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DATA GATHERING AND ANALYSIS
Data acquisition is essential to most, if not all, electronics applications. In this 

issue, we present a variety of articles about projects for which instantaneous 
information gathering is paramount. 

Many consumer applications that store and manage data (e.g., MP3 players) 
run on battery power. In the first part of the series, “Running on Battery,” Stuart 
Ball explains how to protect against reverse battery voltage when powering a 
small MCU circuit with batteries (p. 26).

Mobile apps essentially serve as handy 
data acquisition tools. In the third part of 
their series, “Sound Ecology and Acoustic 
Health,” Adrien Gaspard and Mike Smith 
present a quantitative application for their 
WAT_AN_APP app (p. 32). 

Do you think current practices in big 
data analytics are sustainable? On page 
52, Ata Turk addresses the topic of big data 
analysis in the cloud.

Turn to page 60 to read about an 
interesting DIY system for monitoring 

radiation levels. Ed Nisley built the small radiation monitor around an Arduino.
This issue also features articles on several other key electrical engineering 

topics. Let’s review.
On page 14, Monte Dalrymple covers the Secure Hash Standard. He presents 

a design that implements the complete bye-oriented SHA-256 variant of the 
standard. 

Turn to page 56 for a 
quick read about transformer 
basics. George Novacek covers 
their essential characteristics 
and reviews a typical power 
transformer.

In “Wiegand World” 
on page 68, Jeff Bachiochi 
introduces the physical layer 
and protocol. He also details 

the process of building a microcontroller-based Wiegand data display system.
We conclude the issue with R. Scott Coppersmith’s essay, “The Future of 

Engineering Research and Environment Systems Modeling” (p. 80). He presents 
his thoughts on the future of application simulation and electronic system 
modeling. 

C. J. Abate
cabate@circuitcellar.com
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AN OVERVIEW OF THE SECURE HASH STANDARD

PROTECT AN MCU CIRCUIT POWERED WITH BATTERIES

  /******************************************************************************/
  /* Ch function                                                                */
  /******************************************************************************/
  function [31:0] ch;
    input  [31:0] x, y, z; 
    begin
      ch = (x & y) | (~x & z);
      end
    endfunction

  /******************************************************************************/
  /* Maj function                                                               */
  /******************************************************************************/
  function [31:0] maj;
    input  [31:0] x, y, z; 
    begin
      maj = (x & y) | (x & z) | (y & z);
      end
    endfunction

  /******************************************************************************/
  /* Big Sigma 0 function                                                       */
  /******************************************************************************/
  function [31:0] bsigma_0;
    input  [31:0] x; 
    begin
      bsigma_0 = {x[1:0], x[31:2]} ^ {x[12:0], x[31:13]} ^ {x[21:0], x[31:22]};
      end
    endfunction

  /******************************************************************************/
  /* Big Sigma 1 function                                                       */
  /******************************************************************************/
  function [31:0] bsigma_1;
    input  [31:0] x; 
    begin
      bsigma_1 = {x[5:0], x[31:6]} ^ {x[10:0], x[31:11]} ^ {x[24:0], x[31:25]};
      end
    endfunction

  /******************************************************************************/
  /* Little Sigma 0 function                                                    */
  /******************************************************************************/
  function [31:0] sigma_0;
    input  [31:0] x; 
    begin
      sigma_0 = {x[6:0], x[31:7]} ^ {x[17:0], x[31:18]} ^ {3’b000, x[31:3]};
      end
    endfunction

  /******************************************************************************/
  /* Little Sigma 1 function                                                    */
  /******************************************************************************/
  function [31:0] sigma_1;
    input  [31:0] x; 
    begin
      sigma_1 = {x[16:0], x[31:17]} ^ {x[18:0], x[31:19]} ^ {10’b0000000000, x[31:10]};
      end
    endfunction
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PRODUCT NEWS

UNIVERSAL TRIGGER AND DECODER 
OPTION FOR R&S DIGITAL 
OSCILLOSCOPES

Rohde & Schwarz has expanded its range of trigger and decoder 
options for the R&S RTO and R&S RTE digital oscilloscopes. With the 
R&S RTx-K50, the oscilloscopes help you debug serial protocols that 
employ Manchester or NRZ coding. The option can be used with a 
variety of standardized buses (e.g., PROFIBUS, DALI, or MVB) as 
well as with proprietary serial protocols. Developers of products 
that use these types of interfaces can easily find implementation 
errors and so test and release their designs more quickly.

The option, which covers data rates of up to 5 Gbps, supports 
up to 50 different telegram formats, while the format of the serial 
bus can be configured flexibly. You can define your own preamble, 
frame ID, data, CRC and other telegram fields. Protocol decoding 
also takes Manchester code violations into account.

High acquisition rates and minimal blind times are provided by 
the hardware-based trigger implementation on the oscilloscopes. 
You can trigger on telegram and data content with the R&S RTx-K50 
option. The decoded protocol content is displayed in an easy-to-
read, color-coded format. Time correlation with the analog signal 
makes it easy to identify faults caused by signal integrity problems. 
A tabular list of the protocol contents is also provided. The standard 
mask test with up to 600,000 tests per second makes it possible to 
check the signal quality faster with an eye diagram than with any 
other solution. In addition, both oscilloscope series from Rohde & 
Schwarz support the option of decoding up to four different serial 
protocols in parallel.

Rohde & Schwarz | www.rohde-schwarz.com

TRACE32 SUPPORTS SPANSION HYPERFLASH MEMORY
Lauterbach recently announced its support for the Spansion 

HyperFlash Memory with the TRACE32 tools. HyperBus Interface 
was introduced by Spansion in 2014 as an improvement on 
today’s low pin count memory interfaces and has been broadly 
implemented by the system-on-chip (SoC) manufactures.

HyperFlash Memory is based on the HyperBus interface and 
provides the important characteristics such as low latency, high 
read throughput, and space efficiency. TRACE32 tools support 
the HyperFlash memory with the intuitive, fast, and flexible 
Flash Programming feature that also provides you with control of 
reading, displaying, and erasing the content of the flash memory. 
The content is displayed in a standard hex dump, which allows 
the contents to be checked quickly. The tool supports the pairing 
of HyperFlash memory with the HyperBus interface and also with 
the ordinary Quad SPI controller.

Lauterbach | www.lauterbach.com 

PRECISION SET & READBACK PMBUS-
COMPATIBLE UMODULE REGULATOR

Linear Technology recently announced the LTM4675 dual 9-A or 
single 18-A, µModule (micromodule) step-down DC/DC regulator 
with PMBus serial digital interface. It comes in a 11.9 mm × 16 mm 
× 3.51 mm BGA package. The I²C-based interface enables you to 
manage a system’s power condition and consumption. Calibrated 
and guaranteed from –40°C to 125°C, output DC voltage accuracy 
is ±0.5% over line and load regulation, and load current readback 
accuracy is ±2.5% maximum.

The LTM4675 features EEPROM, power MOSFETs, inductors 
and supporting components. It is drop-in pin-compatible with the 
larger package (16 mm × 16 mm BGA) higher power dual 13A 
LTM4676A, eliminating layout changes so that system designers 
can easily switch between the devices during the prototype phase. 
This eliminates redesign of power circuits if power requirements 
change during board prototyping. The LTM4675 has applications 
in optical transport systems, datacom and telecom switches and 
routers, industrial test 
equipment, robotics, RAID 
and enterprise systems 
where energy costs, 
cooling and maintenance 
are critical and must be 
continuously and precisely 
measured.

The LTM4675 operates 
from a 4.5-to-17-V input 
supply and steps down VIN 
to two outputs ranging 
from 0.5 to 5.5 V. Two channels can current share to provide up to 
18 A (i.e., 9 A + 9 A as one output). Power-up turn-on time is 70 ms. 
To evaluate the performance of the LTM4675, the free LTpowerPlay 
GUI-based development system is available for download, and a 
USB-to-PMBus converter and demo kit are available. 

The LTM4675 internal operating temperature range is from 
–40°C to 125°C. It costs $24 in 1,000-piece units.

Linear Technology | www.linear.com

http://www.lauterbach.com
http://www.rohde-schwarz.com
http://www.linear.com
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PRODUCT NEWS

HIGH-SPEED, CONDITIONED 
MEASUREMENTS WITH CHANNEL-TO-
CHANNEL ISOLATION

Measurement Computing Corp. recently announced the release 
of the SC-1608 Series of USB and Ethernet data acquisition devices. 
The series features analog signal conditioning that enables you 
to measure voltage, thermocouple, RTD, strain, frequency, and 
current. Isolated analog output and solid-state relays make it a 
good solution for systems requiring flexible conditioning and low 
cost per channel.

There are four devices in the SC-1608 Series with sample rates 
up to 500 ksps. Each device accommodates up to eight 8B isolated 

analog signal conditioning 
modules and eight solid state 
relay modules. 

Microsoft Windows 
software options for the 
SC-1608 include DAQami 
and TracerDAQ to display 
and log data, along with 
comprehensive support for 
C, C++, C#, Visual Basic, and 
Visual Basic .NET. Support is 
also included for DASYLab 

and NI LabVIEW. UL for Android provides programming support 
for Android devices. Open-source Linux drivers are also available.

The SC-1608 Series costs $999.

Measurement Computing Corp. | www.mccdaq.com

RED EXPERT ONLINE DESIGN TOOL FOR 
PRECISE AC LOSS CALCULATION

Würth Elektronik recently published RED EXPERT, a new online 
tool you can use to simulate power inductors. With just a few clicks, 
you can select the power inductors and calculate the complete AC 
losses. RED EXPERT enables extremely precise loss calculation 
because it is not 
based on the known 
Steinmetz models 
with sinusoidal 
excitation. Instead, 
it is derived and 
validated from 
measurements of the 
power inductors in a 
switching controller 
setup. The losses 
determined with RED EXPERT are based on current and voltage 
waveforms typical in applications. Besides the core and winding 
losses, they also include the losses arising from the specific 
geometries of the inductance, such as the air gap.

Particular highlights of the RED EXPERT AC loss model are the 
range of duty cycles supported from 10% to 90% and the switching 
frequency range of 50 kHz to 5 MHz. This gives the RED EXPERT AC 
loss model a previously unattained precision.

RED EXPERT is freely available in German, English, Spanish, 
Japanese, Russian, and Chinese at www.we-online.com/redexpert.

Würth Elektronik | www.we-online.com

http://www.mccdaq.com
http://www.we-online.com/redexpert
http://www.we-online.com
www.apcircuits.com
www.elprotronic.com
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PARTNER Q&A

CIRCUIT CELLAR: Why did Jameco conduct the 
Great American Electronics Hobbyist Census?

HARRIS: Jameco has been selling to electronics 
hobbyists for over 40 years and while we know a lot 
about their projects and the components, tools and 
supplies they use, we wanted to better understand 
who they were and what this hobby really means 
to them.
 The one thing that stood out was that while 
most treat a hobby as a casual activity, electronics 
hobbyists take it very seriously. In fact, we 
probably shouldn’t even use the word “hobby.” 
It’s quite clear that this is something central to 
their lives. Many told us that this is something they 
think about every day. Some see it as a necessary 
exercise to keep the mind sharp, others described 
the unmatched sense of accomplishment they get 
from going from an idea or concept to something 
tangible. We can’t leave out the added thrill of 
being able to push a button and watch lights blink.

CIRCUIT CELLAR: Tell us a bit about your 
methodology for the survey.

HARRIS: We ship hundreds of thousands of orders 
to hobbyists every year, but we didn’t want to talk 
to causal hobbyists, so we culled our database to 
identify the most active hobbyists. Our goal was 
to get a true sense of the hobbyist from its most 
serious practitioners. We ultimately settled on a 
list of 10,000 individuals. We were a bit surprised 
that an email survey of this length could generate 
a 17% response rate but once we understood 
how much passion was rolled into this hobby, the 
incredibly high response rate made perfect sense.
CIRCUIT CELLAR: Share with our readers two or 
three of the most interesting results. What was 
most surprising?

HARRIS: We were very surprised we didn’t have 

a larger female response. While 19% of electrical 
engineering students are female, only 2% of 
serious hobbyists are women. 
 Electronics hobbyists are dripping with 
education, but surprisingly not as many studied 
engineering as we thought. Hobbyists are nearly 
twice as educated as average Americans with 
almost two-thirds graduating from a four-year 
college and an additional third completing a 
graduate degree. Yet the largest segment were 
self-taught and only about one-third had a formal 
degree in electrical engineering.  We’ve concluded 
the hobby is for intellectuals, yet you don’t need a 
degree to get hooked.
 Another highlight that blew us away was that 
77% of respondents reported blowing something 
up on accident while in pursuit of this hobby. That 
might dissuade some, but we sense that it had 
the opposite impact on true electronics hobbyists, 
because 33% also confessed to blowing something 
up on purpose.

CIRCUIT CELLAR: The respondents said that the 
microprocessor—not the PC or Internet—is the 
most important electronic invention of the past 
50 years. Did this surprise the Jameco team? Why 
or why not?

HARRIS: We’ve seen sales of microprocessors 
explode in a very short period of time. In fact, 
there was a time not too long ago when experts 
predicted the demise of electronics as a hobby. 
Electronic components were getting smaller 
and it was increasingly difficult to complete 
projects without very expensive equipment. Yet 
in the last few years the microprocessor almost 
singlehandedly put new capabilities in the hands 
of hobbyists and that fueled a resurgence in the 
hobby. No, we weren’t surprised that hobbyists 
selected microprocessors as the most important 
invention of the last 50 years. In fact, a few 

The Great American  
Electronics Hobbyist Census
An Interview with Greg Harris (VP, Marketing & Sales, Jameco)

A few months ago, Jameco Electronics surveyed over 1,600 hardcore US-based elec-
tronics enthusiasts about thier hobbies, technical interests, projects, thoughts on 
the future of DIY, and much more. We recently asked Jameco’s Greg Harris to tell us 
about the census and provide his thoughts on the results.
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PARTNER Q&A

Learn more about the Jameco census: http://bit.ly/1LRuXi5

suggested it might be the most important invention 
for the next 50 years as well. 

CIRCUIT CELLAR: What’s Jameco’s biggest take-
away from the survey?

HARRIS: A hobby is something extra in life. For 
electronics hobbyists it’s clear that much of their 
life revolves around electronics. The shows that 
everything from what they prefer to read to how 
they exercise their brain to how they get their 
thrills is frequently tied to this hobby. As one 
hobbyists described “traveling through the forest of 
frustration,” to ultimately find a working solution, 
builds real character and marketable skills. This 
isn’t just a hobby, it defines hobbyists.
 This is consistent with what Jameco has seen 
since we asked if any of our readers would like to 
contribute to the newsletter. We’ve been flooded 
with a steady stream of contributions ever since, 
celebrating huge failures, big wins, unique projects 
and everything in between. It became clear that 
hobbyists like to interact with one another and that 
this is a community wishing to be as connected as 
the circuits they design.

CIRCUIT CELLAR: How will the survey results 
influence Jameco’s future product offerings? What 
can electronics enthusiasts and engineers expect 
from Jameco moving forward?

HARRIS: We didn’t conduct this study to drive 
product strategy, but rather to better understand 
our customers. We’ve been sharing these results 
with the manufacturers whose products we 
distribute and they have been most interested in 
the strong indication that this hobby is staged for 
an increased growth. Over half of respondents 
predicted growth in the number of projects that 
they personally will do while only about one in 
seven predicted doing fewer projects. Add to that 
the growth of the number of people engaging in 
this hobby and it’s clear to us that many component 
manufacturers will be investing in hobbyist 
oriented products in the years to come. That 
wasn’t the case five years ago. Hobbyists can 
expect Jameco to continue to provide a wide range 
of kits, hard to find components and other 
necessities to keep their tinkering going strong; 
not to mention a community where they can 
converge. 
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A Bootloader for Blackfin
By David Tweed (Circuit Cellar 217, 2008)

David designed a two-stage bootloader that allows 
application firmware to be updated in the field to support 
bug fixes and additional features for specific end-user 
applications. It also adds capabilities to the native boot 
processing of the Blackfin chip. Although some details are 
specific to the Blackfin family of DSPs, some general features 
may be helpful on other CPUs. Tweed writes:

"Not long ago, I was working on an inertial measurement 
unit (IMU) that was based on the highly integrated ADIS16350 
inertial sensor from Analog Devices that Tom Cantrell wrote 
about in his column in Issue 208 ('Thanks for the MEMS,' 2007). 
This is a six-axis MEMS sensor (three axes of angular rate and 
three axes of acceleration) in a compact and rugged package. 
My client wanted to marry an Analog Devices Blackfin DSP chip 
to it in order to create a self-contained inertial measurement 
solution … A key aspect of the implementation was that the 
firmware would need to be updated in the field, after the 
unit had left the controlled environment of the factory, in 
order to support both bug fixes to the basic functionality and 

additional features for specific end-user applications.
This article is about the two-stage bootloader that we 

developed that meets all our requirements and adds some 
capabilities to the native boot processing of the Blackfin chip. 
While much of this discussion will be specific to the Blackfin 
family of DSP chips, some aspects of it are more general and 
can be ported to other processors."

Interface Ethernet and Embedded Systems
By Eddie Insam (Circuit Cellar 172, 2004)

Fast Ethernet and small microcontrollers do not mix, or 
so they say. In this article, Eddie shows you how to add 
full-speed, 100-Mbps Ethernet to an embedded system. He 

presents the supporting hardware that will help you get the 
job done. He writes:

"Another article about Ethernet and embedded systems? 
Well, yes, but here I’m talking about 100 Mbps. Yes, the fast 
version, not the 10-Mbps sloggers usually associated with 
small embedded systems. Who wants high-speed Ethernet 
anyway? I thought you might ask. If you need to feed data 
from a fast source such as a CCD camera, voice, or high-
speed data converter, you’ll need to use a high-speed method 
of getting it into your PC. FireWire and USB2 are possibilities, 
but Ethernet remains one of the comfiest methods for packing 
fast data into a PC. It also means your peripheral can be sited 
a long way away, something you just can’t do with FireWire 
and USB.

Mind you, it’s difficult enough to get a 10-Mbps Ethernet 
controller working anywhere near full speed when paired with 
a small microcontroller. These cronies can take an eternity 
to move data in and out of the line, and they do it mostly 
1 byte at a time. Slap in a faster microcontroller? It won’t 
necessarily help. You will need a pretty powerful 32 bitter plus 
a good helping of side IC condiments before anybody notices 
the difference. This article is about modesty anyway. How can 
you stay below the clouds and still get the performance by 
using relatively cheap hardware?"

http://www.cc-webshop.com
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Efficient, Practical Adders for FPGAs
By Vitit Kantabutra, Pasquale Corsonello, Stefania Perri, and 
Maria Antonia Iachino (Circuit Cellar 148, 2002)

In the 1800s, Charles Babbage developed calculating 
engines that made addition more efficient. Today, carry-
skip adders are used in many digital systems. A group of 
engineers took the technology a step further by designing 
efficient carry-skip adders for FPGAs. They write:

"Adders are a part of the critical path in virtually all 
practical digital systems, because every arithmetic operation 
requires one. Thus, the speed and area efficiency of adders 
is important when you’re designing a circuit. A fairly large 
body of literature exists for adder design in today’s standard 
cell and custom IC technologies, but little success has been 
reported in the realm of the increasingly important FPGA 
technologies. 

The history of adder optimization long predates electronic 
computers. In his 1851 treatise on calculating engines, 
Charles Babbage wrote about the 'four cases of obstacles 
presenting the appearance of impossibilities' that he 
encountered as he designed the analytical engine, which was 
the mechanical prototype for modern computers.  The first of 

these difficulties, which he encountered in an early stage of 
the design process, was concerned with the efficiency of the 
addition process. So, Babbage went on to provide a practical 
solution that can be adapted for use in VLSI technology, 
including today’s FPGA technology.

In this article, Babbage’s solution, now called carry-skip or 
carry-bypass adders, will be explained, and we’ll show you 
how we adapted them to be used for FPGAs. We focused on 
two families of FPGAs for this project, the Atmel AT40K and 
Xilinx Virtex."

SRAM: The New Embedded Solution
By Mark Balch (Circuit Cellar 125, 2000)

The next time you’re designing a small, low-power 
embedded system, you might want to consider using an 
SDRAM controller. As Mark shows us, an embedded SDRAM 
controller just might be the simplest and most cost-effective 
solution. He writes:

"The key to incorporating SDRAM into your embedded 
system is providing a simple memory controller to take care 
of the SDRAM housekeeping functions. The minimal set of 

SDRAM control logic can fit into modest PLDs. Some basic 
features are powerup configuration, periodic refresh, single-
word read, and single-word write.

That’s it! All you need is control logic that can perform these 
four operations and you have a minimal SDRAM interface 
to your controller. There are as many ways to implement 
this basic idea as there are engineers. One technique is a 
single binary-encoded state machine inside a PLD. This state 
machine would be large, but if your system is only running at 
12 MHz and you use a modern, mainstream PLD, the timing 
may be on your side."

http://www.cc-webshop.com
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The cryptographic hash functions specified 
in the Secure Hash Standard (SHS) are 

widely used in today’s connected world, but 
in many cases, their use is not really visible to 
users. For example, both the Secure Sockets 
Layer (SSL) and the Transport Layer Security 
(TLS) protocols have either the option or the 
requirement to use a hash function from 
the SHS while setting up a secure link, but 
this fact is completely invisible to users. On 
the other hand, one obvious place where an 
SHS function is used is in the authentication 
of software distributions, where the correct 
hash value is published and can be used 
before the software is installed to verify that 
no alteration has taken place between the 
publisher and the user.

 I’ve always wondered exactly how these 
hash functions work, and I recently had 
the opportunity to investigate the details 
myself. While there is just one SHS, there are 
seven different algorithms specified in the 
standard, with varying levels of complexity. 
In this article I’ll show you how one of the 
algorithms, called SHA-256, really works from 
a hardware standpoint, using the Verilog 
hardware description language. 

HIGH-LEVEL VIEW
A cryptographic hash function is most 

often used to transform an arbitrary-length 
message into a fixed-size representation 
called a message digest (or hash value). This 
transformation is one-way, which means that 
given a message digest it is impossible to 

reverse the process and recreate the original 
message. The transformation is also very 
nonlinear, in the sense that even a small change 
to the original message, such as flipping the 
state of a single bit, will lead to a very different 
message digest. Another property of this 
transformation is that given a large fraction 
of a message, and the message digest, it is 
still infeasible to compute the missing part of 
the message. All of these features make the 
cryptographic hash function indispensable to 
digital signature and message authentication 
algorithms. The highly nonlinear nature of 
secure hash algorithms also makes them 
useful for generating random numbers or 
random bits.

One way to look at a cryptographic hash 
function is to think of the input message as 
a very big binary number, and the message 
digest as a fixed-sized binary number that is 
somehow computed from the input number. 
In the case of the SHA-256 the input number 
can be up to 264 bits in length, and the 
message digest is 256 bits long. Given the size 
difference in these two numbers, there are 
clearly a huge number of messages with the 
same message digest! So the secret to a good 
hash algorithm is to make sure that no similar 
messages can lead to the same hash value.

There are different ways to construct a 
secure hash algorithm, but those specified 
in the SHS all share the same basic steps 
and have similar requirements. The primary 
requirement is that the input message has to 
be a multiple of the block size. For SHA-256 this 

Secure Hash Standard

Does the Secure Hash Standard confuse you? Try approaching it from a 
hardware point of view. The design presented here implements the complete 
byte-oriented SHA-256 variant of this standard.

