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IN MEMORIAM—HUGO VAN HAECKE (1951–2015)
Hugo Van haecke, president and publisher of Circuit Cellar, Inc. and Segment 

LLC, passed away on August 19, 2015, in Denver, CO. A publishing industry 
veteran and an exceptional manager, Hugo was instrumental in the transition 
of our business from its early foundations into a future-ready organization—
managing acquisitions, mergers, and restructuring the companies to ensure 
the continuity and evolution of the titles (audioXpress, Voice Coil, Loudspeaker 
Industry Sourcebook, and Circuit Cellar) as well as the company’s book publishing 
business.

Born May 5, 1951, in Antwerp, Belgium, Hugo was the second of four children 
born to Henri and Alice Van haecke-Verrycken. He was an eager learner from 
the start, and through the teachings of his older brother, Alex, knew how to 

read, write and do basic math before he 
entered the first grade. During his formative 
educational years, Hugo was a passionate 
student with a desire to learn, but struggled 
with the restrictive nature of the educational 
environment.

In 1973, Frank de Winter gave Hugo a job 
at Old Charley, a wine wholesale company, to 
assist in bookkeeping, accounts, and customer 
relations. Frank taught Hugo everything there 
was to know about accounting, bookkeeping, 
and finances. Hugo excelled in this 
environment and the experience reinforced 
his lifelong belief that wisdom and success are 
fostered through real word experiences.

Hugo moved to the US with his family in 
1999, while working for Wolters Kluwer, a 
publishing group based in the Netherlands. 
During his career, he managed businesses and 

companies around the world. In 2005, Hugo started his own venture, working 
with several companies as a consultant, a financial advisor, and president.

Hugo had semi-retired to devote more time to his family and especially his 
granddaughter, while continuing to be at the helm of our business. A lover of 
family, life, and friends, Hugo was a great manager, a proud Million Miler traveler, 
and someone who inspired us all and will be greatly missed.

Hugo Van haecke is survived by his wife, Erna Van Meerbergen; his children 
Margo Valaika and husband Chris Valaika; Thomas Van haecke and wife, Emilie 
Van haecke; his granddaughter, Alyse Valaika; his brother, Alex Van haecke; his 
sister Lieve Van haecke; and numerous other relatives.

We dedicate this issue to Hugo.

The Circuit Cellar Staff
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PRODUCT NEWS

ANALOG AMPLIFIER PROVIDES PRECISE CURRENT SHUNT MEASUREMENT
Silicon Labs has introduced a new isolated current sense 

amplifier with industry-leading signal bandwidth (up to 750 kHz) 
that ensures rapid, precise DC current measurement and accurate 
representation of the primary signal and harmonics. The Si8920 
isolated amplifier provides an ideal current shunt measurement 
solution for power control systems operating in harsh environments 
(e.g., hybrid vehicles, industrial motor drives, and high-voltage 
power converters).

The Si8920 isolated amplifier uses Silicon Labs’ proven, CMOS-
based isolation technology, supports up to 5 kV withstand and 1200 
V working voltage, and offers a wide operating temperature range, 
noise immunity, and long lifetimes. With exceptionally low 1-µV/°C 
offset drift, you gain stable performance over diverse operating 
conditions.

The Si8920 isolated amplifier is available in standard SOIC and 
DIP packages. Pricing in 10,000-unit quantities starts at $2.39. The 

$29 Si8920ISO-KIT evaluation kit enables you to connect quickly 
to a shunt resistor to evaluate Si8920 analog isolation functionality 
including low-voltage differential input, response times, offset and 
gain characteristics.

Silicon Labs | www.silabs.com

NEW 32-BIT MCU SERIES FOR EMBEDDED CONTROL & TOUCH
Microchip Technology recently announced a new series within 

its PIC32MX1/2 32-bit microcontroller family that features a 256-
KB flash configuration and 16-KB of RAM. The microcontrollers 
provide flexibility to low-cost applications that need complex 
algorithms and application code. More specifically, they are 
intended to help designers looking to develop products with 
capacitive touch screens or touch buttons, as well as USB device/
host/OTG connectivity.

The PIC32MX1/2 MCU series provides  up to 50 MHz/83 DMIPS 
performance for executing advanced control applications and 
mTouch capacitive touch sensing. In addition, it has an enhanced 
8-bit Parallel Master Port (PMP) for graphics or external memory, 
a 10-bit, 1-Msps, 13-channel ADC, support for SPI and I2S serial 
communications interfaces, and USB device/host/On-the-Go 
(OTG) functionality.

Microchip’s MPLAB Harmony software development framework 
further simplifies designs by integrating the license, resale, 
and support of Microchip and third-party middleware, drivers, 
libraries and Real-Time Operating Systems (RTOS). Specifically, 
Microchip’s readily available software packages—including USB 
stacks and Graphics and Touch libraries—can greatly reduce the 

development time of applications such as consumer, industrial 
and general-purpose embedded control.

These latest PIC32MX1/2 MCUs are available now in 28-pin 
QFN, SPDIP ,and SSOP packages and 44-pin QFN, TQFP and VTLA 
packages. Pricing starts at $1.91 each, in 10,000-unit quantities.

Microchip Technology | www.microchip.com

NEW ULTRA-COMPACT WIRELESS M-BUS MODULE
AMIHO Technology recently announced an ultra-compact and 

cost effective Wireless Meter-Bus module. The AM090 is intended 
primarily for connecting smart meters and Internet of Things (IoT) 
devices. At just 15 × 15 mm, the AM090 works well with small 

sensors and other IoT end points. 
Fully compliant with the European standards (EN13757), the 

AM090 features Freescale’s Kinetis family of ARM cortex MCUs and 
operates at 868 MHz. The module includes a comprehensive and 
optimized software stack, which can be licensed as a stand-alone 
product for integration into other designs.

AMIHO Technology | www.amihotechnology.com

http://www.silabs.com
http://www.microchip.com
http://www.amihotechnology.com
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PRODUCT NEWS

NEW BATTERY PACK MONITOR PROTECTS MULTI-CELL LI-ION BATTERIES
Intersil Corp. recently announced the ISL94203 3-to-8 cell 

battery pack monitor that supports lithium-ion (Li-ion) and other 
batteries. The ISL94203 can monitor, protect, and cell balance 
rechargeable battery packs to maximize battery life and ensure 
safe charging and system operation. It works as a stand-alone 
battery management system for rechargeable Li-ion battery packs. 
The ISL94203’s internal state machine has five preprogrammed 
stages that accurately control each cell of a battery pack to extend 
operating life. In addition, it integrates high-side charge/discharge 
FET drive circuitry.

Notable features and specifications:

•	 Eight cell voltage monitors support Li-ion CoO2, Li-ion 
Mn2O4, Li-ion phosphate and other battery chemistries

•	 Operates as a standalone solution or with a microcontroller
•	 Integrated charge pump controls cutoff FETs used to 

charge/discharge battery pack
•	 Multiple cell voltage protection options up to 4.8 V
•	 Programmable detection/recovery times for over-voltage, 

under-voltage, over-current, and short circuit conditions
•	 Open wire detection
•	 EEPROM storage for device configuration
•	 Power saving algorithm activated when pack is not in use

The ISL94203 battery pack monitor is available now through 

Intersil’s worldwide network of authorized distributors. The 
ISL94203 comes in a 6 mm × 6 mm, 48-lead TQFN package, and 
is priced at $2.19 in 1,000-piece quantities. The ISL94203EVKIT1Z 
evaluation kit ($328) includes an evaluation board, interface board 
with USB-to-I2C interface, and software GUI that supports stand-
alone operation or an external microcontroller.

Source: Intersil Corp. | www.intersil.com

SENSOR INTERFACE CONNECTS MULTIPLE SENSORS TO MCUs OR FPGAs
Exar Corp. has announced the XR10910, a new sensor interface 

analog front end (AFE) for the calibration of sensor outputs. The 
XR10910 features an onboard 16:1 differential multiplexer, offset 
correction DAC, programmable gain instrumentation amplifier, 
and voltage reference. In addition, it provides 14-bit signal path 
linearity and is designed to connect multiple bridge sensors to a 
microcontroller or FPGA with an embedded ADC. Operating from 
from 2.7- to 5-V supplies, the XR10910 has a wide digital supply 
range of 1.8 to 5 V. It typically consumes 457 µA of supply current 
and offers a sleep mode for reducing the supply current to 45 µA.

The XR10910 is available in a 6 mm × 6 mm QFN package. 
Pricing starts at $8.10 each for 1,000-piece quantities.

Exar Corp. | www.exar.com

MINIATURE 9.7 × 7.5 MM OCXO
IQD’s latest Oven-Controlled Crystal Oscillator (OCXO), the IQOV-

71 series, is housed in four-pad plastic package with a fiber glass 
base. Despite it 9.7 × 7.5 mm size, it offers very low frequency 
stabilities down to ±10 ppb over an operating temperature range 
of –20° to 70°C or ±20 ppb over –40° to 85°C.

The available standard frequencies include 10 MHz, 12.8 
MHz, 19.2 MHz, 20 MHz, 24.576 MHz, 25 MHz, 30.72 MHz, 38.88 
MHz, 40 MHz, 49.152 MHz, and 50 MHz, which will satisfy most 
applications. Other frequencies in the range of 5 to 50 MHz can be 
developed for commercially viable quantities. Power consumption 
is typically less than 1 W during the warm up phase, which only 
takes approximately 3 minutes, and less than 0.4 W once the device 

has reached steady state. Frequency aging is less than 2 ppb per 
day and a maximum of 3 ppm over a 10-year period.

IQD | www.iqdfrequencyproducts.com

http://www.intersil.com
http://www.exar.com
http://www.iqdfrequencyproducts.com
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Percepio Tracealyzer provides an unprecedented level 

of insight into the run-time world of RTOS or Linux-based 
software systems. Tracealyzer allows you to solve complex 
software problems in a fraction of the time otherwise 
needed, develop more robust designs to prevent future 
problems, and find new ways of improving your software 
performance. (More info: http://percepio.com/tz/)

WHY SHOULD CC READERS BE INTERESTED? 
In order to solve a bug, you first have to see it. Percepio 

Tracealyzer is world class visualization software that allows 
you see what’s going on inside your RTOS-based system. 
Tracealyzer visualizes the run-time behavior through more 
than 20 innovative views that complement the debugger 
perspective. The views are interconnected in intuitive ways, 
which makes them very powerful and easy to navigate 
Tracealyzer is available for the following real-time operating 
systems: FreeRTOS, Micrium, embOS, Linux, VxWorks, 
SafeRTOS, and On Time RTOS-32

Percepio
Location: Västerås, Sweden
Web: www.percepio.com
Contact: Mike Skrtic (mike.skrtic@percepio.com)

Circuit Cellar prides itself on presenting readers with information 
about innovative companies, organizations, products, and 
services relating to embedded technologies. This space is 
where Circuit Cellar enables clients to present readers useful 
information, special deals, and more.
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Signal Processing
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These articles and others on topics relating to signal processing are available at 
www.cc-webshop.com. 

Doppler Radar Design
By Steve Lubbers (Circuit Cellar 243, 2010)

A Doppler radar system can enable you to track speeding 
vehicles. Steve Lubbers's design generates a microwave 
energy burst with a 10-GHz transceiver. The microwave 
signal bounces off a moving vehicle and the frequency shift 
is measured to determine its speed.

Lubbers writes: "My Doppler radar required a 
microcontroller with DSP capabilities. The microcontroller 
features enabled the I/O and control features required by the 
project. The DSP capabilities were required to perform signal 
processing on the received radio signal. The dsPIC30F4012 
CPU fulfilled all of the processor requirements. It features 
an ADC for RF input capture, PWM output for transmit signal 
modulation, and general-purpose I/O to control the remaining 
hardware features. Software development and debugging 
was eased by using the Microchip ICD2 interface. I chose 
the dsPIC’s 28-pin DIP package so I could use a Microchip 
28-pin starter board as the base of the digital hardware… 
The primary output of my Doppler radar is the target’s speed 
displayed on an analog meter. An LED accompanies the 
meter to indicate if a preset threshold has been exceeded, 
and the target is 'speeding.' The analog display is driven by 
an MCP4011 64-position digital pot, which the dsPIC controls 
using two digital output lines."

Signal Generation Solution
Build an Inexpensive RF Signal Generator
By Neal Martini (Circuit Cellar 182, 2005)

Tired of going to a local university lab to use a signal 
generator, Neal Martini designed his own. In this article he 
explains how he built the PIC16F877A-based controller and 
RF module.

Martini writes: "With many years of professional and hobby 
experience in lower frequency digital and analog systems, I 
decided to venture out and build my own RF signal generator… 
My goal for this project was to design a signal generator 

that produces sine waves from 10 to 600 MHz at a constant 
output power level of 5 dBm. Let’s take a look at how I did 
it. The assumed load is 50 Ω, which is typical for RF systems. 
Talking about signal levels in terms of decibels relative to 1 
mW (dBm) is common when you’re dealing with RF systems."

http://www.cc-webshop.com
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These articles and others on topics relating to signal processing are available at 
www.cc-webshop.com. 

Digital Stompboxing
An Easy-to-Use Digital Signal Processing Platform
By Kit Church (Circuit Cellar 220, 2008)

Are you ready to venture into the world of digital signal 
processing effects? This article is the perfect introduction. Kit 
Church describes a high-quality DSP platform and presents sample 
code.

Church writes: "To make up for a lack of 'hackable' digital effects, 
I created a high-quality, easy-to-understand DSP platform. In this 
article, I’ll describe the design and provide sample code that will 
enable you to venture into the world of DSP-based effects… To some 
of you, the thought of assembling a DSP-based effects platform may 
seem intimidating. But the hardware for this project is relatively 
simple. It includes an ultralow-distortion Texas Instruments 
OPA2134 dual op-amp, a Texas Instruments PCM3060 
stereo audio codec (ADC and DAC combined into one chip), 
a Microchip Technology dsPIC33FJ64GP206 microcontroller, 
and a handful of passive components… To control the effects 
processing, I’ve attached three potentiometers and two 
momentary switches to the microcontroller as well as a few 
LED indicators. The dsPIC33FJ64GP206 has a maximum of 53 
I/O pins, including 18 analog channels, so there’s also plenty of 
room for expansion for your own effects and configurations."

http://www.cc-webshop.com
www.elprotronic.com
mailto:orders@lemosint.com
www.lemosint.com
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Mistakes, failures, and unexpected 
outcomes can be the source of great 

innovation. As Henry Ford once said, “The 
only real mistake is the one from which we 
learn nothing.”[1] Most of the project articles 
I’ve seen have been about project successes. 
Rarely do I see an article about a project that 
failed. To the unassuming reader, it must 
appear that every project is a success. To 
help correct that misinterpretation, I wrote 
an article about a project that failed and what 
I learned during the process. Those learnings 
made the project a success despite all the 
failures along the way. From this perspective, 
no project is ever a true failure.

This project came about as a result of a 
bad fall I took on an early morning jog when I 
tripped over an unseen crack in the sidewalk. 
The idea came straight away: I needed 
headlights for my shoes! Not just a “dumb” 
LED that spent the majority of its time pointed 
the wrong direction, but rather a controlled 
array of LEDs that would keep the resulting 
light beam pointed at the ground in front 
of me. The result was a “foot headlight,” or 
footlight. 

FOOTLIGHT PROTOTYPE
From the start, I decided the footlight 

to use an XYZ accelerometer and an Atmel 
ATtiny AVR processor to turn on only the LED 
that was at the proper angle to illuminate the 

ground in front of my feet. I had numerous 
options for accelerometers: one-, two-, or 
three-axis options, as well as analog or digital 
outputs, and various G range measurements. 
After comparing options, I decided on a three-
axis accelerometer that gave direct digital 
measurements via an I2C interface with a 
range of approximately 3Gs. This, combined 
with an AVR processor with hardware support 
for implementing I2C, seemed like the quick-
and-easy approach to meet the project’s goals. 
Thus, the footlight comprises a Freescale 
Semiconductor MMA8453QT accelerometer 
and an Atmel ATtiny 281 running at 8 MHz. 
Yes, the MMA8453QT has a QFN-16 footprint, 
which might be pushing the limits of my 
hotplate reflow technique, but I knew I could 
make it work (see Photo 1).

Since I hadn’t worked with an 
accelerometer before, I thought it best to put 
together a quick prototype to verify my ability 
to read the acceleration data via the I2C 
interface while managing basic LED selection. 
The goal for the prototype was to be able to 
keep illuminated the LED currently pointing 
up. The initial code was very simple: read the 
I2C data, and based only on the range of the 
acceleration data, select the most upward-
facing LED. I designed a quick circuit board 
and sent it off to OSH Park for production. 
Soon thereafter I found that nothing is ever 
as easy it initially appears.

The Footlight 
Project (Part 1) 

It’s unrealistic to expect every project 
to be a simple success. Here’s a project 
to build a “foot headlight” that does not 
come out as expected. This article details 
the circuit board development process.

By Tom Struzik (US)

Circuit Board Design

PHOTO 1
This is the Freescale Semiconductor 
MMA8453QT accelerometer in a 
QFN-16 footprint. Certainly, it's 
at the limit of my simple hotplate 
reflow soldering capabilities!
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Once the prototype board arrived, it was 
off to the hotplate to reflow solder mount the 
components for the prototype. With its QFN-
16 footprint, the accelerometer was a bit of 
a stretch using this method, but it visually 
appeared to have successfully mounted. 
I wrote and programmed the prototype 
software into the ATtiny, power was applied, 
and … nothing, nada, zilch. I then pulled out 
my CWAV USBee-SX and started snooping the 
I2C signals. Again, nothing. So began the first 
of a long string of failures on this project. 
However, this also brought the first three 
learnings: using the USBee-SX to sniff and 
decode I2C signals; the criticality of bringing 
important signals, like the I2C bus, out to an 
easily accessible debug header; and finally 
the need to make the pads on tiny SMT parts 
longer than the manufacturer’s recommended 
profile to facilitate hand-soldering when 
necessary. At this point, you can see the 
prototype board in Photo 2 with added wires 
to enable access to the I2C bus.

While I had used a software I2C interface 
before, I had not used this specific hardware 
TWI/ I2C interface. I spent several hours 
poring over the Atmel documentation on the 
hardware serial interface trying to determine 
why the interface was not working. After 
multiple failures, I finally broke down and 
simply switched to my familiar software 
I2C library so I could at least start making 
progress again. Now I was able to use the 
USBee-SX to observe I2C query and response 
traffic, thus confirming that I finally had 
communication established between the 
ATtiny and the accelerometer. Certainly the 
software I2C library was a larger code base 
than the hardware I2C implementation, and 
it took more processing power—but, for the 
time being, that was acceptable. Yes, I still 
had to categorize the hardware I2C as a fail, 
but that could go on the bin list for learning 
later. At least I had confirmed that the reflow 
mounting of the accelerometer had worked.

CODING & CONFIGURATION
Next, I started the truly interesting coding, 

configuring the accelerometer and reading 
the acceleration data. Once the accelerometer 
was configured, the acceleration data could 
be accessed from three consecutive device 
registers. These were easily accessed via 
sequential I2C reads. The acceleration data 
was presented in Gs as a two’s compliment 
scaled number, so I had to do a quick 
refresher on interpreting binary data as two-
compliment integers. I was using the USBee-
SX to track the acceleration data changes via 
decoded I2C signals, but that quickly became 
painful due to the amount of rapidly changing 
data (see Photo 3). I realized then that, 

since I had an I2C bus available, I could also 
connect a small I2C based LCD. Now if I had 
just included that dang I2C debug header… 
For now I hand soldered some add-on wires 
to facilitate connecting in the I2C LCD—which, 
unfortunately, ran at 5 VDC while the rest of 
the protoboard’s components required 3.3 
VDC. Out of this, I learned that for the LCD 
I had, even though the board required 5 VDC 
for its supply, it continued to operate properly 
with 3.3-VDC-level I2C signals. Probably the 
biggest learning at this point was that, if 
possible, I should always include a three-pin 
header, exposing two available I/O pins and 
ground for a makeshift I2C debug interface 
on every ATtiny design. Having the LCD 
available as a software troubleshooting aid 
was invaluable. 

At that point, the ATTiny could read 
acceleration data over the I2C bus from the 
accelerometer and, using a simple value 
mapping, turn on specific LEDs. However, the 
prototype implementation (see Photo 2) was 
not intended to be accurate enough for the 
actual footlight implementation I’d envisioned. 
I wanted to be able to smoothly transition from 
LED to LED. This would require using PWM 
to control the relative brightness between 
adjacent LEDs. That control would be based on 
the board’s actual angle. To be accurate enough, 
the software needed to be able to calculate the 
angle of the board and thus the angle of the 
user’s foot as they walked/ran. I thought this 
would be relatively easy given the plethora of 
open-source drone software available today, 
which used three-axis accelerometer data for 
heading calculations.

PHOTO 2 
Here is the prototype board showing 
the QFN-16 accelerometer chip and 
the hand wiring to more easily expose 
the I2C signals for debugging.
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Google came to the rescue again and turned up these relatively simple equations for 
determining heading from X/Y/Z accelerometer data (see Equation 1). I only needed to calculate 
the pitch angle and not the roll or yaw, so I only needed the equation for the Y Angle. Given I 
had written the prototype code in AVR GCC, it was a simple matter to translate the equation to 
C, and off we’d go. Simple heading calculation:

xAngle = atan( ax/(sqrt(square(ay) + square(az))));
yAngle == atan( ay/(sqrt(square(ax) + square(az))));
zAngle = atan(( sqrt(square(ax) + square(ay))/az);

Sure enough, the code compiled the first time and loaded right into the ATtiny. I applied 
power, and… nothing happened. After much head scratching and several failed attempts to get 
any information written to the I2C LCD, I finally noticed that the compiler was reporting that 
both the program and data memory were over 200% full! No error messages, no red flags—it 
just quietly produced code too large for the device and then programmed that into the device 
with no errors.  One great big learning here, always, always check the percent memory fill. I now 
moved to slash-and-burn coding to attempt to make the code small enough to fit the ATtiny261’s 
limited memories.

My first attempt was to try to simplify the equation itself. Attempting to remove the SQR, 
SQRT, and/or ATAN was the obvious approach. Google again came to the rescue, turning up 
the fact that √(x2 + y2) was actually a “distance” calculation and could be approximated by 
MAX(|x|,|y|) + MIN(|x|,|y|)/2.[2] 

  This was a good lesson. It’s not exact, but it’s close enough and there are no squares or 
square root to deal with. Switching to the approximation formula improved things somewhat. 
The code did get much smaller, but it was still too big. Worse, while this reduced the program 
memory, it had no impact on the mysterious excessive data memory usage, so that was where 
I turned next.

While trying to figure out if removing the ArcTan function would reduce the code size, I 
happened to notice that when I left the ArcTan function call out, the data memory usage went 
almost to zero. It turned out that the AVR GCC ArcTan library function is a data memory hog—a 
real pig. Again, back to Google for ArcTan replacements, which turned up a piecewise linear 
curve fitting algorithm. This algorithm could be used to approximate any function.[3]

One specific advantage of this function was that it makes no assumptions about the spacing 
of the control points. I could include more control points where the target function changed 
rapidly and fewer points where the function was more linear. That worked well for approximating 
the ArcTan function which included very long linear sections with 2 sharp curves in the 
middle. Throwing the whole thing into Excel let me adjust the number of points to manage the 
approximation error while still limiting the overall table size. After several attempts, I eventually 
got the approximation function down to a 33-element look-up table, requiring 66 numbers in 
total. I included my Excel spreadsheet on the Circuit Cellar FTP site along with the other code 
(see Figure 1). Thus, two major learnings here. First, the ArcTan function is a big memory 

ABOUT THE AUTHOR
Tom Struzik has been 
bu i ld ing and tak ing 
things apart from an 
early age. He built his 
first Heathkit project at 
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computer program at 
age 16. Tom has a BSEE 
from Purdue University.

