
 Editors’ Picks: Embedded Solutions Battery-Powered MCU Circuits |

Acoustic Recording App (Part 3) Big Data Analysis in the Cloud |

Transformers 101 | Build a Radiation Monitor | MCU-Based Wiegand Data

Display System The Future of Simulation & Systems Modeling

 DATA ACQUISITION
SEPTEMBER 2015

ISSUE 302CIRCU
IT CELLAR | ISSU

E 302 | SEPTEM
BER 2015

circuitcellar.com

circuitcellar.com

A guide to the

SECURE HASH STANDARD
How SHA-256 works from
a hardware point of view,
using the Verilog HDL

without math

OPEN
Support every step
of the way with
open source visionRUGGED Embedded

systems that are
built to endureLONG LIFE We’ve never

discontinued a
product in 30 years ORIG

IN
AL Unique embedded

solutions add value
for our customers

DESIGN YOUR SOLUTION TODAY
CALL 480-837-5200

TS-4900
Computer on Module

Industrial High Performance
i.MX6 Module with Wireless
Connectivity and Flash Storage

1 GHz Solo or Quad Core Freescale i.MX6 ARM CPU
512 MB, 1 GB, or 2 GB DDR3 RAM and 4 GB eMMC Flash Storage
Wireless 802.11 b/g/n and Bluetooth 4.0 Soldered Module
4k LUT FPGA, 1x Gigabit Ethernet, 1x PCI Express Bus
1x microSD Socket, 1x SATA II, 1x USB Host, 1x USB OTG
70x DIO, 4x I2C, 1x I2S, 2x SPI, 2x CAN
-40 ºC to 85 ºC Industrial Temperature Range
Runs Linux, Android, QNX, Windows
QT, OpenGL, DirectFB, GNU Tool Kit, and More

$89
Starting at

$122
Qty 100

Qty 1

Available w/ TS-8550
PC/104 Development Kit

(Shown with optional microSD card)

TS-7250-V2
Single Board Computer

Extensible PC/104 Embedded
System with Customizable
Features and Industrial Temps

$165
Starting at

$199
Qty 100

Qty 1

800 MHz or 1 GHz Marvell PXA166 ARM CPU
512 MB DDR3 RAM and 2 GB SLC eMMC Flash Storage
PC/104 Connector with FPGA Driven Pins (8k or 17k LUT FPGA)
2x 10/100 Ethernet, 1x microSD Socket, 2x USB Host
75x DIO, 5x ACD, 3x RS232, 3x TTL UART, 1x RS485, 1x CAN
-40 ºC to 85 ºC Industrial Temperature Range
Preinstalled Debian Linux OS and Utilities

Available with TS-ENC720 enclosure

TS-7970
Single Board Computer

Embedded Computer Version
of the TS-4900 i.MX6 CoM with
Dual Ethernet, Rugged Connector

$169
Starting at

$214
Qty 100

Qty 1

1 GHz Solo or Quad Core Freescale i.MX6 ARM CPU
512 MB, 1 GB, or 2 GB DDR3 RAM and 4 GB eMMC Flash Storage
Wireless 802.11 b/g/n and Bluetooth 4.0 Soldered Module
4k LUT FPGA, 2x Gigabit Ethernet, 1x PCI Express Bus
1x microSD Socket, 1x SATA II, 4x USB Host, 1x USB OTG
Daughter card interface for cell modem and more
-40 ºC to 85 ºC Industrial Temperature Range
HDMI, LVDS, and Audio In/Out Connections
Runs Linux, Android, QNX, Windows Also available in this form factor are the

TS-7670 and TS-7680 with 454 MHz CPU

TS-TPC-7990
Touch Panel PC

7” High End i.MX6 Mountable
Panel PC with Dev Tools Such
as Debian GNU and QTCreator

$299
Starting at

$342
Qty 100

Qty 1

Enclosed TPCs
Also Available

1 GHz Solo or Quad Core Freescale i.MX6 ARM CPU
7 Inch or 10 Inch Touch Panel PC
Resistive and Capacitive Screens
Linux, Android, QNX, and Windows
QTCreator, GTK, DirectFB, GNU Tool Kit, and More
Runs Yocto, Debian, Ubuntu Distributions

COMINGSOON!

www.embeddedARM.com
www.embeddedARM.com

CIRCUIT CELLAR • SEPTEMBER 2015 #3022

Issue 302 September 2015 | ISSN 1528-0608

CIRCUIT CELLAR® (ISSN 1528-0608) is published monthly by:

Circuit Cellar, Inc.
111 Founders Plaza, Suite 904

East Hartford, CT 06108

Periodical rates paid at East Hartford, CT, and additional offices.
One-year (12 issues) subscription rate US and possessions

$50, Canada $65, Foreign/ ROW $75. All subscription orders
payable in US funds only via Visa, MasterCard, international

postal money order, or check drawn on US bank.

SUBSCRIPTIONS

Circuit Cellar, P.O. Box 462256, Escondido, CA 92046

E-mail: circuitcellar@pcspublink.com

Phone: 800.269.6301

Internet: circuitcellar.com

Address Changes/Problems: circuitcellar@pcspublink.com

Postmaster: Send address changes to
Circuit Cellar, P.O. Box 462256, Escondido, CA 92046

ADVERTISING

Strategic Media Marketing, Inc.
2 Main Street, Gloucester, MA 01930 USA

Phone: 978.281.7708

Fax: 978.281.7706

E-mail: circuitcellar@smmarketing.us
Advertising rates and terms available on request.

New Products:
New Products, Circuit Cellar, 111 Founders Plaza, Suite 904

East Hartford, CT 06108, E-mail: newproducts@circuitcellar.com

HEAD OFFICE

Circuit Cellar, Inc. 111 Founders Plaza, Suite 904
East Hartford, CT 06108

Phone: 860.289.0800

COVER PHOTOGRAPHY

Chris Rakoczy, www.rakoczyphoto.com

COPYRIGHT NOTICE

Entire contents copyright © 2015 by Circuit Cellar, Inc. All
rights reserved. Circuit Cellar is a registered trademark of
Circuit Cellar, Inc. Reproduction of this publication in whole
or in part without written consent from Circuit Cellar, Inc. is

prohibited.

DISCLAIMER

Circuit Cellar® makes no warranties and assumes no
responsibility or liability of any kind for errors in these
programs or schematics or for the consequences of any

such errors. Furthermore, because of possible variation in
the quality and condition of materials and workmanship of
reader-assembled projects, Circuit Cellar® disclaims any
responsibility for the safe and proper function of reader-

assembled projects based upon or from plans, descriptions, or
information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational
purposes. Circuit Cellar® makes no claims or warrants that
readers have a right to build things based upon these ideas
under patent or other relevant intellectual property law in

their jurisdiction, or that readers have a right to construct or
operate any of the devices described herein under the relevant

patent or other intellectual property law of the reader’s
jurisdiction. The reader assumes any risk of infringement

liability for constructing or operating such devices.

© Circuit Cellar 2015 Printed in the United States

THE TEAM

EDITOR-IN-CHIEF
C. J. Abate

ART DIRECTOR
KC Prescott

ADVERTISING COORDINATOR
Kim Hopkins

PRESIDENT
Hugo Van haecke

COLUMNISTS

Jeff Bachiochi (From the
Bench), Ayse K. Coskun

(Green Computing), Bob
Japenga (Embedded
in Thin Slices), Robert
Lacoste (The Darker
Side), Ed Nisley (Above
the Ground Plance),
George Novacek (The
Consummate Engineer),
and Colin O’Flynn
(Programmable Logic in
Practice)

FOUNDER
Steve Ciarcia

PROJECT EDITORS
Chris Coulston, Ken
Davidson, and David
Tweed

OFFICE ASSISTANT
Debbie Lavoie

DATA GATHERING AND ANALYSIS
Data acquisition is essential to most, if not all, electronics applications. In this

issue, we present a variety of articles about projects for which instantaneous
information gathering is paramount.

Many consumer applications that store and manage data (e.g., MP3 players)
run on battery power. In the first part of the series, “Running on Battery,” Stuart
Ball explains how to protect against reverse battery voltage when powering a
small MCU circuit with batteries (p. 26).

Mobile apps essentially serve as handy
data acquisition tools. In the third part of
their series, “Sound Ecology and Acoustic
Health,” Adrien Gaspard and Mike Smith
present a quantitative application for their
WAT_AN_APP app (p. 32).

Do you think current practices in big
data analytics are sustainable? On page
52, Ata Turk addresses the topic of big data
analysis in the cloud.

Turn to page 60 to read about an
interesting DIY system for monitoring

radiation levels. Ed Nisley built the small radiation monitor around an Arduino.
This issue also features articles on several other key electrical engineering

topics. Let’s review.
On page 14, Monte Dalrymple covers the Secure Hash Standard. He presents

a design that implements the complete bye-oriented SHA-256 variant of the
standard.

Turn to page 56 for a
quick read about transformer
basics. George Novacek covers
their essential characteristics
and reviews a typical power
transformer.

In “Wiegand World”
on page 68, Jeff Bachiochi
introduces the physical layer
and protocol. He also details

the process of building a microcontroller-based Wiegand data display system.
We conclude the issue with R. Scott Coppersmith’s essay, “The Future of

Engineering Research and Environment Systems Modeling” (p. 80). He presents
his thoughts on the future of application simulation and electronic system
modeling.

C. J. Abate
cabate@circuitcellar.com

10 V/10 A

20 V/1 A

120 VAC
1 A + I MAGNETIZING

Transformer balancing by ampere turns

50-µs Pulse

2-ms Pulse intervals
TTL Level

5 V
0 V

1 0 1 0

5 V
0 V

Data 1

Data 2

Data

The typical Wiegand output for a Wiegand device

mailto:circuitcellar@pcspublink.com
mailto:circuitcellar@pcspublink.com
mailto:circuitcellar@smmarketing.us
mailto:newproducts@circuitcellar.com
http://www.rakoczyphoto.com
mailto:cabate@circuitcellar.com

circuitcellar.com 3

OUR NETWORK

SUPPORTING COMPANIES

NOT A SUPPORTING COMPANY YET?

Contact Peter Wostrel (circuitcellar@smmarketing.us, Phone 978.281.7708, Fax 978.281.7706)
to reserve your own space for the next edition of our members’ magazine.

Accutrace C2

All Electronics Corp. 79

AP Circuits 7

ControlByWeb.com 17

Custom Computer Services 79

Elprotronic, Inc. 7

EMAC, Inc. 9

Front Panel Express 31

HuMANDATA, Ltd. 9

IAR Systems 11

Imagineering, Inc. C4

Ironwood Electronics 79

Jeffery Kerr, LLC 79

Lemos International 31

MaxBotix, Inc. 79

microEngineering Labs, Inc. 79

MyRO Electronic Control Devices, Inc. 79

NetBurner, Inc. 13, 39

PCB West Conference & Exhibit 29

Pico Technology 35

Saelig Co., Inc. 63

Scidyne Corp. 79

Technologic Systems 1FOUNDER
Steve Ciarcia

PROJECT EDITORS
Chris Coulston, Ken
Davidson, and David
Tweed

OFFICE ASSISTANT
Debbie Lavoie

mailto:circuitcellar@smmarketing.us
www.circuitcellar.com
www.audioxpress.com
www.audioxpress.com/voicecoil

CIRCUIT CELLAR • SEPTEMBER 2015 #3024

CONTENTS SEPTEMBER 2015 • ISSUE 302

DATA ACQUISITION

 INDUSTRY & ENTERPRISE
06 : PRODUCT NEWS

09 : PARTNER Q&A
The Great American Electronics Hobbyist Census
An Interview with Greg Harris (Jameco)

 CC COMMUNITY
10 : EDITORS' PICKS
Embedded Solutions
Several of the Circuit Cellar team’s favorite articles on
embedded solutions

 FEATURES
14 : Secure Hash Standard
By Monte Dalrymple
A look at the Secure Hash Standard from a hardware
point of view

26 : Running on Battery (Part 1)
Battery-Powered Microcontroller Circuits
By Stuart Ball
Protect against reverse battery voltage when powering
a small MCU circuit with batteries

32 : Sound Ecology and Acoustic Health (Part 3)
A Quantitative Application for WAT_AN_APP
By Adrien Gaspard & Mike Smith
An audio record and analysis update for the app

