
w Product Focus: Panel PCs w Analog ICs in Industrial Systems |

Designing Manufacturing Test Systems | 4-20 mA Current Loop Devices |

Build a Multi-Key Electronic Flute | Self-Organizing Wi-Fi Mesh Network |

w ECG Monitor Uses Cypress PSoC 6 | Embedded System Security Live |

Semiconductor Basics (Part 3) | MQTT (Part 2) w The Future of Smart Homes

ENERGY HARVESTING APPROACHES
NOVEMBER 2019

ISSUE 352CIRCU
IT CELLAR | ISSU

E 352 | NOVEM
BER 2019

circuitcellar.com

circuitcellar.com

EDGE INTELLIGENCE ENHANCES
ENERGY HARVESTING

Inspiring the Evolution of Embedded Design

Enter to Win!
Android Demo/Eval Kit

The kit includes:
 � 7” 1024 x 600 HDMI Touch-screen
flat panel display

 � Tetra Single Board Computer
(SBC) with Quad-core i.MX6

 � Pre-loaded Android (Oreo 8.0)
on MicroSD card

 � Wall power adapter
 � USB Hub
 � Start-up guide
 � Required cables

Visit circuitcellar.com/versalogic

“ Set-up was a breeze,
it was up and running
in less than 10 min.”

– Electronics Technician

www.circuitcellar.com/versalogic

The Embedded Experts

segger.com

Worldwide: sales@segger.com
 +49 2173 99312 0

U.S. East Coast: us-east@segger.com
 +1 978 874 0299

U.S. West Coast: us-west@segger.com
 +1 408 767 4068

n Real-time compression
n Small footprint
n No static RAM required
n Compression of data streams
n High performance
n High compression ratio
n On-target compression & decompression

emCompress-ToGo
Compress Data in Real-time on any Embedded System!

Data Loggers Internet of Things Space / Avionics

Networking Medical Devices Consumer Electronics

One Professional Compression Solution for All Applications

mailto:sales@segger.com
mailto:us-east@segger.com
mailto:us-west@segger.com
www.segger.com

CIRCUIT CELLAR • NOVEMBER 2019 #3522

OUR NETWORK

SUPPORTING COMPANIES

NOT A SUPPORTING COMPANY YET?
Contact Hugh Heinsohn

(hugh@circuitcellar.com, Phone: 757-525-3677, Fax: 888-980-1303)
to reserve space in the next issue of Circuit Cellar.

Accutrace, Inc.	 C3
All Electronics Corp.	 77
CCS, Inc.	 77
EzPCB	 27
HuMANDATA	 73
IAR Systems	 33
Measurement Computing Corp.	 49
Revenue Control Systems	 77
SEGGER Microcontroller Systems	 1
SlingShot Assembly	 13
Siborg Systems, Inc.	 29
Technologic Systems, Inc.	 C4, 77
Texas Instruments	 23
VersaLogic	 C2

Issue 352 November 2019 | ISSN 1528-0608

CIRCUIT CELLAR® (ISSN 1528-0608) is published monthly by:

KCK Media Corp.
PO Box 417, Chase City, VA 23924

Periodical rates paid at Chase City, VA, and additional offices.
One-year (12 issues) subscription rate US and possessions

$50, Canada $65, Foreign/ ROW $75. All subscription orders
payable in US funds only via Visa, MasterCard, international

postal money order, or check drawn on US bank.

SUBSCRIPTION MANAGEMENT

Online Account Management: circuitcellar.com/account
Renew | Change Address/E-mail | Check Status

CUSTOMER SERVICE

E-mail: customerservice@circuitcellar.com

Phone: 434.533.0246

Mail: Circuit Cellar, PO Box 417, Chase City, VA 23924

Postmaster: Send address changes to
Circuit Cellar, PO Box 417, Chase City, VA 23924

NEW SUBSCRIPTIONS

circuitcellar.com/subscription

ADVERTISING

Contact: Hugh Heinsohn

Phone: 757-525-3677

Fax: 888-980-1303

E-mail: hheinsohn@circuitcellar.com
Advertising rates and terms available on request.

NEW PRODUCTS

E-mail: editor@circuitcellar.com

HEAD OFFICE

KCK Media Corp.
PO Box 417

Chase City, VA 23924
Phone: 434-533-0246

COPYRIGHT NOTICE

Entire contents copyright © 2019 by KCK Media Corp.
All rights reserved. Circuit Cellar is a registered trademark

of KCK Media Corp. Reproduction of this publication in
whole or in part without written consent from

KCK Media Corp. is prohibited.

DISCLAIMER

KCK Media Corp. makes no warranties and assumes no
responsibility or liability of any kind for errors in these

programs or schematics or for the consequences of any such
errors printed in Circuit Cellar®. Furthermore, because of

possible variation in the quality and condition of materials and
workmanship of reader-assembled projects, KCK Media Corp.
disclaims any responsibility for the safe and proper function

of reader-assembled projects based upon or from plans,
descriptions, or information published in Circuit Cellar®.

The information provided in Circuit Cellar® by KCK Media
Corp. is for educational purposes. KCK Media Corp. makes

no claims or warrants that readers have a right to build
things based upon these ideas under patent or other

relevant intellectual property law in their jurisdiction, or
that readers have a right to construct or operate any of

the devices described herein under the relevant patent or
other intellectual property law of the reader’s jurisdiction.
The reader assumes any risk of infringement liability for

constructing or operating such devices.

© KCK Media Corp. 2019 Printed in the United States

THE TEAM
PRESIDENT
KC Prescott

CONTROLLER
Chuck Fellows

FOUNDER
Steve Ciarcia

COLUMNISTS
Jeff Bachiochi (From the Bench), Bob Japenga (Embedded in Thin Slices),
Robert Lacoste (The Darker Side), Brian Millier (Picking Up Mixed Signals),
George Novacek (The Consummate Engineer), and Colin O’Flynn
(Embedded Systems Essentials)

EDITOR-IN-CHIEF
Jeff Child

SENIOR ASSOCIATE EDITOR
Shannon Becker

TECHNICAL COPY EDITOR
Carol Bower

GRAPHICS
Grace Chen
Heather Rennae

ADVERTISING COORDINATOR
Nathaniel Black

ADVERTISING SALES REP.
Hugh Heinsohn

PROJECT EDITORS
Chris Coulston
Ken Davidson
David Tweed

mailto:hugh@circuitcellar.com
mailto:customerservice@circuitcellar.com
mailto:hheinsohn@circuitcellar.com
mailto:editor@circuitcellar.com
www.circuitcellar.com
www.linuxgizmos.com
www.audioxpress.com
www.voicecoilmagazine.com
www.loudspeakerindustrysourcebook.com
www.circuitcellar.com/subscription

circuitcellar.com 3

INPUTVoltage

Jeff Child

I ’ve spoken before in this column about the
commercial drone market, and how it differs
greatly from both the military drone and
consumer drone market segments. While the

military and consumer drone realms have pretty
well-established design requirements, many of the
embedded electronics design decisions for commercial
drones haven’t been nailed down. Drones in this segment
are performing all sorts of missions for construction,
agriculture, security, delivery, media and many more.
And commercial drones have to fly higher and longer
than consumer drones. Meanwhile, a diverse industry
of drone software and services has sprung up around
the commercial drone space. Reliability is a major
concern in commercial drones, and those service firms
are very much aware that, if a drone stops working, so
does their service.

At this years InterDrone show in September, Tom
Walker, founder and CEO of DroneUp, was among
the keynote speakers and he provided an interesting
perspective on the drone industry from a service
provider point of view. DroneUp is a provider of
end-to-end aerial data collection services for large,
autonomous drone missions. The company delivers on-
demand drone services to commercial, government and
public safety organizations through its patent-pending
verification platform, Mission Match.

Walker’s InterDrone keynote offered a fresh
perspective on the huge potential and high stakes of
today’s commercial drone market. A full transcript of his
speech is posted on dronelife.com, but I'll share some
of the highlights here. Walker started off stressing just
how young and unique the drone and drone services
industries are. “We started businesses not knowing
what it was we would be selling to customers who didn’t
know what they were buying, in an industry that nobody
has figured out how to regulate,” said Walker. “You see,
we aren’t just start-up businesses and organizations in
a young industry. We are a start-up industry.”

Walker says he views this industry as all part of a
team. This team is made up of small one- or two-person
drone shops trying to build revenues, drone services
providers managing global pilot fleets, brave early-
adopters (users) fighting to integrate drone services
into your organization, members of academia racing
to design curricula to ensure we have a sustainable
workforce and government bodies trying to regulate
drone operations.

In contrast to other areas of embedded system
design, drones have to factor in broader issues like the
many safety and regulatory issues surrounding them.
Drones have to operate within the same air space as
manned aircraft. And the drone industry is relatively
new with a regulatory landscape that’s still evolving and
with many safety issues still to be resolved.

From his perspective, Walker says he sees an
industry hungry to evolve and get it right. “I am involved
with dozens of industry boards, alliances, committees
and organizations, all of which are in one way or
another committed to promoting the commercial drone
industry,” he said, “So far this year, I have received
more than 7,000 emails covering every imaginable
topic and program: BVLOS (Beyond Visual Line of Sight),
Large UAS (unmanned aerial systems), UPP (UAS Pilot
Program), IPP (UAS Integration Pilot Program), and,
as always, membership dues. The fonts and words
have minor differences but the message is consistent:
Help us influence policy to facilitate adoption of drone
technology. Help us shape a regulatory environment
that will pave the way for industry emergence and
growth. The implication is subtle but clear. Only through
continued efforts to guide policies and regulations will
our industry ever really get off the ground.”

In his keynote, Walker also stressed that technology
innovation is playing a key role in the growth and
sustainability of the commercial drone industry. “The
best way to ensure our industry’s stability is to remain
steadfastly focused on operating responsibly while
providing tangible value,” said Walker, “BVLOS,
asymmetric data protocoling, AI-enabled dispatch and
the many other technologies on the roadmap will extend
our capabilities and contribute to our industry’s growth
and sustainability.”

High Stakes Future for Commercial Drones

CIRCUIT CELLAR • NOVEMBER 2019 #3524

@editor_cc
@circuitcellar circuitcellar

COLUMNS

PRODUCT FOCUS	40	 Panel PCs
HMI Intelligence

By Jeff Child

45	 Embedded System Essentials
Embedded System Security Live
Coverage of Two Security Events

By Colin O’Flynn

	50	 Picking Up Mixed Signals
Bluetooth-Enabled ECG Monitor
Using the Cypress PSoC 6 MCU

By Brian Millier

	61	 From the Bench
MQ Telemetry Transport (Part 2)
Bringing it All Back Home

By Jeff Bachiochi

	70	 The Consummate Engineer
Semiconductor Fundamentals
(Part 3)
Transistor Topologies

By George Novacek

TECH THE FUTURE

	79	The Future of Smart Homes
The Essentials of Smart Home
Security

By Michelle Tate

74 : PRODUCT NEWS	
78 : TEST YOUR EQ

PG. 45

PG. 50

PG. 61

circuitcellar.com 5

	6	 4-20 mA Current Loop
Devices
An SBC-Based Project

By Derek Hildreth

14	 Self-Organizing Wi-Fi Mesh
Network
Using PIC32 MCUs

By Daniel Weber and Michaelangelo Rodriguez

20	 Designing Manufacturing Test
Systems
Quality and Cost

By Nishant Mittal

24	 Multi-Key Electronic Flute
Sensors and Synthesis

By Trisha Ray, Parth Bhatt and Qing Yu

SPECIAL FEATURE	30	 Chip Solutions Tackle the
Energy Harvesting Challenge
Self-Sufficiency at the IoT Edge

By Jeff Child	
TECHNOLOGY SPOTLIGHT	36	 Analog ICs Feed Needs of
Industrial Systems
Advances for Automation

By Jeff Child

FEATURES

PG. 6

PG. 14

PG. 24

CIRCUIT CELLAR • NOVEMBER 2019 #3526
FE

AT
U

RE
S

A nybody who has experience
in process control knows that
4-20 mA current loop devices
dominate the industry. These

devices are built to transmit analog signal
information through varying amounts of
current, which is then read and interpreted
by a receiver unit. The receiver can then be
configured to display the sensor data in a
human friendly format and/or perform some
action. This is fundamental for automating
processes in simple or complex systems.

Why 4-20 mA? The history on how 4-20 mA
came about is quite interesting—going back to
pre-electronic process control systems based
on a 3-18 psi linear measurement scale. The
low-end value of 4 mA was chosen because
the necessary equipment consumes about
3 mA—so, a desire to add some wiggle drove
the industry to choose 4 mA. And 0 mA wasn’t
chosen as the lower value so that line faults
could be detected if it falls below 3.8 mA. The
high end of 20 mA was chosen because anything
over 30 mA is very dangerous to humans—and
because 20 is a nice multiple of 4 [1].

Taking a look at an overly simplified
example, let’s imagine a water pump
scenario where a hot water valve must be
automatically opened or closed depending
on water temperature in a pipe carrying
mixed hot and cold water. A temperature
sensor is installed in the mixed water pipe,
transmitting an analog signal (most likely a
signal measured in resistance). The wires
from the sensor are then connected to a
transmitter which converts the analog signal
to a 4-20 mA current signal.

This transmitter is then connected to a
single board computer (SBC) with on-board
relays that has been programmed to read the
4-20 mA current signal of temperature, and
convert it into units of degrees Celsius. The
program continually reads the temperature
value, and when it becomes greater than 41ºC,
the program will energize the relay connected
to an electronic valve actuator, thus closing
the hot water valve until the temperature has
returned to nominal value. All this without any
human interaction, using simple, inexpensive
and low power hardware.

In this article, Derek helps you gain deeper understanding of 4-20 mA current
loop devices and process control systems. He looks at some history, explains why
things are the way they are, looks at simple example components of a process
control system (sensor, transmitter, receiver) and works through a practical
example with working code.

An SBC-Based Project

By Derek Hildreth,
Technologic Systems

4-20 mA Current Loop Devices

circuitcellar.com 7
FEATU

RES

LET’S BUILD SOMETHING
Now with basic 4-20 mA current loop

system principles out of the way, let’s have
some fun and deepen our understanding so we
can actually begin to build something! We’re
going to further explore reading temperature
data using a sensor and an SBC. So, grab your
digital multimeter and let’s get rolling!

Project Requirements:

●	 RTD PT100 temperature sensor [2]
●	 PT100 4-20 mA transmitter, -50 to 100ºC,

24 VDC [3]
●	 SBC or microcontroller (MCU) with ADC

port. The TS-7680 [4] is used in this article
because it has built-in 4-20 mA support,
but the principles can be applied globally.
The SBC or MCH can have ADC ports with
4-20 mA loop support or not

●	 Digital multimeter with current
measurement (mA); Optionally,
temperature measurements to confirm
temperature conversion

●	 Small Philips and flathead screwdrivers for
screw terminals

●	 Hookup wire

The Sensor: We’ll be using a three-
wire resistance temperature detector
(RTD) temperature sensor (Figure 1). More
specifically, we’ll be using a PT100, which
means the resistance at 0ºC is 100 Ω and
measures from -200ºC to 600ºC. We’ve chosen
a three-wire RTD sensor mainly because of
its min and max range, accuracy, availability,
packaging types and lead wire range. We can
install this sensor in a pipe a long distance
away from a facility without accuracy loss.

The third wire in an RTD is used to
compensate for the resistance added by the
length of the wires. This allows for maximum
cable lengths up to 200 feet. If longer cable
lengths are required, then it is best to use a
temperature transmitter—like we talk about
in a moment—which converts temperature
into a current output or digital signal. Pro Tip:
The main players in temperature sensors are
thermocouples, thermistors, RTDs, and one-
wire (DS18B20). Naturally, each have their
advantages and disadvantages [5]. Think
about your application requirements when
choosing.

One advantage of using an RTD sensor is
that it has a linear temperature vs resistance
output [6]. That means that it’s easy to
calculate a slope intercept formula to calculate
final, human-readable values. Adventurous
folks who want to build their own circuit (in
other words, voltage divider or Wheatstone
bridge) instead of buying a transmitter will
appreciate the linearity. As for the rest of us,
we’ll use a transmitter.

The Transmitter: In our application so
far, we’ve determined that we want to use
a 4-20 mA current loop signal. We’ve also
determined that an RTD PT100 sensor suits
our application nicely. Now, we need to find
a transmitter that will take an analog signal
from the sensor and translate it into a nice
4-20 mA current loop signal. Let’s consider
our water temperatures. Water will be flowing
through a pipe, so let’s figure we won’t be
measuring anything below 0ºC (freezing).
Let’s also figure we won’t be sending anything
more than 90ºC through it (water boilers for
home heating are typically 80ºC). A quick
trip to the store will yield a PT100, 4-20 mA
transmitter with a -50 to 100ºC range and
three-wire input (Figure 2). It will need to
be supplied with 24 VDC [7], which is very
common in process control systems.

We’re almost there. Now, we need to
choose a receiver in order to read and convert
the 4-20 mA signal into human friendly values
and then do something with them.

The Receiver: The final piece of equipment
in our application is the receiver. Its main
job is to make sense of the 4-20 mA signal

FIGURE 1
Three-wire RTD PT100 temperature
sensor

FIGURE 2
RTD PT100 24 VDC transmitter

CIRCUIT CELLAR • NOVEMBER 2019 #3528
FE

AT
U

RE
S

by digitizing it so that we can program it to
perform some action based on the signal.
Actions include things like displaying the
temperature in ºC or ºF on a display, toggling
DIO based on set thresholds, energizing
relays for system control, serving up a web
application for the world to see (think Internet
of Things, IoT or IIoT) or some combination
of all these things. The receiver could be a
simple circuit (555 chip, transistors, voltage
divider, relay), an MCU (Arduino) or am SBC.

It just so happens that the Technologic
Systems’ TS-7680 [8] falls into this application
very nicely, with 4× ADC inputs supporting
4-20 mA current loop (Figure 3). You can
conveniently power it with the same 24 VDC
supply as the transmitter. It also has a
lot of digital output channels available for
controlling external relays or devices, along
with a load of other interfaces like Modbus,
CAN, RS-232, RS-485 and more. The feature
that captures my attention is the networking
abilities, including dual Ethernet, Wi-Fi and
Bluetooth. The TS-7680 is well suitable for
many interesting applications [9] and meets
the requirements for this project article.

If you choose to use some other receiver
device, just make sure it has an ADC port. If
the ADC port does not support 4-20 mA current
loops, don’t fret. It’s actually quite simple to
add support using a single load resistor for
measurement. By placing a 250 Ω resistor
between GND and ADC, we can interpret the
4-20 mA output as a voltage drop across the
resistor (Figure 4).

Why 250 Ω? Let’s apply Ohm’s Law:
V = IR, and assume the max voltage we want
to supply to our ADC channel is 5 VDC. We
know the max current is 20 mA, so we can
now apply the formula to come up with a
resistance value: R = V/I = 5/0.020 = 250 Ω.
This works out nicely for the low end as well,
since V = IR = 0.004 × 250 = 1 V. This equates
to a very nice 1 VDC to 5 VDC range. However,
going back to fault detection when current is
below or above 4 and 20 mA, we may opt for a
lower resistance value, like 225 Ω (0.9 VDC to
4.5 VDC) or, in the case of the TS-7680’s built-
in load resistors, 240 Ω (0.96 VDC to 4.8 VDC).

CONNECTING THE PIECES
Sensor and Transmitter: Connecting our

temperature sensor to it is easy enough.
The two red wires are common and the clear
wire is what we’ll call the sensor signal. The
clear wire will be attached to the far right
terminal while the two red wires will be
attached to the remaining terminals in that
row (Figure 5). Hooking the transmitter up to
power might make your brain twitch a little.
Instead of negative wire to negative terminal
and positive to positive, we’re going to be

FIGURE 3
A TS-7680 single board computer with enclosure

FIGURE 4
Wiring diagram for connecting transmitter to standard ADC port without 4-20 mA current loop support

FIGURE 5
RTD temperature sensor probe
connected to 4-20 mA transmitter

circuitcellar.com 9
FEATU

RES

connecting the negative terminal in line with
a receiver in order to measure the current.

Let’s start out simple and use a digital
multimeter (DMM) to prove the concept and
get our minds wrapped around it. So, the
positive wire of your 24 VDC power supply will
go to the positive terminal as usual, but the
negative wire will be connected to the COM
port of your DMM. Then, you’ll connect the
mA port of your DMM to the negative terminal
(Figure 6 and Figure 7).

This is the exciting part! Grasp the sensor
fully with your hand and watch the mA
measurement rise with the temperature of
your hand. Dunk the sensor into a mug full
of ice water and watch it drop. This validates
everything we’ve been working on so far!
Now that we have proof of concept out of
the way and we’ve validated our sensor and
transmitter, let’s get the receiver, in our case
the TS-7680 SBC, hooked up.

Transmitter and Receiver: Just as we
connected our multimeter inline to the
4-20 mA current loop transmitter, we’re going
to do the same for the ADC channel of the
receiver. Remember, it’s here in the receiver
that we’re going to convert the analog signal
into a digital one so that we can translate it
into a meaningful number in ºC and then do
something with it.

Without going into analog signal theory too
much, you can easily have the transmitter and
receiver installed on opposite sides of several
football fields and still connect them using a
shielded wire (to prevent EMI and essentially
turning the long wires into an antenna). So
long as there is still voltage potential at the
receiver for the 240 Ω resistor, the receiver
can measure the voltage drop. For example,
using 24 AWG wire [10] and 24 VDC, that turns
out to be about 35,000 feet (19 VDC drop
leaving 5 VDC potential at the 240 Ω resistor
of the receiver).

Since we’re working with the TS-7680 in
this guide, we’ll be taking advantage of the
variable input voltage and supply it and the
transmitter with 24 VDC from a single source.
We only need to run a single wire to the AN-0
pin on the bottom connector (Figure 9). This
simplifies wiring for the case of our TS 7680,
but we might find that there are a lot of
systems that do not have a variable input
voltage as high as 24 VDC. More commonly,
it’ll be 5 VDC or 12 VDC. So, let’s see what
a separate power supply would look like in
Figure 10.

Here’s a pitfall to consider: Keep in mind,
using separate supplies in this way requires
them to be able to be grounded together.
Using separate isolated supplies can cause
a ground potential which can give incorrect
readings at best, or damage equipment at

FIGURE 6
Multimeter measuring current from the transmitter before connecting to the receiver

ABOUT THE AUTHOR
A small-town Montana boy, born and raised, with a passion for programming
and embedded systems. Derek Hildreth has been working for Technologic
Systems (in various capacities) since 2010 starting as an intern embedded
engineer. Off the clock, he’s an avid skier and backpacker who slays double
black diamonds, conquers mountain peaks, and just generally loves life at
10,000 feet. What he loves most about his career at Technologic Systems is
the extended family cultural feel and the opportunity to wear many hats as
responsibilities change.

FIGURE 7
Wiring diagram for measuring current from the transmitter

CIRCUIT CELLAR • NOVEMBER 2019 #35210
FE

AT
U

RE
S

worst. It would be best to use a supply that’s
able to offer multiple voltage taps with the
same reference ground.

There. Now, we have two power supplies—
one for the receiver and one for the transmitter.
We could opt for a 12 VDC to 24 VDC converter
[11] as well, but we’ll abstract that away for
now. At this point, we’re ready to dive into
programming the receiver, but while we’re
still on the topic of hooking everything up,
Figure 11 shows an example of how we’d
hook up multiple transmitters. Okay! Now,
we’re ready to move on to even more exciting
stuff: programming the receiver.

PROGRAMMING THE RECEIVER
If you’re not following along with a

TS- 7680 or similar Technologic Systems’
product, that’s okay because this article is
generic enough to apply to other boards. Just
keep your product’s manual handy! For those
of you who are anxious to see the code, you
may jump to the TS-7680 4-20 mA Current

Loop Example Code gist on GitHub [12]. I’ll
explain it in a little more detail below.

Read the ADC Value: Get your receiver into
a state where you can program it. For the
TS- 7680 running Linux, this means powered
on and connected to a serial console (see also
TS-7680 getting started guide [13]). Chances
are, your receiver came with some example
code for how to read in values from the ADC
channels. For the TS-7680, we’ll be using the
mx28adcctl.c example code [14] within the
TS-7680 Utility Sources repository on GitHub
[15] as a base.

Copy or download the example code onto
your receiver and update it with the correct
pin locations. Since the code will likely be
reading voltages, you might also want to add
a conversion back to milliamps or microamps
based on the load resistor you used for
measurement. The TS-7680 has a 240 Ω
load resistor between AN-0 and GND, so the
conversion from milliamps to microamps
looks like:

uA = (((meas_mV)*1000)/240); //
Ohms law: I = V/R

Compile your program and test it! Since we
have our measurements from our multimeter,
we can do a sanity check that our ADC value
is good. On the TS-7680, we’ve named this
program getadc (getadc.c, Makefile)
[12]. This is what the output looks like:

root@ts7680:~/getadc# ./getadc 0
mV: 2718
uA: 11325

This is very cool, because so much has
been building up to this moment! We’re very
close to finishing up by converting these raw
numbers into something meaningful. Tip: You
could stop here if you don’t care what the
units are and want to use the 4-20 mA signal
directly, but it does help to have meaningful,
human-readable values represented.

Convert Signal to Meaningful Units: The
final piece of code! Instinctively, I separated
the getadc.c code [12] from the system
control code called rtdTemp.sh [12]. You
could tie these two into the same program if
you wanted, but I find it easier to maintain
modular code. Plus, you can use the other ADC
ports for different sensors, each requiring
their own conversions and set of instructions
but all rely on the getadc.c code to get there.

Right to the point, the 4-20 mA to
temperature conversion formula you’ll want
to use is:

tempC = (mA - 9.333) / .107FIGURE 9
Wiring diagram showing single 24 VDC power supply and 4-20 mA signal connection.

circuitcellar.com 11
FEATU

RES

Why? How? Think back to our high school
days. We have a linear temperature vs current
scale thanks to our sensor and transmitter
choices. We want the slope intercept form of
this line so we can solve for X (temperature)
given Y (mA). Using a spreadsheet, we can
calculate this using INTERCEPT() and
SLOPE() functions knowing -50ºC is 4 mA
and 100ºC is 20 mA. Go to [17] and take a
look at the RTD PT100 4-20 mA Transmitter
Temperature Conversion spreadsheet I used
to get this formula if you’re still curious or
want to verify it. Make a copy of it and modify
it to fit your needs.

We’ll be applying that formula in our
system control script, rtdTemp.sh, which
will read the mA value from the output of
getadc, convert it to ºC (and ºF), and display
it. Here’s what the conversion looks like in
code:

#!/bin/bash

uA=$(getadc 0 | awk ‘FNR == 2
{print $2}’)
mA=$(echo “scale=3; $uA / 1000” |
bc)

tempC=$(echo “scale=1; ($mA -
9.333) / .107” | bc)
tempF=$(echo “scale=1; ($tempC *
9/5) + 32” | bc)

echo “Temp (C): $tempC”
echo “Temp (F): $tempF”

We’re using bc because it supports
floating point math whereas eval does not.

FIGURE 10
Wiring diagram showing multiple power supplies and 4-20 mA signal connection.

FIGURE 11
Wiring diagram showing multiple
temperature sensors connected.

CIRCUIT CELLAR • NOVEMBER 2019 #35212
FE

AT
U

RE
S

Running the script will yield the output:

root@ts7680:~/getadc# ./
rtdTemp.sh

Temp (C): 20.1
Temp (F): 68.1

Momentous! We’re seeing the meaningful
value for the first time! Congrats and great
job so far!

Take some time and verify your output. Do
the values make sense and are they accurate?
Use other thermometers you might have to do
sanity checks (Figure 12). For example, use the
temperature measurement from your DMM.
Grab cups of water (hot, cold and luke warm)
and stick the PT100 sensor and DMM sensor
in each of them. Are they getting the same
values? I also grabbed a kitchen thermometer
to get a third opinion. I found that the DMM
value was about 2ºC higher than what the
kitchen thermometer and the PT100 sensor was
reporting, so it’s good to have another opinion
handy. From here, we can continue smoothly
sailing through the rest of our application,
wherever it may take you!

Congratulations! We’ve now reached the
end of our example application of working

with a 4-20 mA current loop sensor device
to get temperature data. At this point, you
should be ready to move onto the next
component in your application, whether
that be hooking the receiver up to a relay
to open or close a valve or setting up a
web application to display temperatures in
JSON format for other systems to consume.
Whatever it is, you’re well on your way! Pick
your favorite compiled (C/C++) or scripting
language (Python, Node.js, Bash and such)
and keep moving forward.

WRAP UP
This article should have left you with a

deeper understanding of 4-20 mA current
loop devices and process control systems. We
took a look at some history, why things are
the way they are, looked at simple example
components of a process control system
(sensor, transmitter, receiver) and even
worked through a practical example with
working code.