By Monte Dalrymple (US)

Understanding the Secure Hash 
Standard Without Math
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  /******************************************************************************/
  /* Ch function                                                                */
  /******************************************************************************/
  function [31:0] ch;
    input  [31:0] x, y, z; 
    begin
      ch = (x & y) | (~x & z);
      end
    endfunction

  /******************************************************************************/
  /* Maj function                                                               */
  /******************************************************************************/
  function [31:0] maj;
    input  [31:0] x, y, z; 
    begin
      maj = (x & y) | (x & z) | (y & z);
      end
    endfunction

  /******************************************************************************/
  /* Big Sigma 0 function                                                       */
  /******************************************************************************/
  function [31:0] bsigma_0;
    input  [31:0] x; 
    begin
      bsigma_0 = {x[1:0], x[31:2]} ^ {x[12:0], x[31:13]} ^ {x[21:0], x[31:22]};
      end
    endfunction

  /******************************************************************************/
  /* Big Sigma 1 function                                                       */
  /******************************************************************************/
  function [31:0] bsigma_1;
    input  [31:0] x; 
    begin
      bsigma_1 = {x[5:0], x[31:6]} ^ {x[10:0], x[31:11]} ^ {x[24:0], x[31:25]};
      end
    endfunction

  /******************************************************************************/
  /* Little Sigma 0 function                                                    */
  /******************************************************************************/
  function [31:0] sigma_0;
    input  [31:0] x; 
    begin
      sigma_0 = {x[6:0], x[31:7]} ^ {x[17:0], x[31:18]} ^ {3’b000, x[31:3]};
      end
    endfunction

  /******************************************************************************/
  /* Little Sigma 1 function                                                    */
  /******************************************************************************/
  function [31:0] sigma_1;
    input  [31:0] x; 
    begin
      sigma_1 = {x[16:0], x[31:17]} ^ {x[18:0], x[31:19]} ^ {10’b0000000000, x[31:10]};
      end
    endfunction

LISTING 1 
SHA-256 uses six simple functions to 
mix the data in various ways. Two 
functions operate on three inputs, 
while the rest operate on a single 
input.
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block size is 512 bits, or sixteen 32-bit words. 
Since it is unlikely that any given message will 
meet this requirement, the standard specifies 
exactly how a message must be padded to be 
a multiple of 512 bits. It is worth noting that 
the standard allows for arbitrary bit length 
messages, even though most messages will 
be multiples of a byte.

Once the padding is done, each message 
block is expanded into a “message schedule” 
of 64 32-bit words. The first 16 of these 
words are just the original message, while the 
remainder are combinations of the words in 
the original message.

The words in the message schedule are 
then cycled through eight “working variables” 
which further combine them so that each word 
in the message schedule contributes to the 
final values of each of these working variables. 
At the end of these mixing operations the 
values in the working variables are added 
to the existing hash value. At the end of the 
message this gives the final hash value.

The SHS specifies exactly how the message 
schedule and working variables are calculated, 
but provides no insight into the mathematical 

basis for the different operations. This is 
quite different from the Advanced Encryption 
Standard (AES), where the mathematics are 
explained in detail in the standard. Personally, 
I would have preferred at least some clues as 
to how the mixing functions were created.

DETAILED OPERATION
The design I describe here is a complete 

implementation of SHA-256 that uses one 
clock cycle per step. I chose the one clock 
cycle per step to make the logic easy to 
follow, while at the same time minimizing 
the amount of hardware used. If higher 
performance is required it is certainly 
possible to apply pipelining techniques to the 
design, but that will increase the amount of 
hardware required.

The design uses a 32-bit data path, which 
is what the standard envisions. Other widths 
are possible, either wider or narrower. A 64-
bit data path would give higher performance, 
at the cost of more hardware. A narrower 
data path would obviously give poorer 
performance, and probably also lead to 
more hardware, because of the need to store 

  /******************************************************************************/
  /* k constants                                                                */
  /******************************************************************************/
  function [31:0] k256_const;
    input  [5:0] step; 
    reg  [127:0] const_rom;
    begin
      case (step[5:2])
        4’b0000: const_rom = 128’h428a2f9871374491b5c0fbcfe9b5dba5;
        4’b0001: const_rom = 128’h3956c25b59f111f1923f82a4ab1c5ed5;
        4’b0010: const_rom = 128’hd807aa9812835b01243185be550c7dc3;
        4’b0011: const_rom = 128’h72be5d7480deb1fe9bdc06a7c19bf174;
        4’b0100: const_rom = 128’he49b69c1efbe47860fc19dc6240ca1cc;
        4’b0101: const_rom = 128’h2de92c6f4a7484aa5cb0a9dc76f988da;
        4’b0110: const_rom = 128’h983e5152a831c66db00327c8bf597fc7;
        4’b0111: const_rom = 128’hc6e00bf3d5a7914706ca635114292967;
        4’b1000: const_rom = 128’h27b70a852e1b21384d2c6dfc53380d13;
        4’b1001: const_rom = 128’h650a7354766a0abb81c2c92e92722c85;
        4’b1010: const_rom = 128’ha2bfe8a1a81a664bc24b8b70c76c51a3;
        4’b1011: const_rom = 128’hd192e819d6990624f40e3585106aa070;
        4’b1100: const_rom = 128’h19a4c1161e376c082748774c34b0bcb5;
        4’b1101: const_rom = 128’h391c0cb34ed8aa4a5b9cca4f682e6ff3;
        4’b1110: const_rom = 128’h748f82ee78a5636f84c878148cc70208;
        4’b1111: const_rom = 128’h90befffaa4506cebbef9a3f7c67178f2;
        endcase
      case (step[1:0])
        2’b00:   k256_const = const_rom[127:96];
        2’b01:   k256_const = const_rom[95:64];
        2’b10:   k256_const = const_rom[63:32];
        default: k256_const = const_rom[31:0];
        endcase
      end
    endfunction

LISTING 2 
A 32-bit constant is inserted into 
the calculation during each round. 
The organization shown here, with 
sixteen 128-bit words and a four-input 
multiplexer, was chosen for coding 
convenience.
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intermediate results and the need for more 
complex control. Keep this in mind if you are 
thinking about using a different data path 
width.

The six logical functions that are used to 
mix the bits of the message data are shown 
in Listing 1. Two of the functions—called Ch 
(which is probably short for “choose”) and 
Maj (which is probably short for “majority”) 
in the standard—take three input words and 
provide one output word. The ch function 
uses the bits of one input word to control the 
selection of the corresponding bit from the 
other two input words, while the Maj function 
sets the output bit if the corresponding bits 
in two or more of the input words are set. 
The other four functions—called in this design 
bsigma_0, bsigma_1, sigma_0, and sigma_1—
mix the individual bits of the input word in 
different ways by adding together shifted 
versions of the word (hence the “sigma” in 
the name).

During each of the 64 steps in the 

algorithm, a 32-bit constant is used in the 
calculation. According to the standard, these 
constants are “the first thirty-two bits of the 
fractional parts of the cube roots of the first 
sixty-four prime numbers.” There is nothing 
special about this choice, except that it makes 
it easy for anyone to verify that there is no 
backdoor hidden in the constants. Listing 2 
shows how these constants are generated. 
The choice of sixteen 128-bit words and a 
four-input multiplexer is somewhat arbitrary, 
although with this choice each bit of the 
const_rom variable can be created directly 
using a four-input LUT in an FPGA.

The top-level module interface and 
definitions are shown in Listing 3. This is 
a simple synchronous interface that uses 
a 32-bit data bus and a write strobe. One 
complication arises because the message 
being hashed may not be a multiple of 32-
bit words. So the last write must be tagged 
with a data width of 1, 2, 3, or 4 bytes. A 
second complication is that the standard 

module sha256_top (bufr_full, hash_done, hash_reg, clk, resetb, start_pls, wr_bus,  
 wr_pls, wr_type);

  input          clk;          /* main clock*/
  input          start_pls;    /* ok to start hash operation*/
  input          resetb;       /* async  master reset*/
  input          wr_pls;       /* write buffer*/
  input    [2:0] wr_type;      /* write operation type*/
  input   [31:0] wr_bus;       /* write data bus*/

  output         bufr_full;    /* buffer is full*/
  output         hash_done;    /* hash_reg is valid*/
  output [255:0] hash_reg;     /* hash result*/

  /******************************************************************************/
  /* write_tag definitions*/
  /******************************************************************************/
  `define TYPE_LAST0  3’b000 /* only for zero-length msg     */
  `define TYPE_LAST1  3’b001 /* last word - one byte only    */
  `define TYPE_LAST2  3’b010 /* last word - two bytes        */
  `define TYPE_LAST3  3’b011 /* last word - three bytes      */
  `define TYPE_LAST4  3’b100 /* last word - full word        */
  `define TYPE_WORD   3’b111 /* normal word                  */

  /******************************************************************************/
  /* initial hash values                                                        */
  /******************************************************************************/
  `define IHV_0  32’h6a09e667
  `define IHV_1  32’hbb67ae85
  `define IHV_2  32’h3c6ef372
  `define IHV_3  32’ha54ff53a
  `define IHV_4  32’h510e527f
  `define IHV_5  32’h9b05688c
  `define IHV_6  32’h1f83d9ab
  `define IHV_7  32’h5be0cd19

LISTING 3 
The interface uses a 32-bit bus, with 
each write tagged with a type. This 
is also where the Initial Hash Value is 
defined.

ABOUT THE AUTHOR
Monte Dalrymple (monted 
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  /******************************************************************************/
  /* host interface                                                             */
  /******************************************************************************/
  assign wr_fifo = wr_pls && !(wr_type == `TYPE_LAST0);

  always @ (wr_type or wr_bus) begin
    case (wr_type)
      `TYPE_LAST1: wr_data = {4’h8, wr_bus[31:24], 24’h800000};
      `TYPE_LAST2: wr_data = {4’h8, wr_bus[31:16], 16’h8000};
      `TYPE_LAST3: wr_data = {4’h8, wr_bus[31:8],   8’h80};
      `TYPE_LAST4: wr_data = {4’h8, wr_bus};
      default:     wr_data = {4’h0, wr_bus};
      endcase
    end

  fifo_x36 FIFO ( .almost_empty(almost_empty), .almost_full(), 
   .data_out(fifo_out), .empty(fifo_empt), .full(bufr_full), .clk(clk),   
   .data_in(wr_data), .read_en(rd_fifo), .resetb(resetb), .write_en(wr_fifo) );

  always @ (wr_type) begin
    case (wr_type)
      `TYPE_LAST0: bcnt_inc = 3’b000;
      `TYPE_LAST1: bcnt_inc = 3’b001;
      `TYPE_LAST2: bcnt_inc = 3’b010;
      `TYPE_LAST3: bcnt_inc = 3’b011;
      default:     bcnt_inc = 3’b100;
      endcase
    end

  always @ (posedge clk or negedge resetb) begin
    if (!resetb) begin
      bcnt_reg    <= 40’h0;
      empty_dly   <= 1’b1;
      length_reg  <= 40’h0;
      msg_null    <= 1’b0;
      msg_walign  <= 1’b0;
      msgdone_reg <= 1’b0;
      msgstrt_reg <= 1’b0;
      wr_length   <= 1’b0;
      end
    else begin
      if (wr_pls || wr_length) bcnt_reg <= (wr_length) ? 40’h0 : (bcnt_reg + bcnt_inc);
      if (wr_length) begin
        length_reg <= bcnt_reg;
        msg_walign <= ~|bcnt_reg[1:0];
        end
      empty_dly   <= fifo_empt;
      msg_null    <= !msg_done && ((wr_length && ~|bcnt_reg) || msg_null);
      msgdone_reg <= !msg_done && (wr_length || msgdone_reg);
      msgstrt_reg <= !rd_word  && (start_pls || msgstrt_reg);
      wr_length   <= wr_pls && !(wr_type == `TYPE_WORD);
      end
    end

  assign blk_start = msg_null || (msgdone_reg && !fifo_empt) || !(almost_empty || fifo_empt);
  assign msg_start = msgstrt_reg && blk_start;
  assign msg_lastw = !empty_dly && fifo_out[35];

LISTING 4 
Most FPGA families provide 36-bit wide 
FIFO primitives, so that is what I use 
to hold the message data. Part of the 
message padding is done on the input 
side of the FIFO.
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allows for zero-length messages, so there 
has to be some way to communicate this. A 
write with the WRITE_LAST0 type signals that 
the message to be hashed has zero length. 
This degenerate case is explicitly allowed in 
the standard, and requires special handling in 
the remainder of the design.

Rather than return the calculated hash 
value as words over a data bus, I have chosen 
to simply output the full 256-bit hash along 
with a one-clock pulse that indicates that 
the hash result is valid. This structure makes 
simulation and testing easier, because the 
intermediate hash value is available after 
each block.

The initial hash values are also defined in 
this listing. According to the standard these 
constants are “the first thirty-two bits of the 

fractional parts of the square roots of the first 
eight prime numbers.” This is another case 
where the values seem to have been chosen 
to eliminate any suspicion of a backdoor.

The host interface is shown in Listing 4. 
This interface uses a FIFO that is 36 bits wide 
and at least 16 words deep. Most FPGA families 
provide macros meeting these specifications 
as part of their block RAM functionality. The 
details will vary depending on vendor, so I 
have merely instantiated a generic version, 
which will need to contain the vendor-
specific module name and connections. This 
design assumes non-pipelined timing for the 
FIFO. That is, the read enable is sampled on 
one clock edge and the output data will be 
available for sampling by the next clock edge.

The 36-bit wide FIFO holds the 32-bit data, 

  /******************************************************************************/
  /* pad insertion                                                              */
  /******************************************************************************/
  assign msg_done = &pad1_reg;
  assign pad_pls  = pad_strt || (rd_dly && padding_reg) || (msg_null && msg_done);
  assign pad_strt =  rd_dly && !padding_reg && (msg_null ||  msg_lastw);
  assign pad1_lsb = length_reg[5:2] + !msg_walign;
  assign rd_fifo  = rd_word && !padding_reg && !msg_null && !pad_strt && !padding_reg;

  always @ (length_reg) begin
    casex (length_reg[5:0])
      6’b1110xx,
      6’b111100: pad1_msb = 1’b0;
      default:   pad1_msb = 1’b1;
      endcase
    end

  always @ (posedge clk or negedge resetb) begin
    if (!resetb) begin
      pad1_reg    <= 5’h0;
      pad2_reg    <= 1’b0;
      padding_reg <= 1’b0;
      end
    else if (pad_pls) begin
      pad1_reg    <= (pad_strt) ? {pad1_msb, pad1_lsb} : (pad1_reg + 1’b1);
      pad2_reg    <=  pad_strt && msg_walign && !msg_null;
      padding_reg <= !msg_done && (pad_strt || padding_reg);
      end
    end

  always @ (msg_null or pad1_reg or pad2_reg or fifo_out or length_reg) begin
    casex ({msg_null, pad2_reg, pad1_reg})
      7’b0000000: msg_data = fifo_out[31:0];
      7’b0011110: msg_data = {21’h0, length_reg[39:29]};
      7’b0011111: msg_data = {length_reg[28:0], 3’b000};
      7’b01xxxxx,
      7’b1x0xxxx: msg_data = 32’h80000000;
      default:    msg_data = 32’h00000000;
      endcase
    end

LISTING 5 
The pad insertion state machine does 
the bulk of the message padding, and 
handles the case where the message 
is word-aligned or aligned to a 512-bit 
block boundary.
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plus one extra bit that is set only for the last 
word in a message. Tagging the last word in a 
message makes it very easy to communicate 
the “last word of the message” information to 
the other side of the FIFO. 

Because the hash state machine requires 
a complete block of 16 32-bit words, the FIFO 

must be configured to assert the almost_
empty signal as long as there are 15 or fewer 
words in the FIFO. This is what holds off the 
start of a hash calculation. Again, this is a 
standard feature on FPGA FIFO macros.

The host interface is the ideal place to 
do the first part of the padding operation, 

  /******************************************************************************/
  /* hash state machine                                                         */
  /******************************************************************************/
  assign rd_word   = ini_blk || ini_blk_dly ||
                     (runblk_reg && ~|step_reg[5:4] && ~&step_reg[3:1]);
  assign step_done = &step_reg;

  always @ (posedge clk or negedge resetb) begin
    if (!resetb) begin
      hash_done   <= 1’b0;
      ini_blk     <= 1’b0;
      ini_blk_dly <= 1’b0;
      ini_msg     <= 1’b0;
      ini_msg_dly <= 1’b0;
      ld_hash     <= 1’b0;
      rd_dly      <= 1’b0;
      runblk_reg  <= 1’b0;
      runmsg_reg  <= 1’b0;
      step_reg    <= 6’h00;
      end
    else begin
      hash_done   <= ld_hash && !runmsg_reg;
      ini_blk     <= !ini_blk && !ini_blk_dly && !runblk_reg && ((blk_start && runmsg_reg) ||
                                                                (msg_start && !runmsg_reg) ||
                                                                 padding_reg);
      ini_blk_dly <= ini_blk;
      ini_msg     <= !ini_msg && !ini_msg_dly && !runblk_reg && msg_start && !runmsg_reg;
      ini_msg_dly <= ini_msg;
      ld_hash     <= step_done;
      rd_dly      <= rd_word;
      runblk_reg  <= !step_done && (ini_blk_dly || runblk_reg);
      runmsg_reg  <= !msg_done  && (ini_msg_dly || runmsg_reg);
      step_reg    <= (runblk_reg) ? (step_reg + 1’b1) : 6’h00;
      end
    end

LISTING 6  
The hash state machine reads 16 
words from the input FIFO and keeps 
track of the 64 rounds of the hash 
algorithm. FIFO reads are pipelined 
to account for the timing of common 
FPGA FIFO primitives.

SHA-256 & BITCOINS
SHA-256 is central to the operation of the Bitcoin digital 

currency. The bitcoin blockchain, which can be thought 
of as a ledger recording all bitcoin transactions, must be 
periodically verified. Bitcoin miners do this verification 
using SHA-256.

The way this works is that a nonce (number used once), 
plus all of the new bitcoin transactions, are appended to 
the existing blockchain and the resulting hash value is 
calculated. This process continues, with a different nonce, 
until a hash value is found that meets certain requirements, 
namely that it begins with some number of zero bits. The 
bitcoin miner who first finds a nonce that results in such a 
hash value is rewarded with some newly-created bitcoins 

and the blockchain is then considered verified to that point. 
A short time later, this process is repeated.

Finding a hash value that meets the leading-zeros 
requirement requires a brute-force search, using a lot of 
nonces. Early bitcoin miners used regular computers to do 
the searching, but the process quickly migrated to dedicated 
FPGA-based machines and then to ASIC-based machines. 
Where a CPU-based machine might do 1 million hashes per 
second (MHash/s), FPGA machines might reach one GHash/s 
and an ASIC machine might reach 1,000 GHash/s. Multiply 
these rates by the number of bitcoin miners, and that’s a 
lot of hashes.
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when the last word, or part of a word, of the 
message is written. Even though the standard 
allows for completely arbitrary message 
lengths, this design only handles byte-aligned 
messages. It’s easy to modify the design to 
account for arbitrary bit length messages, but 
I’ll leave that as an exercise for the reader, 
because the feature is rarely necessary.

The host interface side of the FIFO is also 
the best place to implement the counter for 
the message length. The standard provides 
for a 64-bit field for message length, but I’ve 
only implemented a 40-bit counter here. That 
is sufficient for a terabyte message length, so 
it should be good enough.

The bulk of the pad insertion is done in the 
logic shown in Listing 5. The unaligned last-
word cases were handled in the bus interface, 
but the case of a word-aligned message must 
be accounted for in this section, along with 
case of a zero-length message. A simple 
state machine is required to keep track of 
the inserted padding, and providing the pad 
data to the hash state machine, while at the 
same time intercepting the FIFO read strobe 
from the hash state machine. The padding 
information finishes with the value from the 
message length counter, which complicates 
things if the message ends very close to a 
512-bit block boundary. The pad1_msb signal 
is required to detect this condition. The 
message is padded even if it naturally ends 
on a block boundary.

Compared to the bus interface and the pad 

insertion logic, the hash state machine shown 
in Listing 6 is pretty simple. It’s basically 
just a 6-bit counter that tracks the sixty-
four steps of the hash algorithm. The extra 
registers are required to properly start up the 
state machine at the beginning of a message 
or the beginning of a block, and to account for 
the timing of the FIFO read operations.

The standard talks about a “message 
schedule of sixty-four 32-bit words,” which 
can be very disconcerting until you realize 
that only 16 of these values need to be 
available for any given step of the algorithm. 
The logic for the message schedule is shown 
in Listing 7. This is just a recirculating buffer, 
where the wi_reg register holds the message 
schedule word for the current step, and the 
rest of the buffer holds the values for the 
previous 15 steps. During the first 16 steps 
of the algorithm this buffer is loaded with the 
16 words of the message block to be hashed, 
and for the remaining 48 steps the modified 
message data recirculates through this buffer. 
At each recirculation step the wi_reg register 
is loaded with a combination of four of the 
other entries in the message schedule. Two of 
these entries are scrambled using two of the 
sigma functions shown earlier, and then the 
four values are added together to form the 
new word of the message schedule.

The bulk of the hash algorithm is 
implemented in the working registers, 
shown in Listing 8. This listing also contains 
the actual 256-bit hash register. The eight 

  /******************************************************************************/
  /* message schedule                                                           */
  /******************************************************************************/
  assign wi_nxt = sigma_1(wim1_reg) + wim6_reg + sigma_0(wim14_reg) + wim15_reg;

  always @ (posedge clk) begin
    if (ini_blk_dly || runblk_reg) begin
      wi_reg    <= (rd_dly) ? msg_data : wi_nxt;
      wim1_reg  <= wi_reg;
      wim2_reg  <= wim1_reg;
      wim3_reg  <= wim2_reg;
      wim4_reg  <= wim3_reg;
      wim5_reg  <= wim4_reg;
      wim6_reg  <= wim5_reg;
      wim7_reg  <= wim6_reg;
      wim8_reg  <= wim7_reg;
      wim9_reg  <= wim8_reg;
      wim10_reg <= wim9_reg;
      wim11_reg <= wim10_reg;
      wim12_reg <= wim11_reg;
      wim13_reg <= wim12_reg;
      wim14_reg <= wim13_reg;
      wim15_reg <= wim14_reg;
      end
    end

LISTING 7 
The message schedule is loaded with 
the message data during the first 16 
rounds, and then the first stage of 
mixing occurs during the remaining 
rounds.



CIRCUIT CELLAR • SEPTEMBER 2015 #30224
FE

AT
U

RE
S

working registers are also arranged as a 
recirculating buffer, although modified values 
are injected into this buffer at two points. 
These modified values are created from two 

temporary variables, called t_1 and t_2. 
One of these temporary variables involves a 
five-input adder, which I have chosen to code 
directly even though this may or may not be 
the best approach for logic synthesis. These 
temporary variables use the remainder of the 
functions shown earlier, along with the step-
specific constant.

The working registers only use the current 
message schedule value, wi_reg, which is why 
the working registers can operate during the 
first sixteen steps while the message schedule 
is being loaded with the message data. The 
working registers and the hash register are 
loaded with the initial hash values at the start 
of a message, and the working registers are 

  /******************************************************************************/
  /* working variables                                                          */
  /******************************************************************************/
  assign t_1 = h_reg + bsigma_1(e_reg) + ch(e_reg, f_reg, g_reg) +  
        k256_const(step_reg) + wi_reg;
  assign t_2 = bsigma_0(a_reg) + maj(a_reg, b_reg, c_reg);

  always @ (posedge clk) begin
    if (ini_msg_dly || ini_blk_dly || runblk_reg) begin
      a_reg  <= (ini_msg_dly) ? `IHV_0 :
                (ini_blk_dly) ? hash_reg[255:224] : (t_1 + t_2);
      b_reg  <= (ini_msg_dly) ? `IHV_1 :
                (ini_blk_dly) ? hash_reg[223:192] : a_reg;
      c_reg  <= (ini_msg_dly) ? `IHV_2 :
                (ini_blk_dly) ? hash_reg[191:160] : b_reg;
      d_reg  <= (ini_msg_dly) ? `IHV_3 :
                (ini_blk_dly) ? hash_reg[159:128] : c_reg;
      e_reg  <= (ini_msg_dly) ? `IHV_4 :
                (ini_blk_dly) ? hash_reg[127:96]  : (d_reg + t_1);
      f_reg  <= (ini_msg_dly) ? `IHV_5 :
                (ini_blk_dly) ? hash_reg[95:64]   : e_reg;
      g_reg  <= (ini_msg_dly) ? `IHV_6 :
                (ini_blk_dly) ? hash_reg[63:32]   : f_reg;
      h_reg  <= (ini_msg_dly) ? `IHV_7 :
                (ini_blk_dly) ? hash_reg[31:0]    : g_reg;
      end
    end

  /******************************************************************************/
  /* hash value                                                                 */
  /******************************************************************************/
  always @ (posedge clk) begin
    if (ini_msg_dly || ld_hash) begin
      hash_reg[255:224] <= (ini_msg_dly) ? `IHV_0 : (hash_reg[255:224] + a_reg);
      hash_reg[223:192] <= (ini_msg_dly) ? `IHV_1 : (hash_reg[223:192] + b_reg);
      hash_reg[191:160] <= (ini_msg_dly) ? `IHV_2 : (hash_reg[191:160] + c_reg);
      hash_reg[159:128] <= (ini_msg_dly) ? `IHV_3 : (hash_reg[159:128] + d_reg);
      hash_reg[127:96]  <= (ini_msg_dly) ? `IHV_4 : (hash_reg[127:96]  + e_reg);
      hash_reg[95:64]   <= (ini_msg_dly) ? `IHV_5 : (hash_reg[95:64]   + f_reg);
      hash_reg[63:32]   <= (ini_msg_dly) ? `IHV_6 : (hash_reg[63:32]   + g_reg);
      hash_reg[31:0]    <= (ini_msg_dly) ? `IHV_7 : (hash_reg[31:0]    + h_reg);
      end
    end

LISTING 8 
The eight working variables are 
arranged as a recirculating buffer, 
and this is where the bulk of the 
mixing occurs. At the end of the 64 
rounds the resulting value is added to 
the previous hash value.
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loaded with the current hash value at the start 
of a new 16-word block. At the end of each 
16-word block, the contents of the working 
registers are added, word by word, to the 
value in the hash register. As you can see, the 
hash calculation itself is really pretty simple, 
with the message data flowing through a pair 
of recirculating buffers to create the hash 
value.