PHOTO 3 
The ATtiny is reading the XYZ acceleration data via I2C as displayed by the USBee Suite’s protocol decode mode.
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hog. And second, I now have an easy to use 
routine that can approximate any function. 
Good so far, the data memory usage was 

again reasonable, but I was still in a failed 
state because the program memory usage 
was still too large.

After looking at the code yet again, I 
finally realized that I would just need to give 
up floating point altogether. The AVR GCC 
floating-point library was just too big. I bit the 
bullet and began work on switching to integer 
math but of course the value ranges meant I 
still needed to work with numbers less than 
1. In fact, looking at the ArcTan function, 
the most critical range is between –1 and 1 
so obviously integer math was going to be 
interesting. It was time to brush off my fixed-
point arithmetic skills from long ago college 
days.[4] Fixed-point arithmetic had multiple 
benefits. That divide by 2 in the distance 
approximation became a shift and the ArcTan 
table could be converted to directly return the 
correct fixed-point numbers—no conversion 
necessary. However, unlike floating point 
where step order did not matter, with fixed-
point, step order was critical. The calculation 
steps had to ensure that no intermediate value 
dropped off significant digits or overflowed. 
For example, while (A + B)/C would work just 
fine in floating point, with fixed point, that 
intermediate A + B could overflow even though 
the ultimate result would still have been in 
range. Fixing this required implementing 
the steps as (A/C + B/C) in order to keep the 
intermediate values within range of the chosen 
fixed-point format.

Woo-hoo! At that point the rotation angle 
calculation worked and fit into the ATiny261’s 

circuitcellar.com/ccmaterials
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FIGURE 1 
This is the ArcTan approximation 
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line is the linear approximation. The 
blue is the actual Excel ATAN function 
result. 
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limited memory. I finally felt like this project 
finally had a chance to succeed—at least that 
was until I realize I had not yet implemented 
the code for either the LED PWM code or the 
user interface. I pressed forward and worked 
on implementing the LED PWM code and 
quickly discovered, yet again, that the code no 
longer fit into the ATtiny261’s limited memory. 
I didn’t think there was any way left to reduce 
the code any more. I finally threw up my 
hands and decided to switch to an ATtiny861, 
which had more data and program memory. 
But I still felt confident about being able to 
move the project forward. I believed all the 
outstanding issues were manageable.

While waiting for the shipment of an 
ATtiny861, I decided the project was far 
enough along to design what hopefully would 
be the final circuit board. I needed to add four 
more LEDs, design some type of on/off switch, 
and add a charger for a LiPo battery. This was 
relatively straightforward, but somewhat 
tedious because of the small size of the board 
required to fit the intended case. However, 
with a bit of diligence and after detangling 

some signal lines, I finally succeeded in fitting 
everything within the required space, so again 
off to OSH Park for a board (see Figure 2).

LESSONS LEARNED
While waiting for OSH Park to return the 

new board, I thought it was time to take a step 
back and reflect on what I’d learned so far. I 
had learned that I could reliably mount a QFN-
16 component (or so I thought). I learned how 
to read accelerometer data and convert that 
to a heading, all without using floating-point 
math. I also discovered an approximation 
function that fit into an ATtiny and yet 
would yield a good-enough ArcTan function, 
again all without floating-point math. I also 
determined that it would probably be a good 
idea to include an I2C port in future designs to 
support a “debug” LCD.

Next month, I’ll detail how things really 
turned out and if this was the end of the 
learnings or simply the beginning of a much 
more challenging effort. Until then, keep 
trying new things. You never know what you 
might learn. 

FIGURE 2 
This is the final circuit design. Or is it?
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We have spent the last while working 
towards a mobile phone application to 

help identify a local noise nuisance problem. 
We joked with Mike Smith’s neighbor’s kids 
that the record and playback .3GPP file WAT_
AN_APP application was developed to impress 
them that, “Without Any Teenage Assistance 

Necessary, we could write an Android APP." We 
then added just enough additional code (JEAC) 
to store an audio record for later analysis. 
To continue the friendly tease presented in 
the first three parts of this article series, we 
pretended that the project code was actually 
designed to detect “Things that Go BOOm at 

Sound Ecology and Acoustic 
Health (Part 4)

Last month, Adrien and Mike got quantitative with an audio record and 
analysis update for the WAT_AN_APP application. This month they discuss 
coding a room acoustics analysis.

By Adrien Gaspard and Mike Smith (Canada)

Room Acoustics Analysis

FIGURE 1
After adding the graphics capability 
from Article 5, we found that recording 
the frequency characteristics of our 
lab’s background noise level indicates 
that we might be getting closer to a 
"727-Hz ghost" after moving between 
positions (a) and (b). However, the 
frequency characteristics of a Chirp 
sound burst (c) really change when 
we wake up the ghost and it flees the 
room (d). 

B)
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Night” or how many “TGBN ghosts” are in the 
neighborhood.

As they say “Be careful what you wish 
for!” Our neighbors got interested in the 
community noise issues we were really trying 
to measure. They had their teenagers explore 
the acoustic health of their home using our 
work in progress. Late yesterday, a knock 
on the door revealed our neighbors asking 
for help. Their eldest teenager had gone to 
the University of Pennsylvania. According to 
the Penn Arts and Sciences website (sites.
sas.upenn.edu/ghosts-healing), a group of 
scholars from literature, art history, nursing, 
archaeology, religious studies, science, and 
medicine wants to take research on ghosts 
seriously. So our neighbor's kid decided to 
volunteer with this group. This turned into 
a term project that involved analyzing room 
acoustics as a possible source of “that friendly 
spectral feeling." Hence, the frantic email 
message they wanted to pass on: Term’s 
nearly over! Could you please get Mike to hurry 
up and fulfill his promise in that first Circuit 
Cellar article of providing enough information 
to do some “real" digital signal processing 
(DSP) analysis? While he was at it—could he 
get Adrien to add some graphics’ capability 
to display the frequency characteristics of the 
sounds in a room to make my term report 
more interesting!

In Canada, it's always good to keep on the 
right side of the neighbor's kids as they are a 
good (inexpensive) labor source for shoveling 
snow off sidewalks. So, we decided to write 
a RoomAcoustics Analysis Capability addition. 
(Actually, we wanted to be able to say that we 
had Penn-ed some code. Sorry for the pun.) 

First, we will explain how to excite a 
room resonance that can be captured by 
our existing TGBN detector code. We will 
graphically display the room audio signal to 
give us a first chance to compare resonance 
characteristics in different rooms. However, 
we found that looking for small differences in 
the captured signals displayed as a function 
of time meant working (slowly) with a lot 
of data. So we added a way to generate 
frequency information signal of captured 
signals using a discrete Fourier transform 
(DFT) algorithm code we grabbed from the 
web. Figure 1a shows the background noise 
recorded in our university lab. Having noticed 
a possible small 727-Hz ghost sleeping next to 
our desk, we tried to move around the room 
to better record its characteristic (see Figure 
1b). The frequency characteristics of our two 
records look too similar for us to be sure that 
we have a non-snoring ghost close by. 

We decided to wake it up by outputting a 
3-s Chirp, a sound burst from 50 to 1,000 Hz. 
Figure 1c show the frequency response of the 

Chirp signal, but there is not much there other 
than showing the poor low frequency of our 
phone’s speaker. However, we accidentally got 
close enough that we woke up the sleeping 
ghost which significantly changed the 
frequency response of the room (see Figure 
1d).  

Want a ghost portrait? Sorry, you'll have to 
wait to the end of Article 5 to see a picture of 
the ghost we persuaded to live behind a van 
der Vaal's force field.

<!--Used by SoundAnalysis activity -->

1700.<RelativeLayout

1701. xmlns:android="http://schemas.android.com/apk/res/android"

1702. <!-- COPY FROM Article 1, Listing 2 Lines 102 to 105-->

1710. <TextView

1711. <!-- COPY FROM Article 3, Listing 3 Lines 1711–1716 -->

1720. <TextView

1721. <!-- COPY FROM Article 3, Listing 3 Lines 1721–1727 -->

1730. <TextView

1731. <!-- COPY FROM Article 3, Listing 3 Lines 1730–1739 -->

1740. <ProgressBar

1741. android:id="@+id/computation_progress"

1742. style="?android:attr/progressBarStyleHorizontal"

1743. android:layout_width="wrap_content"

1744. android:layout_height="wrap_content"

1745. android:layout_centerHorizontal="true"

1746. android:layout_centerVertical="true"

1747. android:indeterminate="false"

1748. android:max="100"

1749. android:progress="0"

1750. android:visibility="invisible"

1751. />

1760. <Button

1761. android:id="@+id/start_graph_time"

1762. android:layout_width="wrap_content"

1763. android:layout_height="wrap_content"

1764. android:layout_below="@id/number_tgbn_sounds"

1765. android:layout_centerHorizontal="true"

1766. android:layout_centerVertical="true"

1767. android:text="@string/button_start_graph_time"

1768. />

1770. <Button

1771. android:id="@+id/start_graph_freq"

1772. android:layout_width="wrap_content"

1773. android:layout_height="wrap_content"

1774. android:layout_below="@id/start_graph_time"

LISTING 1
The activity_sound_analysis.xml layout file from the WAT_AN_APP\res\layout folder

http://schemas.android.com/apk/res/android
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EXCITING A ROOM RESONANCE
We explained to our next-door neighbors 

how to excite a room resonance to our next 
door neighbors at the last BBQ before the snow 
fell. We lined up 10 glasses on a hard surface, 
each filled with different levels of water. You 
can generate a sound impulse if you clap your 
hands together. All of the glasses should have 
resonated, tinkled, as an impulse contains 
all possible frequencies in theory.  However, 
persuading the BBQ group to sing “Do-re-
mi" at the glasses proved a better way of 
getting enough sound energy at a particular 
frequency. Once your group has found a note 

that starts a glass to sympathetically vibrate, 
then you can adjust their singing and get the 
“note" just right for a resonance. We were not 
sure about suggesting that our neighbor's 
teenager persuade the Penn Choral Society 
members to join his term project and sing 
in each room while he recorded them with 
the TGBN part of our WAT_AN_APP! Instead 
we explained how to use a more systematic 
and controlled approach—generating a Chirp 
signal—a longer duration sound containing all 
frequencies.  

The history of Chirps is neat. In the 
early stages of AM radio, you could hear 

LISTING 2
The prologue of the SoundAnalysis.java 
file (WAT_AN_APP\src\ folder) sets up 
the UI. The OnCreate() method enables 
the UI composed amongst other of two 
buttons (Lines 605 and 606). The other 
methods in this class are detailed in 
the different listings.

     package com.wat_an_app;
     // NEW CODE – INSERT AFTER Article 3, Listing 5 Lines 501– 512
513. import android.content.Intent;
514. import android.os.Environment;
515. import android.util.Log;
516. import android.view.Menu;
517. import android.view.MenuInflater;
518. import android.view.MenuItem;
519. import android.view.View;
520. import android.widget.Button;
521. import android.widget.ProgressBar;
522. import java.io.IOException;
       public class SoundAnalysis extends ActionBarActivity{
       //NEW CODE – INSERT AFTER Article 3, Listing 5 Lines 551– 556
557. final CounterClass timer = new CounterClass(5000,250);
558. private static final double REFSPL = 0.00002; // Hearing reference level
559. private Button button_graph_time; private Button button_graph_freq;
560. private MediaPlayer mPlayer=null;
600. @Override protected void onCreate(Bundle savedInstanceState) {
       //NEW CODE – INSERT AFTER Article 3, Listing 5 Lines 601– 603
       //Delete Article 3 Listing 5 Line 604
605. button_graph_time = (Button) findViewById(R.id.start_graph_time);
606. button_graph_freq = (Button) findViewById(R.id.start_graph_freq);
607. }
       // Some methods from Article 3, others described in Article 5
       //protected void onStart() //Article 3 Listing 6 Lines 750 to 759
       //protected void onPause() //Article 3 Listing 6 Lines 800 to 804
       //public class CounterClass // Article 3 Listing 6 Lines 850 to 877
       //protected void onPreExecute() //Article 3 Listing 8 Lines 910 to 919
       //protected void onCancelled() //Article 3 Listing 11 Lines 1300 to 1305
       //protected boolean detectImpulse() // Article 3 Listing 10 Lines 1350 to 1356
       //protected boolean detectTGBN( ) // Article 3 Listing 11 Lines 1400 to 1406
       //NEW AND MODIFIED METHODS
       //public boolean onCreateOptionsMenu(Menu menu) //Listing 3 Lines 610 to 615
       //public void startPlaying() //Listing 3 Lines 650 to 657
       //public boolean onOptionsItemSelected(MenuItem item) //Listing 3 Lines 700 to 708
       //public void onTick_Article4(long millisUntilFinished) // See Article 4 Lines 860 to 865
       //protected Integer doInBackground() // See Article 4 Lines 910 to 1199
       //protected void onProgressUpdate(Integer ... data) // See Article 5  Lines 1200 to 1220
       //protected void onPostExecute(Integer data) // See Article 5  Lines 1250 to 1259
       //protected int doubleFFT(double[][] samples, int numRecords, int sampleSize)
       // See Article 5 Lines 1450 to 1468 
       //public static int nearestPow2Length(int length) // See Article 5 Lines 1500 to 1505
       //public void DisplayGraph(View v)
       // See Article 5 Lines 1600 to 1603 
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the interference of lightning strikes some 
distance away as a crackle on the loudspeaker. 
If you slightly mistuned the radio, the 
crackle changed into something else. What 
happened was that the lightning strike, an 
electromagnetic (EM) impulse, generated 
a signal containing “all" EM frequencies. 
Signals at different frequencies traveled at 
different speeds through the air because of 
an effect called EM dispersion, and arrived 
at the radio at different times. Analog down-
sampling within the AM radios caused the 
different EM frequencies to turn into different 
audio signals. So you heard what sounded 
like a bird whistle starting at low audio 
frequencies and going up to high. Hence the 
name Chirp. You can generate an audio Chirp 
using a pedestrian underpass. If you clap 
your hands near the entrance, then you get 
a “doo-WEE” sound rather than a single clap 
echo. The “doo" sound is the reflection of low 
frequency sounds arriving back at your ears 
at an earlier time than the high frequency 
“WEE” reflections. Our preferred way of 
generating a 3-s Chirp sound burst is using 

Audacity (audacity.sourceforge.net) on a 
laptop. 

In this article, we make an application 
capable of both outputting a Chirp and 
capturing the room sound ecology. However, 
it is not our favorite approach as generating 
a Chirp on a mobile has issues. The mobile 
audio electronics are not really designed to 
handle low frequency output or provide a 
lot of audio power without distortion (see 
Figures 1c and 1d). However, plugging in an 
external speaker to boost the output cuts out 
the microphone input—a classic “CATCH-22” 
situation! We can fix that by capturing and 
then playing back the laptop Chirp as a .3GPP 
file on another Android phone using external 
speakers. By modifying the code in this article 
to output a NADA.3GPP file of “the sound of 
silence" rather than a stored Chirp you can 
have the best of both worlds!

Our plan for running the extended 
WAT_AN_APP is to press the “Press To Start 

610. public boolean onCreateOptionsMenu(Menu menu) {
611. // Inflate the menu items for use in the action bar
612. MenuInflater inflater = getMenuInflater();
613. inflater.inflate(R.menu.menu_sound_analysis,menu);
614. return super.onCreateOptionsMenu(menu);
615. }
650. public void startPlaying() {
651. mPlayer = new MediaPlayer();
652. try {
653. mPlayer.setDataSource(Environment.getExternalStorageDirectory().
getAbsolutePath()+"/MySounds/Chirp_50_1000Hz.wav");
654. mPlayer.prepare();
655. mPlayer.start();
656. } catch (IOException e) {}
657. }
700. public boolean onOptionsItemSelected(MenuItemitem) {
// Handle presses on the action bar items
701. switch (item.getItemId()) {
702. case R.id.GenerateChirp:
703. startPlaying();
704. return true;
705. default:
706. return super.onOptionsItemSelected(item);
707. }
708. } 

LISTING 3
Details of the methods dealing with 
the Action Bar used to display an icon 
outputting a Chirp sound saved in the 
phone memory

FIGURE 2
We can start the sound analysis 
from the MainActivity (a). The 
TGBN SoundAnalysis activity allows 
us to output a Chirp, perform our 
calculations, and call the activity that 
displays time and frequency graphs 
(b).

a)

b)
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Detecting TGBN" button from the MainActivity 
screen that pops up when the application 
starts (see Figure 2a) to start the TGBN 
SoundAnalysis activity. To ensure that the 
sound capture starts immediately modify 
the ints.xml file from the “WAT_AN_APP\res\
values" folder and set the threshold at which 
we start the recording from “10000” to “0” 
(see Article 3, Listing 4, Line 2840). As we 
will explain later, the DSP frequency analysis 
code works best with a 5-s sound sampling 
so change the capture time from “7" to “5" in 
the ints.xml file. 

As shown in Figure 2b, we can press the 
play icon located in the action bar (top right 
corner of the screen) to output a three seconds 
Chirp signal. After the sound capture, you can 
display the audio information as either an 
audio time graph or an audio frequency graph.

GETTING STARTED 
This article is an extension of Part 3 of 

this series, so you will see a lot of similar 
file names and line numbers. The code for 
the MainActivity is identical to Listing 1 and 
Listing 2 in Article 3. As a reminder, the 
setContentView() makes use of the layout 
file activity_main.xml to generate a screen 
with a message welcoming the user in the 
application, and two buttons to start the audio 
record/playback and audio analysis activities. 
When we called the SoundAnalysis activity in 
Article 3, we initialized the recorder, detected 
a sound, and recorded it into a local array. 
Then we did some simple DSP analysis—
check to see if the recorded data was above a 
certain threshold. This time, we are going to 
manipulate the recorded data using some DSP 
program before graphing the results using 
the GraphView library. 

THE SOUND ANALYSIS ACTIVITY
SoundAnalysis uses an asynchronous task 

which offloads the computations to a worker 
thread. This is necessary to not stall out the 
user interface (UI) thread which could cause 
the UI to stop responding. The SoundAnalysis 
activity’s layout, activity_sound_analysis.
xml is described in Listing 1. The TextView 
displaying the number of records remaining 
and the number of TGBN sounds detected 
(Lines 1710 to 1739) are identical to Listing 
3 in Article 3. We simply add a progress bar 
on the screen, translating the background 
FFT calculations (Lines 1740 to 1751), as well 
as two buttons, to start displaying graphs in 
the time (Lines 1760 to 1768) or frequency 
domain (Lines 1770 to 1778). 

Listing 2 shows code to add the time and 
frequency display buttons, Lines 559, 605 and 
606. Overviews of all the methods we need to 
develop are given at the end of Listing 2. The 

SoundAnalysis activity covers a lot of code. 
(To avoid typing, cut and paste the line from 
the listings in Circuit Cellar electronic version, 
or visit the Circuit Cellar FTP site.)  

The three methods in Listing 3 set up an 
action bar so that we can press an icon that 
output a Chirp sound which the application will 
record. The run-once onCreateOptionsMenu() 
method, Line 610, is responsible for handling 
the content of the activity’s menu that 
appears on the action bar. As this is our first 
action bar, we need to set up a “menu” folder 
in “WAT_AN_APP\res\menu. Add the “menu_
sound_analysis.xml" file to this folder and 
insert the code given in Listing 4 (Lines 2500 
to 2505). In order that Listing 4 (Line 2502) 
can display a play icon we need to add an 
“ic_action_play.png" file in the “WAT_AN_APP\
res\drawable-mdpi" folder. This icon can be 
obtained from a  “…\Action Bar Icons\holo_
dark\09_media_play\drawable-mdpi" folder, 
following the Quick Help Guide from Article 2 
to have more information on adding an icon. 

Lines 700 to 708 in Listing 3 show the 
onOptionsItemSelected() hook called 
whenever an item in the option menu is 
selected. Line 703 activates the startPlaying() 
method which outputs a Chirp to play a sound 
from 50 to 1,000 Hz. The startPlaying() 
method, Lines 650 to 657, outputs the 
Chirp_50_1000Hz.wav file located in a folder 
“MySounds" that we must add into the root 
directory of our phone’s internal memory. 
We found that pushing the Chirp play-button 
by hand meant that we often lost the last 

2500.<item
2501. android:id="@+id/GenerateChirp"
2502. android:icon="@drawable/ic_action_play"
2503. android:showAsAction="always"
2504. android:title="@string/audio_play"
2505. /> 

LISTING 4
menu_sound_analysis.xml file from WAT_AN_APP\res\menu folder to setup the action bar in the activity

860. public void onTick_Article4(long millisUntilFinished) {
861.  int capture_time_ms=getResources().
        getInteger(R.integer.capture_time) * 1000;
862.  if(millisUntilFinished> (capture_time_ms - 650) &&    
               millisUntilFinished< (capture_time_ms - 400)){
863.    int playChirp =getResources().getInteger(R.integer.playChirp);
864.    if (playChirp==1) startPlaying();
865.  }
866. } 

LISTING 5
onTick_Article4() from the CounterClass
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       //COPY FROM Article 3, Listing 6 and Listing 7
       private class CaptureAudio extends AsyncTask<Void, Integer, Integer>{
       //NEW CODE – INSERT AFTER Article 3, Listings 8 and 9 Lines 910– 981
982. detectBuffer = null;
       //TO UPDATE FROM Article 3
       //sampleBuffer = null;
984. if (recorder != null) { recorder.release(); recorder = null; }
985. if (!isCancelled()) publishProgress(-1, -1, -1, -1, 0, -1);
       //return 0;} //Delete 986 and 987 to allow extended background task to work
990. final int numRecords = getResources().getInteger(R.integer.num_records);
       // copy the buffer into a buffer of double
991. double[][] samples =new double[numRecords][sampleBufferLength];
992. double max = 0;
993. for(int n = 0; n < sampleBufferLength; n++){
994.       samples[0][n] = (double) sampleBuffer[0][n]; // Identify maximum value
995.         if(max < Math.abs(samples[0][n])) {max = samples[0][n];}
996. }
997. for(int h = 0; h < sampleBufferLength; h++) {samples[0][h] /= max;}
       // Grab first record for analysis and display
1000. double[] toStorage_time = new double[sampleBufferLength];
1001. for (int n = 0; n < sampleBufferLength; n++) {
1002.   toStorage_time[n] = samples[0][n] / REFSPL;
1003. }
1004. if (isCancelled()) {return -1;}
 // reduce the size of our sample so the graph can load in a normal amount of time
1005. int samplesPerPoint = getResources().getInteger(R.integer.	
         samples_per_bin_time);
1006. int width_time = toStorage_time.length / samplesPerPoint ;
1007. int samplerate = getResources().getInteger(R.integer.sample_rate);
1008. double maxYval_time = 0;
1009. final double[] tempBuffer_time = new double[width_time];
1010. for (int k = 0; k < tempBuffer_time.length; k++) {
1011.   for (int n = 0; n < samplesPerPoint; n++){
1012.    tempBuffer_time[k] += (samples[0][k*samplesPerPoint + n] / REFSPL);
1013. }
1014. tempBuffer_time [k] /= (double) samplesPerPoint;
1015. if (maxYval_time < tempBuffer_time [k]){
1016.    maxYval_time = tempBuffer_time [k];}
1017. }
       // scaling the x “time” values stored into xVals
1018. final double[] xVals_time = new double[tempBuffer_time.length];
1019. for (int k = 0; k < xVals_time.length; k++) { // xVales.length=512
1020.   xVals_time [k] = k * (1.0*samplesPerPoint) / (samplerate);
1021. }
       //Adding properties to clicking on the “GRAPH IN TIME DOMAIN” button
1025. button_graph_time.setOnClickListener(new View.OnClickListener() {
1026.    public void onClick(View arg0) {
1027.      String which_button_pressed = "1";
1028.      Bundle extras_time_values = new Bundle();
1029.      extras_time_values.putDoubleArray("key_x_time", xVals_time);
1030.      extras_time_values.putDoubleArray("key_y_time", tempBuffer_time);
1031.      extras_time_values.putString("button_pressed", which_button_pressed);
1032.      Intent intent_graph_time = new Intent(SoundAnalysis.this,DisplayGraph.class);
1033.      intent_graph_time.putExtras(extras_time_values);
1034.      intent_graph_time.putExtras(extras_time_values);
1035.      intent_graph_time.putExtras(extras_time_values);
1036.      startActivity(intent_graph_time);
1037.   }
1038. }); // Continues in Listing 7 

LISTING 6
Saving recorded data into the time 
domain using the doInBackground() 
step from the CaptureAudio class
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part of the Chirp. Rather than increasing the 
recording and analysis time we modified the 
onTick_Article4() mentioned in Article 3  to 
automatically play the Chirp about 400 ms 
after recording had started Listing 5 (Lines 
862 to 865). 