There’s still more to learn, and if you’re
hungry for it, take a look at the excellently
written and illustrated “Back to Basics: The
Fundamentals of 4-20 mA Current Loops”
series on predig.com [18]. Also, be sure and
review Technologic Systems’ product line,
because most of its product is fit for
industrial applications like process control
systems with multiple ADCs, onboard relays,
industry standard connectors, industrial
temperature range and more. Now, go enjoy
planning and building out the rest of your
control system!

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
References [1] through [18] as marked in the article can be found there

RESOURCES
Technologic Systems | www.embeddedarm.com

FIGURE 12
Testing the sensor accuracy and
mA values using two different
thermometers.

http://www.circuitcellar.com/article-materials
http://www.embeddedarm.com

“I really can’t tell you just how
much I love what you guys do.

Your service is an absolute
GAME-CHANGER for me.”

-Alex, Laser Display Engineering

$1000 IN FREE LABOR ON YOUR FIRST ASSEMBLY
GET QUOTE NOW

Speed. Quality. Service.
Find out how we’re different.

THE QUICK-TURN PCB PROTOTYPE EXPERTS!
sales@sassembly.com | (720) 778-2400

ciruitcellar.com/slingshot

mailto:sales@sassembly.com
www.circuitcellar.com/slingshot

CIRCUIT CELLAR • NOVEMBER 2019 #35214
FE

AT
U

RE
S

I n this project, we created a mesh network
of Microchip PIC32 microcontrollers
(MCUs) that were connected to each
other wirelessly through ESP8266 Wi- Fi

modules (Figure 1). The primary objective
for this project was to create a self-contained
wireless mesh network of MCUs. The criteria
were that the network should be able to add
new nodes as they turn on, and should be
robust to nodes disconnecting.

We considered several different wireless
technologies when designing this system.
To create a network of nodes, we needed
multiple wireless devices that could be
connected to one another simultaneously. We
considered several different types of wireless
technologies, including Bluetooth, packet radio
and Wi-Fi. Preliminary investigations revealed
that most hobbyist Bluetooth modules had
relatively short ranges, and multiple Bluetooth
modules couldn’t be connected at once. Most
of the packet radio modules that we found
could only be configured as transmitters

or receivers, and multiplexing those nodes
would have resulted in significant packet drop
[1]. We settled on the ESP8266 Wi-Fi module
from Espressif Systems, because it met the
requirements for this project and has a
relatively long range.

The hardware for our project was
designed around the PIC32 MCU. We designed
a schematic for connecting the PIC32 and the
ESP8266 through their serial connections.
Our software was designed as a layered
architecture. This type of architecture is
common in network stacks and allows
independent implementation and optimization
of individual layers. This approach can help
simplify the design process and make the
implementation easier.

HARDWARE DESIGN
The primary hardware components of a

node were a PIC32 MCU and an ESP8266 Wi-Fi
module. Given our previous experience with
the PIC32, it proved to be an inexpensive,

Gone are the days when networking embedded devices was a big deal. And
today, such devices can be linked in powerful mesh networks over wireless
protocols. In this article, learn how these two Cornell students used Microchip
PIC32 MCUs and Espressif’s ESP8266 Wi-Fi module to create a mesh network of
wirelessly connected devices. The mesh network is able to configure itself, and
requires no manual intervention to connect the nodes.

Using PIC32 MCUs

By
Daniel Weber and Michaelangelo Rodriguez

Self-Organizing
Wi-Fi Mesh Network

FIGURE 1 (ABOVE)
Two complete nodes. The left one is
turned on and is actively scanning for
other nodes.

circuitcellar.com 15
FEATU

RES

powerful chip that would allow us to meet the
demands of the mesh network. The ESP8266
Wi-Fi-module is a device that is known for its
versatility, cost-effectiveness and ease of use.

The PIC32 and the ESP8266 both require a
3.3 V power supply. To meet these demands, we
devised a section within our board dedicated
to regulate any 4.2-12 V power supply to 3.3 V.
As confirmed with a voltmeter, the output of
the voltage regulator was a fixed 3.3 V. This
output was connected to the VCC pin on the
ESP8266 Wi-Fi module and then connected to
the appropriate pins on the PIC32.

One of the peripherals added to our nodes
was an LED. The LED was useful for testing our
algorithms and visualizing the behavior of our
system. The LED would constantly blink when
the node was searching for a connection, and
then stay lit up when it connected to another
node. Therefore, if we expected a connection
to occur or had an unexpected connection,
the LED would be an easy visual to identify an
issue. Likewise, if the LED acted according to
the expected behavior, it would help confirm
the functionality of our node.

As shown in Figure 2, each of our nodes
had four sockets: the Microstick socket, the
UART socket, the Wi-Fi socket and the PIC32
socket. These sockets were mainly composed
of DIP (dual in-line package) sockets and
male headers. Having sockets for our most
important parts allowed us to easily swap out
components. The integration of these sockets
allowed us to replace faulty parts with relative
ease.

Another key aspect of the hardware design
was the inclusion of the Wi-Fi debug jumpers.
As shown in the Figure 2 schematic, pin 1
of the Wi-Fi debugger is connected to RB7,
while pin 2 is connected to RA2. This wiring
is how we intended the node to be connected
for normal use. Since RB7 was connected to
TX on the ESP8266, and RA2 was connected
to RX, the inclusion of Wi-Fi jumpers led to
fairly easy debugging on the Wi-Fi module.
However, we could also disconnect the Wi-Fi
and PIC UART modules and then use a cable to
communicate directly with the Wi-Fi module
from a PC. As explained later, one of the times
we had to use this direct communication with
the Wi-Fi module was when we flashed the
firmware.

FIRMWARE AND SOFTWARE
The firmware on an ESP8266 module

determines the commands we can give to the
module over UART. To get the most up-to-date
commands working on the ESP8266 modules,
we needed to flash the latest firmware from
Espressif [2]. This required the ESP8266 to be
put in flash mode, which was done by pulling
the GPIO_0 pin low during reset. Then, we

used a serial connection to a computer with
the firmware-flashing software to load the
new firmware into the ESP8266. We used a
USB-to-UART cable to connect the ESP8266’s
RX and TX pins to a computer, and used
Espressif’s esptool to flash the firmware.

The software design was largely
influenced by the constraints of the ESP8266
Wi-Fi modules. Wi-Fi devices typically are
configured either as stations or access points.
A station is a device such as a computer,
which can connect to one Wi-Fi network at
a time. An access point is something like a
router, which allows many stations to connect
to it and acts as a hub for connecting Wi-Fi
devices. The ESP8266 Wi-Fi modules can be
put in a third mode, which is a hybrid of the
two. A single chip can act as both a station
and an access point. However, it limits the
total number of connections to five.

A station can only connect to a single access
point. This means that each Wi-Fi module
can make only one connection to another
module. A Wi-Fi module can have up to five
other modules connect to it, but an individual
module can only make one connection. If each
Wi-Fi module is treated as a node in a graph
and each connection is treated as an edge in
that graph, this tells us that the number of

FIGURE 2
Mesh network node schematic

CIRCUIT CELLAR • NOVEMBER 2019 #35216
FE

AT
U

RE
S

edges in our network is limited to the number
of Wi-Fi modules in the network. This means
we can’t make a very fault-tolerant network,
since we can have at most one loop in our
network. For this reason, we decided to focus
on creating software that tries to interconnect
as many devices as possible. To accomplish
this, we split the software into four logically
separate layers: Serial, Wi-Fi, Routing and
Application. Now let’s discuss each of these
four layers.

SERIAL LAYER
At the bottom of the software stack is

the serial layer. This layer was responsible
for communicating with the ESP8266 and
exposing a simplified API for sending and
receiving data from the Wi-Fi module. The
UART hardware on the PIC32 has a buffer
for up to eight characters, but if the buffer
doesn’t get read, subsequent characters
will be dropped by the UART module. This
becomes an issue, because the ESP8266 can
sometimes send data over UART when we
aren’t expecting it—such as when it receives
a message from another Wi-Fi module. To
ensure that all characters that come in over
the UART are stored, we used the PIC32’s DMA
controller.

We configured one of the DMA channels to
move data from the UART RX queue into a large
buffer statically allocated in the PIC32’s main
memory. The DMA controller automatically
wraps back around to the beginning of the
buffer once it has been filled. In this sense,
the buffer is treated as a ring buffer. To keep
track of the write head of the ring buffer, we
set up an interrupt that incremented a write
pointer, which fired whenever a cell/byte was
transferred using DMA. When we wanted to
read data from the buffer, we waited until the
write pointer advanced past the read pointer,
then marched the read pointer through the
data of interest.

Subsequently, we abstracted this
functionality into two functions that could
be used by the layer above the serial layer
to communicate with the ESP8266. The first
function sent a string of characters to the
ESP8266 over UART. The second used the

above method of waiting for the write pointer
to advance past the read pointer to read data
from the ring buffer and return the data
to the layer above. This abstraction hid the
complexity of DMA and UART, and allowed
the next layer to concern itself only with the
bidirectional communication stream between
it and the ESP8266.

Wi-Fi LAYER
The layer above the serial layer is the

Wi-Fi layer. This layer is mainly concerned
with setting up the Wi-Fi module, handling
connections and disconnections from
stations and access points and receiving
messages from other Wi-Fi modules. All
communication with the ESP8266 is done
by issuing AT commands to the device over
UART and listening for a response. We were
able to obtain a full list of the supported AT
commands for the version of the firmware
that we flashed onto the devices [3].

The Wi-Fi layer issues several AT commands
when setting up the ESP8266. First, it sets the
Wi-Fi module into the hybrid station+access
point mode we discussed earlier by issuing
the following command:

AT+CWMODE=3

Next, the Wi-Fi module gets its MAC
address, which the rest of the software uses
as a unique identifier for this node. It does
this by executing the following command and
listening for a response:

AT+CIPAPMAC_CUR?

During testing, we hard-coded an IP
address for each access point. However, we
discovered that there were issues connecting
two Wi-Fi devices with the same IP addresses.
To correct these problems, we gave each
device an IP address based on its MAC
address, where the %d is the lower 8 bits of
the MAC address:

AT+CIPAP_CUR=”192.168.%d.1”,”192
.168.%d.1”,”255.255.255.0”

Next, we needed to allow multiple
connections with the Wi-Fi module. We also
found in the documentation that the multiple
connections mode was required to start up a
TCP server on the Wi-Fi module:

AT+CIPMUX=1

Then, we initialized the TCP server on port
80:

AT+CIPSERVER=1,80

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
References [1] through [4] as marked in the article can be found there.

RESOURCES
Espressif Systems | www.espressif.com

Microchip Technology | www.microchip.com

SparkFun | www.sparkfun.com

http://www.circuitcellar.com/article-materials
http://www.espressif.com
http://www.microchip.com
http://www.sparkfun.com

circuitcellar.com 17
FEATU

RES

And finally, we set the SSID of the WiFi
module so that other nodes could find it,
where %d is again the lower 8 bits of the MAC
address:

AT+CWSAP_CUR=”ESP8266-Mesh-%d”

The primary reasons for using a TCP server
instead of a UDP server were that we wanted
reliable packet delivery between nodes, and
we also wanted to have knowledge about
the state of connections. TCP perfectly fits
the bill for these requirements as a reliable,
connection-oriented, message delivery
protocol. This completed the setup portion of
our code.

Next, we abstracted several AT commands
into simple functions. The first was a function
to scan for Wi-Fi modules to connect to. The
ESP8266 has a command to return a list of all
nearby Wi-Fi access points:

AT+CWLAP

We created a function that would invoke
this command and filter the results to return
only a list of Wi-Fi access points with SSIDs
starting with “ESP8266-Mesh-”. When a node
has found a node to which to connect, it needs
to do two things. First, it needs to connect
to the node’s access point, which is given by
the SSID in the list returned by the scanning
function:

AT+CWJAP_CUR=”<access point
SSID>”

Second, it needs to connect to the TCP
server running on port 80 on that node:

AT+CIPSTART=”TCP”,”<other node’s
ip address>”,80

Last, we created a function that would send
messages between two connected nodes. This
function first invokes the command:

AT+ CIPSEN D B UF = <c o n n e c tio n
id>,<data length>

This command tells the Wi-Fi module
which connection it should send the data to,
and how many bytes the data are. Then, the
function sends each byte of the message to
the Wi-Fi module.

When a Wi-Fi module receives data from
another Wi-Fi module, or when another Wi-Fi
device connects to it, the ESP8266 sends out
messages over UART indicating the event. We
set up a loop in our code to constantly listen
for these events and invoke event handlers
when the events were detected.

ROUTING LAYER
The layer above the Wi-Fi layer is the

routing layer. It stores the network topology
as a graph, and sends messages to the
routing layer of other nodes to construct
the graph. We considered an on-demand
routing approach, in which each node only
knows about its direct neighbors and then
sends out special packets to discover paths to
other nodes. However, we realized that mesh
network applications would want to know
about the topology of the network to optimize
the connectivity of the network. Therefore,
we decided to make a custom routing
algorithm that used special messages to alert
the network about the addition and removal
of edges in the network. This is similar to the
way some link-state routing protocols are
implemented.

When a station “S” connects to an access
point “A,” it may be the case that the two
nodes are on separate sides of a partitioned

Establish TCP ConnectionEstablish TCP Connection
Send connection information packetSend connection information packet

Send Bootstrap PacketSend Bootstrap Packet

Flood T->S Edge createFlood T->S Edge create
Flood S->A Edge createFlood S->A Edge create

Flood T->S
Edge create
Flood T->S
Edge create

Flood S->A
Edge create
Flood S->A
Edge create

Flood B->A
Edge create
Flood B->A
Edge create

Flood S->A
Edge create
Flood S->A
Edge create

Node T Node S Node A Node B

FIGURE 3
The messages created during a connection event. Time flows from top to bottom. All the edge-creation messages originate from Node S.

CIRCUIT CELLAR • NOVEMBER 2019 #35218
FE

AT
U

RE
S

network. Therefore, they must exchange their
current network topology graphs, to merge
their two network graphs. Instead of having
both nodes be responsible for this, only the
station node S receives this so-called “bootstrap
packet” from the access point (node A). This
bootstrap packet contains node A’s current
network topology graph. Node S will then figure
out the differences between A’s graph and its
own graph. Edges that are in A’s graph but not
S’s graph will need to be flooded to S’s side of
the network. Edges that are in S’s graph but not
in A’s graph will need to be flooded to A’s side of
the network. Finally, node S will flood the new
S-A edge to the whole network.

As a concrete example, consider the
following scenario. Node T is connected to
node S and node A is connected to node B.
The network graph of T and S thus consists
of nodes S and T connected by an edge. The
network graph of A and B consists of nodes
A and B connected by an edge. Next, node
S connects to node A. An overview of the
messages sent between the four nodes is
given in Figure 3.

As described above, the access point A
sends the bootstrap packet back to node S, and
then node S initiates the flood of messages to
get every node in the network up to date on
the new network topology. After the flood of
messages has subsided, all four nodes in the
network contain the same network topology
graph: node B connected to node A, node A
connected to node S, and node S connected
to node T. The resulting topology graph for

this scenario is shown in Figure 4.
To stop messages from circulating

infinitely throughout the network, we use
sequence numbers. Each message that a node
creates is given a unique sequence number,
which allows other nodes to identify and
drop duplicate messages. The routing layer
also implements an algorithm for sending
directed messages between two nodes. Since
the routing layer stores a graph of the mesh
network, it can use a shortest-path algorithm
to route messages through the network
from a source node to a destination node.
The algorithm we used was a breadth-first
search algorithm. Whenever a node receives a
directed message, it first checks to see if it is
the intended recipient. If it is, then it passes
the message up to a higher layer. Otherwise,
it finds the shortest path between it and the
destination node, and sends it along that
path. It also checks the sequence number in
the directed message, to prevent a message
from being sent in a cycle forever.

APPLICATIONS AND TESTING
The serial, Wi-Fi, and routing layers formed

the core of our mesh network software. We
decided to build a few simple applications on
top of the core software to demonstrate its
capabilities. The first application we built was
a way to view the network graphically as nodes
came online. To do this, we set up a simple
loop that would constantly use the scanning
function exposed by the Wi-Fi layer to scan
for other modules. If a module was found, the
application would then tell the routing layer
to connect to that device. Because the nodes
used Wi-Fi to communicate, we could connect
to the mesh network using any Wi- Fi-enabled
device. We connected a laptop to a node in the
mesh network as if it were a regular access
point. We implemented the same protocol
that we created on the nodes for the laptop,
essentially turning the laptop into another
node. This allowed the laptop to receive the
edge-creation messages and have its own
graph of the network. We then added some
code to display the network graph on the
laptop’s screen.

We tested this code by first turning on
a single node and connecting the laptop to
the node. We then turned on two additional
nodes, and gave them some time to find
each other and establish a connection. We
observed this self-connecting behavior as the
graph displayed on the laptop Figure 5. The
full code used for this project can be found
on GitHub [4].

To test our network as a communication
network, we used the same basic auto-
connection functionality from the previous
application. We added an LED to one of the

T

S A

B

FIGURE 4
The network topology stored in
every node after nodes A and S
are connected. The edges between
nodes point from a station to the
access point to which the station is
connected.

ABOUT THE AUTHORS
Daniel Weber is a Masters of Engineering in Computer Science student at
Cornell University. He is interested in programming languages and distrib-
uted systems, and enjoys participating in CTF competitions with the Cornell
Hacking Club.

Michaelangelo Rodriguez is a graduate of Cornell University's electrical &
computer engineering program. He is interested in working with embedded
systems, and enjoys learning more about the practical applications of these
embedded systems through projects with the Arduino and Raspberry Pi. In
his spare time, he also enjoys film and playing soccer and chess.

circuitcellar.com 19
FEATU

RES

nodes, along with some code to turn the LED
on and off, depending on what message the
node received. We then started up all the
nodes as before and sent messages from the
laptop to the node with the LED attached to
it. We set up the network so that the message
would have to pass through at least one node
before it got to the node with the LED. This
would confirm that our message-routing
algorithm worked.

We observed that a few seconds after
sending the command from the computer,
the LED turned on or off. The primary reason
for the lag was that we hard-coded a delay
of 5 seconds between iterations of the
main application loop. This was chiefly for
debugging purposes and could have been
removed. Removal would have made the delay
less noticeable and ideally seem like the LED
instantly reacted to the message being sent.

RESULTS
Overall, the hardware performed well. The

boards we created had no issues and reliably
connected the ESP8266 modules, the PIC32
and the UART-to-USB debugging cable. The
main problem we had with the software was
that when more than a few modules were
present in the network, some modules would
often disconnect. This may have been due to
the 30 second timeout for the TCP connection
and the large 5 second delay that was
introduced to aid debugging. Although we
would have liked to test our implementation
without the 5 second delay, this would have
required rewriting parts of our DMA buffer
reading code in a non-trivial manner.

Additionally, sometimes the Wi-Fi modules
were unable to see the access points of other
Wi-Fi modules on their scans, even when they
were very close. Furthermore, sometimes the

Wi-Fi modules failed to set up immediately on
power up. A hard reset of the Wi-Fi module
usually resolved these issues, though we were
unable to identify the cause. Nevertheless,
we successfully validated the self-organizing
property of the mesh network and the ability
of the routing layer to route a message from
a source node to a destination node.

CONCLUSIONS
We were quite pleased with the outcome

of our work. We met most of our initial goals
and made some interesting software along
the way. One consideration for future work on
this project is to improve the functionality of
our routing algorithm on a larger scale. We
tested our routing algorithm with a relatively
small number of nodes. It likely would not
scale to a greater number of nodes, because
each node needs to know about the existence
of every other node. Furthermore, we would
have liked to optimize the speed at which the
network could propagate messages. However,
this would have required rewriting some of the
lower-level code and eliminating the 5 second
debug delay. Unfortunately, we ran out of
time while creating this project. We also had
minimal support for handling disconnections
and link failures. We had some ideas about
how to solve this problem, but didn’t get a
chance to adequately implement them.

In future work on this project, we would
like to implement and test some algorithms
for keeping the network graph consistent for
all nodes when edges are removed. Finally, we
want to test how well our system performs as
a long-range communication system, by
having the network bootstrap itself into a
multi-hop mesh network and try and get two
computers at the endpoints to communicate
with each other.

FIGURE 5
A screenshot from the demo video
for connecting the three nodes and
the laptop. The graph on the screen
shows the laptop’s current view of
the network topology. The video is
available on Circuit Cellar’s article
materials webpage.

CIRCUIT CELLAR • NOVEMBER 2019 #35220
FE

AT
U

RE
S

M anufacturing tests are arguably
the most important aspect in
any kind of hardware design
company, be it small or big.

These tests are essential for ensuring quality.
Apart from quality, cost is one of the major
factors that are responsible for defining the
profit margin of the hardware. For example, if
a board is manufactured where let’s say out of
1,000 units there are 200 with a defect. Or, let’s
say that that the manufacturing test setup is
so costly that it downsizes the profit. Or, here’s
the important one: What if the manufacturing
test misses a defect that a customer finds?
That could cost the company a lot.

There are a variety of ways to manage quality
and cost. In this article, I’ll discuss some these
factors and also look at corner case catching
scenarios in the context of a manufacturing test
environment in a board fabrication house. I will
also discuss architecture for crafting manual,
semi-automatic and automatic manufacturing
tests. For these purposes, in the article, I’ll
look at these issues as applied to FPGA- and
processor-based board, but the same principles
apply to less complex boards as well.

The manufacturing test design process
runs parallel to the board design process. With

that in mind, the steps involved are similar, but
involve more critical judgement. Manufacturing
tests have to consider the cost of development,
minutes per board to test, corner case reviews
and so on. All these factors are necessary
to optimize cost without compromising the
quality of the product.

The first step toward designing a
manufacturing test is to choose one of
three approaches: manual, automatic or
semiautomatic. This choice depends on the
organization's budget, the complexity and
quantity of boards as well as the use case. A
manual approach has less development time
while its test execution time is more per board.
In contrast, an automatic approach has more
development time, however the test execution
time is much less, thereby increasing the
productivity. Semi-automated systems are
generally in between the two others, and are
generally appropriate done for situations where
some processes require human intervention.

FPGA EXAMPLE
Let’s consider an example of a one-of-a-

kind Xilinx Zynq Ultrascale plus FPGA Evaluation
board. This board has the FPGA loaded on
board with peripherals such as temperature
sensors, infrared sensors, power supply, FTDI
chip, IO header, SD card and DIP Switch.

In a system like this, we can think of different
ways of testing this board. However, when
we test a board that is going to thousands of

Manufacturing tests are vital to ensuring high-
quality products. Quality is a factor that no
company or individual wants to compromise
because quality defines the product and ultimately
is the main thing that retains a customer. In this
article, Xilinx’s Nishant Mittal discusses various
techniques to manage quality, cost and “corner
case catching” scenarios in the manufacturing test
environment of a board fabrication house.

Quality and Cost

By
Nishant Mittal

Designing Manufacturing
Test Systems

ABOUT THE AUTHOR
Nishant Mittal is a Systems Engineer at Xilinx in Hyderabad, India.

circuitcellar.com 21
FEATU

RES

customers, many things need to be documented
such as board test coverage, corner cases, time
to test and production test cost. Let’s focus on
each of these points, and then complete the
manufacturing test design.

Board test coverage doesn’t necessarily
mean the test should cover each and every
component on the board. A standard rule
in this kind of environment is divide and
conquer. A standard board can be divided into
its major sections. A board like this contains
a power supply—which is given input either
through a power jack/USB—an analog region,
a digital region, filtering circuits, I/Os and
communication blocks.

The first step is to create a block diagram
of the system as shown in Figure 1. Based
on this diagram, we should make a table of
coverage showing the number of components,
which are actually affected during test and
the ones which are not affected. This gives
us a fair idea about the percentage coverage
and failure scenarios. This not only helps in
getting an error-free board out of production,
but also creates a “database,” which is helpful
in future to debug the board when same issue
may occur. Figure 2 shows a format of the
table that could be used to create a clean
database along these lines.

With the table in Figure 2 in mind,
let us consider the design of a typical
microcontroller board that contains lot of
decoupling capacitors and RC networks which
are required for proper decoupling of ground
noise in the PCB. In a typical manufacturing
test environment, it is very difficult to test
the presence or absence of each and every
decoupling capacitor, so they generally are
considered to be in the “not covered category.“

DFMEA
When we say not covered, that doesn’t

necessarily mean we are ignoring how critical

the presence or absence of that particular
component is. To judge the criticality of
failure, coverage goals and actions to be taken.
For this, the team needs to perform DFMEA
(design failure mode and effect analysis).
For DFMEA, an Excel sheet is prepared that
looks like the one shown in Figure 3. This is a
standard format for DFMEA, with a few things
here and there that may differ for different
organizations.

In this analysis, the design team finds out
the potential causes of failure, their impact
on the design from a user and board safety
point of view and the possible workaround.
Based on this, the designer rates all these
parameters and the average of all these
parameters are then judged to determine that
critical test coverages to be made. DFMEA not
only makes the manufacturing test foolproof,
but also identifies loopholes in the design
and even helps you fine tune your design,
if done in the early stage. Once the DFMEA
is completed, the next step is to design the
test system. The type of test system can be

FIGURE 1
Block-based bifurcation of components

Power
supply

Analog
section

Filter
circuits

Comm.
block

Digital
section DisplayGPIO

FIGURE 2
Format for planning the bill-of-materials (BOM) coverage in the manufacturing test

CIRCUIT CELLAR • NOVEMBER 2019 #35222
FE

AT
U

RE
S

dependent upon the complexity of the board.
A system could be manual test, automated or
semi-automated.

Manual Tests: Manual tests are done for
very low complexity, lesser volume boards
which have fewer interfaces to be tested. A
pure manual test involves extensive human

involvement, which can lead to human
errors. Proper documentation is the key to a
successful manual test system. That said, these
tests require lot of time per board, putting
both efficiency and cost at stake. Generally,
manual tests are preferred when some kind of
observation or calibration is required.

Automated Tests: The next method is the
one that is mostly preferred throughout the
industry: automated test. Automated tests are
performed to test the board automatically—
without human intervention. This is achieved
both in the product’s hardware and software.

Figure 4 shows what a typical automated
test looks like for hardware. For the board
picked as an example, there are metal beads
running all around the I/Os, which will perform
loopback tests between each other. If any of
the I/O presents a short- or an open-circuit,
the result is a fail status. For LEDs, we use light
sensors on the test systems that detect the
light intensity. There are actuators that press
the buttons and report the operating status of
the buttons. Sensors—such as light sensors,
infra-red sensors and so on—can be tested by
providing potential stimuli and and then the
results can be analyzed in the software using
the ADC.

Software such as Mathwork’s MATLAB,
National Instruments' Labview, python and
pearl scripts can be used to create UI-based
interfaces to that display pass and fail status.
The UI is basically used to monitor what’s
happening and to trigger the tests. Once
the test is completed, the UI is supposed to
report all the data in the log file, which may
be exported to a pdf file.

Semi-Automated Tests: The next category
of test systems is essentially the combination of
manual and automated tests: semi-automated
systems. Semi-automated systems are used
in cases where human intervention becomes
necessary. Human intervention doesn’t have to
mean triggering tests, putting the board into
the proper location or even sitting in front of
the system to monitor the events going on.
Rather, it applies to whenever there’s any
human intervention impacting the result of
the particular test—then it becomes a semi-
automated system.

Let’s look at an example of a board that
has a microphone, a capacitive touch sensor
and the rest of the interfaces I mentioned
earlier. The tester is supposed to test the
mic sensitivity by feeding it sound from
different directions and at different volumes.
Meanwhile, a capacitive touch sensor needs
to be touched by a human hand to see if it’s
sensitive to human touch. These tests can be
automated, but for optimum performance it
has to have some human intervention. These
types of use cases could force a designer to

FIGURE 4
Complete automated manufacturing test rig (left); A tear down of a DUT and a test board (right), (Image left
courtesy Brioconcept.com; image right courtesy Adafruit).

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials

RESOURCES
Mathworks | www.mathworks.com

Xilinx | www.xilinx.com

FIGURE 3
DFMEA format (Image courtesy of Superfactory)

http://www.circuitcellar.com/article-materials
http://www.mathworks.com
http://www.xilinx.com

circuitcellar.com 23
FEATU

RES

make the system semi-automated.
Once the test design is complete, the

designer needs to validate whether the
coverage really matches what’s theoretically
stated. To validate this, the tester would remove
the major components on board to test and see
if the manufacturing test it really is doing its
job correctly. Figure 5 shows the algorithm that
displays the entire design flow.