AN OVERVIEW OF THE SECURE HASH STANDARD

PROTECT AN MCU CIRCUIT POWERED WITH BATTERIES

 /**/
 /* Ch function */
 /**/
 function [31:0] ch;
 input [31:0] x, y, z;
 begin
 ch = (x & y) | (~x & z);
 end
 endfunction

 /**/
 /* Maj function */
 /**/
 function [31:0] maj;
 input [31:0] x, y, z;
 begin
 maj = (x & y) | (x & z) | (y & z);
 end
 endfunction

 /**/
 /* Big Sigma 0 function */
 /**/
 function [31:0] bsigma_0;
 input [31:0] x;
 begin
 bsigma_0 = {x[1:0], x[31:2]} ^ {x[12:0], x[31:13]} ^ {x[21:0], x[31:22]};
 end
 endfunction

 /**/
 /* Big Sigma 1 function */
 /**/
 function [31:0] bsigma_1;
 input [31:0] x;
 begin
 bsigma_1 = {x[5:0], x[31:6]} ^ {x[10:0], x[31:11]} ^ {x[24:0], x[31:25]};
 end
 endfunction

 /**/
 /* Little Sigma 0 function */
 /**/
 function [31:0] sigma_0;
 input [31:0] x;
 begin
 sigma_0 = {x[6:0], x[31:7]} ^ {x[17:0], x[31:18]} ^ {3’b000, x[31:3]};
 end
 endfunction

 /**/
 /* Little Sigma 1 function */
 /**/
 function [31:0] sigma_1;
 input [31:0] x;
 begin
 sigma_1 = {x[16:0], x[31:17]} ^ {x[18:0], x[31:19]} ^ {10’b0000000000, x[31:10]};
 end
 endfunction

circuitcellar.com 5

CONTENTS

 CC REBOOT
44 : Power Over Ethernet Solutions
By Eddie Insam
A comprehensive introduction to powering devices
over Ethernet

 COLUMNS
52 : GREEN COMPUTING
Sustainable Big Data Analysis in the Cloud
By Ata Turk
Are current practices in big data analytics sustainable?

56 : THE CONSUMMATE ENGINEER
Transformers 101 (Part 1)
Essential Characteristics
By George Novacek
An introduction to transformers and a review of a
typical power transformer

60 : ABOVE THE GROUND PLANE
Random LED Dots
By Ed Nisley
A DIY desktop radiation monitor built with an Arduino
and a spare 8 × 8 RGB LED matrix

68 : FROM THE BENCH
Wiegand World
An Introduction to the Physical Layer & Protocol
By Jeff Bachiochi
Build a microcontroller-based Wiegand data display
system

 TESTS & CHALLENGES
77 : TEST YOUR EQ

78 : CROSSWORD

 TECH THE FUTURE
80 : The Future of Engineering Research and
Environment Sysetms Modeling
By R. Scott Coppersmith
Thoughts on the future of simulation and the
importance of systems modeling

WIEGAND DATA DISPLAY PROJECT

@editor_cc
@circuitcellar circuitcellar

RESEARCH PROJECTS & SYSTEM MODELING

ARDUINO-BASED DESKTOP RADIATION MONITOR

CIRCUIT CELLAR • SEPTEMBER 2015 #3026
IN

D
U

ST
RY

 &
 E

NT
ER

PR
IS

E

PRODUCT NEWS

UNIVERSAL TRIGGER AND DECODER
OPTION FOR R&S DIGITAL
OSCILLOSCOPES

Rohde & Schwarz has expanded its range of trigger and decoder
options for the R&S RTO and R&S RTE digital oscilloscopes. With the
R&S RTx-K50, the oscilloscopes help you debug serial protocols that
employ Manchester or NRZ coding. The option can be used with a
variety of standardized buses (e.g., PROFIBUS, DALI, or MVB) as
well as with proprietary serial protocols. Developers of products
that use these types of interfaces can easily find implementation
errors and so test and release their designs more quickly.

The option, which covers data rates of up to 5 Gbps, supports
up to 50 different telegram formats, while the format of the serial
bus can be configured flexibly. You can define your own preamble,
frame ID, data, CRC and other telegram fields. Protocol decoding
also takes Manchester code violations into account.

High acquisition rates and minimal blind times are provided by
the hardware-based trigger implementation on the oscilloscopes.
You can trigger on telegram and data content with the R&S RTx-K50
option. The decoded protocol content is displayed in an easy-to-
read, color-coded format. Time correlation with the analog signal
makes it easy to identify faults caused by signal integrity problems.
A tabular list of the protocol contents is also provided. The standard
mask test with up to 600,000 tests per second makes it possible to
check the signal quality faster with an eye diagram than with any
other solution. In addition, both oscilloscope series from Rohde &
Schwarz support the option of decoding up to four different serial
protocols in parallel.

Rohde & Schwarz | www.rohde-schwarz.com

TRACE32 SUPPORTS SPANSION HYPERFLASH MEMORY
Lauterbach recently announced its support for the Spansion

HyperFlash Memory with the TRACE32 tools. HyperBus Interface
was introduced by Spansion in 2014 as an improvement on
today’s low pin count memory interfaces and has been broadly
implemented by the system-on-chip (SoC) manufactures.

HyperFlash Memory is based on the HyperBus interface and
provides the important characteristics such as low latency, high
read throughput, and space efficiency. TRACE32 tools support
the HyperFlash memory with the intuitive, fast, and flexible
Flash Programming feature that also provides you with control of
reading, displaying, and erasing the content of the flash memory.
The content is displayed in a standard hex dump, which allows
the contents to be checked quickly. The tool supports the pairing
of HyperFlash memory with the HyperBus interface and also with
the ordinary Quad SPI controller.

Lauterbach | www.lauterbach.com

PRECISION SET & READBACK PMBUS-
COMPATIBLE UMODULE REGULATOR

Linear Technology recently announced the LTM4675 dual 9-A or
single 18-A, µModule (micromodule) step-down DC/DC regulator
with PMBus serial digital interface. It comes in a 11.9 mm × 16 mm
× 3.51 mm BGA package. The I²C-based interface enables you to
manage a system’s power condition and consumption. Calibrated
and guaranteed from –40°C to 125°C, output DC voltage accuracy
is ±0.5% over line and load regulation, and load current readback
accuracy is ±2.5% maximum.

The LTM4675 features EEPROM, power MOSFETs, inductors
and supporting components. It is drop-in pin-compatible with the
larger package (16 mm × 16 mm BGA) higher power dual 13A
LTM4676A, eliminating layout changes so that system designers
can easily switch between the devices during the prototype phase.
This eliminates redesign of power circuits if power requirements
change during board prototyping. The LTM4675 has applications
in optical transport systems, datacom and telecom switches and
routers, industrial test
equipment, robotics, RAID
and enterprise systems
where energy costs,
cooling and maintenance
are critical and must be
continuously and precisely
measured.

The LTM4675 operates
from a 4.5-to-17-V input
supply and steps down VIN
to two outputs ranging
from 0.5 to 5.5 V. Two channels can current share to provide up to
18 A (i.e., 9 A + 9 A as one output). Power-up turn-on time is 70 ms.
To evaluate the performance of the LTM4675, the free LTpowerPlay
GUI-based development system is available for download, and a
USB-to-PMBus converter and demo kit are available.

The LTM4675 internal operating temperature range is from
–40°C to 125°C. It costs $24 in 1,000-piece units.

Linear Technology | www.linear.com

http://www.lauterbach.com
http://www.rohde-schwarz.com
http://www.linear.com

circuitcellar.com 7
IND

U
STRY &

 ENTERPRISE

PRODUCT NEWS

HIGH-SPEED, CONDITIONED
MEASUREMENTS WITH CHANNEL-TO-
CHANNEL ISOLATION

Measurement Computing Corp. recently announced the release
of the SC-1608 Series of USB and Ethernet data acquisition devices.
The series features analog signal conditioning that enables you
to measure voltage, thermocouple, RTD, strain, frequency, and
current. Isolated analog output and solid-state relays make it a
good solution for systems requiring flexible conditioning and low
cost per channel.

There are four devices in the SC-1608 Series with sample rates
up to 500 ksps. Each device accommodates up to eight 8B isolated

analog signal conditioning
modules and eight solid state
relay modules.

Microsoft Windows
software options for the
SC-1608 include DAQami
and TracerDAQ to display
and log data, along with
comprehensive support for
C, C++, C#, Visual Basic, and
Visual Basic .NET. Support is
also included for DASYLab

and NI LabVIEW. UL for Android provides programming support
for Android devices. Open-source Linux drivers are also available.

The SC-1608 Series costs $999.

Measurement Computing Corp. | www.mccdaq.com

RED EXPERT ONLINE DESIGN TOOL FOR
PRECISE AC LOSS CALCULATION

Würth Elektronik recently published RED EXPERT, a new online
tool you can use to simulate power inductors. With just a few clicks,
you can select the power inductors and calculate the complete AC
losses. RED EXPERT enables extremely precise loss calculation
because it is not
based on the known
Steinmetz models
with sinusoidal
excitation. Instead,
it is derived and
validated from
measurements of the
power inductors in a
switching controller
setup. The losses
determined with RED EXPERT are based on current and voltage
waveforms typical in applications. Besides the core and winding
losses, they also include the losses arising from the specific
geometries of the inductance, such as the air gap.

Particular highlights of the RED EXPERT AC loss model are the
range of duty cycles supported from 10% to 90% and the switching
frequency range of 50 kHz to 5 MHz. This gives the RED EXPERT AC
loss model a previously unattained precision.

RED EXPERT is freely available in German, English, Spanish,
Japanese, Russian, and Chinese at www.we-online.com/redexpert.

Würth Elektronik | www.we-online.com

http://www.mccdaq.com
http://www.we-online.com/redexpert
http://www.we-online.com
www.apcircuits.com
www.elprotronic.com

IN
D

U
ST

RY
 &

 E
NT

ER
PR

IS
E

CIRCUIT CELLAR • SEPTEMBER 2015 #3028

PARTNER Q&A

CIRCUIT CELLAR: Why did Jameco conduct the
Great American Electronics Hobbyist Census?

HARRIS: Jameco has been selling to electronics
hobbyists for over 40 years and while we know a lot
about their projects and the components, tools and
supplies they use, we wanted to better understand
who they were and what this hobby really means
to them.
 The one thing that stood out was that while
most treat a hobby as a casual activity, electronics
hobbyists take it very seriously. In fact, we
probably shouldn’t even use the word “hobby.”
It’s quite clear that this is something central to
their lives. Many told us that this is something they
think about every day. Some see it as a necessary
exercise to keep the mind sharp, others described
the unmatched sense of accomplishment they get
from going from an idea or concept to something
tangible. We can’t leave out the added thrill of
being able to push a button and watch lights blink.

CIRCUIT CELLAR: Tell us a bit about your
methodology for the survey.

HARRIS: We ship hundreds of thousands of orders
to hobbyists every year, but we didn’t want to talk
to causal hobbyists, so we culled our database to
identify the most active hobbyists. Our goal was
to get a true sense of the hobbyist from its most
serious practitioners. We ultimately settled on a
list of 10,000 individuals. We were a bit surprised
that an email survey of this length could generate
a 17% response rate but once we understood
how much passion was rolled into this hobby, the
incredibly high response rate made perfect sense.
CIRCUIT CELLAR: Share with our readers two or
three of the most interesting results. What was
most surprising?

HARRIS: We were very surprised we didn’t have

a larger female response. While 19% of electrical
engineering students are female, only 2% of
serious hobbyists are women.
 Electronics hobbyists are dripping with
education, but surprisingly not as many studied
engineering as we thought. Hobbyists are nearly
twice as educated as average Americans with
almost two-thirds graduating from a four-year
college and an additional third completing a
graduate degree. Yet the largest segment were
self-taught and only about one-third had a formal
degree in electrical engineering. We’ve concluded
the hobby is for intellectuals, yet you don’t need a
degree to get hooked.
 Another highlight that blew us away was that
77% of respondents reported blowing something
up on accident while in pursuit of this hobby. That
might dissuade some, but we sense that it had
the opposite impact on true electronics hobbyists,
because 33% also confessed to blowing something
up on purpose.

CIRCUIT CELLAR: The respondents said that the
microprocessor—not the PC or Internet—is the
most important electronic invention of the past
50 years. Did this surprise the Jameco team? Why
or why not?

