
 Editors’ Picks: Signal Processing Solutions DIY Footlight Project |

Room Acoustics Analysis | Battery Operation Transformer Design |

FPGA Design in Python | Connect Wirelessly with a Microcontroller |

Tips for Selecting an Operational Amplifier | X-10 and Beyond

 The Future of Commodity Hardware Security

 SIGNAL PROCESSING
OCTOBER 2015

ISSUE 303CIRCU
IT CELLAR | ISSU

E 303 | O
CTO

BER 2015
circuitcellar.com

circuitcellar.com

TAKE CONTROL
WIRELESS HOME AUTOMATION

A look at the evolution of
wireless home automation

technology and exciting new
options for innovation

A Digital Oscilloscope for the Analog World

For more information call 1-800-591-2796 or visit:
www.picotech.com/pco542

102 dB SFDR • Log x Log FFT View
Low noise • Two channels

16 MS buffer • 16-bit resolution
10 MS/s sampling • 5 MHz bandwidth

Advanced digital triggers
Low-distortion signal generator
Arbitrary waveform generator

USB powered
SDK including LabVIEW and MATLAB

Mac, Linux and Windows

YE AR

16 bit

PicoScope® 4262
HIGH-RESOLUTION OSCILLOSCOPE

PI
C

O
SC

O
PE

 4
00

0
SE

R
IE

S

http://www.picotech.com/pco542

C

M

Y

CM

MY

CY

CMY

K

COREMODULE-AD-NOV2013_NV_CC.pdf 1 9/23/2013 10:20:30 AM

www.netburner.com/kits
mailto:sales@netburner.com
www.netburner.com

CIRCUIT CELLAR • OCTOBER 2015 #3032

Issue 303 October 2015 | ISSN 1528-0608

CIRCUIT CELLAR® (ISSN 1528-0608) is published monthly by:

Circuit Cellar, Inc.
111 Founders Plaza, Suite 904

East Hartford, CT 06108

Periodical rates paid at East Hartford, CT, and additional offices.
One-year (12 issues) subscription rate US and possessions

$50, Canada $65, Foreign/ ROW $75. All subscription orders
payable in US funds only via Visa, MasterCard, international

postal money order, or check drawn on US bank.

SUBSCRIPTIONS

Circuit Cellar, P.O. Box 462256, Escondido, CA 92046

E-mail: circuitcellar@pcspublink.com

Phone: 800.269.6301

Internet: circuitcellar.com

Address Changes/Problems: circuitcellar@pcspublink.com

Postmaster: Send address changes to
Circuit Cellar, P.O. Box 462256, Escondido, CA 92046

ADVERTISING

Strategic Media Marketing, Inc.
2 Main Street, Gloucester, MA 01930 USA

Phone: 978.281.7708

Fax: 978.281.7706

E-mail: circuitcellar@smmarketing.us
Advertising rates and terms available on request.

New Products:
New Products, Circuit Cellar, 111 Founders Plaza, Suite 904

East Hartford, CT 06108, E-mail: newproducts@circuitcellar.com

HEAD OFFICE

Circuit Cellar, Inc. 111 Founders Plaza, Suite 904
East Hartford, CT 06108

Phone: 860.289.0800

COPYRIGHT NOTICE

Entire contents copyright © 2015 by Circuit Cellar, Inc. All
rights reserved. Circuit Cellar is a registered trademark of
Circuit Cellar, Inc. Reproduction of this publication in whole
or in part without written consent from Circuit Cellar, Inc. is

prohibited.

DISCLAIMER

Circuit Cellar® makes no warranties and assumes no
responsibility or liability of any kind for errors in these
programs or schematics or for the consequences of any

such errors. Furthermore, because of possible variation in
the quality and condition of materials and workmanship of
reader-assembled projects, Circuit Cellar® disclaims any
responsibility for the safe and proper function of reader-

assembled projects based upon or from plans, descriptions, or
information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational
purposes. Circuit Cellar® makes no claims or warrants that
readers have a right to build things based upon these ideas
under patent or other relevant intellectual property law in

their jurisdiction, or that readers have a right to construct or
operate any of the devices described herein under the relevant

patent or other intellectual property law of the reader’s
jurisdiction. The reader assumes any risk of infringement

liability for constructing or operating such devices.

© Circuit Cellar 2015 Printed in the United States

THE TEAM

EDITOR-IN-CHIEF
C. J. Abate

ART DIRECTOR
KC Prescott

ADVERTISING COORDINATOR
Kim Hopkins

PUBLISHER
Dan Rodrigues

COLUMNISTS

Jeff Bachiochi (From the
Bench), Ayse K. Coskun

(Green Computing), Bob
Japenga (Embedded
in Thin Slices), Robert
Lacoste (The Darker
Side), Ed Nisley (Above
the Ground Plance),
George Novacek (The
Consummate Engineer),
and Colin O’Flynn
(Programmable Logic in
Practice)

FOUNDER
Steve Ciarcia

PROJECT EDITORS
Chris Coulston, Ken
Davidson, and David
Tweed

OFFICE ASSISTANT
Debbie Lavoie

IN MEMORIAM—HUGO VAN HAECKE (1951–2015)
Hugo Van haecke, president and publisher of Circuit Cellar, Inc. and Segment

LLC, passed away on August 19, 2015, in Denver, CO. A publishing industry
veteran and an exceptional manager, Hugo was instrumental in the transition
of our business from its early foundations into a future-ready organization—
managing acquisitions, mergers, and restructuring the companies to ensure
the continuity and evolution of the titles (audioXpress, Voice Coil, Loudspeaker
Industry Sourcebook, and Circuit Cellar) as well as the company’s book publishing
business.

Born May 5, 1951, in Antwerp, Belgium, Hugo was the second of four children
born to Henri and Alice Van haecke-Verrycken. He was an eager learner from
the start, and through the teachings of his older brother, Alex, knew how to

read, write and do basic math before he
entered the first grade. During his formative
educational years, Hugo was a passionate
student with a desire to learn, but struggled
with the restrictive nature of the educational
environment.

In 1973, Frank de Winter gave Hugo a job
at Old Charley, a wine wholesale company, to
assist in bookkeeping, accounts, and customer
relations. Frank taught Hugo everything there
was to know about accounting, bookkeeping,
and finances. Hugo excelled in this
environment and the experience reinforced
his lifelong belief that wisdom and success are
fostered through real word experiences.

Hugo moved to the US with his family in
1999, while working for Wolters Kluwer, a
publishing group based in the Netherlands.
During his career, he managed businesses and

companies around the world. In 2005, Hugo started his own venture, working
with several companies as a consultant, a financial advisor, and president.

Hugo had semi-retired to devote more time to his family and especially his
granddaughter, while continuing to be at the helm of our business. A lover of
family, life, and friends, Hugo was a great manager, a proud Million Miler traveler,
and someone who inspired us all and will be greatly missed.

Hugo Van haecke is survived by his wife, Erna Van Meerbergen; his children
Margo Valaika and husband Chris Valaika; Thomas Van haecke and wife, Emilie
Van haecke; his granddaughter, Alyse Valaika; his brother, Alex Van haecke; his
sister Lieve Van haecke; and numerous other relatives.

We dedicate this issue to Hugo.

The Circuit Cellar Staff

mailto:circuitcellar@pcspublink.com
mailto:circuitcellar@pcspublink.com
mailto:circuitcellar@smmarketing.us
mailto:newproducts@circuitcellar.com

circuitcellar.com 3

OUR NETWORK

SUPPORTING COMPANIES

NOT A SUPPORTING COMPANY YET?

Contact Peter Wostrel (circuitcellar@smmarketing.us, Phone 978.281.7708, Fax 978.281.7706)
to reserve your own space for the next edition of our members’ magazine.

13th International SoC Conference	 53

Accutrace	 7

AES - Audio Engineering Society	 63

All Electronics Corp.	 79

Custom Computer Services	 79

Elprotronic, Inc.	 11

EMAC, Inc.	 9

Front Panel Express	 9

General Circuits Co. Ltd.	 45

HuMANDATA, Ltd.	 15

IAR Systems	 21

Imagineering, Inc.	 C4

Ironwood Electronics	 79

Jeffery Kerr, LLC	 79

Lemos International	 11

MaxBotix, Inc.	 79

Measurement Computing Corp.	 55

MyRO Electronic Control Devices, Inc.	 79

NetBurner, Inc.	 1, 59

Pico Technology	 C2

Saelig Co., Inc.	 33

Technologic Systems	 31

FOUNDER
Steve Ciarcia

PROJECT EDITORS
Chris Coulston, Ken
Davidson, and David
Tweed

OFFICE ASSISTANT
Debbie Lavoie

mailto:circuitcellar@smmarketing.us
www.circuitcellar.com
www.audioxpress.com

CIRCUIT CELLAR • OCTOBER 2015 #3034

CONTENTS OCTOBER 2015 • ISSUE 303

SIGNAL PROCESSING

 �INDUSTRY & ENTERPRISE
06 : PRODUCT NEWS

09 : CLIENT PROFILE
Percepio (Västerås, Sweden)

 CC COMMUNITY
10 : EDITORS' PICKS
Signal Processing
Several of the Circuit Cellar team’s favorite articles on
signal processing-related topics

 FEATURES
12 : The Footlight Project (Part 1)
Circuit Board Design
By Tom Struzik
Details of the circuit board development process for a
footlight project

18 : Sound Ecology and Acoustic Health (Part 4)
Room Acoustics Analysis
By Adrien Gaspard & Mike Smith
How to code a room acoustics analysis

28 : Running on Battery (Part 2)
Battery Operation
By Stuart Ball
An examination of combined AC/battery operation,
single-cell operation, rechargeable batteries, and more

FOOTLIGHT PROJECT: CIRCUIT DESIGN

circuitcellar.com 5

CONTENTS

 � CC REBOOT
34 : Build a Three-in-One Measurement System
By Salvador Perdomo
How to build a measurement system comprising a
signal generator, logic analyzer, and digital oscilloscope

 COLUMNS
42 : THE CONSUMMATE ENGINEER
Transformers 101 (Part 2)
Transformer Design
By George Novacek
A review of essential transformer design principles

46 : PROGRAMMABLE LOGIC IN PRACTICE
Rapid FPGA Design in Python Using MyHDL
By Colin O’Flynn
Use MyHDL to leverage the power of Python for
designing, simulating, and verifying FPGA designs

56 : EMBEDDED IN THIN SLICES
The Internet of Things (Part 3)
Connect Wirelessly with a Microcontroller
By Bob Japenga
Tips for connecting your devices wirelessly to the
Internet

60 : THE DARKER SIDE
How to Select an Operational Amplifier
By Robert Lacoste
The key characteristics of op-amps and suggestions for
choosing the right one

68 : FROM THE BENCH
Wireless Home Automation (Part 1)
X-10 and Beyond
By Jeff Bachiochi
The evolution of wireless technology and a look at
exciting new home automation options

 TESTS & CHALLENGES
77 : TEST YOUR EQ

78 : CROSSWORD

 TECH THE FUTURE
80 : The Future of Commodity Hardware Security and
Your Data
By Alexandrea Mellen
Thoughts on the future of hardware design and the
problem of underestimated security vulnerabilities

DIY 3-IN-1 MEASUREMENT SYSTEM

@editor_cc
@circuitcellar circuitcellar

THE FURUTE OF HARDWARE
SECURITY

TIPS FOR SELECTING OP-AMPS

WORKING WITH MyHDL

CIRCUIT CELLAR • OCTOBER 2015 #3036

IN
D

U
ST

RY
 &

 E
NT

ER
PR

IS
E

PRODUCT NEWS

ANALOG AMPLIFIER PROVIDES PRECISE CURRENT SHUNT MEASUREMENT
Silicon Labs has introduced a new isolated current sense

amplifier with industry-leading signal bandwidth (up to 750 kHz)
that ensures rapid, precise DC current measurement and accurate
representation of the primary signal and harmonics. The Si8920
isolated amplifier provides an ideal current shunt measurement
solution for power control systems operating in harsh environments
(e.g., hybrid vehicles, industrial motor drives, and high-voltage
power converters).

The Si8920 isolated amplifier uses Silicon Labs’ proven, CMOS-
based isolation technology, supports up to 5 kV withstand and 1200
V working voltage, and offers a wide operating temperature range,
noise immunity, and long lifetimes. With exceptionally low 1-µV/°C
offset drift, you gain stable performance over diverse operating
conditions.

The Si8920 isolated amplifier is available in standard SOIC and
DIP packages. Pricing in 10,000-unit quantities starts at $2.39. The

$29 Si8920ISO-KIT evaluation kit enables you to connect quickly
to a shunt resistor to evaluate Si8920 analog isolation functionality
including low-voltage differential input, response times, offset and
gain characteristics.

Silicon Labs | www.silabs.com

NEW 32-BIT MCU SERIES FOR EMBEDDED CONTROL & TOUCH
Microchip Technology recently announced a new series within

its PIC32MX1/2 32-bit microcontroller family that features a 256-
KB flash configuration and 16-KB of RAM. The microcontrollers
provide flexibility to low-cost applications that need complex
algorithms and application code. More specifically, they are
intended to help designers looking to develop products with
capacitive touch screens or touch buttons, as well as USB device/
host/OTG connectivity.

The PIC32MX1/2 MCU series provides up to 50 MHz/83 DMIPS
performance for executing advanced control applications and
mTouch capacitive touch sensing. In addition, it has an enhanced
8-bit Parallel Master Port (PMP) for graphics or external memory,
a 10-bit, 1-Msps, 13-channel ADC, support for SPI and I2S serial
communications interfaces, and USB device/host/On-the-Go
(OTG) functionality.

Microchip’s MPLAB Harmony software development framework
further simplifies designs by integrating the license, resale,
and support of Microchip and third-party middleware, drivers,
libraries and Real-Time Operating Systems (RTOS). Specifically,
Microchip’s readily available software packages—including USB
stacks and Graphics and Touch libraries—can greatly reduce the

development time of applications such as consumer, industrial
and general-purpose embedded control.

These latest PIC32MX1/2 MCUs are available now in 28-pin
QFN, SPDIP ,and SSOP packages and 44-pin QFN, TQFP and VTLA
packages. Pricing starts at $1.91 each, in 10,000-unit quantities.

Microchip Technology | www.microchip.com

NEW ULTRA-COMPACT WIRELESS M-BUS MODULE
AMIHO Technology recently announced an ultra-compact and

cost effective Wireless Meter-Bus module. The AM090 is intended
primarily for connecting smart meters and Internet of Things (IoT)
devices. At just 15 × 15 mm, the AM090 works well with small

sensors and other IoT end points.
Fully compliant with the European standards (EN13757), the

AM090 features Freescale’s Kinetis family of ARM cortex MCUs and
operates at 868 MHz. The module includes a comprehensive and
optimized software stack, which can be licensed as a stand-alone
product for integration into other designs.

AMIHO Technology | www.amihotechnology.com

http://www.silabs.com
http://www.microchip.com
http://www.amihotechnology.com

THERE ARE NO GAMES INVOLVED IN OUR PRICING

Take the Accutrace Challenge and see WHY OUR PRICING CANNOT BE BEATEN

www.PCB4u.com sales@PCB4u.com

From same day quick turn prototype to production in under 10 days
Full CAD and CAM review plus design rule check on ALL �erber �les
Materials: Fr4, Rigid, Flex, Metal Core (Aluminum), Polymide, Rogers, Isola, etc.
HDI Capabilities: Blind/Buried Mocrovias, 10+N+10, Via-in-Pad Technology,
Sequential Lamination, Any Layer, etc.
Our HDI Advantage: Direct Laser Drilling, Plasma De-Smear Technology, Laser
Microvia, Conductive Plate Shut.Microvia, Conductive Plate Shut.

Our Capabilities:

If you do, than we
 will match the price
 AND give you $100

 towards your
 next order!

http://www.PCB4u.com
mailto:sales@PCB4u.com

CIRCUIT CELLAR • OCTOBER 2015 #3038

IN
D

U
ST

RY
 &

 E
NT

ER
PR

IS
E

PRODUCT NEWS

NEW BATTERY PACK MONITOR PROTECTS MULTI-CELL LI-ION BATTERIES
Intersil Corp. recently announced the ISL94203 3-to-8 cell

battery pack monitor that supports lithium-ion (Li-ion) and other
batteries. The ISL94203 can monitor, protect, and cell balance
rechargeable battery packs to maximize battery life and ensure
safe charging and system operation. It works as a stand-alone
battery management system for rechargeable Li-ion battery packs.
The ISL94203’s internal state machine has five preprogrammed
stages that accurately control each cell of a battery pack to extend
operating life. In addition, it integrates high-side charge/discharge
FET drive circuitry.

Notable features and specifications:

•	 Eight cell voltage monitors support Li-ion CoO2, Li-ion
Mn2O4, Li-ion phosphate and other battery chemistries

•	 Operates as a standalone solution or with a microcontroller
•	 Integrated charge pump controls cutoff FETs used to

charge/discharge battery pack
•	 Multiple cell voltage protection options up to 4.8 V
•	 Programmable detection/recovery times for over-voltage,

under-voltage, over-current, and short circuit conditions
•	 Open wire detection
•	 EEPROM storage for device configuration
•	 Power saving algorithm activated when pack is not in use

The ISL94203 battery pack monitor is available now through

Intersil’s worldwide network of authorized distributors. The
ISL94203 comes in a 6 mm × 6 mm, 48-lead TQFN package, and
is priced at $2.19 in 1,000-piece quantities. The ISL94203EVKIT1Z
evaluation kit ($328) includes an evaluation board, interface board
with USB-to-I2C interface, and software GUI that supports stand-
alone operation or an external microcontroller.

Source: Intersil Corp. | www.intersil.com

SENSOR INTERFACE CONNECTS MULTIPLE SENSORS TO MCUs OR FPGAs
Exar Corp. has announced the XR10910, a new sensor interface

analog front end (AFE) for the calibration of sensor outputs. The
XR10910 features an onboard 16:1 differential multiplexer, offset
correction DAC, programmable gain instrumentation amplifier,
and voltage reference. In addition, it provides 14-bit signal path
linearity and is designed to connect multiple bridge sensors to a
microcontroller or FPGA with an embedded ADC. Operating from
from 2.7- to 5-V supplies, the XR10910 has a wide digital supply
range of 1.8 to 5 V. It typically consumes 457 µA of supply current
and offers a sleep mode for reducing the supply current to 45 µA.

The XR10910 is available in a 6 mm × 6 mm QFN package.
Pricing starts at $8.10 each for 1,000-piece quantities.

Exar Corp. | www.exar.com

MINIATURE 9.7 × 7.5 MM OCXO
IQD’s latest Oven-Controlled Crystal Oscillator (OCXO), the IQOV-

71 series, is housed in four-pad plastic package with a fiber glass
base. Despite it 9.7 × 7.5 mm size, it offers very low frequency
stabilities down to ±10 ppb over an operating temperature range
of –20° to 70°C or ±20 ppb over –40° to 85°C.

The available standard frequencies include 10 MHz, 12.8
MHz, 19.2 MHz, 20 MHz, 24.576 MHz, 25 MHz, 30.72 MHz, 38.88
MHz, 40 MHz, 49.152 MHz, and 50 MHz, which will satisfy most
applications. Other frequencies in the range of 5 to 50 MHz can be
developed for commercially viable quantities. Power consumption
is typically less than 1 W during the warm up phase, which only
takes approximately 3 minutes, and less than 0.4 W once the device

has reached steady state. Frequency aging is less than 2 ppb per
day and a maximum of 3 ppm over a 10-year period.

IQD | www.iqdfrequencyproducts.com

http://www.intersil.com
http://www.exar.com
http://www.iqdfrequencyproducts.com

circuitcellar.com 9

CLIENT PROFILE

IND
U

STRY &
 ENTERPRISE

EMBEDDED PRODUCTS
Percepio Tracealyzer provides an unprecedented level

of insight into the run-time world of RTOS or Linux-based
software systems. Tracealyzer allows you to solve complex
software problems in a fraction of the time otherwise
needed, develop more robust designs to prevent future
problems, and find new ways of improving your software
performance. (More info: http://percepio.com/tz/)

WHY SHOULD CC READERS BE INTERESTED?
In order to solve a bug, you first have to see it. Percepio

Tracealyzer is world class visualization software that allows
you see what’s going on inside your RTOS-based system.
Tracealyzer visualizes the run-time behavior through more
than 20 innovative views that complement the debugger
perspective. The views are interconnected in intuitive ways,
which makes them very powerful and easy to navigate
Tracealyzer is available for the following real-time operating
systems: FreeRTOS, Micrium, embOS, Linux, VxWorks,
SafeRTOS, and On Time RTOS-32

Percepio
Location: Västerås, Sweden
Web: www.percepio.com
Contact: Mike Skrtic (mike.skrtic@percepio.com)

Circuit Cellar prides itself on presenting readers with information
about innovative companies, organizations, products, and
services relating to embedded technologies. This space is
where Circuit Cellar enables clients to present readers useful
information, special deals, and more.

SoM-9G25
• Atmel ARM9
• AT91SAM9x25 400MHz
• 64MB DDR
• 32MB Serial Data Flash
• Up to 512 NAND (option)
• Ethernet
• A/D, SPI, I2C, I2S
• PWM, GPIO, CAN
• 6x Serial Ports, SDIO Port
• Wide Temp -40 to +85

- Embedded Systems
- Engineering
- Prototyping
- Manufacturing
- Application Development

Qty 100
Starts at
$89

618-529-4525 • info@emacinc.com • www.emacinc.com

YEARS OF
EMBEDDED
SOLUTIONS

30

IndustrialIoT

Our Products Make Your Products Better™

FrontPanelExpress.com

● Cost effective prototypes and production
runs with no setup charges

● Powder-coated and anodized finishes in
various colors

● Select from aluminum, acrylic or provide
your own material

● Standard lead time in 5 days or express
manufacturing in 3 or 1 days

You design it
to your specifications using

our FREE CAD software,
Front Panel Designer

We machine it
and ship to you a

professionally finished product,
no minimum quantity required

The Easiest Way to Design Custom
Front Panels & Enclosures

Circuit Cellar ad 3.375x4.75 APR15.indd 1 4/6/15 2:00 PM

http://www.percepio.com
mailto:mike.skrtic@percepio.com
http://percepio.com/tz/
mailto:info@emacinc.com
http://www.emacinc.com
www.frontpanelexpress.com

CIRCUIT CELLAR • OCTOBER 2015 #30310

EDITORS' PICKS
CO

M
M

U
NI

TY

Signal Processing

Over speed

Analog in

Analog out

Digital I/O

RF Power

Speed calculation

RS-232

Computer

dsPIC30F4012

Wave pulse Vehicle

1000

Analog in

PWM Out

DIO

PWM

FFT

ICD-2

Threshold

Set point

Shoot

Digital I/O

Digital I/O

MCP4011 Digital Pot

These articles and others on topics relating to signal processing are available at
www.cc-webshop.com.

Doppler Radar Design
By Steve Lubbers (Circuit Cellar 243, 2010)

A Doppler radar system can enable you to track speeding
vehicles. Steve Lubbers's design generates a microwave
energy burst with a 10-GHz transceiver. The microwave
signal bounces off a moving vehicle and the frequency shift
is measured to determine its speed.

Lubbers writes: "My Doppler radar required a
microcontroller with DSP capabilities. The microcontroller
features enabled the I/O and control features required by the
project. The DSP capabilities were required to perform signal
processing on the received radio signal. The dsPIC30F4012
CPU fulfilled all of the processor requirements. It features
an ADC for RF input capture, PWM output for transmit signal
modulation, and general-purpose I/O to control the remaining
hardware features. Software development and debugging
was eased by using the Microchip ICD2 interface. I chose
the dsPIC’s 28-pin DIP package so I could use a Microchip
28-pin starter board as the base of the digital hardware…
The primary output of my Doppler radar is the target’s speed
displayed on an analog meter. An LED accompanies the
meter to indicate if a preset threshold has been exceeded,
and the target is 'speeding.' The analog display is driven by
an MCP4011 64-position digital pot, which the dsPIC controls
using two digital output lines."

Signal Generation Solution
Build an Inexpensive RF Signal Generator
By Neal Martini (Circuit Cellar 182, 2005)

Tired of going to a local university lab to use a signal
generator, Neal Martini designed his own. In this article he
explains how he built the PIC16F877A-based controller and
RF module.

Martini writes: "With many years of professional and hobby
experience in lower frequency digital and analog systems, I
decided to venture out and build my own RF signal generator…
My goal for this project was to design a signal generator

that produces sine waves from 10 to 600 MHz at a constant
output power level of 5 dBm. Let’s take a look at how I did
it. The assumed load is 50 Ω, which is typical for RF systems.
Talking about signal levels in terms of decibels relative to 1
mW (dBm) is common when you’re dealing with RF systems."

http://www.cc-webshop.com

circuitcellar.com 11

EDITORS' PICKS

CO
M

M
U

NITY

These articles and others on topics relating to signal processing are available at
www.cc-webshop.com.

Digital Stompboxing
An Easy-to-Use Digital Signal Processing Platform
By Kit Church (Circuit Cellar 220, 2008)

Are you ready to venture into the world of digital signal
processing effects? This article is the perfect introduction. Kit
Church describes a high-quality DSP platform and presents sample
code.

Church writes: "To make up for a lack of 'hackable' digital effects,
I created a high-quality, easy-to-understand DSP platform. In this
article, I’ll describe the design and provide sample code that will
enable you to venture into the world of DSP-based effects… To some
of you, the thought of assembling a DSP-based effects platform may
seem intimidating. But the hardware for this project is relatively
simple. It includes an ultralow-distortion Texas Instruments
OPA2134 dual op-amp, a Texas Instruments PCM3060
stereo audio codec (ADC and DAC combined into one chip),
a Microchip Technology dsPIC33FJ64GP206 microcontroller,
and a handful of passive components… To control the effects
processing, I’ve attached three potentiometers and two
momentary switches to the microcontroller as well as a few
LED indicators. The dsPIC33FJ64GP206 has a maximum of 53
I/O pins, including 18 analog channels, so there’s also plenty of
room for expansion for your own effects and configurations."

http://www.cc-webshop.com
www.elprotronic.com
mailto:orders@lemosint.com
www.lemosint.com

CIRCUIT CELLAR • OCTOBER 2015 #30312
FE

AT
U

RE
S

Mistakes, failures, and unexpected
outcomes can be the source of great

innovation. As Henry Ford once said, “The
only real mistake is the one from which we
learn nothing.”[1] Most of the project articles
I’ve seen have been about project successes.
Rarely do I see an article about a project that
failed. To the unassuming reader, it must
appear that every project is a success. To
help correct that misinterpretation, I wrote
an article about a project that failed and what
I learned during the process. Those learnings
made the project a success despite all the
failures along the way. From this perspective,
no project is ever a true failure.

This project came about as a result of a
bad fall I took on an early morning jog when I
tripped over an unseen crack in the sidewalk.
The idea came straight away: I needed
headlights for my shoes! Not just a “dumb”
LED that spent the majority of its time pointed
the wrong direction, but rather a controlled
array of LEDs that would keep the resulting
light beam pointed at the ground in front
of me. The result was a “foot headlight,” or
footlight.

FOOTLIGHT PROTOTYPE
From the start, I decided the footlight

to use an XYZ accelerometer and an Atmel
ATtiny AVR processor to turn on only the LED
that was at the proper angle to illuminate the

ground in front of my feet. I had numerous
options for accelerometers: one-, two-, or
three-axis options, as well as analog or digital
outputs, and various G range measurements.
After comparing options, I decided on a three-
axis accelerometer that gave direct digital
measurements via an I2C interface with a
range of approximately 3Gs. This, combined
with an AVR processor with hardware support
for implementing I2C, seemed like the quick-
and-easy approach to meet the project’s goals.
Thus, the footlight comprises a Freescale
Semiconductor MMA8453QT accelerometer
and an Atmel ATtiny 281 running at 8 MHz.
Yes, the MMA8453QT has a QFN-16 footprint,
which might be pushing the limits of my
hotplate reflow technique, but I knew I could
make it work (see Photo 1).