There are other techniques such as JTAG
scan chain. This uses system controllers on
board that can equally perform the board
testing as well as control the interfaces—either
by themselves or along with traditional test
techniques. It’s open for debate whether the
amount of cost reduction, visibility of the board
and test coverage that such controllers can
provide compared with the traditional approach
of external test systems. I’ll plan to discuss that
question further in future articles.

CONCLUSION
In this article, we discussed the concepts

of how manufacturing tests are developed
and analyzed in order to cater to the
requirements of cost, efficiency and accuracy.
We also discussed how the test system
designer would decide whether the board
should be tested using a manual, automated
or semi-automated approach.

Start

Board and BOM Analysis

Block wise bifurcation of the components

Cost analysis and decision of
manual ⁄automated⁄semiautomated system

Test system mechanical design and tester board design

UI Design
(Labview⁄Python)

Coverage sheet

DFMEA

User manual

Stress test, coverage test

Pass?

End

Automated or
semiautomated?

Detailed
documentation

with steps

FIGURE 5
Design flow

Why choose one wireless
protocol when you can
have them all?

SimpleLink™ connectivity
for smart buildings

The platform bar is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. © 2019 Texas Instruments Incorporated.

TI.com/SimpleLink

www.TI.com/SimpleLink

CIRCUIT CELLAR • NOVEMBER 2019 #35224
FE

AT
U

RE
S

O ur goal for this project was to
build an electronic flute that can
play in any key. The first step in
this project was understanding the

design of a bamboo flute, which differs greatly
from Western concert flutes. A typical bamboo
flute can be played in only one key. It has a total
of seven holes, six of which are used to play
different notes. The seventh hole is for the inlet
of wind (the player’s breath). The strength of air
blown into it determines the octave of the note.

If the strength of the air blown exceeds a
certain threshold, the flute produces sound in
a higher octave. Otherwise, the flute produces
sound in a lower octave. The arrangement of the
player’s fingers over the six holes distinguishes
the different notes. Whether a hole is open,
half-covered or fully covered by a finger also
differentiates the note being played. For example,
if a fully covered hole generates a note C major
key, the half-covered hole generates a note in C
minor key.

PHYSICAL/HARDWARE DESIGN
Our electronic flute, shown in Figure 1, is built

to be comparable in size, design and spectral
dynamics to a typical bamboo flute. We simulated
the six finger holes of a typical flute using
capacitive touch sensors. A seventh hole holds
the microphone and simulates a flute’s blow hole.

Physically, these switches are pieces of copper
tape connected to wires. We used a total of 13
capacitive touch sensors—two for each hole
and one for the “chin sensor.” The chin sensor
determines when someone is playing the flute.
It is positioned directly under the microphone
hole, and needs to be touched when playing. The
microphone detects if air is blown into the flute,
indicating that a sound should be produced. Note
that the words button, switch and sensor used
throughout this article functionally refer the same
general mechanism.

At the heart of our electronic flute is a PIC32
microcontroller (MCU) from Microchip Technology,
which reads the inputs from the copper tape
buttons and microphone to produce the correct
notes and sound. The sound is outputted to a
speaker after going through a digital-to-analog
converter (DAC).

A detailed breakdown of the hardware
components of our electronic flute is shown in
the block diagram in Figure 2. The 13 copper-
tape touch sensors, the microphone, the key
control switch and the octave control switch are
inputs into the PIC32 MCU. The outputs from the
PIC32, after running direct digital synthesis, are
sent through the DAC to the amplified speaker to
produce the flute sounds. Two buttons are used to
control the key and octave of the flute, which get
displayed on the TFT Display.

Musical instruments such as the piano allow musicians to play in different keys on a single
instrument. In contrast, bamboo flutes are designed for only one key. This means flute
players must own a different flute for every additional key in which they want to play in.
Learn how these three Cornell students built an PIC32 MCU-based electronic flute that
reduces the need for owning multiple flutes by incorporating two buttons that allow a flute
player to change the key and octave.

Sensors and Synthesis

By Trisha Ray, Parth Bhatt and Qing Yu

Multi-Key
Electronic Flute

FIGURE 1
Electronic flute

circuitcellar.com 25
FEATU

RES

One unique feature on the PIC32 is the
Charge Time Measurement Unit (CTMU).
Our first step when designing our electronic
flute was determining how to use the CTMU
to create the capacitive touch sensors. The
CTMU peripheral is available for use on all
the ADC pins of the MCU. It is essentially a
settable current source that can measure
resistance, capacitance and more. To
understand how we used a settable current
source to measure capacitance, recall that
the formula for capacitance is C = q/V, where
C is the capacitance, V is the voltage across
the capacitor and q is the charge. Charge
can also be denoted as the product of the
current (I) and time (t). Hence, the formula
can be rewritten as C = (I × t) / V. Using
the CTMU, if the pin is provided with a fixed
current for a fixed amount of time, we get
C as inversely proportional to V. This logic is
used to measure the voltage on an ADC pin,
which changes when the pin is touched and
released. This is how CTMU can be used to
create touch sensors.

TOUCH SENSORS
The PIC32 does not provide enough ADC

channels for the 13 touch sensors in our
design, so we chose to connect the touch
sensors to two analog multiplexers (Figure 2).
The multiplexers enable us to connect the
touch sensors to only one ADC channel and five
other GPIO pins, which saves plenty of pins
on the PIC32. We used the CD4051xB analog
8×1 multiplexer from Texas Instruments.
With this multiplexer, if the select lines are
000, for example, then the input connects to
the output 0. And if the select lines are 111,
then the input connects to the output 7. Its
chip-select line has the ability to turn off
the entire chip, so that none of the outputs
are connected to the input. This feature was
useful to our project, since the outputs from
the two different multiplexers are connected
to one ADC pin, meaning that one chip is
always off.

The breath-detecting microphone we
used is the Electret Microphone Amplifier

from Adafruit. In our circuit, the microphone
is connected to a peak detector circuit to
obtain the absolute value of the signal. The
absolute value of the signal is needed to get
a proper ADC reading. When we tested this
microphone, the ADC readings obtained from
its circuit were either in the range of the 500s
(when no air was blown into it) or 900s (when
air was blown into it). We later realized this
observation was probably due to a calibration
issue, since the ADC readings should increase
linearly with the amount of air blown into the
microphone. Because of the binary behavior
of the microphone that we first observed,
we used the microphone only to control the
octave being played by the flute.

The uniqueness of our electronic flute
design comes from the two buttons (switches)
(SW1 and SW2 in Figure 3), which can be
used to adjust the key and octave of the flute.
When the user presses switch SW1, the key
goes up—for instance from B to C. When the
user presses button SW2, the octave goes
up by number—for instance from C3 to C4.
Both buttons can be used to circle back to the
lowest key and octave. Then, the TFT display
in our design lets users see the current key
and octave being played.

The last main hardware component in
our circuit is the DAC. As the name suggests,
it converts the digital signal of the sound
generated by the MCU into an analog signal,
so it can be fed into the amplified speaker. The
schematic in Figure 3 shows all the hardware
components in our design. The schematic
for the PIC32 development board was first
created by Sean Carroll. A link to more
information about Sean Carroll’s development
board can be found on Circuit Cellar’s article
materials webpage. The 13 touch sensors are
indicated by the 13 circles on the left side of
the schematic.

SOFTWARE DESIGN
The entire software design was coded in

C and consists of four different threads and
an interrupt service routine (ISR). The ISR
uses additive synthesis and direct digital

FIGURE 2
Block diagram of the electronic flute

Flute
(13

Touch
sensors)

ADC
Input

Key control
switch

Octave control
switch

8×1 Mux1
12-bit DAC

TFT Display

Speaker

8×1 Mux2

ADC
InputMic

PIC32

SPI

SPI

CIRCUIT CELLAR • NOVEMBER 2019 #35226
FE

AT
U

RE
S

synthesis to output the sound to the DAC.
The Display Thread displays the current key
and octave that the flute is playing. The
ADC/CTMU Thread runs CTMU and reads the
ADC value of the switches. The Frequency
Thread determines what note to play. Last,
the Debouncing Thread debounces the two
buttons that change the octave and key of the
flute. The Display Thread and the Debouncing
Thread are straightforward to implement, so
they will not be discussed in detail here.

ADC/CTMU Thread: The main purpose
of the ADC/CTMU Thread is to read the ADC
values of the 13 capacitance touch sensors, to
determine which sensors are being pressed.
As noted in the previous section, we used two
multiplexers connected to the ADC channel
AN11. The chip-select line of the multiplexers
ensures that only one multiplexer is turned
on at a time. A threshold of about 90% of
the full ADC value is used to determine if a
finger is touching any of the 12 buttons. The
thread starts off by setting the ADC channel
to AN11. Next, the CTMU is turned on, and a
for-loop measures the voltage on each of the
capacitive touch sensors, using CTMU. In this
for-loop, the thread also determines which

multiplexer to turn on using chip-select. The
first eight values in the for-loop correspond to
the first multiplexer, and the rest correspond
to the second multiplexer.

For the CTMU to work correctly, the
following sequence of events must occur in
the ADC/CTMU Thread:

1) The internal discharge switch is closed
to drain the external circuit of any charge, by
connecting the ADC channel to ground.

2) The internal discharge switch is opened,
and the internal charge switch is closed for
2 µs, to allow charge to build up.

3) During the charging period, the
interrupts corresponding to the ISR are
turned off to ensure that the program was
not interrupted while charging. Since the
interrupts are only turned off for 2 µs, the
direct digital synthesis (DDS) that takes place
in the ISR isn’t affected.

4) After the 2 µs, the internal charge
switch is opened and the ADC value is read.

This sequence of events is placed inside a
for-loop in our code so that CTMU can run for
all 13 capacitive touch sensors.

FIGURE 3
Schematic of two switches and TFT display

circuitcellar.com 27
FEATU

RES

There’s one more important aspect of
the ADC/CTMU Thread. Outside the for-loop
that runs CTMU, the thread sets the ADC
channel to AN3, enabling the ADC value of the
microphone to be read. The corresponding
CTMU circuit is shown in Figure 4, where S1
is the internal charge switch and S2 is the
internal discharge switch.

Frequency Thread: One of the main
functions of the ISR is to run direct digital
synthesis. We used DDS to produce sound
waves from the PIC32. DDS works by creating
a sine table of one sample frequency that
contains the signal’s amplitude values at
evenly spaced phase values. Then, by moving
through the sine table at different rates,
different frequencies can be produced.
Because every note has a different frequency,
the following equation shows how to generate
different notes using one DDS sample
frequency:

(inc)
F

2
=FS

32 out

In this equation, Fout is the frequency
trying to be produced, and Fs is the sample
frequency. Manipulating this equation,
we can solve for the phase increment
value (inc), which determines the rate of

movement through the sine table. In our
ISR, every time an interrupt occurs, a phase
accumulator variable is incremented by the
phase increment value. The top byte of the
phase accumulator variable is then used as
the reference index for the sine table matrix,
such that incrementing through one sine table
using different-sized increments produces
different frequencies.

The following method was used to
determine how the Frequency Thread
works and how we selected which note to
play. Outside the Frequency Thread, each

Finger

ADC

S1

I1

1

2

1

2
S2

FIGURE 4
Charge Time Measurement Unit
(CTMU) circuit

mailto:sales@ezpcb.com
www.ezpcb.com
www.cc-webshop.com

CIRCUIT CELLAR • NOVEMBER 2019 #35228
FE

AT
U

RE
S

frequency value from A2 to G4# is defined.
A 12 × 7 matrix holds 12 different keys,
from A to G#. Inside the Frequency Thread,
the program first checks if the chin sensor
(indicating whether someone is playing the
flute) is being touched. This equates to an if-
statement that checks if the 13th bit of the
button integer is set to 1. The rest of the
thread consists of a switch-statement that
determines if we play the lower or higher
octave of Do, Re, Mi, Fa, So, La, Ti, Do in any
key. An exact combination of capacitive touch
sensors must be pressed to play a certain
note, such as Do. The exact combination is
represented by 12 bits, since each simulated
“hole” in the flute comprises two capacitive
touch sensors. This combination is identical
to the combination of holes that need to be
covered on a bamboo flute.

SOUND SYNTHESIS
The most difficult part of the software

design was sound synthesis. This was due to
the fine tuning required for additive synthesis
to create a flute-like sound. Additive synthesis
is a technique that sums sine waves to mimic
the natural sound spectrum of an instrument.
Our main challenge with additive synthesis
was determining how many harmonics to use,
and how to adjust the amplitudes of those
harmonics to create the most realistic sound.
Another challenge was experimenting with FM
modulation to create a vibrato effect.

The first step in our process was
understanding the spectrum of harmonics
that a flute makes. As a starting point, we
used a sound spectrum of a flute, published
by the University of New South Wales, which
showed that a flute has a series of peaks at
f, 2f, 3f, 4f and so on. The amplitudes of the
peaks for 2f, 3f, and 4f are approximately
-15 dB, -5 dB and -20 dB, respectively, from
the fundamental f.

We first implemented the sound synthesis
as stated above in Mathwork’s MATLAB.
We started with a fundamental and four
harmonics, and noticed that the sound didn’t
improve much more when we added more
harmonics to our additive synthesis. Moving
the other way, the sound also didn’t change
much with three harmonics, but did sound less
flute-like with two harmonics. So, we decided
that a fundamental and three harmonics
was optimal. We then ran a variety of tests
changing the amplitude of the harmonics.
Figure 5, shows one test that was close to
the flute sound we wanted. The ratio of our
amplitudes changed slightly from our initial
test, to create what we considered a more
flute-like sound.

After fine tuning the amplitudes of our
three harmonics, we still were not satisfied

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials

RESOURCES
Adafruit | Adafruit | www.adafruit.com

Mathworks | www.mathworks.com

Microchip Technology | www.microchip.com

Texas Instruments | www.ti.com

–50

–60

–70

–80

–90

–100

–110

–120

–130

–140

–150

Frequency (kHz)

Welch power spectral density estimate

Power ⁄ f requency
 (dB⁄Hz)

0 0.5 1 1.5 2 2.5 3 3.5 4

FIGURE 5
MATLAB flute spectrum

FIGURE 6
Sound spectrum from our flute playing in real time

http://www.circuitcellar.com/article-materials
http://www.adafruit.com
http://www.mathworks.com
http://www.microchip.com
http://www.ti.com

circuitcellar.com 29
FEATU

RES

with the sound being generated. For this reason, we used amplitude modulation
(AM) sound synthesis to create a vibrato effect. AM sound synthesis works
by multiplying a wave function with a very small frequency to the main wave
function. Therefore, we multiplied a cosine function with a frequency of 1 Hz to
the sum of the four harmonics as shown by the following equation:

f t t a n tn
n

o() cos() (cos())= ×
=

∑2 2
1

4

π ω π

After we finished testing in MATLAB, we implemented our additive synthesis
into the ISR and PlaySound method. The PlaySound method first determines the
correct note to play by adjusting the phase increment value for the fundamental
frequency. The increment values for the three harmonics are 2, 3 and 4 times
greater, since the harmonics are at 2f, 3f and 4f from the fundamental frequency,
f. The phase increment for the frequency modulation (FM) wave never changes,
because the frequency of the wave is always 1 Hz. The ISR then uses the
constantly updating increment values from the PlaySound method to implement
additive synthesis to produce the final sound wave. Figure 6 shows the output of
the sound spectrum produced by playing our flute after implementing this code.

RESULTS
Overall, we are satisfied with the performance of our electronic flute. With a

total cost of $38.64, this project was an inexpensive way to explore MCU design
and sound synthesis. One of our authors, Parth, is a flute player, and he believes
the sound is realistic. We encourage readers to listen to Parth play the Theme
from Titanic on our electronic flute. You can watch and listen to this on the
YouTube video of our project, which is posted on Circuit Cellar’s article materials
webpage. You can judge for yourself how our electronic flute sounds compared
to a real flute!

We learned some lessons while working on this project. First, with additional
time to improve the design of our electronic flute, we would enhance the flute’s
volume dynamics and sound quality. We didn’t use the microphone’s ADC
readings to control the volume of the flute’s sound. If implemented correctly,
the ADC readings of the microphone should increase linearly with how much air
is blown into it. We could use this relationship to linearly increase the flute’s
sound volume. When testing our sound synthesis design, we also tried to base
our design on the Wind Instruments Synthesis Toolbox. Due to the complexity
of the toolbox and our time constraints, we did not implement its algorithm. If
we had more time, we believe this toolbox would have helped us create an even
more realistic sound.

ABOUT THE AUTHORS
Trisha Ray graduated from Cornell University with a Bachelors in Electrical and
Computer Engineering in May 2019. Trisha is currently a Master's student in
Electrical Engineering at the University of Washington. She hopes to pursue a
career in the power industry. Outside of class, Trisha likes to sing and is learning
how to play the piano and ukulele.

Parth Bhatt graduated from Cornell University with a Masters in Electrical and
Computer Engineering in May 2019. Parth is currently working as a Firmware
Engineer at Schlumberger. In his free time, he likes to read and play the flute.
This is what motivated the project of a multi-scale flute.

Qing Yu is pursuing a Master degree in Electrical and Computer Engineering at
Cornell University. She will graduate in December 2019. Her academic focus is
on embedded control systems, firmware development and firmware validation.
Her interests in music come from playing the violin.

Digital Multimeter

LCR-Reader.com

Diode mode

Oscilloscope mode
M

ad
e in Canada

Fabriqué au Canada
LCR-Reader-MPA

Ultimate PCB debugging tool

NEW
MODEL

L-C-R, AC/DC Voltage/Current

LED/Diode/Continuity Test

Oscilloscope

Frequency, Period, Duty Cycle

Signal Generator

Super Cap Testing

Basic Accuracy 0.1%

Test Frequency: 100 Hz to 100 kHz

Test Signal Level: 0.1, 0.5, 1.0 Vrms

All-in-One
Digital Multimeter

www.LCR-Reader.com

CIRCUIT CELLAR • NOVEMBER 2019 #35230
SP

EC
IA

L
FE

AT
U

RE

While many IoT edge devices often need to be extremely low power, having an
ability to harvest their own power is an even better scenario. Chip solutions
continue to emerge aimed at the energy harvesting challenge.

Chip Solutions Tackle the Energy
Harvesting Challenge
Self-Sufficiency at
the IoT Edge

F orecasts predict that there’s likely
to be a trillion IoT sensor nodes
deployed in the world by 2025.
Powering those devices is going to

be a challenge because many of those will be
low power modules residing in remote areas.
Energy harvesting will be critical in those
applications because it just won’t be practical
to replace trillions of batteries that only last a
year or two.

To help you meet that challenge, there’s
a variety of chip and development platform
solutions available that attack various parts
of the energy harvesting puzzle. These include
specialized microcontrollers (MCUs), power
management chips, power regulator ICs as well
as complete platform solutions and reference
designs—all aimed at energy harvesting.

The three most popular types of energy
harvesting are solar, piezoelectric (vibration/
rotation) and thermoelectric. Of the three,
solar is the most widely used today and it
relies on photovoltaic cells to provide energy.
It’s the best fit for typical smart home, smart
agriculture, smart industrial and similar
applications. Piezoelectric energy harvesting
leverages vibration/rotation types of energy,
and is practical if you’re monitoring motors,
generators or turbines—anything that moves

or vibrates. Finally, thermoelectric energy
harvesting is great for systems involving
pipes—such as gas pipes or water pipes—where
one side is hot and one side is cold, and energy
can be harvested from heat transfer.

No matter what the power source, a module
powered by energy harvesting relies on either a
harvesting power supply or an alternative set of
external components that converts input from
a solar, piezoelectric or thermoelectric source
into some voltage range and current. Some
devices even accept multiple types of power
source interfaces. But the key issue is that the
system has to be efficient enough to be viable
for the situation.

LOCAL EDGE PROCESSING
For its part, Eta Compute’s approach to

the energy harvesting challenge is to provide
high performance local edge processing at
low power levels. The idea is that it’s the RF
communication portion of an IoT edge device
that’s the most power hungry. If you can limit
the amount of data communication needed,
then you can more easily achieve a solution that
can run off an energy harvesting power source.

To illustrate the point, Eta Compute’s Chet
Jewan cites an example of a low power image
detection module designed to detect cars in your

By Jeff Child,
Editor-in-Chief

SP
EC

IA
L

FE
AT

U
RE

circuitcellar.com 31
SPECIAL FEATU

RE

driveway. A module without much intelligence
would only be able to send a full image or video
data of the driveway, consuming a lot of power
by the RF transmitter. But with sophisticated
local processing, the module could decide
whether to send an image of a car, or just a
simple text saying whether a car is present
or not. Moreover, the local processing could
even decide to take some local action itself,
requiring no RF data transmission at all. “A
high level of local processing can sense, infer
and act locally,” says Jewan.

Eta Compute’s flagship product is its
ECM3531 ASIC chip for machine learning
algorithms based on the Arm Cortex-M3 and
NXP Coolflux DSP processors. The SoC includes
an analog-to-digital converter (ADC) sensor
interface and highly efficient PMIC circuits.
The chip also includes I2C, I2S, GPIOs, RTC,
PWM, POR, BOD, SRAM and flash.

The ECM3551 has a dual-core architecture
based on the M3 and Coolflux DSP that
is designed for low power edge AI IoT
applications (Figure 1). The device makes use
of the company’s patented delay insensitive
asynchronous logic (DIAL), which enables
dynamic voltage frequency scaling and near
threshold voltage operation. The MCU uses
an Arm Cortex-M3 processor and operates
below 1 MHz to over 100 MHz with power
consumption as low as 4.5 μA/MHz. By using
asynchronous processing of all digital logic,
the architecture enables rapid interrupt
response for low latency applications.

SOTB TECHNOLOGY
Renesas Electronics has approached

the challenge of meeting extreme low
power demands by applying innovations in
semiconductor process development. A year
ago, the company unveiled an innovative
energy-harvesting embedded controller that
can eliminate the need to use or replace
batteries in a device. The R7F0E embedded
controller—Renesas’ first commercial product
using SOTB (silicon on thin buried oxide)
technology—is a 32-bit, Arm Cortex-based
embedded controller. The device is capable
of operating up to 64 MHz for rapid local
processing of sensor data and execution
of complex analysis and control functions.
The R7F0E consumes just 20 μA/MHz active
current, and only 150 nA deep standby
current, approximately one-tenth that of
conventional low-power MCUs.

The extreme low current levels of the
SOTB-based embedded controller enables

system designers to completely eliminate the
need for batteries in some of their products
through harvesting ambient energy sources
such as light, vibration and flow (Figure 2).
Although the solution was developed with
IoT devices in mind, the controller is more
broadly aimed at what they call the new
market of maintenance-free, connected IoT
sensing devices with endpoint intelligence.
This includes health and fitness apparel,
shoes, wearables, smart watches and drones.

In June of this year, Renesas followed
up with the development of new low-power
technology for use in embedded flash memory
based on a 65 nm SOTB process. Available
with 1.5 MB capacity, it is the first embedded
2T-MONOS (2 transistors-metal oxide nitride
oxide silicon) flash memory based on 65 nm
SOTB technology.

BLE SENSOR PLATFORM
As mentioned earlier, solar power is

the most popular form energy harvesting
used today. There are a growing number
of IoT sensor applications where the duty

FIGURE 2
The extreme low current levels of the SOTB-based embedded controller enables system designers to
completely eliminate the need for batteries in some of their products through harvesting ambient energy
sources such as light, vibration and flow.

FIGURE 1
The ECM3551 chip has a dual-core architecture based on the M3 and Coolflux DSP that is designed for
low power edge AI IoT applications. The device makes use of Eta Compute’s patented delay insensitive
asynchronous logic (DIAL), which enables dynamic voltage frequency scaling and near threshold voltage
operation.

CIRCUIT CELLAR • NOVEMBER 2019 #35232
SP

EC
IA

L
FE

AT
U

RE

cycle is low enough to support intermittent
communications, allowing the energy needed
to support operation to be harvested using
renewable sources such as solar. Applications
are expected to include smart home and
building automation such as HVAC control,
window/door sensors and air quality
monitoring. Asset tracking including package
open/close detection, shock monitoring, and
temperature and humidity data logging are
also possible applications.

Offering a complete platform solution, in
May, ON Semiconductor introduced its RSL10
Multi-Sensor Platform powered only with a
solar cell. This complete solution supports the
development of IoT sensors using continuous
solar energy harvesting to gather and
communicate data through Bluetooth Low
Energy (BLE), without the need for batteries
or other forms of non-renewable energy.

The combination of ultra-low-power
wireless communications, small form-
factor solar cell and low duty cycle sensing
applications makes it possible to develop

and deploy totally maintenance-free IoT
sensor nodes. The RSL10 Solar Cell Multi-
Sensor Platform is enabled by the RSL10 SIP,
a complete System-in-Package (SiP) solution
featuring the RSL10 radio, integrated antenna
and all passive components.

The platform combines the RSL10 SIP with
a solar cell and a host of low power sensors
from Bosch Sensortec, including the BME280
all-in-one environmental sensor (pressure,
temperature, humidity) and the BMA400
ultra-low-power 3-axis accelerometer
(Figure 3). Together, they enable developers
and manufacturers to create complete IoT
nodes that are entirely powered through
renewable energy or energy harvested
from the sensor’s surroundings. For easy
development, the platform is supplied with all
design files (Gerber, schematic and BoM) and
customizable source code as part of a CMSIS
software package.

HIGH-EFFICIENCY BATTERY
CHARGER

Energy efficiency can make or break an
energy harvesting implementation. Offering a
battery charging solution, STMicroelectronics
provides its SPV1050 chip, an ultralow power
and high-efficiency energy harvester and
battery charger, which implements the MPPT
(maximum power point tracking) function and
integrates the switching elements of a buck-
boost converter. MPPT is a common function
used in solar electric charge controllers.

The SPV1050 device allows the charge of
any battery, including the thin film batteries,
by tightly monitoring the end-of-charge and
the minimum battery voltage in order to
avoid the over-discharge and to preserve the
battery life (Figure 4). The power manager is
suitable for both PV cells and TEG harvesting
sources, because it covers the input voltage
range from 75 mV up to 18 V and guarantees
high efficiency in both buck-boost and boost
configurations.

Meanwhile, the SPV1050 device boasts
very high flexibility thanks also to the
trimming capability of the end-of-charge and
undervoltage protection voltages. That enables
any source and battery to be matched. The MPPT
is programmable by a resistor input divider and
allows maximizing the source power under any
temperature and irradiance condition.

An unregulated voltage output is available
(for example, to supply an MCU), while two
fully independent LDOs are embedded for
powering sensors and RF transceivers. Both

FIGURE 4
The SPV1050 device allows the charge
of any battery, including the thin
film batteries, by tightly monitoring
the end-of-charge and the minimum
battery voltage in order to avoid the
over-discharge and to preserve the
battery life. The power manager is
suitable for both PV cells and TEG
harvesting sources.

FIGURE 3
The RSL10 Solar Cell Multi-
Sensor Platform includes the
RSL10 SIP, a solar cell and a host
of low power sensors from Bosch
Sensortec, including the BME280
all-in-one environmental
sensor (pressure, temperature,
humidity) and the BMA400 ultra-
low-power 3-axis accelerometer.

circuitcellar.com 33
SPECIAL FEATU

RE

O u r c u s t o m e r s b u i l d t h e t e c h n o l o g y f o r a n e w w o r l d .

We s u p p ly t h e t o o l s t o m a ke i t h a p p e n .

O n e t o o l b ox , o n e v i e w, o n e u n i n t e r r u p t e d w o r k f l o w.

A s s i m p l e a s t h a t .

T O TA L T O O L S

M a ke y o u r c o d e e v e n f a s t e r, s m a l l e r, a n d s m a r t e r

w h i l e e n s u r i n g ro b u s t n e s s a n d h i g h q u a l i t y.

www.iar.com Learn for free at
circuitcellar.com/iar

LDOs (1.8 V and 3.3 V) can be independently
enabled through two dedicated pins.

THERMAL-BASED PMIC
Among the latest energy harvesting

solutions from E-peas is its latest power
management IC (PMIC) announced in February.
The device is specifically optimized for energy
harvesting from thermal sources in wireless
sensor applications. Supplied in a space-
saving 28-pin QFN package, the AEM20940 is
a highly advanced device based on proprietary
technology that is capable of extracting
available input current up to levels of 110 mA.

Taking DC power from a connected thermal
electric generator (TEG), it can supervise the storing of energy in a rechargeable
element and simultaneously supply energy to the system via 2 different regulated
voltages. This is done through its built-in low noise, high stability 1.2/1.8 V and
2.5/3.3 V LDO voltage regulators. The lower voltage can be employed for driving the
system MCU, while the higher voltage is intended for the RF transceiver.

Through the AEM20940’s deployment, it will be possible to extend the system
battery life or, in many cases, eliminate the primary power source from the system
completely. In this way any dependence on having to regularly replace batteries (which
often has serious logistical challenges associated with it, as well as adding to the
overall expense) can be removed.