TIME DOMAIN ANALYSIS
Our Article 3 code allowed the capture of 

up to six sound records. For calculation time 
and other issues, we decided to analyze just 

one record by changing the variable “num_
records" (Article 3 Listing 4, Line 2830) from 
“6" to “1" in the ints.xml file. As you can see 
in Figure 1a, one record provided frequency 
domain signals with a good signal-to-noise 
(SNR) ratio. You will have to synchronize the 
start of the Chirp output capture to better 
than one sample period (1/8000 s). This is not 
straightforward when you have Android tasks 
running in addition to our WAT_AN_APP.  

In Article 3, we mentioned how the 

      //Call the function that process the FFT
1100. int error = doubleFFT(samples, numRecords, sampleBufferLength);
1101. if (error == -1) {
1102.   if (!isCancelled())
1103.   publishProgress(-1, -1, -1, -1, -1, 0); //display error message
1104.   sampleBuffer = null;
1105.   return -1;
1106. }
      // Grab first record for analysis and display
1107. double[] toStorage_freq = new double[sampleBufferLength];
1108. for (int n = 0; n < sampleBufferLength; n++) {
1109.   toStorage_freq[n] = (samples[0][n] / REFSPL);;
1110. }
1111. if (isCancelled()) {return -1;}
      // reduce the size of our sample so the graph can load in a normal
1116. int samplesPerPoint_freq = getResources().getInteger(R.integer.samples_per_bin_freq);
1117. int width_freq = toStorage_freq.length / samplesPerPoint_freq / 2;
1118. double maxYval_freq = 0;
1119. final double[] tempBuffer_freq = new double[width_freq];
1120. for (int k = 0; k < tempBuffer_freq.length; k++) {
1121.   for (int n = 0; n < samplesPerPoint_freq; n++)
1122.     tempBuffer_freq[k] += toStorage_freq[k * samplesPerPoint_freq+ n];
1123.   tempBuffer_freq[k] /= (double) samplesPerPoint;
1124.   // Log.d("ADebugTag", "Value of tempBuffer: " + Double.toString(tempBuffer[k]));
1125.   if (maxYval_freq < tempBuffer_freq[k]) {maxYval_freq = tempBuffer_freq[k];}
1126. }
     // Save X data
1130. final double[] xVals_freq = new double[tempBuffer_freq.length];
1131. for (int k = 0; k < xVals_freq.length; k++)
1132. xVals_freq[k] = k * samplerate / (2 * xVals_freq.length);
1135. button_graph_freq.setOnClickListener(new View.OnClickListener() {
1136.   public void onClick(View arg0) {
1137.     String which_button_pressed = "2";
1138.     Bundle extras_freq_values = new Bundle();
1139.     extras_freq_values.putDoubleArray("key_x_freq", xVals_freq);
1140.     extras_freq_values.putDoubleArray("key_y_freq",tempBuffer_freq);
1141.     extras_freq_values.putString("button_pressed",which_button_pressed);
1142.     Intent intent_graph_freq = new Intent(SoundAnalysis.this,DisplayGraph.class);
1143.     intent_graph_freq.putExtras(extras_freq_values);
1144.     intent_graph_freq.putExtras(extras_freq_values);
1145.     intent_graph_freq.putExtras(extras_freq_values);
1146.     startActivity(intent_graph_freq);
1147.  }
1148. });
1149. return 0;
1199. }// Continues in Article 5   

LISTING 7
Saving recorded data into the 
frequency domain using the 
doInBackground step from the 
CaptureAudio class
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SoundAnalysis activity uses an asynchronous 
task, CaptureAudio, to record and analyze the 
sound, and to update the activity’s UI with 
this class that makes use of four steps. The 
same first step, onPreExecute, performs 
any necessary setup. The second step, 
doInBackground, is invoked to perform any 
background computations that take a long 
time. doInBackground needs to be extended 
by adding the Listing 6 code to the TGBN 
detector doInBackground code from Article 3 
Listing 9. 

We need to do some housekeeping steps 
to allow the extended background activity to 
execute: after having inserted the code from 
Article 3 Listings 8 and 9, uncomment the 
line 956, as it will make sure that the sample 
buffer we are working with has a length that 
is a power of 2 for the FFT calculations. If 
you forget this step, the FFT calculations 
won’t be processed and an error message 
will appear on the screen. Remove the setting 
of sampleBuffer pointer to null in Line 983, 
remove the return statement in Line 986 and 
the curly bracket for Line 987. 

Preparing data for graphing can be time 
consuming unless the mobile CPU has lots 
of horsepower. There are efficient Android 
graphing packages available if the data is 
stored within a SQL database. As employing 
those will take another series of articles, 
we have taken a straightforward, bull-at-
gate approach. You have to handle possible 
overflow issues when doing integer DSP 
calculations. So in Lines 991 to 997, we 
convert the audio record to doubles, allowing 
graphing of the recorded sound. Lines 1000 
to 1003 allows grabbing the record for future 
analysis and display. The samples are stored 

into an array toStorage_time and divided by a 
constant REFSPL, which is the threshold of the 
human hearing, used here as the reference 
sound pressure level and equal to 0.00002 
(Line 1002). 

Displaying the sound signal generates 
another CATCH-22 scenario. If you display all 
the information, then you have 4 s off sound 
(32,000 point) displayed on a small screen. 
It takes forever to zoom in.  We decided to 
speed the time display and zooming by doing 
a rough form of down sampling, Lines 1005 
to 1017. If you try this with the Chirp signal, 
then you will find that your display does not 
show constant sound amplitude. The strong 
amplitude variation shows that you are no 
longer satisfying the Nyquist sampling rate 
and you get “display aliasing." 

The “x-axis" time values are generated 
through Lines 1018 to 1021. We make the 
button “Graph in Time domain" clickable by 
using setOnClickListener(), Line 1025. Line 
1036 calls the graphing DisplayGraph activity 
we'll discuss later. This call requires the 
graph’s “x" and “y" values to be passed from 
the SoundAnalysis activity to the DisplayGraph 
one using a bundle, Line 1028. This bundle 
makes use of two strings, “key_x_time" and 
“key_y_time", Lines 1029 and 1030 to pass 
the arrays “xVals_time" and “tempBuffer_
time". We put the string containing the value 
of the button that has been pressed to start 
the DisplayGraph activity into a key “button_
pressed", Line 1031. We then declare an intent 
that will start the DisplayGraph activity, and 
pass our two arrays and one string via the 
bundle “extras_time_values", Lines 1033, 
1034, as well as the button that has been 
pressed to call the graphing activity, Line 
1035. The data in the time domain can now 
be graphed.

The Quick Guide shows a way to write 
array’s values into an external .txt file stored 
in the phone internal memory for debugging 
analysis off the phone. If you are not 
interested in saving the values into a file, you 
can also display the content of the tempBuffer 
and xVals arrays in the LogCat by using the 
“Log" API that sends log output in the LogCat 
window, as we show in Listing 7 Line 1124. 
This line of code displays the recorded data 
amplitude’s values in the frequency domain.

A GHOST TO COME
We are about half-way there to getting the 

full DSP code ready to assist out our neighbor’s 
kid with his volunteer work. In the final article 
of this series, we will tackle getting the fast 
Fourier transform (FFT) code to handle 
spectral analysis. Then we head out into the 
world of Android graphics, and provide that 
promised picture of a ghost. 
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INSTALL AN APK FILE ON AN ANDROID DEVICE 
The Android application package file (APK) is the 

format of installable files on Android platform. In order 
to install an .apk on your phone, enable the “unknown 
sources” on Android (settings, security and check the box 
next to “unknown sources”). A dialog box pops up asking 
you to confirm the action, knowing that “your phone and 
personal data are more vulnerable to attack by apps from 
unknown sources.” Tap OK if you want to allow the .apk 
from the Circuit Cellar FTP site to run, but make sure to 
always know the source of the .apk files you install on your 
device. Connect your phone to the computer, and in the 
“USB Storage” folder, create a “My Applications” folder. Get 
the application .apk from the Circuit Cellar FTP site and 
copy it from your computer’s download folder (“C:\Users\
ajfgaspa\Downloads” by default) to the “My Applications” 
directory on your phone using your computer. From your 
phone, using the Google Play store, download and install 
an application as “file commander” (play.google.com/
store/apps/details?id=com.mobisystems.fileman&hl=en) to 
take control over the files stored in your phone. Start file 
commander, tap on the “USB storage” folder, and then on 
“My Applications” folder: the application .apk file should 
be here. Tap it. A window pops up asking you to “complete 
action using.” Select “Package installer”, and confirm that 
you want to install this application. A few second later, 
the application has been installed. Click on “Open.” The 
application starts!

DISPLAY VALUES IN THE LOGCAT
To display buffer values on the LogCat—e.g., tempBuffer_

time with amplitudes “y” values—add import android.
util.Log in Listing 2 after Line 522, and then between Line 

1013 and 1014 in Listing 6 add: Log.d(“ADebugTag”, “Value 
of tempBuffer_time: “ +Double.toString(tempBuffer_
time[k]));.

STORING AUDIO VALUES IN A .TXT FILE
To save data in an external .TXT file on a phone’s 

memory, refer to Figure 1 and Listing 1.

FORCE AN ACTIVITY TO START IN LANDSCAPE MODE
We always want to start up displaying graphs in the 

landscape screen orientation. Generate the graphing 
DisplayGraph activity as demonstrated in Article 3 to 
prepare for the graphing activities in Article 5. Now, modify 
the AndroidManifest.xml file where you see the activity line 
with the words android:name =”.DisplayGraph”. Add the lines 
for android:screenOrientation and android:configChanges 
as shown in Listing 2 to cause landscape mode and stop 
the phone’s keyboard from hiding parts of the graph.

// To make this output work, you will need to add these imports to
// Listing 2 after line 522  --  import android.net.Uri;    import java.io.File; 
// import java.io.FileNotFoundException;  import java.io.FileOutputStream;
// import java.io.OutputStreamWriter;    import java.util.Arrays;
// Insert this code in Listing 6 after Line 1021 and before Line 1025
String file_path4 = Environment.getExternalStorageDirectory()
          .getAbsolutePath() + “/Android/”; 
//Store file in the Android folder from the phone  Internal memory
File file4 = new File(file_path4 + “/YValuesfromSOUNDANALYSIS.txt”); //file’s name
sendBroadcast(new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE,
              Uri.fromFile(file4)));  //force the file to be displayed
FileOutputStream fos4 = null;
try {    fos4 = new FileOutputStream(file4); }
catch (FileNotFoundException e1) {//exception: file not found
      e1.printStackTrace();  }
OutputStreamWriter osw4 = new OutputStreamWriter(fos4);
try {
      String b4 = Arrays.toString(tempBuffer_time); 
      //display the array “tempBuffer_time” in  a text file as a string
      osw4.write(b4); osw4.flush();osw4.close();
}
catch (FileNotFoundException e) {  e.printStackTrace(); } 
catch (IOException e) {  e.printStackTrace();  }

LISTING 1
This code can be used to save the amplitudes 
of the time domain recorded data (referred 
as « tempBuffer_time ») into an external 
.txt file, stored into the phone memory. 
Similar code will also store the "xVals_time" 
in a text file as a string.

<activity
  android:name=".DisplayGraph"
  android:screenOrientation="landscape"   
  android:configChanges="orientation|keyboardHidden"
  android:label="@string/title_activity_display_graph">
</activity> 

LISTING 2
Modifying AndroidManifest.xml 
file will cause graphs to appear 
in "easy-to-read" landscape 
mode and stop the keyboard 
from hiding parts of the graph.

FIGURE 1
Saving data into an external .TXT file on the phone's memory
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In the first part of this article series, we 
looked at protecting against reverse 

battery voltage, selecting a microcontroller, 
and power management. In this article, we 
will look at combined AC/battery operation, 
single-cell operation, rechargeable batteries, 
and estimating battery life.

COMBINED AC/BATTERY 
OPERATION

In many applications, you want to operate 
your circuit from either AC (from a wall outlet) 
or batteries. AC operation typically involves 
a wall mount or other external power supply 
with a DC output. You could also embed an 
AC supply in the housing for the circuit. You 
might do that if your circuit normally operates 
from AC with battery only as backup. I won’t 
go into power supply design here. 

Typically, when you want to operate from 
the AC supply, you plug in the AC/DC adapter 
and the circuit switches to use the external 
supply. To do that, you need to disconnect the 
battery from the circuit when the AC supply 
is in use. Usually, the point of AC operation is 
to avoid battery drain, and possibly to charge 
the battery. You can make the changeover 
from battery to the external supply using a 

mechanical or electronic switch.
Some coaxial DC power adapters have a 

pair of contacts that open when the external 
DC plug is inserted. The battery lead (usually 
the negative side) is run through these 
contacts so that the battery is disconnected 
when the external DC is plugged in. Figure 1 
shows this configuration. The figure shows a 
coaxial DC jack, but other types of connectors 
could also be used—0.125” audio jacks are 
common. Obviously, this won’t work if the 
supply is internal since there is no external 
DC plug in that case. For an internal supply, 
if you want automatic switching, you have to 
use an electronic switch. 

The drawbacks to using the switched 
jack method are, first, that the contacts on 
the connector are an added failure point. 
Connectors and switches tend to be a high 
failure item in electronics. The second issue is 
that there may be momentary loss of power 
while the DC plug is being inserted. This 
happens if the battery contacts open before 
the external supply is fully connected.

Another method, also shown in Figure 1, 
is to use a Schottky diode in series with the 
external DC supply, and a second diode in 
series with the positive lead of the battery. 

Running on Battery (Part 2) 

In the first part of this series, Stuart explained 
how to protect against reverse battery voltage, 
select a microcontroller, and manage power. Here 
he examines combined AC/battery operation, 
single-cell operation, rechargeable batteries, 
and estimating battery life.

By Stuart Ball (US)

Battery Operation
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This eliminates the extra set of contacts used 
in the switched jack method, and it eliminates 
the potential for momentary power loss. 
However, this approach does lose around 0.3 
V from the battery and the DC supply due to 
the drop across the diodes. 

For diode-based electronic switching, the 
Schottky diode in the battery circuit also 
prevents reverse battery polarity. (See Part 
1 of this article series.) If you were going to 
use a diode for reverse polarity protection 
anyway, you don’t need an additional diode 
in series with the battery for isolation with 
an external supply; the same diode will do 
both jobs.

Figure 1 indicates a 12-V external DC 
power supply voltage with a 9-V battery. The 
specific voltages are not important, but this 
circuit will only work if the external supply 
voltage is higher than the battery voltage. If 
the external supply voltage is lower than the 
battery voltage, D2 will be reverse-biased and 
the battery will still be powering the circuit. If 
you are using a 6-V battery, you could use any 
DC supply greater than 6 V. Common voltages 
are 7.5, 8, and 9 V.

Many wall mount-type supplies output 
greater voltage than the rated voltage at low 
loads, so you might be able to use a 9-V supply 
with a circuit using a 9-V battery. I have one 
wall mount supply that produces over 12-V 
unloaded. But if you try that, test it in an 
operating circuit or check the manufacturer’s 
specifications for output voltage vs. current. 
The voltage may drop below the battery 
voltage under load.

A third way to handle AC/battery switching 
is to use a part such as the Linear Technology 
LTC4412. This IC, coupled with an external 
MOSFET, allows external supply operation 
from 3 to 28 V, and battery operation from 2.5 
to 28 V. It includes reverse battery protection, 
so there is no need for an additional Schottky 
diode for the battery.  

The LTC4412 has a logic output to indicate 
when the external supply is connected. The 
microcontroller can sense this to enable an 
LCD backlight, battery-charging circuit, or 
some other feature that is normally disabled 
during battery operation. The LTC4412 still 
requires that the external DC voltage be 
greater than the battery voltage to enable the 
switch from battery to external DC power.

There are other, similar battery switch 
parts, including the Intersil ICL7673. The 
ICL7673 switches the output to whichever 
input has the higher voltage. It is available 
in both SMT and DIP configuration, making 
prototyping easy.

Often the battery or power supply is 
followed by a regulator to provide the correct 
voltages for the circuit. You want to be sure 

that the regulator, if one is used, is capable 
of handling the additional power when the 
external supply is connected. For example, 
take the simple case of a 9-V battery with a 
78L05 regulator to produce a 5-V output. If 
the circuit draws 20 mA, the dissipation in the 
regulator on battery is 80 mW (9 V – 5 V × 
20 mA). If an external 12-V supply is used for 
AC operation, the regulator dissipation goes 
to 140 mW (12 V – 5 V × 20 mA).

For most battery circuits, you wouldn’t use 
a simple 78L05 because the quiescent current 
is too high. But the same principle applies to 
any regulator; make sure that the dissipation 
isn’t exceeded while operating on the higher 
DC voltage from the AC supply.

SINGLE-CELL OPERATION
In some cases you want to operate your 

circuit from a single 1.5-V battery. This allows 
for a smaller, lighter design. But there is 
less voltage available to drive LEDs or audio 
outputs or LCD bias inputs.  

In many single-cell applications, the 
microcontroller voltage will need to be higher 
than the battery. One way to do this is to use 
a DC-DC converter to step the battery voltage 
up to a higher voltage such as 3.3 V. There are 
numerous DC-DC boost converter ICs that are 
designed for battery operation, such as the 
Linear Technology LTC3525. This part is a burst 
mode regulator, so if the microcontroller is in 
sleep mode to save power, the regulator will 
draw only enough current from the battery to 
keep the output voltage constant.

One problem with an inductor-switching 
boost converter is the current draw during 
regulation.  This reduces battery life. A 
switched-capacitor charge pump such as the 
Linear Technology LTC1502 has lower current 
drain but significantly less output current 
capability (10 mA in the case of the LTC1502).  

FIGURE 1
This is how to use of a power plug 
with an extra contact in the negative 
terminal to isolate the battery when 
an external DC supply is used. I also 
show how to use Schottky diodes to 
isolate battery when external DC 
supply is used.
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One way to minimize battery drain is 
to operate the microcontroller from a low-
current charge pump boost converter, and 
run any higher current devices, such as LEDs, 
from a switched-inductor boost converter. 
During sleep mode, the microcontroller shuts 
down the switched-inductor converter to 
minimize current draw, but the switched-
capacitor converter keeps the microcontroller 
powered. 

Both types of converters draw some 
current all the time, so you have to decide 
whether the total power usage, based on the 
time-averaged total power, is less with two 
converters or with one switched-inductor 
converter. An additional feature of using two 
converters is that two output voltages can be 
generated, one for the microcontroller and 
the other for any components that require 
higher operating voltage.

There are microcontrollers, such as 
the Atmel ATtiny43U and the Silicon Labs 
C8051F9xx, with internal boost converters 
for single-cell operation. Since the boost 
converter is part of the microcontroller, 
more efficient operation is possible. For 
example, the ATtiny43U has a low-current 
mode of operation where the boost converter 
regulation is relaxed to minimize power 
consumption.

As I mentioned in Part 1 of this article 
series, when using batteries, you will want 
to monitor the battery voltage to avoid 
erratic operation when the voltage goes low. 
With single-cell operation, this is even more 
important due to the reduced usable voltage 
margin of the single cell. The Atmel parts 
contain a brown-out detector that can reset 
the microcontroller when the supply voltage 
is too low, but you may not want to wait until 
that point to go into some kind of safe mode.

BATTERY SELECTION AND 
RECHARGING

What kind of battery do you use in your 
project? As I mentioned in Part 1, you might 

be limited to off-the-shelf batteries because 
you want to use coin cells or standard AA, 
AAA, or 9-V batteries. This lets your user 
buy batteries almost anywhere. But he 
has to replace the batteries when they are 
exhausted.

If you don’t want to replace batteries, you 
need to think about rechargeable batteries.  
Obviously this implies a recharging circuit. 
There are different types of rechargeable 
batteries; a detailed analysis is beyond the 
scope of this article. For our purposes here, 
we’re interested in recharging the batteries, 
not in the battery technology.

The simplest recharge circuit is shown 
in Figure 2. This circuit is a modification of 
the diode-based battery switching circuit of 
Figure 1. The circuit in Figure 2 includes an 
additional blocking diode (D3) and a resistor. 
The resistor charges the battery when the 
AC adapter is plugged in. This approach is 
only suitable for batteries such as Nickel-
Cadmium (Ni-Cd) or Nickel Metal-Hydride 
(Ni-MH) that can withstand continuous trickle 
charging.  

The resistor must be chosen to limit the 
maximum charge current to no more than 
the continuous charging current for the 
selected battery. This is typically the capacity 
in milliamp-hours (mAh) divided by 10, but 
varies by battery. Also be sure to select diode 
D3 to handle the charging current; this will 
probably be significantly higher than the 
normal operating current of the circuit.

The charging current is the difference 
between the external DC supply voltage and 
the battery voltage, divided by the resistance. 
This can be a problem if you are using, say, 
a 9-V wall mount DC supply and a user plugs 
in a 12-V supply instead. The circuit will 
probably still work, but the battery charging 
current may be too high.

The advantage of trickle charging is 
simplicity; the drawback is charge time. A 
discharged battery can take many hours to 
recharge at the maximum trickle charge rate; 
longer if lower current is used. For a device 
that is normally plugged into the external 
supply and only occasionally run on batteries, 
or can be routinely charged overnight, this 
may be an acceptable trade-off.

Another advantage of trickle charging is 
that it’s suited to charging from a solar cell. 
This only works if the solar cell can charge 
the battery faster than the circuit discharges 
it. But in a circuit intended to last for days or 
weeks, solar trickle charging is a viable option 
since the trickle charge current will be higher 
than the drain current. In effect, the circuit 
operates from the solar cell when sunlight is 
available and from the battery the rest of the 
time. 