Since I hadn’t worked with an
accelerometer before, I thought it best to put
together a quick prototype to verify my ability
to read the acceleration data via the I2C
interface while managing basic LED selection.
The goal for the prototype was to be able to
keep illuminated the LED currently pointing
up. The initial code was very simple: read the
I2C data, and based only on the range of the
acceleration data, select the most upward-
facing LED. I designed a quick circuit board
and sent it off to OSH Park for production.
Soon thereafter I found that nothing is ever
as easy it initially appears.

The Footlight
Project (Part 1)

It’s unrealistic to expect every project
to be a simple success. Here’s a project
to build a “foot headlight” that does not
come out as expected. This article details
the circuit board development process.

By Tom Struzik (US)

Circuit Board Design

PHOTO 1
This is the Freescale Semiconductor
MMA8453QT accelerometer in a
QFN-16 footprint. Certainly, it's
at the limit of my simple hotplate
reflow soldering capabilities!

circuitcellar.com 13
FEATU

RES

Once the prototype board arrived, it was
off to the hotplate to reflow solder mount the
components for the prototype. With its QFN-
16 footprint, the accelerometer was a bit of
a stretch using this method, but it visually
appeared to have successfully mounted.
I wrote and programmed the prototype
software into the ATtiny, power was applied,
and … nothing, nada, zilch. I then pulled out
my CWAV USBee-SX and started snooping the
I2C signals. Again, nothing. So began the first
of a long string of failures on this project.
However, this also brought the first three
learnings: using the USBee-SX to sniff and
decode I2C signals; the criticality of bringing
important signals, like the I2C bus, out to an
easily accessible debug header; and finally
the need to make the pads on tiny SMT parts
longer than the manufacturer’s recommended
profile to facilitate hand-soldering when
necessary. At this point, you can see the
prototype board in Photo 2 with added wires
to enable access to the I2C bus.

While I had used a software I2C interface
before, I had not used this specific hardware
TWI/ I2C interface. I spent several hours
poring over the Atmel documentation on the
hardware serial interface trying to determine
why the interface was not working. After
multiple failures, I finally broke down and
simply switched to my familiar software
I2C library so I could at least start making
progress again. Now I was able to use the
USBee-SX to observe I2C query and response
traffic, thus confirming that I finally had
communication established between the
ATtiny and the accelerometer. Certainly the
software I2C library was a larger code base
than the hardware I2C implementation, and
it took more processing power—but, for the
time being, that was acceptable. Yes, I still
had to categorize the hardware I2C as a fail,
but that could go on the bin list for learning
later. At least I had confirmed that the reflow
mounting of the accelerometer had worked.

CODING & CONFIGURATION
Next, I started the truly interesting coding,

configuring the accelerometer and reading
the acceleration data. Once the accelerometer
was configured, the acceleration data could
be accessed from three consecutive device
registers. These were easily accessed via
sequential I2C reads. The acceleration data
was presented in Gs as a two’s compliment
scaled number, so I had to do a quick
refresher on interpreting binary data as two-
compliment integers. I was using the USBee-
SX to track the acceleration data changes via
decoded I2C signals, but that quickly became
painful due to the amount of rapidly changing
data (see Photo 3). I realized then that,

since I had an I2C bus available, I could also
connect a small I2C based LCD. Now if I had
just included that dang I2C debug header…
For now I hand soldered some add-on wires
to facilitate connecting in the I2C LCD—which,
unfortunately, ran at 5 VDC while the rest of
the protoboard’s components required 3.3
VDC. Out of this, I learned that for the LCD
I had, even though the board required 5 VDC
for its supply, it continued to operate properly
with 3.3-VDC-level I2C signals. Probably the
biggest learning at this point was that, if
possible, I should always include a three-pin
header, exposing two available I/O pins and
ground for a makeshift I2C debug interface
on every ATtiny design. Having the LCD
available as a software troubleshooting aid
was invaluable.

At that point, the ATTiny could read
acceleration data over the I2C bus from the
accelerometer and, using a simple value
mapping, turn on specific LEDs. However, the
prototype implementation (see Photo 2) was
not intended to be accurate enough for the
actual footlight implementation I’d envisioned.
I wanted to be able to smoothly transition from
LED to LED. This would require using PWM
to control the relative brightness between
adjacent LEDs. That control would be based on
the board’s actual angle. To be accurate enough,
the software needed to be able to calculate the
angle of the board and thus the angle of the
user’s foot as they walked/ran. I thought this
would be relatively easy given the plethora of
open-source drone software available today,
which used three-axis accelerometer data for
heading calculations.

PHOTO 2
Here is the prototype board showing
the QFN-16 accelerometer chip and
the hand wiring to more easily expose
the I2C signals for debugging.

CIRCUIT CELLAR • OCTOBER 2015 #30314
FE

AT
U

RE
S

Google came to the rescue again and turned up these relatively simple equations for
determining heading from X/Y/Z accelerometer data (see Equation 1). I only needed to calculate
the pitch angle and not the roll or yaw, so I only needed the equation for the Y Angle. Given I
had written the prototype code in AVR GCC, it was a simple matter to translate the equation to
C, and off we’d go. Simple heading calculation:

xAngle = atan(ax/(sqrt(square(ay) + square(az))));
yAngle == atan(ay/(sqrt(square(ax) + square(az))));
zAngle = atan((sqrt(square(ax) + square(ay))/az);

Sure enough, the code compiled the first time and loaded right into the ATtiny. I applied
power, and… nothing happened. After much head scratching and several failed attempts to get
any information written to the I2C LCD, I finally noticed that the compiler was reporting that
both the program and data memory were over 200% full! No error messages, no red flags—it
just quietly produced code too large for the device and then programmed that into the device
with no errors. One great big learning here, always, always check the percent memory fill. I now
moved to slash-and-burn coding to attempt to make the code small enough to fit the ATtiny261’s
limited memories.

My first attempt was to try to simplify the equation itself. Attempting to remove the SQR,
SQRT, and/or ATAN was the obvious approach. Google again came to the rescue, turning up
the fact that √(x2 + y2) was actually a “distance” calculation and could be approximated by
MAX(|x|,|y|) + MIN(|x|,|y|)/2.[2]

 This was a good lesson. It’s not exact, but it’s close enough and there are no squares or
square root to deal with. Switching to the approximation formula improved things somewhat.
The code did get much smaller, but it was still too big. Worse, while this reduced the program
memory, it had no impact on the mysterious excessive data memory usage, so that was where
I turned next.

While trying to figure out if removing the ArcTan function would reduce the code size, I
happened to notice that when I left the ArcTan function call out, the data memory usage went
almost to zero. It turned out that the AVR GCC ArcTan library function is a data memory hog—a
real pig. Again, back to Google for ArcTan replacements, which turned up a piecewise linear
curve fitting algorithm. This algorithm could be used to approximate any function.[3]

One specific advantage of this function was that it makes no assumptions about the spacing
of the control points. I could include more control points where the target function changed
rapidly and fewer points where the function was more linear. That worked well for approximating
the ArcTan function which included very long linear sections with 2 sharp curves in the
middle. Throwing the whole thing into Excel let me adjust the number of points to manage the
approximation error while still limiting the overall table size. After several attempts, I eventually
got the approximation function down to a 33-element look-up table, requiring 66 numbers in
total. I included my Excel spreadsheet on the Circuit Cellar FTP site along with the other code
(see Figure 1). Thus, two major learnings here. First, the ArcTan function is a big memory

ABOUT THE AUTHOR
Tom Struzik has been
bu i ld ing and tak ing
things apart from an
early age. He built his
first Heathkit project at
age 12 and sold his first
computer program at
age 16. Tom has a BSEE
from Purdue University.

PHOTO 3
The ATtiny is reading the XYZ acceleration data via I2C as displayed by the USBee Suite’s protocol decode mode.

o 3.3V single power supply operation
o Plenty of user I/Os: 100 or 128
D Line up 10 types of proven boards
o RoHS compliant �

ALTERAseries � 1Ca:u111 � mmmE1 ll3mm!II immm11
••

o Brand new MAXIO FPGA board
o Integrated AID converter
o Integrated configuration memory
o RoHS compliant �

I SPl·Flash I

UH-Ui6BJ

Easy and Quickly Mountable on 68-pin IC socket
o 50 1/0s(External clock inputs are available) o Separated supply-inputs: Core, 1/0 drivers
o 3.3V single power supply operation o JTAG signal
o Voltage converters for auxiliary power supply o All PLCC68 series have common pin assignment
o Very small size (25.3 x 25.3 [mm]) o Mountable on IC socket

RoHS compliant� RoHS oompliant �

I Cyclone V I I FRAM I I Cyclone m I

RoHS oompliant �

I MAXV I

HuMANDATA LTD.
TEL: +81-72-620-2002 (Japanese) FAX: +81-72-620-2003 (Japanese/English)
E-Mail : s2@hdl.co.jp URL: http://www2.hdl.eo.jp/en/

XILINX series

-

• .

RoHS compliant�

[Spartan-6[

"

RoHS compliant�

[Spartan-3AN[

RoHS compliant�

[Spartan-6[

all
'"'

HUMANDATA

jJ,
[!l II

� D DIA o ;oo booed,

.

o
S

d

p

.

.

·
.

b

w

o

See
a r d

w

,11
s w

'"'

w

ith

pr
U

h

d,cts,

l

Af

.
B chi fro

c

m F

O
T
r
D
.

o
I
J
�
,e
n

p

d
,
a
/c c

ccessorie

1
s a

s

t :1
O

mailto:s2@hdl.co.jp
http://www2.hdl.eo.jp/en/
www.hdl.co.jp/CC1510

CIRCUIT CELLAR • OCTOBER 2015 #30316
FE

AT
U

RE
S

hog. And second, I now have an easy to use
routine that can approximate any function.
Good so far, the data memory usage was

again reasonable, but I was still in a failed
state because the program memory usage
was still too large.

After looking at the code yet again, I
finally realized that I would just need to give
up floating point altogether. The AVR GCC
floating-point library was just too big. I bit the
bullet and began work on switching to integer
math but of course the value ranges meant I
still needed to work with numbers less than
1. In fact, looking at the ArcTan function,
the most critical range is between –1 and 1
so obviously integer math was going to be
interesting. It was time to brush off my fixed-
point arithmetic skills from long ago college
days.[4] Fixed-point arithmetic had multiple
benefits. That divide by 2 in the distance
approximation became a shift and the ArcTan
table could be converted to directly return the
correct fixed-point numbers—no conversion
necessary. However, unlike floating point
where step order did not matter, with fixed-
point, step order was critical. The calculation
steps had to ensure that no intermediate value
dropped off significant digits or overflowed.
For example, while (A + B)/C would work just
fine in floating point, with fixed point, that
intermediate A + B could overflow even though
the ultimate result would still have been in
range. Fixing this required implementing
the steps as (A/C + B/C) in order to keep the
intermediate values within range of the chosen
fixed-point format.

Woo-hoo! At that point the rotation angle
calculation worked and fit into the ATiny261’s

circuitcellar.com/ccmaterials

REFERENCES

[1] E. Walter, “30 Powerful
Quotes on Failure,” Forbes.
com, 2013, www.forbes.
com/sites/ekaterinawal-
ter/2013/12/30/30-power-
ful-quotes-on-failure/.

[2] R. Baptista, “Fast Approx-
imate Distance Functions,”
Flipcode.com, 2003, www.
flipcode.com/archives/Fast_
Approximate_Distance_Func-
tions.shtml

[3] Linear Interpolation Func-
tion, www.ozgrid.com/forum/
archive/index.php/t-69973.
html.

[4] Wikipedia, “Fixed-Point

Arithmetic,” http://en.wikipedia.org/wiki/
Fixed-point_arithmetic.

RESOURCES

Atmel, “AVR310: Using the USI Module as a I2C
Master,” 2561C−AVR−12/2013, 2013.

D. McFarland, “Simple Accelerometer Data Con-
version to Degrees,” 2013, http://wizmoz.blog-
spot.com/2013/01/simple-accelerometer-da-
ta-conversion-to.html?m=1 Simple heading
calculations.

SOURCES

ATtiny281 Microcontroller
Atmel | www.atmel.com

123D 3-D Design Software
AutoDesk | www.123dapp.com

USBee-SX Test Pod
CWAV | www.usbee.com

MMA8453QT Accelerometer
Freescale Semiconductor | www.freescale.com

I2C Master Library
Pete Fleury | http://homepage.hispeed.ch/pe-
terfleury/avr-software.html

FIGURE 1
This is the ArcTan approximation
function. The large chart shows the
overall situation. The small chart
is zoomed in on one knee. The red
line is the linear approximation. The
blue is the actual Excel ATAN function
result.

http://www.forbes
http://www.flipcode.com/archives/Fast_
http://www.flipcode.com/archives/Fast_
http://www.ozgrid.com/forum/
http://en.wikipedia.org/wiki/
http://wizmoz.blog-spot.com/2013/01/simple-accelerometer-da-ta-conversion-to.html?m=1
http://wizmoz.blog-spot.com/2013/01/simple-accelerometer-da-ta-conversion-to.html?m=1
http://wizmoz.blog-spot.com/2013/01/simple-accelerometer-da-ta-conversion-to.html?m=1
http://wizmoz.blog-spot.com/2013/01/simple-accelerometer-da-ta-conversion-to.html?m=1
http://wizmoz.blog-spot.com/2013/01/simple-accelerometer-da-ta-conversion-to.html?m=1
http://www.atmel.com
http://www.123dapp.com
http://www.usbee.com
http://www.freescale.com
http://homepage.hispeed.ch/pe-terfleury/avr-software.html
http://homepage.hispeed.ch/pe-terfleury/avr-software.html
http://homepage.hispeed.ch/pe-terfleury/avr-software.html
www.circuitcellar.com/ccmaterials

circuitcellar.com 17
FEATU

RES

limited memory. I finally felt like this project
finally had a chance to succeed—at least that
was until I realize I had not yet implemented
the code for either the LED PWM code or the
user interface. I pressed forward and worked
on implementing the LED PWM code and
quickly discovered, yet again, that the code no
longer fit into the ATtiny261’s limited memory.
I didn’t think there was any way left to reduce
the code any more. I finally threw up my
hands and decided to switch to an ATtiny861,
which had more data and program memory.
But I still felt confident about being able to
move the project forward. I believed all the
outstanding issues were manageable.

While waiting for the shipment of an
ATtiny861, I decided the project was far
enough along to design what hopefully would
be the final circuit board. I needed to add four
more LEDs, design some type of on/off switch,
and add a charger for a LiPo battery. This was
relatively straightforward, but somewhat
tedious because of the small size of the board
required to fit the intended case. However,
with a bit of diligence and after detangling

some signal lines, I finally succeeded in fitting
everything within the required space, so again
off to OSH Park for a board (see Figure 2).

LESSONS LEARNED
While waiting for OSH Park to return the

new board, I thought it was time to take a step
back and reflect on what I’d learned so far. I
had learned that I could reliably mount a QFN-
16 component (or so I thought). I learned how
to read accelerometer data and convert that
to a heading, all without using floating-point
math. I also discovered an approximation
function that fit into an ATtiny and yet
would yield a good-enough ArcTan function,
again all without floating-point math. I also
determined that it would probably be a good
idea to include an I2C port in future designs to
support a “debug” LCD.

Next month, I’ll detail how things really
turned out and if this was the end of the
learnings or simply the beginning of a much
more challenging effort. Until then, keep
trying new things. You never know what you
might learn.

FIGURE 2
This is the final circuit design. Or is it?

CIRCUIT CELLAR • OCTOBER 2015 #30318
FE

AT
U

RE
S

We have spent the last while working
towards a mobile phone application to

help identify a local noise nuisance problem.
We joked with Mike Smith’s neighbor’s kids
that the record and playback .3GPP file WAT_
AN_APP application was developed to impress
them that, “Without Any Teenage Assistance

Necessary, we could write an Android APP." We
then added just enough additional code (JEAC)
to store an audio record for later analysis.
To continue the friendly tease presented in
the first three parts of this article series, we
pretended that the project code was actually
designed to detect “Things that Go BOOm at

Sound Ecology and Acoustic
Health (Part 4)

Last month, Adrien and Mike got quantitative with an audio record and
analysis update for the WAT_AN_APP application. This month they discuss
coding a room acoustics analysis.

By Adrien Gaspard and Mike Smith (Canada)

Room Acoustics Analysis

FIGURE 1
After adding the graphics capability
from Article 5, we found that recording
the frequency characteristics of our
lab’s background noise level indicates
that we might be getting closer to a
"727-Hz ghost" after moving between
positions (a) and (b). However, the
frequency characteristics of a Chirp
sound burst (c) really change when
we wake up the ghost and it flees the
room (d).

B)

circuitcellar.com 19
FEATU

RES

Night” or how many “TGBN ghosts” are in the
neighborhood.

As they say “Be careful what you wish
for!” Our neighbors got interested in the
community noise issues we were really trying
to measure. They had their teenagers explore
the acoustic health of their home using our
work in progress. Late yesterday, a knock
on the door revealed our neighbors asking
for help. Their eldest teenager had gone to
the University of Pennsylvania. According to
the Penn Arts and Sciences website (sites.
sas.upenn.edu/ghosts-healing), a group of
scholars from literature, art history, nursing,
archaeology, religious studies, science, and
medicine wants to take research on ghosts
seriously. So our neighbor's kid decided to
volunteer with this group. This turned into
a term project that involved analyzing room
acoustics as a possible source of “that friendly
spectral feeling." Hence, the frantic email
message they wanted to pass on: Term’s
nearly over! Could you please get Mike to hurry
up and fulfill his promise in that first Circuit
Cellar article of providing enough information
to do some “real" digital signal processing
(DSP) analysis? While he was at it—could he
get Adrien to add some graphics’ capability
to display the frequency characteristics of the
sounds in a room to make my term report
more interesting!

In Canada, it's always good to keep on the
right side of the neighbor's kids as they are a
good (inexpensive) labor source for shoveling
snow off sidewalks. So, we decided to write
a RoomAcoustics Analysis Capability addition.
(Actually, we wanted to be able to say that we
had Penn-ed some code. Sorry for the pun.)

First, we will explain how to excite a
room resonance that can be captured by
our existing TGBN detector code. We will
graphically display the room audio signal to
give us a first chance to compare resonance
characteristics in different rooms. However,
we found that looking for small differences in
the captured signals displayed as a function
of time meant working (slowly) with a lot
of data. So we added a way to generate
frequency information signal of captured
signals using a discrete Fourier transform
(DFT) algorithm code we grabbed from the
web. Figure 1a shows the background noise
recorded in our university lab. Having noticed
a possible small 727-Hz ghost sleeping next to
our desk, we tried to move around the room
to better record its characteristic (see Figure
1b). The frequency characteristics of our two
records look too similar for us to be sure that
we have a non-snoring ghost close by.

We decided to wake it up by outputting a
3-s Chirp, a sound burst from 50 to 1,000 Hz.
Figure 1c show the frequency response of the

Chirp signal, but there is not much there other
than showing the poor low frequency of our
phone’s speaker. However, we accidentally got
close enough that we woke up the sleeping
ghost which significantly changed the
frequency response of the room (see Figure
1d).

Want a ghost portrait? Sorry, you'll have to
wait to the end of Article 5 to see a picture of
the ghost we persuaded to live behind a van
der Vaal's force field.

<!--Used by SoundAnalysis activity -->

1700.<RelativeLayout

1701. xmlns:android="http://schemas.android.com/apk/res/android"

1702. <!-- COPY FROM Article 1, Listing 2 Lines 102 to 105-->

1710. <TextView

1711. <!-- COPY FROM Article 3, Listing 3 Lines 1711–1716 -->

1720. <TextView

1721. <!-- COPY FROM Article 3, Listing 3 Lines 1721–1727 -->

1730. <TextView

1731. <!-- COPY FROM Article 3, Listing 3 Lines 1730–1739 -->

1740. <ProgressBar

1741. android:id="@+id/computation_progress"

1742. style="?android:attr/progressBarStyleHorizontal"

1743. android:layout_width="wrap_content"

1744. android:layout_height="wrap_content"

1745. android:layout_centerHorizontal="true"

1746. android:layout_centerVertical="true"

1747. android:indeterminate="false"

1748. android:max="100"

1749. android:progress="0"

1750. android:visibility="invisible"

1751. />

1760. <Button

1761. android:id="@+id/start_graph_time"

1762. android:layout_width="wrap_content"

1763. android:layout_height="wrap_content"

1764. android:layout_below="@id/number_tgbn_sounds"

1765. android:layout_centerHorizontal="true"

1766. android:layout_centerVertical="true"

1767. android:text="@string/button_start_graph_time"

1768. />

1770. <Button

1771. android:id="@+id/start_graph_freq"

1772. android:layout_width="wrap_content"

1773. android:layout_height="wrap_content"

1774. android:layout_below="@id/start_graph_time"

LISTING 1
The activity_sound_analysis.xml layout file from the WAT_AN_APP\res\layout folder

http://schemas.android.com/apk/res/android

CIRCUIT CELLAR • OCTOBER 2015 #30320
FE

AT
U

RE
S

EXCITING A ROOM RESONANCE
We explained to our next-door neighbors

how to excite a room resonance to our next
door neighbors at the last BBQ before the snow
fell. We lined up 10 glasses on a hard surface,
each filled with different levels of water. You
can generate a sound impulse if you clap your
hands together. All of the glasses should have
resonated, tinkled, as an impulse contains
all possible frequencies in theory. However,
persuading the BBQ group to sing “Do-re-
mi" at the glasses proved a better way of
getting enough sound energy at a particular
frequency. Once your group has found a note

that starts a glass to sympathetically vibrate,
then you can adjust their singing and get the
“note" just right for a resonance. We were not
sure about suggesting that our neighbor's
teenager persuade the Penn Choral Society
members to join his term project and sing
in each room while he recorded them with
the TGBN part of our WAT_AN_APP! Instead
we explained how to use a more systematic
and controlled approach—generating a Chirp
signal—a longer duration sound containing all
frequencies.

The history of Chirps is neat. In the
early stages of AM radio, you could hear

LISTING 2
The prologue of the SoundAnalysis.java
file (WAT_AN_APP\src\ folder) sets up
the UI. The OnCreate() method enables
the UI composed amongst other of two
buttons (Lines 605 and 606). The other
methods in this class are detailed in
the different listings.

 package com.wat_an_app;
 // NEW CODE – INSERT AFTER Article 3, Listing 5 Lines 501– 512
513. import android.content.Intent;
514. import android.os.Environment;
515. import android.util.Log;
516. import android.view.Menu;
517. import android.view.MenuInflater;
518. import android.view.MenuItem;
519. import android.view.View;
520. import android.widget.Button;
521. import android.widget.ProgressBar;
522. import java.io.IOException;
 public class SoundAnalysis extends ActionBarActivity{
 //NEW CODE – INSERT AFTER Article 3, Listing 5 Lines 551– 556
557. final CounterClass timer = new CounterClass(5000,250);
558. private static final double REFSPL = 0.00002; // Hearing reference level
559. private Button button_graph_time; private Button button_graph_freq;
560. private MediaPlayer mPlayer=null;
600. @Override protected void onCreate(Bundle savedInstanceState) {
 //NEW CODE – INSERT AFTER Article 3, Listing 5 Lines 601– 603
 //Delete Article 3 Listing 5 Line 604
605. button_graph_time = (Button) findViewById(R.id.start_graph_time);
606. button_graph_freq = (Button) findViewById(R.id.start_graph_freq);
607. }
 // Some methods from Article 3, others described in Article 5
 //protected void onStart() //Article 3 Listing 6 Lines 750 to 759
 //protected void onPause() //Article 3 Listing 6 Lines 800 to 804
 //public class CounterClass // Article 3 Listing 6 Lines 850 to 877
 //protected void onPreExecute() //Article 3 Listing 8 Lines 910 to 919
 //protected void onCancelled() //Article 3 Listing 11 Lines 1300 to 1305
 //protected boolean detectImpulse() // Article 3 Listing 10 Lines 1350 to 1356
 //protected boolean detectTGBN() // Article 3 Listing 11 Lines 1400 to 1406
 //NEW AND MODIFIED METHODS
 //public boolean onCreateOptionsMenu(Menu menu) //Listing 3 Lines 610 to 615
 //public void startPlaying() //Listing 3 Lines 650 to 657
 //public boolean onOptionsItemSelected(MenuItem item) //Listing 3 Lines 700 to 708
 //public void onTick_Article4(long millisUntilFinished) // See Article 4 Lines 860 to 865
 //protected Integer doInBackground() // See Article 4 Lines 910 to 1199
 //protected void onProgressUpdate(Integer ... data) // See Article 5 Lines 1200 to 1220
 //protected void onPostExecute(Integer data) // See Article 5 Lines 1250 to 1259
 //protected int doubleFFT(double[][] samples, int numRecords, int sampleSize)
 // See Article 5 Lines 1450 to 1468
 //public static int nearestPow2Length(int length) // See Article 5 Lines 1500 to 1505
 //public void DisplayGraph(View v)
 // See Article 5 Lines 1600 to 1603

www.iar.com/crun

CIRCUIT CELLAR • OCTOBER 2015 #30322
FE

AT
U

RE
S

the interference of lightning strikes some
distance away as a crackle on the loudspeaker.
If you slightly mistuned the radio, the
crackle changed into something else. What
happened was that the lightning strike, an
electromagnetic (EM) impulse, generated
a signal containing “all" EM frequencies.
Signals at different frequencies traveled at
different speeds through the air because of
an effect called EM dispersion, and arrived
at the radio at different times. Analog down-
sampling within the AM radios caused the
different EM frequencies to turn into different
audio signals. So you heard what sounded
like a bird whistle starting at low audio
frequencies and going up to high. Hence the
name Chirp. You can generate an audio Chirp
using a pedestrian underpass. If you clap
your hands near the entrance, then you get
a “doo-WEE” sound rather than a single clap
echo. The “doo" sound is the reflection of low
frequency sounds arriving back at your ears
at an earlier time than the high frequency
“WEE” reflections. Our preferred way of
generating a 3-s Chirp sound burst is using

Audacity (audacity.sourceforge.net) on a
laptop.

In this article, we make an application
capable of both outputting a Chirp and
capturing the room sound ecology. However,
it is not our favorite approach as generating
a Chirp on a mobile has issues. The mobile
audio electronics are not really designed to
handle low frequency output or provide a
lot of audio power without distortion (see
Figures 1c and 1d). However, plugging in an
external speaker to boost the output cuts out
the microphone input—a classic “CATCH-22”
situation! We can fix that by capturing and
then playing back the laptop Chirp as a .3GPP
file on another Android phone using external
speakers. By modifying the code in this article
to output a NADA.3GPP file of “the sound of
silence" rather than a stored Chirp you can
have the best of both worlds!