In more recent news from E-peas, in April, the company confirmed that its
AEM10941 devices for photovoltaic energy harvesting are being incorporated into

FIGURE 5
A key design requirement of the mOOvement smart
tracker project was that the size and weight of the
unit had to be kept as low as possible, in order to
minimize the impact on the animal. This placed
severe restrictions on the surface of the solar panel
that could be accommodated.

http://www.iar.com
www.circuitcellar.com/iar

CIRCUIT CELLAR • NOVEMBER 2019 #35234
SP

EC
IA

L
FE

AT
U

RE

tracking equipment employed in Australian
cattle ranches. E-peas engineers worked in
conjunction with the team at Dutch systems
integrator SODAQ on the development and
implementation of energy efficient livestock
monitoring hardware for Brisbane-based
client mOOvement.

Through use of mOOvement’s smart tracker,
valuable data on cattle herds can be acquired
concerning their position and grazing patterns,
with the ability to set alarms if individual
animals are not moving or fenced boundaries
have been breached (Figure 5). Attached to one
of the cattle’s ears, each tracker comprises an
accelerometer, a LoRa communication module
(with built-in MCU) and a GPS transceiver, as
well as a passive NFC tag.

A key design requirement of the project
was that the size and weight of the unit
had to be kept as low as possible, in order
to minimize the impact on the animal. This
placed severe restrictions on the surface of
the solar panel that could be accommodated
(with it measuring slightly less than 19 mm
x 43 mm in total and capable of generating

0.125 W). Consequently, the power system
needed to be ultra-efficient.

COLD START-UP PMU
IoT devices relying on energy harvesting

in low energy conditions often have to slowly
accumulate enough energy to turn on,
resulting in long delays before the device can
start sensing, processing and transmitting.
This can result in missed data collection,
slow operation and poor user experience.
With that in mind, Analog Devices provides
its ADP509x power management unit (PMU)
that’s designed to solve these problems with
a multiple-power-path design, which enables
faster startups and smoother operation.

ADI says that a key barrier for energy
harvesting is that in many applications energy
from the environment is only available at
very low levels (for example, low-light indoor
solar harvesting), and periodically not at all.
This requires power management solutions
that can not only enable satisfactory system
operation with very little energy, but also
efficiently manage energy storage devices
to satisfy energy demand at times when no
energy is being harvested.

Due to its unique circuit design, ADI claims
the ADP509x as among the most efficient
energy harvesting PMUs on the market,
converting harvested power down to the 16 μW
to 100 mW range with only sub-μW operation
losses. The ADP509x also delivers the fastest
cold-startup time available, according to ADI.

BOOST/BUCK CONVERTER
Among the solutions for energy harvesting

from Texas Instruments (TI) is its bq25570
chip, a nano power boost charger and buck
converter for energy harvester powered
applications.

The bq25570 device is specifically
designed to efficiently extract microwatts
(µW) to milliwatts (mW) of power generated
from a variety of high output impedance DC
sources like photovoltaic (solar) or thermal
electric generators (TEG) without collapsing
those sources.

The battery management features ensure
that a rechargeable battery is not overcharged
by this extracted power, with voltage
boosted, or depleted beyond safe limits by a
system load. In addition to the highly efficient
boosting charger, the bq25570 integrates a
highly efficient, nano- power buck converter
for providing a second power rail to systems
such as wireless sensor networks (WSN),

FIGURE 6
The TIDA-00242 reference design
supports MPPT to provide optimal
energy extraction from solar panels.
It also has internal battery charging
and protection circuits. It makes use
of the buck and boost capabilities of
the bq25570 chip.

For detailed article references and additional resources go to:

www.circuitcellar.com/article-materials

RESOURCES
Analog Devices | www.analog.com

E-peas | www.e-peas.com

Eta Compute | www.etacompute.com

Renesas Electronics America | www.renesas.com

ON Semiconductor | www.onsemi.com

STMicroelectronics | www.st.com

Texas Instruments | www.ti.com

Wiliot | www.wiliot.com

http://www.circuitcellar.com/article-materials
http://www.analog.com
http://www.e-peas.com
http://www.etacompute.com
http://www.renesas.com
http://www.onsemi.com
http://www.st.com
http://www.ti.com
http://www.wiliot.com

circuitcellar.com 35
SPECIAL FEATU

RE

which have stringent power and operational
demands. All the capabilities of bq25570 are
packed into a small foot-print 20-lead 3.5 mm
x 3.5-mm QFN package (RGR).

TI also offers a reference design based
on the bq25570. The TIDA-00242 reference
design is a solar charger and energy harvester,
using a highly integrated power management
solution that is well-suited for ultra-low
power applications (Figure 6). The product is
specifically designed to efficiently acquire and
manage the microwatts to milliwatts needed
to power your design. The storage method
is a 47 nF super capacitor that is charged
and maintained by 4 series low power solar
elements using MPPT.

The TIDA-00242 reference design supports
MPPT to provide optimal energy extraction
from solar panels. It also has internal
battery charging and protection circuits. It
makes use of the buck and boost capabilities
of the bq25570. Input voltage regulation
prevents collapsing high impedance input
sources (boost). And support is provided
for programmable step-down regulated
output (buck). Energy is stored in a super
capacitor, for use in low power applications.
The reference design is a complete solution,
including the solar current source, charge
management solution, super cap and a built-
in LDO regulator.

RF ENERGY HARVESTING
While one viewpoint is that RF

communication is major power problem for
energy harvesting applications, start-up Wiliot
takes an entirely different approach. Wiliot’s
technology seeks to harvest energy from
the RF transmissions themselves. According
to the company, there are two approaches
to harvesting RF energy: RF scavenging and
intentional RF energy transfer. The first mode
of operation taps into existing sources of
energy from devices being used without the
intention of generating energy, the energy
available over-the-air is intermittent and
unpredictable. The resulting applications this
mode can enable are stochastic in nature.

Wiliot says that in the latter approach, the
source of energy is deterministic in terms of
power levels and time, with a specific duty
cycle pattern delivered from an infrastructure
planned to provide it. As such the resulting
energy output is also more predictable, and the
transmission of packets from radio powered are
transmitted at a predictable cadence.

Wiliot uses RF harvesting techniques to power

its chip, consisting of a Bluetooth radio, the Arm
Cortex M0+ core, a set of sensors and a security
element (Figure 7). It can work in both modes
of operations, though the one it’s designed for
is the first. When considering the increase in
the background interaction of products and
consumer devices that are battery-powered like
smartphones, the prospect of harvesting power
without the need for infrastructure is attractive.

TECHNOLOGY RELEASE PLAN
In August, Wiliot announced an update

on its release plan for its technology. So
far this year, Wiliot has designed and built
5 prototype chips. With each version, the
company has increased robustness, and also
added encryption, multiple on-chip sensing
capabilities, and harvesting from three
radio bands simultaneously. Its most recent
milestone was the completion of the first
production chip design, a “release candidate,”
which should power the Version 1.0 Wiliot tag
and move them from making small batches of
product to volume production.

The rest of this year will be focused on taking
this release candidate chip from wafer, through
processing, testing, configuration, all the way to
conversion into the final tag form factor, ready
for the first field tests next year. By the end
of 2019, Wiliot expects to have a good sense
of the performance of the release candidate.
In Q2 2020, it plans to roll out some of the
existing Early Advantage Program projects its
been working on this year. During 2020, the
company will continue a controlled release of
that product.

Clearly, the stakes are high for future
development of energy harvesting technology.
As designers of IoT edge modules strive for
lower power operation, energy harvesting
solutions expand the conditions in which that
can operate. The battery-free advantages of
energy harvesting will open up new areas of
IoT implementations that would otherwise not
be practical. Chips developers will continue to
address that challenge with a variety of
energy harvesting solutions.

FIGURE 7
Wiliot uses RF harvesting techniques
to power its chip, consisting of a
Bluetooth radio, the Arm Cortex M0+
core, a set of sensors and a security
element.

CIRCUIT CELLAR • NOVEMBER 2019 #35236
TE

CH
 S

PO
TL

IG
HT

Analog ICs Feed Needs
of Industrial Systems

By Jeff Child,
Editor-in-Chief

Advances for Automation
Industrial automation and process control applications rely
heavily on a variety of analog ICs to ensure smooth, reliable
system operations. Chip vendors are responding with
new solutions across the spectrum of analog
ICs, including amplifiers, data converters,
motor drivers and more.

FIGURE 1
The ADuM4122 is a simple dual-drive strength output driver that efficiently toggles between two slew rates controlled by a digital
signal. The device can control how fast or slow a MOSFET or IGBT turns on or off by user command, on the fly, thereby controlling
motor currents.

A s factories migrate to ever more automated
and “smart” operations, system developers are
hungry for new advances in a variety of analog
IC product areas. Advances span everything

from data converters to comparators to motor drivers. These
devices must meet the particular performance levels for
industrial designs while meeting the harsh environmental
demands of the factory floor.

To keep pace with the needs of industrial system developers,
over the past 12 months analog ICs vendors have continued
to roll out new chips designed to meet a variety of industrial
design needs, including factory robotics, instrumentation
systems and control automation systems. Products include
both ICs specifically designed for the industrial market and
those for which industrial is one among a range of other
applications targeted.

ENERGY-EFFICIENT DRIVER
Exemplifying these trends, in September, Analog Devices

(ADI) announced the ADuM4122, an isolated, dual-drive
strength output driver that uses iCoupler technology. It’s
designed to empower designers to harness the benefits
of higher efficiency power switch technologies. Electric
motor-driven systems account for 40% of global electricity

consumption, according to the International Energy Agency,
and improvements in motor efficiency can have wide-reaching
economic and environmental benefits.

With the increased adoption of industrial automation and
IoT within smart factories, there is a growing demand for
intelligent technology and features within systems to ensure
maximum efficiency, says ADI. The ADuM4122 is claimed
to be the first simple solution that accomplishes this by
controlling how fast or slow a MOSFET or IGBT turns on or
off by user command, on the fly, thereby controlling motor
currents (Figure 1).

The new ADuM4122 is a simple dual-drive strength
output driver that efficiently toggles between two slew rates
controlled by a digital signal. Smaller than existing discrete or
complex integrated solutions that have 20 or more pins, the
ADuM4122 features only eight pins and works in a variety of
operating conditions. The ADuM4122 further improves system
capabilities with high common-mode transient immunity and
low propagation delay for high performance applications such
as motion control, robotics and energy.

HIGH-ACCURACY ADCs
Analog-to-digital converter (ADC) technology continues to

be critical in industrial applications, particularly for precision

circuitcellar.com 37
TECH SPO

TLIG
HT

instrumentation system designs. With that in
mind, in June, Microchip Technology rolled out
a new family of compact ADCs that offer high
programmable data rates of up to 153.6 Ksps.
According to the company, the 24-bit MCP356x
and 16-bit MCP346x delta-sigma ADC families
offer faster programmable data rates than
similar devices on the market while providing
high accuracy and lower noise performance
(Figure 2). Available in a tiny 3 mm x 3 mm
UQFN-20 package, these integrated ADCs
are designed to meet the increasing demand
for small packaging in space-constrained
applications such as portable instrumentation
devices.

Most high-resolution delta-sigma ADCs
on the market have slower programmable
data rates of a few Ksps, says Microchip.
The MCP356x and MCP346x families offer a
much faster data rate, making the devices
ideal for a variety of precision applications
that require different data speeds, including
industrial process control, factory automation
and sensor transducers and transmitters.
The ADCs also offer integrated features to
eliminate the need for external components
and reduce the overall cost of a system,
including an internal oscillator, temperature
sensor and burnout current source.

The new families provide 24-bit or 16-bit
resolution, two/four/eight single-ended or one/
two/four differential channel options, allowing
developers to choose the most suitable
ADC for their designs. For development
tools, Microchip provides the MCP3564 ADC
evaluation kit (ADM00583). The kit includes
a MCP3564 ADC Evaluation Board for PIC32
MCUs (ADM00583), a PIC32MX795F512L PIM
(processor plug-in module) and a USB cable.

AMPLIFIERS AND COMPARATORS
Current-sense amplifiers and comparators

are among the list of analog ICs important
to many industrial electronic systems.
Addressing those needs, in June, Texas
Instruments (TI) introduced what it claims is
the industry’s smallest current-sense amplifier
in a leaded package and the smallest, most
accurate comparators with an internal 1.2-V
or 0.2-V reference. Offered in industry-leading
package options, the INA185 current-sense
amplifier, and open-drain TLV4021 and push-
pull TLV4041 comparators enable engineers to
design smaller, simpler and more integrated
systems while maintaining high performance.
In addition, pairing the amplifier with one
of the comparators produces the smallest,
highest performing overcurrent detection
solution in the industry, says TI. Figure 3
shows the INA185 in a typical circuit.

These new devices are optimized for a
variety of industrial and communications

applications and well as personal electronics.
With a small-outline transistor (SOT)-563
package measuring 1.6 mm by 1.6 mm
(2.5 mm2), the amplifier is 40% smaller than
the closest competitive leaded packages.
Featuring a 55-µV input offset that enables
higher precision measurements at low
currents, the INA185 enables the use of
lower-value shunt resistors to cut system
power consumption. Additionally, its 350 kHz
bandwidth and 2-V/µS slew rate enable
phase-current reproduction to enhance motor
efficiency and save system power.

The precisely matched resistive gain
network in the amplifier enables a maximum
gain error as low as 0.2%, which contributes
to robust performance over temperature
and process variations. The device’s typical
response time of 2 µs enables fast fault
detection to prevent system damage. System
designers can add functionality in the same
form factor and enable high-performance
design with the TLV4021 and TLV4041
comparators. Available in an ultra-small
die-size ball-grid array (DSBGA) 0.73 mm by
0.73 mm package, the comparators’ integrated
voltage reference saves board space while
supporting precise voltage monitoring, which
optimizes system performance.

The comparators can monitor voltages
as low as the 0.2-V internal reference, and
feature a high threshold accuracy of 1%
across a full temperature range from -40°C
to +125°C. Low 2.5-µA quiescent current

FIGURE 2
The 24-bit MCP356x and 16-bit MCP346x delta-sigma ADC families offer high programmable data rates of
up to 153.6 Ksps. Available in a tiny 3 mm x 3 mm UQFN-20 package, these integrated ADCs are designed to
meet the increasing demand for small packaging in space-constrained applications.

CIRCUIT CELLAR • NOVEMBER 2019 #35238
TE

CH
 S

PO
TL

IG
HT

delivers extended battery life for smart,
connected devices. Fast propagation delay
as low as 450 ns reduces latency, enabling
power-conscious systems to monitor signals
and respond quickly to fault conditions.

When using both the INA185 and the
TLV4021 or TLV4041, engineers can shrink
their total footprint to enable smaller
systems. In combination, these devices
produce the smallest, highest-performing
overcurrent detection solution–15% smaller
and 50 times faster than competitive devices,
says TI. Pairing the amplifier with one of the
comparators to support overcurrent detection
on rails as high as 26 V delivers more
headroom to better manage current spikes.

Production quantities of the INA185 are now
available through the TI store and authorized
distributors in a SOT-563 package, measuring
1.6 mm by 1.6 mm. Production quantities of the
push-pull TLV4041 and preproduction samples
of the open-drain TLV4021 comparators are now
available through the TI store and authorized
distributors in an ultra-small DSBGA package,
measuring 0.73 mm by 0.73 mm.

SMART SHUT DOWN
The ability to reliably shut down factory

equipment in industrial applications is
important for safety as well as ensuring

smooth operations. Along those lines, in
July, STMicroelectronics (ST) announced
the STDRIVE601, a 3-phase gate driver for
600 V N-channel power MOSFETs and IGBTs.
It was designed to provide state-of-the-art
ruggedness against negative voltage spikes
down to -100 V and responds to logic inputs in
a class-leading 85 ns.

Featuring smart-shutdown circuitry for
fast-acting protection, the STDRIVE601 turns
off the gate-driver outputs immediately
after detecting overload or short-circuit,
for a period determined using an external
capacitor and resistor. Designers can set the
required duration, using large C-R values
if needed, without affecting the shutdown
reaction time. An active-low fault indicator
pin is provided. The STDRIVE601 replaces
three half-bridge drivers to ease PCB layout
and optimize the performance of 3-phase
motor drives for equipment such as home
appliances, industrial sewing machines and
industrial drives and fans.

All outputs can sink 350 mA and source
200 mA, with gate-driving voltage range
of 9 V to 20 V, for driving N-channel power
MOSFETs or IGBTs. Matched delays between
the low-side and high-side sections eliminate
cycle distortion and allow high-frequency
operation, while interlocking and deadtime
insertion are featured to prevent cross
conduction.

Fabricated in ST’s BCD6S offline process,
the STDRIVE601 operates from a logic supply
voltage up to 21 V and high-side bootstrap
voltage up to 600 V. Bootstrap diodes are
integrated, saving the bill of materials, and
under-voltage lockout (UVLO) on each of
the low-side and high-side driving sections
prevents the power switches operating in
low-efficiency or dangerous conditions.
An evaluation board, EVALSTDRIVE601, is
available to help users explore the features
of the STDRIVE601 and quickly get first
prototypes up and running.

INDUSTRIAL PHOTOCOUPLERS
While photocouplers are used in a variety

of applications, they must meet special
requirements to be used in the harsh
environment of a factory setting. Offering
a solution, in July, Renesas Electronics
announced three new 15 Mbps photocouplers
designed to withstand the harsh operating
environments of industrial and factory
automation equipment. The trend toward
higher voltage, compact systems is driving
stricter international safety standards and
eco-friendly solutions that require smaller
ICs with lower power consumption. The
RV1S9x60A family meets this need with
low threshold input current (IFHL) ratings:

RESOURCES
Analog Devices | www.analog.com

Microchip Technology | www.microchip.com

Renesas Electronics | www.renesas.com

STMicroelectronics | www.st.com

Texas Instruments | www.ti.com

FIGURE 3
Shown here in a typical circuit, the
INA185 current-sense amplifier
features a 55-µV input offset
that enables higher precision
measurements at low currents. The
INA185 enables the use of lower-value
shunt resistors to cut system power
consumption. Its 350-kHz bandwidth
and 2-V/µS slew rate enable phase-
current reproduction to enhance
motor efficiency and save system
power.

http://www.analog.com
http://www.microchip.com
http://www.renesas.com
http://www.st.com
http://www.ti.com

circuitcellar.com 39
TECH SPO

TLIG
HT

the RV1S9160A (SO5) operates at 2.0 mA,
the RV1S9060A (LSO5) at 2.2 mA, and the
RV1S9960A (LSDIP8) at 3.8 mA (Figure 4).

Lower power consumption allows the
RV1S9x60A photocouplers to meaningfully
suppress power supply heat generation.
And high temperature operation up to 125°C
enables board space savings by mounting
the photocoupler near the IGBT or MOSFET
power device. The devices are targeted at
DC to AC power inverters, AC servo motors,
programmable logic controllers (PLCs),
robotic arms, solar and wind input power
conditioners, and battery management
systems for energy storage and charging.

The RV1S9x60A photocouplers feature high
common mode rejection (noise tolerance) up
to 50 kV/µs (min) to protect MCUs and other
I/O logic circuits from high voltage spikes
while transferring high-speed signals. The
RV1S9x60A family also offers a variety of
packages with the smallest footprint for each
reinforced isolation (up to 690 VRMS), and
minimum creepage distances of 4.2 mm to
14.5 mm to ensure safe operation.

The RV1S9160A, RV1S9060A and RV1S9960A
photocouplers provide low voltage power supply
operation of 2.7 V to 5.5 V. Isolation voltages
for the devices are as follows: 3750 VRMS
(RV1S9160A), 5000 VRMS (RV1S9060A) and
7500 VRMS (RV1S9960A). The devices operate
in high temperatures from -40°C to +125°C
(RV1S9160A and RV1S9060A), and from -40°C
to +110°C (RV1S9960A). Supply current of
2.0 mA maximum, while pulse width distortion
at is a low 20 ns maximum. Propagation delay
for the devices is of 60 ns max with propagation
delay skew of 25 ns max.

POWER FACTOR CONTROLLER
For industrial equipment to operate

efficiently, system designers need power-
factor control suited today’s digital power
system configurations. With that in mind, in
August, STMicroelectronics announced the
STNRGPF12, a dual-channel interleaved boost-
PFC controller that aims to blend the flexibility
of digital power with the responsiveness of
analog algorithms. The device can be easily
configured and optimized using the ST’s
eDesignSuite software. Suited to applications
over 600 W, the STNRGPF12 enhances
efficiency and reliability in equipment as
diverse as industrial motor controls, charging
stations, uninterruptable power supplies,
4G and 5G base stations, welding machines,
telecom switches, home appliances and data-
center power supplies.

The STNRGPF12 operates in continuous-
conduction mode (CCM) at fixed frequency
with average-current-mode control (Figure 5).
The best of both digital and analog worlds

meets in the STNRGPF12’s inner and outer
control loops. The inner current loop utilizes
a hardware analog Proportional-Integral (PI)
compensator, while the outer voltage loop
is performed by a digital PI controller with
fast dynamic response. This enables the
STNRGPF12 to manage cascaded control of
the voltage and current loops to regulate the
output voltage by acting on the total average
inductor current.

Integrated features include digital inrush-
current limiting, which leverages silicon-
controlled rectifiers (SCR) in the high-side
switching circuitry to facilitate soft-start
management and enhance system robustness.
The STNRGPF12 also supports load feed-
forward, current balancing, phase shedding,
and fan control. An integrated UART allows
access to non-volatile memory for user
configuration of PFC parameters to meet
specific application needs and permits
monitoring of parameters in the field. In
support of the STNRGPF12, ST provides an
extensive ecosystem that includes the STEVAL-
IPFC12V1 dual-channel 2 kW interleaved PFC
reference design, as well as the configuration
software.

FIGURE 4
These three 15 Mbps photocouplers
are designed to withstand the harsh
operating environments of industrial
and factory automation equipment.
The RV1S9x60A family offers low
threshold input current (IFHL) ratings:
the RV1S9160A (SO5) operates at
2.0 mA, the RV1S9060A (LSO5) at
2.2 mA, and the RV1S9960A (LSDIP8)
at 3.8 mA.

FIGURE 5
The STNRGPF12 is a dual-channel
interleaved boost-PFC controller
designed to blend the flexibility of
digital power with the responsiveness
of analog algorithms. Suited to
applications over 600 W, the
STNRGPF12 enhances efficiency
and reliability in equipment such as
industrial motor controls.

By Jeff Child,
Editor-in-Chief

CIRCUIT CELLAR • NOVEMBER 2019 #35240
PR

O
D

U
CT

 F
O

CU
S

Panel PCs are a category of display systems that are meant to be mounted
on a factory wall or on the side of an industrial machine. They’re also well
suited for transportation systems like railway user interfaces. Rather than
simply being a display, panel PCs embed complete single board computing
functionality, providing a comprehensive embedded solution.

Product Focus:

Panel PCs
HMI Intelligence

B y providing a complete, all-in-one,
embedded computing and HMI
(human-machine interface), Panel
PCs enable any embedded system to

display information and enable user control. Most
modern Panel PCs are touchscreen displays unless
they are basically digital signage displays. In this
article, the product album of representative Panel
PCs shows a wide variety of products that vary
in size and feature sets. Panel PCs embed full
blown SBCs, often using the latest and greatest
embedded microprocessors, including Intel Kaby
Lake, AMD Embedded G-Series, NXP i.MX8M and
others. Because Panel PCs tend to be installed
in long-life cycle applications, using embedded
processors makes sense.

Industrial systems such as factory automation
and process control are among the most
common uses for Panel PCs. And because
industrial applications come in all types, today’s
crop of Panel PCs are available for a variety of
environmental conditions, for example extreme
heat environments, high-hygiene environments
and more benign applications like retail systems.
Panel PCs are also attractive for transportation
applications like railway systems. As the product
album shows, some Panel PCs are even designed
with railway needs in mind. In recent years,

wireless communication support has become more
universal in Panel PCs, providing Wi-Fi or Bluetooth
technology for remote applications where cabling
connections aren’t practical.

Illustrating an example application, iNOEX
needed a Panel PC for an ultrasonic measurement
that they developed for pipe centering to achieve
optimum pipe wall thickness. With this new
measurement technology, the die head used
to produce large-sized and thick-walled pipes
could be quickly centered, reducing start-up
scrap and saving considerable costs. Engineers
at iNOEX needed a Panel PC to serve as the
systems’ visualization client and HMI. Because
of the environment the machine is used in, they
required a 10" Panel PC with a robust, fanless and
completely-sealed IP66-rated design (Figure 1).

iNOEX chose the Kontron’s Intel Atom processor-
based Kontron Nano Client panel PC with stainless
steel housing. At the time, the Atom processor was
the optimum choice for a low power system that
could be fully enclosed and cooled without the use
of fans. The unit offers all required interfaces for
HMI or terminal applications. Essential for pipe
extruding equipment was its Compact Flash port
for data storage. Unlike a traditional rotating hard
drive, Compact Flash features no moving parts and
excellent shock and vibration protection.

FIGURE 1
iNOEX used a Panel PC for an ultrasonic measurement that they developed for
pipe centering to achieve optimum wall thickness. They needed a Panel PC to
serve as the systems’ visualization client and HMI. Because of the environment
the machine is used in, they required a 10" Panel PC with a robust, fanless and
completely-sealed IP66-rated design.

circuitcellar.com 41
PRO

D
U

CT FO
CU

S

Rugged Touch Panel PC for
Railway Systems

The DMI-1210 from ADLINK
Technology is a 12.1" Driver Machine
Interface (DMI) panel PC designed
specifically for the railway industry,
equipped with Intel Atom x5-E3930
processor (formerly Apollo Lake),
resistive touch and MVB interface.
It can be applied as an HMI unit
for driver’s desks, control panel for
passenger information systems,
surveillance system control/display
unit or in railway diagnostics and
communications applications.

• Intel Atom x5-E3930 processor, up
to 1.8 GHz

• 12.1" color display: 4:3, 1024×768
pixels, 600 cd/m2, 5-wire resistive
touch

• Isolated 2x M12 GbE, 2x DB-9 serial
and 1x M8 USB 1.1 ports

• MVB/CAN bus support by PC/104 or
Mini PCI Express add-on module

• Built in GNSS and two Mini PCI
Express card slots for cellular
modem with USIM

• Nominal Voltage: 24 VDC, 36 VDC,
72 VDC and 110 VDC (EN50155
compliant)

• IP65 front and IP20 rear ingress
ratings

ADLINK Technology
www.adlinktech.com

Industrial Panel PC Supports
Wide Temp Range

Advantech’s TPC-71W is a compact
touch panel computer equipped with an
NXP i.MX 6 Cortex-A9 dual/quad-core
processor, 7" TFT LCD display, multi-
touch glass sensor, 2 GB of DDR3L RAM
and 8 GB of eMMC storage. TPC-71W
supports a wide operating temperature
range (-20°C to 60°C /-4°F to 140°F) and
VESA mounting and features an IP66-
rated front panel that protects against
water and dust ingress.

• 7” 16:9 WSVGA LCD with multi-touch
P-CAP control and true-flat IP66-
rated front panel

• Up to 2 GB DDR3L RAM and 8 GB
eMMC storage onboard

• 10/100/1000 Mbps LAN with IEEE
802.3at PoE-PD support

• 1 MB FRAM backup memory for
unexpected power interruptions

• Serial port with 120 Ω termination
resistor that supports the CAN 2.0B

• Embedded browser and VNC tool for
rapid Web App development

• Compatible with VESA and panel
mounting

Advantech
www.advantech.com

10.4" Fanless Panel PC
Features Stainless Steel
Design

The GOT810-845 from Axiomtek is a
10.4” stainless steel fanless touch panel
computer. Its full IP66 and IP69K-rated
enclosure and IP66-rated M12-type
connectors are designed for harsh
industrial and outdoor environments.
The unit is powered by the Intel
Celeron processor N3060 (codename:
Braswell). It has a 10.4” XGA TFT LCD
display with 350 nits of brightness.

• 10.4” XGA TFT LCD flat bezel
projected capacitive (or resistive)
touch

• IP66/IP69K-rated (NEMA 4X) water/
dust/corrosion-proof design

• Full stainless-steel enclosure with
type 316

• -10°C to +50°C wide operating
temperature range

• Fanless system with Intel Celeron
N3060

• Optional Wi-Fi/3G kit for wireless
network connectivity

• 9 to 36 VDC wide range power input
• M12 type I/O connectors for harsh

environments

Axiomtek
www.axiomtek.com

http://www.adlinktech.com
http://www.advantech.com
http://www.axiomtek.com

CIRCUIT CELLAR • NOVEMBER 2019 #35242
PR

O
D

U
CT

 F
O

CU
S

Light Industrial Interactive
Panel PC has PoE

IEI Integration’s AFL3-W10A-AL is
panel PC based on Intel’s Celeron J3455
(quad core, 1.5 GHz up to 2.3 GHz)
processor. The unit supports PoE which
allows electronic devices to receive
both power and data through one
Ethernet plug-in. The ability to receive
both power and data through one cord
means less cabling and less cost for the
factory automation.

