs

http://www.ieiworld.com
http://www.ibase.com.tw
http://www.estonetech.com
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Panel PC with IP69K is Made 
for High Hygiene Systems

Designed according to EHEDG 
guidelines, the FlatClient HYG from 
Kontron features a maximum protection 
class with IP69K. These specifications 
qualify the new FlatClient HYG for use 
in sensitive hygienic scenarios, in the 
food and pharmaceutical industry as 
well as in clean rooms of semiconductor 
manufacturing plants, in optics and 
laser technology, life sciences and 
nanotechnology. The robust basic 
design enables operation next to dirt-
generating manufacturing machines.

• Designed for high hygiene standards 
following EHEDG guidelines

• Stainless steel housing with IP69K 
protection (support arm version)

• Suited for washdown applications
• Scalable performance from Intel 

Atom to Intel Core i5
• Smooth, seamless display surface for 

perfect cleanability
• Water drop rejection, palm rejection

Kontron
www.kontron.com

In-Vehicle Panel PC Supports 
Camera Expansion

The VMC 3021 from Nexcom is a 
10.4" all-in-one robust vehicle mount 
computer designed for the warehouse, 
port, logistic and material handling 
markets. It implements the Intel Atom 
x7-E3950 processor (codename Apollo 
Lake) on both of Windows and Linux 
platforms, and offers complete IP65. 
VMC 3021 is able to support analog 
camera x3 for security purpose and 
takes less than 1 second to see video 
content.

• 10.4” XGA TFT LCD monitor with 
5-wire resistive touch

• Built-in Intel Atom x7-E3950 
processor, 1.6 GHz

• Aluminum die-casting and fanless 
design

• Analog camera x3 (CVBS)
• Complete IP65 housing
• Automatic/manual brightness control
• Isolated CAN bus 2.0 x2
• UPS Battery and PoE 802.3af/at 

(optional)

Nexcom
www.nexcom.com

Rugged 12.1" Panel PC Meets 
Railway HMI Needs

MEN Micro’s DC17 is a rugged, 
fanless and maintenance-free human-
machine interface (HMI) for the train 
driver cabin desk, for example as the 
operator display for CCTV control, 
diagnosis and maintenance, or fleet 
management.

• 12.1” display with LED backlight
• 1024×768 pixels resolution
• AMD Embedded G-Series
• Wireless communication 2G, 3G, 4G, 

WLAN, GNSS
• MVB interface (optional)
• All external interfaces on M12 

connectors
• -40°C to +70°C (+85°C), fanless
• Maintenance-free design
• Compliant to IP65 (front) and EN 

50155 (railway)
• Windows and Linux support

MEN Micro
www.menmicro.com

http://www.kontron.com
http://www.nexcom.com
http://www.menmicro.com
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Fanless E3800-Based Panel 
PCs are IP65-Rated

WinSystems’ PPC65B-1x Panel PC 
Series is IP65-certified and optimized for 
use in demanding market applications 
including industrial machinery, utilities, 
petroleum, transportation, pipeline and 
food processing, wherever there is a 
need for tight system integration in a 
minimal footprint.

• 1.9 GHz Quad-Core Intel Atom E3845 
processor

• Up to 8 GB of RAM
• IP65-compliant fanless panel PC
• Front display sealed against water 

and dust
• -20°C to +70°C operating 

temperature range
• Wide input power: 12-24 VDC
• 2x Gbit Ethernet ports
• 1x USB 2.0 port (up to 3x with 

expansion)
• 1x USB 3.0 port
• Watchdog timer

WinSystems
www.winsystems.com

7" Touch Panel PC Serves Up 
iMX6 Processor

Powered by the NXP i.MX6 Cortex-A9 
Arm CPU, Technologic Systems’ 
TS-  TPC-  7990 Touch Panel Computer 
(TPC) features a 7" capacitive or resistive 
touch display, high performance CPU 
subsystem, wide variety of connectivity 
options and multimedia capabilities. 
The TS-TPC-7990 is well suited for 
applications that require a touch-based 
HMI, including: industrial automation, 
medical, automotive, self-service kiosks 
and retail point-of-sale terminals.

• HMI solution featuring capacitive or 
resistive touch high brightness LCDs

• Processor: NXP’s 1 GHz i.MX6 Arm 
CPU

• Wireless connectivity for remote 
access and IoT applications

• Storage: on board eMMC, mSATA 
drive support, microSD card

• High speed industry standard 
connectors like Gigabit Ethernet and 
Mini-PCIe

• 2x USB host, 1x USB device, 
1x Bluetooth, 1x Wi-Fi, 1x SPI,  
1x I2C

Technologic Systems
www.embeddedarm.com

Panel PC Family Offers Choice 
of 64 Models

Taicenn’s TPC-DCM industrial series 
of panel PCs lets you choose between 64 
configurations, with 8x Intel processor 
choices and 8x screen sizes: 15.0", 
2x 15.6", 17.0", 18.5", 19.0", 21.5" and 
24.0" models ranging from 1024×768 
to 1920×1080 pixels. For processors, 
you can choose between 6th or 7th Gen 
U-series Core, Apollo Lake or Bay Trail 
CPUs.

• Various dimensions: 15.0", 15.6", 
17.0", 18.5", 19.0", 21.5" and 24.0"

• High quality LCD display with LED 
backlit

• Multi-level CPU options, including 
Intel Baytrail, Apollo Lake, Skylake, 
Kaby Lake

• Memory max. support up to 8 GB or 
16 GB (DDR4L)

• Low power, compact and fanless 
design

• True flat, zero bezel front panel, 
front IP65 protection

• Self-developed anti-finger print 
industrial capacitive touch screen

• Panel mount and VESA mount

Taicenn
m.taicenn.com

Panel PCs

http://www.winsystems.com
http://www.embeddedarm.com
http://m.taicenn.com
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By 
Colin O’Flynn

Embedded System Essentials

Embedded System Security Live
Coverage of Two Security Events

I know it’s not easy to stay current with all 
the latest embedded security news and 
attacks. With that in mind, this month I 
want to bring together a few pieces of 

research I thought would be of interest to you. 
To do this, normally I’d focus only on topics 
from the Black Hat “hacker” conference in Las 
Vegas, NV. But this time, I’m also including 
some additional research from the USENIX 
WOOT (Workshop On Offensive Technology) 
conference. WOOT took place in Santa Clara, 
CA shortly after Back Hat.

EXECUTE ONLY MEMORY (XOM)
I’m going to start with a presentation 

from WOOT, because it’s probably of the most 
importance for embedded developers. The 
paper in question is entitled “Taking a Look 
into Execute-Only Memory” by Marc Schink 
and Johannes Obermaier. The paper attacked 
the idea of Execute Only Memory (XOM), 
which is present in different forms on many 
devices. Generally, this means a memory 
space (typically flash or ROM) from which we 
can execute code, but can’t actually read data 
from. This is almost always sold as a way to 
protect your sensitive code from being read 
out by an attacker.

To be effective, this is enforced in hardware. 
The enforcement happens because reads from 
the execute-only memory space must come 
from the instruction bus and not from the 
data bus. See Figure 1 for an example of 
these different memory buses. The bottom of 
that example processor core in Figure 1 has 
several buses: “ICode” is the instruction bus 

interface and “DCode” is a data bus interface. 
In theory that means that certain memory 
sections should only be able to send data 
over the ICode bus. All that said, here the 
authors found several implementation errors 
for detecting what counts as instruction 

Colin summarizes some interesting presentations from the Black Hat conference in 
Las Vegas—along with an extra bonus event. This will help you keep up-to-date with 
some of the latest embedded attacks, including execute only memory attacks, fault 
injection on embedded devices, 4G cellular modems and FPGA bitstream hacking.

Cortex-M4 Processor

Interrupts and
power control Cortex-M4 or

Cortex-M4F
Processor core

Flash patch
breakpoint

(FPB)

Memory
protection
unit (MPU)

Data
watchpoint
and trace

(DWT)

AHB
Access port
(AHB-AP)

Serial-wire
or JTAG

Debug port
(SW-DP or
SWJ-DP)

Serial-wire
or JTAG Debug

interface

Bus matrix

ICode
AHB-Lite

instruction
interface

DCode
AHB-Lite

Data
interface

System
AHB-Lite
System
interface

PPB APB
Debug System

interface

Nested
vectored
interrupt
controller
(NVIC)

FIGURE 1
An example processor core. Note the bottom side shows different buses for Instruction (ICode) and Data 
(DCode) access.
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vs data bus access. Some devices—the 
STMicroelectronics STM32F7 in particular is 
called out in the paper—incorrectly classify 
certain accesses from the debug access port 
logic as instruction bus access, and allow 
reading out of the protected memory.

More fundamentally, the authors also 
attacked the very idea of XOM. It’s instructive 
to observe the side effects of instruction 
execution. For example, we can see a single 
unknown instruction executed in Figure 2. 
We assume we know the input state (“1” in 
Figure 2), which is the values in all registers, 
processor flags and similar. We can also 
observe the state (“3” in Figure 2) after the 
instruction execution. You can observe this in 
two possible ways. The easiest is when devices 
still allow debugger connectivity during XOM 
execution. The debugger cannot see any of the 
instructions being executed, but can observe 
the registers/SRAM. Therefore, as you single-
step through the instructions, you get new 
ideas of the instruction set. If debug access is 

not possible, they also demonstrated a second 
way, which is using an interrupt after each 
instruction executed. The interrupt handler 
can then observe or download the system 
state in a similar manner to the debugger.

Certain instructions would have 
certain side-effects. A memory load for 
example would see the value in a register 
overwritten. But many other instructions 
would also change a register value—an 
addition or subtraction, for example, would 
also overwrite a register. But, if we had a 
known pattern loaded into memory and the 
registers, the load would be distinguishable 
from an addition or subtraction. Therefore, 
by observing side-effects in a more controlled 
environment, it becomes possible to discover 
both the instruction and the arguments. 
This is iteratively repeated to narrow down 
similar instructions that might require 
different starting states to distinguish them. 
For example, there are several conditional 
branch instructions, and you would need to 
distinguish from a “branch if not equal” and 
“branch if less than”.

The authors of the paper extended this 
idea to demonstrate a full read-out attack 
on a device, and also worked to prove how 
this worked against devices that disable 
debug during XOM execution. The result is 
that a demonstration of how XOM could be 
“reversed” by a dedicated attacker.

FAULT INJECTION ATTACKS
Meanwhile, the Black Hat event had (at 

least) two talks on fault injection. One was my 
own, entitled “MINimum Failure.” I presented 
the work that I wrote  about in the May 2019 
issue (Circuit Cellar 346). If you don’t recall 
that article, the summary is that you can 
use fault injection to corrupt the processing 
of the wLength value of a USB packet. This 
allows an attacker to read back up to 65 KB of 
memory, which I demonstrated as recovering 
the private key from a Bitcoin wallet.

Since that article, I extended that work 
in a few ways. First, I realized that similar 
processing is present in almost all USB 
stacks. This includes many vendor-provided 
examples alongside most USB stacks that 
vendors provide. I also released my open-
source hardware tool that I call PhyWhisperer-
USB, It enables you to easily trigger on USB 
data—along with some basic sniffing of USB 
2.0 LS/FS/HS data. You can see a photo of 
that in Figure 3. You can learn more about 
PhyWhisperer-USB from its github page. 
A link to it is provided on the Circuit Cellar 
article materials webpage. This includes all 
the hardware documentation, along with 
example Python scripts and documentation.

The second presentation was entitled 

Memory address

Input state

Instruction execution

Output state

0x0000 0802

0x0000 0804

0x0000 0806

0x0000 0808

0x0000 080a

mov r0, #23

nop

???

???

???

Instruction

1

3

2

FIGURE 2
Observing the side-effect of instruction execution can reveal both the instruction and the arguments.

FIGURE 3
PhyWhisperer-USB is an open-source tool for USB 2.0 triggering and sniffing.

Additional materials from the author are available at:
www.circuitcellar.com/article-materials

http://www.circuitcellar.com/article-materials
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“Chip.Fail” by Thomas Roth, Josh Datko and 
Dmitry Nedospasov. This demonstrated basic 
voltage fault injection attacks on various 
devices, which helps demonstrate that 
you should consider fault-resistant coding 
techniques to help prevent some of these 
attacks. These fault-resistant techniques are 
something I plan on talking about in my next 
article, so keep an eye out for the January 
2020 issue where you can start your new year 
out by working with fault-resistant designs.

4G MODULE ATTACKS
Another interesting presentation was one 

from the Baidu Security Lab, which presented 
a talk entitled “All the 4G Modules Could be 
Hacked.” This talk is of interest to anyone 
who uses cellular modules in their products, 
because these modules are a common method 
of adding remote connectivity for data 
logging and remote control. These modules 
are often found as part of a mini-PCIe card 
in an embedded Linux system, but they take 
other forms as well. The talk focused on both 
problems with the 4G modules, including 
common issues with the user configuration 
and fundamental problems in the baseband 
device itself. I’ll give you a few examples of 
both of these.

One of the most common problems was 
that the security implications of adding 
that module may not be understood. Some 
carriers, for example, would add multiple 4G 
devices to a network without isolating them 
from each other, allowing someone to scan 
(and connect to) other devices. As a user, you 
don’t necessarily know the configuration of 
the access point to which you are connecting, 
so you need to assume someone else on the 
network can find this device. A screenshot of 
the port scan test they performed is given in 
Figure 4.