HARRIS: We’ve seen sales of microprocessors
explode in a very short period of time. In fact,
there was a time not too long ago when experts
predicted the demise of electronics as a hobby.
Electronic components were getting smaller
and it was increasingly difficult to complete
projects without very expensive equipment. Yet
in the last few years the microprocessor almost
singlehandedly put new capabilities in the hands
of hobbyists and that fueled a resurgence in the
hobby. No, we weren’t surprised that hobbyists
selected microprocessors as the most important
invention of the last 50 years. In fact, a few

The Great American
Electronics Hobbyist Census
An Interview with Greg Harris (VP, Marketing & Sales, Jameco)

A few months ago, Jameco Electronics surveyed over 1,600 hardcore US-based elec-
tronics enthusiasts about thier hobbies, technical interests, projects, thoughts on
the future of DIY, and much more. We recently asked Jameco’s Greg Harris to tell us
about the census and provide his thoughts on the results.

IND
U

STRY &
 ENTERPRISE

circuitcellar.com 9

PARTNER Q&A

Learn more about the Jameco census: http://bit.ly/1LRuXi5

suggested it might be the most important invention
for the next 50 years as well.

CIRCUIT CELLAR: What’s Jameco’s biggest take-
away from the survey?

HARRIS: A hobby is something extra in life. For
electronics hobbyists it’s clear that much of their
life revolves around electronics. The shows that
everything from what they prefer to read to how
they exercise their brain to how they get their
thrills is frequently tied to this hobby. As one
hobbyists described “traveling through the forest of
frustration,” to ultimately find a working solution,
builds real character and marketable skills. This
isn’t just a hobby, it defines hobbyists.
 This is consistent with what Jameco has seen
since we asked if any of our readers would like to
contribute to the newsletter. We’ve been flooded
with a steady stream of contributions ever since,
celebrating huge failures, big wins, unique projects
and everything in between. It became clear that
hobbyists like to interact with one another and that
this is a community wishing to be as connected as
the circuits they design.

CIRCUIT CELLAR: How will the survey results
influence Jameco’s future product offerings? What
can electronics enthusiasts and engineers expect
from Jameco moving forward?

HARRIS: We didn’t conduct this study to drive
product strategy, but rather to better understand
our customers. We’ve been sharing these results
with the manufacturers whose products we
distribute and they have been most interested in
the strong indication that this hobby is staged for
an increased growth. Over half of respondents
predicted growth in the number of projects that
they personally will do while only about one in
seven predicted doing fewer projects. Add to that
the growth of the number of people engaging in
this hobby and it’s clear to us that many component
manufacturers will be investing in hobbyist
oriented products in the years to come. That
wasn’t the case five years ago. Hobbyists can
expect Jameco to continue to provide a wide range
of kits, hard to find components and other
necessities to keep their tinkering going strong;
not to mention a community where they can
converge.

Brand new MAX10 FPGA board
Integrated A/D converter
Integrated configuration memory

3.3V single power supply operation
Plenty of user I/Os: 100 or 128
Line up 10 types of proven boards

PLCC68Series
Designed for 68-pin IC socket
Very small size (25.3 x 25.3 [mm])
50 I/Os(External clock inputs are available)
3.3V single power supply operation

Kintex-7Kintex-7

MAX 10MAX 10

Find our various products@amazon!! HUMANDATAall Go

Over 100 varieties of reliable
FPGA boards are available at : www.hdl.co.jp/CC1509

XILINX Series
FPGA Boards from JAPAN

ALTERA Series

SoM-9G25
• Atmel ARM9
• AT91SAM9x25 400MHz
• 64MB DDR
• 32MB Serial Data Flash
• Up to 512 NAND (option)
• Ethernet
• A/D, SPI, I2C, I2S
• PWM, GPIO, CAN
• 6x Serial Ports, SDIO Port
• Wide Temp -40 to +85

- Embedded Systems
- Engineering
- Prototyping
- Manufacturing
- Application Development

Qty 100
Starts at
$89

618-529-4525 • info@emacinc.com • www.emacinc.com

YEARS OF
EMBEDDED
SOLUTIONS

30

IndustrialIoT

Our Products Make Your Products Better™

http://bit.ly/1LRuXi5
http://www.hdl.co.jp/CC1509
mailto:info@emacinc.com
http://www.emacinc.com

CIRCUIT CELLAR • SEPTEMBER 2015 #30210

EDITORS' PICKS

CO
M

M
U

NI
TY

Embedded Solutions

These ar t ic les and others on topics re lat ing to embedded solut ions are
available at www.cc-webshop.com.

A Bootloader for Blackfin
By David Tweed (Circuit Cellar 217, 2008)

David designed a two-stage bootloader that allows
application firmware to be updated in the field to support
bug fixes and additional features for specific end-user
applications. It also adds capabilities to the native boot
processing of the Blackfin chip. Although some details are
specific to the Blackfin family of DSPs, some general features
may be helpful on other CPUs. Tweed writes:

"Not long ago, I was working on an inertial measurement
unit (IMU) that was based on the highly integrated ADIS16350
inertial sensor from Analog Devices that Tom Cantrell wrote
about in his column in Issue 208 ('Thanks for the MEMS,' 2007).
This is a six-axis MEMS sensor (three axes of angular rate and
three axes of acceleration) in a compact and rugged package.
My client wanted to marry an Analog Devices Blackfin DSP chip
to it in order to create a self-contained inertial measurement
solution … A key aspect of the implementation was that the
firmware would need to be updated in the field, after the
unit had left the controlled environment of the factory, in
order to support both bug fixes to the basic functionality and

additional features for specific end-user applications.
This article is about the two-stage bootloader that we

developed that meets all our requirements and adds some
capabilities to the native boot processing of the Blackfin chip.
While much of this discussion will be specific to the Blackfin
family of DSP chips, some aspects of it are more general and
can be ported to other processors."

Interface Ethernet and Embedded Systems
By Eddie Insam (Circuit Cellar 172, 2004)

Fast Ethernet and small microcontrollers do not mix, or
so they say. In this article, Eddie shows you how to add
full-speed, 100-Mbps Ethernet to an embedded system. He

presents the supporting hardware that will help you get the
job done. He writes:

"Another article about Ethernet and embedded systems?
Well, yes, but here I’m talking about 100 Mbps. Yes, the fast
version, not the 10-Mbps sloggers usually associated with
small embedded systems. Who wants high-speed Ethernet
anyway? I thought you might ask. If you need to feed data
from a fast source such as a CCD camera, voice, or high-
speed data converter, you’ll need to use a high-speed method
of getting it into your PC. FireWire and USB2 are possibilities,
but Ethernet remains one of the comfiest methods for packing
fast data into a PC. It also means your peripheral can be sited
a long way away, something you just can’t do with FireWire
and USB.

Mind you, it’s difficult enough to get a 10-Mbps Ethernet
controller working anywhere near full speed when paired with
a small microcontroller. These cronies can take an eternity
to move data in and out of the line, and they do it mostly
1 byte at a time. Slap in a faster microcontroller? It won’t
necessarily help. You will need a pretty powerful 32 bitter plus
a good helping of side IC condiments before anybody notices
the difference. This article is about modesty anyway. How can
you stay below the clouds and still get the performance by
using relatively cheap hardware?"

http://www.cc-webshop.com

www.iar.com/crun

CIRCUIT CELLAR • SEPTEMBER 2015 #30212

EDITORS' PICKS

CO
M

M
U

NI
TY

Embedded Solutions

These articles and others on topics relating to embedded solutions are available
at www.cc-webshop.com.

Efficient, Practical Adders for FPGAs
By Vitit Kantabutra, Pasquale Corsonello, Stefania Perri, and
Maria Antonia Iachino (Circuit Cellar 148, 2002)

In the 1800s, Charles Babbage developed calculating
engines that made addition more efficient. Today, carry-
skip adders are used in many digital systems. A group of
engineers took the technology a step further by designing
efficient carry-skip adders for FPGAs. They write:

"Adders are a part of the critical path in virtually all
practical digital systems, because every arithmetic operation
requires one. Thus, the speed and area efficiency of adders
is important when you’re designing a circuit. A fairly large
body of literature exists for adder design in today’s standard
cell and custom IC technologies, but little success has been
reported in the realm of the increasingly important FPGA
technologies.

The history of adder optimization long predates electronic
computers. In his 1851 treatise on calculating engines,
Charles Babbage wrote about the 'four cases of obstacles
presenting the appearance of impossibilities' that he
encountered as he designed the analytical engine, which was
the mechanical prototype for modern computers. The first of

these difficulties, which he encountered in an early stage of
the design process, was concerned with the efficiency of the
addition process. So, Babbage went on to provide a practical
solution that can be adapted for use in VLSI technology,
including today’s FPGA technology.

In this article, Babbage’s solution, now called carry-skip or
carry-bypass adders, will be explained, and we’ll show you
how we adapted them to be used for FPGAs. We focused on
two families of FPGAs for this project, the Atmel AT40K and
Xilinx Virtex."

SRAM: The New Embedded Solution
By Mark Balch (Circuit Cellar 125, 2000)

The next time you’re designing a small, low-power
embedded system, you might want to consider using an
SDRAM controller. As Mark shows us, an embedded SDRAM
controller just might be the simplest and most cost-effective
solution. He writes:

"The key to incorporating SDRAM into your embedded
system is providing a simple memory controller to take care
of the SDRAM housekeeping functions. The minimal set of

SDRAM control logic can fit into modest PLDs. Some basic
features are powerup configuration, periodic refresh, single-
word read, and single-word write.

That’s it! All you need is control logic that can perform these
four operations and you have a minimal SDRAM interface
to your controller. There are as many ways to implement
this basic idea as there are engineers. One technique is a
single binary-encoded state machine inside a PLD. This state
machine would be large, but if your system is only running at
12 MHz and you use a modern, mainstream PLD, the timing
may be on your side."

http://www.cc-webshop.com

C

M

Y

CM

MY

CY

CMY

K

COREMODULE-AD-NOV2013_NV_CC.pdf 1 9/23/2013 10:20:30 AM

www.netburner.com/kits
mailto: sales@netburner.com
www.netburner.com

CIRCUIT CELLAR • SEPTEMBER 2015 #30214
FE

AT
U

RE
S

The cryptographic hash functions specified
in the Secure Hash Standard (SHS) are

widely used in today’s connected world, but
in many cases, their use is not really visible to
users. For example, both the Secure Sockets
Layer (SSL) and the Transport Layer Security
(TLS) protocols have either the option or the
requirement to use a hash function from
the SHS while setting up a secure link, but
this fact is completely invisible to users. On
the other hand, one obvious place where an
SHS function is used is in the authentication
of software distributions, where the correct
hash value is published and can be used
before the software is installed to verify that
no alteration has taken place between the
publisher and the user.

 I’ve always wondered exactly how these
hash functions work, and I recently had
the opportunity to investigate the details
myself. While there is just one SHS, there are
seven different algorithms specified in the
standard, with varying levels of complexity.
In this article I’ll show you how one of the
algorithms, called SHA-256, really works from
a hardware standpoint, using the Verilog
hardware description language.

HIGH-LEVEL VIEW
A cryptographic hash function is most

often used to transform an arbitrary-length
message into a fixed-size representation
called a message digest (or hash value). This
transformation is one-way, which means that
given a message digest it is impossible to

reverse the process and recreate the original
message. The transformation is also very
nonlinear, in the sense that even a small change
to the original message, such as flipping the
state of a single bit, will lead to a very different
message digest. Another property of this
transformation is that given a large fraction
of a message, and the message digest, it is
still infeasible to compute the missing part of
the message. All of these features make the
cryptographic hash function indispensable to
digital signature and message authentication
algorithms. The highly nonlinear nature of
secure hash algorithms also makes them
useful for generating random numbers or
random bits.

One way to look at a cryptographic hash
function is to think of the input message as
a very big binary number, and the message
digest as a fixed-sized binary number that is
somehow computed from the input number.
In the case of the SHA-256 the input number
can be up to 264 bits in length, and the
message digest is 256 bits long. Given the size
difference in these two numbers, there are
clearly a huge number of messages with the
same message digest! So the secret to a good
hash algorithm is to make sure that no similar
messages can lead to the same hash value.

There are different ways to construct a
secure hash algorithm, but those specified
in the SHS all share the same basic steps
and have similar requirements. The primary
requirement is that the input message has to
be a multiple of the block size. For SHA-256 this

Secure Hash Standard

Does the Secure Hash Standard confuse you? Try approaching it from a
hardware point of view. The design presented here implements the complete
byte-oriented SHA-256 variant of this standard.