• 10.1" light industrial interactive
panel PC

• 9 V to 30 V wide range DC input with
lockable DC jack

• Selectable AT/ATX power mode
• Built-in speakers
• Support PoE PD IEEE803.2 af/at/bt
• IP64/IP65 compliant front panel
• Touch screen with anti-UV / anti-

glare coating

IEI Integration
www.ieiworld.com

21.5" Kaby Lake-Based Panel
PCs for Smart Retail

The UPC-7210 from Ibase is a fanless
21.5" panel PC is created for smart
retail applications. It features a full flat
bezel design and a 1920×1080 IPS LCD
with projected capacitive touch screen
that allows multi touch and gesture
touch functionalities. The unit has high
reliability and sealed housing, with
IP65 rated front panel for waterproof
resistance and are powered by 7th Gen
Intel Core Processors.

• 21.5" IPS LCD, 1920×1080
• Projected capacitive touch screen,

supports multi touch
• IP65 front-panel waterproof

protection
• Supports a variety of processor

platforms, from performance to
entry level

• Optional wireless solution

Ibase
www.ibase.com.tw

10.1" WUXGA Panel PC Sports
i.MX8M Processor

Estone Technology’s PPC-4310 is an
all-in-one industrial PoE (power over
Ethernet) touch Panel PC with WUXGA
1920×1200 touch screen. The system
equips with NXP’s i.MX8M Quad Core
Arm processor with a guaranteed ten
year lifespan. Edge to edge glass front
panel meets IP65 rating. The Gbit
Ethernet PoE option makes it perfect for
industrial control, building automation,
HMI and more.

• NXP i.MX8M application processor
with long life cycle support

• IEEE 802.3af PoE Gbit Ethernet port,
second PCIe GbE option

• 10.1" IPS LCD panel with projected
capacitive touch screen

• On-board Wi-Fi/BT, RS-232/485 and
GPIO ports

• Smart codec with dual-core DSP for
digital MICs and voice control

• Camera, digital MICs and light
sensor options

• Support Android 8.1, 9.0, Yocto
Embedded Linux, Ubuntu

Estone Technology
www.estonetech.com

Panel PCs

http://www.ieiworld.com
http://www.ibase.com.tw
http://www.estonetech.com

circuitcellar.com 43
PRO

D
U

CT FO
CU

S

Panel PC with IP69K is Made
for High Hygiene Systems

Designed according to EHEDG
guidelines, the FlatClient HYG from
Kontron features a maximum protection
class with IP69K. These specifications
qualify the new FlatClient HYG for use
in sensitive hygienic scenarios, in the
food and pharmaceutical industry as
well as in clean rooms of semiconductor
manufacturing plants, in optics and
laser technology, life sciences and
nanotechnology. The robust basic
design enables operation next to dirt-
generating manufacturing machines.

• Designed for high hygiene standards
following EHEDG guidelines

• Stainless steel housing with IP69K
protection (support arm version)

• Suited for washdown applications
• Scalable performance from Intel

Atom to Intel Core i5
• Smooth, seamless display surface for

perfect cleanability
• Water drop rejection, palm rejection

Kontron
www.kontron.com

In-Vehicle Panel PC Supports
Camera Expansion

The VMC 3021 from Nexcom is a
10.4" all-in-one robust vehicle mount
computer designed for the warehouse,
port, logistic and material handling
markets. It implements the Intel Atom
x7-E3950 processor (codename Apollo
Lake) on both of Windows and Linux
platforms, and offers complete IP65.
VMC 3021 is able to support analog
camera x3 for security purpose and
takes less than 1 second to see video
content.

• 10.4” XGA TFT LCD monitor with
5-wire resistive touch

• Built-in Intel Atom x7-E3950
processor, 1.6 GHz

• Aluminum die-casting and fanless
design

• Analog camera x3 (CVBS)
• Complete IP65 housing
• Automatic/manual brightness control
• Isolated CAN bus 2.0 x2
• UPS Battery and PoE 802.3af/at

(optional)

Nexcom
www.nexcom.com

Rugged 12.1" Panel PC Meets
Railway HMI Needs

MEN Micro’s DC17 is a rugged,
fanless and maintenance-free human-
machine interface (HMI) for the train
driver cabin desk, for example as the
operator display for CCTV control,
diagnosis and maintenance, or fleet
management.

• 12.1” display with LED backlight
• 1024×768 pixels resolution
• AMD Embedded G-Series
• Wireless communication 2G, 3G, 4G,

WLAN, GNSS
• MVB interface (optional)
• All external interfaces on M12

connectors
• -40°C to +70°C (+85°C), fanless
• Maintenance-free design
• Compliant to IP65 (front) and EN

50155 (railway)
• Windows and Linux support

MEN Micro
www.menmicro.com

http://www.kontron.com
http://www.nexcom.com
http://www.menmicro.com

CIRCUIT CELLAR • NOVEMBER 2019 #35244
PR

O
D

U
CT

 F
O

CU
S

Fanless E3800-Based Panel
PCs are IP65-Rated

WinSystems’ PPC65B-1x Panel PC
Series is IP65-certified and optimized for
use in demanding market applications
including industrial machinery, utilities,
petroleum, transportation, pipeline and
food processing, wherever there is a
need for tight system integration in a
minimal footprint.

• 1.9 GHz Quad-Core Intel Atom E3845
processor

• Up to 8 GB of RAM
• IP65-compliant fanless panel PC
• Front display sealed against water

and dust
• -20°C to +70°C operating

temperature range
• Wide input power: 12-24 VDC
• 2x Gbit Ethernet ports
• 1x USB 2.0 port (up to 3x with

expansion)
• 1x USB 3.0 port
• Watchdog timer

WinSystems
www.winsystems.com

7" Touch Panel PC Serves Up
iMX6 Processor

Powered by the NXP i.MX6 Cortex-A9
Arm CPU, Technologic Systems’
TS- TPC- 7990 Touch Panel Computer
(TPC) features a 7" capacitive or resistive
touch display, high performance CPU
subsystem, wide variety of connectivity
options and multimedia capabilities.
The TS-TPC-7990 is well suited for
applications that require a touch-based
HMI, including: industrial automation,
medical, automotive, self-service kiosks
and retail point-of-sale terminals.

• HMI solution featuring capacitive or
resistive touch high brightness LCDs

• Processor: NXP’s 1 GHz i.MX6 Arm
CPU

• Wireless connectivity for remote
access and IoT applications

• Storage: on board eMMC, mSATA
drive support, microSD card

• High speed industry standard
connectors like Gigabit Ethernet and
Mini-PCIe

• 2x USB host, 1x USB device,
1x Bluetooth, 1x Wi-Fi, 1x SPI,
1x I2C

Technologic Systems
www.embeddedarm.com

Panel PC Family Offers Choice
of 64 Models

Taicenn’s TPC-DCM industrial series
of panel PCs lets you choose between 64
configurations, with 8x Intel processor
choices and 8x screen sizes: 15.0",
2x 15.6", 17.0", 18.5", 19.0", 21.5" and
24.0" models ranging from 1024×768
to 1920×1080 pixels. For processors,
you can choose between 6th or 7th Gen
U-series Core, Apollo Lake or Bay Trail
CPUs.

• Various dimensions: 15.0", 15.6",
17.0", 18.5", 19.0", 21.5" and 24.0"

• High quality LCD display with LED
backlit

• Multi-level CPU options, including
Intel Baytrail, Apollo Lake, Skylake,
Kaby Lake

• Memory max. support up to 8 GB or
16 GB (DDR4L)

• Low power, compact and fanless
design

• True flat, zero bezel front panel,
front IP65 protection

• Self-developed anti-finger print
industrial capacitive touch screen

• Panel mount and VESA mount

Taicenn
m.taicenn.com

Panel PCs

http://www.winsystems.com
http://www.embeddedarm.com
http://m.taicenn.com

circuitcellar.com 45
CO

LU
M

NS

By
Colin O’Flynn

Embedded System Essentials

Embedded System Security Live
Coverage of Two Security Events

I know it’s not easy to stay current with all
the latest embedded security news and
attacks. With that in mind, this month I
want to bring together a few pieces of

research I thought would be of interest to you.
To do this, normally I’d focus only on topics
from the Black Hat “hacker” conference in Las
Vegas, NV. But this time, I’m also including
some additional research from the USENIX
WOOT (Workshop On Offensive Technology)
conference. WOOT took place in Santa Clara,
CA shortly after Back Hat.

EXECUTE ONLY MEMORY (XOM)
I’m going to start with a presentation

from WOOT, because it’s probably of the most
importance for embedded developers. The
paper in question is entitled “Taking a Look
into Execute-Only Memory” by Marc Schink
and Johannes Obermaier. The paper attacked
the idea of Execute Only Memory (XOM),
which is present in different forms on many
devices. Generally, this means a memory
space (typically flash or ROM) from which we
can execute code, but can’t actually read data
from. This is almost always sold as a way to
protect your sensitive code from being read
out by an attacker.

To be effective, this is enforced in hardware.
The enforcement happens because reads from
the execute-only memory space must come
from the instruction bus and not from the
data bus. See Figure 1 for an example of
these different memory buses. The bottom of
that example processor core in Figure 1 has
several buses: “ICode” is the instruction bus

interface and “DCode” is a data bus interface.
In theory that means that certain memory
sections should only be able to send data
over the ICode bus. All that said, here the
authors found several implementation errors
for detecting what counts as instruction

Colin summarizes some interesting presentations from the Black Hat conference in
Las Vegas—along with an extra bonus event. This will help you keep up-to-date with
some of the latest embedded attacks, including execute only memory attacks, fault
injection on embedded devices, 4G cellular modems and FPGA bitstream hacking.

Cortex-M4 Processor

Interrupts and
power control Cortex-M4 or

Cortex-M4F
Processor core

Flash patch
breakpoint

(FPB)

Memory
protection
unit (MPU)

Data
watchpoint
and trace

(DWT)

AHB
Access port
(AHB-AP)

Serial-wire
or JTAG

Debug port
(SW-DP or
SWJ-DP)

Serial-wire
or JTAG Debug

interface

Bus matrix

ICode
AHB-Lite

instruction
interface

DCode
AHB-Lite

Data
interface

System
AHB-Lite
System
interface

PPB APB
Debug System

interface

Nested
vectored
interrupt
controller
(NVIC)

FIGURE 1
An example processor core. Note the bottom side shows different buses for Instruction (ICode) and Data
(DCode) access.

CIRCUIT CELLAR • NOVEMBER 2019 #35246
CO

LU
M

NS

vs data bus access. Some devices—the
STMicroelectronics STM32F7 in particular is
called out in the paper—incorrectly classify
certain accesses from the debug access port
logic as instruction bus access, and allow
reading out of the protected memory.

More fundamentally, the authors also
attacked the very idea of XOM. It’s instructive
to observe the side effects of instruction
execution. For example, we can see a single
unknown instruction executed in Figure 2.
We assume we know the input state (“1” in
Figure 2), which is the values in all registers,
processor flags and similar. We can also
observe the state (“3” in Figure 2) after the
instruction execution. You can observe this in
two possible ways. The easiest is when devices
still allow debugger connectivity during XOM
execution. The debugger cannot see any of the
instructions being executed, but can observe
the registers/SRAM. Therefore, as you single-
step through the instructions, you get new
ideas of the instruction set. If debug access is

not possible, they also demonstrated a second
way, which is using an interrupt after each
instruction executed. The interrupt handler
can then observe or download the system
state in a similar manner to the debugger.

Certain instructions would have
certain side-effects. A memory load for
example would see the value in a register
overwritten. But many other instructions
would also change a register value—an
addition or subtraction, for example, would
also overwrite a register. But, if we had a
known pattern loaded into memory and the
registers, the load would be distinguishable
from an addition or subtraction. Therefore,
by observing side-effects in a more controlled
environment, it becomes possible to discover
both the instruction and the arguments.
This is iteratively repeated to narrow down
similar instructions that might require
different starting states to distinguish them.
For example, there are several conditional
branch instructions, and you would need to
distinguish from a “branch if not equal” and
“branch if less than”.

The authors of the paper extended this
idea to demonstrate a full read-out attack
on a device, and also worked to prove how
this worked against devices that disable
debug during XOM execution. The result is
that a demonstration of how XOM could be
“reversed” by a dedicated attacker.

FAULT INJECTION ATTACKS
Meanwhile, the Black Hat event had (at

least) two talks on fault injection. One was my
own, entitled “MINimum Failure.” I presented
the work that I wrote about in the May 2019
issue (Circuit Cellar 346). If you don’t recall
that article, the summary is that you can
use fault injection to corrupt the processing
of the wLength value of a USB packet. This
allows an attacker to read back up to 65 KB of
memory, which I demonstrated as recovering
the private key from a Bitcoin wallet.

Since that article, I extended that work
in a few ways. First, I realized that similar
processing is present in almost all USB
stacks. This includes many vendor-provided
examples alongside most USB stacks that
vendors provide. I also released my open-
source hardware tool that I call PhyWhisperer-
USB, It enables you to easily trigger on USB
data—along with some basic sniffing of USB
2.0 LS/FS/HS data. You can see a photo of
that in Figure 3. You can learn more about
PhyWhisperer-USB from its github page.
A link to it is provided on the Circuit Cellar
article materials webpage. This includes all
the hardware documentation, along with
example Python scripts and documentation.

The second presentation was entitled

Memory address

Input state

Instruction execution

Output state

0x0000 0802

0x0000 0804

0x0000 0806

0x0000 0808

0x0000 080a

mov r0, #23

nop

???

???

???

Instruction

1

3

2

FIGURE 2
Observing the side-effect of instruction execution can reveal both the instruction and the arguments.

FIGURE 3
PhyWhisperer-USB is an open-source tool for USB 2.0 triggering and sniffing.

Additional materials from the author are available at:
www.circuitcellar.com/article-materials

http://www.circuitcellar.com/article-materials

circuitcellar.com 47
CO

LU
M

NS

“Chip.Fail” by Thomas Roth, Josh Datko and
Dmitry Nedospasov. This demonstrated basic
voltage fault injection attacks on various
devices, which helps demonstrate that
you should consider fault-resistant coding
techniques to help prevent some of these
attacks. These fault-resistant techniques are
something I plan on talking about in my next
article, so keep an eye out for the January
2020 issue where you can start your new year
out by working with fault-resistant designs.

4G MODULE ATTACKS
Another interesting presentation was one

from the Baidu Security Lab, which presented
a talk entitled “All the 4G Modules Could be
Hacked.” This talk is of interest to anyone
who uses cellular modules in their products,
because these modules are a common method
of adding remote connectivity for data
logging and remote control. These modules
are often found as part of a mini-PCIe card
in an embedded Linux system, but they take
other forms as well. The talk focused on both
problems with the 4G modules, including
common issues with the user configuration
and fundamental problems in the baseband
device itself. I’ll give you a few examples of
both of these.

One of the most common problems was
that the security implications of adding
that module may not be understood. Some
carriers, for example, would add multiple 4G
devices to a network without isolating them
from each other, allowing someone to scan
(and connect to) other devices. As a user, you
don’t necessarily know the configuration of
the access point to which you are connecting,
so you need to assume someone else on the
network can find this device. A screenshot of
the port scan test they performed is given in
Figure 4.

Assuming someone does find the device,
what can they do? Part of this presentation
showed how services (such as TELNET or SSH)
were running with hard-coded usernames
and passwords. It was possible to recover
these hard-coded passwords, giving someone
remote access to the system. And, because
these appeared to be reused across the
deployment, the high effort involved in
breaking one password now allowed a more
widespread attack to apply.

In addition, there are some more
fundamental security implications of
adding these modules. Most of them will
downgrade to older (GSM or “2G”) protocols
if they cannot reach a 3G/4G base-station.
Unfortunately, these older standards can be
easily abused to force the device to connect
to a malicious cellular base station, which was
also demonstrated in this talk. Such attacks

FIGURE 4
Port scan results can reveal open ports on 4G networks, where the utility has not isolated clients.

cc-webshop.com

Monte demonstrates how Verilog

hardware description language

(HDL) enables you to depict,

simulate, and synthesize an

electronic design so you can

reduce your workload and

increase productivity.

designing a microprocessor can be easy.
Okay, maybe not easy, but certainly less complicated. Monte
Dalrymple has taken his years of experience designing embedded
architecture and microprocessors and compiled his knowledge into
one comprehensive guide to
processor design in the real
world.

Verilog HDL
With the right tools

www.cc-webshop.com

CIRCUIT CELLAR • NOVEMBER 2019 #35248
CO

LU
M

NS

are well-known, but again someone looking to
simply add easy cellular connectivity to their
product may not consider that an attacker
could easily observe (or control) any network
traffic.

Forcing use of higher-layer encryption is a
requirement to survive in such an environment,
for example, by only allowing encrypted traffic
going over HTTPS or SSH. In addition, turning
off 2G support may be wise to prevent these
older standards from being used at all. Many
carriers around the world have stopped
supporting 2G in order to free up bandwidth
for 4G, with most major carriers already fully
turning off their 2G networks or announcing
dates in the next few years to do so.

REWRITING FPGA BITSTREAMS
A final attack of interest was one with

a very odd name. The name is depicted
by three angry cat emojis, which we can’t

represent on these magazine pages. So,
instead you can go by the pronounced
version of that attack that the paper’s
authors suggest: “Thrangycat.” I’ll get to
the title of paper in moment—you’ll see why.
This attack invalidated a huge amount of
security assumptions on Cisco gear, which
used an FPGA as a hardware root of trust.
A block diagram of the Cisco setup is shown
in Figure 5.

In the Cisco setup, the FPGA bitstream
is loaded from a SPI flash. The FPGA forms
the “root-of-trust” because it then loads
the basic bootloader into the application
processor (main processor). The FPGA can
then observe the loading of the Stage 1
bootloader, and during the loading of this
Stage 1 bootloader the FPGA can validate
that correct code is being loaded—in other
words, that no attacker has modified the
system.

SPI Flash

SPI Flash

3Stage 1 bootloader

Application
processor

FPGA
Root-of-trust

Reset

1Configuration
 bitstream

2Stage 0
 bootloader

FIGURE 5
Cisco Root of Trust relies on a FPGA
to perform initial device boot, along
with resetting the processor during
security violations.

FIGURE 6
This tool is part of the open-source Spartan 6 bitstream reverse engineering efforts.

circuitcellar.com 49
CO

LU
M

NS

If any security violation is found, the FPGA uses the reset line
to kill the system. The idea here being that the FPGA is performing
a hardware action to prevent a clever attacker from doing low-
level modifications. The FPGA has a 100-second timeout before
it resets the system. And that is the origin of the title of this talk
presented at Black Hat by Jatin Kataria, Richard Housley, and Ang
Cui: “100 Seconds of Solitude: Defeating Cisco Trust Anchor with
FPGA Bitstream Shenanigans.”

But, as you know, the FPGA itself is not fixed hardware. It
loads a bitstream from a SPI flash. Modifying the SPI flash
allows you to modify the FPGA bitstream. Because the FPGA
bitstream itself does other tasks (including loading the Stage
0 bootloader), the original bitstream does need to be loaded.
But the Cisco assumption was that reverse-engineering the full
bitstream to modify the design would be very difficult (which is
true). Luckily a full reverse-engineering isn’t actually needed.
In this case, they only need to change the reset pin output
such that it is no longer asserted. This minor modification
is something that can be reverse-engineered, since it only
modifies the output drive of the FPGA.

To assist with this work, they built a FPGA bitstream
visualizer tool. Back in June 2014, I actually talked about the
Spartan 6 bitstream partial reconfiguration, and discussed
some of the bitstream format since it is partially documented.
My article was called “Partial FPGA Configuration,” (Circuit
Cellar 287, June 2014). But back then I didn’t have such a nice
visualization tool as you can see in Figure 6!

To round out the attack, they demonstrated how someone
can remotely reload the SPI flash that holds the FPGA bitstream.
The result of this means a remote attacker could also disable
the ability to recover the SPI flash—the reprogramming of the
SPI flash is done via a FPGA feature. The attacker can build
a new bitstream that simply disables those I/O pins once the
bitstream is booted. This requires a technician to physically
reprogram the SPI flash on-board the affected Cisco product.

KEEPING UP ON MORE ATTACKS
Hopefully, this summary has given you a look at a few new

attacks from 2019. It’s hard to keep up with everything that
comes out (even for myself), and for space reasons I can’t hope
to fit every important attack into this article. But having an idea
of these attacks is useful as you design your own products.

ABOUT THE AUTHOR
Colin O’Flynn (colin@oflynn.
com) has been building and
breaking electronic devices
for many years . He i s an
assistant professor at Dalhousie
University, and also CTO of
NewAE Technology both based
in Halifax, NS, Canada. Some
of his work is posted on his
website at www.colinoflynn.com.

©2019 Measurement Computing Corporation • info@mccdaq.com

Bring Your Pi
to Work

Thermocouple
Measurements on a Pi

The MCC 134 thermocouple
measurement HAT provides best-in-class,
professional-grade accuracy. Up to eight
MCC DAQ HATs can be stacked onto one

Raspberry Pi® allowing users to create
multifunction DAQ solutions

based on this low-cost computer.

MCC 134 DAQ HAT
• Four thermocouple inputs
• 24-bit resolution
• 1 second update interval
• Supports most thermocouple types
• Complete SW library for easy
 programming
• Full set of examples in C® and Python™

 www.mccdaq.com/DAQ-HAT

http://www.colinoflynn.com
http://www.mccdaq.com/DAQ-HAT
mailto:info@mccdaq.com
mailto:colin@oflynn.com

CIRCUIT CELLAR • NOVEMBER 2019 #35250
CO

LU
M

NS

Picking Up Mixed Signals

Bluetooth-Enabled ECG Monitor

I n my last column, I described a Variable
Frequency Drive project I built, using
Cypress Semiconductor’s PSoC 5LP
microcontroller (MCU). Although I had

used PSoC MCUs in the past, I was quite
impressed by the advances they had made
in both the hardware and in the Creator 4.2
application that you use to develop code for
the PSoC family. I decided to continue to
explore this family of devices while things
were still fresh in my mind.

I looked at the latest offerings in the PSoC
family—the PSoC6. Earlier generations of the
PSoC family were each based on a specific
central processing unit, beginning with a very
limited custom CPU used in the PSoC1 family,
advancing to an 8051 derivative (PSoC3), and
then finally an Arm Cortex M3 in the PSoC 5LP.
What differentiates each PSoC device in a given
generation are the number and scope of the

custom analog and digital blocks contained in
that device.

The PSoC 6 is the first PSoC generation to
contain any wireless connectivity. The higher-
end PSoC 63/64 models have Bluetooth Low
Energy (BLE) functionality built in. The PSoC
60,61 and 62 contain a similar CPU, but no
BLE function. All devices in the PSoC6 line are
dual core, containing both a Cortex M4 and a
low-power Cortex M0+. If you check out the
Cypress development board offerings for the
PSoC6, it appears that Wi-Fi is also supported
in some PSoC 6 devices. This is not true,
however. The PSoC 6 development boards that
feature Wi-Fi do so via a separate CYW4343W
Wi-Fi/BT daughterboard. I wasn’t interested in
such a development board, because I generally
use the Espressif Systems ESP8266 or ESP32
modules for anything I do that requires Wi-Fi.

In the past, I always liked the way that

Brian has written articles in the past about projects that use Cypress
Semiconductor’s PSoC MCUs, including his most recent piece about the variable
frequency drive project he built using the SoC5LP MCU. This month, he explores
the latest offerings from this MCU family, the PSoC6 5LP MCU. In this project
article, Brian selects the Cypress CY8CPROTO-063-BLE to build a Bluetooth-
enabled ECG monitor.

Using the Cypress PSoC 6 MCU

By
Brian Millier

circuitcellar.com 51
CO

LU
M

NS

Cypress designed its development boards. It
has the usual assortment of larger boards
containing a variety of peripherals, including
displays and cap-sense buttons. However,
Cypress also made small modules containing
only the bare-essential components, in DIP-
style packages on 0.1" centers. These suit my
construction practices perfectly. As a bonus,
such boards for the PSoC3,4 and 5LP families
(which I had used in the past), were priced
between $5 and $15. These are obviously
sold below cost, since the parts on the snap-
off programmer alone (included with these
modules), would cost more.

I chose Cypress’s low-cost CY8CPROTO-
063-BLE for this project. The daughterboard
containing the PSoC6 MCU/BLE antenna,
(right), and the snap-off programmer (left)
are shown in Figure 1.

BLUETOOTH LE AT FIRST GLANCE
I’ve created many Wi-Fi projects in the

past, using the ESP8266 or ESP32 modules
and compatible Arduino IDE/libraries. Most
of the complexity of the Wi-Fi protocol is
hidden by the Arduino Wi-Fi library, and it’s
not that hard to get a project up and running
(at least at the security level imposed by a
WPA2 connection to a home wireless router).
Programming the MCU firmware is a lot more
complicated in the case of Bluetooth.

The simplest approach to a Bluetooth-
enabled peripheral uses a Bluetooth module
containing a standard UART interface. I’ve
used the Adafruit “Bluetooth LE UART Friend”
module. It’s easy to use because Adafruit
supplies not only a sample Arduino sketch
written for it, but also matching iOS and
Android smartphone apps.

However, once you go beyond a simple
BLE-to-UART bridge device, things become
much more complicated. BLE is loosely based
on a Server/Client concept, though what you
might normally consider a server may not
be how it is defined in the BLE environment.
The basic concept is that one BLE device can
pair up to another, completely unknown BLE
device, determine which of the Bluetooth SIG
profiles that BLE device emulates, and then
communicate measurements/commands back
and forth.

The BLE devices don’t need advance
knowledge of anything specific about each
other, since all the relevant measurement/
control parameters are defined in whatever
Bluetooth profile(s) the device is emulating.
For example, a smartphone BLE app that
monitors a person’s heart rate, should work
properly regardless of what brand of heart
rate monitor it pairs up with. While this works
in theory, I suspect that manufacturers often
tailor the BLE profiles enough so that their

smartphone apps only work with their own
hardware devices.

While this capability is very useful, it
results in a complicated communications
protocol—much more complex than what you
would come up with, if you were designing
a custom device for a specific, dedicated
purpose.

I generally peruse datasheets, specifications,
and so on before getting too involved in a project.
I examined the Bluetooth SIG documentation
early on, but found it hard to understand. I’m
quite familiar with Wi-Fi IP #s, MAC #s and
SSIDs, but the many UUID numbers involved
in BLE are much more elaborate. They’re
basically 128-bit values, but are expressed as
long, hyphenated ASCII strings: not at all like
the “standard” notations used for IP and MAC
addresses. Furthermore, the common BLE SIG
profiles use “shortened” 16-bit values, which
are concatenated with a common base value
to provide the full 128-bits. You will have to
get used to typing these long UUIDs into your
programs without errors, or nothing will work!

The PSoC Creator 4.2 program contains
support, in the form of a component
configuration “wizard,” to help you write a
BLE-enabled application. If you have used the
PSoC Creator application with earlier PSoC
devices, you’ll be familiar with dragging the
required hardware “components” onto your
“schematic” workspace (the TopDesign tab).
Then, when you invoke the Build -> Generate
Application option, Creator will add the
various “.h” and “.c” files needed to implement
comprehensive APIs for each hardware
component that you added to your design.
To be clear, these hardware components are
the built-in peripheral blocks contained in the
PSoC device, itself. You don’t have to figure
out what driver files are needed, since Creator
software adds them all for you.

Double-clicking on a “component” brings
up a graphical configuration “wizard,” used
to define the initial configuration of the
hardware component. This “wizard” is as
simple or complex as needed to configure the
hardware component that it serves.

To add the BLE function, the same process

FIGURE 1
The Cypress CY8CPROTO-063-BLE prototype board that I used for this project. Note the snap-off programmer
on the left.

CIRCUIT CELLAR • NOVEMBER 2019 #35252
CO

LU
M

NS

is followed. You first add the BLE component
from the Component Catalog window to
the right of the Creator screen (in the
Communications folder). When you double-
click on the BLE component, a complex
configuration “wizard” appears (Figure 2).
In the “General” tab, you select whether your
PSoC device will be a Peripheral, Central,
Broadcaster or Observer. For this project, a
Peripheral is the right choice.