Our plan for running the extended
WAT_AN_APP is to press the “Press To Start

610. public boolean onCreateOptionsMenu(Menu menu) {
611. // Inflate the menu items for use in the action bar
612. MenuInflater inflater = getMenuInflater();
613. inflater.inflate(R.menu.menu_sound_analysis,menu);
614. return super.onCreateOptionsMenu(menu);
615. }
650. public void startPlaying() {
651. mPlayer = new MediaPlayer();
652. try {
653. mPlayer.setDataSource(Environment.getExternalStorageDirectory().
getAbsolutePath()+"/MySounds/Chirp_50_1000Hz.wav");
654. mPlayer.prepare();
655. mPlayer.start();
656. } catch (IOException e) {}
657. }
700. public boolean onOptionsItemSelected(MenuItemitem) {
// Handle presses on the action bar items
701. switch (item.getItemId()) {
702. case R.id.GenerateChirp:
703. startPlaying();
704. return true;
705. default:
706. return super.onOptionsItemSelected(item);
707. }
708. }

LISTING 3
Details of the methods dealing with
the Action Bar used to display an icon
outputting a Chirp sound saved in the
phone memory

FIGURE 2
We can start the sound analysis
from the MainActivity (a). The
TGBN SoundAnalysis activity allows
us to output a Chirp, perform our
calculations, and call the activity that
displays time and frequency graphs
(b).

a)

b)

circuitcellar.com 23
FEATU

RES

Detecting TGBN" button from the MainActivity
screen that pops up when the application
starts (see Figure 2a) to start the TGBN
SoundAnalysis activity. To ensure that the
sound capture starts immediately modify
the ints.xml file from the “WAT_AN_APP\res\
values" folder and set the threshold at which
we start the recording from “10000” to “0”
(see Article 3, Listing 4, Line 2840). As we
will explain later, the DSP frequency analysis
code works best with a 5-s sound sampling
so change the capture time from “7" to “5" in
the ints.xml file.

As shown in Figure 2b, we can press the
play icon located in the action bar (top right
corner of the screen) to output a three seconds
Chirp signal. After the sound capture, you can
display the audio information as either an
audio time graph or an audio frequency graph.

GETTING STARTED
This article is an extension of Part 3 of

this series, so you will see a lot of similar
file names and line numbers. The code for
the MainActivity is identical to Listing 1 and
Listing 2 in Article 3. As a reminder, the
setContentView() makes use of the layout
file activity_main.xml to generate a screen
with a message welcoming the user in the
application, and two buttons to start the audio
record/playback and audio analysis activities.
When we called the SoundAnalysis activity in
Article 3, we initialized the recorder, detected
a sound, and recorded it into a local array.
Then we did some simple DSP analysis—
check to see if the recorded data was above a
certain threshold. This time, we are going to
manipulate the recorded data using some DSP
program before graphing the results using
the GraphView library.

THE SOUND ANALYSIS ACTIVITY
SoundAnalysis uses an asynchronous task

which offloads the computations to a worker
thread. This is necessary to not stall out the
user interface (UI) thread which could cause
the UI to stop responding. The SoundAnalysis
activity’s layout, activity_sound_analysis.
xml is described in Listing 1. The TextView
displaying the number of records remaining
and the number of TGBN sounds detected
(Lines 1710 to 1739) are identical to Listing
3 in Article 3. We simply add a progress bar
on the screen, translating the background
FFT calculations (Lines 1740 to 1751), as well
as two buttons, to start displaying graphs in
the time (Lines 1760 to 1768) or frequency
domain (Lines 1770 to 1778).

Listing 2 shows code to add the time and
frequency display buttons, Lines 559, 605 and
606. Overviews of all the methods we need to
develop are given at the end of Listing 2. The

SoundAnalysis activity covers a lot of code.
(To avoid typing, cut and paste the line from
the listings in Circuit Cellar electronic version,
or visit the Circuit Cellar FTP site.)

The three methods in Listing 3 set up an
action bar so that we can press an icon that
output a Chirp sound which the application will
record. The run-once onCreateOptionsMenu()
method, Line 610, is responsible for handling
the content of the activity’s menu that
appears on the action bar. As this is our first
action bar, we need to set up a “menu” folder
in “WAT_AN_APP\res\menu. Add the “menu_
sound_analysis.xml" file to this folder and
insert the code given in Listing 4 (Lines 2500
to 2505). In order that Listing 4 (Line 2502)
can display a play icon we need to add an
“ic_action_play.png" file in the “WAT_AN_APP\
res\drawable-mdpi" folder. This icon can be
obtained from a “…\Action Bar Icons\holo_
dark\09_media_play\drawable-mdpi" folder,
following the Quick Help Guide from Article 2
to have more information on adding an icon.

Lines 700 to 708 in Listing 3 show the
onOptionsItemSelected() hook called
whenever an item in the option menu is
selected. Line 703 activates the startPlaying()
method which outputs a Chirp to play a sound
from 50 to 1,000 Hz. The startPlaying()
method, Lines 650 to 657, outputs the
Chirp_50_1000Hz.wav file located in a folder
“MySounds" that we must add into the root
directory of our phone’s internal memory.
We found that pushing the Chirp play-button
by hand meant that we often lost the last

2500.<item
2501. android:id="@+id/GenerateChirp"
2502. android:icon="@drawable/ic_action_play"
2503. android:showAsAction="always"
2504. android:title="@string/audio_play"
2505. />

LISTING 4
menu_sound_analysis.xml file from WAT_AN_APP\res\menu folder to setup the action bar in the activity

860. public void onTick_Article4(long millisUntilFinished) {
861. int capture_time_ms=getResources().
 getInteger(R.integer.capture_time) * 1000;
862. if(millisUntilFinished> (capture_time_ms - 650) &&
 millisUntilFinished< (capture_time_ms - 400)){
863. int playChirp =getResources().getInteger(R.integer.playChirp);
864. if (playChirp==1) startPlaying();
865. }
866. }

LISTING 5
onTick_Article4() from the CounterClass

CIRCUIT CELLAR • OCTOBER 2015 #30324
FE

AT
U

RE
S

 //COPY FROM Article 3, Listing 6 and Listing 7
 private class CaptureAudio extends AsyncTask<Void, Integer, Integer>{
 //NEW CODE – INSERT AFTER Article 3, Listings 8 and 9 Lines 910– 981
982. detectBuffer = null;
 //TO UPDATE FROM Article 3
 //sampleBuffer = null;
984. if (recorder != null) { recorder.release(); recorder = null; }
985. if (!isCancelled()) publishProgress(-1, -1, -1, -1, 0, -1);
 //return 0;} //Delete 986 and 987 to allow extended background task to work
990. final int numRecords = getResources().getInteger(R.integer.num_records);
 // copy the buffer into a buffer of double
991. double[][] samples =new double[numRecords][sampleBufferLength];
992. double max = 0;
993. for(int n = 0; n < sampleBufferLength; n++){
994. samples[0][n] = (double) sampleBuffer[0][n]; // Identify maximum value
995. if(max < Math.abs(samples[0][n])) {max = samples[0][n];}
996. }
997. for(int h = 0; h < sampleBufferLength; h++) {samples[0][h] /= max;}
 // Grab first record for analysis and display
1000. double[] toStorage_time = new double[sampleBufferLength];
1001. for (int n = 0; n < sampleBufferLength; n++) {
1002. toStorage_time[n] = samples[0][n] / REFSPL;
1003. }
1004. if (isCancelled()) {return -1;}
 // reduce the size of our sample so the graph can load in a normal amount of time
1005. int samplesPerPoint = getResources().getInteger(R.integer.	
 samples_per_bin_time);
1006. int width_time = toStorage_time.length / samplesPerPoint ;
1007. int samplerate = getResources().getInteger(R.integer.sample_rate);
1008. double maxYval_time = 0;
1009. final double[] tempBuffer_time = new double[width_time];
1010. for (int k = 0; k < tempBuffer_time.length; k++) {
1011. for (int n = 0; n < samplesPerPoint; n++){
1012. tempBuffer_time[k] += (samples[0][k*samplesPerPoint + n] / REFSPL);
1013. }
1014. tempBuffer_time [k] /= (double) samplesPerPoint;
1015. if (maxYval_time < tempBuffer_time [k]){
1016. maxYval_time = tempBuffer_time [k];}
1017. }
 // scaling the x “time” values stored into xVals
1018. final double[] xVals_time = new double[tempBuffer_time.length];
1019. for (int k = 0; k < xVals_time.length; k++) { // xVales.length=512
1020. xVals_time [k] = k * (1.0*samplesPerPoint) / (samplerate);
1021. }
 //Adding properties to clicking on the “GRAPH IN TIME DOMAIN” button
1025. button_graph_time.setOnClickListener(new View.OnClickListener() {
1026. public void onClick(View arg0) {
1027. String which_button_pressed = "1";
1028. Bundle extras_time_values = new Bundle();
1029. extras_time_values.putDoubleArray("key_x_time", xVals_time);
1030. extras_time_values.putDoubleArray("key_y_time", tempBuffer_time);
1031. extras_time_values.putString("button_pressed", which_button_pressed);
1032. Intent intent_graph_time = new Intent(SoundAnalysis.this,DisplayGraph.class);
1033. intent_graph_time.putExtras(extras_time_values);
1034. intent_graph_time.putExtras(extras_time_values);
1035. intent_graph_time.putExtras(extras_time_values);
1036. startActivity(intent_graph_time);
1037. }
1038. }); // Continues in Listing 7

LISTING 6
Saving recorded data into the time
domain using the doInBackground()
step from the CaptureAudio class

circuitcellar.com 25
FEATU

RES

part of the Chirp. Rather than increasing the
recording and analysis time we modified the
onTick_Article4() mentioned in Article 3 to
automatically play the Chirp about 400 ms
after recording had started Listing 5 (Lines
862 to 865).

TIME DOMAIN ANALYSIS
Our Article 3 code allowed the capture of

up to six sound records. For calculation time
and other issues, we decided to analyze just

one record by changing the variable “num_
records" (Article 3 Listing 4, Line 2830) from
“6" to “1" in the ints.xml file. As you can see
in Figure 1a, one record provided frequency
domain signals with a good signal-to-noise
(SNR) ratio. You will have to synchronize the
start of the Chirp output capture to better
than one sample period (1/8000 s). This is not
straightforward when you have Android tasks
running in addition to our WAT_AN_APP.

In Article 3, we mentioned how the

 //Call the function that process the FFT
1100. int error = doubleFFT(samples, numRecords, sampleBufferLength);
1101. if (error == -1) {
1102. if (!isCancelled())
1103. publishProgress(-1, -1, -1, -1, -1, 0); //display error message
1104. sampleBuffer = null;
1105. return -1;
1106. }
 // Grab first record for analysis and display
1107. double[] toStorage_freq = new double[sampleBufferLength];
1108. for (int n = 0; n < sampleBufferLength; n++) {
1109. toStorage_freq[n] = (samples[0][n] / REFSPL);;
1110. }
1111. if (isCancelled()) {return -1;}
 // reduce the size of our sample so the graph can load in a normal
1116. int samplesPerPoint_freq = getResources().getInteger(R.integer.samples_per_bin_freq);
1117. int width_freq = toStorage_freq.length / samplesPerPoint_freq / 2;
1118. double maxYval_freq = 0;
1119. final double[] tempBuffer_freq = new double[width_freq];
1120. for (int k = 0; k < tempBuffer_freq.length; k++) {
1121. for (int n = 0; n < samplesPerPoint_freq; n++)
1122. tempBuffer_freq[k] += toStorage_freq[k * samplesPerPoint_freq+ n];
1123. tempBuffer_freq[k] /= (double) samplesPerPoint;
1124. // Log.d("ADebugTag", "Value of tempBuffer: " + Double.toString(tempBuffer[k]));
1125. if (maxYval_freq < tempBuffer_freq[k]) {maxYval_freq = tempBuffer_freq[k];}
1126. }
 // Save X data
1130. final double[] xVals_freq = new double[tempBuffer_freq.length];
1131. for (int k = 0; k < xVals_freq.length; k++)
1132. xVals_freq[k] = k * samplerate / (2 * xVals_freq.length);
1135. button_graph_freq.setOnClickListener(new View.OnClickListener() {
1136. public void onClick(View arg0) {
1137. String which_button_pressed = "2";
1138. Bundle extras_freq_values = new Bundle();
1139. extras_freq_values.putDoubleArray("key_x_freq", xVals_freq);
1140. extras_freq_values.putDoubleArray("key_y_freq",tempBuffer_freq);
1141. extras_freq_values.putString("button_pressed",which_button_pressed);
1142. Intent intent_graph_freq = new Intent(SoundAnalysis.this,DisplayGraph.class);
1143. intent_graph_freq.putExtras(extras_freq_values);
1144. intent_graph_freq.putExtras(extras_freq_values);
1145. intent_graph_freq.putExtras(extras_freq_values);
1146. startActivity(intent_graph_freq);
1147. }
1148. });
1149. return 0;
1199. }// Continues in Article 5

LISTING 7
Saving recorded data into the
frequency domain using the
doInBackground step from the
CaptureAudio class

CIRCUIT CELLAR • OCTOBER 2015 #30326
FE

AT
U

RE
S

SoundAnalysis activity uses an asynchronous
task, CaptureAudio, to record and analyze the
sound, and to update the activity’s UI with
this class that makes use of four steps. The
same first step, onPreExecute, performs
any necessary setup. The second step,
doInBackground, is invoked to perform any
background computations that take a long
time. doInBackground needs to be extended
by adding the Listing 6 code to the TGBN
detector doInBackground code from Article 3
Listing 9.

We need to do some housekeeping steps
to allow the extended background activity to
execute: after having inserted the code from
Article 3 Listings 8 and 9, uncomment the
line 956, as it will make sure that the sample
buffer we are working with has a length that
is a power of 2 for the FFT calculations. If
you forget this step, the FFT calculations
won’t be processed and an error message
will appear on the screen. Remove the setting
of sampleBuffer pointer to null in Line 983,
remove the return statement in Line 986 and
the curly bracket for Line 987.

Preparing data for graphing can be time
consuming unless the mobile CPU has lots
of horsepower. There are efficient Android
graphing packages available if the data is
stored within a SQL database. As employing
those will take another series of articles,
we have taken a straightforward, bull-at-
gate approach. You have to handle possible
overflow issues when doing integer DSP
calculations. So in Lines 991 to 997, we
convert the audio record to doubles, allowing
graphing of the recorded sound. Lines 1000
to 1003 allows grabbing the record for future
analysis and display. The samples are stored

into an array toStorage_time and divided by a
constant REFSPL, which is the threshold of the
human hearing, used here as the reference
sound pressure level and equal to 0.00002
(Line 1002).

Displaying the sound signal generates
another CATCH-22 scenario. If you display all
the information, then you have 4 s off sound
(32,000 point) displayed on a small screen.
It takes forever to zoom in. We decided to
speed the time display and zooming by doing
a rough form of down sampling, Lines 1005
to 1017. If you try this with the Chirp signal,
then you will find that your display does not
show constant sound amplitude. The strong
amplitude variation shows that you are no
longer satisfying the Nyquist sampling rate
and you get “display aliasing."

The “x-axis" time values are generated
through Lines 1018 to 1021. We make the
button “Graph in Time domain" clickable by
using setOnClickListener(), Line 1025. Line
1036 calls the graphing DisplayGraph activity
we'll discuss later. This call requires the
graph’s “x" and “y" values to be passed from
the SoundAnalysis activity to the DisplayGraph
one using a bundle, Line 1028. This bundle
makes use of two strings, “key_x_time" and
“key_y_time", Lines 1029 and 1030 to pass
the arrays “xVals_time" and “tempBuffer_
time". We put the string containing the value
of the button that has been pressed to start
the DisplayGraph activity into a key “button_
pressed", Line 1031. We then declare an intent
that will start the DisplayGraph activity, and
pass our two arrays and one string via the
bundle “extras_time_values", Lines 1033,
1034, as well as the button that has been
pressed to call the graphing activity, Line
1035. The data in the time domain can now
be graphed.

The Quick Guide shows a way to write
array’s values into an external .txt file stored
in the phone internal memory for debugging
analysis off the phone. If you are not
interested in saving the values into a file, you
can also display the content of the tempBuffer
and xVals arrays in the LogCat by using the
“Log" API that sends log output in the LogCat
window, as we show in Listing 7 Line 1124.
This line of code displays the recorded data
amplitude’s values in the frequency domain.

A GHOST TO COME
We are about half-way there to getting the

full DSP code ready to assist out our neighbor’s
kid with his volunteer work. In the final article
of this series, we will tackle getting the fast
Fourier transform (FFT) code to handle
spectral analysis. Then we head out into the
world of Android graphics, and provide that
promised picture of a ghost.

ABOUT THE AUTHORS
Adrien Gaspard (gasp.adrien@gmail.com) earned a Masters of Engineering
from CPE Lyon, France, in February 2015. He tackled his final practicum as
an exchange student in Electrical and Computer Engineering at the Univer-
sity of Calgary. He undertook self-directed term projects directed towards
the possible use of noise cancelling to solve the community noise problem in
Calgary community of Ranchlands. Adrien intends to focus his career in the
fields of embedded systems and wireless telecommunications.

Mike Smith (Mike.Smith@ucalgary.ca) has been contributing to Circuit Cellar
since the 1980s. He is a professor of Computer Engineering at the University
of Calgary, Canada. Mike’s main interests are in developing new biomedical
engineering algorithms and moving them onto multi-core and multiple-pro-
cessor embedded systems in a systematic and reliable fashion. He is a recent
convert to the application of agile methodologies in the embedded environ-
ment. Mike has been an Analog Devices University Ambassador since 2001.

mailto:gasp.adrien@gmail.com
mailto:Mike.Smith@ucalgary.ca

circuitcellar.com 27
FEATU

RES

INSTALL AN APK FILE ON AN ANDROID DEVICE
The Android application package file (APK) is the

format of installable files on Android platform. In order
to install an .apk on your phone, enable the “unknown
sources” on Android (settings, security and check the box
next to “unknown sources”). A dialog box pops up asking
you to confirm the action, knowing that “your phone and
personal data are more vulnerable to attack by apps from
unknown sources.” Tap OK if you want to allow the .apk
from the Circuit Cellar FTP site to run, but make sure to
always know the source of the .apk files you install on your
device. Connect your phone to the computer, and in the
“USB Storage” folder, create a “My Applications” folder. Get
the application .apk from the Circuit Cellar FTP site and
copy it from your computer’s download folder (“C:\Users\
ajfgaspa\Downloads” by default) to the “My Applications”
directory on your phone using your computer. From your
phone, using the Google Play store, download and install
an application as “file commander” (play.google.com/
store/apps/details?id=com.mobisystems.fileman&hl=en) to
take control over the files stored in your phone. Start file
commander, tap on the “USB storage” folder, and then on
“My Applications” folder: the application .apk file should
be here. Tap it. A window pops up asking you to “complete
action using.” Select “Package installer”, and confirm that
you want to install this application. A few second later,
the application has been installed. Click on “Open.” The
application starts!

DISPLAY VALUES IN THE LOGCAT
To display buffer values on the LogCat—e.g., tempBuffer_

time with amplitudes “y” values—add import android.
util.Log in Listing 2 after Line 522, and then between Line

1013 and 1014 in Listing 6 add: Log.d(“ADebugTag”, “Value
of tempBuffer_time: “ +Double.toString(tempBuffer_
time[k]));.

STORING AUDIO VALUES IN A .TXT FILE
To save data in an external .TXT file on a phone’s

memory, refer to Figure 1 and Listing 1.

FORCE AN ACTIVITY TO START IN LANDSCAPE MODE
We always want to start up displaying graphs in the

landscape screen orientation. Generate the graphing
DisplayGraph activity as demonstrated in Article 3 to
prepare for the graphing activities in Article 5. Now, modify
the AndroidManifest.xml file where you see the activity line
with the words android:name =”.DisplayGraph”. Add the lines
for android:screenOrientation and android:configChanges
as shown in Listing 2 to cause landscape mode and stop
the phone’s keyboard from hiding parts of the graph.

// To make this output work, you will need to add these imports to
// Listing 2 after line 522 -- import android.net.Uri; import java.io.File;
// import java.io.FileNotFoundException; import java.io.FileOutputStream;
// import java.io.OutputStreamWriter; import java.util.Arrays;
// Insert this code in Listing 6 after Line 1021 and before Line 1025
String file_path4 = Environment.getExternalStorageDirectory()
 .getAbsolutePath() + “/Android/”;
//Store file in the Android folder from the phone Internal memory
File file4 = new File(file_path4 + “/YValuesfromSOUNDANALYSIS.txt”); //file’s name
sendBroadcast(new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE,
 Uri.fromFile(file4))); //force the file to be displayed
FileOutputStream fos4 = null;
try { fos4 = new FileOutputStream(file4); }
catch (FileNotFoundException e1) {//exception: file not found
 e1.printStackTrace(); }
OutputStreamWriter osw4 = new OutputStreamWriter(fos4);
try {
 String b4 = Arrays.toString(tempBuffer_time);
 //display the array “tempBuffer_time” in a text file as a string
 osw4.write(b4); osw4.flush();osw4.close();
}
catch (FileNotFoundException e) { e.printStackTrace(); }
catch (IOException e) { e.printStackTrace(); }

LISTING 1
This code can be used to save the amplitudes
of the time domain recorded data (referred
as « tempBuffer_time ») into an external
.txt file, stored into the phone memory.
Similar code will also store the "xVals_time"
in a text file as a string.

<activity
 android:name=".DisplayGraph"
 android:screenOrientation="landscape"
 android:configChanges="orientation|keyboardHidden"
 android:label="@string/title_activity_display_graph">
</activity>

LISTING 2
Modifying AndroidManifest.xml
file will cause graphs to appear
in "easy-to-read" landscape
mode and stop the keyboard
from hiding parts of the graph.

FIGURE 1
Saving data into an external .TXT file on the phone's memory

CIRCUIT CELLAR • OCTOBER 2015 #30328
FE

AT
U

RE
S

In the first part of this article series, we
looked at protecting against reverse

battery voltage, selecting a microcontroller,
and power management. In this article, we
will look at combined AC/battery operation,
single-cell operation, rechargeable batteries,
and estimating battery life.

COMBINED AC/BATTERY
OPERATION

In many applications, you want to operate
your circuit from either AC (from a wall outlet)
or batteries. AC operation typically involves
a wall mount or other external power supply
with a DC output. You could also embed an
AC supply in the housing for the circuit. You
might do that if your circuit normally operates
from AC with battery only as backup. I won’t
go into power supply design here.

Typically, when you want to operate from
the AC supply, you plug in the AC/DC adapter
and the circuit switches to use the external
supply. To do that, you need to disconnect the
battery from the circuit when the AC supply
is in use. Usually, the point of AC operation is
to avoid battery drain, and possibly to charge
the battery. You can make the changeover
from battery to the external supply using a

mechanical or electronic switch.
Some coaxial DC power adapters have a

pair of contacts that open when the external
DC plug is inserted. The battery lead (usually
the negative side) is run through these
contacts so that the battery is disconnected
when the external DC is plugged in. Figure 1
shows this configuration. The figure shows a
coaxial DC jack, but other types of connectors
could also be used—0.125” audio jacks are
common. Obviously, this won’t work if the
supply is internal since there is no external
DC plug in that case. For an internal supply,
if you want automatic switching, you have to
use an electronic switch.

The drawbacks to using the switched
jack method are, first, that the contacts on
the connector are an added failure point.
Connectors and switches tend to be a high
failure item in electronics. The second issue is
that there may be momentary loss of power
while the DC plug is being inserted. This
happens if the battery contacts open before
the external supply is fully connected.

Another method, also shown in Figure 1,
is to use a Schottky diode in series with the
external DC supply, and a second diode in
series with the positive lead of the battery.

Running on Battery (Part 2)

In the first part of this series, Stuart explained
how to protect against reverse battery voltage,
select a microcontroller, and manage power. Here
he examines combined AC/battery operation,
single-cell operation, rechargeable batteries,
and estimating battery life.

By Stuart Ball (US)

Battery Operation

circuitcellar.com 29
FEATU

RES

This eliminates the extra set of contacts used
in the switched jack method, and it eliminates
the potential for momentary power loss.
However, this approach does lose around 0.3
V from the battery and the DC supply due to
the drop across the diodes.

For diode-based electronic switching, the
Schottky diode in the battery circuit also
prevents reverse battery polarity. (See Part
1 of this article series.) If you were going to
use a diode for reverse polarity protection
anyway, you don’t need an additional diode
in series with the battery for isolation with
an external supply; the same diode will do
both jobs.

Figure 1 indicates a 12-V external DC
power supply voltage with a 9-V battery. The
specific voltages are not important, but this
circuit will only work if the external supply
voltage is higher than the battery voltage. If
the external supply voltage is lower than the
battery voltage, D2 will be reverse-biased and
the battery will still be powering the circuit. If
you are using a 6-V battery, you could use any
DC supply greater than 6 V. Common voltages
are 7.5, 8, and 9 V.

Many wall mount-type supplies output
greater voltage than the rated voltage at low
loads, so you might be able to use a 9-V supply
with a circuit using a 9-V battery. I have one
wall mount supply that produces over 12-V
unloaded. But if you try that, test it in an
operating circuit or check the manufacturer’s
specifications for output voltage vs. current.
The voltage may drop below the battery
voltage under load.

A third way to handle AC/battery switching
is to use a part such as the Linear Technology
LTC4412. This IC, coupled with an external
MOSFET, allows external supply operation
from 3 to 28 V, and battery operation from 2.5
to 28 V. It includes reverse battery protection,
so there is no need for an additional Schottky
diode for the battery.

The LTC4412 has a logic output to indicate
when the external supply is connected. The
microcontroller can sense this to enable an
LCD backlight, battery-charging circuit, or
some other feature that is normally disabled
during battery operation. The LTC4412 still
requires that the external DC voltage be
greater than the battery voltage to enable the
switch from battery to external DC power.

There are other, similar battery switch
parts, including the Intersil ICL7673. The
ICL7673 switches the output to whichever
input has the higher voltage. It is available
in both SMT and DIP configuration, making
prototyping easy.

Often the battery or power supply is
followed by a regulator to provide the correct
voltages for the circuit. You want to be sure

that the regulator, if one is used, is capable
of handling the additional power when the
external supply is connected. For example,
take the simple case of a 9-V battery with a
78L05 regulator to produce a 5-V output. If
the circuit draws 20 mA, the dissipation in the
regulator on battery is 80 mW (9 V – 5 V ×
20 mA). If an external 12-V supply is used for
AC operation, the regulator dissipation goes
to 140 mW (12 V – 5 V × 20 mA).

For most battery circuits, you wouldn’t use
a simple 78L05 because the quiescent current
is too high. But the same principle applies to
any regulator; make sure that the dissipation
isn’t exceeded while operating on the higher
DC voltage from the AC supply.

SINGLE-CELL OPERATION
In some cases you want to operate your

circuit from a single 1.5-V battery. This allows
for a smaller, lighter design. But there is
less voltage available to drive LEDs or audio
outputs or LCD bias inputs.

In many single-cell applications, the
microcontroller voltage will need to be higher
than the battery. One way to do this is to use
a DC-DC converter to step the battery voltage
up to a higher voltage such as 3.3 V. There are
numerous DC-DC boost converter ICs that are
designed for battery operation, such as the
Linear Technology LTC3525. This part is a burst
mode regulator, so if the microcontroller is in
sleep mode to save power, the regulator will
draw only enough current from the battery to
keep the output voltage constant.

One problem with an inductor-switching
boost converter is the current draw during
regulation. This reduces battery life. A
switched-capacitor charge pump such as the
Linear Technology LTC1502 has lower current
drain but significantly less output current
capability (10 mA in the case of the LTC1502).

FIGURE 1
This is how to use of a power plug
with an extra contact in the negative
terminal to isolate the battery when
an external DC supply is used. I also
show how to use Schottky diodes to
isolate battery when external DC
supply is used.

CIRCUIT CELLAR • OCTOBER 2015 #30330
FE

AT
U

RE
S

One way to minimize battery drain is
to operate the microcontroller from a low-
current charge pump boost converter, and
run any higher current devices, such as LEDs,
from a switched-inductor boost converter.
During sleep mode, the microcontroller shuts
down the switched-inductor converter to
minimize current draw, but the switched-
capacitor converter keeps the microcontroller
powered.