By Monte Dalrymple (US)

Understanding the Secure Hash
Standard Without Math

circuitcellar.com 15
FEATU

RES

 /**/
 /* Ch function */
 /**/
 function [31:0] ch;
 input [31:0] x, y, z;
 begin
 ch = (x & y) | (~x & z);
 end
 endfunction

 /**/
 /* Maj function */
 /**/
 function [31:0] maj;
 input [31:0] x, y, z;
 begin
 maj = (x & y) | (x & z) | (y & z);
 end
 endfunction

 /**/
 /* Big Sigma 0 function */
 /**/
 function [31:0] bsigma_0;
 input [31:0] x;
 begin
 bsigma_0 = {x[1:0], x[31:2]} ^ {x[12:0], x[31:13]} ^ {x[21:0], x[31:22]};
 end
 endfunction

 /**/
 /* Big Sigma 1 function */
 /**/
 function [31:0] bsigma_1;
 input [31:0] x;
 begin
 bsigma_1 = {x[5:0], x[31:6]} ^ {x[10:0], x[31:11]} ^ {x[24:0], x[31:25]};
 end
 endfunction

 /**/
 /* Little Sigma 0 function */
 /**/
 function [31:0] sigma_0;
 input [31:0] x;
 begin
 sigma_0 = {x[6:0], x[31:7]} ^ {x[17:0], x[31:18]} ^ {3’b000, x[31:3]};
 end
 endfunction

 /**/
 /* Little Sigma 1 function */
 /**/
 function [31:0] sigma_1;
 input [31:0] x;
 begin
 sigma_1 = {x[16:0], x[31:17]} ^ {x[18:0], x[31:19]} ^ {10’b0000000000, x[31:10]};
 end
 endfunction

LISTING 1
SHA-256 uses six simple functions to
mix the data in various ways. Two
functions operate on three inputs,
while the rest operate on a single
input.

CIRCUIT CELLAR • SEPTEMBER 2015 #30216
FE

AT
U

RE
S

block size is 512 bits, or sixteen 32-bit words.
Since it is unlikely that any given message will
meet this requirement, the standard specifies
exactly how a message must be padded to be
a multiple of 512 bits. It is worth noting that
the standard allows for arbitrary bit length
messages, even though most messages will
be multiples of a byte.

Once the padding is done, each message
block is expanded into a “message schedule”
of 64 32-bit words. The first 16 of these
words are just the original message, while the
remainder are combinations of the words in
the original message.

The words in the message schedule are
then cycled through eight “working variables”
which further combine them so that each word
in the message schedule contributes to the
final values of each of these working variables.
At the end of these mixing operations the
values in the working variables are added
to the existing hash value. At the end of the
message this gives the final hash value.

The SHS specifies exactly how the message
schedule and working variables are calculated,
but provides no insight into the mathematical

basis for the different operations. This is
quite different from the Advanced Encryption
Standard (AES), where the mathematics are
explained in detail in the standard. Personally,
I would have preferred at least some clues as
to how the mixing functions were created.

DETAILED OPERATION
The design I describe here is a complete

implementation of SHA-256 that uses one
clock cycle per step. I chose the one clock
cycle per step to make the logic easy to
follow, while at the same time minimizing
the amount of hardware used. If higher
performance is required it is certainly
possible to apply pipelining techniques to the
design, but that will increase the amount of
hardware required.

The design uses a 32-bit data path, which
is what the standard envisions. Other widths
are possible, either wider or narrower. A 64-
bit data path would give higher performance,
at the cost of more hardware. A narrower
data path would obviously give poorer
performance, and probably also lead to
more hardware, because of the need to store

 /**/
 /* k constants */
 /**/
 function [31:0] k256_const;
 input [5:0] step;
 reg [127:0] const_rom;
 begin
 case (step[5:2])
 4’b0000: const_rom = 128’h428a2f9871374491b5c0fbcfe9b5dba5;
 4’b0001: const_rom = 128’h3956c25b59f111f1923f82a4ab1c5ed5;
 4’b0010: const_rom = 128’hd807aa9812835b01243185be550c7dc3;
 4’b0011: const_rom = 128’h72be5d7480deb1fe9bdc06a7c19bf174;
 4’b0100: const_rom = 128’he49b69c1efbe47860fc19dc6240ca1cc;
 4’b0101: const_rom = 128’h2de92c6f4a7484aa5cb0a9dc76f988da;
 4’b0110: const_rom = 128’h983e5152a831c66db00327c8bf597fc7;
 4’b0111: const_rom = 128’hc6e00bf3d5a7914706ca635114292967;
 4’b1000: const_rom = 128’h27b70a852e1b21384d2c6dfc53380d13;
 4’b1001: const_rom = 128’h650a7354766a0abb81c2c92e92722c85;
 4’b1010: const_rom = 128’ha2bfe8a1a81a664bc24b8b70c76c51a3;
 4’b1011: const_rom = 128’hd192e819d6990624f40e3585106aa070;
 4’b1100: const_rom = 128’h19a4c1161e376c082748774c34b0bcb5;
 4’b1101: const_rom = 128’h391c0cb34ed8aa4a5b9cca4f682e6ff3;
 4’b1110: const_rom = 128’h748f82ee78a5636f84c878148cc70208;
 4’b1111: const_rom = 128’h90befffaa4506cebbef9a3f7c67178f2;
 endcase
 case (step[1:0])
 2’b00: k256_const = const_rom[127:96];
 2’b01: k256_const = const_rom[95:64];
 2’b10: k256_const = const_rom[63:32];
 default: k256_const = const_rom[31:0];
 endcase
 end
 endfunction

LISTING 2
A 32-bit constant is inserted into
the calculation during each round.
The organization shown here, with
sixteen 128-bit words and a four-input
multiplexer, was chosen for coding
convenience.

www.controlbyweb.com

CIRCUIT CELLAR • SEPTEMBER 2015 #30218
FE

AT
U

RE
S

intermediate results and the need for more
complex control. Keep this in mind if you are
thinking about using a different data path
width.

The six logical functions that are used to
mix the bits of the message data are shown
in Listing 1. Two of the functions—called Ch
(which is probably short for “choose”) and
Maj (which is probably short for “majority”)
in the standard—take three input words and
provide one output word. The ch function
uses the bits of one input word to control the
selection of the corresponding bit from the
other two input words, while the Maj function
sets the output bit if the corresponding bits
in two or more of the input words are set.
The other four functions—called in this design
bsigma_0, bsigma_1, sigma_0, and sigma_1—
mix the individual bits of the input word in
different ways by adding together shifted
versions of the word (hence the “sigma” in
the name).

During each of the 64 steps in the

algorithm, a 32-bit constant is used in the
calculation. According to the standard, these
constants are “the first thirty-two bits of the
fractional parts of the cube roots of the first
sixty-four prime numbers.” There is nothing
special about this choice, except that it makes
it easy for anyone to verify that there is no
backdoor hidden in the constants. Listing 2
shows how these constants are generated.
The choice of sixteen 128-bit words and a
four-input multiplexer is somewhat arbitrary,
although with this choice each bit of the
const_rom variable can be created directly
using a four-input LUT in an FPGA.

The top-level module interface and
definitions are shown in Listing 3. This is
a simple synchronous interface that uses
a 32-bit data bus and a write strobe. One
complication arises because the message
being hashed may not be a multiple of 32-
bit words. So the last write must be tagged
with a data width of 1, 2, 3, or 4 bytes. A
second complication is that the standard

module sha256_top (bufr_full, hash_done, hash_reg, clk, resetb, start_pls, wr_bus,
 wr_pls, wr_type);

 input clk; /* main clock*/
 input start_pls; /* ok to start hash operation*/
 input resetb; /* async master reset*/
 input wr_pls; /* write buffer*/
 input [2:0] wr_type; /* write operation type*/
 input [31:0] wr_bus; /* write data bus*/

 output bufr_full; /* buffer is full*/
 output hash_done; /* hash_reg is valid*/
 output [255:0] hash_reg; /* hash result*/

 /**/
 /* write_tag definitions*/
 /**/
 `define TYPE_LAST0 3’b000 /* only for zero-length msg */
 `define TYPE_LAST1 3’b001 /* last word - one byte only */
 `define TYPE_LAST2 3’b010 /* last word - two bytes */
 `define TYPE_LAST3 3’b011 /* last word - three bytes */
 `define TYPE_LAST4 3’b100 /* last word - full word */
 `define TYPE_WORD 3’b111 /* normal word */

 /**/
 /* initial hash values */
 /**/
 `define IHV_0 32’h6a09e667
 `define IHV_1 32’hbb67ae85
 `define IHV_2 32’h3c6ef372
 `define IHV_3 32’ha54ff53a
 `define IHV_4 32’h510e527f
 `define IHV_5 32’h9b05688c
 `define IHV_6 32’h1f83d9ab
 `define IHV_7 32’h5be0cd19

LISTING 3
The interface uses a 32-bit bus, with
each write tagged with a type. This
is also where the Initial Hash Value is
defined.

ABOUT THE AUTHOR
Monte Dalrymple (monted
@systemyde.com) has
been designing integrat-
ed circuits for over 35
years. He holds a BSEE
and MSEE from the Uni-
versity of California at
Berkeley and holds sev-
enteen patents. He is
the author of the book
Microprocessor Design
Using Verilog HDL (Cir-
cuit Cellar, 2012). Not
limited to things digital,
he holds both amateur
and commercial radio
licenses.

mailto:@systemyde.com

circuitcellar.com 19
FEATU

RES

 /**/
 /* host interface */
 /**/
 assign wr_fifo = wr_pls && !(wr_type == `TYPE_LAST0);

 always @ (wr_type or wr_bus) begin
 case (wr_type)
 `TYPE_LAST1: wr_data = {4’h8, wr_bus[31:24], 24’h800000};
 `TYPE_LAST2: wr_data = {4’h8, wr_bus[31:16], 16’h8000};
 `TYPE_LAST3: wr_data = {4’h8, wr_bus[31:8], 8’h80};
 `TYPE_LAST4: wr_data = {4’h8, wr_bus};
 default: wr_data = {4’h0, wr_bus};
 endcase
 end

 fifo_x36 FIFO (.almost_empty(almost_empty), .almost_full(),
 .data_out(fifo_out), .empty(fifo_empt), .full(bufr_full), .clk(clk),
 .data_in(wr_data), .read_en(rd_fifo), .resetb(resetb), .write_en(wr_fifo));

 always @ (wr_type) begin
 case (wr_type)
 `TYPE_LAST0: bcnt_inc = 3’b000;
 `TYPE_LAST1: bcnt_inc = 3’b001;
 `TYPE_LAST2: bcnt_inc = 3’b010;
 `TYPE_LAST3: bcnt_inc = 3’b011;
 default: bcnt_inc = 3’b100;
 endcase
 end

 always @ (posedge clk or negedge resetb) begin
 if (!resetb) begin
 bcnt_reg <= 40’h0;
 empty_dly <= 1’b1;
 length_reg <= 40’h0;
 msg_null <= 1’b0;
 msg_walign <= 1’b0;
 msgdone_reg <= 1’b0;
 msgstrt_reg <= 1’b0;
 wr_length <= 1’b0;
 end
 else begin
 if (wr_pls || wr_length) bcnt_reg <= (wr_length) ? 40’h0 : (bcnt_reg + bcnt_inc);
 if (wr_length) begin
 length_reg <= bcnt_reg;
 msg_walign <= ~|bcnt_reg[1:0];
 end
 empty_dly <= fifo_empt;
 msg_null <= !msg_done && ((wr_length && ~|bcnt_reg) || msg_null);
 msgdone_reg <= !msg_done && (wr_length || msgdone_reg);
 msgstrt_reg <= !rd_word && (start_pls || msgstrt_reg);
 wr_length <= wr_pls && !(wr_type == `TYPE_WORD);
 end
 end

 assign blk_start = msg_null || (msgdone_reg && !fifo_empt) || !(almost_empty || fifo_empt);
 assign msg_start = msgstrt_reg && blk_start;
 assign msg_lastw = !empty_dly && fifo_out[35];

LISTING 4
Most FPGA families provide 36-bit wide
FIFO primitives, so that is what I use
to hold the message data. Part of the
message padding is done on the input
side of the FIFO.