Here you also decide how you want the
BLE functionality to be implemented—either
using both the CM0+ and CM4 Arm cores
of the PSoC, or just one of them. I readily
admit I don’t know all the pros and cons of
this choice, apart from knowing that for low-
power applications, it makes sense to use
the CM0+ core to handle the low-level BLE
functions. The CM4 core is powered up only
to handle application-specific code, when
needed. I found that the Cypress sample
programs generally used both processors.

Most of the BLE configuration is done
using the GATT tab. This is where you specify
what BLE SIG profile you want the device
to emulate. You can either pick one of the
standard profiles (Health Thermometer, Heart
Rate, Cycling Speed, and so on), or define
your own custom one.

This is where I found things got
complicated. It seems very difficult to come
up with a custom profile, yourself, unless
you are well-versed in BLE standards and
other subjects. Speaking as a BLE novice,
it’s my opinion that you stand virtually no
chance of developing your own custom BLE
device, if you try to design both the device
hardware/software and the smartphone app
by yourself, from scratch. Instead, I followed
this procedure:

1)	 Program the PSoC 6 with one of the sample
BLE programs that comes with the Creator
software package. From the Creator “Start”
page, this is done by clicking on “Find Code
Example.”

2)	 Test for connectivity/functionality using
Cypress’s CySmart application (iOS app for
iPhone/iPad, Android app or PC application).

3)	 Examine the PSoC sample program closely,
and modify it to perform the task you have
in mind. At this stage, you may or may not
be able to use the CySmart app for testing,
if you are not using a custom profile or one
of the standard profiles for which Cypress
has provided a sample.

4)	 Write a custom smartphone app to handle
the required function(s).

To be honest, I didn’t have a specific
project in mind at the outset. I just wanted
to learn how to use the PSoC 6 in a BLE
application. Even starting with this “clean
slate,” I didn’t find many of the Cypress
BLE sample programs to be very relevant
to me. I settled on the “PSoC 6 BLE Multi-
Slave” sample program. This implements a
BLE multi-slave functionality containing the
following services:

1)	 Device Information Service
2)	 Health Thermometer Service
3)	 Custom service controlling an RGB LED
4)	 Custom service performing a 128-bit read/

write
5)	 Custom notification service.

Although this sample program is named
“Multi-Slave,” it actually implements a
multi-master, multi-slave device, acting as a
Peripheral and containing the above five GATT
servers. Among those servers were one that
sent out data (Health Thermometer) and one
that received data (RGB LED control). Those
were the ones I figured I could modify to fit my
own tasks, regardless of whether those tasks
were monitoring data or controlling something
connected to the PSoC 6. I didn’t have any use
for either the device information service or the
custom notification service. While the custom
128-bit read/write service looked useful, I
could only figure out how to write the 128-bit
data, not read it, so I left it alone.

When I later decided that I wanted to
build a BLE-enabled ECG (electrocardiogram)
monitor, I knew I’d be sending the ECG data
from the PSoC 6 device, and there would be
no need to control anything on the PSoC 6
from the iPad app.

I chose to modify the Health Thermometer
Service. Doing so would allow me to monitor
the values sent from my PSoC 6 firmware
using the CySmart iOS app provided by

FIGURE 2
The main page of the BLE component’s configuration wizard, part of Cypress’ Creator IDE application. Many
of the important settings are exposed in the GATT Settings tab.

circuitcellar.com 53
CO

LU
M

NS

Cypress. That is, I wouldn’t need to have my
own iOS app ready to go in order to test the
PSoC6 firmware I was trying to write.

The “.c” and “.h” files from the Cypress
“multi-slave” sample are shown in Figure 3.
Many more files are needed for this program
than those shown here. Most of the other
files are generated automatically by the
Creator application (for the specific hardware
components that you have added to your
“schematic”). These are the files I needed
to work with to customize the “multi-slave”
sample for my own purposes.

I added the “ECG.h” and “ECG.c”
files, myself. Actually, the sample program
originally contained “temperature.h” and
“temperature.c” files. I renamed these
two files, and modified them to replace the
original code, which read a thermistor via
the PSoC6 SAR ADC, with code that measured
the voltages coming out of the ECG amplifier
module. In both cases, the ADC used the 3.3 V
Vcc as a reference, so no change was needed
there. However, Cypress used what they call
“Double Sample Correlation” to measure both
the voltage across the thermistor and across
a 10 kΩ 1% reference resistor, to determine
the thermistor resistance. This value was
then converted to temperature using the
Steinhart-Hart equation.

I changed this code to take just one ADC
reading of the voltage directly from the ECG
amplifier. Note that the code in the “ECG.c”
file merely takes an ECG reading. It must be
called at a specific sample rate to be useful.
That is done in the “ble_application.c”
file. Specifically, in this file, the function, “ble_
ProcessEvent” is a loop that constantly
handles BLE events. When I say I take one
ECG reading, the “ADC_GetResult16”
function that I use takes 256 samples and
averages them. The PSoC6’s SAR ADC is very
fast, so in the ADC setup wizard, the ADC is
configured to take an average of 256 settings,
which minimizes noise.

Within that loop, the original Health
Thermometer readings were taken at a 4 Hz
rate, triggered by the PSoC’s watchdog timer.
To be useful, ECG readings should be taken 30+
times per second. I added a PWM component
to my “schematic,” set for a 40 Hz rate. In
past PSoC projects, I would merely wire an
“Interrupt” component to the PWM output.
Creator would then generate all the needed
code for this interrupt, including an “isr.c”
file--where you would add the code you
wanted executed when the interrupt occurred.
This method no longer works with PSoC6 BLE
applications. For PSoC6, Cypress now uses
the Peripheral Driver Library, which is part
of what they call “middleware,” because it
includes drivers from other sources, including

RTOS and emWin. I couldn’t quickly figure out
the new way to handle a PWM interrupt, so I
wired the PWM output to Port 10.5, and tied
that to Port 10.4 (set as an input). I could poll
the state of the P10.4 pin, giving me a way to
pace the ECG readings at a 40 Hz rate. When
I get more time, I’ll try to figure out how the
PSoC6 firmware handles interrupts.

The BLE standard Health Thermometer
Service is defined to output the temperature
as an IEEE-11073 format floating-point
number. However, the PSoC’s “C” compiler
uses the standard IEEE-754 single-precision
format. Therefore, a format conversion was
done in the original sample program. For my
purposes, I chose to take four, sequential 8-bit
ECG readings and pack them into the 4-byte
IEEE-753 floating point variable originally
used for the temperature value. I did this so
that only one-quarter as many BLE packets
needed to be transmitted.

When I later wrote the iOS app, it was only
possible to receive and graph the ECG data at
a 40 Hz sample rate, by sending the data in
this “packed” format. With only one ECG value
per BLE packet, my iOS program routinely
failed to collect all the data, when pushed up
to the 40 Hz rate. In Figure 4, you can see the
iOS app running. Here, the PSoC6 is sending
out a triangle waveform via BLE. The data
loss without data-packing, mentioned above,
was clearly visible here, when it occurred.
After implementing the 4 sample/BLE packet
protocol, the data were received properly, as
shown here.

In summary, the ADC reading of the
ECG waveform takes place in the “ECG.C”

FIGURE 3
Many files are generated after you
design the PSoC6 “hardware” aspects
of your project and click on “Build
Application.” The ones shown here are
a subset of those, and contain the files
where I made modifications/additions
to the sample program to match my
project.

ABOUT THE AUTHOR
Brian Millier runs Computer Interface Consultants. He was an instrumentation
engineer in the Department of Chemistry at Dalhousie University
(Halifax, NS, Canada) for 29 years.

CIRCUIT CELLAR • NOVEMBER 2019 #35254
CO

LU
M

NS

file. The processing of BLE events, including
the 40 Hz sampling of the ECG signal and
its transmission, takes place in the “ble_
application.c” file. The entire, complex,
BLE communications protocol is handled

transparently by routines in other files, most
of which were added automatically by the
Creator application when the BLE component
was added to the “schematic.”

TESTING USING CySMART
When I first ordered my CY8CPROTO-

063-BLE board, I considered also purchasing
the Cypress CySmart USB dongle for testing
the BLE link on my PC. However, Cypress
also provides an iOS app that I could use on
my iPad, so I didn’t think I would need the
dongle. It turns out that the CySmart iOS app
can handle the various BLE profiles used by
some, but not all, of their sample programs,
nor can it handle a custom profile that you
design yourself. You would need the CySmart
USB dongle for this. I have since purchased
the dongle, but unfortunately, I didn’t have it
while designing this project.

I first downloaded the Cypress multi-slave
firmware to the PSoC6, and tested it using
the CySmart iOS app on my iPad. All of the
BLE Services included in this sample showed
up in the CySmart app and worked properly.
I didn’t have the thermistor/feed resistor
hooked up, as would have been the case on
the Cypress development board to which
this sample is targeted. As a result, I got
random temperature readings that varied at
the 250 ms watchdog period.

As mentioned earlier, I had decided to
modify the standard Health Thermometer
profile to handle the ECG data. When I started
making changes to the sample program to
read the ECG signal, I initially didn’t pack
4 ECG samples into one BLE packet. I also
did not trigger the ADC at the 40 Hz rate,
but rather, at the much slower rate of 4 Hz
used in the original sample. I also sent the
ECG readings to the PSoC6’s UART Tx port for
debug purposes. Doing it this way allowed me
to see the “Raw” ADC readings taken from
the ECG amplifier, and to monitor them in
the Health Thermometer section of the iOS
CySmart app. Whatever the ADC value was, it
showed up identically in both the UART output
stream and in the CySmart app’s Health
Thermometer window.

The Cypress multi-slave sample program
is written to send out many debug status
messages during the various phases of a BLE
link connection. By default, however, these
messages are turned off. I would not have
known how to enable them, had I not watched
the “PSoC6 101” series of YouTube videos by
Cypress’s Alan Hawse (which I thoroughly
recommend). You must edit the uart_
debug.h file and change line 75 to read:

#define UART_DEBUG_ENABLE (true)
FIGURE 5
While not connected with this project, this is a screenshot of the Blue Remote iOS app. It can be used for
certain BLE projects, without the need for you to write your own custom IOS app.

FIGURE 4
My techBASIC program running. At this stage, the PSoC6 was generating a triangle “test” wave, rather than
an actual ECG signal.

circuitcellar.com 55
CO

LU
M

NS

Once done, you can use statements, such
as the following in your code for debugging:

DebugPrintf(“S2= %d \r\n”,temperature);

Once I had my program working properly
with the CySmart app’s Health Thermometer
window, I was free to change my code to:

1)	 Pack 4 ECG samples per BLE packet.
2)	 Increase the ADC sample rate to 40 Hz.
3)	 Scale the ADC values down to 8-bits.

The next step was to write a custom iOS
program for my iPad, to receive and graph
the ECG data.

BLE APPS FOR iOS DEVICES
Writing native apps for iOS devices is not

an easy job, unless you plan to do it regularly.
Native apps must be written in Apple’s
Objective C or Swift languages, and the Xcode
development platform for these languages will
only run on a Mac computer. I have an older
Mac Mini as a spare computer, but I believe its
OS is too old to run current versions of Xcode.
Also, you must register as an Apple developer to
be able to download your app to the iOS device
during testing. I had checked out Objective C
several years back, and found it to be hard to
work with. Granted, I wasn’t as experienced
with the C language then as I am now.

As previously noted, if your BLE application
is not too specialized, an Adafruit BLE “Friend”
module, which acts as a BLE-to-UART bridge,
might be your best bet. Adafruit provides
a “generic” iOS app called Bluefruit, which
communicates with their modules. Another
choice for Adafruit BLE “Friend” modules is an
iOS app called Blue Remote (Figure 5). This
app acts like a TV remote control, and sends
out an ASCII string descriptor via BLE for each
button pushed. The data communication is
unidirectional—from the iOS device to your
BLE “Friend” module.

Getting an iOS application to communicate
with the PSoC 6 BLE module was more
involved. I had ruled out writing a native app
in either Objective C or Swift, for the reasons
mentioned above. The Adafruit apps only
work with their BLE “Friend” modules. Some
software companies produce development
software that allows you to write iOS apps
without using Apple’s development languages.
I looked at them briefly, but felt they wouldn’t
be a good match for my PSoC 6 BLE device.

I had earlier installed an iOS app called
techBASIC, by Byte Works, on my iPad. It
consists of a BASIC interpreter that runs on
the iOS device. You write your application in
BASIC, and run this application when you need
to use it. techBASIC contains all the expected

BASIC functions, and provides high-level APIs to
access most of the I/O devices found in iPhones
and iPads. You can access an iOS device’s WiFi
connection, Bluetooth LE, the various gyro,
accelerometer and magnetometer sensors, and
the display and touchscreen features, to name
a few. Due to the many high-level functions
available, it’s possible to write powerful
graphical programs with modest amounts of
coding. techBASIC runs on iOS version 8 and
above. I am still using iOS 9, so I haven’t tried it
on newer iOS versions.

There are a few caveats. When you open
this app, you are presented with a list of
sample programs provided with the app plus
those that you have written (Figure 6). You
must choose the applicable app to start it
running. If you’re both the developer and
end-user, this is straightforward, but other
users wouldn’t find it quite as transparent
as a “dedicated” app. Also, there doesn’t
appear to be a way either to protect your
code from being modified by the end-user,
or to prevent end users from viewing the
source code.

To overcome these limitations, Byte
Works sells a techBASIC App Builder program
that converts your techBASIC source code
into a form that Apple’s Xcode development
platform can compile. This application—just
like the Xcode development software—must
be run on a Mac computer, and you must
be registered as an Apple developer. I don't
have any experience with this particular
program.

FIGURE 6
The opening screen for the techBASIC IOS app. The user must choose a program from the folders listed at
the left. Once selected, the program will run automatically.

CIRCUIT CELLAR • NOVEMBER 2019 #35256
CO

LU
M

NS

THE techBASIC APP
I followed the same procedure for the iOS

app that I used in writing the PSoC 6 BLE
firmware. That is, I used one of techBASIC’s
sample programs (designed for the Texas
Instruments SensorTag BLE modules), and
incrementally began modifying it to match
the UUIDs and data structure present in
my PSoC 6 project’s firmware. I must admit
that even though the documentation that
comes with techBASIC is very good, the BLE
functionality is quite complex. I doubt I could
have written a working app, had I been forced
to write it from scratch.

Since techBASIC runs on iOS devices, even
when using an iPad there is a limited amount
of screen space to run a development IDE.
Byte Works gets around this by providing
three discrete “views”:

1)	 Source View—where you compose/edit
your source code.

2)	 Console View—basically for debugging.
Anything that your program outputs using

the PRINT command is shown in the console
view.

3)	 Graphics View—the graphic user interface
that the user interacts with during program
execution.

During program execution, you can switch
between the Graphics and Console views.
Thus, if you sprinkle your program with
PRINT statements at strategic spots, you can
debug your program easily by switching to
the Console view to see how things are going.
When I was modifying one of the sample
programs to suit this PSoC6 project, I placed
a lot of PRINT statements in the source code,
to see how the BLE discovery/pairing process
was proceeding.

Before I describe my source code, I’ll
mention that techBASIC’s Bluetooth API
makes heavy use of “callback” functions.
These functions are not a part of your
program’s “main” loop, but instead are
invoked automatically by techBASIC when
specific BLE messages are received by the
iOS device. Since such messages can arrive at
random times, it makes your program is much
easier to write if you don’t have to check for
all the different types of BLE messages from
within your program’s main loop. Instead,
you add your application-specific code to the
body of the various callback functions, and
techBASIC acts as a “traffic cop” by sending
the numerous BLE messages to the correct
callback function.

In simple terms, a BLE program must:

1)	 Perform a “scan” to discover any BLE
devices within range.

2)	 Determine what BLE profile(s) this device
supports.

3)	 Tell this device to start sending the desired
data (if it is not broadcasting that data by
default)

4)	 Add your own code to the appropriate
callback function(s), to receive and process
that data.

techBASIC supports breakpoints. Even if
you are not using breakpoints, you should
be aware of them, because it’s easy to place
them by mistake. In the Source View, there is
a narrow pale blue region to the left of your
code window. If you touch this area of the
screen, a blue right-arrow will appear, and a
breakpoint will be placed at that line. Program
execution will halt when this line is reached.
You can remove this breakpoint by tapping on
the blue arrow.

techBASIC’s program structure is
somewhat different from what you might
expect if you program in C. There you would
expect a “main” function that generally

FIGURE 7
The techBASIC program running with actual ECG data (compare with Figure 4 test run).

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials

RESOURCES

Analog Devices | www.analog.com

Cypress Semiconductor | www.cypress.com

Espressif Systems | www.espressif.com

Infineon Technologies | www.infineon.com

Microchip Technology | www.microchip.com

http://www.circuitcellar.com/article-materials
http://www.analog.com
http://www.cypress.com
http://www.espressif.com
http://www.infineon.com
http://www.microchip.com

circuitcellar.com 57
CO

LU
M

NS

contains an endless loop. That loop will
either invoke actions or monitor something
continuously. Alternately, it could contain
an empty loop, leaving callback functions to
do the actual work. Similarly, in the Arduino
environment, you would have a “setup”
function to initialize peripherals and such, and
a “loop” function to handle ongoing events.

In techBASIC, you define all your variables
and objects at the top of the program, and
place your initialization code next. There is
no “loop” function as such. Your program’s
various functions immediately follow. They
are generally callback-type functions or
functions that are themselves called by those
callback functions.

The initialization portion of my program
consists of only a few lines:

services(1) =”1809”: ! Health
thermometer
serverFound=0
BLE.startBLE
PRINT “Program Start”
BLE.startScan(uuid)
SetupGUI

First, I define the profile name that I’m
expecting the PSoC 6 project to support. I
use the standard BLE “Health Thermometer”
profile used in a PSoC 6 BLE sample program,
modified to handle my ECG data stream. The
“serverFound” flag variable is initialized
to zero. Once a BLE connection is made to a
device with the name “PSoC 6,” this will be
set to 1, and other BLE callback functions will
be enabled.

BLE is the class supporting BLE operations,
and the “startBLE” function enables it. The
“startScan” function scans for BLE devices
within range, and the UUID of the discovered
device is stored in the “uuid” string variable.

The SetupGUI function defines and places
the various buttons, labels and other graphics
elements on the graphics screen. The GUI for
this project is pretty basic—a graphics area
in which to plot the ECG data, a QUIT button
to exit the program, and a “progress bar”
indicating the status of the various stages of
the BLE scan/discovery process.

Beyond the initialization functions
described above, all other program activity
is handled by callback functions, which are
triggered by the arrival of BLE data from the
PSoC 6 BLE device.

The Cypress BLE sample program that
I modified for this project contains five
services (listed earlier). Although I only used
the “Health Thermometer” profile, modified
for the project, the PSoC 6 still “advertises”
the other profiles, and the diagnostic PRINT
statements in my techBASIC app displays

these other profiles, even though they are not
used in any way.

After the program starts the
BLE scan, the callback function
“BLEDiscoveredPeripheral” is triggered
for each BLE device that the iPad finds within
range. I check for a “peripheral.BLEname”
equaling “PSoC 6” (the name I assigned in the
PSoC 6 BLE component’s name variable). When

FIGURE 8
Schematic diagram of the project. The ECG electrodes are labeled as RL (reference lead), RA (right arm) and
LA (left arm).

J2 P5, P6 are

FIGURE 9
The unit just before sliding the top panel into place. While not visible, the GND bus of the circuit is wired up
to the aluminum case for shielding.

CIRCUIT CELLAR • NOVEMBER 2019 #35258
CO

LU
M

NS

found, for diagnostic purposes I PRINT out the
UUID of the device and its name (PSoC 6). I
set the “serverFound” flag variable to 1 and
perform a BLE.stopScan.

The next callback function invoked is
“BLEPeripheralInfo.” It provides an
INTEGER variable, “kind.” If “kind” equals 1,
the program calls the “discoverServices”
function, which requests the available
services that the paired BLE device provides.
If “kind” =4, that indicates that the device is
responding with the services it provides. For
diagnostic purposes, the program then PRINTs
out the UUIDs of any services that the device
has indicated it provides. It then calls the
“discoverCharacteristics” function (for
each discovered service), which queries the BLE
device for the UUIDs of the characteristic(s) of
the various service(s) it has found.

The callback function, “BLEServiceInfo”
gets invoked by the above sequence of events.
It returns the INTEGER variable “kind.” If
“kind” equals 1 then the BLE device is returning
characteristic information. For diagnostic
purposes, the program PRINTs out the various
characteristic UUIDs that have been reported.

All the UUIDs that are PRINTed out by
the above routines can be checked against
the UUIDs defined in the Creator IDE’s BLE
component’s setup wizard for the project’s
PSoC 6 firmware. This setup wizard was
described earlier (Figure 2).

While the “BLEServiceInfo” function
is returning characteristic information, the
program checks for the following condition:

IF service.uuid = “1809” AND
characteristic(i).uuid = “2A1C”

When both of these conditions are met, we
know that the “Health Thermometer” profile
and its “temperature” characteristic have
been found. The program then invokes the
“peripheral.setNotify” function, which
tells the PSoC6 to start transmitting ECG data.

As noted above, my PSoC6 program
will be sending out ECG data as if it were
temperature. I pack four, 8-bit ECG readings
into each 4-byte packet (originally defined as
the floating-point Temperature variable).

The last piece of the puzzle is handling
the data that the BLE device is sending. This
is done by the “BLECharacteristicInfo”
function. This returns an INTEGER variable,
“kind.”

•	 If “kind” equals 1, then we are receiving
a description of the characteristic. For
the Health Thermometer profile, the
characteristic’s description would be
“temperature.” I didn’t bother to PRINT
this to the console.

•	 If “kind” equals 2, then we are receiving
the actual data, in the 4-byte format
described above. This is obtained using
the “characteristic.value” function.
I extract the four, 8-bit ECG values from
the 4-byte “value” array. The Health
Thermometer BLE packet is actually 5
bytes, but the first byte is the “Centigrade/
Fahrenheit” flag, which I don’t use.

These are all the BLE-related functions. All
that remains is to plot the ECG data to the
graphics screen. The ECG array (ECGArray)
comprises 400 ECG data points. When this
array is full, I plot the data. Plotting is done
by a high-level plotting routine:

FIGURE 10
My CY8CPROTO-063-BLE arrived with
the programmer containing KitProg2
firmware. This was out of date, as
shown in the PSoC Programmer
application (part of the Creator IDE
install).

circuitcellar.com 59
CO

LU
M

NS

Px.setPoints(ECGArray) REM Px
is Graphics.newPlot object
Graphics.repaint

To display the progress of the BLE discovery/
pairing process at startup, I have placed a
“Progress Bar” on the screen. As various BLE
callback functions are executed, I indicate this
by incrementally increasing the value of the
Progress Bar, using the following function:

p.setValue() REM “p” is the
Progress Bar’s name in the program

I have an Exit button on the screen. The
callback function “touchUpInside” returns
a variable, “ctrl” whenever a button (or other
user-activated object) is pressed. If “ctrl”
equals Button5 (the name I gave the Exit
button), then the program performs a BLE.
disconnect(PSoC6) to disconnect from
the PSoC6. It then waits 5 s and issues a STOP
to end the program. The 5 second wait allows
the necessary BLE messages to be exchanged
between the iPad and the PSoc6, before I end
program execution with the STOP command.

Figure 4 shows my techBASIC program
running. While developing the techBASIC
software, I was initially unsure how quickly it
could plot ECG data and concurrently handle
all the BLE message traffic. What you see in
Figure 4 is the resulting plot when I modified
the PSoC6’s firmware to output a triangle
wave—not an actual ECG wave. When I initially
sent only one ECG data point per BLE packet,
I observed significant data loss at this sample
rate. After switching to 4 data points per BLE
packet, things looked OK (Figure 4). Figure 7
shows the app running with actual ECG data.

THE CIRCUITRY
Most of my recent projects have been

powered by either Arm MCUs or Expressif’s
ESP8266/32 Wi-Fi SoCs. In either case, the MCU
comes in a small-footprint SMD package. Since
I can’t mount these small devices on PCBs of my
own design, I have been saved by the abundance
of small, inexpensive MCU development boards
offered by various manufacturers, and break-
out boards for various peripheral chips. For
this project, Cypress’ CY8CPROTO-063-BLE,
containing the PSoC6/BLE RF sub-system and
programmer, was ideal. Its $20 price is much
less than that of the individual components I
would need to build it myself.

The ECG analog front end is not easy to
design from scratch. Luckily, Sparkfun sells a
small PCB containing an Analog Devices AD8232
device. This chip is specially designed for ECG
and similar low-level biological signals. Sparkfun
also sells the stick-on ECG electrodes in packs
of 10, and a matching cable (Part numbers are
shown on the Figure 8 schematic).

Besides a LiPo battery and a few other
components, these two modules are all that
is required to implement the project. Figure 8
shows the schematic diagram of the project,
and Figure 9 is a photo of the unit in its case.

Note that I removed the “snap-off”
programmer in the finished unit to save
space. Without it, programming can still be
accomplished by connecting a 5-wire cable
between J5 on the PSoC6 board and J4 on
the programmer. Note, however, that when
you snap off the programmer board, the Rx
and Tx signals from the PSoC6 module are no
longer connected to the applicable pins on the
programmer board. This means that you can’t

FIGURE 11
The PSoC Programmer screen
looked like this when connected to
the CY8CPROTO-063-BLE, after the
KitProg2 firmware had been updated
to KitProg3.

CIRCUIT CELLAR • NOVEMBER 2019 #35260
CO

LU
M

NS

use the USB-serial port to send out Debug
messages. However, you can run jumper wires
between PSoC6’s port 5.1 (Tx) and 5.0 (Rx) to
the programmer’s J6 pins 6 and 7, respectively.
This restores the USB-serial connection.

I did all my program development with
the KitProg2 programmer still attached to
the PSoC6 board. In this case, power for the
PSoC6 BLE board is provided by the KitProg2
programmer, which contains a 3.3 V regulator
for both the programmer’s PSoC 5LP and the
PSoC6 on the target board.

I expected to be able to connect the 3.7 V
LiPo battery to the Vin pin on the PSoC 6 target
board. Nothing worked when I did this, and
for a few minutes I panicked, thinking that the
Vin pin required a regulated 3.3 V. This would
have differed from the CY8CKIT-059 PSoC 5LP
development board that I used for my last
project, which contained its own 3.3 V regulator.
In the CY8CPROTO-063-BLE user’s guide, figure
A-2 shows regulators on both the programmer
board and the PSoC 6 target board. However,
once I magnified the schematic, I noticed that
the words “No load” became legible next to the
U6 regulator. This explained why nothing was
working. As a remedy, I installed an external
Microchip Technology MCP1700-3302E low-
dropout regulator to power both the PSoC6
board and the AD8232 Heart Monitor board.
One could populate the PSoC 6 target board
with a surface-mount regulator (U6 and
associated parts) that it calls for, but I did not
have a compatible regulator on hand.

When I first received the CY8CPROTO-063-
BLE, it showed up immediately as a valid BLE
device when I ran the CySmart app on my
iPad. It ran the demo properly. However, it
did not show up in the Creator IDE when I
tried to edit sample code and download it to
the board. This was unexpected, given that I
had experienced no such problems with the
CY8CKIT-059 PSoC 5LP development module
during my last project.

I discovered that the Kitprog2 firmware
on the CY8CPROTO-063-BLE development
board (the same as what is contained on
the CY8CKIT-059 PSoC 5LP board) requires
upgrading to Kitprog3 firmware to work
with PSoC6 devices. You must use the stand-
alone Cypress PSoC Programmer v3.28 PC
application to update the Kitprog2 firmware.
The PSoC Programmer screen before and
after I ran the update procedure is shown in
Figure 10 and Figure 11, respectively.

CONCLUSIONS
Even having finished this project, I still

find BLE to be a complex protocol to handle.
I’m certain that if 6 months passed before
I used it again, I’d likely follow the same
procedure I did here—modify a sample PSoC 6
program to serve my needs and then modify
my techBASIC program to serve the new
function. The only difference would be that I
now have the CY5677 CySmart BLE 4.2 USB
dongle on hand (Figure 12). This debugging
tool is more versatile than the CySmart iOS
app that I used for this project.

That said, I must give kudos to Cypress for
the Creator IDE application. It does a lot to
automate the process of incorporating a BLE
function into your application—particularly if
you can use one of their sample programs as
a template for your firmware.

If you need to write a custom BLE app
for an iPhone or iPad, and don’t do this for
a living, I think the techBASIC app is a smart
option to explore. If you are accustomed to
programming in Visual Basic, it doesn’t take
too long to get used to it. It also contains
many library routines to handle most of the
internal peripheral functions found on iOS
devices (apart from those to which Apple
doesn’t permit access).

The PSoC 6 source code is available on the
Circuit Cellar website, in what Cypress calls the
“archive” format. It contains all the files
needed to replicate the project. The techBASIC
code is also provided as a text file. Because
Apple restricts the loading of program code
directly to an iOS device, you need a “trick” to
do it. The techBASIC manual covers this in
detail, but basically, you must email the source
code to yourself, copy it to the clipboard, and
then paste it into techBASIC.