ABOUT THE AUTHOR
S t u a r t  B a l l  i s  a 
registered professional 
engineer with a BSEE 
and an MBA. He has 
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FIGURE 2
Simple recharging circuit based on diode-switched AC adapter
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For faster charging, or for Lithium-ion (Li-
Ion) batteries, a more complex circuit is used. 
Fast charge circuits monitor the battery for 
full charge and then cut off the charge current 
to prevent overcharging. The easiest way to 
implement a fast-charge circuit is to use an 
IC that is designed for that purpose. Typical 
examples would be the Linear Technology 
LT1571 or the Maxim MAX712. There are 
many different battery charge management 
ICs to choose from.

Texas Instruments has a good application 
note on these three battery technologies 
(Nickel-Cadmium, Nickel Metal-Hydride, and 
Lithium-ion) and the trade-offs in charging 
them. You can find it at www.ti.com/lit/an/
snva557/snva557.pdf.

ESTIMATING BATTERY LIFE
In most cases, you will want to have 

some idea how long your battery will last 
in the circuit. In very low-power circuits or 
consumer electronics, it may not matter that 
much. The batteries in the remote control for 
your television can last months. You may not 
care whether it is 12 or 18 months. But for 
a remote data logger application you would 
want to know how often to schedule battery 
replacement.

The first component of battery life is the 
current drawn by the electronics. For battery 
operation, this will be a combination of the 
current drawn in sleep mode and in active 
modes. (These modes are described in Part 1 
of this article series.) To build a power profile, 
you will want to add the current drawn in 
sleep mode and the current drawn in active 
modes.  

Note that you could have more than one 
active mode. For example, a remote data 
logger might take readings once per second, 
but it might transmit those readings via 
cell modem once per hour or once per day. 
Obviously, using the cell modem is going to 
require significantly more current than just 
taking readings, in most applications.

In a typical example, say that we have a 
remote data logger that takes a reading every 
second, and it takes 100 ms to wake up and 
capture all the information. One of the sensors 
we are reading requires that an infrared 
LED be turned on; maybe we’re reading the 

opacity of water in a pipe to measure the 
amount of suspended sediment. So our power 
usage looks like this:

•	Microcontroller current during active  
	 state: 10 mA
•	LED current: 20 mA
•	Microcontroller current during sleep state:  

	 25 µA

Since we make a measurement once per 
second, and each measurement takes 100 
ms, then the average active mode current 
draw is (10 mA + 20 mA) × 100 ms/1 s, or 
3 mA. Running this for an hour consumes a 
charge of 3 mAh from the battery. The sleep 
mode consumption is 22.5 µAh.  The total of 
active and sleep mode is 3.0225 mAh/hour. 
Clearly, the sleep mode contributes little to 
the battery drain, which is why we want the 
microcontroller to spend as much time as 
possible in that state.

An alkaline AAA battery has a capacity of 
about 1,250 mAh, so the battery lifetime will 
be 1,250 mAh/3.0225 mA = 413 h. This will 
vary with the type of battery: alkaline vs. Ni-
Cd vs. zinc-carbon, and so on. It also varies 
with the amount of voltage drop in the battery 
our circuit can tolerate. Even the quality of 
the battery will affect it. I got a consumer 
product once that came with batteries, but 
the manual said that the included batteries 
could be expected to have shorter life than 
purchased batteries. Like those small capacity 
“starter” ink cartridges that some printer 
manufacturers include with their printers. 

Switching to an alkaline AA battery with 
about 2,000-mAh capacity gives about 661 
h of operation. All the same conditions and 
caveats apply.

Generally, we want to run a battery-
powered microcontroller at the lowest 
possible clock rate for minimum power. For 
many microcontrollers, this means a 32-khz 
watch-type crystal. If your application is 
like that theoretical data logger, where the 
microcontroller is just waking up to take 
readings for a fixed time, that is usually what 
you would do. A device like a television remote 
control, where the microcontroller wakes up 
in response to button presses by the user, is 
another example of such an application.  

There are some applications where the 
slowest clock rate isn’t the best choice. If the 
active mode of the microcontroller requires 
complex calculations that take significant 
time, then the slower clock rate may not 
result in the lowest possible average power. 
But using this same method of calculation will 
let you determine that, based on the active 
and idle current used by your microcontroller. 
Be sure to compare the power calculation circuitcellar.com/ccmaterials

SOURCE

ATXmega324A Microcontroller
Atmel Corp. | www.atmel.com

http://www.ti.com/lit/an/
http://www.atmel.com
www.circuitcellar.com/ccmaterials
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for both clock rates at the same supply 
voltage. If the microcontroller can operate at 
multiple supply voltages, the datasheet may 
list the active and idle current for different 
frequencies and at different supply voltages.

As an example, let’s take the same data 
logger, but say that the calculations required 
to make all the readings (maybe compensating 
for the ambient light and temperature) is 
what makes the sample take 100 ms. Say 
that if we ran at 2 MHz, the reading would 
only take 1.6 ms (100 ms × 32 kHz/2 MHz). 
Say that at 2 MHz, the sleep mode current is 
200 µA and the active mode current for the 
microcontroller is 20 mA. In that case, the 
average current consumption for the circuit 
would be about 0.26 mA and the faster clock 
actually results in lower average power.

This example is a bit extreme because 
of the relatively high LED current during the 
sampling interval. But it is not uncharacteristic 
of the trade-offs involved in comparing the 
slowest possible crystal to a faster clock 
rate in applications where the processor has 
to spend time calculating things. In most 
applications the slower crystal speed will give 
the lowest current—but not always.

If you use a microcontroller with an 

internal PLL, you may get the best of both 
worlds. Run the microcontroller on a 32-kHz 
clock in sleep mode and reprogram the PLL 
for a faster clock when the microcontroller 
wakes up. Obviously, this approach limits your 
microcontroller selection to those with all the 
low power and other features you need, plus 
an internal programmable PLL.

When estimating battery life, and if 
you are using rechargeable batteries, you 
will want to estimate battery life when the 
batteries are nearing their end of usable life. 
For some applications, you might not care, 
especially if the rechargeable battery can 
be easily replaced. But in other applications, 
such as the remote data logger, you want to 
know how long a weak battery will last. You 
don’t want to have to make an extra trip to 
replace the data logger because old batteries 
didn’t last long enough.

DESIGN FOR OPERATION
Although this article series can’t cover 

every aspect of battery operation, they should 
get you started on battery-based design. 
Taking these things into account will help you 
avoid some of the potential pitfalls of 
designing for battery operation.  
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This article deals with some of the most 
important measurement instruments 

needed for a general-purpose electronic 
laboratory. It should prove to be a useful 

resource for electronic enthusiasts and 
engineers working in their homes, where 
signal generators, logic analyzers, and digital 
oscilloscopes are unavailable. 

I’ve built an inexpensive and versatile 
measurement system that contains a signal 
generator, logical analyzer, and digital 
oscilloscope. If you build your own, you’ll be 
able to address many of the problems typically 
encountered on test benches.  

The system is not PC-bus connected. 
Instead, it’s external to the computer, making 
use of the RS-232 serial port shown in Figure 1. 
Also, it doesn’t have a power supply input, 
so the same serial cable feeds it. Because 
the computer’s serial connection provides 
limited power, low power consumption is a 
fundamental requirement.

The low-power goal is achieved with a 
small number of components—the fewer the 
better. So, I quickly became interested in 
the MSP430F149, which is a highly integrated 
device with low power consumption. Note that 
everything is integrated except the oscilloscope 
analog chain (coupling and programmable 
amplifier), part of the trigger circuit, and 
the input buffer for the logic analyzer. The 
microcontroller works with an 8-MHz crystal 
oscillator.

This application uses the register bank, 
the entire RAM (2 KB), and nearly all of the 
peripherals. The peripherals used include the 
16-bit TimerA and B, ADC, analog comparator, 
multiply accumulate, and one USART with 
modulation capability. Only the second USART 
is spared. 

The system has several main features. You 
can control and display on the PC by running 

Build a Three-in-One 
Measurement System

No home electronics lab is complete without 
a signal generator, logic analyzer, and digital 
oscilloscope. But why purchase the measurement 
devices separately, when you can build one system 
that houses all three? Salvador shows you how.

By Salvador Perdomo (Spain)

Editor's Note: This article first 
appeared in Circuit Cellar 156, 2003.

FIGURE 1
It is of interest to have your test benches as clear as possible to search for the faulty part of your design. So, 
a small measurement system is highly recommended. It’s better if it isn’t connected to the mains.
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PHOTO 1
Hand-soldering a package this size 
is tough work. The signal-generator 
filter has bulky coils. In contrast, the 
MSP430F149’s PQFP64 is tiny.
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software implemented on LabWindows/CVI. In 
addition, it has a signal generator based on the 
direct digital synthesis method and a frequency 
of up to 6 kHz with 0.3-Hz resolution. The 

output voltage reaches a peak of 1.3-V (±2 dB) 
fixed amplitude. The signal generator works 
simultaneously with the oscilloscope and logic 
analyzer (but not these two).

PHOTO 2
a—You can replace the relays in the coupling section and the driver circuit with solid-state relays if you can find ones with low leakage current. b—The op-amp’s SMD packages 
are best viewed from the bottom. The larger board is populated on both sides. Note the importance of the parasitic coupling of the PWM D/A outputs to the input of the amplifiers.

PHOTO 3
a—When the driver program starts, it asks you for the port where the system is 
connected. This allows it to be opened. b—The oscilloscope panel contains all of the 
buttons necessary to control it in a similar way to stand-alone equipment. However, 
it also includes the option to print the captured signal in addition to a low-frequency 
signal generator. c—The logic analyzer panel provides all of the acquisition and 
visualization control necessary for studying low-speed digital signals. Its simple 
trigger is useful for numerous real-world applications.

a) b)

a) b)

c)



CIRCUIT CELLAR • OCTOBER 2015 #30336
CC

 R
EB

O
O

T

I included a digital oscilloscope with two 
channels that have 1-MHz bandwidth, 8 bits 
of resolution, and 401 words of memory per 
channel. There are 10 amplitude scales from 5 
mV to 5 V per division and 18 timescales from 
5 µs to 2.5 s per division. Note that there are 
four working modes: Auto, Normal, Single, and 
Roll.

The logic analyzer has eight channels, 1920 
words of memory per channel, and sampling 
from 1 to 100 kS/s. It is trigger-delay selectable 
between 0, 50, and 100% of memory length.

Looking at Photo 1, you see that the 
system’s hardware consists of two separate 
boards that are attached to each other. Photo 
2a shows the tops of the boards, and Photo 
2b shows the bottoms. The larger board 

contains the oscilloscope analog chain: BNC 
connectors, relays (and circuit controller) for 
DC-GND-AC in the coupling section, and the 
digital programmable attenuator/amplifier. 
The top board contains the DC/DC converter 
power supply, charge-pump inverter, serial-
communication driver, low-pass filter, 
trigger (real and equivalent time sampling) 
circuit, channel-trigger selector, and the 
microcontroller.

CONNECTION AND POWER 
The RTS and DTR DE9 connector pins 

feed the system. (I didn’t use the hardware 
handshake.) The Rx(2) and Tx(3) pins are used 
for communication between the microcontroller 
and PC. This is achieved with the USART0 and a 
MAX3221 driver.

First, I tested the RTS and DTR pins’ I-V 
curves in order to know how much power 
was available. The curves are similar, and 
they resemble a PMOS device connected to a 
12-V supply coming down to 10 V at 10 mA 
of current consumption and approaching 0 V 
at 14 mA. So, each pin produces a maximum 
power of approximately 100 mW (200 mW for 
both of them).

In order to feed the system with 3.3 V 
from the serial port, I used a 3.3-V output DC/
DC converter (see Figure 2). The controller is 
based on a TL5001. (In the photos, it’s near a 
radio-IF filter can that contains the converter’s 
coil.) Also, a couple of TPS60403 charge-pump 
voltage inverters were used in parallel to feed 
the analog portion of the system with ±3.3 V.

Although I could have bought a 1.2-mH unit 
for the coil construction, I decided to build it 
with an old 10.7-MHz radio IF filter core. The 
coil construction took 180 turns of 4-mils (0.1 
mm) diameter wire and gave an adjusted 
range value from 0.5 to 1.26 mH. The coil’s DC 
resistance is 4.1 W. 

The circuit was measured, and it performed 
well up to a current consumption of 42 mA (a 
power of 138 mW), which is enough to feed the 
entire system. The RTS and DTR pins remain 
at –12 V when the serial port is closed. When 
you call the PC driver program, the first panel 
appears (see Photo 3a). When you select the 
serial port where the system is connected, 
the port opens (increasing the RTS and DTR 
voltage to 12 V), configures a protocol with 
115,200 bps, 8N1, and reserves a receiving 
buffer of 2000 bytes. Also, an interrupt for 
receiving_buffer_full (802 bytes) is prepared to 
let the main program know that a datastream 
has arrived. The LabWindows statements 
include the following two lines of code:

OpenComConfig  (COMx, ” ”,
115200, 0, 8, 1, 2000, 30)

FIGURE 2
Thanks to the selected components’ 
low power, I was able to eliminate 
the system’s independent power. For 
this project, a DC/DC converter is 
indispensable.

FIGURE 3
a—The first equation extends the values from 1 to 399 to cover the dynamic range of the DAC. b—Now, the 
values extend from –1250 to 1250. c—Using the software DDS, you can create a sine function.
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InstallComCallback(COMx, 15,
802, 0, RxBuffer_full, 0)

When the microcontroller receives power, 
it starts from reset and configures all of the 
necessary peripherals: the comparator, ADC, 
TimerA and B, USART0, I/O pins, and the 
interrupts. Afterwards, it stays in a default 
state, waits for a PC command, and attends 
to the TimerB signal generator interrupts 
because it starts generating a 1-kHz sine wave 
by default.

THE SIGNAL GENERATOR
The signal generator is intended to provide 

the signal A × sine(wt), where the amplitude, 

A, is fixed near VCC/2, and the frequency is 
programmable with 0.3-Hz (20 kHz/65,536) 
resolution and up to 6 kHz. 

The signal generator’s hardware consists 
of a D/A converter made with TimerB PWM 
output TB2 (pin 4.2), an external six-pole RLC 
low-pass passive filter, and a BNC connector. 
To save more components, the necessary 
D/A converters are carried out with the PWM 
of TimerB. A passive filter loads the output 
transistors and produces distortion in the 
signal. Active filters are recommended instead. 
You may download a schematic of the signal 
generator’s hardware from the Circuit Cellar 
ftp site.

The PWM-D/A converter has a 20-kHz 

LISTING 1
Now that you’re familiar with the 
software DDS, you can generate the 
sine function in Figure 3c.

add     FREQ,&PHASE         	//Phase accumulate from 0 to 65535
mov.b   &(PHASE+1),TABLE_S 	 //PHASE_H is used to read tables.
rla     TABLE_S               X2 accesses word tables.
mov     #8000h,&RESLO       	//To round the MACS to the 16-bit  
		      nearest integer.
mov     SIN(TABLE_S),&RESHI  	
mov     COSIN(TABLE_S),&MACS  
mov.b   &PHASE,TABLE_S       //OP2 is a 16-bit SFR, so go throw 		
			   a register to translate PHASE_L
			   to OP2.
mov     TABLE_S,&OP2    
mov     &RESHI,&TBCCR2       //Got new sample. Update TB2_PWM.

SIN  DW  200,205,210,215,220,224,229,234,239,244,248,253
	 DW  258,262,267,272,276,281,285,289,294,298,302,306, ...

COSIN DW  1250, 1250, 1249, 1247, 1244, 1241, 1237, 1232, 1226, 1220
   	 DW  1213, 1205, 1197, 1187, 1177, 1167, ....

Frequency 
register

Phase_H

Phase_L16 bits

16 bits
SIN_ROM

COSINE_ROM

8 bits

8 bits

16 bits

16 bits
+

MAC

D/A

High resolution = sine

Low resolution

16 bits

32 bits

399

200

1

Sine

20 kHz

Slope = COSINE_ROM

SINE_ROM

Phase

Phase_L

Phase_H

8 bits

16 bits
Phase  
accumulator register

High
word

Low word
(not used)

FIGURE 4
The DDS technique for synthesis is a 
recent development. Today, the IC-
form approach has a 1-GHz sampling 
frequency with phase accumulators 
of 32 bits or more. I found the 
performance to be a modest 20 kHz 
with a 16-bit phase accumulator.
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sampling frequency. This value is the result 
of several trade-offs among resolution, time 
spent attending to its interrupt and peripherals, 
and the maximum generated frequency. The 
converter has the following resolution:

8
20

 MHz
 kHz

 = 400

which is equivalent to 8.64 bits.
As you can see in Photo 1, the filter’s 

inductors are power chokes. Their series 
resistance was measured, and it changes with 
the frequency in the following way:

RS = − −27 + 0.9e  3f + 0.5e  6f2

This behavior results from the losses in the 
ferromagnetic core. It was taken into account 
in the filter design as well as the resistance 
of the PWM (pin 4.2) output MOS transistors. 
The filter was designed after measuring the 
coils with a MATLAB-based program that took 
into account the coil-loss variations with the 
frequency. You may download graphs of the 
frequency response from the Circuit Cellar ftp 
site. The graphs represent the response to the 
sampling frequency and the passband details.

The distortion of the PWM as a D/A converter 
is by far the biggest source of spurious signals, 
mainly because the output MOS transistors 
must supply the analog current to the passive 
filter. So, I recommend using an active filter 
because it won’t load the PWM, and it will save 
you from using bulky coils.

The rest of the signal generator is based on 
a software digital synthesizer (DDS) composed 
of a 16-bit frequency register, 16-bit phase 
accumulator register, and two look-up tables 
(SIN_ROM and COSIN_ROM). Each of these 

tables is 256 words long and 16 bits wide. 
The values are computed in MATLAB using 
the equation shown in Figure 3a. By using 
the equation in Figure 3b, the values extend 
from –1250 to 1250. This equation represents 
the time derivative (slope) of the SIN_ROM 
table multiplied by 256. Note that 0:255 (i.e., 
0 through 255) is simply a way to create an 
array of numbers in MATLAB.

Figure 4 depicts a function diagram of the 
software DDS. It uses the microcontroller’s 
multiply-accumulate capability to generate the 
sine function in the equation shown in Figure 
3c, which is easily carried out with the code in 
Listing 1.

THE DIGITAL OSCILLOSCOPE
The oscilloscope panel incorporating 

the signal generator’s controls is shown in 
Photo 3b. The brown box in the upper-right 
corner is the DDS control, which controls the 
generated frequency. Everything else pertains 
to the visualization and control of the digital 
oscilloscope. As you can see, the panel is 
visualizing two signals: a 5-kHz sine DDS 
generated in channel_A (green trace), and 
a 10-kHz AM modulated signal generated by 
a commercial generator in channel_B (blue 
trace). The digital oscilloscope’s hardware 
consists of a configurable analog chain that 
drives the ADC, RAM, a trigger circuit, and a 
display.

Each of the digital oscilloscope’s channels 
has a configurable coupling stage (DC, 
GND, AC) made with two low-power (high-
resistance, 1400-W) DR-12V monostable relays 
from SDS-Relais—a company that’s now called 
Matsushita Electric Works UK. Its pick-up 

FIGURE 5
The analog conditioning chain must 
have digital programmable gain 
capability in order to adjust the 
voltage range of the input signal to the 
ADC input voltage range.
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voltage is 9.6 V, and its dropout voltage is 1.2 
V. So, the circuit that drives its coil is a little 
tricky when you’re trying to engage it with only 
±3.3 V. To produce a transient response bigger 
than the available power supply, you must rely 
on reactive components (i.e., coils, capacitors, 
or both). In this system, the charge stored in 
a capacitor is used as a floating battery that’s 
added to the fixed power supply. You may 
download a diagram of the circuit from the 
Circuit Cellar ftp site. 

When the microcontroller pin changes from 
a high level to a low level, a pulse that’s long 
enough and close enough to 12 V is applied to 
the coil to pick it up. Afterwards, it continues 
applying approximately 3.3 V, which keeps it 
engaged (neglecting the voltage drop in the 
Schottky diode and the transistor saturation 
voltage).

Nearby, there is a digitally controlled 
attenuator and amplifier around the low-
power, high-bandwidth CMOS op-amp 
(TLV2624) and 74HC4053 multiplexer. Of the 16 
possible switch combinations, only 10 are used 
to obtain 10 different gains (from 30 to 0.03) 
corresponding to 10 different input ranges 
(i.e., oscilloscope sensitivity from 5 mV to 5 V 
per division).

The bandwidth achieved is always better 
than 1 MHz. The signal path that runs from the 
BNC connector to the ADC input for one channel 
is shown in Figure 5. As I calculated its values, I 
took into account the pin’s capacitance, the op-
amp frequency response, and the 74HC4053 
switch’s on resistance (approximately 70 W). 
The ADC had 12 bits of resolution, but I used 
only the eight higher bits that were sent to the 
PC. The internal 1.5-V reference voltage fixes 
the input range.

In order to control the position of the channel 
A and B traces in the screen and the offset of 
the amplifiers, two PWM DACs and a passive 

low-pass filter—which are based on TimerB 
PWM outputs TB4 (pin P4.4) and TB3 (P4.3)—
are provided (see Figure 5). The amplifiers’ 
outputs go to the micro’s ADC inputs—A5 (pin 
6.5) and A6 (P6.6)—and to a trigger-channel 
selector made with a 74LVC2G66, which feeds 
the MSP430F149 analog comparator connected 
with positive feedback (Smith trigger). This 
is achieved in such a way that it has 30-mV 
hysteresis, or 2% of 1.5 V (the full range of 
the ADC).

The comparator also receives the output of 
another PWM DAC and passive low-pass filter 
based on the TimerB PWM output TB1 (pin 
P4.1) that establishes the oscilloscope trigger 
level. After the comparator, the 74AHC1G86 
exclusive OR gate is used to select the trigger 
slope. 

Figure 6 depicts this portion of the 
hardware with the rest of the trigger circuit, 
which makes possible the sequential equivalent 
time-sampling technique. It’s composed by 
one 74AHC74 (a couple of D flip-flops) and the 
74AHC1G86 exclusive OR gate.

The trigger circuit and TimerA collaborate 
in order to make the oscilloscope work with 
this technique. It happens as soon as you 
select the time bases from 5 to 250 µs per 
division, and it is transparent. In this way, the 
oscilloscope bandwidth is only limited by the 
analog bandwidth and comparator precision, 
and not by the ADC maximum frequency 
conversion (Nyquist criteria).

The only requirement to function with this 
technique is that the input signal must be 
periodic during the acquisition. For instance, 
given the faster time base of 5 µs per division, 
it is necessary to capture 401 samples (400 
intervals of 125 ns) to complete 50 µs of the 
signal (i.e., 5 µs per division × 10 divisions). 
But the MSP430F149 ADC’s maximum sampling 
frequency is limited to 200 kS/s because of the 

FIGURE 6 
The trigger is probably the key section 
in an analog or digital oscilloscope. To 
start the capture, it must provide a 
clean and precise point in the signal.
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5-µs conversion time (per channel). 
The signal is periodic, so it is possible 

to make successive trigger-capture cycles 
or sweeps capturing only a portion of the 
signal on each sweep. They would have to 
be incrementally delayed with respect to the 
trigger point, as illustrated in Figure 7. TimerA 
is in charge of the delay. For the 5-µs-per-
square time base, the ADC is programmed to 
acquire 11 successive samples (5 µs apart) 
on each sweep. Forty successive sweeps, 
which are incrementally delayed 125 ns, are 
performed to total 440 samples. Note that only 
the first 401 are sent to the PC. 

Real time covers the time bases from 500 
µs to 2.5 s per division, and it implies only one 
sweep capturing 401 samples per channel in 
both channels simultaneously (Nyquist criteria 
applies). In practice, there is a delay of one 

sample between the two channels because 
there is only one sample-hold (actually the 
channels are converted interlaced), but it isn’t 
noticeable.