Assuming someone does find the device, 
what can they do? Part of this presentation 
showed how services (such as TELNET or SSH) 
were running with hard-coded usernames 
and passwords. It was possible to recover 
these hard-coded passwords, giving someone 
remote access to the system. And, because 
these appeared to be reused across the 
deployment, the high effort involved in 
breaking one password now allowed a more 
widespread attack to apply.

In addition, there are some more 
fundamental security implications of 
adding these modules. Most of them will 
downgrade to older (GSM or “2G”) protocols 
if they cannot reach a 3G/4G base-station. 
Unfortunately, these older standards can be 
easily abused to force the device to connect 
to a malicious cellular base station, which was 
also demonstrated in this talk. Such attacks 

FIGURE 4
Port scan results can reveal open ports on 4G networks, where the utility has not isolated clients.
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are well-known, but again someone looking to 
simply add easy cellular connectivity to their 
product may not consider that an attacker 
could easily observe (or control) any network 
traffic.

Forcing use of higher-layer encryption is a 
requirement to survive in such an environment, 
for example, by only allowing encrypted traffic 
going over HTTPS or SSH. In addition, turning 
off 2G support may be wise to prevent these 
older standards from being used at all. Many 
carriers around the world have stopped 
supporting 2G in order to free up bandwidth 
for 4G, with most major carriers already fully 
turning off their 2G networks or announcing 
dates in the next few years to do so.

REWRITING FPGA BITSTREAMS
A final attack of interest was one with 

a very odd name. The name is depicted 
by three angry cat emojis, which we can’t 

represent on these magazine pages. So, 
instead you can go by the pronounced 
version of that attack that the paper’s 
authors suggest: “Thrangycat.” I’ll get to 
the title of paper in moment—you’ll see why. 
This attack invalidated a huge amount of 
security assumptions on Cisco gear, which 
used an FPGA as a hardware root of trust. 
A block diagram of the Cisco setup is shown 
in Figure 5.

In the Cisco setup, the FPGA bitstream 
is loaded from a SPI flash. The FPGA forms 
the “root-of-trust” because it then loads 
the basic bootloader into the application 
processor (main processor). The FPGA can 
then observe the loading of the Stage 1 
bootloader, and during the loading of this 
Stage 1 bootloader the FPGA can validate 
that correct code is being loaded—in other 
words, that no attacker has modified the 
system.

SPI Flash

SPI Flash

3Stage 1 bootloader

Application
processor

FPGA
Root-of-trust

Reset

1Configuration 
   bitstream

2Stage 0 
   bootloader

FIGURE 5
Cisco Root of Trust relies on a FPGA 
to perform initial device boot, along 
with resetting the processor during 
security violations.

FIGURE 6
This tool is part of the open-source Spartan 6 bitstream reverse engineering efforts.
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If any security violation is found, the FPGA uses the reset line 
to kill the system. The idea here being that the FPGA is performing 
a hardware action to prevent a clever attacker from doing low-
level modifications. The FPGA has a 100-second timeout before 
it resets the system. And that is the origin of the title of this talk 
presented at Black Hat by Jatin Kataria, Richard Housley, and Ang 
Cui: “100 Seconds of Solitude: Defeating Cisco Trust Anchor with 
FPGA Bitstream Shenanigans.”

But, as you know, the FPGA itself is not fixed hardware. It 
loads a bitstream from a SPI flash. Modifying the SPI flash 
allows you to modify the FPGA bitstream. Because the FPGA 
bitstream itself does other tasks (including loading the Stage 
0 bootloader), the original bitstream does need to be loaded. 
But the Cisco assumption was that reverse-engineering the full 
bitstream to modify the design would be very difficult (which is 
true). Luckily a full reverse-engineering isn’t actually needed. 
In this case, they only need to change the reset pin output 
such that it is no longer asserted. This minor modification 
is something that can be reverse-engineered, since it only 
modifies the output drive of the FPGA.

To assist with this work, they built a FPGA bitstream 
visualizer tool. Back in June 2014, I actually talked about the 
Spartan 6 bitstream partial reconfiguration, and discussed 
some of the bitstream format since it is partially documented. 
My article was called “Partial FPGA Configuration,” (Circuit 
Cellar 287, June 2014). But back then I didn’t have such a nice 
visualization tool as you can see in Figure 6!

To round out the attack, they demonstrated how someone 
can remotely reload the SPI flash that holds the FPGA bitstream. 
The result of this means a remote attacker could also disable 
the ability to recover the SPI flash—the reprogramming of the 
SPI flash is done via a FPGA feature. The attacker can build 
a new bitstream that simply disables those I/O pins once the 
bitstream is booted. This requires a technician to physically 
reprogram the SPI flash on-board the affected Cisco product.

KEEPING UP ON MORE ATTACKS
Hopefully, this summary has given you a look at a few new 

attacks from 2019. It’s hard to keep up with everything that 
comes out (even for myself), and for space reasons I can’t hope 
to fit every important attack into this article. But having an idea 
of these attacks is useful as you design your own products. 

ABOUT THE AUTHOR
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Picking Up Mixed Signals

Bluetooth-Enabled ECG Monitor

I n my last column, I described a Variable 
Frequency Drive project I built, using 
Cypress Semiconductor’s PSoC  5LP 
microcontroller (MCU). Although I had 

used PSoC MCUs in the past, I was quite 
impressed by the advances they had made 
in both the hardware and in the Creator 4.2 
application that you use to develop code for 
the PSoC family. I decided to continue to 
explore this family of devices while things 
were still fresh in my mind.

I looked at the latest offerings in the PSoC 
family—the PSoC6. Earlier generations of the 
PSoC family were each based on a specific 
central processing unit, beginning with a very 
limited custom CPU used in the PSoC1 family, 
advancing to an 8051 derivative (PSoC3), and 
then finally an Arm Cortex M3 in the PSoC 5LP. 
What differentiates each PSoC device in a given 
generation are the number and scope of the 

custom analog and digital blocks contained in 
that device.

The PSoC 6 is the first PSoC generation to 
contain any wireless connectivity. The higher-
end PSoC 63/64 models have Bluetooth Low 
Energy (BLE) functionality built in. The PSoC 
60,61 and 62 contain a similar CPU, but no 
BLE function. All devices in the PSoC6 line are 
dual core, containing both a Cortex M4 and a 
low-power Cortex M0+. If you check out the 
Cypress development board offerings for the 
PSoC6, it appears that Wi-Fi is also supported 
in some PSoC 6 devices. This is not true, 
however. The PSoC 6 development boards that 
feature Wi-Fi do so via a separate CYW4343W 
Wi-Fi/BT daughterboard. I wasn’t interested in 
such a development board, because I generally 
use the Espressif Systems ESP8266 or ESP32 
modules for anything I do that requires Wi-Fi.

In the past, I always liked the way that 

Brian has written articles in the past about projects that use Cypress 
Semiconductor’s PSoC MCUs, including his most recent piece about the variable 
frequency drive project he built using the SoC5LP MCU. This month, he explores 
the latest offerings from this MCU family, the PSoC6 5LP MCU. In this project 
article, Brian selects the Cypress CY8CPROTO-063-BLE to build a Bluetooth-
enabled ECG monitor.

Using the Cypress PSoC 6 MCU

By 
Brian Millier
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Cypress designed its development boards. It 
has the usual assortment of larger boards 
containing a variety of peripherals, including 
displays and cap-sense buttons. However, 
Cypress also made small modules containing 
only the bare-essential components, in DIP-
style packages on 0.1" centers. These suit my 
construction practices perfectly. As a bonus, 
such boards for the PSoC3,4 and 5LP families 
(which I had used in the past), were priced 
between $5 and $15. These are obviously 
sold below cost, since the parts on the snap-
off programmer alone (included with these 
modules), would cost more.

I chose Cypress’s low-cost CY8CPROTO-
063-BLE for this project. The daughterboard 
containing the PSoC6 MCU/BLE antenna, 
(right), and the snap-off programmer (left) 
are shown in Figure 1.

BLUETOOTH LE AT FIRST GLANCE
I’ve created many Wi-Fi projects in the 

past, using the ESP8266 or ESP32 modules 
and compatible Arduino IDE/libraries. Most 
of the complexity of the Wi-Fi protocol is 
hidden by the Arduino Wi-Fi library, and it’s 
not that hard to get a project up and running 
(at least at the security level imposed by a 
WPA2 connection to a home wireless router). 
Programming the MCU firmware is a lot more 
complicated in the case of Bluetooth.

The simplest approach to a Bluetooth-
enabled peripheral uses a Bluetooth module 
containing a standard UART interface. I’ve 
used the Adafruit “Bluetooth LE UART Friend” 
module. It’s easy to use because Adafruit 
supplies not only a sample Arduino sketch 
written for it, but also matching iOS and 
Android smartphone apps.

However, once you go beyond a simple 
BLE-to-UART bridge device, things become 
much more complicated. BLE is loosely based 
on a Server/Client concept, though what you 
might normally consider a server may not 
be how it is defined in the BLE environment. 
The basic concept is that one BLE device can 
pair up to another, completely unknown BLE 
device, determine which of the Bluetooth SIG 
profiles that BLE device emulates, and then 
communicate measurements/commands back 
and forth.

The BLE devices don’t need advance 
knowledge of anything specific about each 
other, since all the relevant measurement/
control parameters are defined in whatever 
Bluetooth profile(s) the device is emulating. 
For example, a smartphone BLE app that 
monitors a person’s heart rate, should work 
properly regardless of what brand of heart 
rate monitor it pairs up with. While this works 
in theory, I suspect that manufacturers often 
tailor the BLE profiles enough so that their 

smartphone apps only work with their own 
hardware devices.

While this capability is very useful, it 
results in a complicated communications 
protocol—much more complex than what you 
would come up with, if you were designing 
a custom device for a specific, dedicated 
purpose.

I generally peruse datasheets, specifications, 
and so on before getting too involved in a project. 
I examined the Bluetooth SIG documentation 
early on, but found it hard to understand. I’m 
quite familiar with Wi-Fi IP #s, MAC #s and 
SSIDs, but the many UUID numbers involved 
in BLE are much more elaborate. They’re 
basically 128-bit values, but are expressed as 
long, hyphenated ASCII strings: not at all like 
the “standard” notations used for IP and MAC 
addresses. Furthermore, the common BLE SIG 
profiles use “shortened” 16-bit values, which 
are concatenated with a common base value 
to provide the full 128-bits. You will have to 
get used to typing these long UUIDs into your 
programs without errors, or nothing will work!

The PSoC Creator 4.2 program contains 
support, in the form of a component 
configuration “wizard,” to help you write a 
BLE-enabled application. If you have used the 
PSoC Creator application with earlier PSoC 
devices, you’ll be familiar with dragging the 
required hardware “components” onto your 
“schematic” workspace (the TopDesign tab). 
Then, when you invoke the Build -> Generate 
Application option, Creator will add the 
various “.h” and “.c” files needed to implement 
comprehensive APIs for each hardware 
component that you added to your design. 
To be clear, these hardware components are 
the built-in peripheral blocks contained in the 
PSoC device, itself.  You don’t have to figure 
out what driver files are needed, since Creator 
software adds them all for you.

Double-clicking on a “component” brings 
up a graphical configuration “wizard,” used 
to define the initial configuration of the 
hardware component. This “wizard” is as 
simple or complex as needed to configure the 
hardware component that it serves.

To add the BLE function, the same process 

FIGURE 1
The Cypress CY8CPROTO-063-BLE prototype board that I used for this project. Note the snap-off programmer 
on the left.



CIRCUIT CELLAR • NOVEMBER 2019 #35252
CO

LU
M

NS

is followed. You first add the BLE component 
from the Component Catalog window to 
the right of the Creator screen (in the 
Communications folder). When you double-
click on the BLE component, a complex 
configuration “wizard” appears (Figure 2). 
In the “General” tab, you select whether your 
PSoC device will be a Peripheral, Central, 
Broadcaster or Observer. For this project, a 
Peripheral is the right choice.

Here you also decide how you want the 
BLE functionality to be implemented—either 
using both the CM0+ and CM4 Arm cores 
of the PSoC, or just one of them. I readily 
admit I don’t know all the pros and cons of 
this choice, apart from knowing that for low-
power applications, it makes sense to use 
the CM0+ core to handle the low-level BLE 
functions. The CM4 core is powered up only 
to handle application-specific code, when 
needed. I found that the Cypress sample 
programs generally used both processors.

Most of the BLE configuration is done 
using the GATT tab. This is where you specify 
what BLE SIG profile you want the device 
to emulate. You can either pick one of the 
standard profiles (Health Thermometer, Heart 
Rate, Cycling Speed, and so on), or define 
your own custom one.

This is where I found things got 
complicated. It seems very difficult to come 
up with a custom profile, yourself, unless 
you are well-versed in BLE standards and 
other subjects. Speaking as a BLE novice, 
it’s my opinion that you stand virtually no 
chance of developing your own custom BLE 
device, if you try to design both the device 
hardware/software and the smartphone app 
by yourself, from scratch. Instead, I followed 
this procedure:

1)	 Program the PSoC 6 with one of the sample 
BLE programs that comes with the Creator 
software package. From the Creator “Start” 
page, this is done by clicking on “Find Code 
Example.”

2)	 Test for connectivity/functionality using 
Cypress’s CySmart application (iOS app for 
iPhone/iPad, Android app or PC application).

3)	 Examine the PSoC sample program closely, 
and modify it to perform the task you have 
in mind. At this stage, you may or may not 
be able to use the CySmart app for testing, 
if you are not using a custom profile or one 
of the standard profiles for which Cypress 
has provided a sample.