FIGURE 12
The CY5677 CySmart BLE 4.2 USB
dongle. I didn’t buy it until after
developing the firmware for this
project. I expected that the iOS
CySmart app would handle debugging,
but it turns out that the hardware USB
dongle is much more versatile in this
regard.

circuitcellar.com 61
CO

LU
M

NS

From the Bench

MQ Telemetry Transport (Part 2)

A t a time when many companies
are moving their storage off site,
I am a believer in keeping it close.
By that I mean under my own

roof. As computing is becoming faster and
more efficient, storage media is also growing
in capacity. Today, gigabyte thumb drives and
terabyte hard drives are becoming the norm.
When I lose data because I made a mistake or
a bad decision, I find it much easier to live with
than if all my stuff were to suddenly disappear
from the cloud. When things are out of my
control, I feel I have no recourse. That’s why I
am attempting to bring all my needs back under
my control.

Last month I discussed the MQTT (Message
Queuing Telemetry Transport) protocol and
introduced a project with two IoT clients.
Client 1 monitors a digital input and “Publishes“
the new state as a “topic” message to the
server whenever its input changes state. Client
2 controls a light switch on its digital output and
“Subscribes” to Client 1’s topic on the server.
Whenever a new topic is Published to the server,
all nodes that have Subscribed to that topic get
sent the updated message. Client 2 monitors
the messages on this topic and sets/clears the

digital output based on the message. In this
case, I defined Client 1’s topic as “ESP_11E9B0\
DIN\IO2\” and the message as an ASC “1” (ON)
or “0” (OFF).

While not necessary, I also included the topic
“ESP_A3D0DF\DOUT\IO2\” so that Client 2
could Publish the state of its output, and Client 1
could Subscribe to it, to see that the operation
was actually completed. While this required
two nodes to establish the remote control of
a light, the real intention was to show that by
shuffling communication through a server—as
opposed to just having these two nodes talk
to each other directly—the information could
be recorded and stored for posterity. You may
not care when a light was switched ON and
OFF, but what if these were bank transactions
or an alarm of some kind? Let’s not forget the
potential “bigger picture.”

In the past, I’ve taken a number of different
approaches on user interfaces (UIs). For
example, I monitor my neighborhood’s well
system using ThingSpeak. I have also described
a graphics server using HTML5 for my weather
station. This month, we’ll look into modifying
these two projects for integration into the MQTT
server.

In Part 1, Jeff described the MQTT protocol and how it is used by an MQTT server
to keep all your IoT projects tied together and managed from a centralized server
running a program such as Mosquitto on a local PC. He presented a simple project
connecting two IoT nodes together via communication with the server. In Part 2, Jeff
looks at modifying systems he uses to monitor his neighborhood well system and his
weather station, for integration into the MQTT server.

By
Jeff Bachiochi

Bringing it All Back Home

CIRCUIT CELLAR • NOVEMBER 2019 #35262
CO

LU
M

NS

WELL ENOUGH ALONE
My neighborhood’s well supplies water for

seven families. A deep well pump supplies
water to a 360 gal. holding tank. We’re
fortunate that the water is potable from the
pump, despite a high concentration of iron.
Once the suspended iron is exposed to air, it
oxidizes and gives the water a rusty color. This
is visually unpleasant to drink, and creates
rust stains on washed clothing. However, a
pair of water softeners remove most of the
iron before it gets to the main line that serves
the neighborhood.

The softeners periodically require salt
as a rinsing agent to rejuvenate (clean) the
resin media that collect iron particles. Salt
pellets must be added to an external tank,
which contains a brine of water mixed with
the salt. The brine is drawn by the softeners
during their cleaning cycle, and the brine
tank is refilled with water. A portion of the
salt pellets dissolve during each cycle, until
the water becomes saturated. Therefore, the
salt lasts several cleaning cycles before it is
used up. If the salt is not refilled, the resin is
not cleaned and cannot remove any additional
iron, giving everyone tinted water. Letting
the salt disappear is a no-no, and should be
avoided—hence the need for monitoring.

The well monitoring system has seven
inputs. The first three are temperature
sensors. I take the outside temperature and
two inside temperatures—of the upper and
lower well house. The well house is an 8’
cube of concrete blocks below ground level.
A 3’ wall and roof above ground give access
via ladder to the equipment. The upper
temperature is in the roof area, and the lower
temperature is below ground at floor level. It
is interesting to see how wildly the outside
and upper temperature vary, whereas the
lower temperature hangs around 50°F until
winter. With some winter days below zero,
temperature becomes an issue. A frozen
pipe means no water and the potential of
a burst pipe, which has already happened
once. Should the temperature fall too low at
the lower sensor, a heater can be turned on.
Currently, an incandescent light bulb throws
enough heat to raise the temperature slightly.

The fourth and fifth sensors are attached
to the water softeners. They are paddle-wheel
flow sensors used by the softener’s electronics
to calculate—based on water usage—when the
resin media should be cleaned. They produce a
tick for each 6.4 oz. (20/gal.) of fluid. Monitoring
the usage can bring to light a number of issues.
For instance, when cleaning cycles are activated
after midnight—so salt pellets can be added,
or the relationship of water usage between
softeners—monitoring can help to determine if
other maintenance is required.

The sixth sensor measures the pressure
in the storage tank. A regulator on the tank
turns the pump on when the pressure falls
below 40 psi, and turns the pump off when
the pressure reaches 60 psi. This can help
determine the pump’s efficiency, since it does
eventually get clogged with iron deposits.

The seventh sensor is a current probe
around the pump lead that indicates when
the pump cycles. For longest life, you want
the pump to cycle as little as possible.
Accordingly, you want to know if the pump
starts running too long and isn’t refilling the
storage tank. The storage tank is actually
pressurized with air above the water, which
pushes the water out of the tank when a
faucet is turned on. A storage tank with no
bladder, or separator between the water
in the lower part of the tank and the air in
the upper part of the tank, will eventually
absorb the air above the water. When this
happens the air’s volume at 60 psi will be
less than before. This creates more room
for water, but also decreases the volume
of water that is available to leave the tank
before the tank pressure drops to 40 psi.
The pump will operate more often for
shorter lengths of time—a bad thing. With
that in mind, it’s important to maximize
draw-down by keeping adequate air in the
tank. Most tanks have a bladder to prevent
this from happening, but our tank has long
since lost its bladder to old age.

MQTT MOSQUITTO
Last month, I began running Eclipse

Mosquitto, an open source message broker,
on my PC. It turns my PC into a MQTT server
that runs in the background. I can reach it
through my local LAN/WAN. It will accept
MQTT Publish and Subscribe messages sent
by any device on my network. All MQTT
messages contain a topic and a payload.
Messages are categorized by topics such as
“Temperature,” with an associated “payload”
of some value. Publishers create the data,
whereas subscribers consume the data. The
MQTT server keeps track of the published
topics and sends them to any device that
has subscribed to that topic. To learn more
about this, please refer to last month’s Part
1 article (Circuit Cellar 351, October 2019).

Getting my well-house device to send
MQTT data is pretty straightforward. This
application has been using ThingSpeak since
2006. The Arduino library uses TCP over
HTTP to communicate with the ThingSpeak
server, whereas MQTT uses UDP over HTTP.
TCP is connection-based and remains open
until closed. UDP is connection-less—that is,
each communication is complete in and of
itself. In my application, I need to substitute

circuitcellar.com 63
CO

LU
M

NS

include WiFiUDP.h for include
ThingSpeak.h. The Wi-Fi connection
remains the same. In last month’s article,
we found that the MQTT communications
begin with making contact with the MQTT
server (at its IPAddress:1883) to establish
a link between the two, but not an actual
connection. This was discussed and the code
was shown.

ROUND ROBIN
In this application, the sensors are read

round-robin style—one every second. This
keeps their values updated with the latest
information. You can choose how often you
want this information to be sent. Currently,
I send it all once per minute. As noted in
Part 1, when we want to share information
with others, we Publish it to the MQTT server.
The following line of code accomplishes this,
once we’ve defined the topic and msg.

client.publish(topic, msg);

This next chunk of code is a special case

message I use to indicate that the device
has just come out of reset. The variable
reboot, which starts as true, gets cleared
to false after the message has been sent
once.

// reboot
if(reboot)
{
	 t=” reboot”;
	 t.toCharArray(msg, msgSize);
	 t = ID;
	 t.toCharArray(topic, msgSize);
	 //Serial.print(t);
	 sendMQTT();
	 reboot = false;
}

Note that the msg is set to the string
reboot and the topic to the “ID” of the
device—in this case ID = “esp8266_A14782”,
which is its friendly name (including the last 6
characters of the MAC).

FIGURE 1
Three nodes are used here: “mqtt,”
to subscribe to all messages from
esp-A14762; “debug”, to view the
messages in the debug window; and
“file” to log the messages.

CIRCUIT CELLAR • NOVEMBER 2019 #35264
CO

LU
M

NS

Here's are the messages this device sends:

Topic, Message
ID + “/Revision”, ”Well House Monitor myMQTT
6/21/2019 “
ID + “/Temperature/Outside”, 78
ID + “/Temperature/Attic”, 72
ID + “/Temperature/Cellar”, 56
ID + “/Flow/Softner1”, 27
ID + “/Flow/Softner2”, 20
ID + “/Pressure/Tank”, 45
ID + “/Amps/Pump”, 0
ID + “/Relay”, 0

I always include the ID as the beginning of
the topic, so that I can identify its origin. Last
month, the project used two devices. The
1st published a switch’s status, and the 2nd
subscribed to that topic and controlled a light
based on switch status. Mosquitto handles all
of this without intervention.

Node-RED is a companion application that
allows you visually to connect devices. In Part
1, I detailed how it can be used to subscribe
to an MQTT topic and do something with the
messages received. In that case, all messages
were sent to a log file. Other than viewing the
file’s data, there was no visual indication of any
device activity. Now let’s see how Node-RED can
be used to display the data from the well house.

NOde-RED EDITOR
Node-RED provides a browser-based

editor for wiring together hardware devices.

The node-RED editor is available through your
browser at IPAddress:1880. The editor window
consists of four components: palette (left),
sidebar (right), header (top) and workspace
(middle). The palette contains the nodes
(objects with possible inputs and/or outputs)
available for placement on the workspace. The
sidebar contains information about objects
to be displayed. The header has a button for
deploying a flow (interconnection of objects)
and additional menu items. The workspace
is where you drag and drop objects, and
interconnect them using wires to tie inputs
to outputs. Figure 1 shows my browser with
three nodes placed, wired and deployed. The
sidebar shows the debug output from the
debug node as messages are received.

Once you become familiar with all the nodes
in the palette, you’ll see that subscribing to an
MQTT topic (MQTT input) is just one way of using
Node-RED. This project will create a “dashboard”
consisting of mainly graphs of the sensor data
over time. Let’s look at creating text, gauge and
chart displays for one temperature message.
Refer to Figure 2 for this discussion.

Our tab FTB 352 shows four nodes added
to the workspace. The first node (MQTT
input) passes only the message payloads
with a topic containing “esp8266_A14782/
Temperature/Outside” as defined by
editing the node. The next three nodes are
from the dashboard in the node’s palette.
They are used to display the message payload
in text, as a value on a gauge and as a charted

FIGURE 2
Four nodes are added for this
example, “mqtt”, to subscribe to only
outside temperatures messages from
esp-A14762; “text,” to display the
message payload as text; ‘”gauge,”
to display the message payload as
a meter; and “chart,” to display the
message payload as a graph over
time. The actual dashboard screen
is shown as an inset, using another
browser.

circuitcellar.com 65
CO

LU
M

NS

value over time. Because the payloads are all strings, the test
display includes the payload just as it comes. You may have
noticed an “F” (Fahrenheit) was part of this. In the gauge and
chart displays, convert the string to a value first, then use the
value for displaying.

Some parameters—such as max and min—can be edited
in these nodes. Since I have three temperatures, all of them
can be wired to the same chart display. With a small bit of
massaging we can remove (change node) part of the topic
that is used in the chart’s key for identifying the different
data lines (Figure 3). The change node is used to set, change,
delete or move specific parts of a message, flow or global
object. Here specific message topics are truncated. In
other words, esp8266_A14782/Temperature/Outside
becomes Outside.

The water softeners measure water throughput by ticks
(counts) of their paddle wheels. Total counts are sent as
messages to be used as data for the chart. Before sending the
count data to the chart, I use a function node to alter this. All
nodes pass their message to their output, which is then received
by the next “wired” node’s input. The function mode allows
some JavaScript to be written that can alter this message in
some way. Here, I want to convert counts to gallons. The water
softener documentation states that the paddle wheel creates 20
counts for each gallon of water that passes through it.

msg.payload = (parseInt(msg.payload) / 20);
return msg;

In a perfect world, the two softeners’ counts would
share the flow equally, and their charts would be identical.
If displayed on a single chart, the first softener’s data would
always be obscured by the second. I chose to display these as
separate charts. However, I also want to keep a running daily
tally of the total gallons per day. These data aren’t given by
the well-house node. Node-RED allows me to total the data
and reset the value to zero at the end of each day. Take a look
at the following JavaScript code:

var myFlow = flow.get(‘Flow1’) || 0;
myFlow = myFlow + msg.payload;
flow.set(‘Flow1’,myFlow);
msg.payload = myFlow.toFixed(3);
return msg;

I create a local variable myFlow (available to just this node),
and assign it the value of a flow variable Flow1 (available
from any node within this flow or page on my workspace).
The saved value is added to the present message’s value.
The total is stored away for next time. Finally, the message
sent out is replaced by this new value—fixed at three decimal
places. This value updates a text box with Today’s total, but
we still need a way to zero out this total every night and chart
the daily totals.

This is created with three nodes: “inject”, “function” and
“chart.” The “inject” node allows something to happen at a
specific time or periodically. I’ve chosen once every day at
11:59 p.m.

var myFlow = flow.get(‘Flow1’) || 0;
var msg1 = {payload:myFlow.toFixed(3)};
msg1.topic = “DailyFlow1”;

flow.set(‘Flow1’,0);
return [msg1];

Another “function” node is used to do this. I create a local
variable myFlow (available to this node only) and assign it
the value of a flow variable Flow1 (available thanks to the
node described above). Now I create a whole new message
with a payload of myFlow and a topic of DailyFlow1. The
Flow1 variable is then cleared so it can begin with a new
total, Tomorrow, which begins in 1 minute. The new message
is sent on to the chart node. See the final display “Flow” in
Figure 4 and “Dashboard” in Figure 5.

WEATHER REPORT
I’ve had a weather station in various forms prior to the

smartphone era, informing me of tomorrow’s weather today.
While I’m not a HTML guy, one of the most interesting articles
for me was my weather server project that handled its own
HTML display. The two part article is "Serving Up HTML (Parts
1 and 2) in June and July 2016 (Circuit Cellar 311 and 312).
In keeping with the MQTT theme here, I’ve re-coded that
project and have Node-RED code for a new weather display.
One of the advantages of using Node-RED for a project is
its extensive palette of the available nodes. For instance, the
“inject” node lets you simulate the reception of messages as
if your external device had Published data.

Here, I use the “switch” node to separate each topic into
its own path, which is wired directly to a gauge or text output.
Each gauge has three ranges associated with it. These ranges
can be color coded, and will display that color depending
on the color range settings and the actual payload being

Outside

06:15:00 06:45:00

Temperature

07:16:00

Attic Cellar

“Chart” node example

120

–20

70
35
0

106

FIGURE 3
The “chart” node can display multiple data graphs with or without a key (labels).

Additional materials from the author are available at:
www.circuitcellar.com/article-materials

RESOURCES

Espressif Systems | www.espressif.com

Mosquitto | www.mosquitto.org

MQTT | www.mqtt.org

Node-RED | www.nodered.org

openHAB | www.openhab.org

ThingSpeak | www.thingspeak.com

http://www.circuitcellar.com/article-materials
http://www.espressif.com
http://www.mosquitto.org
http://www.mqtt.org
http://www.nodered.org
http://www.openhab.org
http://www.thingspeak.com

CIRCUIT CELLAR • NOVEMBER 2019 #35266
CO

LU
M

NS

displayed. If the range colors are defined
but range settings are not, then the color
displayed will be a blend of the defined colors
proportional to the actual payload. If max and
min values are not defined, then the gauge
will auto-range based on the payload values.

You might want to separate real-time
data (gauges), as in Figure 6, from statistical
data (text) on separate flows. Each flow will
be offered as tabs on the display page of
Node-RED. Clicking on the menu icon on the
left side of the blue bar at the top of the UI
display page reveals additional “flows” that
you have created (Figure 7). You can reach
every flow from this one page! The weather
station provides plenty of statistical data. It
has hourly, weekly, monthly and/or yearly
averages for almost every sensor. These might
all be displayed from an alternate flow.

SUNNY DAYS
At this time, I have neither solar panels

covering my roof, nor a huge solar matrix in
the yard. I have a few small panels affixed to
my shed roof so I can dabble. But so far I’m
not overwhelmed by their energy production.
They receive no direct sun in the mornings
and late afternoons, so their production is
limited. This produces just about enough
energy to keep the weather station and solar
reporting nodes alive 24/7. The MQTT server
also handles the solar node.

The solar charge controller from Epsolar
Technology has an RS-485 (ModBus) interface
to access its more than 100 registers. These
are separated into logical sections: Rated
Datum, Real-time Datum, Real-time Status,

FIGURE 5
The dashboard of the well house
monitor is available through a browser
directed to the MQTT server at
IPAddress:1880/ui. {ß JEFF ,SHOULD
THIS BE 1880 OR 1883?}

FIGURE 4
The complete flow for logging and displaying the dashboard of the well-house monitor.

circuitcellar.com 67
CO

LU
M

NS

Statistical Parameters, Holding Registers,
Switch Value and Discrete Value. My solar
monitor circuitry must poll the charge
controller to gather copies of all the registers
and publish them to the MQTT server. While
the server collects all the registers, I only use
a fraction of these to give a real-time display
of energy produced, stored and consumed.

The upper-level folder name for all
topics from the solar controller node use
esp_82952A to identify the device. This topic
is appended with the section name and register
name as additional folders to give a hierarchy
to the topics published. In this Node-RED flow,
I subscribe to all esp_82952A# topics. A
switch node is used to filter all eight topics by
section name. The flow is therefore divided into
eight sub-flows. Don’t confuse my term “sub-
flow” with Node-RED’s sub-flow. More on this
later. Each of these could be sub divided again
with eight additional switch nodes, to produce
a separate sub-flow for each register in the
charge controller. To illustrate this, I am using
three of these eight sections, and dividing the
three sections into their respective individual
registers with switch nodes.

The Real-time Datum section has sub-
flows for 10 of the 15 registers. The Statistical
Parameters section has sub-flows for seven of
the 21 registers. The Discrete Inputs section
has sub-flows for both of its two registers.
As you can see from the Node-RED editor’s

workspace in Figure 8, the diagram is getting
quite complicated. For ease of viewing, you
can designate portions of the flow to sub-
flows, and move them onto separate pages
(workspaces), which can then be identified on
the flow’s workspace as separate sub-flows,
thus simplifying the workspace. However, by
doing that you lose your ability to debug each
sub-flow because they no longer produce
output in the debug window. For that reason,
I have not used sub-flows in any of my flows.

My use of the term “sub-flow” has to do
with dividing each esp_82952A# topic (they
all come in through the same input wire) to
the switch node labeled esp_82952A# and
are separated into section topic outputs
(sub-flows). Each of these is then input into

FIGURE 6
The “switch” node can be used to separate a stream of messages into specific topics, appropriate for displaying each payload in its own user-selected way. Most of the weather
data are real-time and displayed as meters (gauge). The revision, barometer trend and accumulated rainfall will be displayed as text.

ABOUT THE AUTHOR
Jeff Bachiochi (pronounced BAH-key-AH-
key) has been writing for Circuit Cellar
since 1988. His background includes product
design and manufacturing. You can reach
him at:
jeff.bachiochi@imaginethatnow.com or at:
www.imaginethatnow.com.

mailto:jeff.bachiochi@imaginethatnow.com
http://www.imaginethatnow.com

CIRCUIT CELLAR • NOVEMBER 2019 #35268
CO

LU
M

NS

additional switch nodes to further separate
the topic into individual outputs (sub-flows)
containing just one register

The display of data here is a combination
of text, charts and LEDs. You’ll notice there
is no LED node in the palette dashboard
section. Another great aspect of Node-RED
is the palette manager, which allows you to

import nodes designed by third parties or
create your own. In this case, I imported the
node-red-contrib-ui-led node to use
in this flow. Although an LED is considered a
binary device, its color can be set based on
different payloads, binary, other numerical
value, string, JSON or buffer. This is similar to
most other nodes. For instance, I use yellow

FIGURE 7
The weather dashboard is a real-time
display of weather station data. When
I want to alter the program of an IoT
device, it’s always a struggle to locate
the latest copy. I found that displaying
the program name (revision) helps to
steer me to the right one.

FIGURE 8
The “switch” node is helpful for
steering groups of messages. Multiple
switch nodes are used in this Solar
flow, to break groups down to the
individual message topics.

circuitcellar.com 69
CO

LU
M

NS

for daytime and black for night time. In this
case, day/night is a Boolean value, but it could
have been the strings yellow or black.

I was caught by surprise by the data I was
seeing from the Battery Current register,
shown in Figure 9. If I had thought about this
a bit more it would have been obvious! The PV
Array produces energy. The load consumes
energy. The battery both produces and
consumes energy. When it consumes energy,
it is charging (current is positive). However,
it also produces energy (current is negative)
once the PV array is no longer producing.
Therefore, the Battery chart must show
current in both directions. I wanted this to be
obvious, by using a green trace when zero or
positive and red when negative. I did this by
dividing this sub-flow (esp8266_82952A/
Statistical Parameters/Battery
Current LSW) into two sub-flows. Sub-
flow topic positive, when the payload is
>=0, else sub-flow topic negative. Both of
these sub flows go to the same chart input.
The chart plots both as separate topics,
positive as green and negative as red.
The chart key is disabled, so the topics are
not defined in the chart.

HOSTING MQTT
Right from the get-go, I used my PC as the

MQTT host. Just recently, I installed openHAB 2
on a Raspberry Pi. This is an open source,
home-automation platform, which runs as the
center of a Smart Home. My thinking is that
openHAB 2 supports MQTT (and Node-RED)
which I could use as a permanent location for
my MQTT server. The weather and solar nodes
are operating on the Pi (running Linux OS).
Although I have not played with openHAB 2 at
all, the MQTT link allows me to find a path that
supports my work in the present, while lighting
my path into the future. I’ll be changing the
subject next month, but if you are interested
in this, please let me know so I can make plans
for a future article.

Oh yeah, one more note on using Node-
RED and MQTT that was installed with
openHAB 2 on the Raspberry Pi: The Pi palette
has some additional nodes listed (Figure 10).
There are two addition palette sections:
“Raspberry Pi” and “Home Automation.” One
gives access to the Pi’s I/Os, and the other
opens up communications to openHAB 2
giving my sensors life in the future. Too little
time, too much to do!

FIGURE 10
I’m excited about these new nodes
available in Node-RED, when using the
Raspberry Pi as the MQTT server. I
plan to use some of the Pi’s I/O for
displaying some LED status of the
operational activity. Adding my well,
weather and solar data to a Home
Control System like openHAB will really
tie everything together quite nicely.

FIGURE 9
The Solar dashboard is one of many
that are needed to show all the
registers available, but this might be
the most informative.

CIRCUIT CELLAR • NOVEMBER 2019 #35270
CO

LU
M

NS

L ast month we dived deeper into
diodes. Now it’s time to consider
devices with more junctions. Let’s
start with the three-terminal

bipolar junction transistor (BJT). Its terminals
are called collector (C), emitter (E) and base
(B). Figure 1 explains its construction, which
is essentially a combination of two junction
diodes. Based on their connections, we have
two basic structures: PNP (Figure 1a) and NPN
(Figure 1b), with the transistors designated
accordingly. PNP and NPN devices with similar
characteristics are called complementary
pairs. In the early days, germanium (Ge) was
used as the base semiconductor material
and although germanium NPN transistors
existed, the PNP variety ruled. The first NPN
transistor I got to use was the silicon (Si)
type.

The first point-contact transistor was the
result of the work of American physicists
John Bardeen, Walter Brattain and William
Shockley in 1947—an achievement for which
they received the Nobel Prize in Physics. As
it usually happens with many inventions, the
transistor was developed independently in
Europe in 1948 by Germans Herbert Mataré
and Heinrich Welker. The bipolar junction
transistor was then developed and patented
by William Shockley in 1950 at Bell Labs.

Germanium transistors manufactured in
the ‘50s by the diffusion method had many
growing pains. One was a poor frequency
response due to large capacitance of the
diffused electrodes. But the manufacturing
technology improved and by the ‘60s we
had ultra-high frequency (UHF) devices, for
example the amazing (for their time) AF139
and AF239 PNP transistors. Germanium
devices suffered from high leakage, relatively
low operating voltage and, above all,
significant temperature dependency. But all
that changed with the arrival of the silicon
planar NPN transistor.

One issue you have to keep in mind is that
transistors are current amplifiers. They’re not
voltage amplifiers like vacuum tubes before
them and field effect transistors (FET) today.
BJTs operate in distinct modes. The first is
linear, where the collector current IC = β x IB.
β stands for the transistor’s current gain—
generally greater than 100 in modern devices.

The second mode of operation is saturation,
which is used in digital circuitry. The transistor
becomes a switch. It is fully turned on with the
saturated collector current determined by its
type and collector-emitter voltage VCE close to
zero. Or it is turned off (cut off) with IB = 0. The
collector current IC would ideally be zero too,
but there is always some leakage.

The Consummate Engineer

Semiconductor Fundamentals
(Part 3)

In Part 2, George discussed devices
built with one P-N junction,
appropriately named diodes. In this
article, he considers devices with
more junctions. He starts with two
and looks at the ubiquitous, three-
terminal bipolar junction transistor
(BJT). George looks at the math,
science and circuitry of these devices.

By
George Novacek

Transistor Topologies

circuitcellar.com 71
CO

LU
M

NS

THREE AMPLIFIER CONFIGURATIONS
Let’s consider the three fundamental

transistor amplifier circuit configurations as
seen in Figure 2. Because of the present-
day prevalence of NPN transistors, I shall use
them in my examples whenever possible. We
begin with the common base topology (Figure
2a). The base is grounded and, therefore,
common to both the input and output. To
amplify an AC signal, you’ll need to bias the
base to overcome the base-emitter diode’s
forward voltage—around 0.65 V for silicon
transistors—and cause a base current IB to
flow. The current gain of the common base
topology is less than 1 because the collector
current IC flows through the emitter as
well. The input impedance of the common
base topology is very low. The voltage gain,
however, is high—provided the load resistance
RL is also high. It is defined by Equation 1:

A =
V

V
=

I ×R

I ×R
V

out

in

C L

E IN

	

[1]

Common base configuration is used
primarily in radio frequency (RF) circuits

because it minimizes frequency-limiting
collector-base capacitance. Common
(grounded) emitter configuration is
commonly used in amplifiers as well as
switching circuits because it has the highest
power gain. Similar to common base, the
input impedance is somewhat low, but can
be increased, at the cost of gain, by a small
resistor between the emitter and ground.
Here, the emitter current IE = IC+IB. The ratio
IC/IE is called α and is always less than one.
The relationship of the transistor currents
can be expressed mathematically as:

	

[2]

α β α β= = = × = ×
I
I

I
I

I I IC

E

C

B
C E B

α β
β

β α
α

=
+

= = +
1 1

-

..... I I IE C B
	

[3]

Common collector topology is better
known as emitter follower. It is frequently
used for transformation of high impedance
input signals to low impedance output. The
current gain equals approximately β of the

FIGURE 1
Principle of the bipolar junction
transistor. PNP (a) and NPN (b)

FIGURE 2
Three fundamental configurations of
a transistor amplifier: Common base
(a), common emitter (b) and common
collector (c)

Common Base Common Emitter Common Collector
Input Impedance Low Medium High
Output Impedance Very High High Low
Phase Shift 0 degrees 180 degrees 0 degrees
Voltage Gain High Medium Low
Current Gain Low Medium High
Power Gain Low Very High Medium

TABLE 1
Summary of characteristics of
transistor amplifier topologies

a) b)

a) b) c)

CIRCUIT CELLAR • NOVEMBER 2019 #35272
CO

LU
M

NS

transistor and the input resistance, as a rule
of thumb, β x RL. The gains are expressed
mathematically as:

I I I A I
I

I I
I

I
IE C B I

E

B

C B

B

C

B

= + = =
+

= + = + 1 1β
	 [4]

Characteristics of the three transistor
topologies are summarized in Table 1.
Sometime in the past, the common emitter DC
gain symbol β was replaced with hFE. This is the
parameter you will find nowadays in transistor
specification sheets. It is an abbreviation
that stands for “hybrid parameter forward
current gain, common emitter.” Figure 3 is an
example of a common emitter, NPN transistor
collector’s I-V (current-voltage) characteristic
where the base current IB is a parameter. The
I-V characteristic of the base current versus
base voltage is that of a diode as presented in
Part 2 of this article series (Circuit Cellar 351,
October 2019).