VERIFICATION
Even though this implementation of the 

hash algorithm is pretty simple, verifying that 
the implementation is correct can be a real 
challenge, because it isn’t easy to figure out 
what the correct hash value should be for an 
arbitrary message. To help with this process 
NIST provides a set of sample messages along 
with the correct hash value. The test bench 
that is available on the Circuit Cellar FTP site 
exercises this design with a subset of this set 
of messages and automatically checks the 
resultant hash value against the published 
hash value.

NIST has also set up the Secure Hash 
Standard Validation System (SHAVS) for 
verifying implementations of the standard. 
With this system, a testing laboratory 
generates a series of messages, which are 
hashed by the implementation being tested. 
These hash values are returned to the testing 
laboratory, which verifies correctness, and 
certifies the implementation. The series 
of messages provided includes all short 
messages from zero to the block size in 
length, a series of long messages up to one 
hundred blocks in length, and a very long 
message one hundred thousand blocks in 
length. A hardware implementation like the 
one presented here really only needs to be 
checked using the short and long messages. 
The other cases tested by SHAVS are only 
necessary for software implementations 
where buffer issues might be present. Even 
so, to be certified an implementation must 
correctly generate the hash for every test 
message.

SO, DOES IT WORK?
Given the lack of a mathematical 

foundation for the algorithms in the standard, 
I was curious about how well SHA-256 actually 
worked. So I instrumented the simulation test 
bench and did some testing.

In the first set of tests I checked the hash 
values for every possible bit combination in 
each individual byte position in a word. The 
results of these tests are shown in Table 1. 
The “byte 0” case is for a single-byte message, 
the “byte 2” case is for a 16-bit message of 
the form 0x00nn, the “byte 3” case is for a 
message of the form 0x0000nn, and the 

“byte 4” case is for a message of the form 
0x000000nn. Since the number of ones and 
zeros in the resulting hash should be fairly 
evenly distributed, I counted the number 
of ones in each hash result. In all cases the 
average was close to half the bits in the 
resulting hash value being one. Clearly SHA-
256 does a very good job of mixing up the 
results across the entire 32-bit word.

For the second set of tests, I used the 
same set of input messages, with Gray code 
ordering, and then checked for the number 
of bit positions in the resulting hash values 
that changed with each one-bit change in the 
input message. The results of these tests are 
shown in Table 2. Again, SHA-256 does a very 
good job, with each single-bit change in the 
input message leading to an average of half of 
the bits in the resulting hash value changing.

One final test that would be interesting 
would be to try every possible 256-bit input 
message and check for identical hash results. 
Ideally there should not be any, but since this 
would involve 2256 simulation runs, I’ll have to 
skip this test.

WRAPPING UP
For all of its power, the SHA-256 algorithm 

is fairly easy to understand once the individual 
operations and data flow are clear. However, 
the SHS standard specifies the operations 
with no reference to how the algorithm is 
implemented, which obscures what is going 
on during the hashing process. Hopefully I’ve 
made this hashing process a little clearer, and 
now you can be confident that your data really 
is protected. 

Mean Std Dev Median Minimum Maximum
byte 0 128.7 7.7 129 103 149
byte 1 128.1 8.1 129 104 148
byte 2 127.5 7.8 127 104 158
byte 3 128.1 8.3 128 99 147

TABLE 1 
The statistics for the number of one’s in the message digest for all 256 possible values in each individual 
byte position.

Mean Std Dev Median Minimum Maximum
byte 0 127.7 7.6 127 110 148
byte 1 128.2 7.7 128 109 155
byte 2 127.9 8.7 128 108 158
byte 3 127.5 8.3 128 108 153

TABLE 2 
The statistics for the number of bit positions in the message digest that toggle for all 256 possible single-bit 
toggles in each individual byte position.
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Most of the time, we power our projects 
from the AC line. Whether it is a one-off 

prototype or a simple product, the easiest 
way to power a small microcontroller circuit is 
with a wall-wart DC supply and a regulator of 
some kind on the board. But what about those 
cases where you need to be able to operate 
from batteries? More and more consumer 
electronics, from games to smartphones, are 
operated from battery.

Microcontroller applications that need 
battery operation can range from MP3 players 
to hand-held temperature monitor to a remote 
device that has to wake up once a day to log 
and possibly transmit instrument readings to 
a monitoring station. How do you power such 
devices? What things do you need to consider 
in designing for that environment?

Battery-based operation is a big topic, so 
in the first part of this article series, I will 
look at three aspects of it: reverse battery 
protection, microcontroller selection, and 
power management.

REVERSE BATTERY PROTECTION
If you run something on batteries, sooner 

or later someone is going to try to install a 
battery backwards. Although your 40-year-
old transistor radio might easily survive 
reversing the battery, modern microcontroller 
electronics is not quite so forgiving. A circuit 

run on batteries has to protect in some way 
from battery reversal. There are a few ways 
to do that. Let’s consider each one.

Solder the battery into the circuit: Although 
it may seem extreme, this absolutely prevents 
battery reversal unless the user tries to 
replace the battery by unsoldering it. It also 
implies the need for a rechargeable battery 
and an accompanying charging circuit, and 
some kind of external power jack to charge 
the battery. For a remote site, it probably 
means a solar charging system. All that is 
beyond the scope of this article, but there may 
be situations where a soldered rechargeable 
battery is the simplest solution, especially if 
you don’t have to provide fast recharge of the 
battery.

In a very low-power circuit intended for a 
single use (think of a remote data logger that 
will log data until the battery is exhausted 
and then be retrieved later), you may not need 
the charging circuit. But such applications 
are rare. Usually you will want to be able to 
replace or recharge the battery.

Use a battery that can only be installed 
one way: This is what most cell phones do. 
The battery pack is not symmetrical and the 
battery can only be inserted one way that 
will allow it to make contact with the circuit. 
Again, a simple solution, but one that requires 
a custom battery. It is really only suitable for 

Running on Battery (Part 1) 

Sometimes you might need to power a small 
microcontroller circuit with batteries. In this 
article, Stuart explains how to protect against 
reverse battery voltage, select a microcontroller, 
and manage power.

By Stuart Ball (US)

Battery-Powered 
Microcontroller Circuits
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high-volume devices, unless you want to use 
a battery from a real cell phone. That might 
be a reasonable solution if you only need a 
handful of them so you can swap the battery 
at a remote site once a month. 

There are some off-the-shelf solutions 
that get close to this. Tadiran and Dantona 
(and others) make battery packs that have 
wire leads and polarized connectors. These 
aren’t cheap, and you aren’t going to pick up 
a replacement battery at your local Walmart. 
But they solve the battery reversal issue, and 
might be a solution for something that isn’t 
going to need battery replacement very often.

Use a coin cell: An example would be the 
standard CR2302 battery. Some coin cell 
holders have a contact on the top and bottom, 
which does allow the battery to be inserted 
so that the polarity is reversed. But if the 
positive contact is on the side of the holder 
instead of on the top, then it makes contact 
with the edge of the battery instead of the top 
surface. In those holders, a reversed battery 
is not an issue; both contacts connect to the 
same terminal of the battery if it is inserted 
backward. The BS-7 from Memory Protection 
Devices is an example of such a battery 
holder. Renata and others make similar parts. 
Of course, your circuit must be capable of 
running from one or more coin cells to make 
this approach practical.

Use a diode: This is the most foolproof way 
to prevent damage due to battery reversal if 
you are using standard AA, AAA, C, or similar 
batteries. A Schottky diode is placed in 
series with one of the battery leads (usually 
the positive) so that it inhibits current flow 
in the reverse direction. The catch is that 
the diode will have a forward voltage drop 
typically between about 0.3 and 0.5 V. For a 
microcontroller operating from a 9-V battery 
and a regulator, this probably won’t be an 
issue. But if you are operating from a couple 
of AA batteries, this is a significant portion of 
the available battery voltage.

Use a MOSFET: When the battery is inserted 
correctly, the MOSFET is turned on and passes 
current to the circuit. If the battery is inserted 
backward, the gate is reverse-biased and the 
MOSFET is off. This approach is great if you 
are operating from a battery of 9 V or greater. 
The problem with operating from batteries in 
the 3-V range is finding a MOSFET that has 
sufficiently low on-resistance and sufficiently 
low gate-source threshold voltage. MOSFETs 
that have low gate-source threshold voltage 
typically have relatively high on-resistance, so 
the drop across the MOSFET can approach that 
of a Schottky diode. However, this approach 
may work if your operating current is low 
enough. There are a few MOSFET transistors, 
such as the Fairchild FDN306P that are rated 

for 1.8-V operation with reasonably low on-
resistance. Figure 1 shows both a series diode 
and a P-channel MOSFET used for reversal 
protection.

MICROCONTROLLER SELECTION
The key to battery operation is to reduce 

the current drawn by the circuit as much 
as possible. You also need to accommodate 
the unique characteristics of a battery-
operated environment. Let’s review the key 
requirements for the microcontroller.

Low-power operation: You want the 
microcontroller to operate at minimal 
current, consistent with the requirements 
of the application. Availability of low-power 
sleep modes may be important; more about 
that later.

Ability to operate over a range of voltages: 
The Atmel ATXmega324A operates from 
1.6 to 3.6 V. This allows the part to work 
as the battery ages and accommodates an 
external diode (if needed) for battery reversal 
protection. Some microcontrollers have tight 
operating voltage ranges, such a 3.3 V only. 
These can be difficult to use in a battery 
circuit.

Low-power clock: Many microcontrollers 
have low-power internal clocks. Many will 
operate using an external 32-kHz watch 
crystal. In general, parts that operate with 
high-speed external clocks are going to use 
significant power even in a low-power state. 
Again, using the ATXmega324A as an example, 
the maximum idle current using a 32-kHz 
external crystal and 3-V supply is 4 µA. Using 
a 2-MHz external crystal, the maximum idle 
current is 390 µA. Although that isn’t a lot, it’s 
a difference of almost 100:1. 

Use of a low-power, external clock either 
means low-frequency operation or an internal 
PLL to multiply the clock to a reasonable 

FIGURE 1
Either a series Schottky diode or a 
P-channel MOSFET can be used to 
protect the circuit against a reversed 
battery.
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internal operating frequency. Many 
microcontrollers, including the ATXmega 
series, do have internal PLLs that can multiply 
an external 32-kHz clock to a much faster 
operating frequency.

POWER MANAGEMENT
Some battery-powered devices are only 

used intermittently. An example would be 
a piece of test equipment such as a DVM or 
some piece of portable RF test gear. In that 
case, the easiest way to manage the power 
is to use an on-off switch; you turn the unit 
on when you want to use it. For devices like 
that, you could use a 9- or 12-V battery and a 
regulator to supply power to the circuit.  

On the other hand, imagine that you had 
to actually turn your smartphone off when 
you weren’t using it. Aside from the problem 
of not being able to receive incoming calls 
and messages, you would have to wait for 
the phone to start up, register with the cell 
towers, and get ready to operate when you 
wanted to use it.

A smartphone is an extreme example since 
it contains a complete operating system and 
a number of internal peripherals that have 
to be initialized. But the principle applies to 
other cases. Sometimes you want to leave the 
device powered on all the time. The remote 
data logger that I mentioned earlier is one 
example. For that kind of application, you 
want to get as many hours of operation as 
possible from a set of batteries. This typically 
means being deliberate about power usage. 
Some power management considerations 
include the following.

Sleep mode: Many microcontrollers have 
multiple sleep modes. For example, the 
ATXmega32A4 has five different sleep modes 
with varying degrees of power usage and 
varying capabilities. In Power-down mode, 
the internal real-time clock will not wake the 
device up but an external interrupt, such as a 
button push, will. This would be suitable for a 
device that needs to wake up when the user 
presses a key.

In the ATXmega324A Power-save mode, 
the RTC still operates and can wake the 
device up. This mode would be suitable for 
regular sampling of temperature or some 
other external sensor, where there is no user 
to press a button. The point is that the part 
has varying power modes, with various power 
consumption levels. Selection of a part with 
power modes suitable to your application 
can have significant impact on the power 
consumption.

Peripheral power-down: Again, using the 
ATXmega as an example, the part has sleep 
modes with specific functionality. But it is 
also possible when actively operating to shut 

down specific peripherals such as the analog-
to-digital converter. This allows the part to 
reduce operating current when in an active 
mode. In some situations, sleep mode may 
not be needed if the active mode current can 
be sufficiently reduced.

Avoid power-hogging design techniques: 
Some things we take for granted in AC-
powered designs turn out to be power hogs 
in battery-operated designs. For example, 
it is easy to generate a reference voltage 
lower than the supply voltage with a resistive 
voltage divider. But any resistor connected 
directly between the battery terminals is 
going to draw current, regardless of the 
microcontroller state. Either avoid these or 
give the microcontroller the ability to remove 
power from the voltage divider when it goes 
into a low power mode.

Make sure that output drive is removed 
when entering a reduced-power mode. For 
example, you might drive a relay using an NPN 
transistor with a resistor in the base, which is 
in turn driven by a microcontroller output pin. 
Unless the pins float in sleep mode, leaving 
this pin high will leave the transistor turned 
on and the relay energized. You would want 
to configure that pin as a low output before 
entering sleep mode. Even if the transistor 
is just driving a logic signal, such as a case 
where it is translating between 3.3 and 5 V, 
the current drain from a high microcontroller 
output through the limiting resistor can be 
many times the sleep mode current of the 
microcontroller.

Low battery sensing: The easiest way to 
detect a low battery is to use a microcontroller 
with an internal analog-to-digital converter 
and read the battery voltage. This can be 
problematic on some microcontrollers if they 
don’t have an internal voltage reference for 
the ADC. Ideally, you want a microcontroller 
with an internal reference that is lower than 
the battery voltage. Alternatively, you can use 
an external reference and turn it off when you 
aren’t reading battery voltage.

Usually microcontroller ADCs will not 
work if the input voltage is higher than the 
reference. So you can use a voltage divider 
to reduce the battery voltage to a level the 
ADC input will accept. You will want to switch 
the positive side of the divider off to avoid 
permanent current drain. The microcontroller 
can drive a transistor to switch the high side 
of the voltage divider on and off. Depending 
on the accuracy you need, you may need to 
compensate for the transistor voltage drop. 
Some microcontrollers include a brown-out 
sensing circuit to detect low supply voltage. 
Typically this generates an interrupt or reset.

PWM relays: If you are driving a relay, drive 
it with 100% duty cycle to pull it in, and then 
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reduce the duty cycle to hold the relay. Most 
relays require significantly less current to 
hold them closed than to close them. You may 
want to adjust the duty cycle to compensate 
for battery voltage as the battery drains. The 
same concept applies to any other peripheral 
component that is needed intermittently; turn 
it off when not actually in use.

Compensating for battery voltage loss: 
Say you are driving some LEDs in your circuit. 
If they are visual indicators, the decrease in 
brightness as the battery loses voltage may 
not be enough to notice. But if the LED is 
used to drive an optical sensor, the reduction 
in drive may cause false readings. You could 
fix this by driving the LED with a constant 
current source, or by characterizing the LED 
(and sensor, if needed) over the operational 
battery voltage range, then use a look-up 
table in the firmware to compensate for 
changing battery voltage. Obviously, you need 
to be able to read the battery voltage for this 
to work.

Battery swapping: In a device that is 
always on and isn’t using rechargeable 
batteries, the user will eventually change 
the battery. This can produce a lot of make-
break cycles of the power as the old battery 
is removed and the new battery is inserted. 
So, depending on your application, when 
power is applied, you might need to introduce 

a significant delay of half second or more to 
let everything stabilize. You don’t want to be 
writing information to the microcontroller 
EEPROM when power is suddenly removed. 
One way around this is to have a large enough 
capacitor to hold the voltage up for a bit, and 
then sense the voltage in the firmware. If you 
see it drop rapidly, go into some kind of safe 
mode.

Active duty cycle: The battery drain in 
the various sleep modes of a microcontroller 
is low. But battery life is dependent on the 
average current drain, which includes the time 
that the microcontroller is active. Minimizing 
the active time and maximizing the intervals 
between active times will produce the longest 
battery life. You can’t control this interval if 
the active time is initiated by a user input. 
But if an internal RTC or other timing event 
initiates the active state, then you have 
some control over the average current drain. 
Waking up the microcontroller 10 times a 
second will take less total power than waking 
it up 100 times per second, if the application 
requirements give you a choice.

OTHER CONSIDERATIONS
Let’s consider some additional problems 

and fixes. 
Amplifiers: In the old days of transistor 

electronics, it wasn’t uncommon to see 
inexpensive radios and walkie-talkies make 
a “motorboating” sound when the battery 
got low. The audio circuits depended on the 
low impedance of the battery to prevent the 
battery from becoming part of an oscillator 
circuit. When the battery (typically a 9-V 
battery) aged, the circuit would become a 
blocking oscillator.  

The point is that if you have amplifiers 
in your circuit, you want to be sure that you 
have enough capacitance across the positive 
and negative supply leads to allow the circuit 
to operate without oscillating even when the 
battery is weak. And if you are using a diode 
or MOSFET for reverse polarity protection, 
the capacitance goes on the circuit side of the 
protection, not on the battery side.

Drive levels: In an AC-powered circuit, we 
can easily generate 5 V or some other voltage 
to drive things like FETs. In a battery-operated 
circuit, it may be difficult to generate enough 
voltage to drive the gate of a MOSFET to its 
switching threshold voltage. What happens to 
the ability to drive the gate of a MOSFET when 
the battery is nearly drained? You can add 
a voltage doubler or other DC-DC converter 
if the drive level is marginal, but that adds 
complexity, cost, and additional current drain. 
This sort of problem isn’t insurmountable, 
but you may need to take it into account. 

Flyback diodes: In the unusual event that circuitcellar.com/ccmaterials

SOURCE

ATXmega324A Microcontroller
Atmel Corp. | www.atmel.com

FIGURE 2
Flyback protection using a diode. The positive supply must be able to dissipate the energy from the inductive 
device without generating excessive voltage to the microcontroller.

http://www.atmel.com
www.circuitcellar.com/materials
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you are driving a relay, solenoid, motor, or 
other inductive electromechanical device, a 
diode is often used from the driving device 
(usually a transistor) to the supply (see 
Figure 2).  When the transistor is turned off, 
the flyback voltage from the inductor can 
damage the transistor; the diode limits this 
voltage to the supply voltage. The problem is 
that in a battery-operated circuit with a diode 
or MOSFET for battery reversal protection, the 
energy has no place to go and can cause a rise 
in the supply voltage to the microcontroller, 
high enough to damage it.  

You can fix this with a sufficiently high 
capacitance from the supply to ground, 
high enough to absorb the energy without 
excessive voltage rise. You could also use 
a Zener diode from the supply to ground if 
you can select a value that is higher than the 
maximum battery voltage but lower than the 
safe voltage of the circuit. A microcontroller 
that can operate from 2.7 to 5 V, for example, 
could operate at 3 V on battery, but have a 
5-V Zener diode to protect against excessive 
flyback transients. 

A similar situation could occur with an 
external input (such as an RS-232 signal) that 
is clamped to the positive supply. In such 
cases, you would want to clamp to a fixed 

voltage (such as a Zener diode) rather than 
the positive supply voltage. The important 
thing is to compensate for situations that can 
produce excessive voltages on the positive 
supply. The positive supply in electronic 
circuits is often treated as a low impedance 
to ground; there are situations where this is 
not the case, especially in battery-operated 
circuits.

Testing: You will want to test your circuit 
with dead batteries, nearly dead batteries, 
and new batteries. You want to be sure it 
works over the entire range you intend. An 
AC-powered circuit just needs to work if the 
power supply is good; a battery circuit needs 
to operate over some range of power supply 
voltage. An AC-powered circuit has a supply 
that is either on or off; a battery-powered 
circuit has a “supply” that degrades over time.

BATTERY POWER
Running on batteries is more complicated 

than using AC power. But for applications that 
demand it, a careful design makes it possible. 
In the next part of this article series, we’ll 
consider the topics of combined AC/battery 
operation, single-cell operation, rechargeable 
batteries, and battery life estimation. 
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As we detailed the first article in this series, 
we can boast to our local teenager that 

“WE” have developed an Android application. 
Last month, we explained how we added “just 
enough additional code” (JEAC) to record and 
play back .3GPP files. As a result, we could 
say the following to a neighbor at a backyard 
BBQ: “We’re not imagining things. Look, there 
are really local urban noise nuisances.”

This time we are going quantitative with 
an audio record-and-analysis update of the 
WAT_AN_APP application for “Things that 
Go Boom at Night” (TGBN). This enables us 
either to request lots of commiseration as the 
community noises are really bad or boast that 
we have more ghosts going “BOO(m)” at night 
than anybody else! 

QUICK RECAP
The idea is to leave the TGBN device 

running over a weekend. We want to capture 
a 7-s sound recording if the community 

noise sound level gets above 
background level. When 
the sound stays high in 
intensity, a warning message 
(Android toast) appears on 
our device’s screen. As a 
precaution, a scary “Boo” 
kind of sound will be output 
to intimidate any ghosts that 
might be present as we head 
off in the opposite direction.  

The key elements of 
our app so far are outlined 
in Listing 1. We kept the 
line numbers used in the 
previous articles to help you 
find the things that need to 

be updated. We’ve extended the MainActivity 
class to add the new SoundAnalysis activity 
for the TGBN update (Lines 30–33). To activate 
the TGBN section, there is another button to 
our screen layout file activity_main.xml (see 
Listing 2, Lines 130–139).   

SCREEN, SOUND, & COMPATIBILITY
Figure 1a shows a screen with text to 

indicate the numbers of records remaining 
(see Listing 3, Lines 1710–1716) and TGBN 
sounds detected (Lines 1720–1727) together 
with the recording time remaining (Lines 
1730–1739). These TextView widgets are 
updated by the activity’s code.  

Figure 1b shows that still with four 
recording sessions to go, our sound analysis 
indicates that one TGBN sound has been 
detected. To avoid setting off false alarms, 
we must remain “quiet and collected.” When 
ghost hunting, does “collected” mean in 
complete control or huddled together in a 
corner? 

Each time we find that we have recorded 
a sound much larger than the background 
level, we will generate the “BOO” sounds to 
intimidate the local ghosts. Finally, we have 
the application display a message “Captured” 
and report the results of our sound analysis. 
If you feel in a Halloween mood, use our 
current app to record your own “Boo” sound 
in a .3GPP format. Otherwise, you can grab 
scary sounds from various website such as 
caseyscaverns.com/4/halloween5.html. For 
compatibility with our code, the sound file 
needs to be stored in a new WAT_AN_APP 
folder named “raw.”

Before proceeding, check the Android 
Manifest file in the project to make sure that 

Sound Ecology and Acoustic 
Health (Part 3)

Last month, Adrien and Mike tackled the topics of recording and playing 
back audio .3GPP files. In this article, they get quantitative with an audio 
record and analysis update for the WAT_AN_APP application.

By Adrien Gaspard and Mike Smith (Canada)

A Quantitative Application for WAT_AN_APP

FIGURE 1
Here you see the (a) the initial sound analysis screen and (b) the 
detection of a BOOm using the TGBN detector.

a)

b)
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the android minimum SDK version of our 
application is set to 14 for compatibility issues 
with the code we are going to implement. 
(Refer to Part 2 of this article series: Listing 7, 
Line 3006 of WAT_AN_APP\AndroidManifest.xml.)

TGBN IMPLEMENTATION
Implementing our new SoundAnalysis 

activity requires a number of steps. To prevent 
carpal tunnel syndrome, remember to sit up 
straight in your chair and to practice the 
finger yoga exercises noted in the previous 
article. An alternative is to access the code on 
the Circuit Cellar FTP site.

A new ints.xml file in the WAT_AN_APP\
res\values folder (see Listing 4) shows the 
parameters needed to control our widgets. 
These are the recording time (Line 2822) 
and the number of recordings (Line 2830). 
To avoid just collecting background noises, 
set the impulse threshold for when to start 
recording (Line 2840). You will have to play 
around with the sound threshold for when 
you consider that a TGBN sound has been 
detected (Line 2841). The parameters needed 
for our next article are defined Lines 2850 to 
Line 2852.