CIRCUIT CELLAR • SEPTEMBER 2015 #30220
FE

AT
U

RE
S

allows for zero-length messages, so there
has to be some way to communicate this. A
write with the WRITE_LAST0 type signals that
the message to be hashed has zero length.
This degenerate case is explicitly allowed in
the standard, and requires special handling in
the remainder of the design.

Rather than return the calculated hash
value as words over a data bus, I have chosen
to simply output the full 256-bit hash along
with a one-clock pulse that indicates that
the hash result is valid. This structure makes
simulation and testing easier, because the
intermediate hash value is available after
each block.

The initial hash values are also defined in
this listing. According to the standard these
constants are “the first thirty-two bits of the

fractional parts of the square roots of the first
eight prime numbers.” This is another case
where the values seem to have been chosen
to eliminate any suspicion of a backdoor.

The host interface is shown in Listing 4.
This interface uses a FIFO that is 36 bits wide
and at least 16 words deep. Most FPGA families
provide macros meeting these specifications
as part of their block RAM functionality. The
details will vary depending on vendor, so I
have merely instantiated a generic version,
which will need to contain the vendor-
specific module name and connections. This
design assumes non-pipelined timing for the
FIFO. That is, the read enable is sampled on
one clock edge and the output data will be
available for sampling by the next clock edge.

The 36-bit wide FIFO holds the 32-bit data,

 /**/
 /* pad insertion */
 /**/
 assign msg_done = &pad1_reg;
 assign pad_pls = pad_strt || (rd_dly && padding_reg) || (msg_null && msg_done);
 assign pad_strt = rd_dly && !padding_reg && (msg_null || msg_lastw);
 assign pad1_lsb = length_reg[5:2] + !msg_walign;
 assign rd_fifo = rd_word && !padding_reg && !msg_null && !pad_strt && !padding_reg;

 always @ (length_reg) begin
 casex (length_reg[5:0])
 6’b1110xx,
 6’b111100: pad1_msb = 1’b0;
 default: pad1_msb = 1’b1;
 endcase
 end

 always @ (posedge clk or negedge resetb) begin
 if (!resetb) begin
 pad1_reg <= 5’h0;
 pad2_reg <= 1’b0;
 padding_reg <= 1’b0;
 end
 else if (pad_pls) begin
 pad1_reg <= (pad_strt) ? {pad1_msb, pad1_lsb} : (pad1_reg + 1’b1);
 pad2_reg <= pad_strt && msg_walign && !msg_null;
 padding_reg <= !msg_done && (pad_strt || padding_reg);
 end
 end

 always @ (msg_null or pad1_reg or pad2_reg or fifo_out or length_reg) begin
 casex ({msg_null, pad2_reg, pad1_reg})
 7’b0000000: msg_data = fifo_out[31:0];
 7’b0011110: msg_data = {21’h0, length_reg[39:29]};
 7’b0011111: msg_data = {length_reg[28:0], 3’b000};
 7’b01xxxxx,
 7’b1x0xxxx: msg_data = 32’h80000000;
 default: msg_data = 32’h00000000;
 endcase
 end

LISTING 5
The pad insertion state machine does
the bulk of the message padding, and
handles the case where the message
is word-aligned or aligned to a 512-bit
block boundary.

such as this book,

designing a microprocessor
 can be easy.
Okay, maybe not easy, but certainly

less complicated. Monte Dalrymple

has taken his years of experience

designing embedded architecture

and microprocessors and compiled

his knowledge into one comprehensive

guide to processor design in the

real world.

cc-webshop.com

Microprocessor Design Using
Verilog HDL will provide you
with information about:

• Verilog HDL Review

• Verilog Coding Style

• Design Work

• Microarchitecture

• Writing in Verilog

• Debugging, Verification,
and Testing

• Post Simulation and more!

Verilog HDL
With the right tools

Monte demonstrates

how Verilog hardware

description language

(HDL) enables you to

depict, simulate, and

synthesize an electronic

design so you

can reduce your workload

and increase productivity.

www.cc-webshop.com

CIRCUIT CELLAR • SEPTEMBER 2015 #30222
FE

AT
U

RE
S

plus one extra bit that is set only for the last
word in a message. Tagging the last word in a
message makes it very easy to communicate
the “last word of the message” information to
the other side of the FIFO.

Because the hash state machine requires
a complete block of 16 32-bit words, the FIFO

must be configured to assert the almost_
empty signal as long as there are 15 or fewer
words in the FIFO. This is what holds off the
start of a hash calculation. Again, this is a
standard feature on FPGA FIFO macros.

The host interface is the ideal place to
do the first part of the padding operation,

 /**/
 /* hash state machine */
 /**/
 assign rd_word = ini_blk || ini_blk_dly ||
 (runblk_reg && ~|step_reg[5:4] && ~&step_reg[3:1]);
 assign step_done = &step_reg;

 always @ (posedge clk or negedge resetb) begin
 if (!resetb) begin
 hash_done <= 1’b0;
 ini_blk <= 1’b0;
 ini_blk_dly <= 1’b0;
 ini_msg <= 1’b0;
 ini_msg_dly <= 1’b0;
 ld_hash <= 1’b0;
 rd_dly <= 1’b0;
 runblk_reg <= 1’b0;
 runmsg_reg <= 1’b0;
 step_reg <= 6’h00;
 end
 else begin
 hash_done <= ld_hash && !runmsg_reg;
 ini_blk <= !ini_blk && !ini_blk_dly && !runblk_reg && ((blk_start && runmsg_reg) ||
 (msg_start && !runmsg_reg) ||
 padding_reg);
 ini_blk_dly <= ini_blk;
 ini_msg <= !ini_msg && !ini_msg_dly && !runblk_reg && msg_start && !runmsg_reg;
 ini_msg_dly <= ini_msg;
 ld_hash <= step_done;
 rd_dly <= rd_word;
 runblk_reg <= !step_done && (ini_blk_dly || runblk_reg);
 runmsg_reg <= !msg_done && (ini_msg_dly || runmsg_reg);
 step_reg <= (runblk_reg) ? (step_reg + 1’b1) : 6’h00;
 end
 end

LISTING 6
The hash state machine reads 16
words from the input FIFO and keeps
track of the 64 rounds of the hash
algorithm. FIFO reads are pipelined
to account for the timing of common
FPGA FIFO primitives.

SHA-256 & BITCOINS
SHA-256 is central to the operation of the Bitcoin digital

currency. The bitcoin blockchain, which can be thought
of as a ledger recording all bitcoin transactions, must be
periodically verified. Bitcoin miners do this verification
using SHA-256.

The way this works is that a nonce (number used once),
plus all of the new bitcoin transactions, are appended to
the existing blockchain and the resulting hash value is
calculated. This process continues, with a different nonce,
until a hash value is found that meets certain requirements,
namely that it begins with some number of zero bits. The
bitcoin miner who first finds a nonce that results in such a
hash value is rewarded with some newly-created bitcoins

and the blockchain is then considered verified to that point.
A short time later, this process is repeated.

Finding a hash value that meets the leading-zeros
requirement requires a brute-force search, using a lot of
nonces. Early bitcoin miners used regular computers to do
the searching, but the process quickly migrated to dedicated
FPGA-based machines and then to ASIC-based machines.
Where a CPU-based machine might do 1 million hashes per
second (MHash/s), FPGA machines might reach one GHash/s
and an ASIC machine might reach 1,000 GHash/s. Multiply
these rates by the number of bitcoin miners, and that’s a
lot of hashes.

circuitcellar.com 23
FEATU

RES

when the last word, or part of a word, of the
message is written. Even though the standard
allows for completely arbitrary message
lengths, this design only handles byte-aligned
messages. It’s easy to modify the design to
account for arbitrary bit length messages, but
I’ll leave that as an exercise for the reader,
because the feature is rarely necessary.

The host interface side of the FIFO is also
the best place to implement the counter for
the message length. The standard provides
for a 64-bit field for message length, but I’ve
only implemented a 40-bit counter here. That
is sufficient for a terabyte message length, so
it should be good enough.

The bulk of the pad insertion is done in the
logic shown in Listing 5. The unaligned last-
word cases were handled in the bus interface,
but the case of a word-aligned message must
be accounted for in this section, along with
case of a zero-length message. A simple
state machine is required to keep track of
the inserted padding, and providing the pad
data to the hash state machine, while at the
same time intercepting the FIFO read strobe
from the hash state machine. The padding
information finishes with the value from the
message length counter, which complicates
things if the message ends very close to a
512-bit block boundary. The pad1_msb signal
is required to detect this condition. The
message is padded even if it naturally ends
on a block boundary.

Compared to the bus interface and the pad

insertion logic, the hash state machine shown
in Listing 6 is pretty simple. It’s basically
just a 6-bit counter that tracks the sixty-
four steps of the hash algorithm. The extra
registers are required to properly start up the
state machine at the beginning of a message
or the beginning of a block, and to account for
the timing of the FIFO read operations.

The standard talks about a “message
schedule of sixty-four 32-bit words,” which
can be very disconcerting until you realize
that only 16 of these values need to be
available for any given step of the algorithm.
The logic for the message schedule is shown
in Listing 7. This is just a recirculating buffer,
where the wi_reg register holds the message
schedule word for the current step, and the
rest of the buffer holds the values for the
previous 15 steps. During the first 16 steps
of the algorithm this buffer is loaded with the
16 words of the message block to be hashed,
and for the remaining 48 steps the modified
message data recirculates through this buffer.
At each recirculation step the wi_reg register
is loaded with a combination of four of the
other entries in the message schedule. Two of
these entries are scrambled using two of the
sigma functions shown earlier, and then the
four values are added together to form the
new word of the message schedule.

The bulk of the hash algorithm is
implemented in the working registers,
shown in Listing 8. This listing also contains
the actual 256-bit hash register. The eight

 /**/
 /* message schedule */
 /**/
 assign wi_nxt = sigma_1(wim1_reg) + wim6_reg + sigma_0(wim14_reg) + wim15_reg;

 always @ (posedge clk) begin
 if (ini_blk_dly || runblk_reg) begin
 wi_reg <= (rd_dly) ? msg_data : wi_nxt;
 wim1_reg <= wi_reg;
 wim2_reg <= wim1_reg;
 wim3_reg <= wim2_reg;
 wim4_reg <= wim3_reg;
 wim5_reg <= wim4_reg;
 wim6_reg <= wim5_reg;
 wim7_reg <= wim6_reg;
 wim8_reg <= wim7_reg;
 wim9_reg <= wim8_reg;
 wim10_reg <= wim9_reg;
 wim11_reg <= wim10_reg;
 wim12_reg <= wim11_reg;
 wim13_reg <= wim12_reg;
 wim14_reg <= wim13_reg;
 wim15_reg <= wim14_reg;
 end
 end

LISTING 7
The message schedule is loaded with
the message data during the first 16
rounds, and then the first stage of
mixing occurs during the remaining
rounds.

CIRCUIT CELLAR • SEPTEMBER 2015 #30224
FE

AT
U

RE
S

working registers are also arranged as a
recirculating buffer, although modified values
are injected into this buffer at two points.
These modified values are created from two

temporary variables, called t_1 and t_2.
One of these temporary variables involves a
five-input adder, which I have chosen to code
directly even though this may or may not be
the best approach for logic synthesis. These
temporary variables use the remainder of the
functions shown earlier, along with the step-
specific constant.