Both types of converters draw some
current all the time, so you have to decide
whether the total power usage, based on the
time-averaged total power, is less with two
converters or with one switched-inductor
converter. An additional feature of using two
converters is that two output voltages can be
generated, one for the microcontroller and
the other for any components that require
higher operating voltage.

There are microcontrollers, such as
the Atmel ATtiny43U and the Silicon Labs
C8051F9xx, with internal boost converters
for single-cell operation. Since the boost
converter is part of the microcontroller,
more efficient operation is possible. For
example, the ATtiny43U has a low-current
mode of operation where the boost converter
regulation is relaxed to minimize power
consumption.

As I mentioned in Part 1 of this article
series, when using batteries, you will want
to monitor the battery voltage to avoid
erratic operation when the voltage goes low.
With single-cell operation, this is even more
important due to the reduced usable voltage
margin of the single cell. The Atmel parts
contain a brown-out detector that can reset
the microcontroller when the supply voltage
is too low, but you may not want to wait until
that point to go into some kind of safe mode.

BATTERY SELECTION AND
RECHARGING

What kind of battery do you use in your
project? As I mentioned in Part 1, you might

be limited to off-the-shelf batteries because
you want to use coin cells or standard AA,
AAA, or 9-V batteries. This lets your user
buy batteries almost anywhere. But he
has to replace the batteries when they are
exhausted.

If you don’t want to replace batteries, you
need to think about rechargeable batteries.
Obviously this implies a recharging circuit.
There are different types of rechargeable
batteries; a detailed analysis is beyond the
scope of this article. For our purposes here,
we’re interested in recharging the batteries,
not in the battery technology.

The simplest recharge circuit is shown
in Figure 2. This circuit is a modification of
the diode-based battery switching circuit of
Figure 1. The circuit in Figure 2 includes an
additional blocking diode (D3) and a resistor.
The resistor charges the battery when the
AC adapter is plugged in. This approach is
only suitable for batteries such as Nickel-
Cadmium (Ni-Cd) or Nickel Metal-Hydride
(Ni-MH) that can withstand continuous trickle
charging.

The resistor must be chosen to limit the
maximum charge current to no more than
the continuous charging current for the
selected battery. This is typically the capacity
in milliamp-hours (mAh) divided by 10, but
varies by battery. Also be sure to select diode
D3 to handle the charging current; this will
probably be significantly higher than the
normal operating current of the circuit.

The charging current is the difference
between the external DC supply voltage and
the battery voltage, divided by the resistance.
This can be a problem if you are using, say,
a 9-V wall mount DC supply and a user plugs
in a 12-V supply instead. The circuit will
probably still work, but the battery charging
current may be too high.

The advantage of trickle charging is
simplicity; the drawback is charge time. A
discharged battery can take many hours to
recharge at the maximum trickle charge rate;
longer if lower current is used. For a device
that is normally plugged into the external
supply and only occasionally run on batteries,
or can be routinely charged overnight, this
may be an acceptable trade-off.

Another advantage of trickle charging is
that it’s suited to charging from a solar cell.
This only works if the solar cell can charge
the battery faster than the circuit discharges
it. But in a circuit intended to last for days or
weeks, solar trickle charging is a viable option
since the trickle charge current will be higher
than the drain current. In effect, the circuit
operates from the solar cell when sunlight is
available and from the battery the rest of the
time.

ABOUT THE AUTHOR
S t u a r t B a l l i s a
registered professional
engineer with a BSEE
and an MBA. He has
more than 30 years of
experience in electronics
design. He is currently
a principal engineer at
Seagate Technologies.

FIGURE 2
Simple recharging circuit based on diode-switched AC adapter

OPEN

RUGGED

LONG LIFE

ORIG
IN

AL
Unique embedded
solutions add
value for our
customers

Support every
step of the way
with open
source vision

Embedded
systems that
are built to
endure

We’ve never
discontinued a
product in 30
years

DESIGN YOUR SOLUTION TODAY
CALL 480-837-5200

www.embeddedARM.com

(Shown with optional microSD card)

TS-7250-V2
Single Board Computer
Extensible PC/104 Embedded
System with Customizable
Features and Industrial Temps

$165
Starting at

$199
Qty 100

Qty 1

800 MHz or 1 GHz Marvell PXA166 ARM CPU
512 MB DDR3 RAM and 2 GB SLC eMMC Flash Storage
PC/104 Connector with FPGA Driven Pins (8k or 17k LUT FPGA)
2x 10/100 Ethernet, 1x microSD Socket, 2x USB Host
75x DIO, 5x ACD, 3x RS232, 3x TTL UART, 1x RS485, 1x CAN
-40 ºC to 85 ºC Industrial Temperature Range
Preinstalled Debian Linux OS and Utilities

Available with TS-ENC720 enclosure

TS-TPC-7990
Touch Panel PC
7” High End i.MX6 Mountable
Panel PC with Dev Tools Such
as Debian GNU and QTCreator

$299
Starting at

$342
Qty 100

Qty 1

Enclosed TPCs
Also Available

1 GHz Solo or Quad Core Freescale i.MX6 ARM CPU
7 Inch or 10 Inch Touch Panel PC
Resistive and Capacitive Screens
Linux, Android, QNX, and Windows
QTCreator, GTK, DirectFB, GNU Tool Kit, and More
Runs Yocto, Debian, Ubuntu Distributions

TS-4900
Computer on Module
Industrial High Performance
i.MX6 Module with Wireless
Connectivity and Flash Storage

1 GHz Solo or Quad Core Freescale i.MX6 ARM CPU
512 MB, 1 GB, or 2 GB DDR3 RAM and 4 GB eMMC Flash Storage
Wireless 802.11 b/g/n and Bluetooth 4.0 Soldered Module
4k LUT FPGA, 1x Gigabit Ethernet, 1x PCI Express Bus
1x microSD Socket, 1x SATA II, 1x USB Host, 1x USB OTG
70x DIO, 4x I2C, 1x I2S, 2x SPI, 2x CAN
-40 ºC to 85 ºC Industrial Temperature Range
Runs Linux, Android, QNX, Windows
QT, OpenGL, DirectFB, GNU Tool Kit, and More

$89
Starting at

$122
Qty 100

Qty 1

TS-7970. SBC Version of
the TS-4900

TRUE CUSTOM SOLUTIONS
Accelerated Time to Market
Partner with our 31 years of embedded expertise,
�exible manufacturing, long lifecycle guarantee,
to reduce risk and accelerate time-to-market.

Embedded Products for All Needs

http://www.embeddedARM.com
www.embeddedarm.com

CIRCUIT CELLAR • OCTOBER 2015 #30332
FE

AT
U

RE
S

For faster charging, or for Lithium-ion (Li-
Ion) batteries, a more complex circuit is used.
Fast charge circuits monitor the battery for
full charge and then cut off the charge current
to prevent overcharging. The easiest way to
implement a fast-charge circuit is to use an
IC that is designed for that purpose. Typical
examples would be the Linear Technology
LT1571 or the Maxim MAX712. There are
many different battery charge management
ICs to choose from.

Texas Instruments has a good application
note on these three battery technologies
(Nickel-Cadmium, Nickel Metal-Hydride, and
Lithium-ion) and the trade-offs in charging
them. You can find it at www.ti.com/lit/an/
snva557/snva557.pdf.

ESTIMATING BATTERY LIFE
In most cases, you will want to have

some idea how long your battery will last
in the circuit. In very low-power circuits or
consumer electronics, it may not matter that
much. The batteries in the remote control for
your television can last months. You may not
care whether it is 12 or 18 months. But for
a remote data logger application you would
want to know how often to schedule battery
replacement.

The first component of battery life is the
current drawn by the electronics. For battery
operation, this will be a combination of the
current drawn in sleep mode and in active
modes. (These modes are described in Part 1
of this article series.) To build a power profile,
you will want to add the current drawn in
sleep mode and the current drawn in active
modes.

Note that you could have more than one
active mode. For example, a remote data
logger might take readings once per second,
but it might transmit those readings via
cell modem once per hour or once per day.
Obviously, using the cell modem is going to
require significantly more current than just
taking readings, in most applications.

In a typical example, say that we have a
remote data logger that takes a reading every
second, and it takes 100 ms to wake up and
capture all the information. One of the sensors
we are reading requires that an infrared
LED be turned on; maybe we’re reading the

opacity of water in a pipe to measure the
amount of suspended sediment. So our power
usage looks like this:

•	Microcontroller current during active
	 state: 10 mA
•	LED current: 20 mA
•	Microcontroller current during sleep state:

	 25 µA

Since we make a measurement once per
second, and each measurement takes 100
ms, then the average active mode current
draw is (10 mA + 20 mA) × 100 ms/1 s, or
3 mA. Running this for an hour consumes a
charge of 3 mAh from the battery. The sleep
mode consumption is 22.5 µAh. The total of
active and sleep mode is 3.0225 mAh/hour.
Clearly, the sleep mode contributes little to
the battery drain, which is why we want the
microcontroller to spend as much time as
possible in that state.

An alkaline AAA battery has a capacity of
about 1,250 mAh, so the battery lifetime will
be 1,250 mAh/3.0225 mA = 413 h. This will
vary with the type of battery: alkaline vs. Ni-
Cd vs. zinc-carbon, and so on. It also varies
with the amount of voltage drop in the battery
our circuit can tolerate. Even the quality of
the battery will affect it. I got a consumer
product once that came with batteries, but
the manual said that the included batteries
could be expected to have shorter life than
purchased batteries. Like those small capacity
“starter” ink cartridges that some printer
manufacturers include with their printers.

Switching to an alkaline AA battery with
about 2,000-mAh capacity gives about 661
h of operation. All the same conditions and
caveats apply.

Generally, we want to run a battery-
powered microcontroller at the lowest
possible clock rate for minimum power. For
many microcontrollers, this means a 32-khz
watch-type crystal. If your application is
like that theoretical data logger, where the
microcontroller is just waking up to take
readings for a fixed time, that is usually what
you would do. A device like a television remote
control, where the microcontroller wakes up
in response to button presses by the user, is
another example of such an application.

There are some applications where the
slowest clock rate isn’t the best choice. If the
active mode of the microcontroller requires
complex calculations that take significant
time, then the slower clock rate may not
result in the lowest possible average power.
But using this same method of calculation will
let you determine that, based on the active
and idle current used by your microcontroller.
Be sure to compare the power calculation circuitcellar.com/ccmaterials

SOURCE

ATXmega324A Microcontroller
Atmel Corp. | www.atmel.com

http://www.ti.com/lit/an/
http://www.atmel.com
www.circuitcellar.com/ccmaterials

circuitcellar.com 33
FEATU

RES

for both clock rates at the same supply
voltage. If the microcontroller can operate at
multiple supply voltages, the datasheet may
list the active and idle current for different
frequencies and at different supply voltages.

As an example, let’s take the same data
logger, but say that the calculations required
to make all the readings (maybe compensating
for the ambient light and temperature) is
what makes the sample take 100 ms. Say
that if we ran at 2 MHz, the reading would
only take 1.6 ms (100 ms × 32 kHz/2 MHz).
Say that at 2 MHz, the sleep mode current is
200 µA and the active mode current for the
microcontroller is 20 mA. In that case, the
average current consumption for the circuit
would be about 0.26 mA and the faster clock
actually results in lower average power.

This example is a bit extreme because
of the relatively high LED current during the
sampling interval. But it is not uncharacteristic
of the trade-offs involved in comparing the
slowest possible crystal to a faster clock
rate in applications where the processor has
to spend time calculating things. In most
applications the slower crystal speed will give
the lowest current—but not always.

If you use a microcontroller with an

internal PLL, you may get the best of both
worlds. Run the microcontroller on a 32-kHz
clock in sleep mode and reprogram the PLL
for a faster clock when the microcontroller
wakes up. Obviously, this approach limits your
microcontroller selection to those with all the
low power and other features you need, plus
an internal programmable PLL.

When estimating battery life, and if
you are using rechargeable batteries, you
will want to estimate battery life when the
batteries are nearing their end of usable life.
For some applications, you might not care,
especially if the rechargeable battery can
be easily replaced. But in other applications,
such as the remote data logger, you want to
know how long a weak battery will last. You
don’t want to have to make an extra trip to
replace the data logger because old batteries
didn’t last long enough.

DESIGN FOR OPERATION
Although this article series can’t cover

every aspect of battery operation, they should
get you started on battery-based design.
Taking these things into account will help you
avoid some of the potential pitfalls of
designing for battery operation.

When it comes to robotics,
the future is now! the future is now!

Get it today at
ccwebshop.com

Advanced Control
Robotics
simplifies the
theory and best
practices of
advanced robot
technologies,
making it ideal
reading for
beginners and
experts alike.

With this book,
you’ll learn about:

• Communication
• Technologies
• Control Robotics
• Embedded Technology
• Programming Language
• Visual Debugging...
 and more

www.cc-webshop.com
www.saelig.com

CIRCUIT CELLAR • OCTOBER 2015 #30334
CC

 R
EB

O
O

T

This article deals with some of the most
important measurement instruments

needed for a general-purpose electronic
laboratory. It should prove to be a useful

resource for electronic enthusiasts and
engineers working in their homes, where
signal generators, logic analyzers, and digital
oscilloscopes are unavailable.

I’ve built an inexpensive and versatile
measurement system that contains a signal
generator, logical analyzer, and digital
oscilloscope. If you build your own, you’ll be
able to address many of the problems typically
encountered on test benches.

The system is not PC-bus connected.
Instead, it’s external to the computer, making
use of the RS-232 serial port shown in Figure 1.
Also, it doesn’t have a power supply input,
so the same serial cable feeds it. Because
the computer’s serial connection provides
limited power, low power consumption is a
fundamental requirement.

The low-power goal is achieved with a
small number of components—the fewer the
better. So, I quickly became interested in
the MSP430F149, which is a highly integrated
device with low power consumption. Note that
everything is integrated except the oscilloscope
analog chain (coupling and programmable
amplifier), part of the trigger circuit, and
the input buffer for the logic analyzer. The
microcontroller works with an 8-MHz crystal
oscillator.

This application uses the register bank,
the entire RAM (2 KB), and nearly all of the
peripherals. The peripherals used include the
16-bit TimerA and B, ADC, analog comparator,
multiply accumulate, and one USART with
modulation capability. Only the second USART
is spared.

The system has several main features. You
can control and display on the PC by running

Build a Three-in-One
Measurement System

No home electronics lab is complete without
a signal generator, logic analyzer, and digital
oscilloscope. But why purchase the measurement
devices separately, when you can build one system
that houses all three? Salvador shows you how.

By Salvador Perdomo (Spain)

Editor's Note: This article first
appeared in Circuit Cellar 156, 2003.

FIGURE 1
It is of interest to have your test benches as clear as possible to search for the faulty part of your design. So,
a small measurement system is highly recommended. It’s better if it isn’t connected to the mains.

Channel A
analog signal

input
BNC connector

Channel B
analog signal

input
BNC connector

Digital signal
input

single line
connector

Analog signal
output

BNC connector

AC-GND-DC
coupling

and
attenuator

AC-GND-DC
coupling

and
attenuator

Buffer
74AHC244

Passive
low-pass
six-pole

filter

Digitally
programmable

amplifier
TLV2624 and

74HC4053

MSP430F149

DC/DC
converter
TL5001

Charge pump
inverter

TPS60403

Digitally
programmable

amplifier
TLV2624 and

74HC4053

Equivalent time
logic circuit

74AHC74 and
74AHC1G86

RS-232 Driver
MAX3221

DE9
Connector

–3.3 V

3.3 V

PHOTO 1
Hand-soldering a package this size
is tough work. The signal-generator
filter has bulky coils. In contrast, the
MSP430F149’s PQFP64 is tiny.

circuitcellar.com 35
CC REBO

O
T

software implemented on LabWindows/CVI. In
addition, it has a signal generator based on the
direct digital synthesis method and a frequency
of up to 6 kHz with 0.3-Hz resolution. The

output voltage reaches a peak of 1.3-V (±2 dB)
fixed amplitude. The signal generator works
simultaneously with the oscilloscope and logic
analyzer (but not these two).

PHOTO 2
a—You can replace the relays in the coupling section and the driver circuit with solid-state relays if you can find ones with low leakage current. b—The op-amp’s SMD packages
are best viewed from the bottom. The larger board is populated on both sides. Note the importance of the parasitic coupling of the PWM D/A outputs to the input of the amplifiers.

PHOTO 3
a—When the driver program starts, it asks you for the port where the system is
connected. This allows it to be opened. b—The oscilloscope panel contains all of the
buttons necessary to control it in a similar way to stand-alone equipment. However,
it also includes the option to print the captured signal in addition to a low-frequency
signal generator. c—The logic analyzer panel provides all of the acquisition and
visualization control necessary for studying low-speed digital signals. Its simple
trigger is useful for numerous real-world applications.

a) b)

a) b)

c)

CIRCUIT CELLAR • OCTOBER 2015 #30336
CC

 R
EB

O
O

T

I included a digital oscilloscope with two
channels that have 1-MHz bandwidth, 8 bits
of resolution, and 401 words of memory per
channel. There are 10 amplitude scales from 5
mV to 5 V per division and 18 timescales from
5 µs to 2.5 s per division. Note that there are
four working modes: Auto, Normal, Single, and
Roll.

The logic analyzer has eight channels, 1920
words of memory per channel, and sampling
from 1 to 100 kS/s. It is trigger-delay selectable
between 0, 50, and 100% of memory length.

Looking at Photo 1, you see that the
system’s hardware consists of two separate
boards that are attached to each other. Photo
2a shows the tops of the boards, and Photo
2b shows the bottoms. The larger board

contains the oscilloscope analog chain: BNC
connectors, relays (and circuit controller) for
DC-GND-AC in the coupling section, and the
digital programmable attenuator/amplifier.
The top board contains the DC/DC converter
power supply, charge-pump inverter, serial-
communication driver, low-pass filter,
trigger (real and equivalent time sampling)
circuit, channel-trigger selector, and the
microcontroller.

CONNECTION AND POWER
The RTS and DTR DE9 connector pins

feed the system. (I didn’t use the hardware
handshake.) The Rx(2) and Tx(3) pins are used
for communication between the microcontroller
and PC. This is achieved with the USART0 and a
MAX3221 driver.

First, I tested the RTS and DTR pins’ I-V
curves in order to know how much power
was available. The curves are similar, and
they resemble a PMOS device connected to a
12-V supply coming down to 10 V at 10 mA
of current consumption and approaching 0 V
at 14 mA. So, each pin produces a maximum
power of approximately 100 mW (200 mW for
both of them).

In order to feed the system with 3.3 V
from the serial port, I used a 3.3-V output DC/
DC converter (see Figure 2). The controller is
based on a TL5001. (In the photos, it’s near a
radio-IF filter can that contains the converter’s
coil.) Also, a couple of TPS60403 charge-pump
voltage inverters were used in parallel to feed
the analog portion of the system with ±3.3 V.

Although I could have bought a 1.2-mH unit
for the coil construction, I decided to build it
with an old 10.7-MHz radio IF filter core. The
coil construction took 180 turns of 4-mils (0.1
mm) diameter wire and gave an adjusted
range value from 0.5 to 1.26 mH. The coil’s DC
resistance is 4.1 W.

The circuit was measured, and it performed
well up to a current consumption of 42 mA (a
power of 138 mW), which is enough to feed the
entire system. The RTS and DTR pins remain
at –12 V when the serial port is closed. When
you call the PC driver program, the first panel
appears (see Photo 3a). When you select the
serial port where the system is connected,
the port opens (increasing the RTS and DTR
voltage to 12 V), configures a protocol with
115,200 bps, 8N1, and reserves a receiving
buffer of 2000 bytes. Also, an interrupt for
receiving_buffer_full (802 bytes) is prepared to
let the main program know that a datastream
has arrived. The LabWindows statements
include the following two lines of code:

OpenComConfig (COMx, ” ”,
115200, 0, 8, 1, 2000, 30)

FIGURE 2
Thanks to the selected components’
low power, I was able to eliminate
the system’s independent power. For
this project, a DC/DC converter is
indispensable.

FIGURE 3
a—The first equation extends the values from 1 to 399 to cover the dynamic range of the DAC. b—Now, the
values extend from –1250 to 1250. c—Using the software DDS, you can create a sine function.

SIN ROM_
:

 = round sin + 200199
2 0 255

256
× ()

















π



COSIN ROM_ cos
:

 = round 199 2 × ()




















π

π2 0 255

256

SINE = SIN_ROM Phase_H + COSIN_ROM Phase_H Phase_L() () ×

a)

b)

c)

circuitcellar.com 37
CC REBO

O
T

InstallComCallback(COMx, 15,
802, 0, RxBuffer_full, 0)

When the microcontroller receives power,
it starts from reset and configures all of the
necessary peripherals: the comparator, ADC,
TimerA and B, USART0, I/O pins, and the
interrupts. Afterwards, it stays in a default
state, waits for a PC command, and attends
to the TimerB signal generator interrupts
because it starts generating a 1-kHz sine wave
by default.

THE SIGNAL GENERATOR
The signal generator is intended to provide

the signal A × sine(wt), where the amplitude,

A, is fixed near VCC/2, and the frequency is
programmable with 0.3-Hz (20 kHz/65,536)
resolution and up to 6 kHz.

The signal generator’s hardware consists
of a D/A converter made with TimerB PWM
output TB2 (pin 4.2), an external six-pole RLC
low-pass passive filter, and a BNC connector.
To save more components, the necessary
D/A converters are carried out with the PWM
of TimerB. A passive filter loads the output
transistors and produces distortion in the
signal. Active filters are recommended instead.
You may download a schematic of the signal
generator’s hardware from the Circuit Cellar
ftp site.

The PWM-D/A converter has a 20-kHz

LISTING 1
Now that you’re familiar with the
software DDS, you can generate the
sine function in Figure 3c.

add FREQ,&PHASE 	//Phase accumulate from 0 to 65535
mov.b &(PHASE+1),TABLE_S 	 //PHASE_H is used to read tables.
rla TABLE_S X2 accesses word tables.
mov #8000h,&RESLO 	//To round the MACS to the 16-bit
		 nearest integer.
mov SIN(TABLE_S),&RESHI 	
mov COSIN(TABLE_S),&MACS
mov.b &PHASE,TABLE_S //OP2 is a 16-bit SFR, so go throw 		
			 a register to translate PHASE_L
			 to OP2.
mov TABLE_S,&OP2
mov &RESHI,&TBCCR2 //Got new sample. Update TB2_PWM.

SIN DW 200,205,210,215,220,224,229,234,239,244,248,253
	 DW 258,262,267,272,276,281,285,289,294,298,302,306, ...

COSIN DW 1250, 1250, 1249, 1247, 1244, 1241, 1237, 1232, 1226, 1220
 	 DW 1213, 1205, 1197, 1187, 1177, 1167,

Frequency
register

Phase_H

Phase_L16 bits

16 bits
SIN_ROM

COSINE_ROM

8 bits

8 bits

16 bits

16 bits
+

MAC

D/A

High resolution = sine

Low resolution

16 bits

32 bits

399

200

1

Sine

20 kHz

Slope = COSINE_ROM

SINE_ROM

Phase

Phase_L

Phase_H

8 bits

16 bits
Phase
accumulator register

High
word

Low word
(not used)

FIGURE 4
The DDS technique for synthesis is a
recent development. Today, the IC-
form approach has a 1-GHz sampling
frequency with phase accumulators
of 32 bits or more. I found the
performance to be a modest 20 kHz
with a 16-bit phase accumulator.

CIRCUIT CELLAR • OCTOBER 2015 #30338
CC

 R
EB

O
O

T

sampling frequency. This value is the result
of several trade-offs among resolution, time
spent attending to its interrupt and peripherals,
and the maximum generated frequency. The
converter has the following resolution:

8
20

 MHz
 kHz

 = 400

which is equivalent to 8.64 bits.
As you can see in Photo 1, the filter’s

inductors are power chokes. Their series
resistance was measured, and it changes with
the frequency in the following way:

RS = − −27 + 0.9e 3f + 0.5e 6f2

This behavior results from the losses in the
ferromagnetic core. It was taken into account
in the filter design as well as the resistance
of the PWM (pin 4.2) output MOS transistors.
The filter was designed after measuring the
coils with a MATLAB-based program that took
into account the coil-loss variations with the
frequency. You may download graphs of the
frequency response from the Circuit Cellar ftp
site. The graphs represent the response to the
sampling frequency and the passband details.

The distortion of the PWM as a D/A converter
is by far the biggest source of spurious signals,
mainly because the output MOS transistors
must supply the analog current to the passive
filter. So, I recommend using an active filter
because it won’t load the PWM, and it will save
you from using bulky coils.

The rest of the signal generator is based on
a software digital synthesizer (DDS) composed
of a 16-bit frequency register, 16-bit phase
accumulator register, and two look-up tables
(SIN_ROM and COSIN_ROM). Each of these

tables is 256 words long and 16 bits wide.
The values are computed in MATLAB using
the equation shown in Figure 3a. By using
the equation in Figure 3b, the values extend
from –1250 to 1250. This equation represents
the time derivative (slope) of the SIN_ROM
table multiplied by 256. Note that 0:255 (i.e.,
0 through 255) is simply a way to create an
array of numbers in MATLAB.

Figure 4 depicts a function diagram of the
software DDS. It uses the microcontroller’s
multiply-accumulate capability to generate the
sine function in the equation shown in Figure
3c, which is easily carried out with the code in
Listing 1.

THE DIGITAL OSCILLOSCOPE
The oscilloscope panel incorporating

the signal generator’s controls is shown in
Photo 3b. The brown box in the upper-right
corner is the DDS control, which controls the
generated frequency. Everything else pertains
to the visualization and control of the digital
oscilloscope. As you can see, the panel is
visualizing two signals: a 5-kHz sine DDS
generated in channel_A (green trace), and
a 10-kHz AM modulated signal generated by
a commercial generator in channel_B (blue
trace). The digital oscilloscope’s hardware
consists of a configurable analog chain that
drives the ADC, RAM, a trigger circuit, and a
display.

Each of the digital oscilloscope’s channels
has a configurable coupling stage (DC,
GND, AC) made with two low-power (high-
resistance, 1400-W) DR-12V monostable relays
from SDS-Relais—a company that’s now called
Matsushita Electric Works UK. Its pick-up

FIGURE 5
The analog conditioning chain must
have digital programmable gain
capability in order to adjust the
voltage range of the input signal to the
ADC input voltage range.

circuitcellar.com 39
CC REBO

O
T

voltage is 9.6 V, and its dropout voltage is 1.2
V. So, the circuit that drives its coil is a little
tricky when you’re trying to engage it with only
±3.3 V. To produce a transient response bigger
than the available power supply, you must rely
on reactive components (i.e., coils, capacitors,
or both). In this system, the charge stored in
a capacitor is used as a floating battery that’s
added to the fixed power supply. You may
download a diagram of the circuit from the
Circuit Cellar ftp site.

When the microcontroller pin changes from
a high level to a low level, a pulse that’s long
enough and close enough to 12 V is applied to
the coil to pick it up. Afterwards, it continues
applying approximately 3.3 V, which keeps it
engaged (neglecting the voltage drop in the
Schottky diode and the transistor saturation
voltage).

Nearby, there is a digitally controlled
attenuator and amplifier around the low-
power, high-bandwidth CMOS op-amp
(TLV2624) and 74HC4053 multiplexer. Of the 16
possible switch combinations, only 10 are used
to obtain 10 different gains (from 30 to 0.03)
corresponding to 10 different input ranges
(i.e., oscilloscope sensitivity from 5 mV to 5 V
per division).

The bandwidth achieved is always better
than 1 MHz. The signal path that runs from the
BNC connector to the ADC input for one channel
is shown in Figure 5. As I calculated its values, I
took into account the pin’s capacitance, the op-
amp frequency response, and the 74HC4053
switch’s on resistance (approximately 70 W).
The ADC had 12 bits of resolution, but I used
only the eight higher bits that were sent to the
PC. The internal 1.5-V reference voltage fixes
the input range.