4)	 Write a custom smartphone app to handle 
the required function(s).

To be honest, I didn’t have a specific 
project in mind at the outset. I just wanted 
to learn how to use the PSoC 6 in a BLE 
application. Even starting with this “clean 
slate,” I didn’t find many of the Cypress 
BLE sample programs to be very relevant 
to me. I settled on the “PSoC 6 BLE Multi-
Slave” sample program. This implements a 
BLE multi-slave functionality containing the 
following services:

1)	 Device Information Service
2)	 Health Thermometer Service
3)	 Custom service controlling an RGB LED
4)	 Custom service performing a 128-bit read/

write
5)	 Custom notification service.

Although this sample program is named 
“Multi-Slave,” it actually implements a 
multi-master, multi-slave device, acting as a 
Peripheral and containing the above five GATT 
servers. Among those servers were one that 
sent out data (Health Thermometer) and one 
that received data (RGB LED control). Those 
were the ones I figured I could modify to fit my 
own tasks, regardless of whether those tasks 
were monitoring data or controlling something 
connected to the PSoC 6. I didn’t have any use 
for either the device information service or the 
custom notification service. While the custom 
128-bit read/write service looked useful, I 
could only figure out how to write the 128-bit 
data, not read it, so I left it alone.

When I later decided that I wanted to 
build a BLE-enabled ECG (electrocardiogram) 
monitor, I knew I’d be sending the ECG data 
from the PSoC 6 device, and there would be 
no need to control anything on the PSoC 6 
from the iPad app.

I chose to modify the Health Thermometer 
Service. Doing so would allow me to monitor 
the values sent from my PSoC 6 firmware 
using the CySmart iOS app provided by 

FIGURE 2
The main page of the BLE component’s configuration wizard, part of Cypress’ Creator IDE application. Many 
of the important settings are exposed in the GATT Settings tab.
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Cypress. That is, I wouldn’t need to have my 
own iOS app ready to go in order to test the 
PSoC6 firmware I was trying to write.

The “.c” and “.h” files from the Cypress 
“multi-slave” sample are shown in Figure 3. 
Many more files are needed for this program 
than those shown here. Most of the other 
files are generated automatically by the 
Creator application (for the specific hardware 
components that you have added to your 
“schematic”). These are the files I needed 
to work with to customize the “multi-slave” 
sample for my own purposes.

I added the “ECG.h” and “ECG.c” 
files, myself. Actually, the sample program 
originally contained “temperature.h” and 
“temperature.c” files. I renamed these 
two files, and modified them to replace the 
original code, which read a thermistor via 
the PSoC6 SAR ADC, with code that measured 
the voltages coming out of the ECG amplifier 
module. In both cases, the ADC used the 3.3 V 
Vcc as a reference, so no change was needed 
there. However, Cypress used what they call 
“Double Sample Correlation” to measure both 
the voltage across the thermistor and across 
a 10 kΩ 1% reference resistor, to determine 
the thermistor resistance. This value was 
then converted to temperature using the 
Steinhart-Hart equation.

I changed this code to take just one ADC 
reading of the voltage directly from the ECG 
amplifier. Note that the code in the “ECG.c” 
file merely takes an ECG reading. It must be 
called at a specific sample rate to be useful. 
That is done in the “ble_application.c” 
file. Specifically, in this file, the function, “ble_
ProcessEvent” is a loop that constantly 
handles BLE events. When I say I take one 
ECG reading, the “ADC_GetResult16” 
function that I use takes 256 samples and 
averages them. The PSoC6’s SAR ADC is very 
fast, so in the ADC setup wizard, the ADC is 
configured to take an average of 256 settings, 
which minimizes noise.

Within that loop, the original Health 
Thermometer readings were taken at a 4 Hz 
rate, triggered by the PSoC’s watchdog timer. 
To be useful, ECG readings should be taken 30+ 
times per second. I added a PWM component 
to my “schematic,” set for a 40 Hz rate. In 
past PSoC projects, I would merely wire an 
“Interrupt” component to the PWM output. 
Creator would then generate all the needed 
code for this interrupt, including an “isr.c” 
file--where you would add the code you 
wanted executed when the interrupt occurred. 
This method no longer works with PSoC6 BLE 
applications. For PSoC6, Cypress now uses 
the Peripheral Driver Library, which is part 
of what they call “middleware,” because it 
includes drivers from other sources, including 

RTOS and emWin. I couldn’t quickly figure out 
the new way to handle a PWM interrupt, so I 
wired the PWM output to Port 10.5, and tied 
that to Port 10.4 (set as an input). I could poll 
the state of the P10.4 pin, giving me a way to 
pace the ECG readings at a 40 Hz rate. When 
I get more time, I’ll try to figure out how the 
PSoC6 firmware handles interrupts.

The BLE standard Health Thermometer 
Service is defined to output the temperature 
as an IEEE-11073 format floating-point 
number. However, the PSoC’s “C” compiler 
uses the standard IEEE-754 single-precision 
format. Therefore, a format conversion was 
done in the original sample program. For my 
purposes, I chose to take four, sequential 8-bit 
ECG readings and pack them into the 4-byte 
IEEE-753 floating point variable originally 
used for the temperature value. I did this so 
that only one-quarter as many BLE packets 
needed to be transmitted.

When I later wrote the iOS app, it was only 
possible to receive and graph the ECG data at 
a 40 Hz sample rate, by sending the data in 
this “packed” format. With only one ECG value 
per BLE packet, my iOS program routinely 
failed to collect all the data, when pushed up 
to the 40 Hz rate. In Figure 4, you can see the 
iOS app running. Here, the PSoC6 is sending 
out a triangle waveform via BLE. The data 
loss without data-packing, mentioned above, 
was clearly visible here, when it occurred. 
After implementing the 4 sample/BLE packet 
protocol, the data were received properly, as 
shown here.

In summary, the ADC reading of the 
ECG waveform takes place in the “ECG.C” 

FIGURE 3
Many files are generated after you 
design the PSoC6 “hardware” aspects 
of your project and click on “Build 
Application.” The ones shown here are 
a subset of those, and contain the files 
where I made modifications/additions 
to the sample program to match my 
project.
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file. The processing of BLE events, including 
the 40 Hz sampling of the ECG signal and 
its transmission, takes place in the “ble_
application.c” file. The entire, complex, 
BLE communications protocol is handled 

transparently by routines in other files, most 
of which were added automatically by the 
Creator application when the BLE component 
was added to the “schematic.”

TESTING USING CySMART
When I first ordered my CY8CPROTO-

063-BLE board, I considered also purchasing 
the Cypress CySmart USB dongle for testing 
the BLE link on my PC. However, Cypress 
also provides an iOS app that I could use on 
my iPad, so I didn’t think I would need the 
dongle. It turns out that the CySmart iOS app 
can handle the various BLE profiles used by 
some, but not all, of their sample programs, 
nor can it handle a custom profile that you 
design yourself. You would need the CySmart 
USB dongle for this. I have since purchased 
the dongle, but unfortunately, I didn’t have it 
while designing this project.

I first downloaded the Cypress multi-slave 
firmware to the PSoC6, and tested it using 
the CySmart iOS app on my iPad. All of the 
BLE Services included in this sample showed 
up in the CySmart app and worked properly. 
I didn’t have the thermistor/feed resistor 
hooked up, as would have been the case on 
the Cypress development board to which 
this sample is targeted.  As a result, I got 
random temperature readings that varied at 
the 250 ms watchdog period.

As mentioned earlier, I had decided to 
modify the standard Health Thermometer 
profile to handle the ECG data. When I started 
making changes to the sample program to 
read the ECG signal, I initially didn’t pack 
4 ECG samples into one BLE packet. I also 
did not trigger the ADC at the 40 Hz rate, 
but rather, at the much slower rate of 4 Hz 
used in the original sample. I also sent the 
ECG readings to the PSoC6’s UART Tx port for 
debug purposes. Doing it this way allowed me 
to see the “Raw” ADC readings taken from 
the ECG amplifier, and to monitor them in 
the Health Thermometer section of the iOS 
CySmart app. Whatever the ADC value was, it 
showed up identically in both the UART output 
stream and in the CySmart app’s Health 
Thermometer window.

The Cypress multi-slave sample program 
is written to send out many debug status 
messages during the various phases of a BLE 
link connection. By default, however, these 
messages are turned off. I would not have 
known how to enable them, had I not watched 
the “PSoC6 101” series of YouTube videos by 
Cypress’s Alan Hawse (which I thoroughly 
recommend). You must edit the uart_
debug.h file and change line 75 to read:

#define UART_DEBUG_ENABLE  (true)
FIGURE 5
While not connected with this project, this is a screenshot of the Blue Remote iOS app. It can be used for 
certain BLE projects, without the need for you to write your own custom IOS app. 

FIGURE 4
My techBASIC program running. At this stage, the PSoC6 was generating a triangle “test” wave, rather than 
an actual ECG signal.
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Once done, you can use statements, such 
as the following in your code for debugging:

DebugPrintf(“S2= %d \r\n”,temperature);

Once I had my program working properly 
with the CySmart app’s Health Thermometer 
window, I was free to change my code to:

1)	 Pack 4 ECG samples per BLE packet.
2)	 Increase the ADC sample rate to 40 Hz.
3)	 Scale the ADC values down to 8-bits.

The next step was to write a custom iOS 
program for my iPad, to receive and graph 
the ECG data.

BLE APPS FOR iOS DEVICES
Writing native apps for iOS devices is not 

an easy job, unless you plan to do it regularly. 
Native apps must be written in Apple’s 
Objective C or Swift languages, and the Xcode 
development platform for these languages will 
only run on a Mac computer. I have an older 
Mac Mini as a spare computer, but I believe its 
OS is too old to run current versions of Xcode. 
Also, you must register as an Apple developer to 
be able to download your app to the iOS device 
during testing. I had checked out Objective C 
several years back, and found it to be hard to 
work with. Granted, I wasn’t as experienced 
with the C language then as I am now.

As previously noted, if your BLE application 
is not too specialized, an Adafruit BLE “Friend” 
module, which acts as a BLE-to-UART bridge, 
might be your best bet. Adafruit provides 
a “generic” iOS app called Bluefruit, which 
communicates with their modules. Another 
choice for Adafruit BLE “Friend” modules is an 
iOS app called Blue Remote (Figure 5). This 
app acts like a TV remote control, and sends 
out an ASCII string descriptor via BLE for each 
button pushed. The data communication is 
unidirectional—from the iOS device to your 
BLE “Friend” module.

Getting an iOS application to communicate 
with the PSoC 6 BLE module was more 
involved. I had ruled out writing a native app 
in either Objective C or Swift, for the reasons 
mentioned above. The Adafruit apps only 
work with their BLE “Friend” modules. Some 
software companies produce development 
software that allows you to write iOS apps 
without using Apple’s development languages. 
I looked at them briefly, but felt they wouldn’t 
be a good match for my PSoC 6 BLE device.

I had earlier installed an iOS app called 
techBASIC, by Byte Works, on my iPad. It 
consists of a BASIC interpreter that runs on 
the iOS device. You write your application in 
BASIC, and run this application when you need 
to use it. techBASIC contains all the expected 

BASIC functions, and provides high-level APIs to 
access most of the I/O devices found in iPhones 
and iPads. You can access an iOS device’s WiFi 
connection, Bluetooth LE, the various gyro, 
accelerometer and magnetometer sensors, and 
the display and touchscreen features, to name 
a few. Due to the many high-level functions 
available, it’s possible to write powerful 
graphical programs with modest amounts of 
coding. techBASIC runs on iOS version 8 and 
above. I am still using iOS 9, so I haven’t tried it 
on newer iOS versions.

There are a few caveats. When you open 
this app, you are presented with a list of 
sample programs provided with the app plus 
those that you have written (Figure 6). You 
must choose the applicable app to start it 
running. If you’re both the developer and 
end-user, this is straightforward, but other 
users wouldn’t find it quite as transparent 
as a “dedicated” app. Also, there doesn’t 
appear to be a way either to protect your 
code from being modified by the end-user, 
or to prevent end users from viewing the 
source code.

To overcome these limitations, Byte 
Works sells a techBASIC App Builder program 
that converts your techBASIC source code 
into a form that Apple’s Xcode development 
platform can compile. This application—just 
like the Xcode development software—must 
be run on a Mac computer, and you must 
be registered as an Apple developer. I don't 
have any experience with this particular 
program.

FIGURE 6
The opening screen for the techBASIC IOS app. The user must choose a program from the folders listed at 
the left. Once selected, the program will run automatically.
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THE techBASIC APP
I followed the same procedure for the iOS 

app that I used in writing the PSoC 6 BLE 
firmware. That is, I used one of techBASIC’s 
sample programs (designed for the Texas 
Instruments SensorTag BLE modules), and 
incrementally began modifying it to match 
the UUIDs and data structure present in 
my PSoC 6 project’s firmware. I must admit 
that even though the documentation that 
comes with techBASIC is very good, the BLE 
functionality is quite complex. I doubt I could 
have written a working app, had I been forced 
to write it from scratch.

Since techBASIC runs on iOS devices, even 
when using an iPad there is a limited amount 
of screen space to run a development IDE. 
Byte Works gets around this by providing 
three discrete “views”:

1)	 Source View—where you compose/edit 
your source code.

2)	 Console View—basically for debugging. 
Anything that your program outputs using 

the PRINT command is shown in the console 
view.

3)	 Graphics View—the graphic user interface 
that the user interacts with during program 
execution.