The actual SoundAnalysis activity is 
implemented in Listing 5. After having 
imported all the libraries, we pop up the 
widgets to display the number of records 
remaining (Line 551), TGBN sounds detected 
(Line 552), and recording time remaining 
(Line 553). A variable captureAudio is 
defined to capture the audio (Line 555), and 
a MediaPlayer mediaPlayer is used to play 
the scary sound when a TGBN sound has 
been detected (Line 556). The scary sound 
“boo.3GPP” from the “raw” folder is linked 
to the MediaPlayer in the onCreate() method 
(Line 603). All the methods that are going to 
be used are summed up in Listing 5.

The article 2 activity used a MediaRecorder 
recorder to allow us to capture and listen to 
a sound. The recorder tracking TGBN sound 
is different than the one implemented in 
the previous article, as it is used to record 
a sound in a room and store its data into a 
buffer. We are no longer just interested in 
listening to the recorded sound. With this 
quantitative analysis we need to measure the 
number of bizarre louder sounds. If you are 
interested in listening to the captured TGBN 
sounds then you could do that with the use 
of an AudioTrack. This class allows streaming 
of the PCM audio buffer to the audio sync for 
playback as explained on developer.android.
com/reference/ media/AudioTrack.html. 

The onStart() method from 
Listing 6 contains the code required to 
initialize the three TextView widgets, which 
display the number of records available (6) 

and TGBN sound detected (0) when the activity 
starts. We execute the captureAudio class 
from this method (Line 758). The onPause() 
method (Lines 800–804) is called when the 
activity goes into the background, but has 
not been killed (stopped) and turned into a 
spirit yet. The audio capture is cancelled in 

    package com.wat_an_app;  // MainActivity.java
    // SAME AS Article 1, Listing 1, Lines 2 to 5

    // Cause display of MainActivity screen layout
    public class MainActivity extends Activity{
     // SAME AS Article 1, Listing 1, Lines 11 to 15
        public void AudioRecordPlayback(View v){
          // SAME AS Article 1, Listing 1, Lines 21 to 23
  
        // New SoundAnalysis Activity 
30.     public void SoundAnalysis(View v){ 
31.  Intent beginSoundAnalysis = 
              new Intent(this, SoundAnalysis.class);
32.  startActivity(beginSoundAnalysis);
33.     }
    }

LISTING 1
New SoundAnalysis activity, which is called from MainActivity.java in the WAT_AN_APP\src\ folder

     <!--Used by MainActivity -->
     <RelativeLayout   
     xmlns:android=http://schemas.android.com/apk/res/android
     ... <!--  SAME AS Article 1, Listing 2, Lines 102 to 105 -->
        
            <!--Greeting text-->
            <TextView
               <!-- SAME AS Article 1 Listing 2 Lines 111 to 116-->
            />    
    
            <!--Start activity button for AudioRecordPlayback-->    
            <Button
               <!--SAME AS Article 1 Listing 2 Lines 121 to 128 -->
            />    

      <!--New Button to start SoundAnalysis activity -->
130.  <Button
131.   android:id= “”@+id/start_detecting_TGBN”
132.   android:layout_width=”wrap_content”
133.   android:layout_height=”wrap_content”
134.   android:layout_centerVertical=”true”
135.   android:layout_centerHorizontal=”true”
136.   android:layout_below=”@id/start_WAT_AN_APP”
137.   android:text=”@string/press_to_start_detecting_TGBN”
138.   android:onClick=”SoundAnalysis” 
139.  />

         </RelativeLayout>

LISTING 2
New layout details to be inserted into activity_main.xml file in the WAT_AN_APP\res\layout folder

http://schemas.android.com/apk/res/android
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LISTING 3
activity_sound_analysis.xml layout file 
from the WAT_AN_APP\res\layout 
folder

       <!--Used by SoundAnalysis activity -->
1700.  <RelativeLayout  
1701.   xmlns:android=”http://schemas.android.com/apk/res/android”
1702.  <!-- COPY FROM Article 1, Listing 2 Lines 102– 105 -->  

1710.  <TextView
1711.   android:id=”@+id/number_records”
1712.   android:layout_width=”wrap_content”
1713.   android:layout_height=”wrap_content”
1714.   android:layout_centerHorizontal=”true”
1715.   android:layout_centerVertical=”true” 
1716.  />  

1720.  <TextView
1721.   android:id=”@+id/number_tgbn_sounds”
1722.   android:layout_below=”@+id/number_records”
1723.   <!-- COPY FROM Article 3, Listing 2 Lines 1712 to 1715--> 
1727.  />    
   
1730.  <TextView
1731.   android:id=”@+id/textViewTime”  
1732.   android:layout_above=”@+id/number_records”
1733.   <!--COPY FROM Article 3, Listing 2 Lines 1712 to 1715 --> 
1737.   android:layout_marginBottom=”17dp”
1738.   android:textSize=”25sp”
1739.  />

1799.  </RelativeLayout>

2800.  <?xml version=”1.0” encoding=”utf-8”?>
2801.  <resources>

         <!-- AudioRecord parameters -->
2810.    <integer name = “sample_rate”>8000</integer>   
2811.    <integer name = “num_channels”>1</integer>

         <!-- Defines the buffer length for sound detection -->
2820.    <integer name = “detect_buffer_length”>256</integer>
2821.    <!-- Defines the capture time after impulse is detected -->
2822.    <integer name = “capture_time”>7</integer>

         <!-- Number of sounds we want to record -->
2830.    <integer name = “num_records”>6</integer>
2831.    <integer name = “num_tgbn”>1</integer>
2832.    <integer name = “number_tgbn_scratch”>0</integer>

         <!-- Threshold at which we detect a sound above back-ground
             and at which we detect a TGBN sound -->
2840.    <integer name = “detect_threshold_impulse”>10000</integer>
2841.   <integer name =   
                   “detect_threshold_tgbn_sound”>25000</integer>

        // SPOILER ALERT – Needed in Articles 4 and 5
2850.   <integer name = “samples_per_bin_freq”>32</integer>
2851.   <integer name = “samples_per_bin_time”>4</integer>
2852.   <integer name = “playChirp”>1</integer>

2899.  </resources>

LISTING 4
Creation of the ints.xml file in the 
WAT_AN_APP\values folder

http://schemas.android.com/apk/res/android%E2%80%9D
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500.    package com.wat_an_app;
501.    import java.util.concurrent.TimeUnit;
502.    import android.media.AudioFormat;
503.    import android.media.AudioRecord;
504.    import android.media.MediaPlayer;
505.    import android.media.MediaRecorder.AudioSource;
506.    import android.os.AsyncTask;
507.    import android.os.Bundle;
508.    import android.os.CountDownTimer;
509.    import android.support.v7.app.ActionBarActivity;
510.    import android.widget.TextView;
511.    import android.widget.Toast;
512.    import com.wat_an_app.R;

550.    public class SoundAnalysis extends ActionBarActivity{
551.      TextView TextHandleNumberRecords;
552.      TextView TextHandleNumberTGBN;
553.      TextView textViewTime;
554.      AudioRecord recorder;
555.      CaptureAudio captureAudio;
556.      private MediaPlayer mediaPlayer; 
557.      final CounterClass timer = new  CounterClass(8000,1000);

600.      @Override protected void onCreate(Bundle savedInstanceState) {
601.          super.onCreate(savedInstanceState);
602.          setContentView(R.layout.activity_sound_analysis);
603.          mediaPlayer = MediaPlayer.create(this, R.raw.boo); 
604.      }

    // Methods and classes associated with public class SoundAnalysis
 
          // SPOILER ALERT – Leaving 605 – 749 for next article’s neat stuff 
 
    // @Override protected void onStart()
          // Method details in Listing 5 Lines 750 to 759
   // protected void onPause(){
         // Method details in Listing 5 Lines 800 to 804
   // public class CounterClass extends CountDownTimer {
        // Method details in Listing 6 Lines 850 to 862

   // private class CaptureAudio 
         // extends AsyncTask<Void,   Integer, Integer> {
   // protected void onPreExecute()
         // Method details in Listing 7 Lines 910 to 919
   // protected Integer doInBackground(Void ... params)
         // Method details in Listing 8 Lines 950 to 987
   // protected void onProgressUpdate(Integer ... data)
         // Method details in Listing 9 Lines 1200 to 1212
   // protected void onPostExecute(Integer data)
          // Method details in Listing 9 Lines 1250 to 1255
   // protected void onCancelled()
         // Method details in Listing 10 Lines 1300 to 1305
   // protected boolean detectImpulse(short[] samples) 
          // Method details in Listing 10 Lines 1350 to 1356
   // protected boolean detectTGBN(short[] samples) 
          // Method details in Listing 10 Lines 1400 to 1406
 1449.    }LISTING 5

SoundAnalysis.java – Definition of the 
variables for onCreate() method
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this method (Line 801). 
We based the countdown indicator from 

one on the Internet (see Listing 7), which 
will set a text “Captured,” indicating that the 
record is over (Listing 7, Lines 850–877). The 
onTick() method fires at regular intervals to 
show the number of seconds remaining until 
the recording finishes. onFinish() is called 
when the time is up to set the text “Captured” 
on the screen. Note that we will use an 
onTick()_Article4 method in our next article 
(Line 860), which has not been implemented 
yet. More details of the public constructors 
and methods used in this class are at 
developer.android.com/reference/android/os/
CountDownTimer.html#onTick(long).

There’s a special health feature available 
with this app!  Please note than the recorder 
only starts recording after a sound impulse 
above the background noise level has been 
detected. You can validate your finger yoga 
practice by showing you can snap your fingers 
together loud enough to test the app.

Now let’s consider some tricks or treats 
for Android.

 ASYNCTASK: PRE-EXECUTION
A process can run on multiple threads 

within the Android system. When the 
application first runs, it will use the User 
Interface (UI) thread to controls everything 
we see on the screen. While doing shorter 
operations on this thread is acceptable, doing 
longer operations may cause the system to 
stop responding to user interaction, causing 
the user to think that the program is running 
slowly or has stopped running. 

To fix this, Android uses the AsyncTask 
class so that you can shift longer operations 
to different threads and keep the main UI 
thread running smoothly. An asynchronous 
task is defined on Android using three types: 
Async<Params, Progress, Result>, as well as 
four steps: onPreExecute, doInBackground, 
onProgressUpdate, and onPostExecute.

onPreExecute in Listing 8 is the first step 
to be invoked and sets up our SoundAnalysis 
activity. This task initializes the AudioRecorder 
using the following format: AudioRecord 
(int audioSource, int sampleRateInHz, 
int channelConfig, int audioFormat, int 
bufferSizeInBytes (Line 912). 

Our audio source is the device’s 
microphone. The sample rate and number 
of channels have been configured in the 
ints.xml file. The audio format “ENCODING_
PCM_16BIT” means that our audio buffer will 
be filled with signed integer values ranging 
from the maximum value of –327637 to a 
minimum value of 32768. 

Every time a media recorder or player is 
initialized, it is really important to verify that 

it has been initialized correctly. If another 
activity, such as our audio record playback, 
is already using the media recorder, we won’t 
be able to initialize it again. The initialization 

750.      @Override protected void onStart(){
751.   TextHandleNumberRecords =(TextView) findViewById
           (R.id.number_records);
752.   TextHandleNumberRecords.setText(getResources().
           getString(R.string.number_records_remaining)
             +Integer.toString(getResources().
                getInteger(R.integer.num_records)));
753.   TextHandleNumberTGBN= 
           (TextView)findViewById (R.id. number_tgbn_sounds);
754.   TextHandleNumberTGBN.setText(getResources().
            getString(R.string. number_tgbn_recorded)
              +Integer.toString(getResources().getInteger
                (R.integer.number_tgbn_scratch)));
755.   super.onStart();
756.   textViewTime  = (TextView)findViewById 
            (R.id.textViewTime);
757.   captureAudio = new CaptureAudio();
758.   captureAudio.execute();
759.  } 

800.  protected void onPause(){
801.   captureAudio.cancel(false);
802.   super.onPause();
803.   finish();
804.  }

LISTING 6
SoundAnalysis.java — onStart() and onPause() methods

850.   public class CounterClass extends CountDownTimer {
851.     public CounterClass(long millisInFuture, 
          long countDownInterval) {
852.     super(millisInFuture, countDownInterval);
853.   }

854.   @Override public void onFinish(){
855.       textViewTime.setText(“Captured”);}

860.    public void onTick_Article4 // SPOILER ALERT
                  (long millisUntilFinished){} //USED IN ARTICLE 4

870.   @Override public void onTick(long millisUntilFinished){
871.     long millis = millisUntilFinished; 
872.     String hms = String.format(“%02d”,
          TimeUnit.MILLISECONDS.
               toSeconds(millis) - TimeUnit.MINUTES.toSeconds
                     (TimeUnit.MILLISECONDS.toMinutes(millis)));
873.     System.out.println(hms);
874.     textViewTime.setText(hms);
875.     onTick_Article4(millisUntilFinished);
876.     }
877.   }

LISTING 7
SoundAnalysis.java — CounterClass class
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will then fail but we won’t be warned. In most 
cases, the activity crashes the application 
when it runs, with error messages appearing 
on the LogCat. We want to save this 
precious time for hunting ghosts instead of 
debugging the application, so we create a 
message that pops up on the screen if the 
recorder initialization fails (Line 914). If the 
initialization fails, the warning toast message 
is displayed and the audio recorder is released 
(Line 915). Watch the order for the different 
initializations to avoid the Android equivalent 
of the Blue Screen of Death: “Illegal State 
Exception.”

ASYNCTASK: DO IN BACKGROUND
In theory, all we need to do now is to 

start recording the noise. The buffer, which 
is internal to the AudioRecord instance, will 
be filled up with data. While recording, we 
need a number of operations to update the 
user interface. Once again, these operations 
don’t have to be done in parallel with the 
recording task, which takes the most time.  

Ghosts are not the only ones to do tasks in 
the background. We can also perform several 
tasks that don’t have to be all synchronized 
with one another, using Android AsyncTask.

The doInBackground method is called to 
operate the background computation, which 
can take time (see Listing 9). We use it to 
initialize the number of records and TGBN 
sounds and the buffers (Line 952 to 958) 
before starting the record using the previously 
initialized MediaRecorder recorder (Line 
959). Until the number of records remaining 
reaches 0, we save the recorded data into a 
buffer and make sure that this buffer is full 
before computing a result (Lines 963 and 
964). 

If an impulse above the background sound 
level is detected we start to collect data, 
“detectImpulse”, decrease the number of 
records remaining, update the UI thread and 
fill the buffer sampleBuffer with the current 
data plus the data that have just been captured 
(Lines 965 to 972). During this recording, if a 
TGBN sound has been detected, “detectTGBN” 
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Adrien Gaspard (gasp.adrien@gmail.com) earned a Masters of Engineering from CPE Lyon, France, in February 2015. He tackled 
his final practicum as an exchange student in Electrical and Computer Engineering at the University of Calgary. He undertook 
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gineering at the University of Calgary, Canada. Mike’s main interests are in developing new biomedical engineering algorithms 
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900.    private class CaptureAudio extends AsyncTask<Void, 
               Integer, Integer>{
910.      protected void onPreExecute(){
911.        int bufferSize = 2 * AudioRecord.getMinBufferSize
                   (getResources().getInteger(R.integer.sample_rate),
                       getResources().getInteger(R.integer.num_channels),
                           AudioFormat.ENCODING_PCM_16BIT);
912.        recorder = new AudioRecord(AudioSource.MIC, 
                       getResources().getInteger(R.integer.sample_rate),
                            getResources().getInteger(R.integer.num_channels),
                            AudioFormat.ENCODING_PCM_16BIT,bufferSize);
913.        if(recorder.getState() != 
                   AudioRecord.STATE_INITIALIZED){
914.          Toast.makeText(SoundAnalysis.this, getResources().
                      getString(R.string.recorder_init_fail), 
                          Toast.LENGTH_LONG).show();
915.           recorder.release();
916.           recorder = null;
917.           return;
918.        } 
919.      }

LISTING 8
SoundAnalysis.java — Pre-execution

mailto:gasp.adrien@gmail.com
mailto:Mike.Smith@ucalgary.ca


Each month, you’re challenged to find an error in a 
schematic or in code that’s presented on the challenge 

webpage. Locate the error for a chance to win prizes and 
recognition in Circuit Cellar magazine! 

Prizes such as a NetBurner MOD54415 LC Development kit or 
a Circuit Cellar subscription will be announced each month.

MONTHLY

ENGINEERING CHALLENGE

Sponsored by NetBurner

Participate: circuitcellar.com/engineering-challenge-netburner
Launch: 1st of each month

Deadline: 20th of each month

No purchase necessary to enter or win. Void where prohibited by law. Registration required. Prizes subject to change based on 
availability. Review these terms before submitting each Entry. More info: circuitcellar.com/engineering-challenge-netburner-terms

www.circuitcellar.com/engineering-challenge-netburner


CIRCUIT CELLAR • SEPTEMBER 2015 #30240
FE

AT
U

RE
S

950.   protected Integer doInBackground(Void ... params){
951.     if(recorder == null) {return -1;}
952.     int remainingRecords = 
                getResources().getInteger(R.integer.num_records); 
953.     int numberTGBN= 
        getResources().getInteger(R.integer.num_tgbn);
954.     int detectBufferLength = getResources().getInteger
        (R.integer.detect_buffer_length);
            //length = sampleRate * recordTime
955.     int sampleBufferLength = getResources().getInteger
        (R.integer.sample_rate) * getResources().getInteger
            (R.integer.capture_time);
          // SPOILER ALERT!  UNCOMMENTED IN ARTICLES 4 and 5
956.     //sampleBufferLength=      
          //nearestPow2Length(sampleBufferLength);
957.     short[] detectBuffer = new short[detectBufferLength];
958.     short[][] sampleBuffer = new short 
        [remainingRecords][sampleBufferLength];
959.     recorder.startRecording();

960.     while(remainingRecords > 0){
961.       publishProgress(-1, -1, -1, -1, -1, -1);
962.       int samplesRead = 0;

963.       while(samplesRead < detectBufferLength)
964.         samplesRead += recorder.read(detectBuffer, 
            samplesRead, detectBufferLength - samplesRead);

965.         if(detectImpulse(detectBuffer)) {
966.           remainingRecords--;
967.           publishProgress(-1, remainingRecords, -1,0, -1, -1);
968.           System.arraycopy(detectBuffer, 0,      
                      sampleBuffer[remainingRecords], 0, 
                  detectBufferLength);
969.           samplesRead = detectBufferLength;
970.          while(samplesRead < sampleBufferLength)
971.              samplesRead += recorder.read(sampleBuffer 
                         [remainingRecords], samplesRead, 
                             sampleBufferLength - samplesRead);
972.         }
973.         if(detectTGBN (detectBuffer)){
974.           numberTGBN++;
975.           publishProgress(1, remainingRecords, 
              numberTGBN,-1, -1, -1);
976.         }
977.         if(isCancelled()){
978.           detectBuffer = null; sampleBuffer = null;
979.           return -1;
980.         }  
981.       }//end while(remainingrecord> 0)   
982.     detectBuffer = null;
983.     sampleBuffer = null;
984.     if(recorder != null){recorder.release(); recorder = null;}
985.     if(!isCancelled()){publishProgress(-1, -1, -1, -1, -1, -1);}
986.     return 0;
987.   }LISTING 9

SoundAnalysis.java — CaptureAudio – 
doInBackground()
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1200.   protected void onProgressUpdate(Integer ... data){
1201.     if(data[0] == 1){
1202.       mediaPlayer.start();
1203.       Toast.makeText(SoundAnalysis.this, getString(R.string. TGBN_detected),            
                          Toast.LENGTH_SHORT).show();}
1204.     if(data[1] != -1)
1205.       TextHandleNumberRecords.setText(getResources().getString
                      (R.string.number_records_remaining)+ Integer.toString(data[1]));
1206.     if(data[2] != -1)
1207.       TextHandleNumberTGBN.setText(getResources().getString
                      (R.string. number_tgbn_recorded)+ Integer.
toString(data[2]-1));
1208.     if(data[3] != -1)
1209.       timer.start();
1210.     if (data[4 ]!=-1) {  /*IMPLEMENTED IN NEXT ARTICLE */ }
1217.     if (data[5] !=-1) {  /*IMPLEMENTED IN NEXT ARTICLE */ }
1220.   }

1250.   protected void onPostExecute(Integer data){
1251.     if(recorder != null){  
1252.       recorder.release();
1253.       recorder = null;
1254.     }
1259.   }

LISTING 10
SoundAnalysis.java — CaptureAudio – 
onProgressUpdate()

1300.   protected void onCancelled(){
1301.     if(recorder != null){
1302.       recorder.release();
1303.       recorder = null;
1304.     }
1305.   }

1306.   int threshold = getResources().getInteger(R.integer.detect_threshold_impulse);
1307.   int threshold_tgbn = getResources().getInteger (R.integer.   
        detect_threshold_tgbn_sound);

1350.   protected boolean detectImpulse(short[] samples){
1351.     for(int k = 0; k < samples.length; k++){
1352.       if((samples[k] >= threshold) &&(samples[k]< threshold_tgbn))
1353.         return true;
1354.     }  
1355.     return false;
1356.   }

1400.   protected boolean detectTGBN (short[] samples){
1401.     for(int k = 0; k < samples.length; k++){
1402.       if(samples[k] >= threshold_tgbn) {return true;}
1403.     }
1404.     return false;
1405.     }
1406.   } 
1449. }

LISTING 11
SoundAnalysis.java — CaptureAudio – 
Detecting Impulses
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is called. The counter tracking the number 
of TGBN sounds detected is increased by one 
and the scary sound is outputted (Lines 973 
to 976). 

To update the records and TGBN counters, 
we use “publishProgress” to publish the 
activity progresses on the UI. publishProgress 
works with OnProgressUpdate (see Listing 10), 
which is detailed later. The functions that 
detect the impulses, “detectImpulse” and 
“detectTGBN” are given an inputted short 

type table containing all our samples (Lines 
965 and 973). These two functions are also 
detailed later.

ASYNCTASK: UPDATE THE APP 
PROGRESS

onProgressUpdate displays the task 
progress on the UI, while the background task 
is still executing (see Listing 10).  This method 
works in parallel with “publishProgress.” 
The values passed in parameters in 

IMPLEMENTATION ISSUES 
As of April 2015, we have tested out our code on two 

phones running on different versions of Android. The TGBN 
detector works perfectly on an older Samsung phone, which 
runs on Android KitKat (API 19) and has an SD memory card. 
We have also tried with a Google Nexus 5 phone running on 
two versions of Lollipop, API 21 (Lollipop 5.0.1) and API 22 
(Lollipop 5.1). That phone does not possess a SD memory 
card needed to save data on external memory.  

The reason why we mention recording for just “7 
seconds” in this article is that the following often occurs on 
the Google phone running Android Lollipop 5.0.1 (API 21) 
after that time: 

Error: fatal signal 11 (SIGSEGV) code 1 fault  
 address 0xa146f00c in tid 260 7(Asynctask #3) 

This problem seems to have occurred for a lot of developers 
given the net discussions. SIGSEGV is caused by a 
segmentation fault or access violation raised by hardware 
with memory protection. This error APPEARS fixed with the 
most recent Lollipop 5.1 (API 22).

Being only able to record 7 s for TGBN ghost BOOm sound 
busting is no big deal. After all, six recordings will give 
you 42, the answer to everything. However, our long-term 
plans are to record the Acoustic Ecology simultaneously in 
several home over a weekend or a week. For that, we need 
more equipment than our local acoustic firm friends have 
available to loan. We offer two solutions if you encounter 
the same issue using a phone running Lollipop 5.0.1.

There is a tool to help you fixing this kind of access 
violation errors. “NDK-STACK” allows analyzing stack 
traces as they appear in the output of the LogCat. Tutorials 
are available online (e.g., https://yssays.wordpress.
com/2011/12/27/android-ndk-stack-tool/).

The easiest fixes: Hunt your old phone out of its drawer, 
keep using the KitKat OS, and keep searching the net. Or 
upgrade your more recent phone to the latest version of 
Android—Android 5.1. This bug is really annoying, and 
somebody with more skills will find a solution soon.

We are on our way to come full circle back to the start 
of Part 1 in this series. Thank heaven for that local teenager 
down the road!