The working registers only use the current
message schedule value, wi_reg, which is why
the working registers can operate during the
first sixteen steps while the message schedule
is being loaded with the message data. The
working registers and the hash register are
loaded with the initial hash values at the start
of a message, and the working registers are

 /**/
 /* working variables */
 /**/
 assign t_1 = h_reg + bsigma_1(e_reg) + ch(e_reg, f_reg, g_reg) +
 k256_const(step_reg) + wi_reg;
 assign t_2 = bsigma_0(a_reg) + maj(a_reg, b_reg, c_reg);

 always @ (posedge clk) begin
 if (ini_msg_dly || ini_blk_dly || runblk_reg) begin
 a_reg <= (ini_msg_dly) ? `IHV_0 :
 (ini_blk_dly) ? hash_reg[255:224] : (t_1 + t_2);
 b_reg <= (ini_msg_dly) ? `IHV_1 :
 (ini_blk_dly) ? hash_reg[223:192] : a_reg;
 c_reg <= (ini_msg_dly) ? `IHV_2 :
 (ini_blk_dly) ? hash_reg[191:160] : b_reg;
 d_reg <= (ini_msg_dly) ? `IHV_3 :
 (ini_blk_dly) ? hash_reg[159:128] : c_reg;
 e_reg <= (ini_msg_dly) ? `IHV_4 :
 (ini_blk_dly) ? hash_reg[127:96] : (d_reg + t_1);
 f_reg <= (ini_msg_dly) ? `IHV_5 :
 (ini_blk_dly) ? hash_reg[95:64] : e_reg;
 g_reg <= (ini_msg_dly) ? `IHV_6 :
 (ini_blk_dly) ? hash_reg[63:32] : f_reg;
 h_reg <= (ini_msg_dly) ? `IHV_7 :
 (ini_blk_dly) ? hash_reg[31:0] : g_reg;
 end
 end

 /**/
 /* hash value */
 /**/
 always @ (posedge clk) begin
 if (ini_msg_dly || ld_hash) begin
 hash_reg[255:224] <= (ini_msg_dly) ? `IHV_0 : (hash_reg[255:224] + a_reg);
 hash_reg[223:192] <= (ini_msg_dly) ? `IHV_1 : (hash_reg[223:192] + b_reg);
 hash_reg[191:160] <= (ini_msg_dly) ? `IHV_2 : (hash_reg[191:160] + c_reg);
 hash_reg[159:128] <= (ini_msg_dly) ? `IHV_3 : (hash_reg[159:128] + d_reg);
 hash_reg[127:96] <= (ini_msg_dly) ? `IHV_4 : (hash_reg[127:96] + e_reg);
 hash_reg[95:64] <= (ini_msg_dly) ? `IHV_5 : (hash_reg[95:64] + f_reg);
 hash_reg[63:32] <= (ini_msg_dly) ? `IHV_6 : (hash_reg[63:32] + g_reg);
 hash_reg[31:0] <= (ini_msg_dly) ? `IHV_7 : (hash_reg[31:0] + h_reg);
 end
 end

LISTING 8
The eight working variables are
arranged as a recirculating buffer,
and this is where the bulk of the
mixing occurs. At the end of the 64
rounds the resulting value is added to
the previous hash value.

circuitcellar.com/ccmaterials

RESOURCES

L. Bassham and T. Hall, “The Secure Hash
Algorithm Validation System (SHAVS),” NIST,
2014, http://csrc.nist.gov/groups/STM/cavp/
documents/shs/SHAVS.pdf

Information Technology Laboratory, “Secure
Hash Standard (SHS),” NIST, 2012, http://csrc.
nist.gov/publications/fips/fips180-4/fips-180-
4.pdf.

http://csrc.nist.gov/groups/STM/cavp/
http://csrc

circuitcellar.com 25
FEATU

RES

loaded with the current hash value at the start
of a new 16-word block. At the end of each
16-word block, the contents of the working
registers are added, word by word, to the
value in the hash register. As you can see, the
hash calculation itself is really pretty simple,
with the message data flowing through a pair
of recirculating buffers to create the hash
value.

VERIFICATION
Even though this implementation of the

hash algorithm is pretty simple, verifying that
the implementation is correct can be a real
challenge, because it isn’t easy to figure out
what the correct hash value should be for an
arbitrary message. To help with this process
NIST provides a set of sample messages along
with the correct hash value. The test bench
that is available on the Circuit Cellar FTP site
exercises this design with a subset of this set
of messages and automatically checks the
resultant hash value against the published
hash value.

NIST has also set up the Secure Hash
Standard Validation System (SHAVS) for
verifying implementations of the standard.
With this system, a testing laboratory
generates a series of messages, which are
hashed by the implementation being tested.
These hash values are returned to the testing
laboratory, which verifies correctness, and
certifies the implementation. The series
of messages provided includes all short
messages from zero to the block size in
length, a series of long messages up to one
hundred blocks in length, and a very long
message one hundred thousand blocks in
length. A hardware implementation like the
one presented here really only needs to be
checked using the short and long messages.
The other cases tested by SHAVS are only
necessary for software implementations
where buffer issues might be present. Even
so, to be certified an implementation must
correctly generate the hash for every test
message.

SO, DOES IT WORK?
Given the lack of a mathematical

foundation for the algorithms in the standard,
I was curious about how well SHA-256 actually
worked. So I instrumented the simulation test
bench and did some testing.

In the first set of tests I checked the hash
values for every possible bit combination in
each individual byte position in a word. The
results of these tests are shown in Table 1.
The “byte 0” case is for a single-byte message,
the “byte 2” case is for a 16-bit message of
the form 0x00nn, the “byte 3” case is for a
message of the form 0x0000nn, and the

“byte 4” case is for a message of the form
0x000000nn. Since the number of ones and
zeros in the resulting hash should be fairly
evenly distributed, I counted the number
of ones in each hash result. In all cases the
average was close to half the bits in the
resulting hash value being one. Clearly SHA-
256 does a very good job of mixing up the
results across the entire 32-bit word.

For the second set of tests, I used the
same set of input messages, with Gray code
ordering, and then checked for the number
of bit positions in the resulting hash values
that changed with each one-bit change in the
input message. The results of these tests are
shown in Table 2. Again, SHA-256 does a very
good job, with each single-bit change in the
input message leading to an average of half of
the bits in the resulting hash value changing.

One final test that would be interesting
would be to try every possible 256-bit input
message and check for identical hash results.
Ideally there should not be any, but since this
would involve 2256 simulation runs, I’ll have to
skip this test.

WRAPPING UP
For all of its power, the SHA-256 algorithm

is fairly easy to understand once the individual
operations and data flow are clear. However,
the SHS standard specifies the operations
with no reference to how the algorithm is
implemented, which obscures what is going
on during the hashing process. Hopefully I’ve
made this hashing process a little clearer, and
now you can be confident that your data really
is protected.

Mean Std Dev Median Minimum Maximum
byte 0 128.7 7.7 129 103 149
byte 1 128.1 8.1 129 104 148
byte 2 127.5 7.8 127 104 158
byte 3 128.1 8.3 128 99 147

TABLE 1
The statistics for the number of one’s in the message digest for all 256 possible values in each individual
byte position.

Mean Std Dev Median Minimum Maximum
byte 0 127.7 7.6 127 110 148
byte 1 128.2 7.7 128 109 155
byte 2 127.9 8.7 128 108 158
byte 3 127.5 8.3 128 108 153

TABLE 2
The statistics for the number of bit positions in the message digest that toggle for all 256 possible single-bit
toggles in each individual byte position.

CIRCUIT CELLAR • SEPTEMBER 2015 #30226
FE

AT
U

RE
S

Most of the time, we power our projects
from the AC line. Whether it is a one-off

prototype or a simple product, the easiest
way to power a small microcontroller circuit is
with a wall-wart DC supply and a regulator of
some kind on the board. But what about those
cases where you need to be able to operate
from batteries? More and more consumer
electronics, from games to smartphones, are
operated from battery.

Microcontroller applications that need
battery operation can range from MP3 players
to hand-held temperature monitor to a remote
device that has to wake up once a day to log
and possibly transmit instrument readings to
a monitoring station. How do you power such
devices? What things do you need to consider
in designing for that environment?

Battery-based operation is a big topic, so
in the first part of this article series, I will
look at three aspects of it: reverse battery
protection, microcontroller selection, and
power management.

REVERSE BATTERY PROTECTION
If you run something on batteries, sooner

or later someone is going to try to install a
battery backwards. Although your 40-year-
old transistor radio might easily survive
reversing the battery, modern microcontroller
electronics is not quite so forgiving. A circuit

run on batteries has to protect in some way
from battery reversal. There are a few ways
to do that. Let’s consider each one.

Solder the battery into the circuit: Although
it may seem extreme, this absolutely prevents
battery reversal unless the user tries to
replace the battery by unsoldering it. It also
implies the need for a rechargeable battery
and an accompanying charging circuit, and
some kind of external power jack to charge
the battery. For a remote site, it probably
means a solar charging system. All that is
beyond the scope of this article, but there may
be situations where a soldered rechargeable
battery is the simplest solution, especially if
you don’t have to provide fast recharge of the
battery.

In a very low-power circuit intended for a
single use (think of a remote data logger that
will log data until the battery is exhausted
and then be retrieved later), you may not need
the charging circuit. But such applications
are rare. Usually you will want to be able to
replace or recharge the battery.

Use a battery that can only be installed
one way: This is what most cell phones do.
The battery pack is not symmetrical and the
battery can only be inserted one way that
will allow it to make contact with the circuit.
Again, a simple solution, but one that requires
a custom battery. It is really only suitable for

Running on Battery (Part 1)

Sometimes you might need to power a small
microcontroller circuit with batteries. In this
article, Stuart explains how to protect against
reverse battery voltage, select a microcontroller,
and manage power.

By Stuart Ball (US)

Battery-Powered
Microcontroller Circuits

circuitcellar.com 27
FEATU

RES

high-volume devices, unless you want to use
a battery from a real cell phone. That might
be a reasonable solution if you only need a
handful of them so you can swap the battery
at a remote site once a month.

There are some off-the-shelf solutions
that get close to this. Tadiran and Dantona
(and others) make battery packs that have
wire leads and polarized connectors. These
aren’t cheap, and you aren’t going to pick up
a replacement battery at your local Walmart.
But they solve the battery reversal issue, and
might be a solution for something that isn’t
going to need battery replacement very often.

Use a coin cell: An example would be the
standard CR2302 battery. Some coin cell
holders have a contact on the top and bottom,
which does allow the battery to be inserted
so that the polarity is reversed. But if the
positive contact is on the side of the holder
instead of on the top, then it makes contact
with the edge of the battery instead of the top
surface. In those holders, a reversed battery
is not an issue; both contacts connect to the
same terminal of the battery if it is inserted
backward. The BS-7 from Memory Protection
Devices is an example of such a battery
holder. Renata and others make similar parts.
Of course, your circuit must be capable of
running from one or more coin cells to make
this approach practical.

Use a diode: This is the most foolproof way
to prevent damage due to battery reversal if
you are using standard AA, AAA, C, or similar
batteries. A Schottky diode is placed in
series with one of the battery leads (usually
the positive) so that it inhibits current flow
in the reverse direction. The catch is that
the diode will have a forward voltage drop
typically between about 0.3 and 0.5 V. For a
microcontroller operating from a 9-V battery
and a regulator, this probably won’t be an
issue. But if you are operating from a couple
of AA batteries, this is a significant portion of
the available battery voltage.

Use a MOSFET: When the battery is inserted
correctly, the MOSFET is turned on and passes
current to the circuit. If the battery is inserted
backward, the gate is reverse-biased and the
MOSFET is off. This approach is great if you
are operating from a battery of 9 V or greater.
The problem with operating from batteries in
the 3-V range is finding a MOSFET that has
sufficiently low on-resistance and sufficiently
low gate-source threshold voltage. MOSFETs
that have low gate-source threshold voltage
typically have relatively high on-resistance, so
the drop across the MOSFET can approach that
of a Schottky diode. However, this approach
may work if your operating current is low
enough. There are a few MOSFET transistors,
such as the Fairchild FDN306P that are rated

for 1.8-V operation with reasonably low on-
resistance. Figure 1 shows both a series diode
and a P-channel MOSFET used for reversal
protection.

MICROCONTROLLER SELECTION
The key to battery operation is to reduce

the current drawn by the circuit as much
as possible. You also need to accommodate
the unique characteristics of a battery-
operated environment. Let’s review the key
requirements for the microcontroller.

Low-power operation: You want the
microcontroller to operate at minimal
current, consistent with the requirements
of the application. Availability of low-power
sleep modes may be important; more about
that later.

Ability to operate over a range of voltages:
The Atmel ATXmega324A operates from
1.6 to 3.6 V. This allows the part to work
as the battery ages and accommodates an
external diode (if needed) for battery reversal
protection. Some microcontrollers have tight
operating voltage ranges, such a 3.3 V only.
These can be difficult to use in a battery
circuit.

Low-power clock: Many microcontrollers
have low-power internal clocks. Many will
operate using an external 32-kHz watch
crystal. In general, parts that operate with
high-speed external clocks are going to use
significant power even in a low-power state.
Again, using the ATXmega324A as an example,
the maximum idle current using a 32-kHz
external crystal and 3-V supply is 4 µA. Using
a 2-MHz external crystal, the maximum idle
current is 390 µA. Although that isn’t a lot, it’s
a difference of almost 100:1.