During program execution, you can switch 
between the Graphics and Console views. 
Thus, if you sprinkle your program with 
PRINT statements at strategic spots, you can 
debug your program easily by switching to 
the Console view to see how things are going. 
When I was modifying one of the sample 
programs to suit this PSoC6 project, I placed 
a lot of PRINT statements in the source code, 
to see how the BLE discovery/pairing process 
was proceeding.

Before I describe my source code, I’ll 
mention that techBASIC’s Bluetooth API 
makes heavy use of “callback” functions. 
These functions are not a part of your 
program’s “main” loop, but instead are 
invoked automatically by techBASIC when 
specific BLE messages are received by the 
iOS device. Since such messages can arrive at 
random times, it makes your program is much 
easier to write if you don’t have to check for 
all the different types of BLE messages from 
within your program’s main loop. Instead, 
you add your application-specific code to the 
body of the various callback functions, and 
techBASIC acts as a “traffic cop” by sending 
the numerous BLE messages to the correct 
callback function.

In simple terms, a BLE program must:

1)	 Perform a “scan” to discover any BLE 
devices within range.

2)	 Determine what BLE profile(s) this device 
supports.

3)	 Tell this device to start sending the desired 
data (if it is not broadcasting that data by 
default)

4)	 Add your own code to the appropriate 
callback function(s), to receive and process 
that data.

techBASIC supports breakpoints. Even if 
you are not using breakpoints, you should 
be aware of them, because it’s easy to place 
them by mistake. In the Source View, there is 
a narrow pale blue region to the left of your 
code window. If you touch this area of the 
screen, a blue right-arrow will appear, and a 
breakpoint will be placed at that line. Program 
execution will halt when this line is reached. 
You can remove this breakpoint by tapping on 
the blue arrow.

techBASIC’s program structure is 
somewhat different from what you might 
expect if you program in C. There you would 
expect a “main” function that generally 

FIGURE 7
The techBASIC program running with actual ECG data (compare with Figure 4 test run).

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials

RESOURCES

Analog Devices | www.analog.com

Cypress Semiconductor | www.cypress.com

Espressif Systems | www.espressif.com

Infineon Technologies | www.infineon.com

Microchip Technology | www.microchip.com

http://www.circuitcellar.com/article-materials
http://www.analog.com
http://www.cypress.com
http://www.espressif.com
http://www.infineon.com
http://www.microchip.com
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contains an endless loop. That loop will 
either invoke actions or monitor something 
continuously. Alternately, it could contain 
an empty loop, leaving callback functions to 
do the actual work. Similarly, in the Arduino 
environment, you would have a “setup” 
function to initialize peripherals and such, and 
a “loop” function to handle ongoing events.

In techBASIC, you define all your variables 
and objects at the top of the program, and 
place your initialization code next. There is 
no “loop” function as such. Your program’s 
various functions immediately follow. They 
are generally callback-type functions or 
functions that are themselves called by those 
callback functions.

The initialization portion of my program 
consists of only a few lines:

services(1) =”1809”: ! Health 
thermometer
serverFound=0
BLE.startBLE
PRINT “Program Start”
BLE.startScan(uuid)
SetupGUI

First, I define the profile name that I’m 
expecting the PSoC 6 project to support. I 
use the standard BLE “Health Thermometer” 
profile used in a PSoC 6 BLE sample program, 
modified to handle my ECG data stream. The 
“serverFound” flag variable is initialized 
to zero. Once a BLE connection is made to a 
device with the name “PSoC 6,” this will be 
set to 1, and other BLE callback functions will 
be enabled.

BLE is the class supporting BLE operations, 
and the “startBLE” function enables it. The 
“startScan” function scans for BLE devices 
within range, and the UUID of the discovered 
device is stored in the “uuid” string variable.

The SetupGUI function defines and places 
the various buttons, labels and other graphics 
elements on the graphics screen. The GUI for 
this project is pretty basic—a graphics area 
in which to plot the ECG data, a QUIT button 
to exit the program, and a “progress bar” 
indicating the status of the various stages of 
the BLE scan/discovery process.

Beyond the initialization functions 
described above, all other program activity 
is handled by callback functions, which are 
triggered by the arrival of BLE data from the 
PSoC 6 BLE device.

The Cypress BLE sample program that 
I modified for this project contains five 
services (listed earlier). Although I only used 
the “Health Thermometer” profile, modified 
for the project, the PSoC 6 still “advertises” 
the other profiles, and the diagnostic PRINT 
statements in my techBASIC app displays 

these other profiles, even though they are not 
used in any way.

After the program starts the 
BLE scan, the callback function 
“BLEDiscoveredPeripheral” is triggered 
for each BLE device that the iPad finds within 
range. I check for a “peripheral.BLEname” 
equaling “PSoC 6” (the name I assigned in the 
PSoC 6 BLE component’s name variable). When 

FIGURE 8
Schematic diagram of the project. The ECG electrodes are labeled as RL (reference lead), RA (right arm) and 
LA (left arm).

J2 P5, P6 are  

FIGURE 9
The unit just before sliding the top panel into place. While not visible, the GND bus of the circuit is wired up 
to the aluminum case for shielding. 
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found, for diagnostic purposes I PRINT out the 
UUID of the device and its name (PSoC 6). I 
set the “serverFound” flag variable to 1 and 
perform a BLE.stopScan.

The next callback function invoked is 
“BLEPeripheralInfo.” It provides an 
INTEGER variable, “kind.” If “kind” equals 1, 
the program calls the “discoverServices” 
function, which requests the available 
services that the paired BLE device provides. 
If “kind” =4, that indicates that the device is 
responding with the services it provides. For 
diagnostic purposes, the program then PRINTs 
out the UUIDs of any services that the device 
has indicated it provides. It then calls the 
“discoverCharacteristics” function (for 
each discovered service), which queries the BLE 
device for the UUIDs of the characteristic(s) of 
the various service(s) it has found.

The callback function, “BLEServiceInfo” 
gets invoked by the above sequence of events. 
It returns the INTEGER variable “kind.” If 
“kind” equals 1 then the BLE device is returning 
characteristic information. For diagnostic 
purposes, the program PRINTs out the various 
characteristic UUIDs that have been reported.

All the UUIDs that are PRINTed out by 
the above routines can be checked against 
the UUIDs defined in the Creator IDE’s BLE 
component’s setup wizard for the project’s 
PSoC 6 firmware. This setup wizard was 
described earlier (Figure 2).

While the “BLEServiceInfo” function 
is returning characteristic information, the 
program checks for the following condition:

IF service.uuid = “1809” AND 
characteristic(i).uuid = “2A1C”

When both of these conditions are met, we 
know that the “Health Thermometer” profile 
and its “temperature” characteristic have 
been found. The program then invokes the 
“peripheral.setNotify” function, which 
tells the PSoC6 to start transmitting ECG data.

As noted above, my PSoC6 program 
will be sending out ECG data as if it were 
temperature. I pack four, 8-bit ECG readings 
into each 4-byte packet (originally defined as 
the floating-point Temperature variable).

The last piece of the puzzle is handling 
the data that the BLE device is sending. This 
is done by the “BLECharacteristicInfo” 
function. This returns an INTEGER variable, 
“kind.”

•	 If “kind” equals 1, then we are receiving 
a description of the characteristic. For 
the Health Thermometer profile, the 
characteristic’s description would be 
“temperature.” I didn’t bother to PRINT 
this to the console.

•	 If “kind” equals 2, then we are receiving 
the actual data, in the 4-byte format 
described above. This is obtained using 
the “characteristic.value” function. 
I extract the four, 8-bit ECG values from 
the 4-byte “value” array. The Health 
Thermometer BLE packet is actually 5 
bytes, but the first byte is the “Centigrade/
Fahrenheit” flag, which I don’t use.

These are all the BLE-related functions. All 
that remains is to plot the ECG data to the 
graphics screen. The ECG array (ECGArray) 
comprises 400 ECG data points. When this 
array is full, I plot the data. Plotting is done 
by a high-level plotting routine:

FIGURE 10
My CY8CPROTO-063-BLE arrived with 
the programmer containing KitProg2 
firmware. This was out of date, as 
shown in the PSoC Programmer 
application (part of the Creator IDE 
install). 
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Px.setPoints(ECGArray)     REM Px 
is Graphics.newPlot object
Graphics.repaint

To display the progress of the BLE discovery/
pairing process at startup, I have placed a 
“Progress Bar” on the screen. As various BLE 
callback functions are executed, I indicate this 
by incrementally increasing the value of the 
Progress Bar, using the following function:

p.setValue()   REM “p” is the 
Progress Bar’s name in the program

I have an Exit button on the screen. The 
callback function “touchUpInside” returns 
a variable, “ctrl” whenever a button (or other 
user-activated object) is pressed. If “ctrl” 
equals Button5 (the name I gave the Exit 
button), then the program performs a BLE.
disconnect(PSoC6) to disconnect from 
the PSoC6. It then waits 5 s and issues a STOP 
to end the program. The 5 second wait allows 
the necessary BLE messages to be exchanged 
between the iPad and the PSoc6, before I end 
program execution with the STOP command.

Figure 4 shows my techBASIC program 
running. While developing the techBASIC 
software, I was initially unsure how quickly it 
could plot ECG data and concurrently handle 
all the BLE message traffic. What you see in 
Figure 4 is the resulting plot when I modified 
the PSoC6’s firmware to output a triangle 
wave—not an actual ECG wave. When I initially 
sent only one ECG data point per BLE packet, 
I observed significant data loss at this sample 
rate. After switching to 4 data points per BLE 
packet, things looked OK (Figure 4). Figure 7 
shows the app running with actual ECG data.

THE CIRCUITRY
Most of my recent projects have been 

powered by either Arm MCUs or Expressif’s 
ESP8266/32 Wi-Fi SoCs. In either case, the MCU 
comes in a small-footprint SMD package. Since 
I can’t mount these small devices on PCBs of my 
own design, I have been saved by the abundance 
of small, inexpensive MCU development boards 
offered by various manufacturers, and break-
out boards for various peripheral chips. For 
this project, Cypress’ CY8CPROTO-063-BLE, 
containing the PSoC6/BLE RF sub-system and 
programmer, was ideal. Its $20 price is much 
less than that of the individual components I 
would need to build it myself.

The ECG analog front end is not easy to 
design from scratch. Luckily, Sparkfun sells a 
small PCB containing an Analog Devices AD8232 
device. This chip is specially designed for ECG 
and similar low-level biological signals. Sparkfun 
also sells the stick-on ECG electrodes in packs 
of 10, and a matching cable (Part numbers are 
shown on the Figure 8 schematic).

Besides a LiPo battery and a few other 
components, these two modules are all that 
is required to implement the project. Figure 8 
shows the schematic diagram of the project, 
and Figure 9 is a photo of the unit in its case.

Note that I removed the “snap-off” 
programmer in the finished unit to save 
space. Without it, programming can still be 
accomplished by connecting a 5-wire cable 
between J5 on the PSoC6 board and J4 on 
the programmer. Note, however, that when 
you snap off the programmer board, the Rx 
and Tx signals from the PSoC6 module are no 
longer connected to the applicable pins on the 
programmer board. This means that you can’t 

FIGURE 11
The PSoC Programmer screen 
looked like this when connected to 
the CY8CPROTO-063-BLE, after the 
KitProg2 firmware had been updated 
to KitProg3.
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use the USB-serial port to send out Debug 
messages. However, you can run jumper wires 
between PSoC6’s port 5.1 (Tx) and 5.0 (Rx) to 
the programmer’s J6 pins 6 and 7, respectively. 
This restores the USB-serial connection.

I did all my program development with 
the KitProg2 programmer still attached to 
the PSoC6 board. In this case, power for the 
PSoC6 BLE board is provided by the KitProg2 
programmer, which contains a 3.3 V regulator 
for both the programmer’s PSoC 5LP and the 
PSoC6 on the target board.

I expected to be able to connect the 3.7 V 
LiPo battery to the Vin pin on the PSoC 6 target 
board. Nothing worked when I did this, and 
for a few minutes I panicked, thinking that the 
Vin pin required a regulated 3.3 V. This would 
have differed from the CY8CKIT-059 PSoC 5LP 
development board that I used for my last 
project, which contained its own 3.3 V regulator. 
In the CY8CPROTO-063-BLE user’s guide, figure 
A-2 shows regulators on both the programmer 
board and the PSoC 6 target board. However, 
once I magnified the schematic, I noticed that 
the words “No load” became legible next to the 
U6 regulator. This explained why nothing was 
working. As a remedy, I installed an external 
Microchip Technology MCP1700-3302E low-
dropout regulator to power both the PSoC6 
board and the AD8232 Heart Monitor board. 
One could populate the PSoC 6 target board 
with a surface-mount regulator (U6 and 
associated parts) that it calls for, but I did not 
have a compatible regulator on hand.

When I first received the CY8CPROTO-063-
BLE, it showed up immediately as a valid BLE 
device when I ran the CySmart app on my 
iPad. It ran the demo properly. However, it 
did not show up in the Creator IDE when I 
tried to edit sample code and download it to 
the board. This was unexpected, given that I 
had experienced no such problems with the 
CY8CKIT-059 PSoC 5LP development module 
during my last project.

I discovered that the Kitprog2 firmware 
on the CY8CPROTO-063-BLE development 
board (the same as what is contained on 
the CY8CKIT-059 PSoC 5LP board) requires 
upgrading to Kitprog3 firmware to work 
with PSoC6 devices. You must use the stand-
alone Cypress PSoC Programmer v3.28 PC 
application to update the Kitprog2 firmware. 
The PSoC Programmer screen before and 
after I ran the update procedure is shown in 
Figure 10 and Figure 11, respectively.