In order to control the position of the channel
A and B traces in the screen and the offset of
the amplifiers, two PWM DACs and a passive

low-pass filter—which are based on TimerB
PWM outputs TB4 (pin P4.4) and TB3 (P4.3)—
are provided (see Figure 5). The amplifiers’
outputs go to the micro’s ADC inputs—A5 (pin
6.5) and A6 (P6.6)—and to a trigger-channel
selector made with a 74LVC2G66, which feeds
the MSP430F149 analog comparator connected
with positive feedback (Smith trigger). This
is achieved in such a way that it has 30-mV
hysteresis, or 2% of 1.5 V (the full range of
the ADC).

The comparator also receives the output of
another PWM DAC and passive low-pass filter
based on the TimerB PWM output TB1 (pin
P4.1) that establishes the oscilloscope trigger
level. After the comparator, the 74AHC1G86
exclusive OR gate is used to select the trigger
slope.

Figure 6 depicts this portion of the
hardware with the rest of the trigger circuit,
which makes possible the sequential equivalent
time-sampling technique. It’s composed by
one 74AHC74 (a couple of D flip-flops) and the
74AHC1G86 exclusive OR gate.

The trigger circuit and TimerA collaborate
in order to make the oscilloscope work with
this technique. It happens as soon as you
select the time bases from 5 to 250 µs per
division, and it is transparent. In this way, the
oscilloscope bandwidth is only limited by the
analog bandwidth and comparator precision,
and not by the ADC maximum frequency
conversion (Nyquist criteria).

The only requirement to function with this
technique is that the input signal must be
periodic during the acquisition. For instance,
given the faster time base of 5 µs per division,
it is necessary to capture 401 samples (400
intervals of 125 ns) to complete 50 µs of the
signal (i.e., 5 µs per division × 10 divisions).
But the MSP430F149 ADC’s maximum sampling
frequency is limited to 200 kS/s because of the

FIGURE 6
The trigger is probably the key section
in an analog or digital oscilloscope. To
start the capture, it must provide a
clean and precise point in the signal.

CIRCUIT CELLAR • OCTOBER 2015 #30340
CC

 R
EB

O
O

T

5-µs conversion time (per channel).
The signal is periodic, so it is possible

to make successive trigger-capture cycles
or sweeps capturing only a portion of the
signal on each sweep. They would have to
be incrementally delayed with respect to the
trigger point, as illustrated in Figure 7. TimerA
is in charge of the delay. For the 5-µs-per-
square time base, the ADC is programmed to
acquire 11 successive samples (5 µs apart)
on each sweep. Forty successive sweeps,
which are incrementally delayed 125 ns, are
performed to total 440 samples. Note that only
the first 401 are sent to the PC.

Real time covers the time bases from 500
µs to 2.5 s per division, and it implies only one
sweep capturing 401 samples per channel in
both channels simultaneously (Nyquist criteria
applies). In practice, there is a delay of one

sample between the two channels because
there is only one sample-hold (actually the
channels are converted interlaced), but it isn’t
noticeable.

Equivalent time and real time (depending
on the time base that’s selected) are the ways
the hardware works when you select Auto
mode, Normal mode, or Single mode from the
PC’s oscilloscope mode control. Now, let’s take
a look at each one.

In Auto mode, an automatic trigger will
occur if there is not a trigger within a fixed
0.2-s interval. This fixed time is commanded
by the PC if it does not receive the samples
it is waiting for from the previous Acquire
command. To produce the automatic trigger,
the microcontroller changes pin P2.5 (trigger
slope) twice in order to assure that the first
flip-flop in Figure 6 is set. When the 802
samples arrive (401 + 401), another Acquire
command is released.

In Normal mode, a trigger event is
necessary to acquire data. Only after all of the
802 samples have arrived does the PC release
another Acquire command.

Single mode is similar to Normal mode, but
there is one major difference. Basically, after
all of the samples have arrived, the PC stops
waiting for another user command.

Roll mode is only selected from 0.05 to 2.5
s per division. It is different from the other
modes because it doesn’t use a trigger event
to start acquisition. Instead, it is continuous,
and the microcontroller doesn’t wait to acquire
401/channel samples before they are sent to
the PC.

In Roll mode, a smaller number of samples
(depending on the time base) are acquired
and sent. For instance, at 2.5 s per division,
only four samples per channel are acquired
before they are sent to the PC. When the PC
receives them, the old samples are shifted to
make room for the new ones and are shown
on the screen. This produces an effect of
picture displacement known as the roll effect.
Of course, because the datastream length
changes with respect to the other modes, the
LabWindows receiving_buffer_full interrupt
has to be adapted correspondingly (function
InstallComCallback).

THE LOGIC ANALYZER
The logic analyzer panel is shown in Photo

3c. There is no direct access from this panel to
the signal generator, but it keeps generating
a signal with the frequency previously fixed in
the oscilloscope panel. Photo 3c shows only the
central 160 samples per channel (zoom applies)
of the 1920 samples per channel captured.

The hardware is easily built with a 74AHC244
buffer and a pull-down array of eight 1-MW
resistances. The 74AHC244 buffer makes the

circuitcellar.com/ccmaterials

PROJECT FILES

To download the code and
additional files, go to ftp.
circuitcellar.com/pub/
Circuit_Cellar/2003/156.

RESOURCES

Texas Instruments, “MSP430
Bug list,” www.ti.com/sc/cgi-
bin/buglist.cgi.

–––——”MSP430x1xx Family User’s Guide,”
SLAU049A, 2001.

SOURCES

MATLAB
MathWorks, Inc. | www.mathworks.com

Monostable relays
Matsushita Electric Works UK |
www.matsushita.co.uk

LabWindows/CVI
National Instruments Corp. | www.ni.com

74AHC244 Buffer
Philips Semiconductors | www.semiconductors.
philips.com

MSP430F149 Microcontroller
Texas Instruments, Inc. | www.ti.com

Periodic signal

Trigger level

1

3

First sweep

Second sweep

Third sweep

Fortieth sweep

250 ns

Delay

∆T ∆T ∆T ∆T ∆T ∆T ∆T ∆T

∆T

125 ns

Trigger point
∆T = Effective time sampling = 125 ns

Effective sampling frequency = = 8 MHz
125 ns

40
1

2

3

40
1

2

3

10.125 µs

10.250 µs

5 µs

5.125 µs

5.250 µs

t

t

t

t

9.875 µs
4.875 µs

2

1

0 µs
10 µs

FIGURE 7
If the ADC has a limited conversion
speed and its analog bandwidth
is higher than the Nyquist criteria
enforces, some kind of equivalent time
sampling can be applied. This figure
explains one of the techniques—
sequential time sampling.

http://www.ti.com/sc/cgi-bin/buglist.cgi
http://www.ti.com/sc/cgi-bin/buglist.cgi
http://www.ti.com/sc/cgi-bin/buglist.cgi
http://www.mathworks.com
http://www.matsushita.co.uk
http://www.ni.com
http://www.semiconductors
http://www.ti.com
www.circuitcellar.com/ccmaterials

circuitcellar.com 41
CC REBO

O
T

ABOUT THE AUTHOR
Salvador Perdomo re-
ceived a degree in Tele-
communications Engi-
neering from the Uni-
versidad Politécnica de
Madrid, Spain. He has
lectured at the Univer-
sidad de Las Palmas de
Gran Canaria, Spain. His
interests include analog
and digital electronics.
You may reach him at
sperdomo@det.ulpgc.es.

system 5-V, TTL-compatible, and is connected
to port 5 on the microcontroller. The rest of the
logic analyzer (i.e., the sampling frequency,
triggering, and trigger delay) is software-
based. Also note that it’s 8 bits wide with a
1920-KB memory depth and an acquisition
frequency range from 1 to 100 kS/s.

The trigger delay is user-selectable, which
enables pre-triggering, middle triggering, and
post-triggering. Because of the asynchronous
sampling of the data, the visualization is only
available as a timing diagram.

Concerning the triggering, when you
activate the Get_Data control, the PC’s main
program extracts two bytes—ID (ID7 through
ID0) and IDE (IDE7 through IDE0)—from the
states of the trinary switches, D7 through D0.
D7 through D0 define the trigger word with
three possible values (0, 1, and x) bit by bit.
After the microcontroller receives the IDE and
ID bytes from the PC, the sampled input data is
masked (masked_DATA = DATA logical AND with
IDE), making zero the don’t care bits (option x)
selected by the user. This masked input data is
compared to the ID byte (masked_DATA is CMP
with ID). A match validates the trigger. If there
is a match, the trigger delay is counted and the
acquisition is completed. Afterwards, the data
is sent to the PC. You may download a diagram
of this process from the Circuit Cellar ftp site.
Note that the process is used for the trigger
word depicted in Photo 3c.

The simplest event that can trigger a logic
analyzer is the coincidence of a data with a
word you have selected. This coincidence must
be bit by bit. To define the trigger word, some
switches are provided so you can set each bit
to 0, 1, and x (don’t care).

THE PC-MICRO COMBO
By default, the microcontroller attends to

the TimerB signal-generator interrupt every
50 µs (20-kHz sampling frequency), and the
subroutine lasts 7.875 µs including the latency
time. So, the remainder of the time is available
for the received PC commands or the interrupts
and commands released by other peripherals.

The PC commands are composed of 3
bytes: two data bytes and one command byte.
When the USART0 received data interrupt is
attended, the number of data bytes received
are counted in order to correctly deposit them
in three registers, including word_received (16
bits) and PC_command (8 bits). Back in the
main program, the PC_command register is
used to make a table-based indexed branch to
the routine that serves the intended command.

The reason for accompanying the byte
command with two data bytes is self-
explanatory. To change the frequency of the
signal generator, it is necessary to load a new
16-bit value in the frequency register in Figure

4, and to change the trigger level or change
the channel trace position. Another example is
that the acquisition command, START_ADQ, is
accompanied by a number indicating the time
division to program TimerA in order to fix the
ADC acquisition frequency. Another number
indicates how the samples have to be dealt
with (e.g., equivalent time, real time, or roll).
For other commands (e.g., TRIG_SLOPE and
TRIG_SOURCE), they’re unnecessary and filled
with dummy data.

Otherwise, there is another microcontroller
register called STATUS_H, which keeps track
of the peripherals’ jobs. For instance, when
the ADC routine has loaded 401 samples
per channel in the RAM memory, it deposits
a peripheral command such as SEND232 in
this register. Thus, when back in the main
program, the STATUS_H register is used to
make a table-based indexed branch to the
routine that serves the intended command. (In
this example, the acquired data is sent to the
computer.)

A helpful flow chart is depicted in Figure
8. You may download several lines of code
representing these ideas from the Circuit
Cellar ftp site.

Keep the following advice in mind when
you’re changing from the oscilloscope to the
logic analyzer (and vice versa): You can send a
command to make the microcontroller return
to a default state (waiting for a PC command
and attending the TimerB signal-generator
interrupts), and stop sending data if it is doing
it. Simultaneously, the PC data queue must be
cleared.

START_AD

NEW_FREQUENCY

HOLD_UC

POSITION_A

TRIG_LEVEL

PC_COMMAND
Register

Position_A
Routine

HOLD_PC

MOV.b #2, & PC_COMMAND

HOLD_PC

SEND232

STATUS_H
Register

SEND232
Routine

HOLD_UC

MOV.b #0, & STATUS_H

Jump to HOLD_PC

Jump to HOLD_UC

UART∅_Rx_ISR

WORD_RECEIVED = 1̊ and 2˚ bytes

PC_COMMAND = 3˚ bytes

RETi

ADC_ISR

STATUS_H =

SEND232

SEND232_EqT

SEND232_ROLL
RETi

FIGURE 8
Two different registers control the
microcontroller’s program flow. The
PC writes one (PC_COMMAND), and
the other (STATUS_H) is written by the
peripheral when their interrupts are
attended.

mailto:sperdomo@det.ulpgc.es

CIRCUIT CELLAR • OCTOBER 2015 #30342
CO

LU
M

NS

THE CONSUMMATE ENGINEER

Transformers 101 (Part 2)

In the first part of this article series, George
presented the transformer and its essential
characteristics. In this article, he covers the basics
of transformer design.

By George Novacek (Canada)

Transformer Design

Last month, I covered the fundamental
theory behind transformers. Now let’s

continue by considering the basic aspects of
transformer design.

In low-power supplies—such as those for
laptop computers, radios, battery chargers,
and so forth—built-in transformers as we’ve
known them are a dying breed. Manufacturers
of electrical appliances have been, whenever
possible, replacing their internal transformers
with plug-in “wall wart” adapters. Those
are either transformers with AC output
(see Figure 1a) or DC supplies containing a
rectifier and a capacitor (see Figures 1b–c).

One reason for this trend has been the
avoidance of the costly safety certification
of every equipment model, required in every
country where the product was to be sold.
Low-volume, high-mix product and slightly
different regulations among countries cause
the cost of certification to be a major issue.
A mass-produced plug-in wall wart supply,
already certified, is the answer. The traditional
DC wall wart supplies (see Figures 1b–d),
notorious for their poor power factor, are
being replaced by high-frequency switching
regulators with many benefits. Their design
is not the subject of this series. Because their
transformers operate at high frequencies,
they are smaller, lighter, and less expensive.

A wide range of input voltage, output voltage
regulation, and excellent power factor
provide additional benefits. The power factor
correction (PFC) is now mandatory in many
countries.

One disadvantage of the switching wall
wart supply as compared with a traditional
transformer type is its inherently lower
reliability, due to the number and type of
components in it. However, I have found
those supplies to be of excellent quality and
reliability, while I have seen far too many
“classic” wall wart supplies fail due to their
cheap design or shoddy workmanship.

At one time, engineers designed and built
their own transformers. Today, there are so
many off-the-shelf options that the need for
“rolling your own” has virtually disappeared.
When you need a transformer not readily
available, you should have it designed. It takes
a lifelong experience to become a competent
transformer designer, but there are many
expert companies to help you.

With that said, it is nevertheless a good
idea for an engineer to be familiar with
transformer design basics. At the very least,
you’ll be knowledgeable enough to interface
with your supplier and will appreciate the
potential design constraints. What transformer
requirements do you need to specify?

circuitcellar.com 43
CO

LU
M

NS

REQUIREMENTS
Apart from the mechanical issues—such

as the size, weight, mounting arrangement,
and environmental conditions, including
operating temperature range, vibration,
and so forth, which are generally up to
the mechanical designers to address—the
electrical engineer’s responsibility is to define
the transformer’s electrical characteristics.
First, you need to know the primary voltage
and frequency. Then, you must know the
secondary windings’ requirements. How many
secondary windings? What are their voltages
and maximum currents? What is the required
regulation (i.e., the secondary voltage
fluctuations caused by a varying load)? Any
taps? Windings’ insulation voltages. Primary
to secondary insulation. Maximum parasitic
capacitive coupling. Are there any shielding
requirements to contain the electromagnetic
field within the device?

All these requirements affect how the coils
are designed, the type of the permeable core
used, additional magnetic shielding, and so
forth.

The secondary windings are expected to
deliver power: P = V2 × I2 + … + Vn × In. P is
the total maximum power to be drawn from
the secondary windings. The input power
to the primary winding PT is then: PT = P/η,
where η stands for the transformer efficiency.
This is always less than 100% due to the
magnetization current as we saw in the first
part of this article series, parasitic capacitance,
losses caused by the ohmic resistance of the
windings, and so on. Having established the
input power PT and the operating frequency,
an appropriate core can be selected. Here’s
where experience becomes crucial. For one,
magnetic induction B needs to stay within the
optimum range. The core size is also affected
by the expected size of the bobbins to hold
the windings, high voltage and electrostatic
insulation, wire size to carry the required
current, etc. Core manufacturers’ data sheets
are rarely exhaustive enough for a beginner
to make the right choice.

Once the core has been selected, its
characteristics determine the required
number of turns per one volt. Then the turns
for each winding based on their required
voltages can be calculated as: n = k × V ×
Vv, where n is the number of turns. V is the
desired voltage in volts. VV is the number of
turns per volt. k is a constant, which is to
compensate for the secondary losses caused
by the magnetic flux dispersion and ohmic
losses at the maximum rated output power.
For the primary winding k = 1. Therefore,
the primary winding is not changed to avoid
modification of the established magnetic
flux in the core. Once again, transformer

specialists have experience, historical data
and establishing k is usually not much of a
problem for them. For a transformer design
novice, establishing k means a lengthy
process of trial and error.

The wire sizes are based on the windings’
currents and the current density s, which in
turn depends on the operating temperature
and cooling effects of the core. Old,
conservative design tables recommended s to
be in the range of 2 to 3 A, sometimes 4 A
per 1 mm2 of the wire cross-section. Modern
designs—usually to cut cost, weight, and
size—sometimes exceed this by more than
an order of magnitude, relying on the better
quality core materials, reliability sacrifice
caused by the higher operating temperature
and acceptance of higher ohmic losses.
These are sometimes intentional to limit the

FIGURE 1
Common wall wart power supplies. While the first (a) is still very much in use, the other power supplies
(b–d) are gradually disappearing.

a)

b)

c)

d)

CIRCUIT CELLAR • OCTOBER 2015 #30344
CO

LU
M

NS

maximum output current, such as in cheap
battery chargers or due to expectations that
the voltage fluctuations caused by a varying
load will be compensated for by a following
voltage regulator.

Most signal and low-power transformers
in electronics work as single-phase devices,
although there are special applications in
power distribution where multiple phase
primary or secondary or both windings are
needed. Once I participated in design of a
relatively high-power (60-kVA) control system
supplied from a three-phase, 200-V/400-
Hz generator. Building a transformer with a
nine-phase secondary, followed by rectifiers
with capacitive filters, improved the power
factor such that reduced the power quality
requirement was satisfied without a PFC.
Multiple phases were a smaller, lighter, and
less expensive solution.

The same transformer design principles
apply throughout the power and frequency
spectrum. The major difference is made by
the required core. Transformers working in
the audio spectrum, for instance, require
flat frequency response characteristics from
typically 20 Hz to 20 kHz and a minimum

harmonic distortion. Except for low, usually
a single frequency, such as for 60-, 50-, or
400-Hz power supplies, transformers need
specialized cores designed to optimally handle
the given frequency spectrum of the signals
and their waveforms.

SPECIALIZED DEVICES
There are also many specialized

transformer-based devices, such as pulse
transformers or transformers for switching
power supply applications, whose input is not
sinusoidal. Some must handle a DC bias. There
are also magnetic amplifiers, ferroresonant
voltage regulators, transformers using
magnetic flux nonlinearity, including
saturation to perform special functions too
exotic to address in this short article series.
Prior to the invention of the vacuum tube,
transformers were the only component
capable to modify signal levels.

It should be remembered that other than
supplying desired voltages, transformers can
match different impedances by the ratio of
their turns. This, coupled with their primary
to secondary insulation and suppression
of common mode interference, is used in
distribution of numerous data communication
systems (e.g., Ethernet and MIL-STD-1553).

As the frequency increases, the magnetic
cores become smaller and somewhere
around 100 MHz can be eliminated. The
obvious advantage of the air core, provided
the frequency is high enough and the coils
can be reasonably small, is their linear B/H
relationship and, thus, no need to worry
about its nonlinearity. At high-megahertz
frequencies, transformers can be created by
transmission lines and once we get into the
gigahertz, with waveguides. But that, while
interesting, is a different topic for another
time.

For completeness I should mention
“electronic transformers.” These are similar
to the DC-producing switching wall warts.
Light, reasonably efficient and less costly to
manufacture than magnetic transformers,
their output is their internal switching
frequency amplitude modulated by double the
input AC (50 or 60 Hz) frequency. Popular with
some appliance manufacturers, they have
limitations. More about them next month in
the final part of the series when we’ll also look
at some less common transformer types.

circuitcellar.com/ccmaterials

RESOURCES
R. Lee, L. Wilson, and C. E. Carter, Electronic
Transformers and Circuits, Wiley Interscience,
1988.

R. Morrison, Grounding and Shielding
Techniques, Wiley-IEEE Press, 2007.

G. Novacek, “Inductors 101,” Circuit Cellar
292, 2014.

R. Schmitt, Electromagnetics Explained,
Newness, 2002.

ABOUT THE AUTHOR
George Novacek is a professional engineer
with a degree in Cybernetics and Closed-Loop
Control. Now retired, he was most recently
president of a multinational manufacturer for
embedded control systems for aerospace ap-
plications. George wrote 26 feature articles for

Circuit Cellar between 1999 and 2004. Contact him at gnovacek@nexicom.net
with “Circuit Cellar”in the subject line.

mailto:gnovacek@nexicom.net
www.circuitcellar.com/ccmaterials

sales@pcbcart.com

PCB fabrication up to 32 layers
Min. tracing/spacing to 3mil/3mil
Min. microvias to 0.1mm
Enhanced custom PCB features
Special PCBs-Aluminum, flex and HDI
Prototype to mass production
Full turnkey PCB assemblyFull turnkey PCB assembly

Professional quality products
Quick turnaround times
Affordable competitive pricing
Superior customer service

We offer:

 from Industry’s leading supplier

PCB Fabrication & Assembly
High-Value

Save
 www.pcbcart.com

 Off Your First Order use code

mailto:sales@pcbcart.com
www.pcbcart.com

CIRCUIT CELLAR • OCTOBER 2015 #30346
CO

LU
M

NS

Rapid FPGA Design in
Python Using MyHDL

MyHDL is an alternate hardware description language
(HDL) that allows you to leverage the power of Python
for designing, simulating, and verifying FPGA designs.
Colin explains how MyHDL works and describes a FIR
filter he created with C/C++ HLS in his February 2014
article to compare the toolchain flow.

By Colin O’Flynn (Canada)

PROGRAMMABLE LOGIC IN PRACTICE

Back in February 2014, I took you through
the use of C/C++ High Level Synthesis

(HLS) as a design language for a FPGA. This
article is designed to introduce you to another
option for a design language, this time using
Python. Once again I’ll demonstrate that
directly writing Verilog or VHDL is not always
the most efficient option.

I’m going to follow the Finite Impulse
Response (FIR) filter example from my
February 2014 column, which allows you to
directly compare the design process. One
of the major advantages of using MyHDL
compared to C/C++ HLS is that you can
pull upon a huge library of existing Python
modules to help generate and validate your
design.

In the C/C++ HLS example, I used external
tools to generate the FIR coefficients. In
the MyHDL example, they are generated
automatically from my filter specifications.
This makes it easily to validate the fixed-
point implementation, and compare the filter
results to the “ideal” filter result. I’ll get into
more details later, but before that I want to
present an overview of MyHDL.

I should also mention this column owes
a great debt to Christopher Felton, who’s
presentation at DesignWest 2013 on MyHDL
is what originally turned me on to the use
of MyHDL. I’ve based the FIR filter example
in this column on some of his examples.
(For more of his examples, refer to www.
fpgarelated.com/blogs-1/nf/Christopher_
Felton.php.) I’ve also linked to his work
from ProgrammableLogicInPractice.com,
which includes a few other sites besides
FPGARelated.com.

INTRODUCING MyHDL
Even if you haven’t heard about MyHDL

before, it’s been in development for some
time. It was created by Jan Decaluwe, and
released to the world in September 2003.
MyHDL allows you to use Python as a hardware
description language (HDL). Like other high-
level synthesis tools, you must remember it
is not designed to convert arbitrary software
code into FPGA modules. It won’t make an
FPGA designer out of a Python programmer,
but might make a FPGA designer want to pick
up Python for improved productivity.

http://www.fpgarelated.com/blogs-1/nf/Christopher_
http://www.fpgarelated.com/blogs-1/nf/Christopher_

circuitcellar.com 47
CO

LU
M

NS

If you are familiar with Python, you will
know that it doesn’t natively support all the
features required in a HDL. But with a handful
of extensions, we can emulate the required
features such as ports, signals, and concurrent
blocks. For synthesis MyHDL operates at the
same Register Transfer Level (RTL) as Verilog
or VHDL. This makes it easy to automatically
convert from MyHDL to Verilog or VHDL. The
resulting Verilog or VHDL files can either be
synthesized directly by your FPGA toolchain, or
integrated into your existing project (which will
again by synthesized by your FPGA toolchain).

Let’s jump right into a simple example.
Listing 1 shows a simple implementation
of a counter with programmable maximum.
Listing 2 shows the resulting Verilog code.
The ctrl_hdl() block is the main module.
One of the first things to note is the module
follows some Python-centric themes. For
example, there is no explicit type (such as
integer bit-width) in the module definition.
Instead, the module is able to pull attributes
such as the input/output port widths directly
from the objects themselves.

The combinational logic (@always_comb)
and sequential logic (@always_seq) blocks
will be familiar to any FPGA designer. Like
with Verilog or VHDL, a process sensitivity
list can be used to determine when the blocks
run. You will start to notice the simple use
of class attributes, such as the rising edge
being defined as part of the Signal() class
from MyHDL. As well when dealing with the
assignment of the future value of the signal
once this block executes, we use the .next
attribute instead of requiring a special
operator (such as <= in Verilog).

This simple example also takes advantage
of the use of the ResetSignal() object type.
This special signal makes working with resets
easier. Notice I never define the reset behavior
in my MyHDL @always_seq block. Instead
the reset signal will automatically reset any
used signals to their “default” state (which
was declared when I defined those signals).
This helps make the code clearer. Often we
don’t need to see all the reset logic, but still
want signals to start at a known value.

Of course, MyHDL doesn’t force its reset
handling down your throat. Another form of
the sequential block allows you to explicitly
define the reset behavior. This allows you
to reset signals to other values or perform
additional actions within the reset block.

So far, I’ve concentrated mostly on the
synthesizable aspects of MyHDL. But much of
the “more interesting” aspects of MyHDL are
the ability to use it for both simulation and
verification of your hardware cores. Whereas
Verilog or VHDL have somewhat limited I/O
facilities and external libraries, Python has

almost limitless potential when it comes to
I/O facilities and external libraries.

In fact, MyHDL can even be used in
combination with a Verilog simulator. This
means you are not simulating the MyHDL
code, but actually simulating the Verilog
code generated by MyHDL. The advantage is
that by using MyHDL (and Python), you are
able to perform complex verification tasks
with ease, while still validating your Verilog
implementation.

MyHDL also makes problems such as
conditional instantiation (selecting which
version of a core to use) trivial. MyHDL passes
instances of the HDL object, and doesn’t

LISTING 1
A simple counter implemented in MyHDL. This code is sufficient to describe the counter and convert it to
Verilog, the resulting Verilog being shown in Listing 2.

from myhdl import *

def cntr_hdl(clk,reset,prog_max,cnt):
 #Define local signal with sizes based on port
 intcnt = Signal(intbv(0,min=cnt.min, max=cnt.max))

 #Example combinational block
 @always_comb
 def copy_out():
 cnt.next = intcnt

 #Example sequential block - reset code generated
 #automatically
 @always_seq(clk.posedge, reset=reset)
 def cnt_main():
 if cnt < prog_max:
 intcnt.next = (intcnt + 1)
 else:
 intcnt.next = 0

 return instances()

##Example of instantiating module, here used just
##for Verilog conversion

#Simple boolean signal
clk = Signal(False)

#Reset signal gets special treatment, makes it easier
#to change reset parameters around
reset = ResetSignal(0, active=1, async=True)

#bit-vector types, specify default value along with min/max
prog_max = Signal(intbv(0,min=0, max=4000))
cnt = Signal(intbv(0,min=0, max=4000))

toVerilog(cntr_hdl, clk, reset, prog_max, cnt)

CIRCUIT CELLAR • OCTOBER 2015 #30348
CO

LU
M

NS

require you to define the entire port map as
Verilog or VHDL would need.