Use of a low-power, external clock either
means low-frequency operation or an internal
PLL to multiply the clock to a reasonable

FIGURE 1
Either a series Schottky diode or a
P-channel MOSFET can be used to
protect the circuit against a reversed
battery.

CIRCUIT CELLAR • SEPTEMBER 2015 #30228
FE

AT
U

RE
S

internal operating frequency. Many
microcontrollers, including the ATXmega
series, do have internal PLLs that can multiply
an external 32-kHz clock to a much faster
operating frequency.

POWER MANAGEMENT
Some battery-powered devices are only

used intermittently. An example would be
a piece of test equipment such as a DVM or
some piece of portable RF test gear. In that
case, the easiest way to manage the power
is to use an on-off switch; you turn the unit
on when you want to use it. For devices like
that, you could use a 9- or 12-V battery and a
regulator to supply power to the circuit.

On the other hand, imagine that you had
to actually turn your smartphone off when
you weren’t using it. Aside from the problem
of not being able to receive incoming calls
and messages, you would have to wait for
the phone to start up, register with the cell
towers, and get ready to operate when you
wanted to use it.

A smartphone is an extreme example since
it contains a complete operating system and
a number of internal peripherals that have
to be initialized. But the principle applies to
other cases. Sometimes you want to leave the
device powered on all the time. The remote
data logger that I mentioned earlier is one
example. For that kind of application, you
want to get as many hours of operation as
possible from a set of batteries. This typically
means being deliberate about power usage.
Some power management considerations
include the following.

Sleep mode: Many microcontrollers have
multiple sleep modes. For example, the
ATXmega32A4 has five different sleep modes
with varying degrees of power usage and
varying capabilities. In Power-down mode,
the internal real-time clock will not wake the
device up but an external interrupt, such as a
button push, will. This would be suitable for a
device that needs to wake up when the user
presses a key.

In the ATXmega324A Power-save mode,
the RTC still operates and can wake the
device up. This mode would be suitable for
regular sampling of temperature or some
other external sensor, where there is no user
to press a button. The point is that the part
has varying power modes, with various power
consumption levels. Selection of a part with
power modes suitable to your application
can have significant impact on the power
consumption.

Peripheral power-down: Again, using the
ATXmega as an example, the part has sleep
modes with specific functionality. But it is
also possible when actively operating to shut

down specific peripherals such as the analog-
to-digital converter. This allows the part to
reduce operating current when in an active
mode. In some situations, sleep mode may
not be needed if the active mode current can
be sufficiently reduced.

Avoid power-hogging design techniques:
Some things we take for granted in AC-
powered designs turn out to be power hogs
in battery-operated designs. For example,
it is easy to generate a reference voltage
lower than the supply voltage with a resistive
voltage divider. But any resistor connected
directly between the battery terminals is
going to draw current, regardless of the
microcontroller state. Either avoid these or
give the microcontroller the ability to remove
power from the voltage divider when it goes
into a low power mode.

Make sure that output drive is removed
when entering a reduced-power mode. For
example, you might drive a relay using an NPN
transistor with a resistor in the base, which is
in turn driven by a microcontroller output pin.
Unless the pins float in sleep mode, leaving
this pin high will leave the transistor turned
on and the relay energized. You would want
to configure that pin as a low output before
entering sleep mode. Even if the transistor
is just driving a logic signal, such as a case
where it is translating between 3.3 and 5 V,
the current drain from a high microcontroller
output through the limiting resistor can be
many times the sleep mode current of the
microcontroller.

Low battery sensing: The easiest way to
detect a low battery is to use a microcontroller
with an internal analog-to-digital converter
and read the battery voltage. This can be
problematic on some microcontrollers if they
don’t have an internal voltage reference for
the ADC. Ideally, you want a microcontroller
with an internal reference that is lower than
the battery voltage. Alternatively, you can use
an external reference and turn it off when you
aren’t reading battery voltage.

Usually microcontroller ADCs will not
work if the input voltage is higher than the
reference. So you can use a voltage divider
to reduce the battery voltage to a level the
ADC input will accept. You will want to switch
the positive side of the divider off to avoid
permanent current drain. The microcontroller
can drive a transistor to switch the high side
of the voltage divider on and off. Depending
on the accuracy you need, you may need to
compensate for the transistor voltage drop.
Some microcontrollers include a brown-out
sensing circuit to detect low supply voltage.
Typically this generates an interrupt or reset.

PWM relays: If you are driving a relay, drive
it with 100% duty cycle to pull it in, and then

ABOUT THE AUTHOR
S t u a r t B a l l i s a
registered professional
engineer with a BSEE
and an MBA. He has
more than 30 years of
experience in electronics
design. He is currently
a principal engineer at
Seagate Technologies.

PCB WEST OFFERS:
• A comprehensive three-day conference, with several affordable packages

• More than 65 presentations in all, the largest PCB event in the Silicon Valley

• Targeted conference sessions for all levels of experience and training, from
 novice designer and engineer to seasoned pro

• Covering topics such as RF/microwave/PI/SI, printed electronics/flex circuits and
 next-gen components

• Exhibit hall featuring the industry's leading suppliers and services in a
 one-day exhibition

• 10+ Free technical sessions PLUS networking events - all on the exhibit floor -
 lunch, afternoon breaks and an evening reception

• and more...

CONFERENCE: September 15 - 17
EXHIBITION: Wednesday, September 16

SANTA CLARA CONVENTION CENTER, CA

Register for the conference by August 14th and save up to $100

www.pcbwest.com

C

M

Y

CM

MY

CY

CMY

K

PCBW15_FullSpread.pdf 1 6/24/15 12:32 PM

http://www.pcbwest.com

CIRCUIT CELLAR • SEPTEMBER 2015 #30230
FE

AT
U

RE
S

reduce the duty cycle to hold the relay. Most
relays require significantly less current to
hold them closed than to close them. You may
want to adjust the duty cycle to compensate
for battery voltage as the battery drains. The
same concept applies to any other peripheral
component that is needed intermittently; turn
it off when not actually in use.

Compensating for battery voltage loss:
Say you are driving some LEDs in your circuit.
If they are visual indicators, the decrease in
brightness as the battery loses voltage may
not be enough to notice. But if the LED is
used to drive an optical sensor, the reduction
in drive may cause false readings. You could
fix this by driving the LED with a constant
current source, or by characterizing the LED
(and sensor, if needed) over the operational
battery voltage range, then use a look-up
table in the firmware to compensate for
changing battery voltage. Obviously, you need
to be able to read the battery voltage for this
to work.

Battery swapping: In a device that is
always on and isn’t using rechargeable
batteries, the user will eventually change
the battery. This can produce a lot of make-
break cycles of the power as the old battery
is removed and the new battery is inserted.
So, depending on your application, when
power is applied, you might need to introduce

a significant delay of half second or more to
let everything stabilize. You don’t want to be
writing information to the microcontroller
EEPROM when power is suddenly removed.
One way around this is to have a large enough
capacitor to hold the voltage up for a bit, and
then sense the voltage in the firmware. If you
see it drop rapidly, go into some kind of safe
mode.

Active duty cycle: The battery drain in
the various sleep modes of a microcontroller
is low. But battery life is dependent on the
average current drain, which includes the time
that the microcontroller is active. Minimizing
the active time and maximizing the intervals
between active times will produce the longest
battery life. You can’t control this interval if
the active time is initiated by a user input.
But if an internal RTC or other timing event
initiates the active state, then you have
some control over the average current drain.
Waking up the microcontroller 10 times a
second will take less total power than waking
it up 100 times per second, if the application
requirements give you a choice.

OTHER CONSIDERATIONS
Let’s consider some additional problems

and fixes.
Amplifiers: In the old days of transistor

electronics, it wasn’t uncommon to see
inexpensive radios and walkie-talkies make
a “motorboating” sound when the battery
got low. The audio circuits depended on the
low impedance of the battery to prevent the
battery from becoming part of an oscillator
circuit. When the battery (typically a 9-V
battery) aged, the circuit would become a
blocking oscillator.

The point is that if you have amplifiers
in your circuit, you want to be sure that you
have enough capacitance across the positive
and negative supply leads to allow the circuit
to operate without oscillating even when the
battery is weak. And if you are using a diode
or MOSFET for reverse polarity protection,
the capacitance goes on the circuit side of the
protection, not on the battery side.

Drive levels: In an AC-powered circuit, we
can easily generate 5 V or some other voltage
to drive things like FETs. In a battery-operated
circuit, it may be difficult to generate enough
voltage to drive the gate of a MOSFET to its
switching threshold voltage. What happens to
the ability to drive the gate of a MOSFET when
the battery is nearly drained? You can add
a voltage doubler or other DC-DC converter
if the drive level is marginal, but that adds
complexity, cost, and additional current drain.
This sort of problem isn’t insurmountable,
but you may need to take it into account.

Flyback diodes: In the unusual event that circuitcellar.com/ccmaterials

SOURCE

ATXmega324A Microcontroller
Atmel Corp. | www.atmel.com

FIGURE 2
Flyback protection using a diode. The positive supply must be able to dissipate the energy from the inductive
device without generating excessive voltage to the microcontroller.

http://www.atmel.com
www.circuitcellar.com/materials

circuitcellar.com 31
FEATU

RES

you are driving a relay, solenoid, motor, or
other inductive electromechanical device, a
diode is often used from the driving device
(usually a transistor) to the supply (see
Figure 2). When the transistor is turned off,
the flyback voltage from the inductor can
damage the transistor; the diode limits this
voltage to the supply voltage. The problem is
that in a battery-operated circuit with a diode
or MOSFET for battery reversal protection, the
energy has no place to go and can cause a rise
in the supply voltage to the microcontroller,
high enough to damage it.

You can fix this with a sufficiently high
capacitance from the supply to ground,
high enough to absorb the energy without
excessive voltage rise. You could also use
a Zener diode from the supply to ground if
you can select a value that is higher than the
maximum battery voltage but lower than the
safe voltage of the circuit. A microcontroller
that can operate from 2.7 to 5 V, for example,
could operate at 3 V on battery, but have a
5-V Zener diode to protect against excessive
flyback transients.

A similar situation could occur with an
external input (such as an RS-232 signal) that
is clamped to the positive supply. In such
cases, you would want to clamp to a fixed

voltage (such as a Zener diode) rather than
the positive supply voltage. The important
thing is to compensate for situations that can
produce excessive voltages on the positive
supply. The positive supply in electronic
circuits is often treated as a low impedance
to ground; there are situations where this is
not the case, especially in battery-operated
circuits.

Testing: You will want to test your circuit
with dead batteries, nearly dead batteries,
and new batteries. You want to be sure it
works over the entire range you intend. An
AC-powered circuit just needs to work if the
power supply is good; a battery circuit needs
to operate over some range of power supply
voltage. An AC-powered circuit has a supply
that is either on or off; a battery-powered
circuit has a “supply” that degrades over time.

BATTERY POWER
Running on batteries is more complicated

than using AC power. But for applications that
demand it, a careful design makes it possible.
In the next part of this article series, we’ll
consider the topics of combined AC/battery
operation, single-cell operation, rechargeable
batteries, and battery life estimation.

FrontPanelExpress.com

● Cost effective prototypes and production
runs with no setup charges

● Powder-coated and anodized finishes in
various colors

● Select from aluminum, acrylic or provide
your own material

● Standard lead time in 5 days or express
manufacturing in 3 or 1 days

You design it
to your specifications using

our FREE CAD software,
Front Panel Designer

We machine it
and ship to you a

professionally finished product,
no minimum quantity required

The Easiest Way to Design Custom
Front Panels & Enclosures

Circuit Cellar ad 3.375x4.75 APR15.indd 1 4/6/15 2:00 PM

www.frontpanelexpress.com
www.lemosint.com
mailto:orders@lemosint.com

CIRCUIT CELLAR • SEPTEMBER 2015 #30232
FE

AT
U

RE
S

As we detailed the first article in this series,
we can boast to our local teenager that

“WE” have developed an Android application.
Last month, we explained how we added “just
enough additional code” (JEAC) to record and
play back .3GPP files. As a result, we could
say the following to a neighbor at a backyard
BBQ: “We’re not imagining things. Look, there
are really local urban noise nuisances.”