CONCLUSIONS
Even having finished this project, I still 

find BLE to be a complex protocol to handle. 
I’m certain that if 6 months passed before 
I used it again, I’d likely follow the same 
procedure I did here—modify a sample PSoC 6 
program to serve my needs and then modify 
my techBASIC program to serve the new 
function. The only difference would be that I 
now have the CY5677 CySmart BLE 4.2 USB 
dongle on hand (Figure 12). This debugging 
tool is more versatile than the CySmart iOS 
app that I used for this project.

That said, I must give kudos to Cypress for 
the Creator IDE application. It does a lot to 
automate the process of incorporating a BLE 
function into your application—particularly if 
you can use one of their sample programs as 
a template for your firmware.

If you need to write a custom BLE app 
for an iPhone or iPad, and don’t do this for 
a living, I think the techBASIC app is a smart 
option to explore. If you are accustomed to 
programming in Visual Basic, it doesn’t take 
too long to get used to it. It also contains 
many library routines to handle most of the 
internal peripheral functions found on iOS 
devices (apart from those to which Apple 
doesn’t permit access).

The PSoC 6 source code is available on the 
Circuit Cellar website, in what Cypress calls the 
“archive” format. It contains all the files 
needed to replicate the project. The techBASIC 
code is also provided as a text file. Because 
Apple restricts the loading of program code 
directly to an iOS device, you need a “trick” to 
do it. The techBASIC manual covers this in 
detail, but basically, you must email the source 
code to yourself, copy it to the clipboard, and 
then paste it into techBASIC. 

FIGURE 12
The CY5677 CySmart BLE 4.2 USB 
dongle. I didn’t buy it until after 
developing the firmware for this 
project. I expected that the iOS 
CySmart app would handle debugging, 
but it turns out that the hardware USB 
dongle is much more versatile in this 
regard.
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From the Bench

MQ Telemetry Transport (Part 2)

A t a time when many companies 
are moving their storage off site, 
I am a believer in keeping it close. 
By that I mean under my own 

roof. As computing is becoming faster and 
more efficient, storage media is also growing 
in capacity. Today, gigabyte thumb drives and 
terabyte hard drives are becoming the norm. 
When I lose data because I made a mistake or 
a bad decision, I find it much easier to live with 
than if all my stuff were to suddenly disappear 
from the cloud. When things are out of my 
control, I feel I have no recourse. That’s why I 
am attempting to bring all my needs back under 
my control.

Last month I discussed the MQTT (Message 
Queuing Telemetry Transport) protocol and 
introduced a project with two IoT clients. 
Client 1 monitors a digital input and “Publishes“ 
the new state as a “topic” message to the 
server whenever its input changes state. Client 
2 controls a light switch on its digital output and 
“Subscribes” to Client 1’s topic on the server. 
Whenever a new topic is Published to the server, 
all nodes that have Subscribed to that topic get 
sent the updated message. Client 2 monitors 
the messages on this topic and sets/clears the 

digital output based on the message. In this 
case, I defined Client 1’s topic as “ESP_11E9B0\
DIN\IO2\” and the message as an ASC “1” (ON) 
or “0” (OFF).

While not necessary, I also included the topic 
“ESP_A3D0DF\DOUT\IO2\” so that Client 2 
could Publish the state of its output, and Client 1 
could Subscribe to it, to see that the operation 
was actually completed. While this required 
two nodes to establish the remote control of 
a light, the real intention was to show that by 
shuffling communication through a server—as 
opposed to just having these two nodes talk 
to each other directly—the information could 
be recorded and stored for posterity. You may 
not care when a light was switched ON and 
OFF, but what if these were bank transactions 
or an alarm of some kind? Let’s not forget the 
potential “bigger picture.”

In the past, I’ve taken a number of different 
approaches on user interfaces (UIs). For 
example, I monitor my neighborhood’s well 
system using ThingSpeak. I have also described 
a graphics server using HTML5 for my weather 
station. This month, we’ll look into modifying 
these two projects for integration into the MQTT 
server.

In Part 1, Jeff described the MQTT protocol and how it is used by an MQTT server 
to keep all your IoT projects tied together and managed from a centralized server 
running a program such as Mosquitto on a local PC. He presented a simple project 
connecting two IoT nodes together via communication with the server. In Part 2, Jeff 
looks at modifying systems he uses to monitor his neighborhood well system and his 
weather station, for integration into the MQTT server.

By 
Jeff Bachiochi

Bringing it All Back Home



CIRCUIT CELLAR • NOVEMBER 2019 #35262
CO

LU
M

NS

WELL ENOUGH ALONE
My neighborhood’s well supplies water for 

seven families. A deep well pump supplies 
water to a 360 gal. holding tank. We’re 
fortunate that the water is potable from the 
pump, despite a high concentration of iron. 
Once the suspended iron is exposed to air, it 
oxidizes and gives the water a rusty color. This 
is visually unpleasant to drink, and creates 
rust stains on washed clothing. However, a 
pair of water softeners remove most of the 
iron before it gets to the main line that serves 
the neighborhood.

The softeners periodically require salt 
as a rinsing agent to rejuvenate (clean) the 
resin media that collect iron particles. Salt 
pellets must be added to an external tank, 
which contains a brine of water mixed with 
the salt. The brine is drawn by the softeners 
during their cleaning cycle, and the brine 
tank is refilled with water. A portion of the 
salt pellets dissolve during each cycle, until 
the water becomes saturated. Therefore, the 
salt lasts several cleaning cycles before it is 
used up. If the salt is not refilled, the resin is 
not cleaned and cannot remove any additional 
iron, giving everyone tinted water. Letting 
the salt disappear is a no-no, and should be 
avoided—hence the need for monitoring.

The well monitoring system has seven 
inputs. The first three are temperature 
sensors. I take the outside temperature and 
two inside temperatures—of the upper and 
lower well house. The well house is an 8’ 
cube of concrete blocks below ground level. 
A 3’ wall and roof above ground give access 
via ladder to the equipment. The upper 
temperature is in the roof area, and the lower 
temperature is below ground at floor level. It 
is interesting to see how wildly the outside 
and upper temperature vary, whereas the 
lower temperature hangs around 50°F until 
winter. With some winter days below zero, 
temperature becomes an issue. A frozen 
pipe means no water and the potential of 
a burst pipe, which has already happened 
once. Should the temperature fall too low at 
the lower sensor, a heater can be turned on. 
Currently, an incandescent light bulb throws 
enough heat to raise the temperature slightly.

The fourth and fifth sensors are attached 
to the water softeners. They are paddle-wheel 
flow sensors used by the softener’s electronics 
to calculate—based on water usage—when the 
resin media should be cleaned. They produce a 
tick for each 6.4 oz. (20/gal.) of fluid. Monitoring 
the usage can bring to light a number of issues. 
For instance, when cleaning cycles are activated 
after midnight—so salt pellets can be added, 
or the relationship of water usage between 
softeners—monitoring can help to determine if 
other maintenance is required.

The sixth sensor measures the pressure 
in the storage tank. A regulator on the tank 
turns the pump on when the pressure falls 
below 40 psi, and turns the pump off when 
the pressure reaches 60 psi. This can help 
determine the pump’s efficiency, since it does 
eventually get clogged with iron deposits.

The seventh sensor is a current probe 
around the pump lead that indicates when 
the pump cycles. For longest life, you want 
the pump to cycle as little as possible. 
Accordingly, you want to know if the pump 
starts running too long and isn’t refilling the 
storage tank. The storage tank is actually 
pressurized with air above the water, which 
pushes the water out of the tank when a 
faucet is turned on. A storage tank with no 
bladder, or separator between the water 
in the lower part of the tank and the air in 
the upper part of the tank, will eventually 
absorb the air above the water. When this 
happens the air’s volume at 60 psi will be 
less than before. This creates more room 
for water, but also decreases the volume 
of water that is available to leave the tank 
before the tank pressure drops to 40  psi. 
The pump will operate more often for 
shorter lengths of time—a bad thing. With 
that in mind, it’s important to maximize 
draw-down by keeping adequate air in the 
tank. Most tanks have a bladder to prevent 
this from happening, but our tank has long 
since lost its bladder to old age.

MQTT MOSQUITTO
Last month, I began running Eclipse 

Mosquitto, an open source message broker, 
on my PC. It turns my PC into a MQTT server 
that runs in the background. I can reach it 
through my local LAN/WAN. It will accept 
MQTT Publish and Subscribe messages sent 
by any device on my network. All MQTT 
messages contain a topic and a payload. 
Messages are categorized by topics such as 
“Temperature,” with an associated “payload” 
of some value. Publishers create the data, 
whereas subscribers consume the data. The 
MQTT server keeps track of the published 
topics and sends them to any device that 
has subscribed to that topic. To learn more 
about this, please refer to last month’s Part 
1 article (Circuit Cellar 351, October 2019).

Getting my well-house device to send 
MQTT data is pretty straightforward. This 
application has been using ThingSpeak since 
2006. The Arduino library uses TCP over 
HTTP to communicate with the ThingSpeak 
server, whereas MQTT uses UDP over HTTP. 
TCP is connection-based and remains open 
until closed. UDP is connection-less—that is, 
each communication is complete in and of 
itself. In my application, I need to substitute 
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include WiFiUDP.h for include 
ThingSpeak.h. The Wi-Fi connection 
remains the same. In last month’s article, 
we found that the MQTT communications 
begin with making contact with the MQTT 
server (at its IPAddress:1883) to establish 
a link between the two, but not an actual 
connection. This was discussed and the code 
was shown.

ROUND ROBIN
In this application, the sensors are read 

round-robin style—one every second. This 
keeps their values updated with the latest 
information. You can choose how often you 
want this information to be sent. Currently, 
I send it all once per minute. As noted in 
Part 1, when we want to share information 
with others, we Publish it to the MQTT server. 
The following line of code accomplishes this, 
once we’ve defined the topic and msg.

client.publish(topic, msg);

This next chunk of code is a special case 

message I use to indicate that the device 
has just come out of reset. The variable 
reboot, which starts as true, gets cleared 
to false after the message has been sent 
once.

// reboot
if(reboot)
{
	 t=” reboot”;
	 t.toCharArray(msg, msgSize);
	 t = ID;
	 t.toCharArray(topic, msgSize);
	 //Serial.print(t);
	 sendMQTT();
	 reboot = false;
}

Note that the msg is set to the string 
reboot and the topic to the “ID” of the 
device—in this case ID = “esp8266_A14782”, 
which is its friendly name (including the last 6 
characters of the MAC).

FIGURE 1
Three nodes are used here: “mqtt,” 
to subscribe to all messages from 
esp-A14762; “debug”, to view the 
messages in the debug window; and 
“file” to log the messages.
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Here's are the messages this device sends:

Topic, Message
ID + “/Revision”, ”Well House Monitor myMQTT 
6/21/2019 “
ID + “/Temperature/Outside”, 78
ID + “/Temperature/Attic”, 72
ID + “/Temperature/Cellar”, 56
ID + “/Flow/Softner1”, 27
ID + “/Flow/Softner2”, 20
ID + “/Pressure/Tank”, 45
ID + “/Amps/Pump”, 0
ID + “/Relay”, 0

I always include the ID as the beginning of 
the topic, so that I can identify its origin. Last 
month, the project used two devices. The 
1st published a switch’s status, and the 2nd 
subscribed to that topic and controlled a light 
based on switch status. Mosquitto handles all 
of this without intervention.

Node-RED is a companion application that 
allows you visually to connect devices. In Part 
1, I detailed how it can be used to subscribe 
to an MQTT topic and do something with the 
messages received. In that case, all messages 
were sent to a log file. Other than viewing the 
file’s data, there was no visual indication of any 
device activity. Now let’s see how Node-RED can 
be used to display the data from the well house.

NOde-RED EDITOR
Node-RED provides a browser-based 

editor for wiring together hardware devices. 

The node-RED editor is available through your 
browser at IPAddress:1880. The editor window 
consists of four components: palette (left), 
sidebar (right), header (top) and workspace 
(middle). The palette contains the nodes 
(objects with possible inputs and/or outputs) 
available for placement on the workspace. The 
sidebar contains information about objects 
to be displayed. The header has a button for 
deploying a flow (interconnection of objects) 
and additional menu items. The workspace 
is where you drag and drop objects, and 
interconnect them using wires to tie inputs 
to outputs. Figure 1 shows my browser with 
three nodes placed, wired and deployed. The 
sidebar shows the debug output from the 
debug node as messages are received.

Once you become familiar with all the nodes 
in the palette, you’ll see that subscribing to an 
MQTT topic (MQTT input) is just one way of using 
Node-RED. This project will create a “dashboard” 
consisting of mainly graphs of the sensor data 
over time. Let’s look at creating text, gauge and 
chart displays for one temperature message. 
Refer to Figure 2 for this discussion.

Our tab FTB 352 shows four nodes added 
to the workspace. The first node (MQTT 
input) passes only the message payloads 
with a topic containing “esp8266_A14782/
Temperature/Outside” as defined by 
editing the node. The next three nodes are 
from the dashboard in the node’s palette. 
They are used to display the message payload 
in text, as a value on a gauge and as a charted 

FIGURE 2
Four nodes are added for this 
example, “mqtt”, to subscribe to only 
outside temperatures messages from  
esp-A14762; “text,” to display the 
message payload as text; ‘”gauge,” 
to  display the message payload as 
a meter; and “chart,” to display the 
message payload as a graph over 
time. The actual dashboard screen 
is shown as an inset, using another 
browser.
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value over time. Because the payloads are all strings, the test 
display includes the payload just as it comes. You may have 
noticed an “F” (Fahrenheit) was part of this. In the gauge and 
chart displays, convert the string to a value first, then use the 
value for displaying.