Equivalent time and real time (depending 
on the time base that’s selected) are the ways 
the hardware works when you select Auto 
mode, Normal mode, or Single mode from the 
PC’s oscilloscope mode control. Now, let’s take 
a look at each one.

In Auto mode, an automatic trigger will 
occur if there is not a trigger within a fixed 
0.2-s interval. This fixed time is commanded 
by the PC if it does not receive the samples 
it is waiting for from the previous Acquire 
command. To produce the automatic trigger, 
the microcontroller changes pin P2.5 (trigger 
slope) twice in order to assure that the first 
flip-flop in Figure 6 is set. When the 802 
samples arrive (401 + 401), another Acquire 
command is released.

In Normal mode, a trigger event is 
necessary to acquire data. Only after all of the 
802 samples have arrived does the PC release 
another Acquire command. 

Single mode is similar to Normal mode, but 
there is one major difference. Basically, after 
all of the samples have arrived, the PC stops 
waiting for another user command.

Roll mode is only selected from 0.05 to 2.5 
s per division. It is different from the other 
modes because it doesn’t use a trigger event 
to start acquisition. Instead, it is continuous, 
and the microcontroller doesn’t wait to acquire 
401/channel samples before they are sent to 
the PC. 

In Roll mode, a smaller number of samples 
(depending on the time base) are acquired 
and sent. For instance, at 2.5 s per division, 
only four samples per channel are acquired 
before they are sent to the PC. When the PC 
receives them, the old samples are shifted to 
make room for the new ones and are shown 
on the screen. This produces an effect of 
picture displacement known as the roll effect. 
Of course, because the datastream length 
changes with respect to the other modes, the 
LabWindows receiving_buffer_full interrupt 
has to be adapted correspondingly (function 
InstallComCallback).  

THE LOGIC ANALYZER
The logic analyzer panel is shown in Photo 

3c. There is no direct access from this panel to 
the signal generator, but it keeps generating 
a signal with the frequency previously fixed in 
the oscilloscope panel. Photo 3c shows only the 
central 160 samples per channel (zoom applies) 
of the 1920 samples per channel captured. 

The hardware is easily built with a 74AHC244 
buffer and a pull-down array of eight 1-MW 
resistances. The 74AHC244 buffer makes the 
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FIGURE 7
If the ADC has a limited conversion 
speed and its analog bandwidth 
is higher than the Nyquist criteria 
enforces, some kind of equivalent time 
sampling can be applied. This figure 
explains one of the techniques—
sequential time sampling.
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system 5-V, TTL-compatible, and is connected 
to port 5 on the microcontroller. The rest of the 
logic analyzer (i.e., the sampling frequency, 
triggering, and trigger delay) is software-
based. Also note that it’s 8 bits wide with a 
1920-KB memory depth and an acquisition 
frequency range from 1 to 100 kS/s. 

The trigger delay is user-selectable, which 
enables pre-triggering, middle triggering, and 
post-triggering. Because of the asynchronous 
sampling of the data, the visualization is only 
available as a timing diagram. 

Concerning the triggering, when you 
activate the Get_Data control, the PC’s main 
program extracts two bytes—ID (ID7 through 
ID0) and IDE (IDE7 through IDE0)—from the 
states of the trinary switches, D7 through D0. 
D7 through D0 define the trigger word with 
three possible values (0, 1, and x) bit by bit. 
After the microcontroller receives the IDE and 
ID bytes from the PC, the sampled input data is 
masked (masked_DATA = DATA logical AND with 
IDE), making zero the don’t care bits (option x) 
selected by the user. This masked input data is 
compared to the ID byte (masked_DATA is CMP 
with ID). A match validates the trigger. If there 
is a match, the trigger delay is counted and the 
acquisition is completed. Afterwards, the data 
is sent to the PC. You may download a diagram 
of this process from the Circuit Cellar ftp site. 
Note that the process is used for the trigger 
word depicted in Photo 3c.

The simplest event that can trigger a logic 
analyzer is the coincidence of a data with a 
word you have selected. This coincidence must 
be bit by bit. To define the trigger word, some 
switches are provided so you can set each bit 
to 0, 1, and x (don’t care). 

THE PC-MICRO COMBO
By default, the microcontroller attends to 

the TimerB signal-generator interrupt every 
50 µs (20-kHz sampling frequency), and the 
subroutine lasts 7.875 µs including the latency 
time. So, the remainder of the time is available 
for the received PC commands or the interrupts 
and commands released by other peripherals. 

The PC commands are composed of 3 
bytes: two data bytes and one command byte. 
When the USART0 received data interrupt is 
attended, the number of data bytes received 
are counted in order to correctly deposit them 
in three registers, including word_received (16 
bits) and PC_command (8 bits). Back in the 
main program, the PC_command register is 
used to make a table-based indexed branch to 
the routine that serves the intended command. 

The reason for accompanying the byte 
command with two data bytes is self-
explanatory. To change the frequency of the 
signal generator, it is necessary to load a new 
16-bit value in the frequency register in Figure 

4, and to change the trigger level or change 
the channel trace position. Another example is 
that the acquisition command, START_ADQ, is 
accompanied by a number indicating the time 
division to program TimerA in order to fix the 
ADC acquisition frequency. Another number 
indicates how the samples have to be dealt 
with (e.g., equivalent time, real time, or roll). 
For other commands (e.g., TRIG_SLOPE and 
TRIG_SOURCE), they’re unnecessary and filled 
with dummy data.

Otherwise, there is another microcontroller 
register called STATUS_H, which keeps track 
of the peripherals’ jobs. For instance, when 
the ADC routine has loaded 401 samples 
per channel in the RAM memory, it deposits 
a peripheral command such as SEND232 in 
this register. Thus, when back in the main 
program, the STATUS_H register is used to 
make a table-based indexed branch to the 
routine that serves the intended command. (In 
this example, the acquired data is sent to the 
computer.)

A helpful flow chart is depicted in Figure 
8. You may download several lines of code 
representing these ideas from the Circuit 
Cellar ftp site.

Keep the following advice in mind when 
you’re changing from the oscilloscope to the 
logic analyzer (and vice versa): You can send a 
command to make the microcontroller return 
to a default state (waiting for a PC command 
and attending the TimerB signal-generator 
interrupts), and stop sending data if it is doing 
it. Simultaneously, the PC data queue must be 
cleared. 

START_AD

NEW_FREQUENCY

HOLD_UC

POSITION_A

TRIG_LEVEL

PC_COMMAND 
Register

Position_A 
Routine

HOLD_PC

MOV.b #2, & PC_COMMAND

HOLD_PC

SEND232

STATUS_H
Register

SEND232 
Routine

HOLD_UC

MOV.b #0, & STATUS_H

Jump to HOLD_PC

Jump to HOLD_UC

UART∅_Rx_ISR

WORD_RECEIVED = 1̊  and 2˚ bytes

PC_COMMAND =  3˚ bytes

RETi

ADC_ISR

STATUS_H =

SEND232

SEND232_EqT

SEND232_ROLL
RETi

FIGURE 8
Two different registers control the 
microcontroller’s program flow. The 
PC writes one (PC_COMMAND), and 
the other (STATUS_H) is written by the 
peripheral when their interrupts are 
attended.
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THE CONSUMMATE ENGINEER

Transformers 101 (Part 2)

In the first part of this article series, George 
presented the transformer and its essential 
characteristics. In this article, he covers the basics 
of transformer design.

By George Novacek (Canada) 

Transformer Design

Last month, I covered the fundamental 
theory behind transformers. Now let’s 

continue by considering the basic aspects of 
transformer design.

In low-power supplies—such as those for 
laptop computers, radios, battery chargers, 
and so forth—built-in transformers as we’ve 
known them are a dying breed. Manufacturers 
of electrical appliances have been, whenever 
possible, replacing their internal transformers 
with plug-in “wall wart” adapters. Those 
are either transformers with AC output 
(see Figure 1a) or DC supplies containing a 
rectifier and a capacitor (see Figures 1b–c).

One reason for this trend has been the 
avoidance of the costly safety certification 
of every equipment model, required in every 
country where the product was to be sold. 
Low-volume, high-mix product and slightly 
different regulations among countries cause 
the cost of certification to be a major issue. 
A mass-produced plug-in wall wart supply, 
already certified, is the answer. The traditional 
DC wall wart supplies (see Figures 1b–d), 
notorious for their poor power factor, are 
being replaced by high-frequency switching 
regulators with many benefits. Their design 
is not the subject of this series. Because their 
transformers operate at high frequencies, 
they are smaller, lighter, and less expensive. 

A wide range of input voltage, output voltage 
regulation, and excellent power factor 
provide additional benefits. The power factor 
correction (PFC) is now mandatory in many 
countries. 

One disadvantage of the switching wall 
wart supply as compared with a traditional 
transformer type is its inherently lower 
reliability, due to the number and type of 
components in it. However, I have found 
those supplies to be of excellent quality and 
reliability, while I have seen far too many 
“classic” wall wart supplies fail due to their 
cheap design or shoddy workmanship.

At one time, engineers designed and built 
their own transformers. Today, there are so 
many off-the-shelf options that the need for 
“rolling your own” has virtually disappeared. 
When you need a transformer not readily 
available, you should have it designed. It takes 
a lifelong experience to become a competent 
transformer designer, but there are many 
expert companies to help you.

With that said, it is nevertheless a good 
idea for an engineer to be familiar with 
transformer design basics. At the very least, 
you’ll be knowledgeable enough to interface 
with your supplier and will appreciate the 
potential design constraints. What transformer 
requirements do you need to specify?
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REQUIREMENTS
Apart from the mechanical issues—such 

as the size, weight, mounting arrangement, 
and environmental conditions, including 
operating temperature range, vibration, 
and so forth, which are generally up to 
the mechanical designers to address—the 
electrical engineer’s responsibility is to define 
the transformer’s electrical characteristics. 
First, you need to know the primary voltage 
and frequency. Then, you must know the 
secondary windings’ requirements. How many 
secondary windings? What are their voltages 
and maximum currents? What is the required 
regulation (i.e., the secondary voltage 
fluctuations caused by a varying load)? Any 
taps? Windings’ insulation voltages. Primary 
to secondary insulation. Maximum parasitic 
capacitive coupling. Are there any shielding 
requirements to contain the electromagnetic 
field within the device?

All these requirements affect how the coils 
are designed, the type of the permeable core 
used, additional magnetic shielding, and so 
forth. 

The secondary windings are expected to 
deliver power: P = V2 × I2 + … + Vn × In. P is 
the total maximum power to be drawn from 
the secondary windings. The input power 
to the primary winding PT is then: PT = P/η, 
where η stands for the transformer efficiency. 
This is always less than 100% due to the 
magnetization current as we saw in the first 
part of this article series, parasitic capacitance, 
losses caused by the ohmic resistance of the 
windings, and so on. Having established the 
input power PT and the operating frequency, 
an appropriate core can be selected. Here’s 
where experience becomes crucial. For one, 
magnetic induction B needs to stay within the 
optimum range. The core size is also affected 
by the expected size of the bobbins to hold 
the windings, high voltage and electrostatic 
insulation, wire size to carry the required 
current, etc. Core manufacturers’ data sheets 
are rarely exhaustive enough for a beginner 
to make the right choice. 

Once the core has been selected, its 
characteristics determine the required 
number of turns per one volt. Then the turns 
for each winding based on their required 
voltages can be calculated as: n = k × V × 
Vv, where n is the number of turns. V is the 
desired voltage in volts. VV  is the number of 
turns per volt. k is a constant, which is to 
compensate for the secondary losses caused 
by the magnetic flux dispersion and ohmic 
losses at the maximum rated output power. 
For the primary winding k = 1. Therefore, 
the primary winding is not changed to avoid 
modification of the established magnetic 
flux in the core. Once again, transformer 

specialists have experience, historical data 
and establishing k is usually not much of a 
problem for them. For a transformer design 
novice, establishing k means a lengthy 
process of trial and error.

The wire sizes are based on the windings’ 
currents and the current density s, which in 
turn depends on the operating temperature 
and cooling effects of the core. Old, 
conservative design tables recommended s to 
be in the range of 2 to 3 A, sometimes 4 A 
per 1 mm2 of the wire cross-section. Modern 
designs—usually to cut cost, weight, and 
size—sometimes exceed this by more than 
an order of magnitude, relying on the better 
quality core materials, reliability sacrifice 
caused by the higher operating temperature 
and acceptance of higher ohmic losses. 
These are sometimes intentional to limit the 

FIGURE 1
Common wall wart power supplies. While the first (a) is still very much in use, the other power supplies 
(b–d) are gradually disappearing.  

a)

b)

c)

d)
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maximum output current, such as in cheap 
battery chargers or due to expectations that 
the voltage fluctuations caused by a varying 
load will be compensated for by a following 
voltage regulator. 

Most signal and low-power transformers 
in electronics work as single-phase devices, 
although there are special applications in 
power distribution where multiple phase 
primary or secondary or both windings are 
needed. Once I participated in design of a 
relatively high-power (60-kVA) control system 
supplied from a three-phase, 200-V/400-
Hz generator. Building a transformer with a 
nine-phase secondary, followed by rectifiers 
with capacitive filters, improved the power 
factor such that reduced the power quality 
requirement was satisfied without a PFC. 
Multiple phases were a smaller, lighter, and 
less expensive solution.

The same transformer design principles 
apply throughout the power and frequency 
spectrum. The major difference is made by 
the required core. Transformers working in 
the audio spectrum, for instance, require 
flat frequency response characteristics from 
typically 20 Hz to 20 kHz and a minimum 

harmonic distortion. Except for low, usually 
a single frequency, such as for 60-, 50-, or 
400-Hz power supplies, transformers need 
specialized cores designed to optimally handle 
the given frequency spectrum of the signals 
and their waveforms.

SPECIALIZED DEVICES
There are also many specialized 

transformer-based devices, such as pulse 
transformers or transformers for switching 
power supply applications, whose input is not 
sinusoidal. Some must handle a DC bias. There 
are also magnetic amplifiers, ferroresonant 
voltage regulators, transformers using 
magnetic flux nonlinearity, including 
saturation to perform special functions too 
exotic to address in this short article series. 
Prior to the invention of the vacuum tube, 
transformers were the only component 
capable to modify signal levels. 

It should be remembered that other than 
supplying desired voltages, transformers can 
match different impedances by the ratio of 
their turns. This, coupled with their primary 
to secondary insulation and suppression 
of common mode interference, is used in 
distribution of numerous data communication 
systems (e.g., Ethernet and MIL-STD-1553). 

As the frequency increases, the magnetic 
cores become smaller and somewhere 
around 100 MHz can be eliminated. The 
obvious advantage of the air core, provided 
the frequency is high enough and the coils 
can be reasonably small, is their linear B/H 
relationship and, thus, no need to worry 
about its nonlinearity. At high-megahertz 
frequencies, transformers can be created by 
transmission lines and once we get into the 
gigahertz, with waveguides. But that, while 
interesting, is a different topic for another 
time.     

For completeness I should mention 
“electronic transformers.” These are similar 
to the DC-producing switching wall warts. 
Light, reasonably efficient and less costly to 
manufacture than magnetic transformers, 
their output is their internal switching 
frequency amplitude modulated by double the 
input AC (50 or 60 Hz) frequency. Popular with 
some appliance manufacturers, they have 
limitations. More about them next month in 
the final part of the series when we’ll also look 
at some less common transformer types. 
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Rapid FPGA Design in 
Python Using MyHDL

MyHDL is an alternate hardware description language 
(HDL) that allows you to leverage the power of Python 
for designing, simulating, and verifying FPGA designs. 
Colin explains how MyHDL works and describes a FIR 
filter he created with C/C++ HLS in his February 2014 
article to compare the toolchain flow.

By Colin O’Flynn (Canada)

PROGRAMMABLE LOGIC IN PRACTICE

Back in February 2014, I took you through 
the use of C/C++ High Level Synthesis 

(HLS) as a design language for a FPGA. This 
article is designed to introduce you to another 
option for a design language, this time using 
Python. Once again I’ll demonstrate that 
directly writing Verilog or VHDL is not always 
the most efficient option.

I’m going to follow the Finite Impulse 
Response (FIR) filter example from my 
February 2014 column, which allows you to 
directly compare the design process. One 
of the major advantages of using MyHDL 
compared to C/C++ HLS is that you can 
pull upon a huge library of existing Python 
modules to help generate and validate your 
design.

In the C/C++ HLS example, I used external 
tools to generate the FIR coefficients. In 
the MyHDL example, they are generated 
automatically from my filter specifications. 
This makes it easily to validate the fixed-
point implementation, and compare the filter 
results to the “ideal” filter result. I’ll get into 
more details later, but before that I want to 
present an overview of MyHDL.

I should also mention this column owes 
a great debt to Christopher Felton, who’s 
presentation at DesignWest 2013 on MyHDL 
is what originally turned me on to the use 
of MyHDL. I’ve based the FIR filter example 
in this column on some of his examples. 
(For more of his examples, refer to www.
fpgarelated.com/blogs-1/nf/Christopher_
Felton.php.) I’ve also linked to his work 
from ProgrammableLogicInPractice.com, 
which includes a few other sites besides 
FPGARelated.com.

INTRODUCING MyHDL
Even if you haven’t heard about MyHDL 

before, it’s been in development for some 
time. It was created by Jan Decaluwe, and 
released to the world in September 2003. 
MyHDL allows you to use Python as a hardware 
description language (HDL). Like other high-
level synthesis tools, you must remember it 
is not designed to convert arbitrary software 
code into FPGA modules. It won’t make an 
FPGA designer out of a Python programmer, 
but might make a FPGA designer want to pick 
up Python for improved productivity.

http://www.fpgarelated.com/blogs-1/nf/Christopher_
http://www.fpgarelated.com/blogs-1/nf/Christopher_
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If you are familiar with Python, you will 
know that it doesn’t natively support all the 
features required in a HDL. But with a handful 
of extensions, we can emulate the required 
features such as ports, signals, and concurrent 
blocks. For synthesis MyHDL operates at the 
same Register Transfer Level (RTL) as Verilog 
or VHDL. This makes it easy to automatically 
convert from MyHDL to Verilog or VHDL. The 
resulting Verilog or VHDL files can either be 
synthesized directly by your FPGA toolchain, or 
integrated into your existing project (which will 
again by synthesized by your FPGA toolchain).

Let’s jump right into a simple example. 
Listing 1 shows a simple implementation 
of a counter with programmable maximum. 
Listing 2 shows the resulting Verilog code. 
The ctrl_hdl() block is the main module. 
One of the first things to note is the module 
follows some Python-centric themes. For 
example, there is no explicit type (such as 
integer bit-width) in the module definition. 
Instead, the module is able to pull attributes 
such as the input/output port widths directly 
from the objects themselves.

The combinational logic (@always_comb) 
and sequential logic (@always_seq) blocks 
will be familiar to any FPGA designer. Like 
with Verilog or VHDL, a process sensitivity 
list can be used to determine when the blocks 
run. You will start to notice the simple use 
of class attributes, such as the rising edge 
being defined as part of the Signal() class 
from MyHDL. As well when dealing with the 
assignment of the future value of the signal 
once this block executes, we use the .next 
attribute instead of requiring a special 
operator (such as <= in Verilog).

This simple example also takes advantage 
of the use of the ResetSignal() object type. 
This special signal makes working with resets 
easier. Notice I never define the reset behavior 
in my MyHDL @always_seq block. Instead 
the reset signal will automatically reset any 
used signals to their “default” state (which 
was declared when I defined those signals). 
This helps make the code clearer. Often we 
don’t need to see all the reset logic, but still 
want signals to start at a known value.

Of course, MyHDL doesn’t force its reset 
handling down your throat. Another form of 
the sequential block allows you to explicitly 
define the reset behavior. This allows you 
to reset signals to other values or perform 
additional actions within the reset block.

So far, I’ve concentrated mostly on the 
synthesizable aspects of MyHDL. But much of 
the “more interesting” aspects of MyHDL are 
the ability to use it for both simulation and 
verification of your hardware cores. Whereas 
Verilog or VHDL have somewhat limited I/O 
facilities and external libraries, Python has 

almost limitless potential when it comes to 
I/O facilities and external libraries.

In fact, MyHDL can even be used in 
combination with a Verilog simulator. This 
means you are not simulating the MyHDL 
code, but actually simulating the Verilog 
code generated by MyHDL. The advantage is 
that by using MyHDL (and Python), you are 
able to perform complex verification tasks 
with ease, while still validating your Verilog 
implementation.

MyHDL also makes problems such as 
conditional instantiation (selecting which 
version of a core to use) trivial. MyHDL passes 
instances of the HDL object, and doesn’t 

LISTING 1
A simple counter implemented in MyHDL. This code is sufficient to describe the counter and convert it to 
Verilog, the resulting Verilog being shown in Listing 2.

from myhdl import * 

def cntr_hdl(clk,reset,prog_max,cnt):
    #Define local signal with sizes based on port 
    intcnt = Signal(intbv(0,min=cnt.min, max=cnt.max))
    
    #Example combinational block
    @always_comb
    def copy_out():
        cnt.next = intcnt
      
    #Example sequential block - reset code generated  
    #automatically
    @always_seq(clk.posedge, reset=reset)
    def cnt_main():
        if cnt < prog_max:
            intcnt.next = (intcnt + 1)        
        else:
            intcnt.next = 0

    return instances()

##Example of instantiating module, here used just
##for Verilog conversion

#Simple boolean signal
clk      = Signal(False)

#Reset signal gets special treatment, makes it easier 
#to change reset parameters around
reset    = ResetSignal(0, active=1, async=True)

#bit-vector types, specify default value along with min/max
prog_max = Signal(intbv(0,min=0, max=4000))
cnt      = Signal(intbv(0,min=0, max=4000))

toVerilog(cntr_hdl, clk, reset, prog_max, cnt) 
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require you to define the entire port map as 
Verilog or VHDL would need.

While I don’t have time to cover all these 
aspects, I want to talk you through at least 
a simple example of MyHDL simulation and 
implementation. To do this I’ll be replicating 
the FIR filter from the February 2014 column.

ANOTHER FIRRY EXAMPLE
The FIR filter is not particular exciting, 

but it does show off the use of MyHDL and 
Python to simplify your entire development. 
If you want to follow along, the easiest 
method is using a Python distribution such as 
WinPython on Windows. You can then install 
MyHDL using the pip tools, as described in 
the MyHDL documentation. This is all that is 
required to run the examples, which will be 
posted on ProgrammableLogicInPractice.com 
if you don’t want to type everything in from 
the listing.

The MyHDL code for the FIR filter is shown 
in Listing 3, and the Verilog code generated 
by this is shown in Listing 4. Note the code in 
Listing 3 doesn’t show the external interface 
or coefficient generation. I’ll talk about that 
in a moment.

Comparing Listing 3 and Listing 4, you 
can note the similarity between the two code 
bases. One difference between the HLS C/C++ 
example from my previous column is that loop 
unrolling is not handled by MyHDL. Instead 
as MyHDL is operating at a similar level to 
Verilog or VHDL it relies on the synthesizer to 
perform the loop unrolling. Future version of 
MyHDL may support loop unrolling, but one 
could argue that perhaps this is not the job of 
the HDL, but instead the job of the hardware 
designer using the HDL.

Regardless of philosophical arguments, 
this does mean you are unable to automatically 
perform tasks such as tuning the trade-off 
between usage of hardware resources and 
throughput by asking the tools to unroll or 
not unroll a specific loop. The C/C++ HLS 
examples from my previous columns could 
be optimized for area or speed by a simple 
#pragma due to the support of C/C++ HLS to 
tune loop unrolling.