200. <?xml version=”1.0” encoding=”utf-8”?>
201. <resources>
205.   <!-- SAME AS Article 1 Listing 3, Lines 205 to 214 -->
220.   <!-- SAME AS Article 2 Listing 4, Lines 220 to 224 -->
230.   <!-- String required for the third part of the application, record and   
        output Boo sound if  TGBN sound is detected -->
231.   <string name=”error”>An error has occurred</string>
232.   <string name=”recorder_init_fail”>Recording device initialization 
        failed</string>
233.   <string name=”press_to_start_detecting_TGBN”>Press to start 
       detecting TGBN</string>
234.   <string name=”press_to_start_WAT_A_RECORDER”>Press to start 
        recording</string>
235.   <string name=”number_records_remaining”>Number of records 
              remaining: </string>
236.   <string name=”number_tgbn_recorded”>Number of TGBN sounds    
       detected: </string>
237.   <string name=”TGBN_detected”>a BOOm has been    
       detected!</string>
238.  <string name=”title_activity_sound_analysis”>Sound 
      Analysis</string>
249. </resources>

LISTING 12
Preset string values must be set in 
strings.xml from WAT_AN_APP\res\
values

https://yssays.wordpress
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publishProgress are stored in a data array 
that is given to the onProgressUpdate method. 
publishProgress is then presented as follows: 
publishProgress(data[0], data[1], data[2], 
data[3]). 

We use onProgressUpdate to start the 
media player if a TGBN sound is detected and 
to display the message “a BOOm has been 
detected!” on the screen (data [0], Lines 1201 
to 1203). It also decreases the number of 
impulses remaining if an impulse is detected 
and recorded (data [1], Lines 1204 and 1205), 
increases the counter if a TGBN sound has 
been detected (data [2], Lines 1206 and 1207) 
and starts the countdown once an impulse has 
been detected (data [3], Lines 1208 and 1209). 
The empty curly brackets in Lines 1210 and 
1211 are needed to keep the compiler happy 
until we use the last two data items, data[4] 
and data[5], passed to publishProgress() in 
the next article. 

ASYNCTASK: POST EXECUTION
onPostExecute is invoked after the 

background task finishes (see Listing 9, Lines 
1250–1254). We use it to release the recorder, 
as we are not recording any more at that 
point and to verify that no error has occurred 
during the asynchronous operations.

Listing 11 describes the onCancelled() 
method (Lines 1300–1305). If a task cancels, 
we simply need to release the recorder if it 
has not been done before. While working with 
asynchronous tasks, a task can be cancelled 
at any time by invoking cancel(boolean). 
Invoking such a method implies that 
onCancelled() will be invoked instead of 
onPostExecute() after doInBackground() 
returns. 

The functions used to detect impulses 
(Lines 1350–1356) and to detect a TGBN 
sound (Lines 1400–1406) are also described 
in Listing 11. To detect an impulse and start 
recording, we process our samples one by 
one and compare them to two thresholds 
set to 10000 and 25000 (Lines 1351–1354). 
The samples must be within this range for 
the recorder to start. At the end of each 
recording, if these data are greater than or 
equal to a threshold set to 25000, Line 1402, 
the detectTGBN function is called and we have 
detected one of the ghosts mucking about in 
the room. Our detector then increases the 
TGBN sound counter and outputs the scary 
sound.

To avoid compiler errors, update the 
Preset Strings  in strings.xml as shown in 
Listing 12. For more information, functions 
and examples concerning asynchronous 
tasks on Android are available at developer
android.com/reference/ android/os/ 
AsyncTask.html.

SPECTRAL ANALYSIS
We are now done with developing a 

long-term, sound-gathering device for our 
community noise nuisance task. By side-
tracking into our ghost detection mission 
and practicing some finger yoga activities, 
we hope you have had a few chuckles while 
getting familiar with the world of Android 
development. 

Nevertheless, our job as noise detectives 
has just started. In the next articles, we are 
going to work on “spectral” rather than 
“sound” analysis. We will implement a fast 
Fourier transform (FFT) algorithm to 
transform our recorded data into the 
frequency domain, before graphing the 
results. This will enable us to develop a tool 
displaying the time and frequency domain 
analysis of a sound. After tracking sounds and 
proving their existence in a room, we can now 
start studying them in detail. Perhaps finding 
those room resonances we mentioned in Part 
1 of this series are just another way of 
detecting the nests that ghosts build in our 
homes! 

Authors’ Note: Recently, Orchisama Das 
(Jadavpur University, India) joined Mike 
and Adrien as a summer research student 
with travel funds from the Mitacs Globalink 
international exchange program (www.mitacs.
ca/en/programs/globalink). Her work was to 
upgrade the WAT-AN-APP “Sound Ecology” 
App to use a database to store and analyze 
multiple sound records. (A forthcoming Circuit 
Cellar articles series is in the works for 2016.)  

To help proofreading the  WAT-AN-APP  
Circuit Cellar articles, Orchi produced a Java 
program running inside Eclipse to allow the 
readers to cut-and-paste the code from listings 
in Circuit Cellar article PDF files directly into 
.jar files and automatically remove the line 
number comments. The “WANT-A-FASTER way 
to code WAT-AN-APP” can be found on the 
Circuit Cellar FTP site. 

Then interesting things started to happen! 
To publicize the work of their not-for-profit 
organization, Mitacs put out a press release 
about the neat projects undertaken by the 
40-plus students in their 2015 international 
exchange program at the University of 
Calgary. Suddenly, Orchi and Mike were being 
interviewed for TV, radio, and in hardcopy 
(front page coverage) about the current and 
future plans for the Android Sound Capture 
WAT-AN-APP and the “realness or otherwise” of 
local community noise nuisances! Interested 
readers can find details of local and national 
coverage on the “Ranchlands’ Hum” tab at 
People.Ucalgary.ca/~TheHum or by typing 
“Ranchlands Hum Smith Orchi” into a search 
engine.

http://www.mitacs.ca/en/programs/globalink
http://www.mitacs.ca/en/programs/globalink
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So you’ve designed a brand new Ethernet-
based device. Perhaps it’s a clock, a 

weather sensor, or an industrial controller 
device. You plan to hang it proudly on your 
wall and connect it to a RJ-45 wall socket. But 
how are you going to power it? Where will the 
system get its juice? Surely, you aren’t going 
to disgrace your design with a brick wart. 
There must be a better way!

Why not feed power over the CAT-5 cable? 
Well, you’re not the first person to consider 
this technique. 

Standard CAT-5 cable has four pairs, and 
only two are used for data in a typical 10- or 
100-Mbps installation (see Figure 1a). So, it 
sounds obvious to stick a few DC volts down the 
spare pairs. Oh, yes. But hang on, life is never 
so simple. This is technology, remember? 
There has to be a catch somewhere. So, sit 
down and relax, I have the story. 

It may not come as a surprise that the 
wise men at the IEEE thought about this for 
a while and came up with a standard (IEEE 
802.3af). This standard has been around since 
1999, but progress has been relatively slow. 
It started to take off only recently, mainly 

because of the availability of inexpensive 
specialist components. Tom Cantrell and 
Jeff Bachiochi have covered some of the 
available components and modules (Circuit 
Cellar 165 and 187). A wide range of parts 
are now available, including dedicated 
switching transistors, isolation transformers, 
and high-quality nonsaturating magnetics, 
making power over Ethernet (PoE) a practical 
proposition. 

TECHNICALITIES
The IEEE document covers two main 

methods for sending power down the CAT-
5 wire. One involves using the spare pairs. 
The other involves sharing with the existing 
data lines using center-tapped transformers 
(see Figures 1b and 1c). The latter method 
is beneficial when spare cable capacity isn’t 
available.

The method involving spare pins allows a 
decent amount of current to be drawn because 
the two spare pairs are paralleled together to 
increase capacity by reducing the total DC 
resistance. The present IEEE specifications 
allow up to 13 W of power to be transferred 

Power Over Ethernet 
Solutions

Powering devices over Ethernet cabling seems easy, but there’s more to it 
than meets the eye. Eddie explains how it all works. 

By Eddie Insam (England)

Editor's Note: This article first 
appeared in Circuit Cellar 195, 2006.
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this way. This may not be enough for some 
heavy-duty devices, but it’s quite acceptable 
for medium-size and small items such as TV 
cameras and VoIP phones. An updated PoePlus 
standard is currently being considered. This 
will allow for up to 30-W capacity, while still 
remaining backwards compatible. 

Transmitting power with center-
tapped transformers is more limited. Pulse 
transformers and other magnetics in the 
Ethernet controller must be designed to 
take the full DC power load current without 
saturating. That isn’t an easy task for miniature 
surface-mounted components. The advantage 
of this alternative is that it leaves the extra 
pairs alone, an essential consideration in 
higher-speed gigabit Ethernet, which requires 
all four pairs to carry data. 

POWER SUPPLY
Why can’t you just stick any old power 

supply across the spare wires? Because you 
don’t know what’s at the remote end, and 
you may run the risk of blowing up sensitive 
equipment. If you don’t believe me, take a 
look at Figure 2, which is a typical Ethernet 
terminator. This kind of circuitry is sometimes 
contained within a single metal enclosure called 
a MagJack. Note the two 50-W resistors R3 
and R4 across the center taps of transformers 
T3 and T4. They are branched in series to 
form an effective 150-W DC load across the 
input lines. Also note the two 50-W resistors 
R1 and R2 right across pins 7 and 8 and 4 and 
5. These present a controlled impedance load 
to the otherwise non-terminated wires. They 
are there for robustness and noise reduction. 
This hookup is sometimes known as a Bob 
Smith termination. 

If you connect a 48-VDC raw supply into 
such a socket, you will be driving a good third 
of an amp through these tiny resistors. This 
is guaranteed to vaporize them to kingdom 
come. Tiny SMD resistors are not built for 
such treatment. 

Admittedly, some terminators and 
MagJacks have extra series capacitors to 
protect the resistors, and not all Ethernet 
devices use such extra networks. However, 
you don’t want the power supply to blow the 
other devices that have them. 

There are other potential problems 
that can be blamed on bad design or pure 
accident. For example, a wireman could 
accidentally short or swap the CAT-5 pairs. 
All possibilities have to be considered, and 
many are mentioned in a 1999 IEEE report 
entitled “DTE Power Problem Set and Solution 
Methodology.” 

Needless to say, the good people at 
the IEEE have devised cunning schemes to 
preempt the aforementioned challenges. In 

FIGURE 1
Standard 10- and 100-Mbps Ethernet devices use just two of the four available pairs. The spare wires can 
be used to transmit power to the remote. Two possible methods are shown (b and c). But watch out! The 
power source must be smart enough to detect shorts and overloads and to avoid damaging components at 
the far end.
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FIGURE 2
This is a typical Ethernet termination. The resistors strapped to the spare data pins and center taps are there 
to balance the line and to reduce noise. They can quickly flash to smithereens in true Harry Potter style if 
any unmanaged DC power is placed on the cable.

1

2
3
4
5
6
7
8 R1

R2 C1

T1

T2

R3 R4

C2

T3

T4

R5

R6

R7

TX

RX



CIRCUIT CELLAR • SEPTEMBER 2015 #30246
CC

 R
EB

O
O

T

simple terms, the smart power supply can 
figure out what’s happening at the load end. 
It does this by taking a number of graded 
impedance measurements before applying 
full power. These impedance signatures tell 
the supply whether or not it’s safe to apply 
full power. Full power is applied only when 
it’s safe to do so. Furthermore, the load is 
regularly monitored during normal operation 
to ensure nothing drastic has happened. This 
allows the supply to turn off the wick if it 
detects any suspicious problems, when the 
load fails, or when it is disconnected. This 
arrangement, of course, needs cooperating 
equipment at the load end to provide the right 
dummy impedances at the right time.

Apart from the safety factor, the IEEE 
standard helps to reduce overall energy loss, 
because only those sockets that have a valid 
load can be programmed with power. During 
sensing, the supply knows the range of power 
loading taken by a load, and it ensures that 

the correct amount of current is delivered 
(within a reasonable range). No more, no less. 

PC-CONTROLLED POWER?
So, does the power supply need to be 

computer controlled? Well, yes, but what isn’t 
nowadays? 

The operating algorithm is relatively 
straightforward, and even the tiniest 
microprocessor can handle it. You just 
need a power supply that can deliver a 
programmable voltage between 2 and 48 V, 
a means of sensing the load current, and a 
means of measuring its output voltage from 
which you can compute the load impedance 
and various other parameters. The rest is just 
software. Mind you, and as you would suspect, 
the IEEE standard is not that straightforward. 
Many options are included to cater for all 
eventualities. For example, there are options 
for sensing an AC load as well as the DC 
load, but many of these are just optional 
enhancements. You can get away with just 
sensing a plain DC resistive load. Figure 3 
shows what the supply looks like.

How about the load end? The power source 
does its validation by sensing the impedance 
of the load at different source voltage levels. 
While this is taking place, the load needs to 
behave a bit like a nonlinear resistor, which is 
otherwise called a signature impedance (see 
Figure 4). The circuitry to do this is relatively 
simple, and there are a number of ICs that 
will do the job for you. The basic circuit is best 
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FIGURE 3
A power supply will include a 
microcontroller in a standard design 
configuration to sense load current 
and generate output voltage levels 
accordingly.
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FIGURE 4
There are three distinct phases. The simplest of loads will present a 24.5-kW resistance until the input voltage rises above 30 V, at which point the actual driven circuit will be 
switched into operation.
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described in terms of discrete components. 
Figure 5 shows the basic principle. 

HOW IT WORKS
First, I need to introduce some jargon. 

Don’t forget that I’m talking about IEEE 
standards, so the use of jaw-churning techno-
speak is essential. 

Power sourcing equipment (PSE) is a term 
for the source end, or power supply. Powered 
device (PD) is the equipment at the user 
end or load. An endpoint feed describes the 
arrangement or situation where the power 
supply is fitted inside the source box (e.g., 
inside an Ethernet router), so only one cable 
link is needed between the router and the PD. 

A midspan feed unit (MFU) is a separate 
box that’s added somewhere between the 
router and the PD to provide the power. This 
necessitates two CAT-5 links, one between the 
router and the MFU, and another between the 
MFU and the PD. You need to buy an MFU if you 
already have a router that doesn’t provide PoE. 
If you start from scratch, you may prefer to 
buy a router with a built-in endpoint feed. Are 
you still with me? Don’t go away. There’s more. 

The voltage level at the power supply is 
specified as between 44 and 57 V, whereas 
this is widened to 36 and 57 V at the user end 
to allow for reasonable ohmic drop down the 
CAT-5 cable. The PSE is allowed to supply up to 
15.4 W of power with a maximum current limit 
of 350 mA. The maximum power consumption 
at the PD is about 13 W, which corresponds to 
a nominal current of 270 mA at 48 V. CAT-5 
runs can be considerably long, and a lot of 
ohmic loss can be expected. This is one of 
the reasons why the standards suggest that 
pairs 4 and 5 and 7 and 8 should be paralleled 
together to halve the cable’s resistance. 

Although the specifications define which 
pin should be positive and negative, the load 
must not assume anything. Murphy’s law! The 
PD must also ensure that the internal supply is 

floating with respect to the input power feed. 
So, it needs to include a bridge rectifier on 
the input plus a floating transformer-isolated 
power converter. 

So, how does it work? Let’s take it in 
stages. Take a look at Figure 4. When there 
is no load applied (i.e., when the user end PD 
is disconnected or during first power on), the 
source (PSE) repeatedly sits in a short loop 
sensing the line for an ohmic signature. This 
is the detection phase. It does this by placing 
at least two spot voltage levels between 
2 and 10 V and then measuring the line 
currents drawn at these points. The current 
difference is taken rather than the absolute 
values because this makes for a more precise 
derivation of the signature impedance. It also 
compensates for fixed losses such as diode 
drops. A current limiter on the line ensures 
the load can draw no more than 5 mA just in 
case there is a short or similar problem. 

The two test voltages are changed 
relatively slowly to avoid any glitches. The 
specifications suggest between 2 and 500 ms 
between readings. During the detection 
phase, the load has to present a 24.5-kW 
resistive component in parallel with a 0.1-mF 
capacitor. This is not a real component 
value; it’s a theoretical average. You can’t 
buy 24.5-kW resistors in the shops. To be 
more precise, any load between 23.75 and 
26.25 kW is considered valid. Loads below  

To RJ-45
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100 nF

28 V

51 kΩ
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15 V
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+

–
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converter
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FIGURE 5
Take a look at the operation of a 
typical PD in stages. 

Class Load by PD Usage Power range
0 0–4 mA Default 0.44 to 12.95 W (full range)

1 9–12 mA Optional 0.44 to 3.84 W

2 17–20 mA Optional 3.84 to 6.49 W

3 26–30 mA Optional 6.49 to 12.95 W

TABLE 1
Take a look at the PD power classification scheme. This allows the supply to provide only as much power as 
the device demands. 
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15 kW or above 33 kW are considered invalid. 
Loads outside of these two ranges are in no 
man’s land and may or may not indicate the 
presence of a (possibly faulty) PD. 

If this all sounds confusing, it’s because 
this is the way standards tend to specify 
things that need to lie in ranges. Mere mortals 
like us need to know only that the resistance 
needs to be about 25 kW. The capacitor is 
required for an optional alternative AC load 
sensing method. I’ll cover this later. 

When the 24.5-kW resistor is detected, 
the PSE proceeds to the next stage: the 
classification phase. If at any point the 
load measures too low or too high, the PSE 
assumes there is no valid termination and 
removes the power altogether. It then waits 
a couple of seconds and then starts again 
from the detection phase, repeating the cycle 
forever. In the worst case, an incompatible or 
bad PD will see a maximum of 10 V or 5 mA 
applied across it and no harm will be done. 
This is somewhat more preferable than being 
hit with 48 V at full current!

The purpose of the classification phase is 
to determine the range of load currents the 
user device will need. In other words, the PD 
tells the PSE how much current it is going to 
need. The use of limited power ranges could be 
useful for loads that need critical monitoring 
or to avoid users connecting unauthorized 
devices to certain sockets. A main application 
for this is to allow limited resource PSEs to 
allocate different power levels to different 
outlets or to allow the PSE to enable only 
certain PDs in case of an emergency or other 
priority. In practice, however, this may create 
more problems than it can solve. Table 1 
shows some of the available options.

During the classification phase, the PSE 
applies two or more voltages between 15.5 

and 20.5 V (current limited to 100 mA) and 
measures the new signature impedance. The 
PD recognizes these new voltage levels and 
switches in a suitable load resistor according 
to its expected needs. Note that if the PD 
retains the original 24.5-kW resistor, it will 
be classified as Class 0 and default to full-
power range, which is very convenient. In 
other words, the simple do-nothing option 
will give you the full power range. Who says 
committees never come up with practical 
ideas? The PSE will have a further chance of 
detecting improper loads or shorts during this 
stage. It will remove the power altogether if 
anything feels suspicious. 

Having passed the classification phase, the 
PSE can now slowly ramp up to full power, 
so the voltage now goes up to the 48 V per 
300 mA current limit. At the same time, the 
PD will connect the line to its internal circuits 
powering the user electronics. After this 
new stage and while providing full power, 
the PSE will constantly monitor the load for 
current drawn. The PD will guarantee to sink 
a defined maintain power signature (MPS). In 
other words, if the load current rises above 
400 mA at any time or drops below 10 mA for 
than 250 ms, the PSE will assume the load has 
gone funny, kill the supply, and revert to its 
detection phase as before. There is a defined 
back-off period of 2 s to avoid the entire thing 
going into wild oscillations. 

A well-known scenario to be avoided 
is when a valid PD device has just been 
unplugged from an Ethernet wall socket and a 
legacy device is plugged in immediately after. 
If the PSE doesn’t recognize this situation 
quickly, it can damage the legacy device 
because full power is still being applied to the 
line. This is where the alternative AC sensing 
method scores. A 500-Hz AC common-mode 
signal is superimposed on the DC. Any AC 
disconnection can be detected immediately, 
whereas a DC disconnection has to rely on 
slow voltage decays before it can be correctly 
detected. Note that the supply can optionally 
use either AC or DC sensing, but the load 
must include methods for supporting both. 
In practice, this is just a 100-nF capacitor in 
parallel with our beloved 24.5-kW resistor. 

THE LOAD’S JOB
During initialization, the PD presents a 

variable impedance to the supply depending 
on the input voltage across its input pins. 
Between 0 and 10 V, the load looks like a 24.5-
kW resistor (plus the voltage drop effects of 
the bridge rectifier). Between 10 and 20 V, it 
can still be a simple resistor, but it’s calculated 
to give the current load specified in Table 1. 
Alternatively, it can keep the same 24.5 kW 
to respond for Class 0 and the full power 

PHOTO 1
The D-Link DWL-P50 is a ready-to-
go module. Ethernet in, Ethernet out, 
and a choice between 12- and 5-VDC 
outputs.
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range. As the input voltage ramps up between 
30 and 42 V, the user load is switched in. If 
during full power the input falls below 36 V, 
the PD disconnects itself from the supply. This 
is known as under voltage lock out (UVLO).

It’s the PD’s responsibility to ensure that 
the load doesn’t take more than the rated 
power or less than a minimum threshold 
current to make sure it doesn’t get turned off. 
This minimum current is specified as 10 mA 
for at least 75 ms in every 325 ms. Unplugging 
the PD can then be easily recognized by the 
PSE as it sees the current drop below 10 mA. 

The disadvantaged products in this 
scheme are low-power devices that need to 
include a bleed resistor just to ensure that the 
minimum current threshold is met. So much 
for energy conservation!

TYPICAL PD
Figure 5 shows a most basic PD. It has 

been divided into sections to show the 
relative responsibilities. Figure 5a shows a 
bridge rectifier. It’s always good practice 
to use a bridge in case the wires have been 
swapped around. A PD can make use of both 
alternative sources by having two bridges, 
each connected to the two power options 
shown in Figures 1b and 1c.

Figure 5b shows the main 24.5-kW 
signature-sensing resistor and a 100-nF 
capacitor to provide an AC signature load. 
There is also a 60-V Zener diode to provide 
some sort of overall protection. (An extra 
fuse connected between this and the input 
line would not come amiss.) In this simplified 
circuit, the classification phase is also 
managed with the same 24.5-kW resistor, 
classifying the unit as Class 0. 

Figure 5c is a simple gated switch that 
turns the load on when the input voltage 
reaches about 30 V. Figure 5d denotes that 
the load has to sink at least 10 mA. Figure 
5e represents a 36- to 42-V converter, which 
must be floating (e.g., transformer isolated). 
Modules in the RECOM International Econoline 
series are typical examples. They are small 
potted modules (e.g., an RS4805 that takes 36 
to 72 DC input and 5 V at 200-mA output all in 
a small SIL footprint).  

TYPICAL PSE
Figure 3 shows a basic PSE design. Of 

course, you’ll usually use a premade PSE 
rather than make your own. 

The supply consists of a decent 48-VDC 
power supply and a series regulator controlled 
by the D/A output from a microprocessor 
(possibly via a PWM output). The series 
resistor emulates the current limit and a place 
to take a sample of the current drawn. One 
such controller is needed for each Ethernet 
line or RJ-45 outlet. 

The design is pretty straightforward 
because accuracy is not primordial. One tricky 
part of the design is the wide-ranging metering 
of the output current, which needs to cover a 
range of 100 mA to more than 300 mA. This 
necessitates either a high-resolution (14-bit) 
ADC or a means of switching in different shunt 
resistors for the different ranges. 

Note that the series pass transistor won’t 
need much heat sinking. It will normally be 
operating either fully on (when delivering 
full power) or at limited current during the 
initialization phases. The software consists of 
a simple timed loop to cover the detection, 
classification, and power delivery phases one 
at a time. The IEEE 802.af document describes 
procedures for implementing a version of this 
flowchart if you have the time and inclination 
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to decipher the gripping notation and 
methodologies used. 

INTEGRATING POE
Of course, you may not be interested in 

making your own circuits. There are plenty 
of ready-made chip and module solutions 
available out there to make it all easier. But 
understanding the principles involved will 
ensure that you won’t get caught in many 
gotchas!

The MAX5940/1 was one of the first kids 
in the block. These chips provide all of the 
802.3af interface detection, classification, 
and switching facilities. One of the chips is 
normally used in conjunction with a separate 
Maxim 48-V switching down regulator 
(MAX5014) to provide a complete power 
supply function. 

National Semiconductor’s LM5070, LM5071, 
and LM5072 are typical of the all-in-one-chip 
solutions. They integrate a current-mode DC-
to-DC controller, user-programmable under-
voltage threshold, a fault current control loop, 
and many other functions. The LM5071 and 
LM5072 can accept power from an external 
AC/DC adapter (a wall wart). 