Some parameters—such as max and min—can be edited 
in these nodes. Since I have three temperatures, all of them 
can be wired to the same chart display. With a small bit of 
massaging we can remove (change node) part of the topic 
that is used in the chart’s key for identifying the different 
data lines (Figure 3). The change node is used to set, change, 
delete or move specific parts of a message, flow or global 
object. Here specific message topics are truncated. In 
other words, esp8266_A14782/Temperature/Outside 
becomes Outside.

The water softeners measure water throughput by ticks 
(counts) of their paddle wheels. Total counts are sent as 
messages to be used as data for the chart. Before sending the 
count data to the chart, I use a function node to alter this. All 
nodes pass their message to their output, which is then received 
by the next “wired” node’s input. The function mode allows 
some JavaScript to be written that can alter this message in 
some way. Here, I want to convert counts to gallons. The water 
softener documentation states that the paddle wheel creates 20 
counts for each gallon of water that passes through it.

msg.payload = (parseInt(msg.payload) / 20);
return msg;

In a perfect world, the two softeners’ counts would 
share the flow equally, and their charts would be identical. 
If displayed on a single chart, the first softener’s data would 
always be obscured by the second. I chose to display these as 
separate charts. However, I also want to keep a running daily 
tally of the total gallons per day. These data aren’t given by 
the well-house node. Node-RED allows me to total the data 
and reset the value to zero at the end of each day. Take a look 
at the following JavaScript code:

var myFlow = flow.get(‘Flow1’) || 0;
myFlow = myFlow + msg.payload;
flow.set(‘Flow1’,myFlow);
msg.payload = myFlow.toFixed(3);
return msg;

I create a local variable myFlow (available to just this node), 
and assign it the value of a flow variable Flow1 (available 
from any node within this flow or page on my workspace). 
The saved value is added to the present message’s value. 
The total is stored away for next time. Finally, the message 
sent out is replaced by this new value—fixed at three decimal 
places. This value updates a text box with Today’s total, but 
we still need a way to zero out this total every night and chart 
the daily totals.

This is created with three nodes: “inject”, “function” and 
“chart.” The “inject” node allows something to happen at a 
specific time or periodically. I’ve chosen once every day at 
11:59 p.m.

var myFlow = flow.get(‘Flow1’) || 0;
var msg1 = {payload:myFlow.toFixed(3)};
msg1.topic = “DailyFlow1”;

flow.set(‘Flow1’,0);
return [msg1];

Another “function” node is used to do this. I create a local 
variable myFlow (available to this node only) and assign it 
the value of a flow variable Flow1 (available thanks to the 
node described above). Now I create a whole new message 
with a payload of myFlow and a topic of DailyFlow1. The 
Flow1 variable is then cleared so it can begin with a new 
total, Tomorrow, which begins in 1 minute. The new message 
is sent on to the chart node. See the final display “Flow” in 
Figure 4 and “Dashboard” in Figure 5.

WEATHER REPORT
I’ve had a weather station in various forms prior to the 

smartphone era, informing me of tomorrow’s weather today. 
While I’m not a HTML guy, one of the most interesting articles 
for me was my weather server project that handled its own 
HTML display. The two part article is "Serving Up HTML (Parts 
1 and 2) in June and July 2016 (Circuit Cellar 311 and 312).  
In keeping with the MQTT theme here, I’ve re-coded that 
project and have Node-RED code for a new weather display. 
One of the advantages of using Node-RED for a project is 
its extensive palette of the available nodes. For instance, the 
“inject” node lets you simulate the reception of messages as 
if your external device had Published data.

Here, I use the “switch” node to separate each topic into 
its own path, which is wired directly to a gauge or text output. 
Each gauge has three ranges associated with it. These ranges 
can be color coded, and will display that color depending 
on the color range settings and the actual payload being 

Outside

06:15:00 06:45:00

Temperature

07:16:00

Attic Cellar

“Chart” node  example

120

–20

70
35
0

106

FIGURE 3
The “chart” node can display multiple data graphs with or without a key (labels).

Additional materials from the author are available at:
www.circuitcellar.com/article-materials

RESOURCES

Espressif Systems | www.espressif.com

Mosquitto | www.mosquitto.org

MQTT | www.mqtt.org

Node-RED | www.nodered.org

openHAB | www.openhab.org

ThingSpeak | www.thingspeak.com

http://www.circuitcellar.com/article-materials
http://www.espressif.com
http://www.mosquitto.org
http://www.mqtt.org
http://www.nodered.org
http://www.openhab.org
http://www.thingspeak.com
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displayed. If the range colors are defined 
but range settings are not, then the color 
displayed will be a blend of the defined colors 
proportional to the actual payload. If max and 
min values are not defined, then the gauge 
will auto-range based on the payload values.

You might want to separate real-time 
data (gauges), as in Figure 6, from statistical 
data (text) on separate flows. Each flow will 
be offered as tabs on the display page of 
Node-RED. Clicking on the menu icon on the 
left side of the blue bar at the top of the UI 
display page reveals additional “flows” that 
you have created (Figure 7). You can reach 
every flow from this one page! The weather 
station provides plenty of statistical data. It 
has hourly, weekly, monthly and/or yearly 
averages for almost every sensor. These might 
all be displayed from an alternate flow.

SUNNY DAYS
At this time, I have neither solar panels 

covering my roof, nor a huge solar matrix in 
the yard. I have a few small panels affixed to 
my shed roof so I can dabble. But so far I’m 
not overwhelmed by their energy production. 
They receive no direct sun in the mornings 
and late afternoons, so their production is 
limited. This produces just about enough 
energy to keep the weather station and solar 
reporting nodes alive 24/7. The MQTT server 
also handles the solar node.

The solar charge controller from Epsolar 
Technology has an RS-485 (ModBus) interface 
to access its more than 100 registers. These 
are separated into logical sections: Rated 
Datum, Real-time Datum, Real-time Status, 

FIGURE 5
The dashboard of the well house 
monitor is available through a browser 
directed to the MQTT server at 
IPAddress:1880/ui. {ß  JEFF ,SHOULD 
THIS BE 1880 OR 1883?}

FIGURE 4
The complete flow for logging and displaying the dashboard of the well-house monitor.
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Statistical Parameters, Holding Registers, 
Switch Value and Discrete Value. My solar 
monitor circuitry must poll the charge 
controller to gather copies of all the registers 
and publish them to the MQTT server. While 
the server collects all the registers, I only use 
a fraction of these to give a real-time display 
of energy produced, stored and consumed.

The upper-level folder name for all 
topics from the solar controller node use 
esp_82952A to identify the device. This topic 
is appended with the section name and register 
name as additional folders to give a hierarchy 
to the topics published. In this Node-RED flow, 
I subscribe to all esp_82952A# topics. A 
switch node is used to filter all eight topics by 
section name. The flow is therefore divided into 
eight sub-flows. Don’t confuse my term “sub-
flow” with Node-RED’s sub-flow. More on this 
later. Each of these could be sub divided again 
with eight additional switch nodes, to produce 
a separate sub-flow for each register in the 
charge controller. To illustrate this, I am using 
three of these eight sections, and dividing the 
three sections into their respective individual 
registers with switch nodes.

The Real-time Datum section has sub-
flows for 10 of the 15 registers. The Statistical 
Parameters section has sub-flows for seven of 
the 21 registers. The Discrete Inputs section 
has sub-flows for both of its two registers. 
As you can see from the Node-RED editor’s 

workspace in Figure 8, the diagram is getting 
quite complicated. For ease of viewing, you 
can designate portions of the flow to sub-
flows, and move them onto separate pages 
(workspaces), which can then be identified on 
the flow’s workspace as separate sub-flows, 
thus simplifying the workspace. However, by 
doing that you lose your ability to debug each 
sub-flow because they no longer produce 
output in the debug window. For that reason, 
I have not used sub-flows in any of my flows.

My use of the term “sub-flow” has to do 
with dividing each esp_82952A# topic (they 
all come in through the same input wire) to 
the switch node labeled esp_82952A# and 
are separated into section topic outputs 
(sub-flows). Each of these is then input into 

FIGURE 6
The “switch” node can be used to separate a stream of messages into specific topics, appropriate for displaying each payload in its own user-selected way. Most of the weather 
data are real-time and displayed as meters (gauge). The revision, barometer trend and accumulated rainfall will be displayed as text.

ABOUT THE AUTHOR
Jeff Bachiochi (pronounced BAH-key-AH-
key) has been writing for Circuit Cellar 
since 1988. His background includes product 
design and manufacturing. You can reach 
him at:
jeff.bachiochi@imaginethatnow.com or at:
www.imaginethatnow.com.

mailto:jeff.bachiochi@imaginethatnow.com
http://www.imaginethatnow.com
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additional switch nodes to further separate 
the topic into individual outputs (sub-flows) 
containing just one register

The display of data here is a combination 
of text, charts and LEDs. You’ll notice there 
is no LED node in the palette dashboard 
section. Another great aspect of Node-RED 
is the palette manager, which allows you to 

import nodes designed by third parties or 
create your own. In this case, I imported the 
node-red-contrib-ui-led node to use 
in this flow. Although an LED is considered a 
binary device, its color can be set based on 
different payloads, binary, other numerical 
value, string, JSON or buffer. This is similar to 
most other nodes. For instance, I use yellow 

FIGURE 7
The weather dashboard is a real-time 
display of weather station data.  When 
I want to alter the program of an IoT 
device, it’s always a struggle to locate 
the latest copy. I found that displaying 
the program name (revision) helps to 
steer me to the right one.

FIGURE 8
The “switch” node is helpful for 
steering groups of messages.  Multiple 
switch nodes are used in this Solar 
flow, to break groups down to the 
individual message topics. 
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for daytime and black for night time. In this 
case, day/night is a Boolean value, but it could 
have been the strings yellow or black.

I was caught by surprise by the data I was 
seeing from the Battery Current register, 
shown in Figure 9. If I had thought about this 
a bit more it would have been obvious! The PV 
Array produces energy. The load consumes 
energy. The battery both produces and 
consumes energy. When it consumes energy, 
it is charging (current is positive). However, 
it also produces energy (current is negative) 
once the PV array is no longer producing. 
Therefore, the Battery chart must show 
current in both directions. I wanted this to be 
obvious, by using a green trace when zero or 
positive and red when negative. I did this by 
dividing this sub-flow (esp8266_82952A/
Statistical Parameters/Battery 
Current LSW) into two sub-flows. Sub-
flow topic positive, when the payload is 
>=0, else sub-flow topic negative. Both of 
these sub flows go to the same chart input. 
The chart plots both as separate topics, 
positive as green and negative as red. 
The chart key is disabled, so the topics are 
not defined in the chart.

HOSTING MQTT
Right from the get-go, I used my PC as the 

MQTT host. Just recently, I installed openHAB 2 
on a Raspberry Pi. This is an open source, 
home-automation platform, which runs as the 
center of a Smart Home. My thinking is that 
openHAB 2 supports MQTT (and Node-RED) 
which I could use as a permanent location for 
my MQTT server. The weather and solar nodes 
are operating on the Pi (running Linux OS). 
Although I have not played with openHAB 2 at 
all, the MQTT link allows me to find a path that 
supports my work in the present, while lighting 
my path into the future. I’ll be changing the 
subject next month, but if you are interested 
in this, please let me know so I can make plans 
for a future article.

Oh yeah, one more note on using Node-
RED and MQTT that was installed with 
openHAB 2 on the Raspberry Pi: The Pi palette 
has some additional nodes listed (Figure 10). 
There are two addition palette sections: 
“Raspberry Pi” and “Home Automation.” One 
gives access to the Pi’s I/Os, and the other 
opens up communications to openHAB 2 
giving my sensors life in the future. Too little 
time, too much to do! 

FIGURE 10
I’m excited about these new nodes 
available in Node-RED, when using the 
Raspberry Pi as the MQTT server.  I 
plan to use some of the Pi’s I/O for 
displaying some LED status of the 
operational activity. Adding my well, 
weather and solar data to a Home 
Control System like openHAB will really 
tie everything together quite nicely.

FIGURE 9
The Solar dashboard is one of many 
that are needed to show all the 
registers available, but this might be 
the most informative.
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L ast month we dived deeper into 
diodes. Now it’s time to consider 
devices with more junctions. Let’s 
start with the three-terminal 

bipolar junction transistor (BJT). Its terminals 
are called collector (C), emitter (E) and base 
(B). Figure 1 explains its construction, which 
is essentially a combination of two junction 
diodes. Based on their connections, we have 
two basic structures: PNP (Figure 1a) and NPN 
(Figure 1b), with the transistors designated 
accordingly. PNP and NPN devices with similar 
characteristics are called complementary 
pairs. In the early days, germanium (Ge) was 
used as the base semiconductor material 
and although germanium NPN transistors 
existed, the PNP variety ruled. The first NPN 
transistor I got to use was the silicon (Si) 
type.

The first point-contact transistor was the 
result of the work of American physicists 
John Bardeen, Walter Brattain and William 
Shockley in 1947—an achievement for which 
they received the Nobel Prize in Physics. As 
it usually happens with many inventions, the 
transistor was developed independently in 
Europe in 1948 by Germans Herbert Mataré 
and Heinrich Welker. The bipolar junction 
transistor was then developed and patented 
by William Shockley in 1950 at Bell Labs.