While I don’t have time to cover all these
aspects, I want to talk you through at least
a simple example of MyHDL simulation and
implementation. To do this I’ll be replicating
the FIR filter from the February 2014 column.

ANOTHER FIRRY EXAMPLE
The FIR filter is not particular exciting,

but it does show off the use of MyHDL and
Python to simplify your entire development.
If you want to follow along, the easiest
method is using a Python distribution such as
WinPython on Windows. You can then install
MyHDL using the pip tools, as described in
the MyHDL documentation. This is all that is
required to run the examples, which will be
posted on ProgrammableLogicInPractice.com
if you don’t want to type everything in from
the listing.

The MyHDL code for the FIR filter is shown
in Listing 3, and the Verilog code generated
by this is shown in Listing 4. Note the code in
Listing 3 doesn’t show the external interface
or coefficient generation. I’ll talk about that
in a moment.

Comparing Listing 3 and Listing 4, you
can note the similarity between the two code
bases. One difference between the HLS C/C++
example from my previous column is that loop
unrolling is not handled by MyHDL. Instead
as MyHDL is operating at a similar level to
Verilog or VHDL it relies on the synthesizer to
perform the loop unrolling. Future version of
MyHDL may support loop unrolling, but one
could argue that perhaps this is not the job of
the HDL, but instead the job of the hardware
designer using the HDL.

Regardless of philosophical arguments,
this does mean you are unable to automatically
perform tasks such as tuning the trade-off
between usage of hardware resources and
throughput by asking the tools to unroll or
not unroll a specific loop. The C/C++ HLS
examples from my previous columns could
be optimized for area or speed by a simple
#pragma due to the support of C/C++ HLS to
tune loop unrolling.

One thing I haven’t explicitly mentioned
until now is that MyHDL is entirely open-
source (and free), whereas the C/C++ HLS has
a $2,000 yearly license fee and is proprietary.
Thus, while I will compare the two for regular
usage, it’s worthwhile to also consider both
the up-front cost, and the ability to modify
the tools for your own use. MyHDL easily wins
on both of those fronts!

But the real triumph of MyHDL can be seen
once I introduce the complete simulation
and generation environment. This is shown
in Listing 5. The HDL code from Listing 3 is

ABOUT THE AUTHOR
Colin O’Flynn (cof lynn@newae.com) has
been bui ld ing and breaking e lectronic
d ev i c e s f o r many yea r s . He i s cu r-
rent ly complet ing a PhD at Da lhous ie
University in Halifax, NS, Canada. His most re-
cent work focuses on embedded security, but
he still enjoys everything from FPGA develop-
ment to hand-soldering prototype circuits.
Some of his work is posted on his website at
www.colinoflynn.com.

LISTING 2
The Verilog output of MyHDL for the input given in Listing 1. The direct conversion can easily be seen in
this case, although MyHDL has handled some features for us such as resetting signals to default values that
Verilog requires us to explicitly specify.

module cntr_hdl (
 clk,
 reset,
 prog_max,
 cnt
);

input clk;
input reset;
input [11:0] prog_max;
output [11:0] cnt;
wire [11:0] cnt;

reg [11:0] intcnt;

always @(posedge clk, posedge reset) begin:
CNTR_HDL_CNT_MAIN
 if (reset == 1) begin
 intcnt <= 0;
 end
 else begin
 if ((cnt < prog_max)) begin
 intcnt <= (intcnt + 1);
 end
 else begin
 intcnt <= 0;
 end
 end
end

assign cnt = intcnt;

endmodule

mailto:coflynn@newae.com
http://www.colinoflynn.com

circuitcellar.com 49
CO

LU
M

NS

not repeated, but you can consider the two
listings are combined in the final program. In
the C/C++ FIR example I required the use of
external tools for filter design—with MyHDL,
it’s built right into the tools.

MyHDL is really just calling standard
Python libraries, which have extensive tools
for filter design. Thus, I could easily generate
FIR or IIR filters of almost any order and
type. The filter implementation itself is

fixed-point, and the Python code converts
the floating-point types to the integer (fixed-
point) notation in use. Full fixed-point support
is still not present in the latest MyHDL release
as of this column (0.8), but is on the roadmap
for a future version.

Even without fixed-point support, the
simulation environment of MyHDL pulls it
ahead of C/C++ HLS. This makes it easy to
verify correct operation of complex modules

LISTING 3
The core of the FIR module in MyHDL is
given here. Note this snippet requires
instantiation to declare signal widths
and the filter constants.

Based on IIR Filter code, which is Copyright Christopher Felton
and released under the LGPL license.

from myhdl import *

def sfir_hdl(
 # ~~ Ports ~~
 clk, # Synchronous clock
 x, # Input word, fixed-point format described by "W"
 y, # Output word, fixed-point format described by "W"

 # ~~ Parameters ~~
 B=None, # Numerator coefficients, in fixed-point specified
 W=(24,0) # Fixed-point description, tuple,
 # W[0] = word length (wl)
 # W[1] = integer word length (iwl)
 # fraction word length (fwl) = wl-iwl-1
):
 # Make sure all coefficients are int, the class wrapper handles all float to
 # fixed-point conversion.
 rB = [isinstance(B[ii], isnt) for ii in range(len(B))]
 assert False not in rB, "All B coefficients must be type int (fixed-point)"

 # We use a double-precision parameters as the result of the multiplication
 # will be 2x the input bit width. Define double width (precision) max and min
 _max = 2**(2*W[0])
 _min = -1*_max

 Q = W[0]-1
 Qd = 2*W[0]

 # Delay elements, list of signals (double precision for all)
 ffd = [Signal(intbv(0, min=_min, max=_max)) for ii in range(len(B))]

 @always(clk.posedge)
 def rtl_fir():
 ffd[0].next = x
 for i in range(1, len(B)):
 ffd[i].next = ffd[i-1]

 yacc = 0
 for i in range(0, len(B)):
 b = B[i]
 yacc += b * ffd[i]

 # Double precision accumulator
 y.next = yacc >> Q

 return instances()

CIRCUIT CELLAR • OCTOBER 2015 #30350
CO

LU
M

NS

compared to C/C++ HLS, mostly as MyHDL
is able to use the huge selection of Python
modules to do everything from FFTs to
graphing to I/O handling.

The simulation itself is performed in the
TestFreqResponse() function. You will
notice again the MyHDL-specific extensions

used here (such as the @always block to
generate a clock signal). But we can use
Python libraries as part of our test bench—
appending data to lists or performing FFTs of
data before saving.

In this example the function
PlotResponse() generates the “expected”

LISTING 4
The resulting FIR filter in Verilog,
based on Listing 3. Again, note the
fairly straightforward conversion from
MyHDL to Verilog.

`timescale 1ns/10ps

module sfir_hdl (
 clk,
 x,
 y
);

input clk;
input signed [9:0] x;
output signed [9:0] y;
reg signed [9:0] y;

reg signed [20:0] ffd [0:19-1];

always @(posedge clk) begin: SFIR_HDL_RTL_FIR
 integer i;
 integer yacc;
 integer b;
 ffd[0] <= x;
 for (i=1; i<19; i=i+1) begin
 ffd[i] <= ffd[(i - 1)];
 end
 yacc = 0;
 for (i=0; i<19; i=i+1) begin
 case (i)
 0: b = 1;
 1: b = 2;
 2: b = 1;
 3: b = (-5);
 4: b = (-15);
 5: b = (-15);
 6: b = 13;
 7: b = 69;
 8: b = 128;
 9: b = 153;
 10: b = 128;
 11: b = 69;
 12: b = 13;
 13: b = (-15);
 14: b = (-15);
 15: b = (-5);
 16: b = 1;
 17: b = 2;
 default: b = 1;
 endcase
 yacc = yacc + (b * ffd[i]);
 end
 y <= $signed(yacc >>> 9);
end

endmodule

circuitcellar.com 51
CO

LU
M

NS

frequency response of the filter based entirely
on tried-and-true Python libraries, and
compares it to our fixed-point results. The
results of this are shown in Figure 1. Notice
that the frequency response generally follows
the expected response. This is using 10-bit
inputs (the same as the ADC/DAC on my test
board) and 20-bit intermediate values.

I could easily change the HDL to use
5-bit integers for the input values, which
causes some additional divergence of my
filter frequency response to the ideal filter.
This frequency response of this fixed-point
implementation is shown in Figure 2.

As a final test I’ve implemented the FIR
filter in a Spartan 3 device, with an ADC and
DAC running at 66.67 MHz. The FIR filter has
been inserted between the ADC and DAC, and
the frequency response is plotted in Figure
3. The analog path isn’t perfect here which
accounts for some of the errors, but you
can see the response falls within “expected”
bands compared to Figure 1.

MyHDL made it trivial to entirely describe
a filter which can be synthesized onto a FPGA.
Unlike the C/C++ HLS example, I was able to
use Python tools to include the entire filter
design specifications into the source file.

EVEN MORE THROWN IN
While this brief introduction to MyHDL

won’t do it full justice, there are a few more
things worth mentioning. One thing I can’t
miss is highlighting the ability to perform
unit testing in MyHDL. When designing
hardware modules it can be a hassle to
ensure you have tests for every module, and
let alone attempting to script those tests to
continuously run.

FIGURE 1
This shows the comparison of the expected FIR filter (in red) to the 10-bit fixed point
implementation in blue. The fixed-point frequency response is obtained through a
simulation in MyHDL.

FIGURE 2
Compared to Figure 1, this shows what happens if we use only a 5-bit signal instead
of a 10-bit signal. The loss of correct filter response can be seen by comparing the
fixed-point response (in blue) to the expected response (in red).

FIGURE 3
The implemented FIR filter using 10-bit integer inputs is tested on a FPGA, where the input and output of
the filter is an ADC and DAC respectively sampling at 66.67 MHz. This figure has numerous sources of error
due to the introduction of an analog signal path, but it can be seen to generally match the expected FIR filter
response.

FIGURE 4
MyHDL also makes it easy to trace signal changes with time, by writing all signal changes to a VCD file. Here
I’m inspecting the input and output of the filter for the frequency-bandwidth test used in generating Figures
1 and 2.

CIRCUIT CELLAR • OCTOBER 2015 #30352
CO

LU
M

NS

Based on IIR Filter code, which is Copyright Christopher Felton
and released under the LGPL license.

from myhdl import *
import numpy as np
from numpy import pi, log10
from numpy.fft import fft
from numpy.random import uniform
from scipy.signal import firwin, freqz
import pylab

class SFIR():
 def __init__(self,
 Fc=10E6, # cutoff frequency
 Fs=66.66E6, # sample rate
 W=(24,0) # Fixed-point to use
):
 # The W format, intended to be (total bits, integer bits,
 # fractional bits) is not fully support.
 # Determine the max and min for the word-widths specified
 self.W = W
 self.max = int(2**(W[0]-1))
 self.min = int(-1*self.max)

 # Filter Design
 N = 19
 Wn = 0

 # Define the cutoff as a fraction of the nyquist
 Wn = float(Fc)/(Fs/2.0)
 self.b = firwin(N, Wn)

 # fixed-point Coefficients for the FIR filter
 self.fxb = np.round(self.b * self.max)/self.max

 # Create the integer (fixed-point) version
 self.fxb = tuple(map(int, self.fxb*self.max))

 print "FIR w,b", Wn, self.b
 print "FIR fixed-point b", self.fxb

 def Convert(self, W=None):
 clk = Signal(False)
 x = Signal(intbv(0,min=-2**(self.W[0]-1), max=2**(self.W[0]-1)))
 y = Signal(intbv(0,min=-2**(self.W[0]-1), max=2**(self.W[0]-1)))

 toVerilog(sfir_hdl, clk, x, y, B=self.fxb, W=self.W)

 def TestFreqResponse(self, Nloops=3, Nfft=1024):
 self.Nfft = Nfft
 Q = self.W[0]-1
 clk = Signal(False)
 x = Signal(intbv(0,min=-2**Q,max=2**Q))
 y = Signal(intbv(0,min=-2**Q,max=2**Q))
 xf = Signal(0.0)

 dut = traceSignals(self.RTL, clk, x, y)

 @always(delay(10))
 def clkgen():

13th International System-on-Chip (SoC)
 Conference, Exhibit & Workshops

October 21 & 22, 2015
University of California, Irvine - Calit2

www.SoCconference.com
EARLY BIRD REGISTRATION IS NOW OPEN!

Platinum Sponsors
 Sub 10nm Designs & Beyond
 Analog & Mixed-Signal Designs
 SoC Design & Verification
 3-D ICs Designs
 IC Security & Challenges
 Innovative EDA Tools
 Complex IP Subsystems
 Low-Power Techniques
 Memory Trends & Technologies
 Table-Top Exhibit (Free Passes)

 Complex Mixed-Signal SoCs
 SOI vs. CMOS
 RF Design
 FPGAs –Trends & Designs
 High-Speed I/Os
 Smarter Mobile Devices
 Informative Panels
 Network-on-Chips (NoCs)
 Networking Opportunities
 And Much More. . .

The Most Informative, Targeted & Educational IC & IP Design
Conference, Exhibit & Workshops of the Year!

Keynote Speakers

Intel
Dr. Jeff Parkhurst, Science

& Technology Center
Program Director.

University of California,
 Irvine (UCI)

Dr. G.P. Li, Cali2 Director,
Professor of Engineering.

Microsemi
Jim Aralis, Chief Technology

Officer (CTO), and Vice
President of R&D.

Skyworks
James P. Young Vice
President, Advanced

Development.

Selected Participating Companies & Universities
a

For More Information or Questions, Please Contact the SoC Conference Organizing Committee at:
a

SoC.Conf.Update@Gmail.com or (949) 981-1837

www.SavantCompany.com & www.SoCconference.com

http://www.SoCconference.com
mailto:SoC.Conf.Update@Gmail.com
http://www.SavantCompany.com
http://www.SoCconference.com

CIRCUIT CELLAR • OCTOBER 2015 #30354
CO

LU
M

NS

 clk.next = not clk

 @always(clk.posedge)
 def ist():
 xi = uniform(-1,1)
 x.next = int(self.max*xi)
 xf.next = xi

 @instance
 def stimulus():
 ysave = np.zeros(Nfft)
 xsave = np.zeros(Nfft)

 self.yfavg = np.zeros(Nfft)
 self.xfavg = np.zeros(Nfft)

 for ii in range(Nloops):
 for jj in range(Nfft):
 yield clk.posedge
 xsave[jj] = float(xf)
 ysave[jj] = float(y)/self.max

 self.yfavg = self.yfavg + (abs(fft(ysave, Nfft)) / Nfft)
 self.xfavg = self.xfavg + (abs(fft(xsave, Nfft)) / Nfft)

 raise StopSimulation

 return instances()

 def RTL(self, clk, x, y):
 hdl = sfir_hdl(clk, x, y, B=self.fxb, W=self.W)
 return hdl

 def PlotResponse(self):
 # Plot the designed filter response
 pylab.ioff()

 Fs = 66.66E6

 # plot the simulated response
 # -- Fixed Point Sim --
 xa = (2*pi * np.arange(self.Nfft)/self.Nfft) / (2*pi) * Fs
 H = self.yfavg / self.xfavg
 pylab.plot(xa, 20*log10(H), 'b')

 w, h = freqz(self.b)
 # pylab.hold(True)
 pylab.plot((w/(2*pi))*Fs, 20 * np.log10(abs(h)), 'r')

 pylab.ylabel('Magnitude dB');
 pylab.xlabel('Frequency (MHz)')
 pylab.axis([0, Fs/2, -60, 5])
 pylab.xticks([0,10E6,20E6,30E6], ['0', '10', '20', '30'])
 pylab.title('Comparison of HDL Implementation to Expected Response')

circuitcellar.com 55
CO

LU
M

NS

Once again MyHDL pulls on existing work in Python to simplify our test cases.
It uses the unittest module from Python to allow you to easily generate test
cases. Such test cases can validate a range of inputs—including testing options
such as various bit widths to your module. These tests can be strung together
with regular Python code, a task it excels at.

When it comes to debugging or documenting the code, MyHDL can automatically
trace into a module and save signal waveforms to a .vcd file. Such a file can be
opened by a universal viewer, such as gtkwave, which I show plotting the input
and output of my FIR filter in Figure 4. The trace statement itself can be seen in
Listing 5, as the call to traceSignals(). This was all done without any additional
Verilog simulator, but as part of the regular MyHDL development process.

MYHDL SUPERHERO
MyHDL presents a number of credible reasons it can be taken seriously as

a hardware description language (HDL). Most critically, it doesn’t try to be “too
clever”, but instead inserts itself at about the same level as your existing Verilog
or VHDL code. But by using the power of Python, MyHDL greatly simplifies aspects
such as simulation and unit testing of your design, while improving many aspects
that affect your synthesizable module such as clarifying reset signal handling and
improving parametrized port definitions.

If you want to learn more about MyHDL, I’ll have some examples
(such as the FIR filter in this column) and links to other resources at the
ProgrammableLogicInPractice.com website. But there is extensive documentation
online at the MyHDL project webpage (MyHDL.org), which also includes a few
examples. Christopher Felton has a number of additional well-documented
examples such as FFTs, IIR filters, and more. You’ll find further examples on
various webpages such as everything from simple counters to Kalman filters
implemented in MyHDL.

Considering MyHDL is free and easily available, there’s nothing to stop you
from giving it a spin. I think you’ll find it has the right combination of familiar
constructs that get you up to speed quickly with the new language, but adds
enough new functionality to improve your overall productivity and enjoyment of
FPGA development. Have fun!

 pylab.savefig("firtest.png")

if __name__ == '__main__':
 # Instantiate the filter and define the Signal
 W = (10,0)
 flt = SFIR(W=W)

 flt.Convert()

 tb = flt.TestFreqResponse(Nloops=3, Nfft=1024)
 sim = Simulation(tb)
 print "Run Simulation"
 sim.run()
 print "Plot Response"
 flt.PlotResponse()

LISTING 5
The real power of MyHDL occurs once we start building systems around our cores. Here I’m using the SciPy
library to automatically generate FIR filter coefficients, given the sampling frequency and desired cut-off. I can
also compare the output of the fixed-point filter implementation to an idea FIR filter for the selected fixed-point
bit width.

©2015 Measurement Computing Corporation
info@mccdaq.com

Contact us
1.800.234.4232

mccdaq.com/USB-230-Series

MCC Continues
to Lower the
Cost of DAQ

M E A S U R E M E N T C O M P U T I N G

USB-230 Series
From $249

• Easy to Use
• Easy to Integrate
• Easy to Support

• 8 SE/4 DIFF analog
inputs

• 16-bit resolution

• Up to 100 kS/s
sample rate

• 8 digital I/O

• One 32-bit counter

• Two analog outputs

• Included software
and drivers

OEM board-only
versions are

also available

mailto:info@mccdaq.com
www.mccdaq.com/USB-230-Series
mailto:info@mccdaq.com

CIRCUIT CELLAR • OCTOBER 2015 #30356
CO

LU
M

NS

In our first installment, we talked about
the various ways we have connected our

embedded systems wirelessly to the Internet.
In Part 2, I covered the various decisions
that need to be made in choosing a carrier
for your embedded system. This month we
will look in detail at how we have connected
simple devices wirelessly to the Internet.

Yesterday, we had a new potential client fly
in to see us to discuss their need to create an
Internet of Things (IoT) device for their very
non-electronic company. This company has
been in business for over 50 years making and
innovating extremely low-tech products. Now
they wanted their extremely low-tech product
to be wirelessly connected to the Internet.
They came to us with a prototype developed
by their general manager using an Arduino
and a development kit. This was a man who
had no electrical engineering background.
It was quite impressive. He did not have
any complications sending the data to the
cloud. He did struggle with designing the
sensor to obtain the data he desired. With the
feasibility behind them and after becoming
knowledgeable enough to know what it takes
to join the IoT revolution, they wanted us to

turn it into a product. This shows how easy it
is to take a simple microcontroller, talk to a
complex cell module, and create a device that
will soon join the IoT revolution.

Many of our systems are similar to theirs
and use a very simple microcontroller with
very little memory. Some cell modules offer
a good assortment of options for connecting
to the web. Since some of the module
manufacturers we use require an NDA to
obtain their documentation, we will only talk
about our experience with a Swiss company
called u-blox who freely publishes their
technical documentation on-line. In particular
we will talk about the features of the LISA
C200, which supports CDMA. Other modules
have similar functionality. Figure 1 shows
the basic system architecture that we will be
reviewing this month.

AT COMMAND SET
Most of the module manufacturers provide

an AT command set to configure the module
and initiate communications over the network.
Developed by Dennis Hayes for the 300-baud
Hayes SmartModem (ah, those were the
days!), this simple command and response

EMBEDDED IN THIN SLICES

In the second part of this article series, Bob provided
tips on choosing a carrier for a ‘Net-connected
embedded system. In this article he details how to
connect simple devices wirelessly to the Internet.

By Bob Japenga (US)

The Internet of Things (Part 3)
Connect Wirelessly with a
Microcontroller

circuitcellar.com 57
CO

LU
M

NS

protocol is used on a lot of communications
devices. This is the primary way a small
microcontroller will talk to the cell module.
With the AT command set, the microcontroller
can easily use: FTP, HTTP, UDP, TCP/IP, and
SMS. Let's look briefly at how easy this is to
do.

FILE SYSTEM
All of the networking commands can use

an on-board flash file system on the cell
module. This flash file system has about 1 MB
of disk space available for you to use. There
are rudimentary file system commands to
allow you to read, write, get stats, or delete
(ASCII or binary) files from this flash file
system. Since the files are read over a serial
port it is not like reading from a classic disk
controller. Any read over the serial port could
be corrupted. Thus we always provide some
method of validation that what you have read
or written over the serial port is indeed what
you intended.

FTP
FTP is a file transfer protocol that allows

you to send files unencrypted (including the
password) over the Internet to and from your
system. If you want to send or receive files
over the Internet to or from an FTP server,
you need an ftp client on your device. The cell
module contains that ftp client for you and
provides an AT command interface to that
client.

There are just a few AT commands
required to send a file. The first one defines
the username and password as well as the
URL (either named or IP address). Then you
log in with another AT command. You then
can either obtain one file from the server
(get) or send one file to the server (put).
Each command provides a response in a
file on the file system as to the success or
failure of the operation. Additional commands
may be required to obtain the status of the
network. Once you have completed sending
or receiving files, you can log off with another
AT command.

The LISA C200 supports an FTP client
which supports the FTP commands listed in
Table 1. A number of standard FTP functions
are not supported (like verbose) because they
don’t apply. There are others that would be
nice to have (like the append command or
mput and mget for sending and receiving
multiple files) but are not provided.

In today’s world, FTP should rarely be
used because it is so insecure. We had one
customer many years ago who, when we
offered both FTP and secure FTP (SFTP),
wanted us to delete FTP off his devices
because he did not want his customers to use

it. If you are on a private network, FTP would
work and maintain the security you need.

HTTP
The cell module supports the following

HTTP methods: GET, PUT, POST, HEAD, and
DELETE. The process is quite simple and does
not require a lot of code to implement on your
little microcontroller. You can set up a number
of profiles which contain exactly where the
data is going with a series of AT commands.
Once a profile is set, you can issue another AT
command to initiate the specific HTTP method
associated with that profile. For example, if
you are POSTing to multiple URLs, you can set
up a separate profile for each. The response
from the server comes back as a file on the
local flash file system that you specified. You
can read the file using the file system AT read
command.

As with FTP, it would be ideal if HTTPS
(secure HTTP) was supported. Without
HTTPS, on one project we needed to encrypt
everything that is included in the payload
of the HTTP request and decrypt everything
that comes back. For this application we
used Advanced Encryption Standard (AES)
128, which uses a symmetric private key
algorithm.

AES 128 is a specific instance of an
encryption standard established by the
National Institute of Standards and Technology

TABLE 1
The FTP client supports several ftp
commands

PIC

Serial

u-blox Cell
modem

Cell
wireless

Our network
provider

FIGURE 1
The basic system architecture

u-blox FTP
Command

Windows FTP Description

0 Quit Log out

1 User Log in

2 Delete Delete file from the server

3 Rename Rename file on the server

4 Get Retrieve file from the server

5 Put Send a file to the server

8 Cd Change the working directory

10 Mkdir Make a directory on the server

11 Rmdir Remove directory on the server

13 N/A Obtain stats on a file on the server

14 Dir List the filenames on the server

CIRCUIT CELLAR • OCTOBER 2015 #30358
CO

LU
M

NS

in the United States. It uses a 128-bit key.
The encryption and decryption algorithms
are public knowledge. There are thus 3.4 ×
1038 possible keys. If you tried to decrypt
the encrypted data by brute force by trying
a different key a trillion times per second, it
would still take 1018 years. To date, no one has
found any way to crack the code other than
brute force.

TCP/IP
On one system, we initially had a

diagnostic mode where we were sending the
contents of a screen every 10 seconds (the
embedded version of Google Hangout) using
HTTP. When we specified it, we knew that
HTTP and the server could handle the data
throughput, but the cell module just could
not keep up with sending 1k of data every 10
seconds in separate HTTP POSTs. As a result
we implemented the feature using the cell
module’s TCP/IP capability.

The cell module provides AT commands to
create the socket, to open the socket, to send
the data, to close the socket, and to set options
for the socket. When a message comes back
from the socket, an asynchronous response
is provided so your microcontroller does not
need to poll the server for the results.

The cell module can handle up to 6 TCP/
IP sockets open at a time. It also supports
sending and receiving binary or ASCII data.

SMS
A Short Message System (SMS)—or what

we call “texting”—client can be invaluable if
you wish to provide a relatively responsive
system while keeping your data plan costs
low. For example, let’s say that you want to
send up data once per day. Occasionally you
would also like to be able to command the
device to do something and have it respond
within a few seconds. Since the overhead
of an HTTP POST can be greater than 1 KB,
checking the server every minute for some
kind of request would use up more than one
megabyte of data per day from your data
plan. With SMS, the server can just send the
embedded system an unsolicited message
with specific instructions. The text will be
stored in a file and the presence of that file
can be poled (at no cost to your data plan).

A couple of AT commands will set up

your cell modem for sending or receiving
text messages. The microcontroller can
periodically send another AT command to
see the file you specified to receive SMS
messaging with no cost to your data plan
except for the SMS message. If you plan to
use this approach, make sure your data plan
supports SMS.

PROBLEMS WITH THIS APPROACH
No cell module will implement the full

HTTP or FTP specification. Let's review some
of the more serious shortcomings that we
uncovered.

With the u-blox module, we found that
both the FTP and HTTP implementation did
not support sending multiple files with a single
command. This actually resulted required us
to rewrite some of our server code. So if you
are going to be using your microcontroller to
talk to an existing cloud server that may be
expecting multiple files, you are out of luck.

Another shortcoming is that the HTTP
and FTP responses are slower than when
you connect these cell modems via the Point
to Point Protocol (PPP) (if the cell modem
supports PPP) or Ethernet (some cell modules
simulate an Ethernet connection eliminating
the overhead of PPP).

We also found that we wanted to tweak the
HTTP headers and this was also not allowed
on the u-blox module. We used a serial port
(although all of the cell modems we have
used have USB) on one of the two u-blox
implementations. Even at 115,200 baud, this
is a relatively slow interface for accessing 0.5-
MB files. If your microcontroller can support
USB, then I would recommend that you talk to
the modem via USB.

Finally, we mentioned the lack of HTTPS
and SFTP support previously. As one of our
engineers said, HTTP is being deprecated
across the Internet. Even Google search
engine ratings are lowered if your web site
doesn’t support HTTPS. Not that this applies
to our M2M world, but it does speak to a
growing trend away from HTTP.