One thing I haven’t explicitly mentioned 
until now is that MyHDL is entirely open-
source (and free), whereas the C/C++ HLS has 
a $2,000 yearly license fee and is proprietary. 
Thus, while I will compare the two for regular 
usage, it’s worthwhile to also consider both 
the up-front cost, and the ability to modify 
the tools for your own use. MyHDL easily wins 
on both of those fronts!

But the real triumph of MyHDL can be seen 
once I introduce the complete simulation 
and generation environment. This is shown 
in Listing 5. The HDL code from Listing 3 is 

ABOUT THE AUTHOR
Colin O’Flynn (cof lynn@newae.com) has 
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d ev i c e s  f o r  many  yea r s .  He  i s  cu r-
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LISTING 2
The Verilog output of MyHDL for the input given in Listing 1. The direct conversion can easily be seen in 
this case, although MyHDL has handled some features for us such as resetting signals to default values that 
Verilog requires us to explicitly specify.

module cntr_hdl (
    clk,
    reset,
    prog_max,
    cnt
);

input clk;
input reset;
input [11:0] prog_max;
output [11:0] cnt;
wire [11:0] cnt;

reg [11:0] intcnt;

always @(posedge clk, posedge reset) begin: 
CNTR_HDL_CNT_MAIN
    if (reset == 1) begin
        intcnt <= 0;
    end
    else begin
        if ((cnt < prog_max)) begin
            intcnt <= (intcnt + 1);
        end
        else begin
            intcnt <= 0;
        end
    end
end

assign cnt = intcnt;

endmodule 

mailto:coflynn@newae.com
http://www.colinoflynn.com
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not repeated, but you can consider the two 
listings are combined in the final program. In 
the C/C++ FIR example I required the use of 
external tools for filter design—with MyHDL, 
it’s built right into the tools.

MyHDL is really just calling standard 
Python libraries, which have extensive tools 
for filter design. Thus, I could easily generate 
FIR or IIR filters of almost any order and 
type. The filter implementation itself is 

fixed-point, and the Python code converts 
the floating-point types to the integer (fixed-
point) notation in use. Full fixed-point support 
is still not present in the latest MyHDL release 
as of this column (0.8), but is on the roadmap 
for a future version.

Even without fixed-point support, the 
simulation environment of MyHDL pulls it 
ahead of C/C++ HLS. This makes it easy to 
verify correct operation of complex modules 

LISTING 3
The core of the FIR module in MyHDL is 
given here. Note this snippet requires 
instantiation to declare signal widths 
and the filter constants.

# Based on IIR Filter code, which is Copyright Christopher Felton
# and released under the LGPL license.

from myhdl import * 

def sfir_hdl(
    # ~~ Ports ~~
    clk,           # Synchronous clock
    x,             # Input word, fixed-point format described by "W"
    y,             # Output word, fixed-point format described by "W"

    # ~~ Parameters ~~
    B=None,        # Numerator coefficients, in fixed-point specified
    W=(24,0)       # Fixed-point description, tuple, 
                   #  W[0] = word length (wl)
                   #  W[1] = integer word length (iwl)
                   #  fraction word length (fwl) = wl-iwl-1
    ):
    # Make sure all coefficients are int, the class wrapper handles all float to
    # fixed-point conversion.
    rB = [isinstance(B[ii], isnt) for ii in range(len(B))]
    assert False not in rB, "All B coefficients must be type int (fixed-point)"

    # We use a double-precision parameters as the result of the multiplication
    # will be 2x the input bit width. Define double width (precision ) max and min
    _max = 2**(2*W[0])
    _min = -1*_max

    Q  = W[0]-1
    Qd = 2*W[0]

    # Delay elements, list of signals (double precision for all)
    ffd = [Signal(intbv(0, min=_min, max=_max)) for ii in range(len(B))]

    @always(clk.posedge)
    def rtl_fir():
        ffd[0].next = x        
        for i in range(1, len(B)):
           ffd[i].next = ffd[i-1]

        yacc = 0
        for i in range(0, len(B)):
            b = B[i]
            yacc += b * ffd[i]

        # Double precision accumulator
        y.next = yacc >> Q        

    return instances() 
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compared to C/C++ HLS, mostly as MyHDL 
is able to use the huge selection of Python 
modules to do everything from FFTs to 
graphing to I/O handling.

The simulation itself is performed in the 
TestFreqResponse() function. You will 
notice again the MyHDL-specific extensions 

used here (such as the @always block to 
generate a clock signal). But we can use 
Python libraries as part of our test bench—
appending data to lists or performing FFTs of 
data before saving.

In this example the function 
PlotResponse() generates the “expected” 

LISTING 4
The resulting FIR filter in Verilog, 
based on Listing 3. Again, note the 
fairly straightforward conversion from 
MyHDL to Verilog.

`timescale 1ns/10ps

module sfir_hdl (
    clk,
    x,
    y
);

input clk;
input signed [9:0] x;
output signed [9:0] y;
reg signed [9:0] y;

reg signed [20:0] ffd [0:19-1];

always @(posedge clk) begin: SFIR_HDL_RTL_FIR
    integer i;
    integer yacc;
    integer b;
    ffd[0] <= x;
    for (i=1; i<19; i=i+1) begin
        ffd[i] <= ffd[(i - 1)];
    end
    yacc = 0;
    for (i=0; i<19; i=i+1) begin
        case (i)
            0: b = 1;
            1: b = 2;
            2: b = 1;
            3: b = (-5);
            4: b = (-15);
            5: b = (-15);
            6: b = 13;
            7: b = 69;
            8: b = 128;
            9: b = 153;
            10: b = 128;
            11: b = 69;
            12: b = 13;
            13: b = (-15);
            14: b = (-15);
            15: b = (-5);
            16: b = 1;
            17: b = 2;
            default: b = 1;
        endcase
        yacc = yacc + (b * ffd[i]);
    end
    y <= $signed(yacc >>> 9);
end

endmodule 
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frequency response of the filter based entirely 
on tried-and-true Python libraries, and 
compares it to our fixed-point results. The 
results of this are shown in Figure 1. Notice 
that the frequency response generally follows 
the expected response. This is using 10-bit 
inputs (the same as the ADC/DAC on my test 
board) and 20-bit intermediate values.

I could easily change the HDL to use 
5-bit integers for the input values, which 
causes some additional divergence of my 
filter frequency response to the ideal filter. 
This frequency response of this fixed-point 
implementation is shown in Figure 2.

As a final test I’ve implemented the FIR 
filter in a Spartan 3 device, with an ADC and 
DAC running at 66.67 MHz. The FIR filter has 
been inserted between the ADC and DAC, and 
the frequency response is plotted in Figure 
3. The analog path isn’t perfect here which 
accounts for some of the errors, but you 
can see the response falls within “expected” 
bands compared to Figure 1.

MyHDL made it trivial to entirely describe 
a filter which can be synthesized onto a FPGA. 
Unlike the C/C++ HLS example, I was able to 
use Python tools to include the entire filter 
design specifications into the source file.

EVEN MORE THROWN IN
While this brief introduction to MyHDL 

won’t do it full justice, there are a few more 
things worth mentioning. One thing I can’t 
miss is highlighting the ability to perform 
unit testing in MyHDL. When designing 
hardware modules it can be a hassle to 
ensure you have tests for every module, and 
let alone attempting to script those tests to 
continuously run.

FIGURE 1
This shows the comparison of the expected FIR filter (in red) to the 10-bit fixed point 
implementation in blue. The fixed-point frequency response is obtained through a 
simulation in MyHDL.

FIGURE 2
Compared to Figure 1, this shows what happens if we use only a 5-bit signal instead 
of a 10-bit signal. The loss of correct filter response can be seen by comparing the 
fixed-point response (in blue) to the expected response (in red).

FIGURE 3
The implemented FIR filter using 10-bit integer inputs is tested on a FPGA, where the input and output of 
the filter is an ADC and DAC respectively sampling at 66.67 MHz. This figure has numerous sources of error 
due to the introduction of an analog signal path, but it can be seen to generally match the expected FIR filter 
response.

FIGURE 4
MyHDL also makes it easy to trace signal changes with time, by writing all signal changes to a VCD file. Here 
I’m inspecting the input and output of the filter for the frequency-bandwidth test used in generating Figures 
1 and 2.
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# Based on IIR Filter code, which is Copyright Christopher Felton
# and released under the LGPL license.

from myhdl import *
import numpy as np
from numpy import pi, log10
from numpy.fft import fft
from numpy.random import uniform
from scipy.signal import firwin, freqz
import pylab

class SFIR():
    def __init__(self, 
                 Fc=10E6,     # cutoff frequency
                 Fs=66.66E6,    # sample rate
                 W=(24,0)     # Fixed-point to use
                 ):
        # The W format, intended to be (total bits, integer bits, 
        # fractional bits) is not fully support.
        # Determine the max and min for the word-widths specified
        self.W = W
        self.max = int(2**(W[0]-1))
        self.min = int(-1*self.max)
        
        # Filter Design
        N  = 19
        Wn = 0
       
        # Define the cutoff as a fraction of the nyquist
        Wn = float(Fc)/(Fs/2.0) 
        self.b = firwin(N, Wn)
        
        # fixed-point Coefficients for the FIR filter
        self.fxb = np.round(self.b * self.max)/self.max
        
        # Create the integer (fixed-point) version
        self.fxb = tuple(map(int, self.fxb*self.max))

        print "FIR w,b", Wn, self.b
        print "FIR fixed-point b", self.fxb

    def Convert(self, W=None):  
        clk = Signal(False)   
        x   = Signal(intbv(0,min=-2**(self.W[0]-1), max=2**(self.W[0]-1)))
        y   = Signal(intbv(0,min=-2**(self.W[0]-1), max=2**(self.W[0]-1)))
    
        toVerilog(sfir_hdl, clk, x, y, B=self.fxb, W=self.W)

    def TestFreqResponse(self, Nloops=3, Nfft=1024):
        self.Nfft = Nfft
        Q = self.W[0]-1
        clk = Signal(False)
        x   = Signal(intbv(0,min=-2**Q,max=2**Q))
        y   = Signal(intbv(0,min=-2**Q,max=2**Q))
        xf  = Signal(0.0)

        dut = traceSignals(self.RTL, clk, x, y)

        @always(delay(10))
        def clkgen():
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            clk.next = not clk
            
        @always(clk.posedge)
        def ist():
            xi      = uniform(-1,1)
            x.next  = int(self.max*xi)                
            xf.next = xi

        @instance
        def stimulus():
            ysave      = np.zeros(Nfft)
            xsave      = np.zeros(Nfft)

            self.yfavg = np.zeros(Nfft)
            self.xfavg = np.zeros(Nfft)

            for ii in range(Nloops):
                for jj in range(Nfft):
                    yield clk.posedge
                    xsave[jj] = float(xf)
                    ysave[jj] = float(y)/self.max
                    

                self.yfavg = self.yfavg + (abs(fft(ysave, Nfft)) / Nfft)
                self.xfavg = self.xfavg + (abs(fft(xsave, Nfft)) / Nfft)

            raise StopSimulation

        return instances()
        
    def RTL(self, clk, x, y):
        hdl = sfir_hdl(clk, x, y, B=self.fxb, W=self.W)
        return hdl

    def PlotResponse(self):
        # Plot the designed filter response
        pylab.ioff()

        Fs = 66.66E6

        # plot the simulated response
        #  -- Fixed Point Sim --
        xa = (2*pi * np.arange(self.Nfft)/self.Nfft) / (2*pi) * Fs
        H = self.yfavg / self.xfavg
        pylab.plot(xa, 20*log10(H), 'b' )
        
        w, h = freqz(self.b)
       # pylab.hold(True)
        pylab.plot((w/(2*pi))*Fs, 20 * np.log10(abs(h)), 'r')   

        pylab.ylabel('Magnitude dB');
        pylab.xlabel('Frequency (MHz)')
        pylab.axis([0, Fs/2, -60, 5])
        pylab.xticks([0,10E6,20E6,30E6], ['0', '10', '20', '30'])
        pylab.title('Comparison of HDL Implementation to Expected Response')
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Once again MyHDL pulls on existing work in Python to simplify our test cases. 
It uses the unittest module from Python to allow you to easily generate test 
cases. Such test cases can validate a range of inputs—including testing options 
such as various bit widths to your module. These tests can be strung together 
with regular Python code, a task it excels at.

When it comes to debugging or documenting the code, MyHDL can automatically 
trace into a module and save signal waveforms to a .vcd file. Such a file can be 
opened by a universal viewer, such as gtkwave, which I show plotting the input 
and output of my FIR filter in Figure 4. The trace statement itself can be seen in 
Listing 5, as the call to traceSignals(). This was all done without any additional 
Verilog simulator, but as part of the regular MyHDL development process.

MYHDL SUPERHERO
MyHDL presents a number of credible reasons it can be taken seriously as 

a hardware description language (HDL). Most critically, it doesn’t try to be “too 
clever”, but instead inserts itself at about the same level as your existing Verilog 
or VHDL code. But by using the power of Python, MyHDL greatly simplifies aspects 
such as simulation and unit testing of your design, while improving many aspects 
that affect your synthesizable module such as clarifying reset signal handling and 
improving parametrized port definitions.

If you want to learn more about MyHDL, I’ll have some examples 
(such as the FIR filter in this column) and links to other resources at the 
ProgrammableLogicInPractice.com website. But there is extensive documentation 
online at the MyHDL project webpage (MyHDL.org), which also includes a few 
examples. Christopher Felton has a number of additional well-documented 
examples such as FFTs, IIR filters, and more. You’ll find further examples on 
various webpages such as everything from simple counters to Kalman filters 
implemented in MyHDL.

Considering MyHDL is free and easily available, there’s nothing to stop you 
from giving it a spin. I think you’ll find it has the right combination of familiar 
constructs that get you up to speed quickly with the new language, but adds 
enough new functionality to improve your overall productivity and enjoyment of 
FPGA development. Have fun! 

        pylab.savefig("firtest.png")
   
if __name__ == '__main__':
    # Instantiate the filter and define the Signal
    W = (10,0)
    flt = SFIR(W=W)

    flt.Convert()
    
    tb = flt.TestFreqResponse(Nloops=3, Nfft=1024)
    sim = Simulation(tb)
    print "Run Simulation"
    sim.run()
    print "Plot Response"
    flt.PlotResponse() 

LISTING 5
The real power of MyHDL occurs once we start building systems around our cores. Here I’m using the SciPy 
library to automatically generate FIR filter coefficients, given the sampling frequency and desired cut-off. I can 
also compare the output of the fixed-point filter implementation to an idea FIR filter for the selected fixed-point 
bit width.
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In our first installment, we talked about 
the various ways we have connected our 

embedded systems wirelessly to the Internet. 
In Part 2, I covered the various decisions 
that need to be made in choosing a carrier 
for your embedded system. This month we 
will look in detail at how we have connected 
simple devices wirelessly to the Internet. 

Yesterday, we had a new potential client fly 
in to see us to discuss their need to create an 
Internet of Things (IoT) device for their very 
non-electronic company. This company has 
been in business for over 50 years making and 
innovating extremely low-tech products. Now 
they wanted their extremely low-tech product 
to be wirelessly connected to the Internet. 
They came to us with a prototype developed 
by their general manager using an Arduino 
and a development kit. This was a man who 
had no electrical engineering background. 
It was quite impressive. He did not have 
any complications sending the data to the 
cloud. He did struggle with designing the 
sensor to obtain the data he desired. With the 
feasibility behind them and after becoming 
knowledgeable enough to know what it takes 
to join the IoT revolution, they wanted us to 

turn it into a product. This shows how easy it 
is to take a simple microcontroller, talk to a 
complex cell module, and create a device that 
will soon join the IoT revolution.

Many of our systems are similar to theirs 
and use a very simple microcontroller with 
very little memory. Some cell modules offer 
a good assortment of options for connecting 
to the web. Since some of the module 
manufacturers we use require an NDA to 
obtain their documentation, we will only talk 
about our experience with a Swiss company 
called u-blox who freely publishes their 
technical documentation on-line. In particular 
we will talk about the features of the LISA 
C200, which supports CDMA. Other modules 
have similar functionality. Figure 1 shows 
the basic system architecture that we will be 
reviewing this month.

AT COMMAND SET
Most of the module manufacturers provide 

an AT command set to configure the module 
and initiate communications over the network. 
Developed by Dennis Hayes for the 300-baud 
Hayes SmartModem (ah, those were the 
days!), this simple command and response 

EMBEDDED IN THIN SLICES

In the second part of this article series, Bob provided 
tips on choosing a carrier for a ‘Net-connected 
embedded system. In this article he details how to 
connect simple devices wirelessly to the Internet.

By Bob Japenga (US)

The Internet of Things (Part 3)
Connect Wirelessly with a 
Microcontroller
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protocol is used on a lot of communications 
devices. This is the primary way a small 
microcontroller will talk to the cell module. 
With the AT command set, the microcontroller 
can easily use: FTP, HTTP, UDP, TCP/IP, and 
SMS. Let's look briefly at how easy this is to 
do.

FILE SYSTEM
All of the networking commands can use 

an on-board flash file system on the cell 
module. This flash file system has about 1 MB 
of disk space available for you to use. There 
are rudimentary file system commands to 
allow you to read, write, get stats, or delete 
(ASCII or binary) files from this flash file 
system. Since the files are read over a serial 
port it is not like reading from a classic disk 
controller. Any read over the serial port could 
be corrupted. Thus we always provide some 
method of validation that what you have read 
or written over the serial port is indeed what 
you intended.    

FTP
FTP is a file transfer protocol that allows 

you to send files unencrypted (including the 
password) over the Internet to and from your 
system. If you want to send or receive files 
over the Internet to or from an FTP server, 
you need an ftp client on your device. The cell 
module contains that ftp client for you and 
provides an AT command interface to that 
client.

There are just a few AT commands 
required to send a file.  The first one defines 
the username and password as well as the 
URL (either named or IP address). Then you 
log in with another AT command. You then 
can either obtain one file from the server 
(get) or send one file to the server (put).  
Each command provides a response in a 
file on the file system as to the success or 
failure of the operation. Additional commands 
may be required to obtain the status of the 
network. Once you have completed sending 
or receiving files, you can log off with another 
AT command.

The LISA C200 supports an FTP client 
which supports the FTP commands listed in 
Table 1. A number of standard FTP functions 
are not supported (like verbose) because they 
don’t apply. There are others that would be 
nice to have (like the append command or 
mput and mget for sending and receiving 
multiple files) but are not provided.

In today’s world, FTP should rarely be 
used because it is so insecure. We had one 
customer many years ago who, when we 
offered both FTP and secure FTP (SFTP), 
wanted us to delete FTP off his devices 
because he did not want his customers to use 

it. If you are on a private network, FTP would 
work and maintain the security you need.

HTTP
The cell module supports the following 

HTTP methods: GET, PUT, POST, HEAD, and 
DELETE. The process is quite simple and does 
not require a lot of code to implement on your 
little microcontroller. You can set up a number 
of profiles which contain exactly where the 
data is going with a series of AT commands. 
Once a profile is set, you can issue another AT 
command to initiate the specific HTTP method 
associated with that profile. For example, if 
you are POSTing to multiple URLs, you can set 
up a separate profile for each. The response 
from the server comes back as a file on the 
local flash file system that you specified. You 
can read the file using the file system AT read 
command.

As with FTP, it would be ideal if HTTPS 
(secure HTTP) was supported. Without 
HTTPS, on one project we needed to encrypt 
everything that is included in the payload 
of the HTTP request and decrypt everything 
that comes back. For this application we 
used Advanced Encryption Standard (AES) 
128, which uses a symmetric private key 
algorithm. 

AES 128 is a specific instance of an 
encryption standard established by the 
National Institute of Standards and Technology 

TABLE 1
The FTP client supports several ftp 
commands

PIC

Serial

u-blox Cell
modem

Cell
wireless

Our network
provider

FIGURE 1
The basic system architecture

u-blox FTP 
Command

Windows FTP Description

0 Quit Log out

1 User Log in

2 Delete Delete file from the server

3 Rename Rename file on the server

4 Get Retrieve file from the server

5 Put Send a file to the server

8 Cd Change the working directory

10 Mkdir Make a directory on the server 

11 Rmdir Remove directory on the server

13 N/A Obtain stats on a file on the server

14 Dir List the filenames on the server
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in the United States. It uses a 128-bit key. 
The encryption and decryption algorithms 
are public knowledge. There are thus 3.4 × 
1038 possible keys. If you tried to decrypt 
the encrypted data by brute force by trying 
a different key a trillion times per second, it 
would still take 1018 years. To date, no one has 
found any way to crack the code other than 
brute force.

TCP/IP
On one system, we initially had a 

diagnostic mode where we were sending the 
contents of a screen every 10 seconds (the 
embedded version of Google Hangout) using 
HTTP. When we specified it, we knew that 
HTTP and the server could handle the data 
throughput, but the cell module just could 
not keep up with sending 1k of data every 10 
seconds in separate HTTP POSTs. As a result 
we implemented the feature using the cell 
module’s TCP/IP capability.

The cell module provides AT commands to 
create the socket, to open the socket, to send 
the data, to close the socket, and to set options 
for the socket. When a message comes back 
from the socket, an asynchronous response 
is provided so your microcontroller does not 
need to poll the server for the results.  

The cell module can handle up to 6 TCP/
IP sockets open at a time.  It also supports 
sending and receiving binary or ASCII data.

SMS
A Short Message System (SMS)—or what 

we call “texting”—client can be invaluable if 
you wish to provide a relatively responsive 
system while keeping your data plan costs 
low. For example, let’s say that you want to 
send up data once per day. Occasionally you 
would also like to be able to command the 
device to do something and have it respond 
within a few seconds. Since the overhead 
of an HTTP POST can be greater than 1 KB, 
checking the server every minute for some 
kind of request would use up more than one 
megabyte of data per day from your data 
plan. With SMS, the server can just send the 
embedded system an unsolicited message 
with specific instructions. The text will be 
stored in a file and the presence of that file 
can be poled (at no cost to your data plan).

A couple of AT commands will set up 

your cell modem for sending or receiving 
text messages. The microcontroller can 
periodically send another AT command to 
see the file you specified to receive SMS 
messaging with no cost to your data plan 
except for the SMS message. If you plan to 
use this approach, make sure your data plan 
supports SMS.

PROBLEMS WITH THIS APPROACH
No cell module will implement the full 

HTTP or FTP specification. Let's review some 
of the more serious shortcomings that we 
uncovered.

With the u-blox module, we found that 
both the FTP and HTTP implementation did 
not support sending multiple files with a single 
command. This actually resulted required us 
to rewrite some of our server code. So if you 
are going to be using your microcontroller to 
talk to an existing cloud server that may be 
expecting multiple files, you are out of luck.

Another shortcoming is that the HTTP 
and FTP responses are slower than when 
you connect these cell modems via the Point 
to Point Protocol (PPP) (if the cell modem 
supports PPP) or Ethernet (some cell modules 
simulate an Ethernet connection eliminating 
the overhead of PPP).

We also found that we wanted to tweak the 
HTTP headers and this was also not allowed 
on the u-blox module. We used a serial port 
(although all of the cell modems we have 
used have USB) on one of the two u-blox 
implementations. Even at 115,200 baud, this 
is a relatively slow interface for accessing 0.5-
MB files. If your microcontroller can support 
USB, then I would recommend that you talk to 
the modem via USB.