Germanium transistors manufactured in 
the ‘50s by the diffusion method had many 
growing pains. One was a poor frequency 
response due to large capacitance of the 
diffused electrodes. But the manufacturing 
technology improved and by the ‘60s we 
had ultra-high frequency (UHF) devices, for 
example the amazing (for their time) AF139 
and AF239 PNP transistors. Germanium 
devices suffered from high leakage, relatively 
low operating voltage and, above all, 
significant temperature dependency. But all 
that changed with the arrival of the silicon 
planar NPN transistor.

One issue you have to keep in mind is that 
transistors are current amplifiers. They’re not 
voltage amplifiers like vacuum tubes before 
them and field effect transistors (FET) today. 
BJTs operate in distinct modes. The first is 
linear, where the collector current IC = β x IB. 
β stands for the transistor’s current gain—
generally greater than 100 in modern devices.

The second mode of operation is saturation, 
which is used in digital circuitry. The transistor 
becomes a switch. It is fully turned on with the 
saturated collector current determined by its 
type and collector-emitter voltage VCE close to 
zero. Or it is turned off (cut off) with IB = 0. The 
collector current IC would ideally be zero too, 
but there is always some leakage.

The Consummate Engineer

Semiconductor Fundamentals 
(Part 3)

In Part 2, George discussed devices 
built with one P-N junction, 
appropriately named diodes. In this 
article, he considers devices with 
more junctions. He starts with two 
and looks at the ubiquitous, three-
terminal bipolar junction transistor 
(BJT). George looks at the math, 
science and circuitry of these devices.

By
George Novacek 

Transistor Topologies
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THREE AMPLIFIER CONFIGURATIONS
Let’s consider the three fundamental 

transistor amplifier circuit configurations as 
seen in Figure 2. Because of the present-
day prevalence of NPN transistors, I shall use 
them in my examples whenever possible. We 
begin with the common base topology (Figure 
2a). The base is grounded and, therefore, 
common to both the input and output. To 
amplify an AC signal, you’ll need to bias the 
base to overcome the base-emitter diode’s 
forward voltage—around 0.65 V for silicon 
transistors—and cause a base current IB to 
flow. The current gain of the common base 
topology is less than 1 because the collector 
current IC flows through the emitter as 
well. The input impedance of the common 
base topology is very low. The voltage gain, 
however, is high—provided the load resistance 
RL is also high. It is defined by Equation 1:

A =
V

V
=

I ×R

I ×R
V

out

in

C L

E IN

	

[1]

Common base configuration is used 
primarily in radio frequency (RF) circuits 

because it minimizes frequency-limiting 
collector-base capacitance. Common 
(grounded) emitter configuration is 
commonly used in amplifiers as well as 
switching circuits because it has the highest 
power gain. Similar to common base, the 
input impedance is somewhat low, but can 
be increased, at the cost of gain, by a small 
resistor between the emitter and ground. 
Here, the emitter current IE = IC+IB. The ratio 
IC/IE is called α and is always less than one. 
The relationship of the transistor currents 
can be expressed mathematically as:
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Common collector topology is better 
known as emitter follower. It is frequently 
used for transformation of high impedance 
input signals to low impedance output. The 
current gain equals approximately β of the 

FIGURE 1
Principle of the bipolar junction 
transistor. PNP (a) and NPN (b)

FIGURE 2
Three fundamental configurations of 
a transistor amplifier: Common base 
(a), common emitter (b) and common 
collector (c)

Common Base Common Emitter Common Collector
Input Impedance Low Medium High
Output Impedance Very High High Low
Phase Shift 0 degrees 180 degrees 0 degrees
Voltage Gain High Medium Low
Current Gain Low Medium High
Power Gain Low Very High Medium

TABLE 1
Summary of characteristics of 
transistor amplifier topologies

a) b)

a) b) c)
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transistor and the input resistance, as a rule 
of thumb, β x RL. The gains are expressed 
mathematically as:

I I I A I
I

I I
I

I
IE C B I

E

B

C B

B

C

B

= + = =
+

= + = +    ..... 1 1β
	 [4]

Characteristics of the three transistor 
topologies are summarized in Table 1. 
Sometime in the past, the common emitter DC 
gain symbol β was replaced with hFE. This is the 
parameter you will find nowadays in transistor 
specification sheets. It is an abbreviation 
that stands for “hybrid parameter forward 
current gain, common emitter.” Figure 3 is an 
example of a common emitter, NPN transistor 
collector’s I-V (current-voltage) characteristic 
where the base current IB is a parameter. The 
I-V characteristic of the base current versus 
base voltage is that of a diode as presented in 
Part 2 of this article series (Circuit Cellar 351, 
October 2019).

Notice that the collector current IC 
dependency on the collector voltage VC is 
quite large for small collector voltages. Once 
the collector current saturation is reached the 
current changes very little. You can analyze 
transistor amplifiers’ low frequency response 
by utilizing the transistor’s equivalent circuit. 
More often than not parasitic characteristics 
are considered negligible for the given 
application and, therefore, ignored. Figure 4a 
is the common emitter equivalent circuit. For 
practical reasons it is often converted into a 
so-called T-circuit equivalent Figure 4b.

For the purpose of electrical analysis, you 
can consider the transistor to be a black box—a 
four terminal linear network as is shown in 
Figure 5. A transistor is a three-terminal 
device, but one terminal, the emitter for the 
common emitter configuration is, obviously, 
common. You can analyze this network 
under different conditions, each rendering 
a different set of parameters. With an open 
circuit, for example, impedance z-parameters 
will result. Short circuit conditions will 
produce admittance y-parameters. But, 
because transistors in common emitter 
connections have low input and high output 
impedances, it is advantageous to use hybrid 
parameters, called h-parameters. But this 
is not the end of it! There are also parallel-
series m-parameters, cascade-forward 
a-parameters and cascade-backwards 
b-parameters.

SELECTING PARAMETERS
So which parameters do you select 

and what can you do with them? For once, 
knowing one set of the parameters, you can 
convert them mathematically to any other 
set with just a small error. Then, inserting 
them into a matrix as shown by Equation (5), 
the performance data of the black box 
can be calculated. Equation (5) uses the 
h-parameters:
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h h

h h
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FIGURE 4
Transistor equivalent circuit in 
common-emitter configuration

FIGURE 3
Collector I-V characteristic of an NPN transistor. The graph is not to scale.

a) b)
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All this theory is very interesting, but unless you have access 
to a curve tracer and measure those parameters yourself, 
you’re out of luck. I’ve not found the black box parameters in 
any specification published by a transistor manufacturer.

But that’s is not a showstopper. Present day manufacturers 
provide a number of graphs with their flagship devices, allowing 
you to design any transistor circuit you can imagine. But you 
can also find many inexpensive transistors—on e-Bay for 
instance—whose specifications, if you’re lucky to get any, may 
provide you with perhaps only the following (and nothing else): 
maximum voltage and current ratings, perhaps the pin-out and 
maybe the hFE. And yet, even that isn’t a showstopper either. 
You can still build a circuit satisfying simple requirements, 
especially for low frequency operation.

Relying on feedback, you can set the DC operating point even 
without knowing the accurate hFE. Quite often it is safe to assume 
the hFE will be greater than 100. In such a case, a single stage, 
common emitter amplifier with a small emitter resistor RE will 
provide voltage gain of approximately RL/RE—where RL is the 
load resistance, comprising the collector resistor in parallel with 
whatever the additional load may be. For relatively slow switching 
digital circuits, the design is even simpler.

Next month, we continue this article series. In Part 4, I’ll 
show you some useful discrete transistor circuits and then we’ll 
zero in on the field effect transistors: Junction FETs and MOS.

FIGURE 5
Transistor amplifier four terminal linear network
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SMARC 2.0 Module Runs Linux on i.MX8M Mini
Congatec’s “Conga-SMX8-Mini” SMARC 2.0 module runs 

Linux on NXP’s i.MX8M Mini with up to 4 GB LPDDR4 and 
128 GB eMMC and optional Wi-Fi and -40 to 85°C. There’s also 
a new carrier and coolers for Congatec’s Epyc 3000 based 
conga-B7E3 module.

Congatec touts the module for its MIPI-CSI-2 interface 
and support for an upcoming SMARC MIPI-CSI-2 starter 
kit to be released in cooperation with industrial camera 
manufacturer Basler. No more details were available about this 
“highly integrated embedded vision platform” that support 
the “development of cost-efficient vision devices for sparse 
modeling-based AI.” Congatec offers a similar Conga-CAM-KIT/
MIPI kit for its Intel Apollo Lake based Conga-PA5 Pico-ITX SBC 
that uses a Leopard Imaging sensor instead of a Basler camera.

The 82 mm x 50 mm Conga-SMX8-Mini offers Linux, 
Yocto Linux, or Android BSPs with “ready-to-go boot loader 
implementation” for the single, dual, and quad-core versions 
of the i.MX8M Mini. The Cortex-A53 cores are clocked at 
1.8 GHz on the standard 0 to 60°C models and 1.6 GHz for the 
industrial -40°C to 85°C SKUs.

Congatec | www.congatec.com

Functional Safety Tools Support STMicros’ 8-bit STM8 MCUs
IAR Systems has further extended its tools offering 

for safety-related software development by launching a 
certified version of its development tools for STM8 MCUs. 
STMicroelectronics’ 8-bit STM8 
MCUs are used for automotive 
and other industrial 
applications where reliability 
and cost effectiveness are 
important. The functional 
safety edition of IAR Embedded 
Workbench for STM8 is certified 
by TÜV SÜD according to the 
requirements of IEC 61508, 
the international umbrella 
standard for functional safety, 
as well as ISO 26262, which is 
used for automotive safety-
related systems.

In addition, the certification 
covers the international 
standard IEC 62304, which 
specifies life cycle requirements 
for the development of medical 

software and software within medical devices, and the 
European railway standards EN 50128 and EN 50657.

The functional safety edition of IAR Embedded Workbench 
for STM8 includes a functional 
safety certificate, a safety 
report from TÜV SÜD and 
a Safety Manual. With the 
certified tools, IAR Systems 
provides a Functional Safety 
Support and Update Agreement 
with guaranteed support for the 
sold version for the longevity 
of the contract. Along with 
prioritized technical support, 
the agreement includes access 
to validated service packs 
and regular reports of known 
deviations and problems.

IAR Systems 
www.iar.com

Raspberry Pi Clone Sports  
1.84 GHz Intel Cherry Trail Processor

Radxa has posted specs for a new member of its community backed “Rock 
Pi” Raspberry Pi lookalike SBC family, this time with an Intel Cherry Trail Atom 
x5-Z8300, USB 3.0, microSD, HDMI, eDP/MIPI, and GbE, plus optional WiFi and 
Bluetooth 4.2 LE. In June, Radxa unveiled its Rock Pi S SBC that runs Linux on 
a RK3308 and updated its RK3399-based Rock Pi 4 with extra memory. Now, 
Radxa is preparing to add to that family of Raspberry Pi pseudo clones with an 
SBC called Rock Pi X, based on the Intel “Cherry Trail” Atom x5-Z8300. 

While this is Radxa’s first Intel Atom SBC, several open spec boards are 
based on the Atom x5-Z8300, including the Atomic Pi from Team IoT (DLI) and 
the UP board and UP Core board from Aaeon UP. Intel’s “Cherry Trail” Atom x5 
Z8350 SoC can be clocked at up to 1.84 GHz and has a 500 MHz Intel Gen 8 HD 
400 GPU featuring 12 Execution Units. Aside from having different processors, 

spec-for-spec, the 85 mm x 51 mm Rock 
Pi X is most similar to Radxa’s 85 mm x 
54 mm Rock Pi 4. Both provide 4 GB of RAM, 
microSD, HDMI and a Gbit Ethernet port.

Radxa | wiki.radxa.com

http://www.congatec.com
http://www.iar.com
http://wiki.radxa.com
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1/16th Brick DC-DC Converter Provides 
9-36 VDC Voltage Input

Murata has announced the introduction of its UWS-Q12 series, the 
latest in a line of 50 W, 9-36 Vin range DC-DC converters. This series was 
developed for a wide range of applications including, network equipment, 
industrial, railway, power grid and transportation. In an industry 
standard 1/16th brick pinout, the solution provides a basic I/O insulation 
system rated at 2,250 VDC isolation with a fully regulated DC output. 
The series also offers single output modules with outputs of 3.3 V, 5 V, 
12 V, 15 V and 24 V DC all rated at 50 W. Further, with a universal Vin 
range, requirements for Intermediate Bus Converter (IBC) architecture 
are readily met.

The UWS-Q12 series provides numerous standard features including 
positive or negative ON/Off control, output over current protection, 
over temperature protection, Input under Voltage lock-out, short circuit 
protection, Pre-Bias protection, Vout trim, and Vout sense function. The 
line has a galvanic isolation barrier between the input and output of the 
module with a basic insulation system rated at 2,250 VDC. Each converter 

Single-Chip Motor Driver Enables Virtually Silent Motor Operation
Trinamic Motion Control has unveiled an ultra-small 

single-chip motor driver that uses StealthChop technology 
to enable virtually silent operation. The device is designed to 
drive two-phase stepper motors 
up to 1.2 ARMS and with a voltage 
range of 1.8 VDC to 11 VDC. With a 
standby current draw of < 50 nA, it 
can provide a solution that requires 
only one or two Li-Ion cells or two 
AA batteries.