The Texas Instruments TPS2370, 
TPS23750, and TPS23770 are also big 

contenders. They combine the functionality 
of the older TPS2375 controllers and need a 
minimum number of external components. 
Similar devices are also available from 
Linear Technology (LTC4257) and Supertex 
(HV110).

Chip solutions are also available for 
the PSE end. Some of these have multiple 
controllers, which allow four, eight, or even 
12 power supply controllers from one chip. 
Current devices are the Maxim MAX5945, 
the Texas Instruments TPS2383, the Linear 
Technology LTC4258, and the PowerDsine 
PD640xx series. For instant satisfaction, 
check out the PowerDsine 3001 (a single port 
mid-span supply) and the corresponding 
D-Link DWL-P50 end load adapter, which are 
considered complete modules. The latter 
comprises a floating supply that can generate 
either 5 or 12 VDC at the flick of a switch (see 
Photo 1). This pair can provide a relatively 
inexpensive solution for small PoE needs. 
Similar products are also available from 
suppliers such as Hyperlink Technologies. 

You’re sure to see many more PoE 
solutions in VoIP phones, CCTV cameras, and 
industrial Ethernet applications. Integrating 
a PoE supply into a module will be 
commonplace.  
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GREEN COMPUTING

Data is a renewable resource. As long as 
the universe and the intelligent mind to 

observe it exist, this resource will not deplete. 
Moreover, it is infinite. The more you dig, the 
more you get; but as with all resources, there 
is a cost/benefit cut point. In this aptly named 
“Information Age” where we are generating 
and harvesting data in an unprecedented rate, 
making the most benefit while processing as 
much as possible data in the most efficient 
manner is paramount. 

Unfortunately, we are also in an age 
where the level of contamination in the world 
has observed unprecedented increases and 
reached to critical levels. It is clear that we 
cannot maintain our current development 
and processing methods and very likely, the 
era following the Information Age will be 
the “Sustainability Age.” All main industries, 
including the data processing industry, will have 
to develop and adopt sustainable methods. 

BIG DATA ANALYTICS & CLOUD 
COMPUTING

The process of extracting gains from huge 
quantities of data is called “big data analytics” 
and delivery of on-demand computing 
resources over the Internet on a pay-for-use 
basis is called “cloud computing.” Big data 
analytics and cloud computing are beyond 
their hype stage and well into their maturity. 
They ascended separately in popularity in 
similar timeframes by providing positive 
feedback to each other’s import. 

Big data analytics was initially driven by 
the massive increase in the enterprise data 

volume caused by the shift to mobile and 
social mediums and the commercial desire 
to make use of this large volume of data, 
but it has now gained wide acceptance in 
various other fields such as oil drilling, 
telecommunication, credit management, 
architecture, and datacenter design. Similarly, 
cloud computing was initially spurred by the 
growth in Internet-based communication, 
commerce, entertainment, and management 
solutions, but it has also penetrated diverse 
markets such as healthcare, automotive 
design, financial services, and governance. 

There is a grift relationship and constant 
forward-backward feedback between these 
two game changing paradigms. As big data 
analytics solutions promise untapped gains 
to be obtained from existing enterprise data 
sets, many large companies started to employ 
various sized big data analytics frameworks 
and most of these frameworks are running 
on cloud computing infrastructures. Similarly, 
as cloud computing solutions made collecting, 
storing, and processing of large quantities 
of data cheaper and available, many large 
entities started to store previously discarded 
datasets, which are then used as motivations 
for employment of big data analytics 
frameworks.   

BIG DATA ANALYTICS & SMART 
POWER 

Energy industry is among the biggest 
industries that started to utilize the power 
of big data analytics for intelligent decisions 
and improvements in efficiency. The available 

Sustainable Big Data Analytics in 
the Cloud

Data is the oldest renewable resource and thanks to the increase in our 
computing efficiency and capacity, we finally started to harvest and process 
it in big quantities. It is imperative to come up with sustainable processing 
mechanisms to make the most out of this valuable resource and if possible use 
its power to improve sustainable practices. This article investigates whether 
the current practices in big data analytics are sustainable or not.

By Ata Turk (US)
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capacities for new renewable energy resources 
such as solar and wind are too low and also 
the current cost of ownership for these 
resources are relatively high making their 
adoption difficult. Currently, solutions that 
improve energy efficiency offer the largest 
possible gains for attaining sustainability in 
energy usage. 

By making use of smart meters and 
smart grids and intelligently processing 
the enormous amount of data created by 
these technologies, energy providers can 
now do the following: forecast demand and 
determine the need for new investments; 
predict and prevent outages by identifying 
stressed portions of the energy grid and 
organize maintenance activities accordingly; 
and devise and offer incentives for shaping 
customer usage by increasing user energy 
usage awareness and offering varied energy 
pricing mechanisms to cost-savvy customers. 
Some example practices employed by energy 
providers include modeling wind patterns 
to optimize the location and design of new 
wind turbine sites, developing apps that tell 
users how and where they use electricity, and 
letting users compare their electricity usage 
with their neighbors to encourage them 
reduce wasted energy.

SUSTAINABLE BIG DATA 
ANALYTICS

Even though big data analytics can 
offer improvements in energy efficiency, 
it still requires huge amounts of data to be 
stored and processed, which itself requires 
energy. The environmental impacts of the 
infrastructures used for supporting big data 
analytics and cloud computing solutions 
increase dramatically as the number and 
capacity of datacenters providing the 
necessary services for these products 
increase with their popularity. 

It is undisputable that datacenters are 
major power hogs. According to Department 
of Energy, there are already more than 
3 million datacenters in US, and these 
datacenters consume 2% of all US electricity 
use. According to GreenPeace, datacenters all 
around the world are responsible from 2% of 
the global carbon emission, a carbon footprint 
paralleling that of the aviation industry. 

Note that computing in the cloud generally 
provides better utilization of resources and 
hence can be argued to lead to lowered 
environmental impact. Cloud computing is 
applauded for enabling: resource scaling 
with changing demand; improved utilization 
with virtualization and multi-tenancy; and 
economies of scale that lead to reduced 
management overhead, reduced power loss, 
and hence reduced costs. A recent study 

from Lawrence Berkeley National Laboratory 
indicates that the amount of energy saved by 
businesses moving to the cloud can be as high 
as 87% (see Figure 1).[1] 

Furthermore, most major cloud providers 
started to engage in transforming the 
energy used in their datacenters to greener 
renewable energy solutions. As an example, 
Apple’s cloud datacenters are 100% powered 
by renewable energy sources. Google engages 
in long-term power purchase agreements 
with renewable energy providers that are in 
the same region with their datacenters. This 
approach enables financing of new renewable 
energy installation projects by providing 
long-term financial guarantees. Microsoft 
and Intel are running carbon neutral by 
procuring green power equal to the volume 
of their consumption of electricity as well 
and other cloud providers such as Rackspace 
and Amazon also made commitments to 
becoming carbon neutral and switching to 
100% renewable energy sources within few 
years. As seen in these examples, the energy 
spent in the datacenters act as locomotion for 
the investments made in renewable energy 
sources.

In addition, cloud datacenters can 
participate in power regulation programs 
of electricity providers and help service 
operators in matching electricity supply 
with the power demand. As datacenters 
are huge energy consumers and some of 
the computations performed in them have 
relatively flexible timing constraints, they 
can regulate their power usage to a certain 
extent to participate in these programs to 
gain monetary advantages and to ease the 
burden on infrastructure providers. Check 
Ayse K. Coskun’s articles “Data Centers in 
the Smart Grid” (Circuit Cellar 286, 2014) and 
“Application-Aware Power Capping” (Circuit 
Cellar 280, 2013) for more details on the power 
regulation opportunities on datacenters.  

FIGURE 1
Moving to the cloud can save up to 
87% of IT energy.[1] 

By moving 86 million 
US office workers

to the cloud

We would use
up to 87% 
less energy

That’s enough to
power Los Angeles

for one year
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Regardless of all these positive side 
effects, researchers and datacenter managers 
keep looking for more energy efficient 
and environmental friendly datacenter 
management schemes, as energy costs are still 
a major component of datacenter costs. There 
are many studies that focus on improving the 
power usage effectiveness of datacenters. 
Power usage effectiveness is the ratio of total 
amount of energy used by a datacenter to the 
total amount of energy used for computation. 

The difference power between datacenter 
and compute power usage is the facility 
overhead power spent to datacenter services 
such as cooling, power distribution, lighting, 
etc. The current average datacenter power 
usage effectiveness is 1.7. Companies such 
as Google and Facebook developed various 
novel datacenter designs empowered with 
ingenious cooling mechanisms and publicized 
these designs. State-of-the-art datacenters 
built according to these designs can achieve 
power usage effectiveness ratios as low as 
1.1, meaning that these datacenters can 
operate with overheads as low as 10%. 

BIG DATA ANALYTICS 
FRAMEWORK HADOOP

After investigating the sustainability 
and energy efficiency of the underlying 
infrastructures sustaining big data analytics, 
let’s have a look at the energy efficiency of 
software frameworks for big data analytics. 
Hadoop is the most popular data processing 
framework that is commonly used in all 
stages of big data analytics as it can easily 
act as a data extraction, transformation, and 
loading framework, or as a data warehouse 
that harbors various data sources in one 
place and enables appropriate mappings and 
joins among these sources, or as a query 

FIGURE 2
A standard big data analytics platform workflow: Structured and unstructured data sources are gathered and consolidated into an analytical data store. Analytics tools use real-
time and historical data coming from the data platform for providing insights. 
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processing and analytics framework that 
draws the final value added analytics results. 
Hadoop implements the MapReduce parallel 
processing paradigm and incorporates a 
distributed file system component (Hadoop 
Distributed File System) to be able to scale to 
very large datasets. 

The term Hadoop interchangeably is 
also used for referring to the applications 
in the “Hadoop ecosystem,” which include 
applications such as Apache Pig, Apache 
Hive, Apache HBase, and Apache Spark that 
can run on top of or alongside Hadoop. With 
the increase in big data analytics requests of 
many businesses and the advancements in 
cloud computing that enable easy access to 
large-scale processing and storage capacities 
on demand, utilization of applications in the 
Hadoop-ecosystem keep observing a steady 
increase as well.

Figure 2 showcases a classic big data 
analytics platform workflow. The platform 
is fed by structured and unstructured data 
sources. Data is gathered and consolidated 
into an analytical data store. Analytics tools 
use the real time and historical data coming 
from the data platform for providing insights.

As big data analytics and cloud computing 
keep on converging and merging, many cloud 
providers such as Amazon Web Services, 
Google Compute Engine, Rackspace, and 
Microsoft Azure started to offer various “big 
data as a service” solutions that run on VMs 
on the cloud, starting with offering Hadoop as 
a service solutions. These services automate 
provisioning of Hadoop clusters on the cloud to 
ease data analytics deployments and Hadoop 
clusters running on virtualized environments 
are starting to become the norm rather than 
the exception. Arguably, even though there 
are many companies specialized on Hadoop 
services such as Cloudera, Hortonworks, and 
MapR, Amazon is the company that makes 
most money from Hadoop with its Elastic Map 
Reduce solution.

Big data analytics solutions evolved 
separately from cloud computing and initial 
big data applications assumed that they 
would run on separate dedicated clusters 
that will only cater to them. As such, Hadoop 
assumes that its data storage and data 
processing services will be collocated in 
the same physical machine, and it tries to 
maximize data locality in its data placement 
and replication strategies to obtain the best 
I/O performance. However, in cloud-based 
Hadoop deployments, collocating data and 
compute services in the same set of servers 
is not preferred and these services are 
separated. This enables migrating live VMs and 
spinning up/down compute VMs as demand 
increases/decreases without causing costly 

data migrates.[2] It also enables standard 
energy efficiency mechanisms to be applied 
even on Hadoop clusters as compute tasks 
now can be treated as independent stateless 
processes that can be easily migrated and 
packed into fewer number of physical servers 
if capacity and SLAs permit. Furthermore, as 
some of the workloads processed in Hadoop 
deployments are less time sensitive, Hadoop 
can enable participation in energy regulation 
programs or increase green energy usage.[3]   

Separation of data and compute services 
comes at the cost of a loss in data locality 
and performance degradation, but recent 
improvements in networking technologies 
can alleviate some of the adverse effects of 
remote data access and there are studies 
indicating that the importance of data locality 
under these never networking technologies is 
negligible. Still, Hadoop requires storage in 
various stages of computation and organization 
of these storage sources can have an impact 
on the performance and energy utilization 
of a virtualized deployment.[2] Furthermore, 
storage technologies keep on advancing as 
well, and with the widespread adoption of flash 
disks and ramdisks, data locality will start to 
matter again as the difference between the 
network I/O and storage I/O capacity will 
widen again. The performance and power 
implications of such novel deployments are still 
not well investigated and remain as an open 
research topic. 

SUSTAINABILITY SUPPORTED 
The largest public clouds supporting many 

big data analytics frameworks and datasets are 
running on energy efficient cloud datacenters 
that support investments into renewable energy 
sources. Furthermore, big data analytics is 
actively used by the energy industry for making 
intelligent decisions and improvements in 
efficiency. Finally, big data analytics frameworks 
such as Hadoop can moderate their computation 
to support green computing solutions and/or 
power provider energy regulations, although 
energy efficiency improvements for these 
frameworks especially under new hardware 
infrastructures is open for investigation. 
According to these observations it is safe to 
claim that current practices in big data analytics 
support sustainability. 
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THE CONSUMMATE ENGINEER

Transformers 101 (Part 1)

During the past year, George has presented 
introductions to a variety of essential electronics 
topics, including resistors and capacitors. In this 
series, he tackles the subject of transformers.  

By George Novacek (Canada) 

Essential Characteristics

Before I delve into the subject of 
transformers, let’s refresh what we know 

about inductors because they form the basis 
for all transformers. Defined by Faraday’s 
Law, an undulating current i flowing through 
a coil whose inductance is constant will 
generate a back EMF voltage across the coil’s 
terminals. 

v di
dt

 = -L 





This is a defining equation for inductors. 
The energy stored in the magnetic field of an 
ideal coil is:

P =   LI21
2

×

Let me emphasize: an ideal coil has 
zero resistance of the winding and no 
parasitic capacitance between the turns. 
The fundamental characteristic of an ideal 
inductor is that it is a reactive element with 
frequency-dependent impedance Z. 

Z =  = j2 fLj Lω π

MAGNETISM
When voltage is applied across an 

inductor’s terminals, a current flows through 
the coil. This generates magnetic field and, 
consequently, magnetic flux. These elements 
are responsible for generating the back 
electromagnetic force (EMF) which works 
to slow down the rate of rise of the current 
through the inductor. With a DC voltage step 

(closing the switch in Figure 1) the current 
eventually saturates at VBAT/R, where R 
represents the resistance of the winding plus 
any other resistance added in series, such as 
the wiring. 

The relationship between the inductor’s 
current I (in amperes, A), its inductance 
L (in henries, H) and the magnetic flux F is 
expressed as: 

L =   10-8Φ
I

×

When two (or more) inductors operate 
close to each other, such as in transformers, 
their respective magnetic fluxes affect each 
other through mutual inductance M, which 
is sometimes expressed as a coefficient of 
coupling (k). For two coupled coils, mutual 
inductance M is:

M =   10  =   10-8 -8Φ Φ2 1

1

1 2

2

, ,

I I
× ×

F2,1 is the magnetic flux in the second coil 
caused by the current in the first coil. F1,2 is 
the magnetic flux in the first coil caused by 
the current in the second coil. And I1 and I2 
are the respective currents in the first and 
the second coil. Mutual inductance and the 
degree of coupling k affect the transformer’s 
characteristics. To achieve high efficiency in 
power and signal transformers, the coupling 
needs to be maximized. The maximum mutual 
inductance between two coils L1 and L2 occurs 
when magnetic flux of one coil crosses all 
the turns of the second coil and vice versa. 
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The maximum achievable mutual inductance 
value is:

M  =   L2MAX L1 ×

And the coefficient of coupling k equals:

k = 
M
M

MAX

k is the ratio of an actual (measured) 
mutual inductance M divided by calculated 
MMAX. It has no dimension; its maximum value 
is 1. What applies for power and some signal 
transformers does not necessarily apply to 
high frequency resonating signal transformers 
in applications such as band-pass or band-
reject filters, coupling transformers for 
tuned intermediate frequency (IF) filters and 
so forth. There, for example, the degree of 
coupling affects the frequency response and 
the slope of the filter. This is a separate topic, 
beyond the scope of this article.

A current flowing through a wire generates 
a circular magnetic field that’s perpendicular 
to the wire. The total flux is the product of the 
field strength and loop area, perpendicular 
to the loop. In a solenoid (a coil) each wire 
loop contributes to the flux and, consequently, 
field lines inside the solenoid become nearly 
straight lines. All of the flux passes through 
the solenoid, perpendicular to its axis. The 
magnitude of the flux is proportional to the 
electrical current through the solenoid.

The magnetic field can be described by the 
right hand rule. Imagine you hold a wire in 
your right hand such, that the thumb points in 
the direction of the current flow. The magnetic 
flux curls like your fingers around the wire. 
The magnetic flux, also called induction field 
has intensity and direction in every point in 
space, forming continuous loops in space.

The magnetic field is characterized by its 
field strength H, which relates to the electrical 
current flow only. When a permeable core is 
inserted in the solenoid, the induction field 
quantity called B enters the picture. The 
relationship between B and H is based on the 
relative permeability of the magnetic core, 
where µ0 is the permeability of air or vacuum, 
equaling to 1. With no ferromagnetic core B 
= H.

B =     H0 rµ µ× ×

This relationship is depicted in Figure 2. 
The flux B within an air-core solenoid versus 
its field strength H would be just a straight 
line, crossing where the axes cross. With 
a permeable core the flux B is not linear 
and exhibits hysteresis. When a solenoid 
is energized by AC current, the initial 
magnetization flux moves first from point A to 

C. With the magnetic field H reducing and then 
inverting its polarity, the flux B moves along 
the left curve C to D and then again from D 
to C on the right. The characteristics of the 
curve depend on the permeable material of 
the core as well as the range of H. 

Manufacturers provide B/H relationship 
for sinusoidal excitation. The nonlinear 
relationship of B/H varies with peak B 
values, material, frequency and waveform. 
Cores for operation above 20 kHz are often 
characterized with square wave excitation. 

Transformers are often loaded with 
nonlinear loads, such as rectifiers with 
capacitor output filters. Consequently, the 
selection of a core material becomes very 
important. Power and audio transformers’ 
cores are built as stacked laminations, 
torroids, and other designs to reduce losses, 
such as those due to eddy currents. Ferrite 
cores regularly use an air gap. For most 
applications it is crucial to avoid core’s 
magnetic saturation and to operate within the 
linear B/H region.

Magnitude of the H field is reduced by the 
permeability factor µr. With the exception 

FIGURE 1
Back EMF works against the current 
supplied by the battery. 
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FIGURE 2
Magnetic field vs. magnetic flux and hysteresis
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of very high-frequency applications, most 
transformers need a ferromagnetic core to 
increase the permeability and, thus, decrease 
the necessary number of turns of the winding. 
The flux concentrates in the core. If there is a 
small air gap in the core, the field H will equal 
to B, while in the core it will be H = B/µr. This 
results in a discontinuity of the H field lines, 
now reaching outside the core. This effect has 
been used in devices such as erase, record 
and playback heads in tape recorders, hard 
drives, etc.

POWER TRANSFORMER
Let’s consider a typical 60-Hz power 

transformer. Transformers have a primary 
winding and one or more secondary windings 

placed around a magnetic path. The primary 
winding takes energy from a power source, 
such as 120VAC and transforms it via 
secondary winding into a desired voltage.

The current flowing through n turns of wire 
in the primary winding, called magnetizing 
current, establishes the H field. Without a 
core this would have to be huge. Adding a 
ferromagnetic core such as iron reduces 
the current by the permeability of iron to a 
reasonable magnitude. 

In Grounding and Shielding Techniques 
(Wiley-IEEE Press, 2007), Ralph Morrison 
provides example of a 60Hz transformer with 
a magnetizing current of 50mA. Permeability 
of the core µr = 20,000. Should the core be 
removed, the required magnetizing current 
would jump to 1,000A. 

The H field created by the primary winding 
generates magnetic flux B through the core. 
Secondary coils added around the path of the 
flux are magnetically coupled to it. According 
to Faraday’s law, the secondary winding 
voltage will follow the B field changes as 
follows, where F = BA.

V = n  A  × × d
dt
Φ

A is the area of the core and n is the 
number of turns. Voltages on all windings, 
therefore, will be proportional to each other 
by the number of turns, ohmic losses due 
to the wire resistance notwithstanding. The 
windings are balanced by their ampere-
turns. If the primary has 1,000 turns and the 
secondary 100 turns, for instance, the load 
current in the primary coil will be 10% of 
the secondary current. This is illustrated in 
Figure 3.

Notice that because of the need for the 
magnetizing current, a transformer cannot 
achieve full 100% efficiency. Transformers 
may have numerous windings and each 
winding may have many taps. Transformers 
can also provide isolation of many thousands 
volts between all their windings. They also 
serve to suppress common mode interference 
from communication signals, such as 
Ethernet, MIL-STD-1553B and others. One 
exception is an autotransformer, where only 
one winding with taps exists. While it is less 
costly to build, it provides no isolation or 
common mode interference reduction.

TRANSFORMER DESIGN
In the second part of this article series, I’ll 

detail some aspects of the transformer 
design. There are many empirical equations 
for calculating the transformer characteristics. 
Relying on them in the course of your design 
will achieve something within a wide ballpark 
of the measured values at best. 
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Transformer balancing by ampere-
turns
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Ed was recently challenged to build something with 
an unclaimed 8 × 8 RGB LED matrix. Never one to pass 
on an engineering challenge, he built an interesting 
Arduino-based desktop radiation monitor.

By Ed Nisley (US)

A while ago, Sophi dumped a pile of tech 
gadgetry on the work table at the local 

makerspace and asked all present to make 
it vanish. When an 8 × 8 RGB LED matrix 
remained unclaimed after the initial scrum, 
she flicked it across the table and asked me if 
I wanted to make something of it. Combined 
with a few bits from my heap and an idea 
from one of her spectacular Burning Man 
installations, the prototype of a small desk 
toy shown in Photo 1 took shape.

The white LED to the upper left of the 
Arduino Pro Mini flashes whenever an 
external Geiger-tube radiation sensor detects 
a beta or gamma particle, whereupon one of 
the RGB LEDs changes color. The background 
radiation on my desk ticks along at a dozen 
counts per minute, producing a slowly 
changing display.

In this column, I’ll describe how to 
multiplex an LED matrix with simple shift 
registers and transistors, as well as explain 
why specialized hardware makes more 
ambitious projects feasible. You’ll also see 
how to generate reasonably random numbers 
from randomly timed pulses. An Arduino 
can certainly handle more complex display 
algorithms, but that’s a simple matter of 
software.

MULTIPLEXING LEDS
The 8 × 8 RGB LED matrix contains 192 

diodes in a package with only 32 pins, so 
it obviously requires external multiplexing 
hardware. The one I used has common anode 
matrix connections: each of the eight rows 
has one pin connected to all 24 LED anodes 
along that row. Each of the eight columns 
has three pins, one apiece for the cathodes 
of the eight red, green, and blue LEDs in that 
column. This type of display depends on the 
ability of human eyes to see rapidly blinking 
lights as steady sources, because only one 
row of LEDs will be illuminated at any time. 
You see the entire panel glowing at once, as 
shown in Photos 1, 2, and 4, as do cameras 
with relatively long exposure times.

The persistence of vision fails when your 
eyes move, because each blink activates 
different cells in your retina. The effect 
becomes more striking in dim illumination: 
you’ve probably noticed how LED automobile 
taillights form dotted contrails as your 
gaze shifts between traffic, the dashboard, 
roadside signs, and back to traffic. I find LED 
taillights distracting, although some people 
can’t distinguish them from incandescent 
bulbs.

Because each LED emits light only 1/8 of 

ABOVE THE GROUND PLANE

PHOTO 1
A simple handwired protoboard works well enough with a 
1 MHz shift clock. Connections to the 9 VDC wall wart and 
Geiger monitor emerge from the 3D printed board holder at 
the upper right. The LED matrix covers most of the circuitry.

Random 
LED Dots
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the time, the matrix will be 1/8 as bright as it 
would be with constantly lit LEDs. The usual 
remedy requires driving the LEDs at their 
maximum pulsed-current rating, with results 
that I explored in my July and September 
2013 columns on LED characterization. Large 
arrays intended for outdoor use require 
high-power drive circuitry and elaborate 
thermal control, but a desk toy can produce 
enough light with very low currents and low-
cost generic hardware.