ON TO CERTIFICATION
Connecting your device to the Internet has

become much simpler with the design of a
number of the cell modules on the market.
Using simple AT commands over a serial port
or a USB port, you can connect your device to
the Internet and join the Internet of Things
revolution. Next time we will discuss
certification options for your embedded
systems. Certification is a big topic so I can
guarantee that we will approach it in thin
slices.

circuitcellar.com/ccmaterials

ABOUT THE AUTHOR
Bob Japenga has been
des igning embedded
systems since 1973. In
1988, along with his best
friend, he started Micro-
Tools, which specializes
in creating a variety of
real-time embedded sys-
tems. With a combined
embedded systems expe-
rience base of more than
200 years, they love to
tackle impossible prob-
lems together. Bob has
been awarded 11 pat-
ents in many areas of
embedded systems and
motion control. You can
reach him at rjapenga@
microtoolsinc.com.

SOURCE
LISA-C200 CDMA 1xRTT Module
ublox | www.u-blox.com

http://www.u-blox.com
www.circuitcellar.com/ccmaterials

Each month, you’re challenged to find an error in a
schematic or in code that’s presented on the challenge

webpage. Locate the error for a chance to win prizes and
recognition in Circuit Cellar magazine!

Prizes such as a NetBurner MOD54415 LC Development kit or
a Circuit Cellar subscription will be announced each month.

MONTHLY

ENGINEERING CHALLENGE

Sponsored by NetBurner

Participate: circuitcellar.com/engineering-challenge-netburner
Launch: 1st of each month

Deadline: 20th of each month

No purchase necessary to enter or win. Void where prohibited by law. Registration required. Prizes subject to change based on
availability. Review these terms before submitting each Entry. More info: circuitcellar.com/engineering-challenge-netburner-terms

www.circuitcellar.com/engineering-challenge-netburner

CIRCUIT CELLAR • OCTOBER 2015 #30360
CO

LU
M

NS

Welcome back to The Darker Side. In the
early years, electronic engineers excelled

at analog circuit design. Each transistor
had to be selected based on its physical
characteristics and, of course, the intended
application. They had to be biased with
care and powered on with even more care.
Then integrated circuits (ICs) were invented.
(Jack Kilby, working for Texas Instruments,
manufactured the first actual chips in 1958,
even though the concept was patented 10
years earlier by Werner Jacobi.) Soon after
that, in 1963, the first monolithic integrated
operational amplifier was designed by Bob
Wildar at Fairchild Semiconductors. The
µA702 was born. Operational amplifiers (op-
amps for short) existed before that. Figure 1
shows a well-known example. However, with
such an integration, their success took
another dimension. The same Bob Wildar then
designed the µA709 in 1965, and moved to
National Semiconductors to design the LM101.
As a response, in 1968, Fairchild launched
the well-known µA741, which we still use
more than 50 years later! I will stop with the
history at this point, but if you are interested,

check out Walt Jung's interesting document
titled "Op Amp History," which is listed in the
Resources section of this article.

Op-amps are great building blocks
that have replaced transistors in many
designs. Compact, inexpensive, simple, and
flexible, op-amps sure offer many advantages.
However, designers sometimes forget that
these small chips are nothing more than a
set of interconnected transistors. They are
not magic black boxes. They have electrical
characteristics and limitations. So, you
must select them with as much care as our
predecessors selected their transistors.

This month, I will detail an op-amp's key
characteristics. My aim is to convince you
that the figures and graphs that fill tens of
pages on the datasheets are actually useful,
even if they are ignored 90% of the time. You
will then know what's critical for your design
and ultimately how to select the relevant op-
amp for your application. The µA741 is a great
chip, but it might not be the best one for you!

Of course, in such an article, I
can only scratch the surface of the
subject. However, there is a must-read for

How to Select
an Operational
Amplifier

THE DARKER SIDE

Op-amps are essential components
that have replaced transitors in many
designs. This month, Robert explains
the key characteristics of op-amps and
provides tips for choosing the right one.

By Robert Lacoste (France)

circuitcellar.com 61
CO

LU
M

NS

this topic (as for plenty of others): The Art of
Electronics, by Paul Horowitz and Winfield Hill.
The book is not cheap, but you definitively
need it in your library. I promise you that
it's worth reading the long book, including
the 200 pages or so dealing with operational
amplifiers. By the way I just bought the newly
released third edition, and it is still on my
bedside table.

OP-AMP BASICS
Let's start by refreshing your memory.

Basically, an op-amp is a DC-coupled
differential amplifier (see Figure 2). It has one
noninverting input (IN+), one inverting input
(IN–), and one output (OUT). The output
voltage is simply the voltage difference
between the two inputs, multiplied by a
given open-loop gain: VOUT = GAINOPENLOOP ×
(VIN+ – VIN–). However, any op-amp has a
very high open-loop gain. When I say "very
high," I mean that a gain of 1,000,000 is not
uncommon. So as soon as the voltage on
the noninverting input exceeds the voltage
of the inverting one, even by some tens of
microvolts, the output voltage will jump as
high as possible. This means the op-amp will
saturate with an output voltage close to its
positive V+ power supply. Similarly, if the
voltage on the inverting input is higher than
the noninverting input, then the output will
jump down to V–. As a consequence, an op-
amp is nearly never used in such an open-
loop configuration. It would be just a voltage
comparator (and dedicated chips do exist for
that). There is always a feedback loop around
the op-amp, as I will show you in a minute.
For the moment, keep in mind the first rule of
an ideal op-amp.

Rule 1: The voltage between the two inputs of
a non-saturated op-amp is always zero.

Another key characteristic of any op-amp

is that the currents flowing through the inputs
are very low. Once, again I mean very low—
that is, some nano-amperes are common.
This leads to the second golden rule, once
again for an ideal op-amp.

Rule 2: The current through the inputs of an
op-amp is null.

Lastly, an op-amp needs to be powered, of

course. It has two power input pins, positive
and negative. You can connect the V+ and
V– pins to a symmetrical power source like
±10 V, or you can ground the V– pin and
wire the V+ pin to a positive power supply.
Don't be fooled by datasheets stating that a
specific chip is designed for “bipolar power”
or “unipolar power.” An op-amp can’t tell the

difference between a ±10-V power supply
and a 0/20-V one, because it doesn't have a
ground connection!

TYPICAL DESIGNS
You will find plenty of designs around

an op-amp in books or on the Internet:
amplifiers, differentiators, summators, etc.
The three most basic examples are illustrated
in Figure 3. Even though they are simple,
it is useful to know how to calculate such
circuits using the two rules I listed above.
Let's start with the voltage follower. Here

FIGURE 1
The K2-W was the first commercial “integrated” operational amplifiers (1952). It was designed by George A.
Philbrick Researches (GAP-R), Inc. (Source: www.philbrickarchive.org)

FIGURE 2
An op-amp is simply a differential
amplifier. Its key characteristics
are a very high open-loop gain
and very low input bias currents.

http://www.philbrickarchive.org

CIRCUIT CELLAR • OCTOBER 2015 #30362
CO

LU
M

NS

the input voltage is simply connected to the
noninverting input, and the inverting input is
connected to the output. Remember Rule 1?
The voltage between the two inputs must be
zero; therefore, the output voltage is identical
to the input voltage. Moreover as the input
current is null (thanks to Rule 2), the input
impedance is virtually infinite. We have a
perfect voltage follower (see Figure 3a).

The noninverting amplifier design (see
Figure 3b) is nearly identical. This time,
two additional resistors are used. The input
voltage is still connected to the noninverting
input, so the voltage at the inverting input
must also be VIN. But this inverting input is
connected to the ground through a resistor
R1. Remember Ohm's law? The current

through R1 must be I = U/R = VIN/R1. But,
wait, no current is flowing through this input
as stated by Rule 2. So the same current must
also go through R2, which is wired between
the inverting input and the output. The
voltage drop through R2 is then simply U = R
× I = R2 × (VIN/R1). So what is the voltage at
the output of the op-amp? It is equal to the
voltage on the inverting input (which is equal
to VIN), plus this voltage drop across R2 that
we have just calculated. So we have VOUT =
VIN + (R2 × VIN/R1), which you can rewrite
as VOUT = VIN × (1 + R2/R1). Here it is: we have
a noninverting amplifier and its gain is fixed
by R1 and R2.

I hope you grabbed that all these circuits
can be easily calculated using just the two
golden rules. As an exercise, I encourage you
to do the same simple calculation with the
inverting amplifier (see Figure 3c). It's easy if
you understand the basic idea.

WHEN ZERO IS… NOT NULL
Up to now, I've assumed that the op-

amp was perfect. But life would be boring if
everything were perfect. Let's assume that
you're using our old friend, the UA741, an
equivalent of the µA741. Refer to Table 1,
which includes data from STMicroelectronics.
What do all the numbers mean?

The first line of this
data sheet is labeled “input offset voltage.”
This is a measure of how good this op-amp
is, as compared to the first golden rule
stated above. As the circuit is not perfect, the
voltage difference between the two inputs is
not exactly null. Here the typical error is
specified as 1 mV. The manufacturer states
that this error can go up to 5 mV, and even 6
mV when the temperature is not 25°C, but I will
just consider the typical value. Is 1 mV of error
low enough? It depends on your application.
This can be neglected, or it can transform
your project into a useless bunch of wires
and silicon. Imagine that you're designing
an amplifier for a thermocouple sensor. The
input voltage would be in the 10-mV range,
so a 1-mV offset error would introduce a 10%
error on the output! That's why dedicated
op-amps exist for such applications. These
amplifiers, often referred as “zero-drift,”
are specifically designed to reduce the offset
voltage to a minimum, with built-in offset
canceling circuits. Do you want an example?
Find datasheet on the web for the Texas
Instruments TLC2652AC. The chip provides a
maximum offset error of 1 µV, and an even
more impressive temperature variation of
0.003 µV/°C. That's better than the UA741,
isn't it?

Going back to the datasheet (see Table 1),
the third line is called “Input Bias Current.”

FIGURE 3
These are some typical applications for an op-amp. As shown, there is always an external feedback loop
around the amplifier.

Photo courtesy of Laz Harris

Join the AES in NYC this fall for
THE Audio Event of the Year

New York CitY, New York
JaCob Javits CeNter139

AUDIO ENGINEERING SOCIETY
INTERNATIONAL CONVENTION

th

ConferenCe: oCt 29 – nov 1, 2015
exhibits: oCt 30 – nov 1, 2015

TOPICS WILL INCLUDE:

• Recording and Production
• Mastering
• Broadcast and Streaming
• Game Audio

• Product Design
• Networked Audio
• Live Sound
• Archiving and Restoration

The 139th Audio Engineering Society Convention will offer three
FREE* days of interactive, immersive, hands-on experience with
the latest audio gear, along with special events and showcases
from leading manufacturers and audio-related services. Our Project
Studio Expo and Live Sound Expo are returning with a jam-packed
comprehensive program, where attendees can learn with and from the
movers and shakers in the industry. AES139 will also feature four days of
workshops, technical papers and program content from those driving
innovation in the audio industry. The AES Convention in NYC will be
THE Audio Event of the Year and is not to be missed.

If It’s About AUDIO, It’s At AES!

Visit http://www.aes.org/events/139
for the latest Registration, Travel
and Technical Program information
for the AES139 Convention.

*FREE advance registration includes exhibits, special events,
Project Studio Expo & Live Sound Expo.

#AES139 Facebook.com/AESorg

If It’s About Recording, Live Sound & More, It’s At AES139

AES_139th_CircuitCellar_FP.indd 1 8/26/15 12:45 PM

http://www.aes.org/events/139

CIRCUIT CELLAR • OCTOBER 2015 #30364
CO

LU
M

NS

As you can imagine, this one is related to
the second golden rule. The currents flowing
through the inputs are not exactly null. They
are stated to be lower than 10 nA typically,
but can go up to 200 nA. Moreover, the
current flowing through both inputs are not
equal. The difference, called “Input Offset
Current” (second line of Table 1), is about
2 nA. These are low currents, but are they
low enough? Once again, this depends on
your application. If you design a noninverting
amplifier with two external resistors, then
this small leakage will introduce a little
error on the theoretical gain. The 10 nA will
roughly double the 1-mV voltage offset error
is the resistors are in the range of R = U/I
= 2 mV/10 nA = 200 kΩ. This will not be a

problem if you use low-value resistors, but
may became an issue if you require large
resistors. Another source of concern is that
the same leakage current will be applied on
your circuit input. Note that 10 nA will usually
be negligible, but this is not the case if you
want to amplify a very small current coming,
for example, from a sensitive photodiode.
Once again, there are specialized op-amps
for such applications, referred as “low bias
op-amps.” They are designed to reduce this
input bias current as much as possible. For
example, look at the LTC6268 from Linear
Technologies. Its typical bias current is 3 fA.
Yes, three femtoamps. That's 3 million times
better than the UA741.

Lastly, the datasheet's fourth line, which is

TABLE 1
This information from the the UA741
datasheet shows all the amplifier's
key DC characteristics (Source: www.
st.com)

http://www.st.com
http://www.st.com

circuitcellar.com 65
CO

LU
M

NS

reproduced in Table 1, is called “Large signal
voltage gain.” This is the open-loop gain I was
talking about at the beginning of this article.
For the UA741 it is typically equal to 200 V/mV,
which means a gain of 200,000. This is high,
but not infinite. Once again, it may or may
not be enough, depending on your design, but
usually this is not a concern for DC signals, we
will see the AC case a little later.

OTHER ERRORS
As described in my theoretical presentation

above, the output voltage of an op-amp is
proportional to the difference of voltage
between its two inputs and nothing more.
But this isn't exactly the case. What are the
sources of errors?

The first one is that the output voltage is
also a little dependent on the power supply
voltage. This dependency is also specified in
the datasheet as “Supply voltage rejection
ratio.” As you can see in Table 1, this is 90 dB
for the UA741. This supply rejection ratio can
be referred either to the output or the input of
the op-amp and it should be in the datasheet.
Let’s assume it is input-related. This means
that if the amplifier is configured for a gain
of 1 (voltage follower), then the voltage
error on the output for a 1-V voltage change
on the power supply will be 1 V × 10–90/20,
or 31 µV. But this error would be 100 times
higher for a gain of 100, and 3 mV starts to be
significant. Supply voltage rejection could in
particular be a problem for systems directly
powered by an unstable battery voltage. Be
sure that this phenomenon could also induce
nasty oscillation problems if the power supply

is not properly decoupled.
The other error source, “Common mode

rejection ratio,” is also specified to 90 dB
for the UA741. It is simply stating that the
output voltage will not be the same if the two
inputs are respectively at 2 V and 2.001 V,
or at 3 V and 3.001 V. It should, as the op-
amp just measure their difference, but it isn't
because the op-amp is not perfect. So-called
instrumentation amplifiers are usually quite
good in terms of common mode rejection. For
example, the Analog Devices AD8422 has a
specified 150-dB CMRR at DC.

RAIL TO RAIL?
Now let's focus on power supply-related

characteristics. Of course, each op-amp is
specified for a given nominal power supply
voltage and will probably die if you exceed
its absolute maximum specification. But what
about the inputs and outputs? Look one more
time at the UA741 specification (see Table 1).
The “Input common mode voltage range”
parameter is specified as ±12 V for a ±15-V
power supply. What does this mean? Simply
that this op-amp will not work properly if
the voltage applied on any of its inputs is too
close to the –15- or 15-V power voltages. It
has to stay at least 3 V away from these upper
and lower bounds. Now imagine that you use
this UA741 with a unipolar voltage supply
coming from a 9-V battery. You will connect
GND to its V- power pin and the 9-V source to
+V. Then, for optimal performance, you must
ensure that the input voltage never goes lower
than 3 V (i.e., 0 + 3), and never higher than 6
V (i.e., 9 – 3). That's a small usable range! You

TABLE 2
The op-amp datasheet also includes
AC characteristics. Once again, this is
the venerable UA741.

CIRCUIT CELLAR • OCTOBER 2015 #30366
CO

LU
M

NS

might find my explanations repetitive, but
once again, there are operational amplifiers
specifically designed for an as large an
input voltage range as possible. These so-
called rail-to-rail input op-amps accept an
input common mode voltage range going
from V- (or GND) up to V+. There are even
“above the rail” op-amps. One example is the
LT1783 from Linear Technologies. This tiny
micropower chip accepts input voltages from
0 to 18 V, even if it is powered by a 2.5-V
voltage source.

I just talked about the inputs, but the
same problem exists on the output side.
Our dear friend the UA741 is specified for an
“output voltage swing” of ±13 V with a 2-kΩ
load. That means that the output will never
come closer than 2 V to V+ or V-, even if the
op-amp is saturated. I've seen several poorly
working designs from designers who forgot to
read this line of the spec. Imagine an op-amp
powered from a unipolar source (V- = GND),
with its output driving a common-emitter NPN
transistor. If the output voltage swing of the
op-amp doesn't go lower than 0.6 V, then
the transistor will always stay on. You've
probably anticipated that so-called rail-to-rail
output amplifiers have outputs very close to
V+ and V-. For example, Microchip Technology
MCP6001's output can get as close as 25 mV
to both power rails.

FREQUENCY CONCERNS
Thus far, I've covered the key DC

parameters of an op-amp. But what about
its behavior with AC signals? The key AC
specifications for the UA741 are reproduced
on Table 2. The first one is the well-known
“Gain-bandwidth product,” or GBP. For
the UA741, this is 1 MHz. To understand this
parameter, you must know that the open-loop
gain of an op-amp is roughly a straight line
on a logarithmic scale. The open-loop gain is
reduced by 6 dB each time the frequency is
doubled (at least for a majority of op-amps).
Therefore, there is a frequency at which the
open-loop is down to 1. This frequency is by
definition the GBP.

The interesting thing is that the
same plot is very useful when you design
a closed-loop amplifier. Just draw a
horizontal line at the closed-loop gain of the
amplifier. Determine the frequency at with it
intersect the open-loop gain. This will provide
the 3-dB low-pass frequency of the amplifier.
This is illustrated in Figure 4. On this example
I used the graph from the UA741 data sheet.
I assumed that you want to design a 40-dB
amplifier—meaning, a voltage gain of 100. If
you aren't sure, calculate 20 × log10(100) and
it will give you 40. Draw a horizontal line at 40
dB, up to the intersection with the open loop

FIGURE 4
This graph shows you the open loop gain versus frequency of this op-amp. If you need to build a 40dB
closed-loop amplifier it also shows you that its cut-off frequency will be 10 kHz. (Source: Texas Instruments
UA741 datasheet)

circuitcellar.com/ccmaterials

RESOURCES
GAP/R archive, http://www.
philbrickarchive.org

P. Horowitz and W. Hill, The
Art of Electronics, 3rd Edi-
tion, Cambridge University
Press, 2015.

Invention of the Integrated
Circuit, https://en.wikipedia.
org/wiki/Invention_of_the_in-
tegrated_circuit

W. Jung, “Op-Amp History,”
Analog Devices, www.analog.

com/library/analogDialogue/archives/39-05/
Web_ChH_final.pdf

STMicroelectronics, “UA741: General-Purpose
Single Operational Amplifier,” 2013, www.
st.com/web/en/resource/technical/document/
datasheet/CD00001252.pdf

SOURCES
AD8422 Precision instrumentation amplifier
Analog Devices | www.analog.com

LT1783 Op-amp and LTC6268 op-amp
Linear Technology | www.linear.com

MCP6001 Op-amp
Microchip Technology | www.microchip.com

UA741 operational amplifier
STMicroelectronics | www.st.com

LMH5401 Amplifier and TLC2652AC op-amp
Texas Instruments | www.ti.com

http://www
https://en.wikipedia
http://www.analog
http://www.st.com/web/en/resource/technical/document/
http://www.st.com/web/en/resource/technical/document/
http://www.analog.com
http://www.linear.com
http://www.microchip.com
http://www.st.com
http://www.ti.com
www.circuitcellar.com/ccmaterials

circuitcellar.com 67
CO

LU
M

NS

ABOUT THE AUTHOR
Robert Lacoste lives in France, near Paris. He has
25 years of experience in embedded systems,
analog designs, and wireless telecommunications.
A prize winner in more than 15 international
design contests, in 2003 he started his consulting
company, ALCIOM, to share his passion for
innovative mixed-signal designs. His book (Robert
Lacoste’s The Darker Side) was published by
Elsevier/Newnes in 2009. You can reach him at
rlacoste@alciom.com. Don’t forget to put “darker
side” in the subject line to bypass spam filters.

gain, then down to the frequency axis and you
find 10 kHz. That means that a UA741-based
amplifier with a voltage gain of 100 will not be
helpful above 10 kHz. As always, if you need
a faster op-amp, use a model designed for
high-frequency applications, like the Texas
Instruments LMH5401. This monster has
an 8-GHz gain-bandwidth option. I guess
this would be enough for any reasonable
application.

One parameter closely related to the GBP
is the “slew rate” of the op-amp. It is 0.5
V/µs for the UA741, but 17,500 V/µs for the
LMH5401. This number indicates how fast
the output of the amplifier can swing. For
example, 17,500 V/µs means that its output
can go from 1 to 3 V in about 120 ps. Not too
bad.

WRAPPING UP
Selecting an op-amp just because you

already used that reference somewhere else is
not a good idea. Firstly, check what
parameters are critical for the performances
of your project. Offset voltage? Bias current?
Common-mode voltage range? Rail-to-rail
characteristics? Frequency performance? Or
maybe noise factor? Define the specifications,
prioritize them, and lastly use the good

parametric search tools proposed by all op-
amp suppliers on their websites to find the
best chip for your application. Just don't
forget to add the unit price and minimum
order quantity to the search criteria.

I'm out of space, but I have the feeling
that I have only scratched the surfaced of the
subject. In particular, I didn't cover a key
concern related to amplifiers built using a
feedback loop: stability. If you have already
built an amplifier behaving more like an
oscillator, raise your hand. OK, I'll cover that
in my next column.

cc-webshop.com

Circuit Cellar 2014
Digital Archive

With this digital subscription, you have
access to all 12 issues of Circuit Cellar 2014
from any computer or tablet at anytime.
Readers can explore project ideas,
bookmark pages, and make annotations
throughout each issue.

Circuit Cellar 2014 CD
CD includes 12 issues of Circuit Cellar in
PDF format along with related article code.

Order yours today

mailto:rlacoste@alciom.com
www.cc-webshop.com

CIRCUIT CELLAR • OCTOBER 2015 #30368
CO

LU
M

NS

X-10 Wireless Technology, Inc. (WTI) has
officially gone belly-up. For over 40 years,

X-10 led the charge in home automation.
Unfortunately, the company could wait no
longer for the market to catch up with its dream
of the future. In 2013, it ceased production. My
X-10 appliances still work fine. Sure, there are
issues, but they gave us techies stuff to play
with when no one else had the vision.

Authinx, Inc., which is the largest distributor
of X-10 home automation products in North
America, purchased the x10.com domain name
in the fall of 2013. It promises to continue
improving functionality, reliability, and even
aesthetics of the X-10 switches, modules, and
controllers. One of most popular items for
those interested in experimenting with X-10 is
the computer interface. This began with PL513
that had an isolated interface giving your
computer the ability to send X-10 commands.
The TW523 followed offering reception as well
as transmission of these codes.

Over the years, you’ve seen lots of
projects in Circuit Cellar involving the X-10
protocol. Because of the loss of RS232 ports
on computers, the X-10 interfaces have been
updated to move away from the barebones
carrier-initiating interface to include a USB
smart interface. However, for experimenters,
the computer interface still remains the staple,
as they are the easiest to interface with a
microcontroller. These products have been

relabeled as PSC04 and PSC05.
Because the X-10 is a protocol that sends

information over the existing power lines, data
is sent during each half cycle of the 60-Hz (or
50-Hz) 120-VAC waveform. Zero crossings are
used as a reference for when to expect the
data. Data is sent three times per each half
cycle to coincide with a three-phased power
system. This assures that data is available
after a zero crossing of any phase. A data "1"
is indicated by the presence of a 1-ms pulse
of 120-kHz carrier imposed on the power line.
A lack of carrier during the expected time
specifies a data "0." Check out the reference
for more information on this protocol.

Past projects included smart interfaces
that translate ASCII commands into proper
zero crossing timed carrier-initiating
interfaces to the PL513 and TW523. These
allowed an experimenter to deal with simple
commands to control X-10 devices, as opposed
to the lower level data timing required by the
above interfaces. This month I want to cover
the process of sending and receiving X-10
commands using an Android smartphone or
tablet over a Bluetooth link. But wait, surely
several companies have jumped into the home
automation ring by now, so what’s new?

LOOK AT ME
While most communication protocols are

touting "Look At Me" to control the world, few

Wireless Home
Automation (Part 1)

X-10 and Beyond

FROM THE BENCH

X-10 is considered the Grandfather of
Home Automation technologies. Jeff
covers the evolution of wireless technology
and hightlights some exciting new home
automation options, such as the ZBPLM.

By Jeff Bachiochi (US)

circuitcellar.com 69
CO

LU
M

NS

manufacturers are stepping up to endorse
any specific protocol for the long range. From
the cry for an updated and secure power
distribution infrastructure, we see both
wired and wireless communications used in
smart-metering, giving both providers and
users demand and cost information. Security
companies and cable providers are beginning
to offer some level of control and monitoring
services. Many are keeping the specifics about
their propriety systems under wraps.

From a device point-of-view, thermostats,
lighting, door locks, video cameras, and the
like usually have some communication logo
on the packaging. This gives the user some
indication on what it takes to use the device.
Meanwhile, system integrators are having
nightmares trying to support every possible
device and make their control and monitoring
software all encompassing.

Back in January 2011, I devoted on column
to the Smart Network Access Point (USNAP).
The USNAP Alliance was stepping up and trying
to create the interface connection between
devices, allowing all to communicate with
one another via all possible communication
medium. I loved this idea and the interface
was free and open to all. Since then, this
interface has gone through growing pains and
the physical interface has changed. USNAP
members and other industry stakeholders
joined with the Consumer Electronics
Association (CEA) to create a new Modular
Communications Interface. This new interface
combines the previous USNAP standard and the
EPRI AC driven version together with additional
improvements. While I wish them well, you
can obtain the ANSI/CEA-2045 standard only
through the CEA website, which costs money.

RF JOINS PL AS CO HOSTS
Towards the end of the 1990s, SmartLabs

Technology began developing its own "Linc"
series of Power Line (PL) wired products. Their
goal was to improve on the reliability of the
X-10 protocol. It soon became clear that RF
wireless communications could add a much
boost to limited repertoire of wired control.
Of the wireless communication protocols that
had existed, most were either too complex,
expensive, or range limited. As an alternative,

SmartLabs partnered with Integration
Associates to develop the family of Insteon
integrated circuits.

The Insteon RF protocol uses the 915-MHz
band. With boundaries of 902 and 928 MHz,
the 915-MHz Industrial Scientific Medical
(ISM) band is one of the ISM bands set aside
for unlicensed operation in the Americas.
Together with a power line protocol using
131.65-kHz Binary Phase Shift Keying (BPSK)
modulation on the AC line, Insteon RF provides
complementary paths which assures complete
device coverage.

To be fair, Insteon competes with a number
of other systems like Wink, SmartThings,
Lowes Iris, and WeMo. As you can see in
Table 1, most system integrators just make
use of other manufacturer’s devices. While
some offer APIs, most require going through
some cloud.

TAKING CONTROL
Past X-10 projects were popular because

they showed how to make use of the technology
in your own applications. This was due to
X-10’s willingness to open their technology
to those interested in exploiting it in their
own way. In an effort to continue the great
tradition of the DIYer, Insteon offers a bridge
that not only allows contact with the past but
also the future. The ZBPLM is a combination of
X-10, Insteon, ZigBee interface to an RS-232
connection. While this sounds like the PL513 or
TW523 originating from X-10, with the ZBPLM
you are not required to build PL transmissions
via monitoring the zero-crossings. All
communications use a single command set for
all the supported interfaces.