The TMC2300 incorporates three 
exclusive Trinamic technologies: 
StealthChop2: A high-precision 
algorithm that produces drive 
waveforms which enable motors to 
be inaudible—both in motion and at 
standstill; StallGuard: Sensorless 

motor load measurement, a combination of on-chip circuitry 
and firmware that enables the driver to perform sensorless 
homing and detect mechanical obstacles; and CoolStep 

Sensorless: Load-dependent 
current control that optimizes the 
motor’s energy consumption on 
the fly, enabling energy savings of 
up to 80% over conventional motor 
drives, according to Trinamic.

Trinamic Motion Control  
www.trinamic.com

MCU-based Solution Enables Offline Facial Recognition
NXP Semiconductors has unveiled what it claims is world’s 

first MCU-based solution for adding offline face and expression 
recognition capabilities to smart home, commercial and 
industrial devices. Built on NXP’s latest crossover MCU, the 
i.MX RT106F, running FreeRTOS, the new MCU-based face 
recognition solution enables original equipment manufacturers 
(OEMs) to quickly, easily and inexpensively incorporate face, 
expression and emotion recognition into a diverse range of 
IoT products.

The i.MX RT106F leverages NXP’s OASIS face processing 
engine and uses a neural network to perform face detection, 
recognition and anti-spoofing, without the need for cloud 
connectivity. OEMs can take advantage of NXP’s hardware and 
software-based platform to offer advanced human machine 
interface (HMI) capabilities that can anticipate and personalize 
the end user’s experience with smart edge devices such as 
smart appliances, thermostats, lighting, alarms and power 
tools.

NXP is now engaging with OEMs to provide early access 
to the evaluation and development kit for this solution, and 
broad market availability is expected to begin in Q1 2020.

NXP Semiconductors | www.nxp.com

is designed to deliver 50 W of power with 
efficiencies reaching 91 percent on the 5 V, 
12 V, 15 V and 24 Vout versions and 89.5% 
on the 3.3 Vout model.

Murata Power Solutions 
www.murata-ps.com

http://www.murata-ps.com
http://www.trinamic.com
http://www.nxp.com
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Reusable Solderless Robotics Kit Features SimpleLink MCU
Texas Instruments (TI) has introduced the newest addition 

to the TI Robotics System Learning Kit (TI-RSLK) family, the 
TI-RSLK MAX, a low-cost robotics kit and curriculum that is 

simple to build, code and test. Designed for the university 
classroom, the solderless assembly allows students to have 
their own fully functioning embedded system built in under 

15 minutes. Classrooms that may not have access to 
soldering equipment benefit from the solderless, hands-
on kit and curriculum that can be reused year after year.

Designed for the university classroom, the TI-RSLK 
MAX is a low-cost robotics kit and curriculum that is 
simple to build, code and test. The new kit includes 
TI’s SimpleLink MSP432P401R microcontroller (MCU) 
LaunchPad Development Kit, easy-to-connect sensors, 
and a versatile chassis board that turns the robot into 
a mobile learning platform. Through accompanying 
core and supplemental curriculum, students learn how 
to integrate their hardware and software knowledge to 
build and test a system.

The TI-RSLK MAX is available for purchase for 
US$109 from the TI Store and includes the SimpleLink 
MSP432P401R MCU LaunchPad Development Kit, as well 
as all additional components required for assembly. To 
expand kit functionality and learning paths, optional 
accessories are available for purchase.

Texas Instruments | www.ti.com

Two Power Delivery Chips Provide USB Type-C Charging Solutions
Microchip Technology has announced two new solutions 

that simplify USB Type-C PD (Power Delivery) for a range 
of applications. The company claims it as one of the 
industry’s first USB-IF-certified USB 3.1 SmartHub devices 
with integrated support for Power Delivery (TID1212). The 
USB705x family enables fast device charging and introduces 
unique PD implementations called HostFlexing and 
PDBalancing. The second device, the UPD301A, 
is a standalone USB Type-C PD controller that 
significantly simplifies the implementation of 
basic USB Type-C PD charging functionality, 
making it well suited for applications from rear 
seat charging in vehicles to portable equipment to 
public charging stations.

The USB705x family includes two unique features 
that simplify USB Type-C PD implementations 
– HostFlexing and PDBalancing. HostFlexing 
simplifies the user’s docking station experience by 
allowing all USB Type-C ports to function as the 
“notebook” port, eliminating the need for cryptic 
labels that try and explain overall functionality of 
each USB Type-C port.

The UPD301A is available today starting at $1.50 

in 10,000-unit quantities. The USB705x family is available 
today with options and pricing for 10,000-unit quantities, 
with price ranging from $4.82 to $5.35, depending on 
configuration.

Microchip Technology | www.microchip.com

http://www.microchip.com
http://www.ti.com
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TEST YOUR EQ 
Contributed by David Tweed 

Problem 1— This circuit (Figure 1) is used to boost 
the output of a 3V battery to levels high enough to light 
a string of LEDs. Explain how this circuit oscillates.

Problem 2— What limits the amount of power that 
this circuit transfers from input to output?

Problem 3— Figure 2 shows a modified version of 
the Figure 1 circuit. Explain what Q3 does.

Problem 4— Suppose the Figure 2 circuit is used to 
drive an LED assembly that requires 200 mA at 12 V. 
How much current must pass through L1 and Q2?

www.cc-webshop.com
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TECH THE FUTURE

The Essentials of 
Smart Home Security

By 
Michelle Tate, 
Product Marketing Engineer, 
Texas Instruments

The Future of Smart Homes

A ccording to Forbes, it is estimated that total spending on 
Internet of Things (IoT) devices and infrastructure will reach 
$1.2 trillion by 2022—up from an estimated $151 billion last 
year. Such rapid growth indicates that the IoT is penetrating 

deeply into many markets, from first adopters a decade ago to today, 
where 90% of business executives in technology, media and telecom 
consider IoT technology to be central to their business strategy.

When you consider that one of the major bottlenecks to widespread 
IoT adoption and development has been the rapidly evolving radio 
frequency (RF) technology landscape, it’s clear that companies should 
start investing in this ever-growing space with scalable and flexible 
microcontroller (MCU) platforms.

One of the fastest growing IoT spaces is in the home network. The 
“home network” includes products that work together seamlessly to 
provide both a smart and secure home experience. Inside today’s smart 
home products and talking home assistants, however, is a much more 
sophisticated and intricate story. The smart home market is fragmented 
at several levels, making device interoperability a challenge.

At one level, the smart home consists of several sub-categories 
such as building security, heating, ventilation, air conditioning (HVAC) 
and fire safety systems. Anyone who even casually follows the smart 
home market has seen the rapid growth of the building security sub-
category with the influx of out-of-the-box security systems available for 
homeowners to purchase. These security systems ship directly to the 
front door and are immediately ready to install by the homeowner.

When designing a smart home security system like this, flexibility and 
scalability are paramount. Meanwhile, interoperability, given the need 
for multiple peripheral devices, can be a major challenge. To overcome 
these design challenges, security service providers and security system 
companies are working to make products interoperable out of the box 
by integrating the essential components illustrated in Figure 1. These 
components can be divided into these three categories:

•	 Sensing, including door and window 
sensors, motion detectors and glass 
break detectors.

•	Monitoring, using security cameras 
and video doorbells.

•	 Control (both local and remote) 
using gateways, access panels, 
electronic smart locks, cloud-based 
dashboards and smartphone apps.

The requirements for implementing 
sensing, monitoring and control into 
a security system differ, making it 
increasingly challenging for security 
system companies to keep up with 
and stay ahead of the needs of all 
three functions while minimizing 
additional design time and effort.

FIGURE 1
Home security system setup example
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EXAMINING PRIORITIES
Let’s review what security providers should prioritize 

when developing a smart home security system.
Sensing priorities: long range and low power: We all know 

a person’s homestead is typically the largest asset on their 
balance sheet. At the same time, it also provides storage for a 
plethora of personal valuables. The interest of homeowners to 
easily protect their assets with low hassle is driving the need 
for security companies to provide solutions that can both 
secure all of the entry points of a home as well as enable the 
least amount of upkeep maintenance as possible.

Long range enables homeowners to place a sensor in 
remote and hard-to-reach locations, such as a window on 
the third floor of a home, therefore extending coverage to 
areas previously unreachable by wired systems. Enabling 
greater coverage through extended range in turn increases 
the number of connected sensors in a home as well as the 
burden for homeowners to monitor battery life and battery 
replacement cycles. By creating lower power sensors, battery 
life can be elongated to multiple years, therefore reducing the 
maintenance burden on the homeowner.

Sub-1 GHz is currently the leading technology for sensors 
due to its extremely long range, ability to penetrate walls 
and low-power capabilities. Because there are no standards 
bodies currently overseeing the Sub-1 GHz bandwidth, many 
developers must create their own proprietary protocols from 
scratch, requiring significant R&D investment, time and RF 
expertise. Some silicon providers will make this investment 
for security system developers and provide an out-of-the-box 
toolkit to help them get started in Sub-1 GHz design.

Zigbee and Thread are 2.4 GHz mesh standards. Zigbee 
enables ultra-low power through Zigbee Green Power, which 
supports battery-less devices by enabling sensors that can 
harvest mechanical energy from movement, such as opening a 
door or window sensor. Thread is designed specifically for home 
networks and is based on Internet Protocol ver. 6, which enables 
Thread devices to have an easy connection to existing networks.

Monitoring priorities: high throughput and security: If a 
picture is worth a thousand words, video is worth a million —
when it comes to home security, that could not be more true. 
Wi-Fi is typically used to achieve the throughput required to 
stream video from monitoring home entry points. Choosing a 
Wi-Fi MCU that can support 4 Mbps or more is important to 
enable 1080p video streaming.

In addition, monitoring undergoes extra security scrutiny 
from home/building installers, as the information being 
stored and/or sent over the air is more sensitive. Selecting 
an MCU that has comprehensive end-to-end security, from 
storage to run time to transfer, can further help secure a 
monitoring design.

Control priorities: multiprotocol concurrency and remote 
control: Multiple wired and wireless connectivity standards 
enable connections to wireless sensing and monitoring 
functions, and for large buildings, wired connections back to 
a central server.

A combination of wireless technologies, such as Wi-Fi, 
Bluetooth low energy, Zigbee, Thread and Sub-1 GHz, and a 
wired connection, such as Ethernet, are commonly used for 
control. Combining multiple wireless technologies in a single 
control component requires both multiprotocol concurrency 
and coexistence.

Enabling multiprotocol concurrency on a single MCU 
can be done by developing software that switches between 
protocol stacks in real time based on protocol priority tables. 
Developing low latency multiprotocol managers helps enable 
the control unit to interact in multiple networks at the same 
time while also ensuring successful packet transmissions due 
to the fast switching time.

Supporting coexistence on two 2.4 GHz MCUs, such as a 
Bluetooth MCU and Wi-Fi MCU, is another important design 
aspect to consider. By using time division multiplexing, the 
two MCUs can share the same antenna and reduce the bill 
of materials (BOM) of a design. In addition, by designing 
with Bluetooth and Wi-Fi, homeowners have the ability to 
remotely access and control their smart security system, with 
Bluetooth providing shorter-range remote access through the 
phone and Wi-Fi providing remote access through the cloud.

SCALABILITY AND FLEXIBILITY
There are many dominant and newly emerging connectivity 

solutions that aim to meet sensing, monitoring and control 
requirements. However, with the increasing number of 
connectivity solutions and system requirements, it has become 
increasingly difficult for security system companies to stay up 
to date with market demands, such as longer range, lower 
power, faster networks and greater security, without having to 
divert additional resources toward system redesigns.

Selecting an MCU platform that supports both wired and 
wireless connectivity protocols enables code reuse through 
common software development kits and application 
programming interfaces. Security system companies benefit 
from more flexible and scalable designs, further enabling 
them to stay ahead of market needs.  

For detailed article references and additional resources 
go to: www.circuitcellar.com/article-materials

RESOURCE
Texas Instruments | www.ti.com

At Texas Instruments, Michelle Tate serves as a product marketing engineer 
for the SimpleLink connected MCU team, specializing in building security 
systems. She received her bachelor’s degree in electrical engineering from 
The University of Texas at Austin.
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Materials:
Fr4
Metal Core
Isola
Rogers
Polyimide - Flex
MagtronMagtron

Technology:
Up to 50 Layers
Any Layer HDI
Sequential Lamination
Blind / Buried Vias
Laser Drilling / Routing
Heavy CopperHeavy Copper

Whether you are an
EMS, CM or OEM,

let our bare boards be the foundation
you build your reputation upon!

We will make only what is needed,
when it’s needed,

and in the amount needed.
You no longer have to worry about long shelf life

or tie your capital in bare board inventory.

www.PCB4u.com  sales@PCB4u.com
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FROM THE DEEP BLUE SEA
TO THE WILD BLUE YONDER

The TS-7680 is designed to provide
extreme performance for applications demanding

high reliability, fast boot-up/startup, and
connectivity at low cost and 

low power. Because there are so many features packed 
on to one single board computer you will see a

 reduction in payload weight since there is no need for 
additional boards, micro-controllers, or peripherals. 

Rated for industrial temperature range of -40°C to +85°C
 the TS-7680 is deployed in �eet management,

pipeline monitoring, and industrial controls 
and is working in some of the most demanding 

places on Earth. 
 

The TS-7680 will help you perform at your
very best in a variety of critical missions.

 Qty 100

Low Power Industrial 
Single Board Computer with 

WiFi and Bluetooth

$159

TS-7680

www.embeddedARM.com