Finally, we mentioned the lack of HTTPS 
and SFTP support previously. As one of our 
engineers said, HTTP is being deprecated 
across the Internet. Even Google search 
engine ratings are lowered if your web site 
doesn’t support HTTPS. Not that this applies 
to our M2M world, but it does speak to a 
growing trend away from HTTP.

ON TO CERTIFICATION
Connecting your device to the Internet has 

become much simpler with the design of a 
number of the cell modules on the market. 
Using simple AT commands over a serial port 
or a USB port, you can connect your device to 
the Internet and join the Internet of Things 
revolution. Next time we will discuss 
certification options for your embedded 
systems. Certification is a big topic so I can 
guarantee that we will approach it in thin 
slices.  

circuitcellar.com/ccmaterials
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Welcome back to The Darker Side.  In the 
early years, electronic engineers excelled 

at analog circuit design. Each transistor 
had to be selected based on its physical 
characteristics and,  of course, the  intended 
application.  They had to be  biased with 
care and powered  on with even more care. 
Then integrated circuits (ICs) were  invented. 
(Jack Kilby, working for Texas Instruments, 
manufactured the first actual chips in 1958, 
even though the concept was patented 10 
years earlier by Werner Jacobi.) Soon after 
that, in 1963, the first monolithic integrated 
operational amplifier was designed by Bob 
Wildar at  Fairchild Semiconductors.  The 
µA702 was born. Operational amplifiers (op-
amps for short) existed before that. Figure 1 
shows a well-known example. However, with 
such an integration, their success took 
another dimension. The same Bob Wildar then 
designed the µA709  in  1965, and moved to 
National Semiconductors to design the LM101. 
As a response, in 1968, Fairchild launched 
the well-known µA741, which we still use 
more than 50 years later! I will stop with the 
history at this point, but if you are interested, 

check out Walt Jung's interesting document 
titled "Op Amp History," which is listed in the 
Resources section of this article. 

Op-amps  are great building blocks 
that have replaced transistors in many 
designs. Compact, inexpensive, simple,  and 
flexible, op-amps sure offer many advantages. 
However, designers sometimes forget that 
these small chips are  nothing more than a 
set of interconnected transistors.  They are 
not magic black boxes. They have electrical 
characteristics and limitations. So, you 
must select them with as much care as our 
predecessors selected their transistors.

This month, I will detail an op-amp's key 
characteristics. My aim is to convince you 
that the figures and graphs that fill tens of 
pages on the datasheets are actually useful, 
even if they are ignored 90% of the time. You 
will then know what's critical for your design 
and ultimately how to select the relevant op-
amp for your application. The µA741 is a great 
chip, but it might not be the best one for you!

Of course, in such an  article, I 
can only scratch the surface of the 
subject.  However,  there is a must-read for 

How to Select 
an Operational 
Amplifier

THE DARKER SIDE

Op-amps are essential components 
that have replaced transitors in many 
designs. This month, Robert explains 
the key characteristics of op-amps and 
provides tips for choosing the right one.  

By Robert Lacoste (France)
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this topic (as for plenty of others): The Art of 
Electronics, by Paul Horowitz and Winfield Hill. 
The book is not cheap, but you definitively 
need it in your library. I promise you that 
it's worth reading the long book,  including 
the 200 pages or so dealing with operational 
amplifiers. By the way I just bought the newly 
released third  edition, and it is still on my 
bedside table.

OP-AMP BASICS
Let's start by refreshing your memory. 

Basically,  an op-amp  is a  DC-coupled 
differential amplifier (see Figure 2). It has one 
noninverting input (IN+), one inverting input 
(IN–), and  one output (OUT). The output 
voltage is simply the voltage difference 
between the two inputs, multiplied by  a 
given open-loop gain: VOUT = GAINOPENLOOP × 
(VIN+  – VIN–). However, any op-amp has a 
very high open-loop gain. When I say "very 
high," I mean that a gain of 1,000,000 is not 
uncommon. So as soon as the voltage on 
the noninverting input exceeds the voltage 
of the inverting one, even by some  tens of 
microvolts, the output voltage will jump as 
high as possible. This means the op-amp will 
saturate with an output  voltage close to its 
positive V+  power supply. Similarly, if the 
voltage on the inverting input is higher than 
the noninverting input,  then the output will 
jump down to V–. As a consequence, an op-
amp is nearly never used in such an open-
loop configuration. It would be just a voltage 
comparator (and dedicated chips do exist for 
that). There is always a feedback loop around 
the op-amp, as I will show you in a minute. 
For the moment, keep in mind the first rule of 
an ideal op-amp.

Rule 1: The voltage between the two inputs of 
a non-saturated op-amp is always zero.

 
Another key characteristic of any op-amp 

is that the currents flowing through the inputs 
are very low. Once, again I mean very low—
that is, some nano-amperes are common. 
This leads to the second golden rule, once 
again for an ideal op-amp.

 
Rule 2: The current through the inputs of an 
op-amp is null.

 
Lastly, an op-amp needs to be powered, of 

course. It has two power input pins, positive 
and negative. You can connect the V+ and 
V– pins to a symmetrical power source like 
±10 V, or you can ground the V– pin and 
wire the V+ pin to a positive power supply. 
Don't be fooled by datasheets stating that a 
specific chip is designed for “bipolar power” 
or “unipolar power.” An op-amp can’t tell the 

difference between a ±10-V power supply 
and a 0/20-V one, because it doesn't have a 
ground connection!

TYPICAL DESIGNS
You will find plenty of designs around 

an op-amp in books or on the Internet: 
amplifiers, differentiators, summators, etc. 
The three most basic examples are illustrated 
in Figure 3. Even though they are simple, 
it is useful to know how to calculate such 
circuits using the two rules I listed above. 
Let's start with the voltage follower. Here 

FIGURE 1
The K2-W was the first commercial “integrated” operational amplifiers (1952). It was designed by George A. 
Philbrick Researches (GAP-R), Inc. (Source: www.philbrickarchive.org) 

FIGURE 2
An op-amp is simply a differential 
amplifier. Its key characteristics 
are a very high open-loop gain 
and very low input bias currents.

http://www.philbrickarchive.org
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the input voltage is simply connected to the 
noninverting input, and the inverting input is 
connected to the output. Remember Rule  1? 
The voltage between the two inputs must be 
zero; therefore, the output voltage is identical 
to the input voltage. Moreover as the input 
current is null (thanks to Rule 2), the input 
impedance is virtually infinite. We have a 
perfect voltage follower (see Figure 3a).

The noninverting amplifier design (see 
Figure 3b) is nearly identical. This time, 
two additional resistors are used. The input 
voltage is still connected to the noninverting 
input, so the voltage at the inverting input 
must also be VIN. But this  inverting input is 
connected to the ground through a resistor 
R1. Remember Ohm's law? The current 

through R1 must be I = U/R = VIN/R1. But, 
wait, no current is flowing through this input 
as stated by Rule 2. So the same current must 
also go through R2, which is wired between 
the inverting input and the output. The 
voltage drop through R2 is then simply U = R 
× I = R2 × (VIN/R1). So what is the voltage at 
the output of the op-amp? It is equal to the 
voltage on the inverting input (which is equal 
to VIN), plus this voltage drop across R2 that 
we have just calculated. So we have VOUT  = 
VIN  +  (R2 × VIN/R1), which you can rewrite 
as VOUT = VIN × (1 + R2/R1). Here it is: we have 
a noninverting amplifier and its gain is fixed 
by R1 and R2.

I hope you grabbed that all these circuits 
can be easily calculated using just the two 
golden rules. As an exercise, I encourage you 
to do the same simple calculation with the 
inverting amplifier (see Figure 3c). It's easy if 
you understand the basic idea.

WHEN ZERO IS… NOT NULL
Up to now, I've assumed that the op-

amp was perfect. But life would be boring if 
everything were perfect. Let's assume that 
you're using our old friend, the UA741,  an 
equivalent of the µA741. Refer to Table 1, 
which includes data from STMicroelectronics. 
What do all the numbers mean? 

The first line of this 
data  sheet  is  labeled  “input offset voltage.” 
This is a measure of how good this op-amp 
is, as compared to the first golden rule 
stated above. As the circuit is not perfect, the 
voltage difference between the two inputs  is 
not  exactly null. Here the typical error is 
specified as 1 mV.  The manufacturer states 
that this error can go up to 5 mV, and even 6 
mV when the temperature is not 25°C, but I will 
just consider the typical value. Is 1 mV of error 
low enough? It depends on your application. 
This can be neglected, or it can transform 
your project into a useless bunch of wires 
and silicon. Imagine that you're designing 
an amplifier for a thermocouple sensor. The 
input voltage would be in the 10-mV range, 
so a 1-mV offset error would introduce a 10% 
error on the output! That's why dedicated 
op-amps exist for such applications. These 
amplifiers, often referred as “zero-drift,” 
are specifically designed to reduce the offset 
voltage to a minimum, with built-in offset 
canceling circuits. Do you want an example? 
Find datasheet on the web for the Texas 
Instruments TLC2652AC. The chip provides a 
maximum offset error of 1 µV, and an even 
more impressive temperature  variation  of 
0.003 µV/°C.  That's better than the  UA741, 
isn't it? 

Going back to the datasheet (see Table 1), 
the third line is called “Input Bias Current.” 

FIGURE 3
These are some typical applications for an op-amp. As shown, there is always an external feedback loop 
around the amplifier.
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As you can imagine, this one is related to 
the second golden rule. The currents flowing 
through the inputs are not exactly null. They 
are stated to be lower than 10 nA typically, 
but can go up to 200 nA. Moreover, the 
current flowing through both inputs are not 
equal. The difference, called “Input Offset 
Current” (second line of Table 1), is about 
2 nA. These are low currents, but are they 
low enough? Once again, this depends on 
your application. If you design a noninverting 
amplifier with two external resistors, then 
this small leakage will introduce a little 
error on the theoretical gain. The 10 nA will 
roughly double the 1-mV voltage offset error 
is the resistors are in the range of R = U/I 
= 2 mV/10 nA = 200 kΩ. This will not be a 

problem if you use low-value resistors, but 
may became an issue if you require large 
resistors. Another source of concern is that 
the same leakage current will be applied on 
your circuit input. Note that 10 nA will usually 
be negligible, but this is not the case if you 
want to amplify a very small current coming, 
for example, from a sensitive photodiode. 
Once again, there are specialized op-amps 
for such applications,  referred as “low bias 
op-amps.”  They  are designed to  reduce this 
input bias current as much as possible. For 
example,  look at the  LTC6268 from Linear 
Technologies. Its typical bias current is 3 fA. 
Yes, three femtoamps. That's 3 million times 
better than the UA741.  

Lastly, the datasheet's fourth line, which is 

TABLE 1 
This information from the the UA741 
datasheet shows all the amplifier's 
key DC characteristics (Source: www.
st.com)

http://www.st.com
http://www.st.com


circuitcellar.com 65
CO

LU
M

NS

reproduced in Table 1, is called “Large signal 
voltage gain.” This is the open-loop gain I was 
talking about at the beginning of this article. 
For the UA741 it is typically equal to 200 V/mV, 
which means a gain of 200,000. This is high, 
but  not infinite. Once again, it may or may 
not be enough, depending on your design, but 
usually this is not a concern for DC signals, we 
will see the AC case a little later.

OTHER ERRORS
As described in my theoretical presentation 

above, the output voltage of an op-amp is 
proportional to the difference of voltage 
between its two inputs and nothing more. 
But this isn't exactly the case. What are the 
sources of errors?

The first one is that the output voltage is 
also a little dependent on the power supply 
voltage. This dependency is also specified in 
the datasheet as “Supply voltage rejection 
ratio.” As you can see in Table 1, this is 90 dB 
for the UA741. This supply rejection ratio can 
be referred either to the output or the input of 
the op-amp and it should be in the datasheet. 
Let’s assume it is input-related. This means 
that if the amplifier is configured for a gain 
of 1 (voltage follower), then the voltage 
error on the output for a 1-V voltage change 
on the power supply will be 1 V × 10–90/20, 
or 31 µV. But this error would be 100 times 
higher for a gain of 100, and 3 mV starts to be 
significant. Supply voltage rejection could in 
particular be a problem for systems directly 
powered by an unstable battery voltage.  Be 
sure that this phenomenon could also induce 
nasty oscillation problems if the power supply 

is not properly decoupled.
The other error source, “Common mode 

rejection ratio,” is also specified  to  90 dB 
for the  UA741. It is simply stating that the 
output voltage will not be the same if the two 
inputs are respectively at 2 V and 2.001 V, 
or at 3 V and 3.001 V.  It should, as the op-
amp just measure their difference, but it isn't 
because the op-amp is not perfect. So-called 
instrumentation amplifiers are usually quite 
good in terms of common mode rejection. For 
example, the Analog Devices AD8422 has a 
specified 150-dB CMRR at DC.

RAIL TO RAIL? 
Now let's focus on power supply-related 

characteristics. Of course, each op-amp is 
specified for a given nominal power supply 
voltage and will probably die if you exceed 
its absolute maximum specification. But what 
about the inputs and outputs? Look one more 
time at the UA741 specification (see Table 1). 
The “Input common mode voltage range” 
parameter is specified as ±12 V for a ±15-V 
power supply. What does this mean? Simply 
that this op-amp will not work properly if 
the voltage applied on any of its inputs is too 
close to the –15- or 15-V power voltages. It 
has to stay at least 3 V away from these upper 
and lower bounds. Now imagine that you use 
this  UA741 with a unipolar voltage supply 
coming from a 9-V battery. You will connect 
GND to its V- power pin and the 9-V source to 
+V. Then, for optimal performance, you must
ensure that the input voltage never goes lower
than 3 V (i.e., 0 + 3), and never higher than 6
V (i.e., 9 – 3). That's a small usable range! You

TABLE 2
The op-amp datasheet also includes 
AC characteristics. Once again, this is 
the venerable UA741.
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might find my explanations repetitive, but 
once again, there are operational amplifiers 
specifically designed for an as large an 
input voltage range as possible. These so-
called rail-to-rail input op-amps accept an 
input common mode voltage range going 
from V- (or GND) up to V+. There are even 
“above the rail” op-amps. One example is the 
LT1783 from Linear Technologies. This tiny 
micropower chip accepts input voltages from 
0 to 18 V, even if it is powered by a 2.5-V 
voltage source.

I just talked about the inputs, but the 
same problem exists  on the output side. 
Our dear friend the UA741 is specified for an 
“output voltage swing” of ±13 V with a 2-kΩ 
load. That means that the output will never 
come closer than 2 V to V+ or V-, even if the 
op-amp is saturated. I've seen several poorly 
working designs from designers who forgot to 
read this line of the spec. Imagine an op-amp 
powered from a unipolar source (V- = GND), 
with its output driving a common-emitter NPN 
transistor. If the output voltage swing of the 
op-amp doesn't go lower than 0.6 V, then 
the transistor will always stay on. You've 
probably anticipated that so-called rail-to-rail 
output amplifiers have outputs very close to 
V+ and V-. For example, Microchip Technology 
MCP6001's output can get as close as 25 mV 
to both power rails.

FREQUENCY CONCERNS
Thus far, I've covered the key DC 

parameters of an op-amp. But what about 
its behavior with AC signals? The key AC 
specifications for the  UA741 are reproduced 
on Table 2. The first one is the well-known 
“Gain-bandwidth product,” or GBP. For 
the UA741, this is 1 MHz. To understand this 
parameter, you must know that the open-loop 
gain of an op-amp is roughly a straight  line 
on a logarithmic scale. The open-loop gain is 
reduced by 6 dB each time the frequency is 
doubled (at least for a majority of op-amps). 
Therefore, there is a frequency at which the 
open-loop is down to 1. This frequency is by 
definition the GBP.

The interesting thing is that the 
same  plot  is very useful when you design 
a closed-loop amplifier.  Just  draw a 
horizontal line at the closed-loop gain of the 
amplifier. Determine the frequency at with it 
intersect the open-loop gain. This will provide 
the 3-dB low-pass frequency of the amplifier. 
This is illustrated in Figure 4. On this example 
I used the graph from the UA741 data sheet. 
I assumed that you want to design a 40-dB 
amplifier—meaning, a voltage gain of 100. If 
you aren't sure, calculate 20 × log10(100) and 
it will give you 40. Draw a horizontal line at 40 
dB, up to the intersection with the open loop 

FIGURE 4
This graph shows you the open loop gain versus frequency of this op-amp. If you need to build a 40dB 
closed-loop amplifier it also shows you that its cut-off frequency will be 10 kHz. (Source: Texas Instruments 
UA741 datasheet)
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gain, then down to the frequency axis and you 
find 10 kHz. That means that a UA741-based 
amplifier with a voltage gain of 100 will not be 
helpful above 10 kHz. As always, if you need 
a faster op-amp, use a model designed for 
high-frequency applications, like the Texas 
Instruments LMH5401. This monster has 
an 8-GHz gain-bandwidth option.  I guess 
this would be enough for any reasonable 
application.

One parameter closely related to the GBP 
is the “slew rate” of the op-amp. It is 0.5 
V/µs for the  UA741, but 17,500 V/µs for the 
LMH5401. This number indicates how fast 
the output of the amplifier can swing. For 
example, 17,500 V/µs means that its output 
can go from 1 to 3 V in about 120 ps. Not too 
bad.

WRAPPING UP
Selecting an op-amp just because you 

already used that reference somewhere else is 
not a good idea. Firstly, check what 
parameters are critical for the performances 
of your project. Offset voltage? Bias current? 
Common-mode voltage range? Rail-to-rail 
characteristics? Frequency performance? Or 
maybe noise factor? Define the specifications, 
prioritize them, and lastly use the good 

parametric search tools proposed by all op-
amp suppliers on their websites to find the 
best chip for your application. Just don't 
forget to add the unit price and minimum 
order quantity to the search criteria.

I'm out of space, but I have the feeling 
that I have only scratched the surfaced of the 
subject. In particular, I didn't cover a key 
concern related to amplifiers built using a 
feedback loop: stability. If you have already 
built an amplifier behaving more like an 
oscillator, raise your hand. OK, I'll cover that 
in my next column. 
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X-10 Wireless Technology, Inc. (WTI) has 
officially gone belly-up. For over 40 years, 

X-10 led the charge in home automation. 
Unfortunately, the company could wait no 
longer for the market to catch up with its dream 
of the future. In 2013, it ceased production. My 
X-10 appliances still work fine. Sure, there are 
issues, but they gave us techies stuff to play 
with when no one else had the vision.

Authinx, Inc., which is the largest distributor 
of X-10 home automation products in North 
America, purchased the x10.com domain name 
in the fall of 2013. It promises to continue 
improving functionality, reliability, and even 
aesthetics of the X-10 switches, modules, and 
controllers. One of most popular items for 
those interested in experimenting with X-10 is 
the computer interface. This began with PL513 
that had an isolated interface giving your 
computer the ability to send X-10 commands. 
The TW523 followed offering reception as well 
as transmission of these codes.

Over the years, you’ve seen lots of 
projects in Circuit Cellar involving the X-10 
protocol.  Because of the loss of RS232 ports 
on computers, the X-10 interfaces have been 
updated to move away from the barebones 
carrier-initiating interface to include a USB 
smart interface. However, for experimenters, 
the computer interface still remains the staple, 
as they are the easiest to interface with a 
microcontroller. These products have been 

relabeled as PSC04 and PSC05.
Because the X-10 is a protocol that sends 

information over the existing power lines, data 
is sent during each half cycle of the 60-Hz (or 
50-Hz) 120-VAC waveform. Zero crossings are 
used as a reference for when to expect the 
data. Data is sent three times per each half 
cycle to coincide with a three-phased power 
system. This assures that data is available 
after a zero crossing of any phase. A data "1" 
is indicated by the presence of a 1-ms pulse 
of 120-kHz carrier imposed on the power line. 
A lack of carrier during the expected time 
specifies a data "0." Check out the reference 
for more information on this protocol.

Past projects included smart interfaces 
that translate ASCII commands into proper 
zero crossing timed carrier-initiating 
interfaces to the PL513 and TW523. These 
allowed an experimenter to deal with simple 
commands to control X-10 devices, as opposed 
to the lower level data timing required by the 
above interfaces. This month I want to cover 
the process of sending and receiving X-10 
commands using an Android smartphone or 
tablet over a Bluetooth link. But wait, surely 
several companies have jumped into the home 
automation ring by now, so what’s new?

LOOK AT ME
While most communication protocols are 

touting "Look At Me" to control the world, few 

Wireless Home  
Automation (Part 1)

X-10 and Beyond 

FROM THE BENCH

X-10 is considered the Grandfather of 
Home Automation technologies. Jeff 
covers the evolution of wireless technology 
and hightlights some exciting new home 
automation options, such as the ZBPLM.

By Jeff Bachiochi (US)
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manufacturers are stepping up to endorse 
any specific protocol for the long range. From 
the cry for an updated and secure power 
distribution infrastructure, we see both 
wired and wireless communications used in 
smart-metering, giving both providers and 
users demand and cost information. Security 
companies and cable providers are beginning 
to offer some level of control and monitoring 
services. Many are keeping the specifics about 
their propriety systems under wraps.  

From a device point-of-view, thermostats, 
lighting, door locks, video cameras, and the 
like usually have some communication logo 
on the packaging. This gives the user some 
indication on what it takes to use the device. 
Meanwhile, system integrators are having 
nightmares trying to support every possible 
device and make their control and monitoring 
software all encompassing.  

Back in January 2011, I devoted on column 
to the Smart Network Access Point (USNAP). 
The USNAP Alliance was stepping up and trying 
to create the interface connection between 
devices, allowing all to communicate with 
one another via all possible communication 
medium. I loved this idea and the interface 
was free and open to all. Since then, this 
interface has gone through growing pains and 
the physical interface has changed. USNAP 
members and other industry stakeholders 
joined with the Consumer Electronics 
Association (CEA) to create a new Modular 
Communications Interface. This new interface 
combines the previous USNAP standard and the 
EPRI AC driven version together with additional 
improvements. While I wish them well, you 
can obtain the ANSI/CEA-2045 standard only 
through the CEA website, which costs money.

RF JOINS PL AS CO HOSTS
Towards the end of the 1990s, SmartLabs 

Technology began developing its own "Linc" 
series of Power Line (PL) wired products. Their 
goal was to improve on the reliability of the 
X-10 protocol. It soon became clear that RF 
wireless communications could add a much 
boost to limited repertoire of wired control. 
Of the wireless communication protocols that 
had existed, most were either too complex, 
expensive, or range limited. As an alternative, 

SmartLabs partnered with Integration 
Associates to develop the family  of Insteon 
integrated circuits. 

The Insteon RF protocol uses the 915-MHz 
band. With boundaries of 902 and 928 MHz, 
the 915-MHz Industrial Scientific Medical 
(ISM) band is one of the ISM bands set aside 
for unlicensed operation in the Americas. 
Together with a power line protocol using 
131.65-kHz Binary Phase Shift Keying (BPSK) 
modulation on the AC line, Insteon RF provides 
complementary paths which assures complete 
device coverage.

To be fair, Insteon competes with a number 
of other systems like Wink, SmartThings, 
Lowes Iris, and WeMo. As you can see in 
Table 1, most system integrators just make 
use of other manufacturer’s devices. While 
some offer APIs, most require going through 
some cloud.