The diodes in the LED matrix have no 
memory, which means the driver must 
maintain a bitmap of the entire display 
state and periodically refresh the matrix. An 
eight-color RGB display requires one bit per 
LED, so the 8x8 matrix I’m using requires 
24 bytes of RAM. The amount of data grows 
as the square of the matrix size: a 16x16 
matrix fills 96 bytes and a 32x32 display 
soaks up 384 bytes. The Atmel ATmega 328 
microcontroller on the Arduino Pro Mini has 
2 KB of RAM, of which about 1.5 KB will be 
available for simple programs, putting an 
obvious upper limit on the display size.

If the display hardware supports per-LED 
brightness control, then the memory use 
grows accordingly. Sixteen brightness levels 
requires four bits for every LED, which means 
the bitmap for a 32x32 matrix will blot up all 
of the Arduino’s RAM. Obviously, Arduino-
class microcontrollers are best suited for 
small displays with relatively few colors. The 

simple hardware I used allows on-off control 
of each LED, for a total of eight colors.

Another limit comes from the output 
bandwidth required to transfer the data fast 
enough to reduce visible flicker. I set the 
ATmega328’s hardware SPI to shift data at 
1 µs/bit, which is a reasonable compromise 

typedef struct {
  const byte Row;
  byte ColR;
  byte ColG;
  byte ColB;
} LED_BYTES;

#define NUMROWS 8
#define NUMCOLS 8

LED_BYTES LEDs[NUMROWS] = {
  {0x80,0,0,0},
  {0x40,0,0,0},
  {0x20,0,0,0},
  {0x10,0,0,0},
  {0x08,0,0,0},
  {0x04,0,0,0},
  {0x02,0,0,0},
  {0x01,0,0,0},
};

byte RowIndex;

LISTING 1
Each array element contains the 
bit patterns for one row of the LED 
matrix: illuminating the entire matrix 
requires sending all eight elements 
in rapid succession. The function 
handling the SPI output inverts the 
bit patterns to match the active-low 
circuitry driving the matrix.

FIGURE 1
Properly multiplexing the LED matrix 
requires activating each row in 
sequence, so the firmware ensures 
the 74HC595 shift register contains 
only a single 0 bit. Each PNP transistor 
must supply enough current for all 24 
LEDs in its row.
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between speed and circuit design. Although 
the SPI clock can run up to 8 MHz, the per-
byte software overhead doesn’t decrease 

and the overall refresh rate won’t improve as 
much as you might expect. In addition, the 
simple circuit layout and power distribution I 
used won’t support such high bit rates.

With a 1 MHz data rate and nothing else 
on its mind, the Arduino can refresh the 
entire matrix every 800 µs. At that pace, 
even 1/8 duty cycle LEDs don’t flicker at all.

Homework: figure the duty cycle and 
data rate for a 128x128 RGB matrix with 256 
brightness levels for each LED, refreshed at 
100 Hz. Compare that with the LCD panel in 
your phone to understand the limitations of 
small microcontrollers.

BINARY IN AN ANALOG WORLD
The LED matrix has 32 connections: eight 

current sources for the anodes in each row 
and 24 current sinks for the RGB LED cathodes 
along each column. Because ATmega 328 
microcontrollers don’t have that many I/O 
pins, I used four 74HC595 parallel-output 
shift registers to provide direct control over 
each signal.

The row drivers must source enough 
current to light up all 24 LEDs in each row at 
the same time. Although I used relatively low 
LED currents, as I’ll describe later, the total 
current for one row can exceed 100 mA, far 

FIGURE 2
The 74HC595 shift registers act as 
current sinks for the LEDs in each row, 
with the resistors limiting the current. 
Because the blue LEDs have the lowest 
luminous efficiency, they require the 
highest current. The other resistors 
set the red and green LED current for 
equivalent brightness, so that turning 
on all three LEDs produces white light.

PHOTO 2
A close look shows the individual RGB LED chips in each site wash the white walls 
with their color. As a result, you can’t get perfect white light no matter how carefully 
you balance the LED currents.
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FIGURE 3
An Arduino Pro Mini refreshes the LED 
matrix using hardware-assisted SPI. 
Pulses from a Geiger-tube radiation 
sensor generate random numbers to 
update the LED colors.

exceeding the microcontroller’s 40 mA per-
pin absolute maximum current rating. As a 
rule of thumb for most digital logic chips, 
you shouldn’t exceed 20 mA per pin without 
carefully considering the part’s data sheet: 
obviously, some buffering was in order.

I used ordinary 2N2907 bipolar 

transistors as current amplifiers for the LED 
anodes, as shown in Figure 1, with the shift 
register outputs acting as analog current 
sinks. Each shift register output will pull 4 
mA through the base of its 2N2907A PNP 
transistor when it goes low, due to the 1 kΩ 
resistor. The 2N2907A data sheet specifies 

www.cc-webshop.com
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a minimum DC current gain of 100, so the 
transistor will remain saturated for collector 
currents under 400 mA. At IC = 100 mA, the 
transistors act as switches with VCE around 
half a volt.

For proper multiplexing, the Arduino 

program must ensure that only one shift 
register output bit will be active at any time. 
The data structure and initialized array 
definition in Listing 1 set up the proper 
bit patterns, with the const byte attribute 
telling the compiler to prevent inadvertent 
changes to the row selection bits during 
execution. I use active-high bit patterns in 
the array, because they’re easier to work 
with, and invert the bits before sending them 
to the SPI hardware.

Pop Quiz: Is the array initialization 
sufficient to prevent multiple row activation?

With one output low and its PNP transistor 
turned on, the column drivers must limit 
the current through the 24 LEDs in that 
row. The three groups of resistors shown in 
Figure 2 allow simple on-off control with a 
fixed brightness for all eight LEDs of each 
color, with the shift register outputs acting 
as analog current sinks.

Each LED color requires a different ballast 
resistor, chosen for the LED’s efficiency at 
converting current to light and the human 
eye’s response to that color. Because blue 
LEDs have the lowest efficiency, red LEDs 
the highest, eyes respond best to green, and 
I wanted more-or-less white light when all 
three LEDs turned on, choosing the resistors 
required some trial-and-error.

Data sheets for 74HC595 shift registers 

PHOTO 3
Each rising edge of the 1 MHz SPI clock (upper trace) clocks data into the 74HC595 shift registers. The 
last eight data bits (lower trace) control the row drivers, so only one bit will be low. The code in Listing 2 
produces the gaps between the bytes as it loads the next set byte into the SPI hardware.

void WaitSPIF(void) { 
  while (! (SPSR & (1 << SPIF))) { 
    continue; 
  } 
} 

byte SendRecSPI(byte Dbyte) {     // send one byte, get another in exchange 
  SPDR = Dbyte; 
  WaitSPIF(); 
  return SPDR;                    // SPIF will be cleared 
} 

void UpdateLEDs(byte i) { 
  
  SendRecSPI(~LEDs[i].ColB);      // low-active outputs 
  SendRecSPI(~LEDs[i].ColG); 
  SendRecSPI(~LEDs[i].ColR); 
  SendRecSPI(~LEDs[i].Row); 

  analogWrite(PIN_DIMMING,LEDS_OFF);    // turn off LED to quench current 
  PulsePin(PIN_LATCH);                  // make new shift reg contents visible 
  analogWrite(PIN_DIMMING,LEDS_ON); 

}

LISTING 2 
These three functions handle the SPI hardware interface. Sending all four bytes with a 1 MHz clock requires 35 µs.
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specify 35 mA maximum for any output pin 
and 70 mA maximum through the IC’s ground 
pin. The ground pin current limit poses the 
tightest constraint when using the outputs 
as current sinks: all of the current from eight 
LEDs must pass through that single pin.

Because blue LEDs have the lowest visual 
response, I set them to a nominal 10 mA 
and picked the red and green LED currents 
to produce equivalent brightness, with the 
result shown in Photo 2. Obviously, the light 
from the RGB site in the lower left corner 
isn’t pure white, but it’s close enough for my 
purposes.

Note that the 74HC595 chip must sink 
80 mA when all the blue LEDs turn on, 
somewhat in excess of its maximum rating. 
In comparison, the green LEDs require 7 
mA and the red LEDs only 2 mA, so those 
74HC595 chips operate well within their 
limits, even with all eight LEDs turned on.

Because I’m setting the LEDs with random 
data, however, it’s very rare for all the blue 
LEDs in a single row to be on at the same 
time and, in fact, you’d expect only half of 
them to be on at once. A slight change to the 
program could slant the odds by not turning 
on the eighth LED in any row.

Pop Quiz: How many blue LEDs are on in 
Photo 1? Which row has the maximum?

The TLC5916 LED driver I used for the 
Totally Featureless WWVB Clock might 
seem to be a better choice than these shift 
registers, as its drivers allow a maximum 

120 mA per LED. However, it also has a 5 mA 
minimum regulated output, twice what the 
red LEDs draw, so using it would require a 
neutral-density filter atop the LED matrix to 
produce a similar intensity.

Homework: Adapt the design to use the 
specialized LED driver IC of your choice.

The closeup view in Photo 2 shows the 
three individual LED chips in each site, lined 

LISTING 3 
This code executes on each pass through the main loop. When GeigerTicked is true, the conditional converts the timestamp of the new Geiger event into four bytes of white noise 
that sets the color of a single LED. The loop iterates at 10 kHz and refreshes the entire LED matrix at 1.3 kHz, which is fast enough to require turning the LEDs off so that lengthy 
computations don’t hold a single row on long enough to produce a visible flash.

if (GeigerTicked) {
  digitalWrite(PIN_HEARTBEAT,HIGH);    // show a blip
  analogWrite(PIN_DIMMING,LEDS_OFF);   // turn off LED array to prevent bright glitch

  Hash = jenkins_one_at_a_time_hash((char *)&GeigerTime,4);  // whiten the noise
  
  GeigerTicked = false;                // flag interrupt handler to resume recording
  SetLED(Hash);
}

UpdateLEDs(RowIndex++);
if (RowIndex >= NUMROWS) {
  RowIndex = 0;
  PulsePin(PIN_SYNC);
}

digitalWrite(PIN_HEARTBEAT,LOW);        // always turn off the blip

LISTING 4 
Setting the color of a single LED requires splitting the value into three separate bits, then inserting each bit 
into the proper location in the column elements of that row.

void SetLED(unsigned long Value) {

byte Row =   (Value >>  8) & 0x07;
byte Col =   (Value >> 16) & 0x07;
byte Color = (Value >> 24) & 0x07;

byte BitMask = (0x80 >> Col);

  LEDs[Row].ColR &= ~BitMask;
  LEDs[Row].ColR |= (Color & 0x04) ? BitMask : 0;
  
  LEDs[Row].ColG &= ~BitMask;
  LEDs[Row].ColG |= (Color & 0x02) ? BitMask : 0;

  LEDs[Row].ColB &= ~BitMask;
  LEDs[Row].ColB |= (Color & 0x01) ? BitMask : 0;
}
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up at the base of the conical white plastic 
reflector that increases the visual effect. 
Viewing the matrix at close range, as you 
would for a desk toy, reveals the red and blue 
LEDs wash the sides of the “white” reflector 
with color, an effect that even carefully 
adjusted LED currents can’t eliminate. 
Fortunately, I’m not trying to achieve color-
corrected photorealistic results.

The Arduino Pro Mini in Figure 3 controls 
the LED matrix using only five outputs: 
unlike most Arduino projects, it has plenty of 

spare I/O pins. The SPI hardware interface 
supports both output (SDO) and input (SDI) 
bits, although SDI isn’t used here. The -SS 
pin must remain high when the Arduino is in 
SPI Master mode, so the code sets it to be an 
output with no connection. The Latch signal 
pulses high after shifting all four bytes into 
the shift registers. 

The Dimming output connects to the 
74HC595 column driver -G inputs. I use it 
as a binary control: high to disable and low 
to enable the driver output pins. You could 
also use it as a PWM output, with increasing 
PWM values reducing the overall LED matrix 
brightness.

With that in mind, the UpdateLEDs function 
in Listing 2 sends a single row of data from 
the LED bitmap array to the shift registers. 
The code inverts each byte before sending 
it, because the bitmap array represents 
selected rows and LEDs with active-high (1) 
bits, while the drivers require active-low (0) 
bits.

Photo 3 shows the SPI clock and data 
signals that transfer a single row to the shift 
registers. The 1 MHz SPI clock in the upper 
trace transfers each byte in 8 µs and the 
complete transfer occupies 35 µs, with the 
gaps between the bytes corresponding to the 
code in Listing 2. The rightmost byte, sent by 
the last SendRecSPI call in Listing 2, goes to 
the row driver in Figure 1 and has an obvious 
only-one-low-bit pattern.

The program’s main loop calls UpdateLEDs 
during each iteration to send successive 
rows. Sending the entire contents of the 
bitmap array to refresh all the LEDs requires 
eight passes.

The next step: put some interesting data 
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RESOURCES
3D Printed Protoboard Holder, 
http://softsolder.com/2015/05 
/14/proto-board-holder-80x 
110-mm-version/

Hardware Random Number 
Generation, http://en.wikipe-
dia.org/wiki/Hardware_ran-
dom_number_generator

Jenkins One-At-A-Time 
Hash Function, http://
en.wikipedia.org/wiki/
Jenkins_hash_function

More on Random Noise, http://softsolder.com/ 
2015/05/21/random-led-dots-radioactive-noise/

Sophi’s Art Projects, http://mix-engineering.com/

SOURCES
Adafruit RGB LED matrix display 
Adafruit Industries |www.adafruit.com/
categories/327

8 × 8 Common-Anode RGB LED Matrix 
Seeed Development | www.seeedstudio.com/
depot/60mm-square-88-led-matrix-super-
bright-rgb-p-113.html?cPath=163_165

Arduino Pro Mini microcontroller board
SparkFun (distributor) | www.sparkfun.com/
products/11113

TLC5916 LED Driver
Texas Instruments | http://focus.ti.com/docs/
prod/folders/print/tlc5916.html

PHOTO 4
An underexposed video frame 
captures the full LED array. The 
Arduino Pro Mini ‘s white LED glows 
brightly, because that pin is also the 
SPI hardware shift clock.

http://softsolder.com/2015/05
http://en.wikipe-dia.org/wiki/Hardware_ran-dom_number_generator
http://en.wikipe-dia.org/wiki/Hardware_ran-dom_number_generator
http://en.wikipe-dia.org/wiki/Hardware_ran-dom_number_generator
http://en.wikipe-dia.org/wiki/Hardware_ran-dom_number_generator
http://en.wikipe-dia.org/wiki/Hardware_ran-dom_number_generator
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://softsolder.com/
http://mix-engineering.com/
http://www.adafruit.com/
http://www.seeedstudio.com/
http://www.sparkfun.com/
http://focus.ti.com/docs/
www.circuitcellar.com/materials
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into the bitmap array.

TIMESTAMPED RANDOMNESS
A microcontroller program with no inputs 

is, essentially by definition, a deterministic 
process: it will produce exactly the same 
outputs after each reset. The Arduino 
library’s random function actually returns a 
fixed sequence of pseudorandom numbers, 
unless you set the initial seed with a truly 
random value from an input.

The -Geiger input in Figure 3 injects 
true randomness into this program, because 
it comes from an Aware Electronics RM-60 
Geiger sensor that detects beta and gamma 
radiation. The background radiation on my 
desk produces about 12 pulses each minute 
and, for more activity, a watch with a radium 
dial positioned against the Geiger tube 
produces 160 pulse/min.

Generating cryptographic-quality random 
numbers from a radiation detector, as 
described in the references, requires far 
more effort than seemed warranted for this 
gadget. Although radiation pulses occur at 
truly random intervals, the absolute times 
when those pulses occur form an ascending 
sequence that’s obviously not random. 
Finding the interval between two events 
removes the sequence, but those intervals 
have a relatively small average range that 
depends on the radiation intensity.

John von Neumann described how to 
eliminate the bias, at the cost of producing 
less than one random bit for every four 
pulses. That algorithm would require about 
three minutes of background radiation to 
generate the nine random bits that update 
a single RGB LED, far longer than seemed 
reasonable.

Because all I needed was a series of 
reasonably random numbers (and I was 
unwilling to increase the background 
radiation level around my desk), I used an 
interrupt handler to record the absolute time 
in microseconds when each pulse occurs, 
then passed those ascending values into a 
hash algorithm that produces four bytes of 
randomized bits with no obvious sequence.

A hash function summarizes a (possibly 
lengthy) stream of input numbers or 
characters by producing a fixed-length 
output number. Because hash functions are 
deterministic computer programs, hashing 
the same stream always produces the same 
output number, a characteristic of the digital 
signature that verifies a larger message. In 
this case, the hash function must map 32 
bits of input data into 32 bits of output data.

I used the Jenkins One-At-A-Time hash, a 
simple algorithm that thoroughly mixes its 
input bits and runs quickly, so that feeding 

it with absolute time values produces a 
corresponding series of mixed bits that 
resemble white noise. Cryptographically 
secure hash functions, such as those in the 
SHA family, require elaborate computations 
that aren’t well-suited for Arduino-class 
microcontrollers, so, even though the 
Jenkins hash may not be crypto grade, it’s 
good enough for my purposes.

The interrupt handler sets the 
GeigerTicked boolean variable code to 
indicate that it has recorded the time of a 
new pulse in GeigerTime. When GeigerTicked 
becomes true, the code in Listing 3 passes 
GeigerTime, the pulse’s four-byte timestamp, 
through the Jenkins hash function to produce 
Hash. It then calls the SetLED function in 
Listing 4 to extract a trio of three-bit values 
from the hash that select an LED by row and 
column, then set the color of that LED in the 
bitmap array.

A four-byte integer can count 71.6 
minutes of microseconds before it wraps to 
zero. At 12 events per minute, each of those 
860 events will (almost certainly) occur at a 
different one of the 4.3 × 109 microseconds, 
so the hash function will deliver unique 
values for each event.

I haven’t bothered to run the tests 
showing exactly how random these random 
numbers might be, because it doesn’t matter. 
Photo 4, a somewhat gritty video image 
capture, shows another one of the 6.3 × 1057 
possible color arrangements: so far, they’ve 
all been pleasing to the eye. The pulses arrive 
slowly enough that the display never seems 
to change when you’re watching it, yet it’s 
completely different after ten minutes.

After I got everything running, however, I 
noticed that sometimes the white LED would 
flash to indicate a pulse from the Geiger 
sensor, but the LED matrix wouldn’t change. 
It turns out that the randomly chosen new 
color for an LED may be the same as the 
old color: even though the code updates the 
bitmap with every pulse, 12.5% of those 
pulses produce no visible difference.

CONTACT RELEASE
The magenta 3D printed board holder 

sufficed to get the circuit and firmware 
running, but doesn’t provide enough 
protection for a desk toy. I originally planned 
to conceal all the hardware inside a black box 
with a smoke-gray window over the matrix, 
but perhaps showing off the tech with a 
transparent box would be more appropriate. 
It’s time for some rapid prototyping!

You can download the Arduino program 
and the complete schematic in KiCad format 
from the Circuit Cellar FTP site. 

ABOUT THE AUTHOR
Ed Nisley is an EE and 
author in Poughkeep-
sie, NY. Contact him at 
ed.nisley@pobox.com 
with “Circuit Cellar” in 
the subject line to avoid 
spam filters.

mailto:ed.nisley@pobox.com
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While working to improve the ignition 
system of the automobile during the 

early 1970s, John Richard Wiegand discovered 
a physical phenomenon we now know as the 
Wiegand effect. The ability for a material to 
retain a bistable magnetic state and change 
state when exposed to an opposing magnetic 
field. The material is produced in the form of 
wire that has been first annealed to produce 
a soft core and then cold-worked producing 
a hard shell. This gives it a unique nonlinear 
magnetic property.

The outer shell has high coercivity, or the 
ability to withstand an external magnetic field 
without becoming demagnetized, while the 
inner core has a low coercivity. So the shell 
resists any opposing magnetic field until its 
magnetic hysteresis level is reached; then the 
material rapidly changes its magnetic polarity. 

This flip/flop occurs in just a few microseconds. 
When used as the heart of a sensor 

consisting of a short length of the material 
surrounded by a coil, the rapid change in the 
magnetic field induces a current spike in the 
external coil. The Wiegand sensor will produce 
both positive and negative spikes depending on 
the polarity of the magnetic change. The high 
repeatability threshold of the magnetic field 
makes the Wiegand effect useful for positional 
sensors and the like.

KEYCARDS
Keycards have been around for a long 

time. In a September 1954 Popular Mechanics 
article, “A House of Magic,” Thomas E. Stimson 
details the use of key cards to open a gate at an 
automated parking lot. Prior to the new craze 
of smartcards and RFID technology, popular 

Wiegand World
An Introduction to the Physical Layer & 
Protocol

FROM THE BENCH

PHOTO 1
This typical harsh environment keypad outputs data using the 
standard Wiegand formatted output. A minimum connection includes 
+12 V, Common, and Wiegand 0 and 1 outputs. The outputs are 
open collector and multiple units can coexist on the same connections. 
While there is no protection against collision, this will most likely 
cause the transmitted data to fail proper formatting. 

Wiegand technology has been around since the 1970s. 
Jeff Bachiochi covers the history of the technology, 
and covers the Wiegand interface and protocol. He 
concludes with details about a microcontroller-based 
Wiegand data display project.

By Jeff Bachiochi (US)
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types of keycards included the mechanical 
punched hole, barcode, and magnetic stripe 
cards. Wiegand wire embedded cards became 
popular because they were difficult to duplicate. 
Since the key code is permanently set into 
the card at manufacture by the positions of 
the wires, Wiegand cards can’t be erased by 
magnetic fields or reprogrammed as magnetic 
stripe cards can. So, in high-security areas, 
Wiegand cards were king.

The Wiegand plastic keycard has a series 
of short lengths of Wiegand wire embedded 
in it, which encodes the key by the presence 
or absence of wires. A second track of wires 
provides a clock track. The card is read by 
pulling it through a slot in a reader device, 
which has a fixed magnetic field and a sensor 
coil. As each length of wire passes through the 
magnetic field, its magnetic state flips, which 
indicates a 1, and this is sensed by the coil. The 
absence of a wire indicates a 0.

With the popularity of Wiegand on an 
upturn, secure points of entry needed to be 
tied to a central computer as building systems 
grew in complexity over local control right at 
each door. A new protocol was developed for 
transmitting data over extended distances 
from the point of entry to the central control 
system. By the 1980s, the Wiegand interface 
became a de facto wiring standard. 

WIEGAND PHYSICAL LAYER
The Wiegand interface uses three wires: a 

common ground and two data transmission 
wires usually called DATA0 and DATA1. When 
idle, both DATA0 and DATA1 are pulled up to 
the “high” voltage level, usually +5 VDC. When 
a 0 is sent, the DATA0 wire is pulled to a low 
voltage (DATA1 stays high). When a 1 is sent, 
the DATA1 wire is pulled to a low voltage 
(DATA0 stays high). An advantage of the 
Wiegand signaling format is that it allows very 
long cable runs, far longer than other interface 
standards of its day allowed.

Wiegand card readers pretty much defined 
the Wiegand communication protocol, as it 
followed the physical manufacturing format of 

the embedded card data. Using a card as the 
only access vehicle was secure, but a physical 
keypad had wide spread appeal. Building off 
Wiegand card success, the already established 
communication format stuck for other types of 
entry devices. 

Photo 1 pictures a typical harsh-
environment keypad. These are typically in 
the standard 3 × 4 key format consisting of 
10 digits (0 to 9), plus asterisk (*) and pound 
(#) keys. Most of the industry operates at a 
supply voltage of 12 VDC. This allows for a bit 
of drop in the supply lines, affording sufficient 
overhead to an onboard 5-V regulator. While 
many devices aren’t considered “smart,” 
they all need some amount of smarts to 
interface the user entry device (keypad) with a 
communication protocol. Key entering consists 
of a number of digits followed by the “#” used 
as an enter/finished key. The “*” key is often a 
cancel, flushing out any digits entered.

WIEGAND PROTOCOL
Based on the Wiegand swipe card 

technology, the data format is presented in a 
26-bit format, one even parity bit, 8 bits of 
facility code, 16 bits of ID code, and a trailing 
odd parity bit. The first parity bit is calculated 
from the first 12 bits of the code and the 
trailing parity bit from the last 12 bits. Most 
access control system manufacturers adopted 
Wiegand technology, but its limitations of only 
8 bits for facility codes (0–255) and 16 bits for 
card ID (0–65535) caused some to design their 
own formats with varying complexity of field 
numbers and lengths and parity checking. The 
physical size limitations of the card dictated 
that a maximum of 37 Wiegand wire filaments 
could be placed in a standard card, as 
dictated by CR80 or ISO/IEC 7810 standards. 
Therefore, most Wiegand formats used in 
physical access control are less than 37 bits in 
length. While this doesn’t change the physical 
communications layer, propriety data formats 
don’t lend themselves to universal use.