Notice that the collector current IC
dependency on the collector voltage VC is
quite large for small collector voltages. Once
the collector current saturation is reached the
current changes very little. You can analyze
transistor amplifiers’ low frequency response
by utilizing the transistor’s equivalent circuit.
More often than not parasitic characteristics
are considered negligible for the given
application and, therefore, ignored. Figure 4a
is the common emitter equivalent circuit. For
practical reasons it is often converted into a
so-called T-circuit equivalent Figure 4b.

For the purpose of electrical analysis, you
can consider the transistor to be a black box—a
four terminal linear network as is shown in
Figure 5. A transistor is a three-terminal
device, but one terminal, the emitter for the
common emitter configuration is, obviously,
common. You can analyze this network
under different conditions, each rendering
a different set of parameters. With an open
circuit, for example, impedance z-parameters
will result. Short circuit conditions will
produce admittance y-parameters. But,
because transistors in common emitter
connections have low input and high output
impedances, it is advantageous to use hybrid
parameters, called h-parameters. But this
is not the end of it! There are also parallel-
series m-parameters, cascade-forward
a-parameters and cascade-backwards
b-parameters.

SELECTING PARAMETERS
So which parameters do you select

and what can you do with them? For once,
knowing one set of the parameters, you can
convert them mathematically to any other
set with just a small error. Then, inserting
them into a matrix as shown by Equation (5),
the performance data of the black box
can be calculated. Equation (5) uses the
h-parameters:

V

i
=

h h

h h
×

i

V

in

out

11 12

21 22

in

out































	

[5]

FIGURE 4
Transistor equivalent circuit in
common-emitter configuration

FIGURE 3
Collector I-V characteristic of an NPN transistor. The graph is not to scale.

a) b)

circuitcellar.com 73
CO

LU
M

NS

For detailed article references and additional resources
go to: www.circuitcellar.com/article-materials

ABOUT THE AUTHOR
George Novacek was a retired
pres ident of an aerospace
company. He was a professional
eng ineer w i th degrees in
Automation and Cybernetics.
George’s dissertation project
was a design of a portable
ECG (electrocardiograph) with
wireless interface. George has
contributed articles to Circuit
Cel lar s ince 1999, penning
more than 120 articles over
the years.

All this theory is very interesting, but unless you have access
to a curve tracer and measure those parameters yourself,
you’re out of luck. I’ve not found the black box parameters in
any specification published by a transistor manufacturer.

But that’s is not a showstopper. Present day manufacturers
provide a number of graphs with their flagship devices, allowing
you to design any transistor circuit you can imagine. But you
can also find many inexpensive transistors—on e-Bay for
instance—whose specifications, if you’re lucky to get any, may
provide you with perhaps only the following (and nothing else):
maximum voltage and current ratings, perhaps the pin-out and
maybe the hFE. And yet, even that isn’t a showstopper either.
You can still build a circuit satisfying simple requirements,
especially for low frequency operation.

Relying on feedback, you can set the DC operating point even
without knowing the accurate hFE. Quite often it is safe to assume
the hFE will be greater than 100. In such a case, a single stage,
common emitter amplifier with a small emitter resistor RE will
provide voltage gain of approximately RL/RE—where RL is the
load resistance, comprising the collector resistor in parallel with
whatever the additional load may be. For relatively slow switching
digital circuits, the design is even simpler.

Next month, we continue this article series. In Part 4, I’ll
show you some useful discrete transistor circuits and then we’ll
zero in on the field effect transistors: Junction FETs and MOS.

FIGURE 5
Transistor amplifier four terminal linear network

SAVING COST=TIME with readily available FPGA boards

Basic and simple features, single power supply operation
Free download technical documents before purchasing

See all our products, A/D D/A conversion board,
boards with USB chip from FTDI and accessories at :

www2.hdl.co.jp/CC19B

FPGA Boards from JAPAN

ACM-033

XILINXXILINX

INTELINTEL

SIZE : 3.386" x 2.126" (86 x 54 mm)

Intel Cyclone 10 LP F484 FPGA board

XCM-025
Xilinx Spartan-7 FGGA484 FPGA board

ACM-033 is an FPGA board with
Intel high-performance FPGA Cyclone 10 LP.
It's compact and very simple.
3.3V single power supply operation.

XCM-025 is an FPGA board with
Xilinx high-performance FPGA Spartan-7.
It's compact and very simple.
3.3V single power supply operation.

SIZE : 3.386" x 2.126" (86 x 54 mm)

http://www.circuitcellar.com/article-materials
www2.hdl.co.jp/CC19B

CIRCUIT CELLAR • NOVEMBER 2019 #35274
PR

O
D

U
CT

 N
EW

S

PRODUCT NEWS

SMARC 2.0 Module Runs Linux on i.MX8M Mini
Congatec’s “Conga-SMX8-Mini” SMARC 2.0 module runs

Linux on NXP’s i.MX8M Mini with up to 4 GB LPDDR4 and
128 GB eMMC and optional Wi-Fi and -40 to 85°C. There’s also
a new carrier and coolers for Congatec’s Epyc 3000 based
conga-B7E3 module.

Congatec touts the module for its MIPI-CSI-2 interface
and support for an upcoming SMARC MIPI-CSI-2 starter
kit to be released in cooperation with industrial camera
manufacturer Basler. No more details were available about this
“highly integrated embedded vision platform” that support
the “development of cost-efficient vision devices for sparse
modeling-based AI.” Congatec offers a similar Conga-CAM-KIT/
MIPI kit for its Intel Apollo Lake based Conga-PA5 Pico-ITX SBC
that uses a Leopard Imaging sensor instead of a Basler camera.

The 82 mm x 50 mm Conga-SMX8-Mini offers Linux,
Yocto Linux, or Android BSPs with “ready-to-go boot loader
implementation” for the single, dual, and quad-core versions
of the i.MX8M Mini. The Cortex-A53 cores are clocked at
1.8 GHz on the standard 0 to 60°C models and 1.6 GHz for the
industrial -40°C to 85°C SKUs.

Congatec | www.congatec.com

Functional Safety Tools Support STMicros’ 8-bit STM8 MCUs
IAR Systems has further extended its tools offering

for safety-related software development by launching a
certified version of its development tools for STM8 MCUs.
STMicroelectronics’ 8-bit STM8
MCUs are used for automotive
and other industrial
applications where reliability
and cost effectiveness are
important. The functional
safety edition of IAR Embedded
Workbench for STM8 is certified
by TÜV SÜD according to the
requirements of IEC 61508,
the international umbrella
standard for functional safety,
as well as ISO 26262, which is
used for automotive safety-
related systems.

In addition, the certification
covers the international
standard IEC 62304, which
specifies life cycle requirements
for the development of medical

software and software within medical devices, and the
European railway standards EN 50128 and EN 50657.

The functional safety edition of IAR Embedded Workbench
for STM8 includes a functional
safety certificate, a safety
report from TÜV SÜD and
a Safety Manual. With the
certified tools, IAR Systems
provides a Functional Safety
Support and Update Agreement
with guaranteed support for the
sold version for the longevity
of the contract. Along with
prioritized technical support,
the agreement includes access
to validated service packs
and regular reports of known
deviations and problems.

IAR Systems
www.iar.com

Raspberry Pi Clone Sports
1.84 GHz Intel Cherry Trail Processor

Radxa has posted specs for a new member of its community backed “Rock
Pi” Raspberry Pi lookalike SBC family, this time with an Intel Cherry Trail Atom
x5-Z8300, USB 3.0, microSD, HDMI, eDP/MIPI, and GbE, plus optional WiFi and
Bluetooth 4.2 LE. In June, Radxa unveiled its Rock Pi S SBC that runs Linux on
a RK3308 and updated its RK3399-based Rock Pi 4 with extra memory. Now,
Radxa is preparing to add to that family of Raspberry Pi pseudo clones with an
SBC called Rock Pi X, based on the Intel “Cherry Trail” Atom x5-Z8300.

While this is Radxa’s first Intel Atom SBC, several open spec boards are
based on the Atom x5-Z8300, including the Atomic Pi from Team IoT (DLI) and
the UP board and UP Core board from Aaeon UP. Intel’s “Cherry Trail” Atom x5
Z8350 SoC can be clocked at up to 1.84 GHz and has a 500 MHz Intel Gen 8 HD
400 GPU featuring 12 Execution Units. Aside from having different processors,

spec-for-spec, the 85 mm x 51 mm Rock
Pi X is most similar to Radxa’s 85 mm x
54 mm Rock Pi 4. Both provide 4 GB of RAM,
microSD, HDMI and a Gbit Ethernet port.

Radxa | wiki.radxa.com

http://www.congatec.com
http://www.iar.com
http://wiki.radxa.com

circuitcellar.com 75
PRO

D
U

CT NEW
S

PRODUCT NEWS

1/16th Brick DC-DC Converter Provides
9-36 VDC Voltage Input

Murata has announced the introduction of its UWS-Q12 series, the
latest in a line of 50 W, 9-36 Vin range DC-DC converters. This series was
developed for a wide range of applications including, network equipment,
industrial, railway, power grid and transportation. In an industry
standard 1/16th brick pinout, the solution provides a basic I/O insulation
system rated at 2,250 VDC isolation with a fully regulated DC output.
The series also offers single output modules with outputs of 3.3 V, 5 V,
12 V, 15 V and 24 V DC all rated at 50 W. Further, with a universal Vin
range, requirements for Intermediate Bus Converter (IBC) architecture
are readily met.

The UWS-Q12 series provides numerous standard features including
positive or negative ON/Off control, output over current protection,
over temperature protection, Input under Voltage lock-out, short circuit
protection, Pre-Bias protection, Vout trim, and Vout sense function. The
line has a galvanic isolation barrier between the input and output of the
module with a basic insulation system rated at 2,250 VDC. Each converter

Single-Chip Motor Driver Enables Virtually Silent Motor Operation
Trinamic Motion Control has unveiled an ultra-small

single-chip motor driver that uses StealthChop technology
to enable virtually silent operation. The device is designed to
drive two-phase stepper motors
up to 1.2 ARMS and with a voltage
range of 1.8 VDC to 11 VDC. With a
standby current draw of < 50 nA, it
can provide a solution that requires
only one or two Li-Ion cells or two
AA batteries.

The TMC2300 incorporates three
exclusive Trinamic technologies:
StealthChop2: A high-precision
algorithm that produces drive
waveforms which enable motors to
be inaudible—both in motion and at
standstill; StallGuard: Sensorless

motor load measurement, a combination of on-chip circuitry
and firmware that enables the driver to perform sensorless
homing and detect mechanical obstacles; and CoolStep

Sensorless: Load-dependent
current control that optimizes the
motor’s energy consumption on
the fly, enabling energy savings of
up to 80% over conventional motor
drives, according to Trinamic.

Trinamic Motion Control
www.trinamic.com

MCU-based Solution Enables Offline Facial Recognition
NXP Semiconductors has unveiled what it claims is world’s

first MCU-based solution for adding offline face and expression
recognition capabilities to smart home, commercial and
industrial devices. Built on NXP’s latest crossover MCU, the
i.MX RT106F, running FreeRTOS, the new MCU-based face
recognition solution enables original equipment manufacturers
(OEMs) to quickly, easily and inexpensively incorporate face,
expression and emotion recognition into a diverse range of
IoT products.

The i.MX RT106F leverages NXP’s OASIS face processing
engine and uses a neural network to perform face detection,
recognition and anti-spoofing, without the need for cloud
connectivity. OEMs can take advantage of NXP’s hardware and
software-based platform to offer advanced human machine
interface (HMI) capabilities that can anticipate and personalize
the end user’s experience with smart edge devices such as
smart appliances, thermostats, lighting, alarms and power
tools.

NXP is now engaging with OEMs to provide early access
to the evaluation and development kit for this solution, and
broad market availability is expected to begin in Q1 2020.

NXP Semiconductors | www.nxp.com

is designed to deliver 50 W of power with
efficiencies reaching 91 percent on the 5 V,
12 V, 15 V and 24 Vout versions and 89.5%
on the 3.3 Vout model.

Murata Power Solutions
www.murata-ps.com

http://www.murata-ps.com
http://www.trinamic.com
http://www.nxp.com

CIRCUIT CELLAR • NOVEMBER 2019 #35276
PR

O
D

U
CT

 N
EW

S

PRODUCT NEWS

STATEMENT REQUIRED BY THE ACT OF AUGUST 12, 1970, TITLE 39, UNITED STATES CODE SHOWING THE OWNERSHIP, MANAGEMENT AND COPY CIRCULATION OF CIRCUIT CELLAR. Published monthly at 650 Dairy
Farm Rd, Red Oak, VA 23964. Annual subscription price is $50.00. Publisher: KC Prescott. The owner is KCK Media Corp., 650 Dairy Farm Rd, Red Oak, VA 23964. The names and addresses of stockholders holding
one percent or more of the total amount of stock are: KC Prescott, 650 Dairy Farm Rd., Red Oak VA 23964. EXTENT AND NATURE OF CIRCULATION: Average number of printed copies of each issue published
during the preceding twelve months; (A) total number of copies printed, 5,608; (B.1) paid/requested mail print subscriptions, 1,835; (B.3) sales through dealers and carriers, street vendors and counter sales,
2,040; (B.4) paid/requested copies distributed by other mail classes, 29; (C) total paid/requested print circulation, 3,898; (D.4) Nonrequested copies distributed outside the mail, 1,092; (E) total nonrequested
distribution (sum of D.1 & D.4), 1,092; (F) total distribution (sum of C & E), 4,990 (G) copies not distributed (office use, leftover, unaccounted, spoiled after printing, returns from news agents), 618 (H) total (sum
of F & G), 5,718. Percent Paid Requested: 78.11% (A) total number of paid Electronic Copies, 2,377; (B) Total Paid Print & Paid Electronic Copies 6,275 (C) Total Print Distributions and Paid Electronic Copies 7,367
Percent Paid: 85.17% Actual number of copies of a single issue published nearest to filing date: (A) total number of copies printed, 5,398; (B.1) paid/requested mail print subscriptions, 1,815; (B.3) sales through
dealers and carriers, street vendors and counter sales, 1,793; (B.4) paid/requested copies distributed by other mail classes, 24; (C) total paid/requested circulation, 3,633 (D.4) Nonrequested copies distributed
outside the mail, 1,250; (E) total nonrequested distribution (sum of D.1 & D.4), 2,017; (F) total distribution (sum of C & E), 4,883 (G) copies not distributed (office use, leftover, unaccounted, spoiled after printing,
returns from news agents), 515; (H) total (sum of F & G), 5,398. Percent Paid Requested 74.4%. (A) total number of paid Electronic Copies, 2,2353; (B) Total Paid Print & Paid Electronic Copies 5,986 (C) Total Print
Distributions and Paid Electronic Copies 7,236 Percent Paid: 82.72% I certify that the statements made by me above are correct and complete. KC Prescott Publisher.

Reusable Solderless Robotics Kit Features SimpleLink MCU
Texas Instruments (TI) has introduced the newest addition

to the TI Robotics System Learning Kit (TI-RSLK) family, the
TI-RSLK MAX, a low-cost robotics kit and curriculum that is

simple to build, code and test. Designed for the university
classroom, the solderless assembly allows students to have
their own fully functioning embedded system built in under

15 minutes. Classrooms that may not have access to
soldering equipment benefit from the solderless, hands-
on kit and curriculum that can be reused year after year.

Designed for the university classroom, the TI-RSLK
MAX is a low-cost robotics kit and curriculum that is
simple to build, code and test. The new kit includes
TI’s SimpleLink MSP432P401R microcontroller (MCU)
LaunchPad Development Kit, easy-to-connect sensors,
and a versatile chassis board that turns the robot into
a mobile learning platform. Through accompanying
core and supplemental curriculum, students learn how
to integrate their hardware and software knowledge to
build and test a system.

The TI-RSLK MAX is available for purchase for
US$109 from the TI Store and includes the SimpleLink
MSP432P401R MCU LaunchPad Development Kit, as well
as all additional components required for assembly. To
expand kit functionality and learning paths, optional
accessories are available for purchase.

Texas Instruments | www.ti.com

Two Power Delivery Chips Provide USB Type-C Charging Solutions
Microchip Technology has announced two new solutions

that simplify USB Type-C PD (Power Delivery) for a range
of applications. The company claims it as one of the
industry’s first USB-IF-certified USB 3.1 SmartHub devices
with integrated support for Power Delivery (TID1212). The
USB705x family enables fast device charging and introduces
unique PD implementations called HostFlexing and
PDBalancing. The second device, the UPD301A,
is a standalone USB Type-C PD controller that
significantly simplifies the implementation of
basic USB Type-C PD charging functionality,
making it well suited for applications from rear
seat charging in vehicles to portable equipment to
public charging stations.

The USB705x family includes two unique features
that simplify USB Type-C PD implementations
– HostFlexing and PDBalancing. HostFlexing
simplifies the user’s docking station experience by
allowing all USB Type-C ports to function as the
“notebook” port, eliminating the need for cryptic
labels that try and explain overall functionality of
each USB Type-C port.

The UPD301A is available today starting at $1.50

in 10,000-unit quantities. The USB705x family is available
today with options and pricing for 10,000-unit quantities,
with price ranging from $4.82 to $5.35, depending on
configuration.

Microchip Technology | www.microchip.com

http://www.microchip.com
http://www.ti.com

circuitcellar.com 77

TS-7250-V2

Single Board Computer

1GHz ARM Computer with
Customizable FPGA-Driven

PC/104 Connector
and Several Interfaces

at Industrial Temp

www.embeddedARM.com

IDEA BOX
The Directory of
PRODUCTS & SERVICES

AD FORMAT:
Advertisers must furnish digital files that meet our specifications (circuitcellar.com/mediakit).

All text and other elements MUST fit within a 2" x 3" format.
E-mail adcopy@circuitcellar.com with your file.

For current rates, deadlines, and more information contact
Hugh Heinsohn at 757-525-3677 or Hugh@circuitcellar.com.

Surplus & New Parts & Supplies
Since 1967

Discount Prices
Fast Shipping

LEDS . CONNECTORS . RELAYS
SOLENOIDS . FANS . ENCLOSURES
MOTORS . WHEELS . MAGNETS
PC BOARDS . POWER SUPPLIES
SWITCHES . LIGHTS . BATTERIES
and many more items...

We have what you need for your next project.

SERVER TEST

PIC 18 Universal
Development Kit

Kit includes everything you need
to develop with a PIC® MCU:
•	Rapid	18	Prototyping	Board
•	Single-Chip	IDE	C	Compiler
•	Exercise	Book
•	Power	Adapters	and	Cables

Only
$99!

sales@ccsinfo.com (262) 522-6500 x35
www.ccsinfo.com/cc1119

•	Real time Clock/Calendar with Supercap
•	USB port for text communication to the

running program
•	Built-in bootloader for loading code
•	Good for AC/DC Data Logging

Revenue Control
 Systems PnP

- Pick & Place Machines starting @ $6,250
- Direct U.S. Sales, Support, Training,
 Parts, Accessories, Warranty
- PCB Fabrication Equipment
- Makerspace Specials
- Reflow Ovens
757-258-0910
RCSPnP.com

http://www.embeddedARM.com
mailto:adcopy@circuitcellar.com
mailto:Hugh@circuitcellar.com
mailto:sales@ccsinfo.com
http://www.ccsinfo.com/cc1119
www.circuitcellar.com/mediakit
http://RCSPnP.com
www.allelectronics.com

CIRCUIT CELLAR • NOVEMBER 2019 #35278
TE

ST
S

YO
U

R
EQ

TEST YOUR EQ
Contributed by David Tweed

Problem 1— This circuit (Figure 1) is used to boost
the output of a 3V battery to levels high enough to light
a string of LEDs. Explain how this circuit oscillates.

Problem 2— What limits the amount of power that
this circuit transfers from input to output?

Problem 3— Figure 2 shows a modified version of
the Figure 1 circuit. Explain what Q3 does.

Problem 4— Suppose the Figure 2 circuit is used to
drive an LED assembly that requires 200 mA at 12 V.
How much current must pass through L1 and Q2?

www.cc-webshop.com

circuitcellar.com 79
TECH THE FUTURE

The Essentials of
Smart Home Security

By
Michelle Tate,
Product Marketing Engineer,
Texas Instruments

The Future of Smart Homes

A ccording to Forbes, it is estimated that total spending on
Internet of Things (IoT) devices and infrastructure will reach
$1.2 trillion by 2022—up from an estimated $151 billion last
year. Such rapid growth indicates that the IoT is penetrating

deeply into many markets, from first adopters a decade ago to today,
where 90% of business executives in technology, media and telecom
consider IoT technology to be central to their business strategy.

When you consider that one of the major bottlenecks to widespread
IoT adoption and development has been the rapidly evolving radio
frequency (RF) technology landscape, it’s clear that companies should
start investing in this ever-growing space with scalable and flexible
microcontroller (MCU) platforms.

One of the fastest growing IoT spaces is in the home network. The
“home network” includes products that work together seamlessly to
provide both a smart and secure home experience. Inside today’s smart
home products and talking home assistants, however, is a much more
sophisticated and intricate story. The smart home market is fragmented
at several levels, making device interoperability a challenge.

At one level, the smart home consists of several sub-categories
such as building security, heating, ventilation, air conditioning (HVAC)
and fire safety systems. Anyone who even casually follows the smart
home market has seen the rapid growth of the building security sub-
category with the influx of out-of-the-box security systems available for
homeowners to purchase. These security systems ship directly to the
front door and are immediately ready to install by the homeowner.

When designing a smart home security system like this, flexibility and
scalability are paramount. Meanwhile, interoperability, given the need
for multiple peripheral devices, can be a major challenge. To overcome
these design challenges, security service providers and security system
companies are working to make products interoperable out of the box
by integrating the essential components illustrated in Figure 1. These
components can be divided into these three categories:

•	 Sensing, including door and window
sensors, motion detectors and glass
break detectors.

•	Monitoring, using security cameras
and video doorbells.

•	 Control (both local and remote)
using gateways, access panels,
electronic smart locks, cloud-based
dashboards and smartphone apps.

The requirements for implementing
sensing, monitoring and control into
a security system differ, making it
increasingly challenging for security
system companies to keep up with
and stay ahead of the needs of all
three functions while minimizing
additional design time and effort.

FIGURE 1
Home security system setup example

80 CIRCUIT CELLAR • NOVEMBER 2019 #352
TE

CH
 T

HE
 F

UT
UR

E

EXAMINING PRIORITIES
Let’s review what security providers should prioritize

when developing a smart home security system.
Sensing priorities: long range and low power: We all know

a person’s homestead is typically the largest asset on their
balance sheet. At the same time, it also provides storage for a
plethora of personal valuables. The interest of homeowners to
easily protect their assets with low hassle is driving the need
for security companies to provide solutions that can both
secure all of the entry points of a home as well as enable the
least amount of upkeep maintenance as possible.

Long range enables homeowners to place a sensor in
remote and hard-to-reach locations, such as a window on
the third floor of a home, therefore extending coverage to
areas previously unreachable by wired systems. Enabling
greater coverage through extended range in turn increases
the number of connected sensors in a home as well as the
burden for homeowners to monitor battery life and battery
replacement cycles. By creating lower power sensors, battery
life can be elongated to multiple years, therefore reducing the
maintenance burden on the homeowner.

Sub-1 GHz is currently the leading technology for sensors
due to its extremely long range, ability to penetrate walls
and low-power capabilities. Because there are no standards
bodies currently overseeing the Sub-1 GHz bandwidth, many
developers must create their own proprietary protocols from
scratch, requiring significant R&D investment, time and RF
expertise. Some silicon providers will make this investment
for security system developers and provide an out-of-the-box
toolkit to help them get started in Sub-1 GHz design.

Zigbee and Thread are 2.4 GHz mesh standards. Zigbee
enables ultra-low power through Zigbee Green Power, which
supports battery-less devices by enabling sensors that can
harvest mechanical energy from movement, such as opening a
door or window sensor. Thread is designed specifically for home
networks and is based on Internet Protocol ver. 6, which enables
Thread devices to have an easy connection to existing networks.

Monitoring priorities: high throughput and security: If a
picture is worth a thousand words, video is worth a million —
when it comes to home security, that could not be more true.
Wi-Fi is typically used to achieve the throughput required to
stream video from monitoring home entry points. Choosing a
Wi-Fi MCU that can support 4 Mbps or more is important to
enable 1080p video streaming.

In addition, monitoring undergoes extra security scrutiny
from home/building installers, as the information being
stored and/or sent over the air is more sensitive. Selecting
an MCU that has comprehensive end-to-end security, from
storage to run time to transfer, can further help secure a
monitoring design.

Control priorities: multiprotocol concurrency and remote
control: Multiple wired and wireless connectivity standards
enable connections to wireless sensing and monitoring
functions, and for large buildings, wired connections back to
a central server.

A combination of wireless technologies, such as Wi-Fi,
Bluetooth low energy, Zigbee, Thread and Sub-1 GHz, and a
wired connection, such as Ethernet, are commonly used for
control. Combining multiple wireless technologies in a single
control component requires both multiprotocol concurrency
and coexistence.

Enabling multiprotocol concurrency on a single MCU
can be done by developing software that switches between
protocol stacks in real time based on protocol priority tables.
Developing low latency multiprotocol managers helps enable
the control unit to interact in multiple networks at the same
time while also ensuring successful packet transmissions due
to the fast switching time.

Supporting coexistence on two 2.4 GHz MCUs, such as a
Bluetooth MCU and Wi-Fi MCU, is another important design
aspect to consider. By using time division multiplexing, the
two MCUs can share the same antenna and reduce the bill
of materials (BOM) of a design. In addition, by designing
with Bluetooth and Wi-Fi, homeowners have the ability to
remotely access and control their smart security system, with
Bluetooth providing shorter-range remote access through the
phone and Wi-Fi providing remote access through the cloud.

SCALABILITY AND FLEXIBILITY
There are many dominant and newly emerging connectivity

solutions that aim to meet sensing, monitoring and control
requirements. However, with the increasing number of
connectivity solutions and system requirements, it has become
increasingly difficult for security system companies to stay up
to date with market demands, such as longer range, lower
power, faster networks and greater security, without having to
divert additional resources toward system redesigns.

Selecting an MCU platform that supports both wired and
wireless connectivity protocols enables code reuse through
common software development kits and application
programming interfaces. Security system companies benefit
from more flexible and scalable designs, further enabling
them to stay ahead of market needs.

For detailed article references and additional resources
go to: www.circuitcellar.com/article-materials

RESOURCE
Texas Instruments | www.ti.com

At Texas Instruments, Michelle Tate serves as a product marketing engineer
for the SimpleLink connected MCU team, specializing in building security
systems. She received her bachelor’s degree in electrical engineering from
The University of Texas at Austin.

http://www.circuitcellar.com/article-materials
http://www.ti.com

Materials:
Fr4
Metal Core
Isola
Rogers
Polyimide - Flex
MagtronMagtron

Technology:
Up to 50 Layers
Any Layer HDI
Sequential Lamination
Blind / Buried Vias
Laser Drilling / Routing
Heavy CopperHeavy Copper

Whether you are an
EMS, CM or OEM,

let our bare boards be the foundation
you build your reputation upon!

We will make only what is needed,
when it’s needed,

and in the amount needed.
You no longer have to worry about long shelf life

or tie your capital in bare board inventory.

www.PCB4u.com sales@PCB4u.com

http://www.PCB4u.com
mailto:sales@PCB4u.com

FROM THE DEEP BLUE SEA
TO THE WILD BLUE YONDER

The TS-7680 is designed to provide
extreme performance for applications demanding

high reliability, fast boot-up/startup, and
connectivity at low cost and

low power. Because there are so many features packed
on to one single board computer you will see a

 reduction in payload weight since there is no need for
additional boards, micro-controllers, or peripherals.

Rated for industrial temperature range of -40°C to +85°C
 the TS-7680 is deployed in �eet management,

pipeline monitoring, and industrial controls
and is working in some of the most demanding

places on Earth.

The TS-7680 will help you perform at your
very best in a variety of critical missions.

 Qty 100

Low Power Industrial
Single Board Computer with

WiFi and Bluetooth

$159

TS-7680

www.embeddedARM.com