TAKING CONTROL 
Past X-10 projects were popular because 

they showed how to make use of the technology 
in your own applications. This was due to 
X-10’s willingness to open their technology 
to those interested in exploiting it in their 
own way. In an effort to continue the great 
tradition of the DIYer, Insteon offers a bridge 
that not only allows contact with the past but 
also the future. The ZBPLM is a combination of 
X-10, Insteon, ZigBee interface to an RS-232 
connection. While this sounds like the PL513 or 
TW523 originating from X-10, with the ZBPLM 
you are not required to build PL transmissions 
via monitoring the zero-crossings. All 
communications use a single command set for 
all the supported interfaces.

Should you choose to use a PC for your 
application, the included cable with a DE-9 can 
plug right in, or you may have to use a USB to 
serial converter available less than $10 on the 
web. I picked up this device as it was not USB, so 
I could easily interface it with a microcontroller. 
It also has the benefit of providing 300 mA at 12 
V for powering your project. It does cost $120, 
but considering the interfaces supported and 
ease of use, I believe it is still cost effective. Note 
that a USB version is also available.

For this column I will be connecting the 
ZBPLM to a Bluetooth module through a 

TABLE 1
Most home automation systems 
make use of other manufacturer’s 
technologies and require going 
through the cloud in order to 
communicate with a device.

Insteon Wink SmartThings Lowes Iris WeMo

Communication
Radio Frequency 
+ Powerline

Radio Frequency Radio Frequency Radio Frequency Radio Frequency

Technology
X-10, Insteon, 
ZigBee

WiFi, ZigBee, 
Z-Wave, Bluetooth 
LE, Lutron 
ClearConnect

WiFi, ZigBee, 
Z-Wave

Z-Wave WiFi

API Yes Yes Yes n/a n/a
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microcontroller. You might think that this could 
be done without the use of a microcontroller, and 
you’d be mostly correct. The data to and from 
the ZBPLM could be shuffled to an application 
on the opposite end of the Bluetooth; however, 
I will ultimately want the real smarts to be in 
this interface. For now the circuit presented 
Figure 1 will not be translating anything other 
than a baud rate change.  The same circuitry 
will allow this application to evolve into a more 
sophisticated one, as you will see.

To give this month’s column a sense of 
completion, the application will allow just X-10 
control from an Android smartphone. For the 
purpose of this simple illustration, we only 
need two commands.  

0x02 0x52 <Raw X-10><X-10 Flag> 
	 X-10 Received
0x02 0x63  <Raw X-10><X-10 Flag> 
	 Send X-10
	  
These commands contain Raw X-10 data, 

which is a byte holding the "Housecode" in 

FIGURE 1
The project is based on this schematic, 
which for all intents and purposes 
merely passes data back and forth 
between the ZBPLM module and 
whatever serial device is hung on the 
6-pin serial connector. ZBPLM output 
is RS-232 so this must be converted 
to TTL for the microcontroller. This 
project uses a JY-MCU Bluetooth 
module for linking wirelessly to any 
Android device. The microcontroller 
passes data, initializes the Bluetooth (if 
necessary), and handles the external 
EEPROM, which will be used in the 
future.

PHOTO 1 
The Lamp (and Appliance) module 
use rotary switches to set the House 
(A-P) and Unit (1-16) codes for each 
receiver.  This becomes the address 
for the device.



circuitcellar.com 71
CO

LU
M

NS

the upper nibble (0-15) and the "UnitCode" or 
"Function" in the lower nibble (0-15). The X-10 
Flag merely defines whether the lower nibble is 
a "UnitCode" or a "Function". The "Housecode" 
is always sent as the upper nibble of every Raw 
X-10 transmission.

X-10 receivers have two little dials on them 
allowing a user to set a "HouseCode" (A-P) 
and a "Unit Code" (0-15) for that module (see 
Photo 1). X-10 receiver modules will only pay 
attention to a "Function" transmission where 
the last "Unitcode" transmission matches 
its dial settings. An X-10 transmitter must 
send a "Unitcode" transmission to wake up 
those receivers with a matching setting. Any 
"Function" transmission will be executed 
by that module, until a new "Unitcode" 

transmission is made.
X-10 contains only 16 possible "Housecodes", 

"Unitcodes", and "Functions" (see Table 2). 
Note that the value (0-15) for "Housecode"=A 
and "Unitcode"=1 are not in logical order; in 
this case, both are equal to "6." The Raw X-10 
value for sending a "Unitcode" transmission of 
"Housecode'=A (6) and "Unitcode"=1 (6) is the 
value 0x66. The Raw X-10 value for sending a 
"Function" transmission of "Housecode"=A (6) 
and "Function"=ON (2) is the value 0x62. When 
the X-10 Flag value is 0x00 the Raw X-10 data 
is interpreted as a "Unitcode" and when the 
X-10 Flag value is 0x80 the Raw X-10 data is 
interpreted as a "Function".

The smartphone application must do 
three things. First, it must be able to find and 

TABLE 2
Here are the nibble values of House, 
Unit, and Function codes used in X-10 
commands. The House and Unit codes 
are usually set by rotary switches on 
Lamp and Appliance modules as seen 
in Photo 1.

HOUSE 
CODE

Bit3   Bit2   Bit1 Bit0 Decimal

A 0 1 1 0 6
B 1 1 1 0 14
C 0 0 1 0 2
D 1 0 1 0 10
E 0 0 0 1 1
F 1 0 0 1 9
G 0 1 0 1 5
H 1 1 0 1 13
I 0 1 1 1 7
J 1 1 1 1 15
K 0 0 1 1 3
L 1 0 1 1 11
M 0 0 0 0 0
N 1 0 0 0 8
O 0 1 0 0 4
P 1 1 0 0 12

UNIT 
CODE

Bit3   Bit2   Bit1 Bit0 Decimal

1 0 1 1 0 6
2 1 1 1 0 14
3 0 0 1 0 2
4 1 0 1 0 10
5 0 0 0 1 1
6 1 0 0 1 9
7 0 1 0 1 5
8 1 1 0 1 13
9 0 1 1 1 7
10 1 1 1 1 15
11 0 0 1 1 3
12 1 0 1 1 11

13 0 0 0 0 0
14 1 0 0 0 8
15 0 1 0 0 4
16 1 1 0 0 12

FUNCTION 
CODE

Bit3   Bit2   Bit1 Bit0 Decimal

ON 0 1 1 0 6
OFF 1 1 1 0 14
DIM 0 0 1 0 2
BRIGHT 1 0 1 0 10
All Lights 
ON

0 0 0 1 1

All Units 
OFF

1 0 0 1 9

All Lights 
OFF

0 1 0 1 5

EXTENDED 
CODE

1 1 0 1 13

HAIL 
REQUEST

0 1 1 1 7

HAIL ACK 1 1 1 1 15
EXTENDED 
CODE

0 0 1 1 3

UNUSED 1 0 1 1 11
EXTENDED 
CODE

0 0 0 0 0

STATUS 
“ON”

1 0 0 0 8

STATUS 
“OFF”

0 1 0 0 4

STATUS 
REQUEST

1 1 0 0 12
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connect to the Bluetooth device on our circuitry, 
establishing a serial link. Second, it must provide 
a way for the user to select a "Housecode", a 
"Unitcode and a "Function", and then create 
a command string containing the appropriate 
data, and send it over Bluetooth. Finally, there 
must be some feedback to the user. This is a 
monitoring of data sent to the smartphone 
in the form of a response to the requested 
command or some other X-10 activity. I’ve 
dreaded writing smartphone apps in the past 
because the Bluetooth communications usually 

meant more complexity than I bargained for. 
I found that B4A from Anywhere Software 
allowed me to accomplish what I wanted with 
little effort. "B4" versions are available for 
'A'ndroid, 'I'OS, and 'j'ava (for Windows, Mac, 
Linux, and ARM systems). Let’s look at the 
process used for this project.

B4A
Rapid Application Development (RAD) 

tools for native Android, iOS, and desktop 
applications are based on Java and require 

FIGURE 3
The Designer tool lets you create screen 
layouts for your application and show 
the result on a virtual device (shown) 
or directly on your Android device.  
Here we see a button and two text 
boxes used by the "Bluetooth Chat" 
application.

FIGURE 2
The IDE for B4A (Basic for Android) 
looks like many similar tools—for 
instance, those familiar with VB6. I 
started my learning process by going 
through a sample program that shows 
how Bluetooth is used to create a 
chat application between two Android 
devices.
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the installation of the Java Development Kit 
(JDK). As my interest is using my Android 
smartphone, I choose to use B4A. The standard 
versions of B4a and B4i are $59; however, you 
can try the B4j version for free. Here’s a brief 
overview of the IDE.

I find the best way to help me speed up 
the learning curve is to choose a prewritten 
application that is in some way related to what 
I am trying to accomplish. In this case one of 
the example applications I found in the website 
forum is a Bluetooth Chat program. I extracted 
the contents of this Bluetooth.zip file to my 
projects folder, then loaded Bluetooth.b4a into 
the IDE using the File and then Open Source 
pull-down selection. The IDE (see Figure 2) 
shows the first of two modules "Main" and 
"Chat activity". These are shown as tabs below 
the ToolBar as well as at the top of the modules 
stub on the right side of the page. The left side 
of the IDE displays the code for the selected 
module (Main).

Creating a new activity automatically 
begins five subroutines: Process_Globals, 
Globals, Activity_Create(FirstTime 
As Boolean), Activity_Resume, and 

Activity_Pause (UserClosed As 
Boolean). Process_Globals are the only 
"public" variables that can be accessed from 
all modules in the application. Globals 
are the only "public" variables that can be 
accessed from within an application module. 
Activity_Create is run when an activity 
is created—that is, when the application is 
first launched, the device configuration has 
changed (e.g., a user rotated the device and 
the activity was destroyed), or the activity 
was in the background and the OS decided 
to destroy it in order to free memory. This 
sub’s purpose might be to load or create the 
layout and initialize variables declared above. 
Activity_Resume will be called before 
the activity moves from the background into 
the foreground either from an Activity_
Create or an Activity_Pause. If the user 
presses the Home or Back button or another 
activity wishes to take over the foreground 
task, the Activity_Pause allows any clean 
up or saving of task data before it is moved 
to the background (possibly being destroyed). 

As you can see in Figure 2, two additional 
subroutines have been added to this module, 
btnConnect_Click and Serial1_
Connected (Success As Boolean).  The 
btnConnect_Click routine is called upon 
a button press and Serial1_Connected 
(Success As Boolean) upon a connection 
or disconnection of a serial operation. Let’s 
start with the button as it will demonstrate 
an important tool in the design process. 
Previously, I mentioned loading a layout or 
screen. Most applications require a way to 
display or collect information. This might 
be text entered or displayed in a window, a 
graphic, or button and the layout of these can 
be predetermined using the screen Designer.

The Designer allows the generation of 
layouts using either the Emulator (a virtual 
device) or a real device (like your smartphone). 
With the Designer you can add a number of 
items: Button, CheckBox, EditText, ImageView, 
Label, ListView, Panel, ProgressBar, 
RadioButton, ScrollView, SeekBar, Spinner, 
TabHost, ToggleButton, and WebView to 
your layout all of whose properties can be 
manipulated through the Designer.

In this application the Main module uses 
a layout containing a single button labeled 
btnConnect. It is loaded when this activity 
begins. Other than leaving this application 
the only choice for the user is to click on this 
button.  When clicked we have the stimulus for 
the btnConnect_Click routine. This sub is 
using a powerful object in the Serial library 
(previously initialized), which will handle all of 
the necessary tasks for searching out, pairing 
with, and connecting to an external Bluetooth 
device that is within range. The outcome of this 

FIGURE 4 
For my application I’ve placed 6 
text labels and 4 buttons using the 
Designer.  The two upper buttons will 
be used to change the House or Unit 
code, while the central buttons are 
used to send ON or OFF commands to 
an X-10 device.

circuitcellar.com/ccmaterials

SOURCES
PIC18F23K22 Microcontroller 
Microchip Technology | www.microchip.com

ZBPLM  (ZigBee/InsteOn/X-10 Multi-Protocol 
Powerline Modem)
Smartenit | www.smartenit.com

http://www.microchip.com
http://www.smartenit.com
www.circuitcellar.com/ccmaterials
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PHOTO 2
I chose to use some fancy wheel views 
for selecting House or Unit codes.  
This photo of my Acer 100 shows the 
popup that shows when the ‘Change 
House Code’ button has been pressed.   
The wheel popup is handled by a Class 
module and called from both Change 
House and Unit code buttons.

object can be connected or failed. This in turn 
calls the Serial1_Connected routine with 
the result. When this fails the library function 
ToastMessageShow displays a popup 
message, if the connection was a success, then 
a new module ChatActivity is called.

Now that the Bluetooth hardware has 
been initialized, we can make use of the 
connection after one last detail.  The 
RandomAccessFile library offers a way 
to read from an InputStream and write 
to an OutputStream in the background 
without blocking the main thread by using 
the object AsyncStreams. Besides setting 
up AsyncStreams, ChatActivity loads 
a new screen layout which will provide two 
edittext boxes and a button. Figure 3 shows 
the Designer and virtual device (on the right) 
with three defined views. The top edittext box, 
txtLog, will display the text messages as sent 
and received between Bluetooth connected 
devices. The lower edittext box, txtInput, is 
used to compose a message to send. Finally, 
the button, btnSend, is used to send a complete 
message. As an alternate to physically pressing 
btnSend, txtInput has an EnterPressed event 
that can be used call the btnSend object.

BLUETOOTH PLM
You can see that this chat application has 

most of the Bluetooth code I needed for my 
application. I needed to substitute my own 
PLM module for the ChatActivity module. 
Using the Designer, I created a new layout 
with six label views and four buttons as seen 
in Figure 4. lblHouse and lblUnit hold the 
constants ‘House Code’ and ‘Unit Code’. LblH 
and lblU display the selected House and Unit 
Codes. LblSend and lblReceive display the 
command codes sent or those received. BtnON 
and btnOFF will send two commands <0x02 
0x63 HouseCodeUnitCode 0x00> and 
<0x02 0x63 HouseCodeFunctionCode 
0x80> where Function code is ‘ON’ or 
‘OFF’. Finally, btnChangeHouse and btn 
ChangeUnit will invoke the ClsWheel class 
to display and allow user data selection input 
using a wheel, which is sort of a fancy listbox. 
This is a pop-up view that can’t be placed 
using the Designer. Photo 2 shows my Acer 
100 tablet displaying the PLM screen once 
the btnChangeHouse is pressed. The scroll 
wheel shows either the House Code choices 
(A–P) or Unit Code choices (1–16). Once you 
scroll the wheel to the appropriate selection, 
the OK button will exit the class and place the 
selection appropriately in either lblW or lblU.

As I noted earlier, an X-10 command 
requires both a HouseCode/UnitCode 
transmission and a HouseCodeFunctionCode 
transmission. Each successful transmission 
has a return message. I found it wasn’t good 

enough to just wait for the return message 
before transmitting the second transmission. 
I had to delay the transmission slightly before 
the second command would be accepted. So 
I implemented the first transmission upon 
the button press and set a flag to indicate the 
second transmission was necessary. When 
the AStream_NewData() event finds a 
response message and the flag set, the second 
transmission is sent after a 0.5-s delay. Any 
message that is received is decoded and 
displayed in lblReceive. It should be noted 
here that commands sent from, say, a manual 
controller, will be forwarded to the ZBPLM, so 
all activity is received.

BLUETOOTH MODULE
I’ve standardized on a six-pin header 

for interfacing serial to various devices. For 
this project, I wired the JY-MCU Bluetooth 
module (CSR BlueCore-4 chipset) to a mating 
connector. This way I can plug this into any 
project using the interface. You can find the 
JY-MCU on the Internet for less than $10. 
I have version 1.05 and this 3.3-V module 
requires only four connections, power plus 
TX and RX. It uses an AT-style command set 
to access both command and data modes for 
easy connections using SSP protocol. 

This project was a no-frills introduction to 
using an Android device for controlling X-10 
modules using the ZBPLM interface. In the 
next part of this series, I’ll go into the two 
other interfaces available on the ZBPLM, 
Insteon, and ZigBee.   

http://www.imaginethatnow.com
http://www.imaginethatnow.com
mailto:jeff.bachiochi@imaginethatnow.com
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TEST YOUR EQ 
Contributed by David Tweed 

ANSWER 1—The timing will depend primarily on the capacitive load 
on each logic gate, which would include both the wiring capacitance 
and the capacitance of the MOSFET gate(s) you’re driving.

For example, the 2N7000 has an input capacitance of 20 pF 
typical (50 pF max). If your average fanout is 3, plus some wiring 
capacitance, that gives you a typical load of 100–200 pF. With a 
10-kΩ pullup, that gives you an R-C time constant of 1–2 µs. You’d 
probably need to allow at least two time constants for one “gate 
delay” for reliable switching, so we’re talking about 2–4 µs per gate.

To get useful work done, you’ll need to allow some maximum 
number of gate delays per clock period. This will depend on your 
specific design, but a number like 6 to 10 would be typical. So now 
we’re talking about a clock period of 12–40 µs, or frequencies in the 
range of 25–80 kHz.

Switching to a 1-kΩ pullup resistor would allow the frequency to 
scale up by roughly a factor of 10.

ANSWER 2—You can assume that roughly half of the gates will be 
active (outputs low) at any given moment, with current passing 
through their pullup resistors. Each resistor passes 5 V/10 kΩ = 0.5 
mA, and if there are 1,000 gates, this represents an worst-caxse 
current of 0.5A, giving a power consumption of 5 V × 0.5 A = 2.5 W. 
If only about half the gates are active, then the average power will 
be about 1.25 W.

Switching to a 1-kΩ pullup resistor will raise this average static 
power consumption to roughly 12.5 W (5 A, or 25 W, worst-case).

ANSWER 3—Six three-input NOR gates can be used to build a 
master-slave D flip-flop. Note that the active edge of the clock is the 
falling edge.

ANSWER 4—The original Cray-1 supercomputer was constructed 
using a single type of IC for the logic that contained one four-input 
and one five-input NOR gate. This IC used ECL (emitter-coupled logic) 
technology and the machine ran with a cycle time of 12.5 ns (80 
MHz). About 200,000 gates were required to implement the CPU.

The answers to the EQ problems that appeared in  
Circuit Cellar 302 (September 2015).

www.circuitcellar.com/subscription
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ACROSS
3. Discrete particles
5. Box
6. Bending of energy waves
8. Offs and ons
13. Physically coupled to work in unison
15. Vacuum tube with a plate, control grid, 

screen grid, and cathode
16. Coil
18. DIY
19. Point of maximum electrical polarity
20. Depicts a sequence of operations
21. PoE

CROSSWORD 
The answers will be available at circuitcellar.com/category/crossword/

OCTOBER 2015

1 2

3 4 5

6 7 8

9 10

11 12 13 14

15

16 17

18

19

20

21

EclipseCrossword.com

DOWN
1. 1 newton/cm2

2. Dissemination of energy
4. One quadrillionth
7. Rechargeable battery
9. 10–4 micrometer
10. Diode used to convert AC to DC
11. Equal to
12. Soldered permanently
14. Circuit that extracts modulations from an RF signal
17. 180° out of phase

www.circuitcellar.com/category/crossword
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Alexandrea Mellen’s 
Black Hat 2015 Brief

The emergence of the smartphone industry 
has enabled the commodity hardware 

market to expand at an astonishing rate. 
Providers are creating cheap, compact, and 
widely compatible hardware, which bring 
about underestimated and unexplored 
security vulnerabilities. Often, this hardware 
is coupled with back end and front end 
software designed to handle data-sensitive 
applications such as mobile point-of-sale, 
home security, and health and fitness, 
among others. Given the personal data 
passed through these hardware devices and 
the infancy of much of the market, potential 
security holes are a unique and growing 
concern. Hardware providers face many 
challenges when dealing with these security 
vulnerabilities, foremost among them being 
distribution and consequent deprecation 
issues, and the battle of cost versus security.

	An important part of designing a hard-
ware device is being prepared 
for a straightforward hardware 
deprecation. However, this can 
be a thorn in a provider’s side, 
especially when dealing with 
widespread production. These 
companies create on the order 
of millions of copies of each re-
vision of their hardware. If the 
hardware has a critical security 
vulnerability post-distribution, 
the provider must develop a 
way to not only deprecate the 
revision, but also fix the pro-
blem and distribute the fix to 
their customers. A hardware 
security vulnerability can be 
very detrimental to companies 
unless a clever solution through 
companion software is possible 
to patch the issue and avoid a 
hardware recall. In lieu of this, 
products may require a full recall, which can 
be messy and ineffective unless the provider 
has a way to prevent future, malicious use of 
the insecure previous revision.

	Many hardware providers have begun op-
ting out of conventional product payments 
and have instead turned to subscription or 
use-based payments. Hence, the provider may 
charge low prices for the actual hardware, but 
still maintain high yields, typically through 
back end or front end companion software. 
For example, Arlo creates a home security ca-
mera with a feature that allows users to save 
videos through their cloud service and view 

the videos on their smartphone. The price 
of the camera (their hardware) is mid-range 
when measured against their competitors, 
but they charge a monthly fee for extra cloud 
storage. This enables Arlo to have a continual 
source of income beyond their hardware pro-
duct. The hardware can be seen as a hook to 
a more stable source of income, so long as 
consumers continue to use their products. For 
this reason, it is critical that providers mini-
mize costs of their hardware, even down to 
a single dollar—especially given their large-
scale production. Unfortunately, the cost of 
the hardware is typically directly related to 
the security of the system. For example, a 
recent vulnerability found by me and my col-
leagues in the latest model Square Reader is 
the ability to convert the Reader to a credit 
card skimmer via a hardware encryption by-
pass. This vulnerability was possible due to 
the placement of the encryption chip on a rib-

bon cable offset from the mag-
netic head. If the encryption 
chip and magnetic head had 
been mounted to the Reader as 
an assembly, the attack would 
not have been possible. Howe-
ver, there is a drastic diffe-
rence in the cost, on the order 
of several dollars per part, and 
therefore security was sacrifi-
ced for the bottom line. This is 
the kind of challenging deci-
sion every hardware company 
has to make in order to meet 
their business metrics, and of-
ten it can be difficult to find a 
middle ground where security 
is not sacrificed for expense.

	New commodity hardware 
will continue to integrate into 
our personal lives and personal 
data as it becomes cheaper, 

more compact, and universally compatible. 
For these reasons, commodity hardware con-
tinues to present undetermined and intriguing 
security vulnerabilities. Concurrently, hard-
ware providers confront these demanding 
security challenges unique to their industry. 
They face design issues for proper hardware 
deprecation due to massive distribution, and 
they play a constant tug-of-war between cost 
constraints and security, which typically ends 
with a less secure device. These potential 
security holes will remain a concern so long 
as the smartphone industry and commodity 
hardware market advance.

The Future of Commodity Hardware 
Security and Your Data
By Alexandrea Mellen

Alexandrea Mellen is the 
founder and chief developer 
at Terrapin Computing, 
LLC, which makes mobile 
applications. She presented 
as a briefing speaker at 
Black Hat USA 2015 (“Mobile 
Point of Scam: Attacking the 
Square Reader”). She also 
works in engineering sales 
at The Mellen Company, 
which manufactures and 
designs high-temperature 
lab furnaces. She has 
previously worked at New 
Valence Robotics, a 3-D 
printing company, as well 
as The Dorm Room Fund, 
a student-run venture 
firm.  She holds a BS in 
Computer Engineering from 
Boston University. During 
her undergraduate years, 
she completed research on 
liquid metal batteries at MIT 
with Group Sadoway. See 
alexandreamellen.com for 
more information.

The Square Reader's encryption chip is 
located in the bottom right-hand corner 
instead of on the magnetic head. This 
drastically reduces the cost of the device.
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