Should you choose to use a PC for your
application, the included cable with a DE-9 can
plug right in, or you may have to use a USB to
serial converter available less than $10 on the
web. I picked up this device as it was not USB, so
I could easily interface it with a microcontroller.
It also has the benefit of providing 300 mA at 12
V for powering your project. It does cost $120,
but considering the interfaces supported and
ease of use, I believe it is still cost effective. Note
that a USB version is also available.

For this column I will be connecting the
ZBPLM to a Bluetooth module through a

TABLE 1
Most home automation systems
make use of other manufacturer’s
technologies and require going
through the cloud in order to
communicate with a device.

Insteon Wink SmartThings Lowes Iris WeMo

Communication
Radio Frequency
+ Powerline

Radio Frequency Radio Frequency Radio Frequency Radio Frequency

Technology
X-10, Insteon,
ZigBee

WiFi, ZigBee,
Z-Wave, Bluetooth
LE, Lutron
ClearConnect

WiFi, ZigBee,
Z-Wave

Z-Wave WiFi

API Yes Yes Yes n/a n/a

CIRCUIT CELLAR • OCTOBER 2015 #30370
CO

LU
M

NS

microcontroller. You might think that this could
be done without the use of a microcontroller, and
you’d be mostly correct. The data to and from
the ZBPLM could be shuffled to an application
on the opposite end of the Bluetooth; however,
I will ultimately want the real smarts to be in
this interface. For now the circuit presented
Figure 1 will not be translating anything other
than a baud rate change. The same circuitry
will allow this application to evolve into a more
sophisticated one, as you will see.

To give this month’s column a sense of
completion, the application will allow just X-10
control from an Android smartphone. For the
purpose of this simple illustration, we only
need two commands.

0x02 0x52 <Raw X-10><X-10 Flag>
	 X-10 Received
0x02 0x63 <Raw X-10><X-10 Flag>
	 Send X-10
	
These commands contain Raw X-10 data,

which is a byte holding the "Housecode" in

FIGURE 1
The project is based on this schematic,
which for all intents and purposes
merely passes data back and forth
between the ZBPLM module and
whatever serial device is hung on the
6-pin serial connector. ZBPLM output
is RS-232 so this must be converted
to TTL for the microcontroller. This
project uses a JY-MCU Bluetooth
module for linking wirelessly to any
Android device. The microcontroller
passes data, initializes the Bluetooth (if
necessary), and handles the external
EEPROM, which will be used in the
future.

PHOTO 1
The Lamp (and Appliance) module
use rotary switches to set the House
(A-P) and Unit (1-16) codes for each
receiver. This becomes the address
for the device.

circuitcellar.com 71
CO

LU
M

NS

the upper nibble (0-15) and the "UnitCode" or
"Function" in the lower nibble (0-15). The X-10
Flag merely defines whether the lower nibble is
a "UnitCode" or a "Function". The "Housecode"
is always sent as the upper nibble of every Raw
X-10 transmission.

X-10 receivers have two little dials on them
allowing a user to set a "HouseCode" (A-P)
and a "Unit Code" (0-15) for that module (see
Photo 1). X-10 receiver modules will only pay
attention to a "Function" transmission where
the last "Unitcode" transmission matches
its dial settings. An X-10 transmitter must
send a "Unitcode" transmission to wake up
those receivers with a matching setting. Any
"Function" transmission will be executed
by that module, until a new "Unitcode"

transmission is made.
X-10 contains only 16 possible "Housecodes",

"Unitcodes", and "Functions" (see Table 2).
Note that the value (0-15) for "Housecode"=A
and "Unitcode"=1 are not in logical order; in
this case, both are equal to "6." The Raw X-10
value for sending a "Unitcode" transmission of
"Housecode'=A (6) and "Unitcode"=1 (6) is the
value 0x66. The Raw X-10 value for sending a
"Function" transmission of "Housecode"=A (6)
and "Function"=ON (2) is the value 0x62. When
the X-10 Flag value is 0x00 the Raw X-10 data
is interpreted as a "Unitcode" and when the
X-10 Flag value is 0x80 the Raw X-10 data is
interpreted as a "Function".

The smartphone application must do
three things. First, it must be able to find and

TABLE 2
Here are the nibble values of House,
Unit, and Function codes used in X-10
commands. The House and Unit codes
are usually set by rotary switches on
Lamp and Appliance modules as seen
in Photo 1.

HOUSE
CODE

Bit3 Bit2 Bit1 Bit0 Decimal

A 0 1 1 0 6
B 1 1 1 0 14
C 0 0 1 0 2
D 1 0 1 0 10
E 0 0 0 1 1
F 1 0 0 1 9
G 0 1 0 1 5
H 1 1 0 1 13
I 0 1 1 1 7
J 1 1 1 1 15
K 0 0 1 1 3
L 1 0 1 1 11
M 0 0 0 0 0
N 1 0 0 0 8
O 0 1 0 0 4
P 1 1 0 0 12

UNIT
CODE

Bit3 Bit2 Bit1 Bit0 Decimal

1 0 1 1 0 6
2 1 1 1 0 14
3 0 0 1 0 2
4 1 0 1 0 10
5 0 0 0 1 1
6 1 0 0 1 9
7 0 1 0 1 5
8 1 1 0 1 13
9 0 1 1 1 7
10 1 1 1 1 15
11 0 0 1 1 3
12 1 0 1 1 11

13 0 0 0 0 0
14 1 0 0 0 8
15 0 1 0 0 4
16 1 1 0 0 12

FUNCTION
CODE

Bit3 Bit2 Bit1 Bit0 Decimal

ON 0 1 1 0 6
OFF 1 1 1 0 14
DIM 0 0 1 0 2
BRIGHT 1 0 1 0 10
All Lights
ON

0 0 0 1 1

All Units
OFF

1 0 0 1 9

All Lights
OFF

0 1 0 1 5

EXTENDED
CODE

1 1 0 1 13

HAIL
REQUEST

0 1 1 1 7

HAIL ACK 1 1 1 1 15
EXTENDED
CODE

0 0 1 1 3

UNUSED 1 0 1 1 11
EXTENDED
CODE

0 0 0 0 0

STATUS
“ON”

1 0 0 0 8

STATUS
“OFF”

0 1 0 0 4

STATUS
REQUEST

1 1 0 0 12

CIRCUIT CELLAR • OCTOBER 2015 #30372
CO

LU
M

NS

connect to the Bluetooth device on our circuitry,
establishing a serial link. Second, it must provide
a way for the user to select a "Housecode", a
"Unitcode and a "Function", and then create
a command string containing the appropriate
data, and send it over Bluetooth. Finally, there
must be some feedback to the user. This is a
monitoring of data sent to the smartphone
in the form of a response to the requested
command or some other X-10 activity. I’ve
dreaded writing smartphone apps in the past
because the Bluetooth communications usually

meant more complexity than I bargained for.
I found that B4A from Anywhere Software
allowed me to accomplish what I wanted with
little effort. "B4" versions are available for
'A'ndroid, 'I'OS, and 'j'ava (for Windows, Mac,
Linux, and ARM systems). Let’s look at the
process used for this project.

B4A
Rapid Application Development (RAD)

tools for native Android, iOS, and desktop
applications are based on Java and require

FIGURE 3
The Designer tool lets you create screen
layouts for your application and show
the result on a virtual device (shown)
or directly on your Android device.
Here we see a button and two text
boxes used by the "Bluetooth Chat"
application.

FIGURE 2
The IDE for B4A (Basic for Android)
looks like many similar tools—for
instance, those familiar with VB6. I
started my learning process by going
through a sample program that shows
how Bluetooth is used to create a
chat application between two Android
devices.

such as this book,

designing a microprocessor
 can be easy.
Okay, maybe not easy, but certainly

less complicated. Monte Dalrymple

has taken his years of experience

designing embedded architecture

and microprocessors and compiled

his knowledge into one comprehensive

guide to processor design in the

real world.

cc-webshop.com

Microprocessor Design Using
Verilog HDL will provide you
with information about:

• Verilog HDL Review

• Verilog Coding Style

• Design Work

• Microarchitecture

• Writing in Verilog

• Debugging, Verification,
and Testing

• Post Simulation and more!

Verilog HDL
With the right tools

Monte demonstrates

how Verilog hardware

description language

(HDL) enables you to

depict, simulate, and

synthesize an electronic

design so you

can reduce your workload

and increase productivity.

www.cc-webshop.com

CIRCUIT CELLAR • OCTOBER 2015 #30374
CO

LU
M

NS

the installation of the Java Development Kit
(JDK). As my interest is using my Android
smartphone, I choose to use B4A. The standard
versions of B4a and B4i are $59; however, you
can try the B4j version for free. Here’s a brief
overview of the IDE.

I find the best way to help me speed up
the learning curve is to choose a prewritten
application that is in some way related to what
I am trying to accomplish. In this case one of
the example applications I found in the website
forum is a Bluetooth Chat program. I extracted
the contents of this Bluetooth.zip file to my
projects folder, then loaded Bluetooth.b4a into
the IDE using the File and then Open Source
pull-down selection. The IDE (see Figure 2)
shows the first of two modules "Main" and
"Chat activity". These are shown as tabs below
the ToolBar as well as at the top of the modules
stub on the right side of the page. The left side
of the IDE displays the code for the selected
module (Main).

Creating a new activity automatically
begins five subroutines: Process_Globals,
Globals, Activity_Create(FirstTime
As Boolean), Activity_Resume, and

Activity_Pause (UserClosed As
Boolean). Process_Globals are the only
"public" variables that can be accessed from
all modules in the application. Globals
are the only "public" variables that can be
accessed from within an application module.
Activity_Create is run when an activity
is created—that is, when the application is
first launched, the device configuration has
changed (e.g., a user rotated the device and
the activity was destroyed), or the activity
was in the background and the OS decided
to destroy it in order to free memory. This
sub’s purpose might be to load or create the
layout and initialize variables declared above.
Activity_Resume will be called before
the activity moves from the background into
the foreground either from an Activity_
Create or an Activity_Pause. If the user
presses the Home or Back button or another
activity wishes to take over the foreground
task, the Activity_Pause allows any clean
up or saving of task data before it is moved
to the background (possibly being destroyed).

As you can see in Figure 2, two additional
subroutines have been added to this module,
btnConnect_Click and Serial1_
Connected (Success As Boolean). The
btnConnect_Click routine is called upon
a button press and Serial1_Connected
(Success As Boolean) upon a connection
or disconnection of a serial operation. Let’s
start with the button as it will demonstrate
an important tool in the design process.
Previously, I mentioned loading a layout or
screen. Most applications require a way to
display or collect information. This might
be text entered or displayed in a window, a
graphic, or button and the layout of these can
be predetermined using the screen Designer.

The Designer allows the generation of
layouts using either the Emulator (a virtual
device) or a real device (like your smartphone).
With the Designer you can add a number of
items: Button, CheckBox, EditText, ImageView,
Label, ListView, Panel, ProgressBar,
RadioButton, ScrollView, SeekBar, Spinner,
TabHost, ToggleButton, and WebView to
your layout all of whose properties can be
manipulated through the Designer.

In this application the Main module uses
a layout containing a single button labeled
btnConnect. It is loaded when this activity
begins. Other than leaving this application
the only choice for the user is to click on this
button. When clicked we have the stimulus for
the btnConnect_Click routine. This sub is
using a powerful object in the Serial library
(previously initialized), which will handle all of
the necessary tasks for searching out, pairing
with, and connecting to an external Bluetooth
device that is within range. The outcome of this

FIGURE 4
For my application I’ve placed 6
text labels and 4 buttons using the
Designer. The two upper buttons will
be used to change the House or Unit
code, while the central buttons are
used to send ON or OFF commands to
an X-10 device.

circuitcellar.com/ccmaterials

SOURCES
PIC18F23K22 Microcontroller
Microchip Technology | www.microchip.com

ZBPLM (ZigBee/InsteOn/X-10 Multi-Protocol
Powerline Modem)
Smartenit | www.smartenit.com

http://www.microchip.com
http://www.smartenit.com
www.circuitcellar.com/ccmaterials

circuitcellar.com 75
CO

LU
M

NS

ABOUT THE AUTHOR
Je f f Bach ioch i (pro-
nounced BAH-key-AH-
key) has been writing
for Circuit Cellar since
1988. His background
includes product design
and manu fac tur ing .
You can reach him at
jeff.bachiochi@imagine
thatnow.com or at www.
imaginethatnow.com.

PHOTO 2
I chose to use some fancy wheel views
for selecting House or Unit codes.
This photo of my Acer 100 shows the
popup that shows when the ‘Change
House Code’ button has been pressed.
The wheel popup is handled by a Class
module and called from both Change
House and Unit code buttons.

object can be connected or failed. This in turn
calls the Serial1_Connected routine with
the result. When this fails the library function
ToastMessageShow displays a popup
message, if the connection was a success, then
a new module ChatActivity is called.

Now that the Bluetooth hardware has
been initialized, we can make use of the
connection after one last detail. The
RandomAccessFile library offers a way
to read from an InputStream and write
to an OutputStream in the background
without blocking the main thread by using
the object AsyncStreams. Besides setting
up AsyncStreams, ChatActivity loads
a new screen layout which will provide two
edittext boxes and a button. Figure 3 shows
the Designer and virtual device (on the right)
with three defined views. The top edittext box,
txtLog, will display the text messages as sent
and received between Bluetooth connected
devices. The lower edittext box, txtInput, is
used to compose a message to send. Finally,
the button, btnSend, is used to send a complete
message. As an alternate to physically pressing
btnSend, txtInput has an EnterPressed event
that can be used call the btnSend object.

BLUETOOTH PLM
You can see that this chat application has

most of the Bluetooth code I needed for my
application. I needed to substitute my own
PLM module for the ChatActivity module.
Using the Designer, I created a new layout
with six label views and four buttons as seen
in Figure 4. lblHouse and lblUnit hold the
constants ‘House Code’ and ‘Unit Code’. LblH
and lblU display the selected House and Unit
Codes. LblSend and lblReceive display the
command codes sent or those received. BtnON
and btnOFF will send two commands <0x02
0x63 HouseCodeUnitCode 0x00> and
<0x02 0x63 HouseCodeFunctionCode
0x80> where Function code is ‘ON’ or
‘OFF’. Finally, btnChangeHouse and btn
ChangeUnit will invoke the ClsWheel class
to display and allow user data selection input
using a wheel, which is sort of a fancy listbox.
This is a pop-up view that can’t be placed
using the Designer. Photo 2 shows my Acer
100 tablet displaying the PLM screen once
the btnChangeHouse is pressed. The scroll
wheel shows either the House Code choices
(A–P) or Unit Code choices (1–16). Once you
scroll the wheel to the appropriate selection,
the OK button will exit the class and place the
selection appropriately in either lblW or lblU.

As I noted earlier, an X-10 command
requires both a HouseCode/UnitCode
transmission and a HouseCodeFunctionCode
transmission. Each successful transmission
has a return message. I found it wasn’t good

enough to just wait for the return message
before transmitting the second transmission.
I had to delay the transmission slightly before
the second command would be accepted. So
I implemented the first transmission upon
the button press and set a flag to indicate the
second transmission was necessary. When
the AStream_NewData() event finds a
response message and the flag set, the second
transmission is sent after a 0.5-s delay. Any
message that is received is decoded and
displayed in lblReceive. It should be noted
here that commands sent from, say, a manual
controller, will be forwarded to the ZBPLM, so
all activity is received.

BLUETOOTH MODULE
I’ve standardized on a six-pin header

for interfacing serial to various devices. For
this project, I wired the JY-MCU Bluetooth
module (CSR BlueCore-4 chipset) to a mating
connector. This way I can plug this into any
project using the interface. You can find the
JY-MCU on the Internet for less than $10.
I have version 1.05 and this 3.3-V module
requires only four connections, power plus
TX and RX. It uses an AT-style command set
to access both command and data modes for
easy connections using SSP protocol.

This project was a no-frills introduction to
using an Android device for controlling X-10
modules using the ZBPLM interface. In the
next part of this series, I’ll go into the two
other interfaces available on the ZBPLM,
Insteon, and ZigBee.

http://www.imaginethatnow.com
http://www.imaginethatnow.com
mailto:jeff.bachiochi@imaginethatnow.com

CIRCUIT CELLAR • OCTOBER 2015 #30376

CC SHOP

4

 4 CC 2014 DIGITAL ARCHIVE SUBSCRIPTION
Just when you thought it couldn’t get any easier than a thumb

drive...you can now access a full year of Circuit Cellar from any
device connected to the Internet! (2014: 12 issues)

You get all the benefits of a printed copy—bookmark pages, make
annotations, and write in the margins—combined with the digital
advantages of easy storage, zoom, links, and search features.

Item #: CC-DA-2014

1

2

Further information and ordering: www.cc-webshop.com
CONTACT US: Circuit Cellar, Inc. | Phone: 860.289.0800 | E-mail: custservice@circuitcellar.com

 1 CC VAULT
CC Vault is a pocket-sized USB that comes fully loaded with every

issue of Circuit Cellar magazine! This comprehensive archive provides an
unparalleled amount of embedded hardware and software design tips,
schematics, and source code. CC Vault contains all the trade secrets you
need to become a better, more educated electronics engineer!

Item #: CCVAULT

 2 CC 2014 CD
2014 was an exciting year for electronics engineers! The continued

success of open-source solutions, Internet of Things (IoT) revolutions, and
green-energy consciousness has changed the face of embedded design
indefinitely. In Circuit Cellar’s 2014 archive CD, you can find all of these hot
topics and gain insight into how experts, as well as your peers, are putting
the newest technologies to the test. You’ll have access to all articles,
schematics, and source code published from January to December 2014.

Item #: CD-018-CC2014

Previous Years Also Available

 3 MICROPROCESSOR DESIGN USING VERILOG HDL
After years of experience, Monte Dalrymple has compiled his knowledge

of designing embedded architecture and microprocessors into one
comprehensive guide for electronics engineers. Microprocessor Design
Using Verilog HDL provides you with microarchitecture, writing in Verilog,
Verilog HDL review, and coding style that enables you to depict, simulate,
and synthesize an electronic design on your own.

Author: Monte Dalrymple
Item #: CC-BK-9780963013354

3

http://www.cc-webshop.com
mailto:custservice@circuitcellar.com

circuitcellar.com 77
TESTS &

 CHALLENG
ES

TEST YOUR EQ
Contributed by David Tweed

ANSWER 1—The timing will depend primarily on the capacitive load
on each logic gate, which would include both the wiring capacitance
and the capacitance of the MOSFET gate(s) you’re driving.

For example, the 2N7000 has an input capacitance of 20 pF
typical (50 pF max). If your average fanout is 3, plus some wiring
capacitance, that gives you a typical load of 100–200 pF. With a
10-kΩ pullup, that gives you an R-C time constant of 1–2 µs. You’d
probably need to allow at least two time constants for one “gate
delay” for reliable switching, so we’re talking about 2–4 µs per gate.

To get useful work done, you’ll need to allow some maximum
number of gate delays per clock period. This will depend on your
specific design, but a number like 6 to 10 would be typical. So now
we’re talking about a clock period of 12–40 µs, or frequencies in the
range of 25–80 kHz.

Switching to a 1-kΩ pullup resistor would allow the frequency to
scale up by roughly a factor of 10.

ANSWER 2—You can assume that roughly half of the gates will be
active (outputs low) at any given moment, with current passing
through their pullup resistors. Each resistor passes 5 V/10 kΩ = 0.5
mA, and if there are 1,000 gates, this represents an worst-caxse
current of 0.5A, giving a power consumption of 5 V × 0.5 A = 2.5 W.
If only about half the gates are active, then the average power will
be about 1.25 W.

Switching to a 1-kΩ pullup resistor will raise this average static
power consumption to roughly 12.5 W (5 A, or 25 W, worst-case).

ANSWER 3—Six three-input NOR gates can be used to build a
master-slave D flip-flop. Note that the active edge of the clock is the
falling edge.

ANSWER 4—The original Cray-1 supercomputer was constructed
using a single type of IC for the logic that contained one four-input
and one five-input NOR gate. This IC used ECL (emitter-coupled logic)
technology and the machine ran with a cycle time of 12.5 ns (80
MHz). About 200,000 gates were required to implement the CPU.

The answers to the EQ problems that appeared in
Circuit Cellar 302 (September 2015).

www.circuitcellar.com/subscription

CIRCUIT CELLAR • OCTOBER 2015 #30378
TE

ST
S

&
 C

HA
LL

EN
G

ES

ACROSS
3. Discrete particles
5. Box
6. Bending of energy waves
8. Offs and ons
13. Physically coupled to work in unison
15. Vacuum tube with a plate, control grid,

screen grid, and cathode
16. Coil
18. DIY
19. Point of maximum electrical polarity
20. Depicts a sequence of operations
21. PoE

CROSSWORD
The answers will be available at circuitcellar.com/category/crossword/

OCTOBER 2015

1 2

3 4 5

6 7 8

9 10

11 12 13 14

15

16 17

18

19

20

21

EclipseCrossword.com

DOWN
1. 1 newton/cm2

2. Dissemination of energy
4. One quadrillionth
7. Rechargeable battery
9. 10–4 micrometer
10. Diode used to convert AC to DC
11. Equal to
12. Soldered permanently
14. Circuit that extracts modulations from an RF signal
17. 180° out of phase

www.circuitcellar.com/category/crossword

circuitcellar.com 79

sales@ccsinfo.com
262-522-6500 x 35

www.ccsinfo.com/CC1015

DSP Analog on a PIC® MCU
DSP features on an
audio processing board

DSP Analog Dev Kit provides
line in, line out, microphone in,
& amplified audio out (for headphones)

-----SALE-----

Limited Time Only!

$124 $149

$449 $474

H/W Only Kit:

Kit with IDE
Compiler:

CC October_Final.indd 1 8/18/2015 4:59:29 PM

the directory of
PRODUCTS & SERVICES

For current rates, deadlines, and more information contact Peter Wostrel at 978.281.7708 or circuitcellar@smmarketing.us.

IDEA BOX

Connect
with engineers
seeking your

design solutions.

Strategic Media Marketing, LLC

978.281.7708
circuitcellar@smmarketing.us

www.smmarketing.us

Magazine, e-newsletters,
website, advertorials, and more.

ReseRve adveRtising
space today!

mailto:circuitcellar@smmarketing.us
http://www.ccsinfo.com/CC1015
mailto:sales@ccsinfo.com
mailto:circuitcellar@smmarketing.us
http://www.smmarketing.us
www.myropcb.com
www.ironwoodelectronics.com
www.maxbotix.com
www.allelectronics.com
www.picservo.com
www.cc-webshop.com

CIRCUIT CELLAR • OCTOBER 2015 #30380
TE

CH
 T

HE
 F

U
TU

RE

	
Alexandrea Mellen’s
Black Hat 2015 Brief

The emergence of the smartphone industry
has enabled the commodity hardware

market to expand at an astonishing rate.
Providers are creating cheap, compact, and
widely compatible hardware, which bring
about underestimated and unexplored
security vulnerabilities. Often, this hardware
is coupled with back end and front end
software designed to handle data-sensitive
applications such as mobile point-of-sale,
home security, and health and fitness,
among others. Given the personal data
passed through these hardware devices and
the infancy of much of the market, potential
security holes are a unique and growing
concern. Hardware providers face many
challenges when dealing with these security
vulnerabilities, foremost among them being
distribution and consequent deprecation
issues, and the battle of cost versus security.

	An important part of designing a hard-
ware device is being prepared
for a straightforward hardware
deprecation. However, this can
be a thorn in a provider’s side,
especially when dealing with
widespread production. These
companies create on the order
of millions of copies of each re-
vision of their hardware. If the
hardware has a critical security
vulnerability post-distribution,
the provider must develop a
way to not only deprecate the
revision, but also fix the pro-
blem and distribute the fix to
their customers. A hardware
security vulnerability can be
very detrimental to companies
unless a clever solution through
companion software is possible
to patch the issue and avoid a
hardware recall. In lieu of this,
products may require a full recall, which can
be messy and ineffective unless the provider
has a way to prevent future, malicious use of
the insecure previous revision.

	Many hardware providers have begun op-
ting out of conventional product payments
and have instead turned to subscription or
use-based payments. Hence, the provider may
charge low prices for the actual hardware, but
still maintain high yields, typically through
back end or front end companion software.
For example, Arlo creates a home security ca-
mera with a feature that allows users to save
videos through their cloud service and view

the videos on their smartphone. The price
of the camera (their hardware) is mid-range
when measured against their competitors,
but they charge a monthly fee for extra cloud
storage. This enables Arlo to have a continual
source of income beyond their hardware pro-
duct. The hardware can be seen as a hook to
a more stable source of income, so long as
consumers continue to use their products. For
this reason, it is critical that providers mini-
mize costs of their hardware, even down to
a single dollar—especially given their large-
scale production. Unfortunately, the cost of
the hardware is typically directly related to
the security of the system. For example, a
recent vulnerability found by me and my col-
leagues in the latest model Square Reader is
the ability to convert the Reader to a credit
card skimmer via a hardware encryption by-
pass. This vulnerability was possible due to
the placement of the encryption chip on a rib-

bon cable offset from the mag-
netic head. If the encryption
chip and magnetic head had
been mounted to the Reader as
an assembly, the attack would
not have been possible. Howe-
ver, there is a drastic diffe-
rence in the cost, on the order
of several dollars per part, and
therefore security was sacrifi-
ced for the bottom line. This is
the kind of challenging deci-
sion every hardware company
has to make in order to meet
their business metrics, and of-
ten it can be difficult to find a
middle ground where security
is not sacrificed for expense.

	New commodity hardware
will continue to integrate into
our personal lives and personal
data as it becomes cheaper,

more compact, and universally compatible.
For these reasons, commodity hardware con-
tinues to present undetermined and intriguing
security vulnerabilities. Concurrently, hard-
ware providers confront these demanding
security challenges unique to their industry.
They face design issues for proper hardware
deprecation due to massive distribution, and
they play a constant tug-of-war between cost
constraints and security, which typically ends
with a less secure device. These potential
security holes will remain a concern so long
as the smartphone industry and commodity
hardware market advance.

The Future of Commodity Hardware
Security and Your Data
By Alexandrea Mellen

Alexandrea Mellen is the
founder and chief developer
at Terrapin Computing,
LLC, which makes mobile
applications. She presented
as a briefing speaker at
Black Hat USA 2015 (“Mobile
Point of Scam: Attacking the
Square Reader”). She also
works in engineering sales
at The Mellen Company,
which manufactures and
designs high-temperature
lab furnaces. She has
previously worked at New
Valence Robotics, a 3-D
printing company, as well
as The Dorm Room Fund,
a student-run venture
firm. She holds a BS in
Computer Engineering from
Boston University. During
her undergraduate years,
she completed research on
liquid metal batteries at MIT
with Group Sadoway. See
alexandreamellen.com for
more information.

The Square Reader's encryption chip is
located in the bottom right-hand corner
instead of on the magnetic head. This
drastically reduces the cost of the device.

CC Vault

Unlock the power of embedded design.

Order yours today! cc-webshop.com
*CC Vault is a 16-GB USB drive.

A vault of need-to-know information in the fields of embedded
hardware, embedded software, and computer applications

This pocket-sized vault comes fully loaded with every issue of Circuit Cellar
magazine and serves as an unparalleled resource for embedded hardware
and software design tips, schematics, and source code.

From green energy design to ‘Net-enabled devices, maximizing power to
minimizing footprint, CC Vault* contains all the trade secrets you need to
become a better, more educated electronics engineer.

www.cc-webshop.com

www.pcbnet.com
mailto:sales@pcbnet.com