Let’s take a look at the typical Wiegand 
output for a Wiegand device. As you can see 

FIGURE 1
The standard pulse width is typically 
50 µs for either Wiegand 0 or Wiegand 
1 data with an inter-pulse or delay 
time of 2 ms.

50-µs Pulse

2-ms Pulse intervals
TTL Level

5 V
0 V

1 0 1 0

5 V
0 V

Data 1

Data 2

Data
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in Figure 1, the Data1 pulses on the top trace 
and Data0 pulses on the bottom trace do not 
coincide—that is, they occur independently. 
Open-collector drivers for each line are pulled 
up to VCC with resistors. The pulse width is 
typically 50 µs, but it can be between 20 and 
200 µs. However, while the time between bits 
has a delay time of 2 ms, it might be a short as 
200 µs or as long as 10 ms.

A keypad device that is used to collect “ID 
code” data will normally have the “facility 
code” data preprogrammed so the user need 
only enter the ID code consisting of up to five 
digits followed by the “#” (enter key, the “*” is 
a clear entry key). Upon pressing “#,” the logic 
either limits the entry or appends zeros to the 
left if necessary to create a five-digit number. 
This number is limited to between 0 and 65535 
so that it fits within a four-digit hex value. 
Entering “1234” will be sent as “04D2” (hex) 
because the Wiegand format limits the ID code 
to four hexadecimal digits. Let’s say the facility 
code is set to 170 (that’s “AA” in hex), then 
the six-digit (hex) data would be “AA04D2.” 

Once this data has the even and odd parity bit 
added, it will be ready to output. If we look 
at this data in binary, it is much easier to see 
the parity: 1010-1010-0000-0100-1101-0010. 
There are four 1 bits amongst the first 12 bits. 
That’s an even number, so the even parity 
must be “0” to keep the parity even. There 
are five 1 bits in the last 12 bits, and that’s 
already odd, so again the odd parity bit must 
be a “0” to keep the parity odd. The parity bit 
is set to whatever state is necessary for the 
total set of 12 data bits plus 1 parity bit to be 
the required parity. With the complete 26-bit 
Wiegand format established, this string of data 
is output through the Wiegand interface.

010101010 00000100110100100
     A     A       0     4       D     2

WIEGAND DECODING
On the outside, it may look like a no-

brainer to decode a Wiegand communication 
string. For the most part you’d be correct. 
You would just watch the Data0 and Data1 

FIGURE 2 
The highest level interrupt collects any 
changes of state (COS) that are seen 
on either of the Wiegand data lines. 
Related Pulse or Delay times since the 
last COS are recorded as well so that 
later these can be verified against the 
actual Wiegand specs.

Wiegand
0 = 1 ?

Save state

RETI

Wiegand
1 = 1 ?

Wiegand 0
COS ?

Y Y

NN

High-level
interrupt COS

NewCOS = PORTB
Clear COS Interrupt

Clear and Start
Timer 5

WiegandTimerH
= Timer 1

Clear and Start
Timer 1 and 3

WiegandTimerH
= Timer 3

Clear and Start
Timer 1 and 3

WiegandTimerL
= Timer 1

Clear and Start
Timer 1

WiegandTimerL
= Timer 3

Clear and Start
Timer 3
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outputs for any low pulse and log each pulse 
as a 0 or 1. The transmission should have 26 
data bits. However, if you want to assure the 
transmission is legal, there is more to check 
than just the number of bits received. Besides 
the parity bit data checks, there is the width of 
each pulse, the time between non-concurrent 
pulses. We can set up minimum and maximum 
pulse and delay times (as mentioned above) 
and check the incoming data to make sure it 
fits within these specifications.

There are various ways to implement 
this. I chose to use the change of state (COS) 
interrupt originally intended for capturing a 
key press during a powered down sleep state. 
You designate which inputs are to be used and 
an interrupt is generated whenever there is a 
change from present state. It is important to 
note that the present state is updated when 
you read the state, so it’s important to do 
this right away, which will allow additional 
changes to issue another interrupt (even if 
mid interrupt). In this application, two inputs 
are designated, one for Wiegand 0 and one for 
Wiegand 1. A copy of the last read is saved, so 
we have a reference to determine which input 
has changed and to which state it has changed.

The Figure 2 shows the interrupt routine 
used for each COS interrupt. Timer 5 is used 
to determine a time out for the Wiegand 
communication. Similar to a watchdog timer 
it is reset each time a COS occurs. As long as 
this continues the timer will not reach its time 
out. Upon each COS the state (input and level) 
is recorded along with the appropriate timer 
count (in microseconds). We are not verifying 
anything here, just keeping track of what is 
happening at the inputs.  Once Wiegand data 
cease, the timer 5 will overflow, setting a flag 
which is being tested in the main loop (see 
Figure 3).

The main loop has two functions handling 
user requests, commands received from 
the UART, and Timer 5 timeouts, indicating 
that a Wiegand data transfer has occurred. 
A terminal program connected to the serial 
port allows commands to be entered by the 
user and Wiegand results to be displayed. The 
command structure is simple. Most commands 
are single letter entries: D, V, S, W, enable/
disable (toggle) Debug data, enable/disable 
(toggle) Verbose data, display Status, and send 
a Wiegand command. (It seemed a shame not 
to include this along with Wiegand decoding.) 
This last command requires two additional 
commands to set the facility data (8-bit) and ID 
data (16-bit) using the format Fxx and Ixxxx. 
Debug displays Wiegand data as bits instead 
of bytes. Verbose data displays the timing info 
recorded for each COS.

All the heavy lifting occurs once Timer 5 
overflows. Figure 4 outlines the process of 

reviewing the state and timing data recorded 
prior to Timer 5’s overflow. The process steps 
through this list looking for the rising COS for 
each input.  This indicates the end of each data 
pulse. The appropriate logic state—”0” for Data 
0 and “1” for Data 1—is shifted into a FIFO 
to collect the transmitted data states. Every 
entry (whether it’s a pulse or delay) is checked 
for proper timing based on preconfigured 
constants for minimum and maximum times 
for pulses and delays. Actually, the list’s first 
entry skips a timing check, as the timer is free 
running at this point (and meaningless.)

Once all the entries have been processed, 
we can now determine if the data shifted into 
the FIFO is legal. For this application, I am 
just interested in the standard 26-bit Wiegand 
format. Any other bit count indicates an illegal 
Wiegand format. I’ve left sufficient wiggle 
room for nonstandard formats. These could be 
implemented but since many are proprietary, 
I’ll leave this up to the reader.

The even and odd parity bits that bookend 
the data help to indicate a potential error in the 
data. Parity bits are the simplest form of error 
detecting. They cannot be used to correct any 
errors, as there is no way to determine which 
particular bits are corrupted. Therefore, if 
parity is determined to be incorrect, the entire 
transmission is considered bad and is tossed 
into the bit bucket. The parity bit is used to 
force the data’s total parity to conform to the 
chosen parity, either even or odd. If the data’s 
parity is even and we want even parity, then 
the parity bit is 0, which does not affect the 

Initialization

Call Chk4RX1

RX1Char?

Wiegand
Timeout?

Call process
RX1

Y

Y

N

N

Call process
Wiegand

Clear Wiegand

FIGURE 3 
The applications Main loop consists of 
handling user requests and processing 
any Wiegand data that has been 
captured. While not necessary to the 
final application, user commands allow 
some flexibility in what is displayed.
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total parity. If the data’s parity is even and we 
want odd parity, then the parity bit is 1, which 
changes the total parity.

As I mentioned earlier, the first 12 data bits 
(that’s the facility code and the first 4-bits of 
the ID code) use a leading even parity bit and 
the last 12 data bits (ID code) use a trailing 
odd parity bit for a total of 26-bits. If the first 
13 bits do not conform to even parity and the 
last 13-bits do not conform to odd parity, then 
a bad parity message is displayed. Otherwise, 
the Wiegand data is displayed in either bit or 
byte form.

WIEGAND DATA DISPLAY  
My first thought was to make this a 

standalone project with a small LCD to display 
each six-digit hex code picked off the Wiegand 
data lines. When I was deciding how to build 

this, I came across some old prototype PCBs 
I had left over from a previous Bluetooth 
project. I decided to use it just for that reason. 
I could eliminate both the display and the wired 
connection to my computer. This would allow 
the project to connect directly to the four-
wire Wiegand bus and act as both a wireless 
Wiegand logger and keypad emulator.

With this arrangement, I only needed to 
bring my laptop (or Android phone) in the 
vicinity to make a connection and monitor 
Wiegand usage or enter a Wiegand code right 
from my device. Using my laptop and Realterm 
(terminal emulation program), I get output as 
shown in Photo 2. You’ll notice some disturbing 
messages prior to the timing for each COS. 
The pulse and delay timing is outside of the 
maximum allowable times in the Wiegand 
specifications. I must have made some error in 

FIGURE 4
While you can receive Wiegand 
data without verifying specification 
timing, recording timing information 
allows you to compare and reject any 
transmission that does not adhere to 
the spec.    
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PHOTO 2
Communication with the project is 
over a Bluetooth serial connection. 
Here you can see a sign-on message 
and the first Wiegand entry “1234” 
is displayed as “AA 04D2.” Entering 
“D” toggles debug mode on. A 
second Wiegand entry “1234” is now 
displayed in bit form. Entering “V” 
toggles verbose mode on. Now we 
see timing information on a third 
Wiegand entry.

a routine somewhere. The resultant Wiegand 
code displayed at the bottom of the screen is 
correct. Hmm.

I connected a scope to the Wiegand bus to 
see the actual timing. Photo 3 shows what I 
found. The scope’s sweep parameter verified 
that my timing information was correct. 
This keypad was not within the standard 
specification. How was that possible? I Googled 
the keypad part number and was directed to 
Essex Electronics (www.keyless.com). My 
keypad didn’t seem to be in their line-up, so 
I contacted them. I received an immediate 
reply to assure me that my keypad was in 
fact a customized device. I was assured that 

other than the relaxed specs, the keypad was 
identical to the company’s standard product, 
KTP-103. The keypad is heavy. In fact, I was 
so curious that I weighed it found it was 1 lb.  
So, the mystery was solved and my application 
was in fact giving me the correct information.

To send a Wiegand transmission doesn’t 
require all the hoop jumping I had to implement 
here to read a Wiegand transmission. A 
single timer can be used to alternately time 
the duration of each of my pulses and inter-
pulse delays. I have commands set up to allow 
facility and ID codes to be entered and one 
to send a Wiegand transmission using those 
codes. To keep the open collector hardware 
bus architecture intact, we can’t just turn the 
Wiegand inputs to outputs and drive the bus 
high or low.  An open collector output is not 
driven high, it’s pulled high by an external 
resistor. This allows any device on the bus 
to pull the bus low at any time. Any logic low 
wins over a logic high.  Without open collector 
output drivers you need to play games. To 
output a logic high (idle), the I/O is treated as 
an input. To output a logic low (pulse), the I/O 
is treated as an output with a logic low applied. 
In fact we can leave the output loaded with a 
“0” and just change the direction of the I/O bit. 
That is, for a logic high the port bit remains as 
a input, the external pull-up creates the logic 
high on the bus, for a logic low the port bit 

circuitcellar.com/ccmaterials

RESOURCES
T. E. Stimson, “A House of 
Magic,” Popular Science, August 
1954.

J. Wiegand, “Bistable Magnetic Device,” US 
Patent US3820090 A, 1974, www.google.com/
patents/US3820090.

SOURCE
PIC18F23K22 Microcontroller
Microchip Technology | www.microchip.com  

http://www.keyless.com
http://www.google.com/
http://www.microchip.com
www.circuitcellar.com/materials
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PHOTO 3
The scope doesn’t lie. This Wiegand 
transmission is out of spec. The low 
pulse is measuring 1.4 ms with a 
delay of 6.2 ms.

is changed to an output and the output driver 
pulls the external pull-ups to ground. The fact 
that a logic low remains on the port bits output 
latch is a ‘don’t care’ when that port bit is 
defined as an input. So here we are not forcing 
an output high and low, just configuring the bit 
as an input (for a 1) and output (for a 0).  

IMPLEMENTATION
While this application was built using a 

28-pin Microchip Technology PIC18F23K22 
microcontroller, there are 16 I/Os that are 
not used (see Figure 5). Certainly, a smaller 

microcontroller could be used here, unless you 
wish to add a keypad and/or display to make 
a full-fledged input device. There is plenty of 
room left for additional functions.

You can search the internet and find a 
plethora of Wiegand interfaced devices still 
being produced. While many manufacturers 
have options available for other communication 
medium, Wiegand is still king. With a vast 
installed base, Wiegand is not going away any 
time soon. 

FIGURE 5 
This application only requires about 
six I/Os. The majority of room is taken 
up by connectors as seen in here. 
Note that 5-V logic is used to remain 
compatible with the Wiegand bus. 
Most bluetooth modules require the 
use of 3.3 V, so series resistors are in 
series with any driven lines to protect 
the Bluetooth inputs.  
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 4  CC 2014 DIGITAL ARCHIVE SUBSCRIPTION
Just when you thought it couldn’t get any easier than a thumb 

drive...you can now access a full year of Circuit Cellar from any 
device connected to the Internet! (2014: 12 issues)

You get all the benefits of a printed copy—bookmark pages, make 
annotations, and write in the margins—combined with the digital 
advantages of easy storage, zoom, links, and search features.

Item #: CC-DA-2014

1

2

 

Further information and ordering: www.cc-webshop.com
CONTACT US: Circuit Cellar, Inc. | Phone: 860.289.0800 | E-mail: custservice@circuitcellar.com 
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 3  ADUC841 MICROCONTROLLER DESIGN MANUAL
This book presents a comprehensive guide to designing and programming with 

the Analog Devices ADuC841 microcontroller and other microcontrollers in the 8051 
family. It includes a set of introductory labs that detail how to use these microcon-
trollers’ most standard features, and includes a set of more advanced labs, many of 
which make use of features available only on the ADuC841 microcontroller. 

The more advanced labs include several projects that introduce you to ADCs, 
DACs, and their applications. Other projects demonstrate some of the many ways 
you can use a microcontroller to solve practical problems. The Keil μVision4 IDE is 
introduced early on, and it is used throughout the book. This book is perfect for a 
university classroom setting or for independent study. 

Author: Shlomo Engelberg
Item #: CC-BK-9780963013347

 1  CC VAULT
CC Vault is a pocket-sized USB that comes fully loaded with every 

issue of Circuit Cellar magazine! This comprehensive archive provides an 
unparalleled amount of embedded hardware and software design tips, 
schematics, and source code. CC Vault contains all the trade secrets you 
need to become a better, more educated electronics engineer!

Item #: CCVAULT 

 2  CC 2014 CD
2014 was an exciting year for electronics engineers! The continued 

success of open-source solutions, Internet of Things (IoT) revolutions, and 
green-energy consciousness has changed the face of embedded design 
indefinitely. In Circuit Cellar’s 2014 archive CD, you can find all of these hot 
topics and gain insight into how experts, as well as your peers, are putting 
the newest technologies to the test. You’ll have access to all articles, 
schematics, and source code published from January to December 2014.

Item #: CD-018-CC2014 

Previous Years Also Available

http://www.cc-webshop.com
mailto:custservice@circuitcellar.com
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 CHALLENG
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TEST YOUR EQ 
Contributed by David Tweed 

PROBLEM 1—You have decided to build a small computer from 
discrete transistors as a demonstration. After researching the 
available technologies, you have decided to base your design on 
NMOS logic, using a 3-input NOR gate as your basic building block, 
as shown below.

Each gate uses three 2N7000 N-channel MOSFETs as pulldown 
transistors, and a 10-kΩ resistor as a passive pullup. You figure that 
you’ll need somewhere between 500 and 1000 of these gates to build 
a useful computer—after all, the original PDP-8 12-bit minicomputer 
CPU was built with only about 519 gates.

Approximately how fast will you be able to clock this computer?

PROBLEM 2—Assuming a supply voltage of 5 V, about how much 
power would you expect this computer to consume?

PROBLEM 3—How many three-input gates does it take to construct 
an edge-triggered (master-slave) D flip-flop?

PROBLEM 4—What famous computer was built using NOR gates 
exclusively for the logic?

You’ll receive electrical engineering tips, interesting electronics 
projects, embedded systems industry news, and exclusive product 
deals via e-mail to your inbox on a regular basis. If you’re 
looking for essential electrical engineering-
related information, we’ve got you covered: 
micrcontroller-based projects, embedded 
development, programmable logic, wireless 
communications, robotics, analog techniques, 
embedded programming, and more!

Subscribe now to stay up-to-date with our 
latest content, news, and offers!

Sign up for the

   FREE Circuit Cellar Newsletter!

circuitcellar.com

The answers to these EQ problems will appear in  
Circuit Cellar 303 (October 2015) and at CircuitCelllar.com.

www.circuitcellar.com
www.circuitcellar.com
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ACROSS
3. Decrease amplitude
4. Light intensity
6. Quantum theory
9. The Great Explainer
10. Leyden jar
11. Measures small electrical currents by means of deflecting 

magnetic coils
14. Metal containing iron
15. Big Blue
17. EW
19. 3.00 × 108 m/s

CROSSWORD 
The answers will be available at circuitcellar.com/category/crossword/

SEPTEMBER 2015

1

2

3

4

5 6 7

8 9

10

11 12

13

14

15 16

17 18

19

EclipseCrossword.com

DOWN
1. ENUM
2. GaAs
5. F = qE + qv × B
6. Chunk of data
7. Introduced the LISA computer in 1983
8. 1 quadrillion bytes
12. Range = 30 and 300 MH
13. Error-detecting code
16. Batch file
18. Thinner than QFP

www.circuitcellar.com/category/crossword
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microEngineering Labs, Inc.
www.melabs.com    888-316-1753

PIC is a registered trademark of Microchip Technology Inc. in the USA and other countries.

Programmers for Microchip PIC® Microcontrollers
PC-Tethered USB Model (shown):

•Standalone software
•Command-line operation
•Hide GUI for automated use
•Override configuration with drop-downs

Stand-Alone Field Programmer:
•Power from target device or adapter
•Program file stored on SD-CARD
•Programming options stored in file
•Single-button operation

Program in-circuit or use adapters for unmounted chips.
Zero-Insertion-Force Adapters available for DIP, SOIC, SSOP, TQFP, and more.

Starting at $79.95

PIC® MCU is a registered trademark of Microchip Technology Inc.

FREE 45 Day Demo:
ccsinfo.com/CC915

sales@ccsinfo.com 
262-522-6500 x 35

Built-in PID Functions
Included in CCS C Compilers

NEW!

Setup K values
Enable module & result 
functions
Input new data to the 
system & get the ouput






Setup PID in 3 steps:

setup_pid(PID_MODE_PID, K1, K2, K3)

Fast Calculations 
with PID Module

Compiler September_PID Functions_Final.indd   1 7/20/2015   4:06:06 PM

the directory of
PRODUCTS & SERVICES

For current rates, deadlines, and more information contact Peter Wostrel at 978.281.7708 or circuitcellar@smmarketing.us.

IDEA BOX

DIO24DIO24DIO24---ARDARDARD   
Digital Interface 

Call Toll-Free 
1-877-SCIDYNE 

(1-877-724-3963) 

▪ 24 Digital I/O Channels 
▪ 85ma Output Sink Current 
▪ Uses Standard SPI Library Routines 
▪ Connects to I/O Racks, LEDs, Switches, Relays 
▪ Industrial Operating Temperature Range 

Learn More Details at . . . 

XMEM+XMEM+XMEM+   
ARDUINO Peripherals 

External Memory plus 
Parallel Bus Expansion 

▪ For Mega 2560 and Mega ADK 
▪ Adds Memory Space, Seamlessly 
▪ 512K SRAM ( 32K x 16 banks ) 
▪ On-Board High-Speed Logic 
▪ Buffered Address, Data, Control 
▪ Supports 3.3V and 5V Circuitry 

mailto:circuitcellar@smmarketing.us
mailto:sales@ccsinfo.com
http://www.melabs.com
www.myropcb.com
www.ironwoodelectronics.com
www.maxbotix.com
mailto:info@maxbotix.com
www.scidyne.com
www.ccsinfo.com/CC915
www.allelectronics.com
www.picservo.com
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So many bytes, so little time. Five years ago, 
I found myself looking for a new career. 

After 20 years in the automotive sector, the 
economic downturn hit home and my time had 
come. I was lucky enough to find a position at 
the University of Notre Dame designing and 
building lab instrumentation 
and data acquisition equipment 
in the Department of Civil and 
Environmental Engineering & 
Earth Sciences, and teaching 
microprocessor programming 
in the evenings at Ivy Tech 
Community College. The 
transition from industry to 
the academic world has been 
challenging and rewarding. 
Component and System modeling 
using computer simulation is an 
integral part of all engineering 
disciplines. Much of the industry 
simulation software started out 
in a university computer lab.

A successful computer simu-
lation of a physical phenomenon 
has several requirements. The 
first requirement is a stable model based on 
a set of equations relating to the physics and 
scale of the event. For complex systems, this 
model may not exist, and a simplified model 
may be used to approximate the event as close 
as possible. Assumptions are made where 
data is scarce. The second requirement is a 
set of initial conditions that all 
the equation variables need to 
start the simulation. These va-
lues are usually determined by 
running real-world experiments 
and capturing a “snapshot” of 
the event at a specific time. The 
quality of this data depends on 
the technology available at the 
time. The technology behind 
sensors and data acquisition for 
these experiments is evolving at 
an incredible rate. Some sensors 
that may have cost $500 10 years ago are 
available now for $5 and have been miniaturi-
zed to one tenth of its original size to fit into a 
cell phone or smart band. Equipment that was 
too large to be used out of a lab environment 
is now pocket sized and portable. Researchers 
are taking advantage of this, and taking much 
more data than ever imagined.

So how will this affect the future of simu-
lation? Multicore processors and distributed 
computing are allowing researchers to run 

more simulations and get results quicker. Our 
world has become Internet driven and people 
want data immediately, so data must become 
available as close to real-time as possible. As 
more and more sensors become wireless, low 
cost, energy efficient, and “smart” due to the 

Internet of Things movement, 
empirical data is available from 
places never before conceived. 
Imagine the possible advance-
ments in weather modeling and 
forecasting if every cell phone 
in the world sent temperature, 
humidity, barometric pressure, 
GPS, and light intensity data to 
a cloud database automatically. 
More sensors lead to higher si-
mulation resolution and more 
accuracy. 

A popular saying, “garbage 
in = garbage out,” still applies, 
and is the bane of the Internet. 
Our future programmers must 
be able to sift through all of this 
new data and determine the 
good from the bad. Evil hackers 

enjoy destroying databases, so security is a 
major concern. Some of this new technology 
that could be useful in research is being re-
jected by the public due to criminal use. For 
example, a UAV “drone” that can survey a 
farmer’s crop can also deliver contraband or 
cause havoc at an airport or sporting event. 

While these issues are tackled 
in the courtroom and the FAA, 
researchers are waiting to take 
more data.

Simulation is still only a 
guess at what may happen un-
der specific conditions based on 
assumptions of how our world 
works. The advancements in 
sensor and data acquisition 
technology will continue to im-
prove the accuracy of these 
guesses, as long as we can de-

pend on the reliability of the input sources and 
keep the evil hackers out of the databases. 
Schools still need to train students on how to 
determine good data from questionable data. 
The terabyte question for the future of simu-
lation is whether or not we will be able to 
find the data we need in the format we need, 
searching through all these new data sources 
in less time than it would take to run the origi-
nal experiments ourselves. So many bytes, so 
little time.  

The Future of Engineering Research 
and Environment Systems Modeling
By R. Scott Coppersmith

R. Scott Coppersmith 
earned a BSc in Electrical 
Engineering at Michigan 
Technological University. 
He held several engineering 
positions in the automotive 
industry from the late 1980s 
until 2010 when he joined 
the University of Notre 
Dame’s Civil Engineering 
and Geological Sciences 
department as Research 
Engineer to help build 
a Environmental Fluid 
Dynamics laboratory and 
assist students, faculty, 
and visiting researchers 
with their projects. Scott 
also teaches a variety of 
engineering courses (e.g., 
Intro to Microcontrollers and 
Graphic Communication for 
Manufacturing) at Ivy Tech 
Community College.

Laser Particle Image Velocimetry
(PIV) Tank measuring 2-D flow through 
a long cylinder

Flow movement due to heat flux 
on inclined surface. Simulation of a 
heated mountainside from the sun.
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