This time we are going quantitative with
an audio record-and-analysis update of the
WAT_AN_APP application for “Things that
Go Boom at Night” (TGBN). This enables us
either to request lots of commiseration as the
community noises are really bad or boast that
we have more ghosts going “BOO(m)” at night
than anybody else!

QUICK RECAP
The idea is to leave the TGBN device

running over a weekend. We want to capture
a 7-s sound recording if the community

noise sound level gets above
background level. When
the sound stays high in
intensity, a warning message
(Android toast) appears on
our device’s screen. As a
precaution, a scary “Boo”
kind of sound will be output
to intimidate any ghosts that
might be present as we head
off in the opposite direction.

The key elements of
our app so far are outlined
in Listing 1. We kept the
line numbers used in the
previous articles to help you
find the things that need to

be updated. We’ve extended the MainActivity
class to add the new SoundAnalysis activity
for the TGBN update (Lines 30–33). To activate
the TGBN section, there is another button to
our screen layout file activity_main.xml (see
Listing 2, Lines 130–139).

SCREEN, SOUND, & COMPATIBILITY
Figure 1a shows a screen with text to

indicate the numbers of records remaining
(see Listing 3, Lines 1710–1716) and TGBN
sounds detected (Lines 1720–1727) together
with the recording time remaining (Lines
1730–1739). These TextView widgets are
updated by the activity’s code.

Figure 1b shows that still with four
recording sessions to go, our sound analysis
indicates that one TGBN sound has been
detected. To avoid setting off false alarms,
we must remain “quiet and collected.” When
ghost hunting, does “collected” mean in
complete control or huddled together in a
corner?

Each time we find that we have recorded
a sound much larger than the background
level, we will generate the “BOO” sounds to
intimidate the local ghosts. Finally, we have
the application display a message “Captured”
and report the results of our sound analysis.
If you feel in a Halloween mood, use our
current app to record your own “Boo” sound
in a .3GPP format. Otherwise, you can grab
scary sounds from various website such as
caseyscaverns.com/4/halloween5.html. For
compatibility with our code, the sound file
needs to be stored in a new WAT_AN_APP
folder named “raw.”

Before proceeding, check the Android
Manifest file in the project to make sure that

Sound Ecology and Acoustic
Health (Part 3)

Last month, Adrien and Mike tackled the topics of recording and playing
back audio .3GPP files. In this article, they get quantitative with an audio
record and analysis update for the WAT_AN_APP application.

By Adrien Gaspard and Mike Smith (Canada)

A Quantitative Application for WAT_AN_APP

FIGURE 1
Here you see the (a) the initial sound analysis screen and (b) the
detection of a BOOm using the TGBN detector.

a)

b)

circuitcellar.com 33
FEATU

RES

the android minimum SDK version of our
application is set to 14 for compatibility issues
with the code we are going to implement.
(Refer to Part 2 of this article series: Listing 7,
Line 3006 of WAT_AN_APP\AndroidManifest.xml.)

TGBN IMPLEMENTATION
Implementing our new SoundAnalysis

activity requires a number of steps. To prevent
carpal tunnel syndrome, remember to sit up
straight in your chair and to practice the
finger yoga exercises noted in the previous
article. An alternative is to access the code on
the Circuit Cellar FTP site.

A new ints.xml file in the WAT_AN_APP\
res\values folder (see Listing 4) shows the
parameters needed to control our widgets.
These are the recording time (Line 2822)
and the number of recordings (Line 2830).
To avoid just collecting background noises,
set the impulse threshold for when to start
recording (Line 2840). You will have to play
around with the sound threshold for when
you consider that a TGBN sound has been
detected (Line 2841). The parameters needed
for our next article are defined Lines 2850 to
Line 2852.

The actual SoundAnalysis activity is
implemented in Listing 5. After having
imported all the libraries, we pop up the
widgets to display the number of records
remaining (Line 551), TGBN sounds detected
(Line 552), and recording time remaining
(Line 553). A variable captureAudio is
defined to capture the audio (Line 555), and
a MediaPlayer mediaPlayer is used to play
the scary sound when a TGBN sound has
been detected (Line 556). The scary sound
“boo.3GPP” from the “raw” folder is linked
to the MediaPlayer in the onCreate() method
(Line 603). All the methods that are going to
be used are summed up in Listing 5.

The article 2 activity used a MediaRecorder
recorder to allow us to capture and listen to
a sound. The recorder tracking TGBN sound
is different than the one implemented in
the previous article, as it is used to record
a sound in a room and store its data into a
buffer. We are no longer just interested in
listening to the recorded sound. With this
quantitative analysis we need to measure the
number of bizarre louder sounds. If you are
interested in listening to the captured TGBN
sounds then you could do that with the use
of an AudioTrack. This class allows streaming
of the PCM audio buffer to the audio sync for
playback as explained on developer.android.
com/reference/ media/AudioTrack.html.

The onStart() method from
Listing 6 contains the code required to
initialize the three TextView widgets, which
display the number of records available (6)

and TGBN sound detected (0) when the activity
starts. We execute the captureAudio class
from this method (Line 758). The onPause()
method (Lines 800–804) is called when the
activity goes into the background, but has
not been killed (stopped) and turned into a
spirit yet. The audio capture is cancelled in

 package com.wat_an_app; // MainActivity.java
 // SAME AS Article 1, Listing 1, Lines 2 to 5

 // Cause display of MainActivity screen layout
 public class MainActivity extends Activity{
 // SAME AS Article 1, Listing 1, Lines 11 to 15
 public void AudioRecordPlayback(View v){
 // SAME AS Article 1, Listing 1, Lines 21 to 23

 // New SoundAnalysis Activity
30. public void SoundAnalysis(View v){
31. Intent beginSoundAnalysis =
 new Intent(this, SoundAnalysis.class);
32. startActivity(beginSoundAnalysis);
33. }
 }

LISTING 1
New SoundAnalysis activity, which is called from MainActivity.java in the WAT_AN_APP\src\ folder

 <!--Used by MainActivity -->
 <RelativeLayout
 xmlns:android=http://schemas.android.com/apk/res/android
 ... <!-- SAME AS Article 1, Listing 2, Lines 102 to 105 -->

 <!--Greeting text-->
 <TextView
 <!-- SAME AS Article 1 Listing 2 Lines 111 to 116-->
 />

 <!--Start activity button for AudioRecordPlayback-->
 <Button
 <!--SAME AS Article 1 Listing 2 Lines 121 to 128 -->
 />

 <!--New Button to start SoundAnalysis activity -->
130. <Button
131. android:id= “”@+id/start_detecting_TGBN”
132. android:layout_width=”wrap_content”
133. android:layout_height=”wrap_content”
134. android:layout_centerVertical=”true”
135. android:layout_centerHorizontal=”true”
136. android:layout_below=”@id/start_WAT_AN_APP”
137. android:text=”@string/press_to_start_detecting_TGBN”
138. android:onClick=”SoundAnalysis”
139. />

 </RelativeLayout>

LISTING 2
New layout details to be inserted into activity_main.xml file in the WAT_AN_APP\res\layout folder

http://schemas.android.com/apk/res/android

CIRCUIT CELLAR • SEPTEMBER 2015 #30234
FE

AT
U

RE
S

LISTING 3
activity_sound_analysis.xml layout file
from the WAT_AN_APP\res\layout
folder

 <!--Used by SoundAnalysis activity -->
1700. <RelativeLayout
1701. xmlns:android=”http://schemas.android.com/apk/res/android”
1702. <!-- COPY FROM Article 1, Listing 2 Lines 102– 105 -->

1710. <TextView
1711. android:id=”@+id/number_records”
1712. android:layout_width=”wrap_content”
1713. android:layout_height=”wrap_content”
1714. android:layout_centerHorizontal=”true”
1715. android:layout_centerVertical=”true”
1716. />

1720. <TextView
1721. android:id=”@+id/number_tgbn_sounds”
1722. android:layout_below=”@+id/number_records”
1723. <!-- COPY FROM Article 3, Listing 2 Lines 1712 to 1715-->
1727. />

1730. <TextView
1731. android:id=”@+id/textViewTime”
1732. android:layout_above=”@+id/number_records”
1733. <!--COPY FROM Article 3, Listing 2 Lines 1712 to 1715 -->
1737. android:layout_marginBottom=”17dp”
1738. android:textSize=”25sp”
1739. />

1799. </RelativeLayout>

2800. <?xml version=”1.0” encoding=”utf-8”?>
2801. <resources>

 <!-- AudioRecord parameters -->
2810. <integer name = “sample_rate”>8000</integer>
2811. <integer name = “num_channels”>1</integer>

 <!-- Defines the buffer length for sound detection -->
2820. <integer name = “detect_buffer_length”>256</integer>
2821. <!-- Defines the capture time after impulse is detected -->
2822. <integer name = “capture_time”>7</integer>

 <!-- Number of sounds we want to record -->
2830. <integer name = “num_records”>6</integer>
2831. <integer name = “num_tgbn”>1</integer>
2832. <integer name = “number_tgbn_scratch”>0</integer>

 <!-- Threshold at which we detect a sound above back-ground
 and at which we detect a TGBN sound -->
2840. <integer name = “detect_threshold_impulse”>10000</integer>
2841. <integer name =
 “detect_threshold_tgbn_sound”>25000</integer>

 // SPOILER ALERT – Needed in Articles 4 and 5
2850. <integer name = “samples_per_bin_freq”>32</integer>
2851. <integer name = “samples_per_bin_time”>4</integer>
2852. <integer name = “playChirp”>1</integer>

2899. </resources>

LISTING 4
Creation of the ints.xml file in the
WAT_AN_APP\values folder

http://schemas.android.com/apk/res/android%E2%80%9D

A Digital Oscilloscope for the Analog World

For more information call 1-800-591-2796 or visit:
www.picotech.com/pco542

102 dB SFDR • Log x Log FFT View
Low noise • Two channels

16 MS buffer • 16-bit resolution
10 MS/s sampling • 5 MHz bandwidth

Advanced digital triggers
Low-distortion signal generator
Arbitrary waveform generator

USB powered
SDK including LabVIEW and MATLAB

Mac, Linux and Windows

YE AR

16 bit

PicoScope® 4262
HIGH-RESOLUTION OSCILLOSCOPE

PI
C

O
SC

O
PE

 4
00

0
SE

R
IE

S

http://www.picotech.com/pco542

CIRCUIT CELLAR • SEPTEMBER 2015 #30236
FE

AT
U

RE
S

500. package com.wat_an_app;
501. import java.util.concurrent.TimeUnit;
502. import android.media.AudioFormat;
503. import android.media.AudioRecord;
504. import android.media.MediaPlayer;
505. import android.media.MediaRecorder.AudioSource;
506. import android.os.AsyncTask;
507. import android.os.Bundle;
508. import android.os.CountDownTimer;
509. import android.support.v7.app.ActionBarActivity;
510. import android.widget.TextView;
511. import android.widget.Toast;
512. import com.wat_an_app.R;

550. public class SoundAnalysis extends ActionBarActivity{
551. TextView TextHandleNumberRecords;
552. TextView TextHandleNumberTGBN;
553. TextView textViewTime;
554. AudioRecord recorder;
555. CaptureAudio captureAudio;
556. private MediaPlayer mediaPlayer;
557. final CounterClass timer = new CounterClass(8000,1000);

600. @Override protected void onCreate(Bundle savedInstanceState) {
601. super.onCreate(savedInstanceState);
602. setContentView(R.layout.activity_sound_analysis);
603. mediaPlayer = MediaPlayer.create(this, R.raw.boo);
604. }

 // Methods and classes associated with public class SoundAnalysis

 // SPOILER ALERT – Leaving 605 – 749 for next article’s neat stuff

 // @Override protected void onStart()
 // Method details in Listing 5 Lines 750 to 759
 // protected void onPause(){
 // Method details in Listing 5 Lines 800 to 804
 // public class CounterClass extends CountDownTimer {
 // Method details in Listing 6 Lines 850 to 862

 // private class CaptureAudio
 // extends AsyncTask<Void, Integer, Integer> {
 // protected void onPreExecute()
 // Method details in Listing 7 Lines 910 to 919
 // protected Integer doInBackground(Void ... params)
 // Method details in Listing 8 Lines 950 to 987
 // protected void onProgressUpdate(Integer ... data)
 // Method details in Listing 9 Lines 1200 to 1212
 // protected void onPostExecute(Integer data)
 // Method details in Listing 9 Lines 1250 to 1255
 // protected void onCancelled()
 // Method details in Listing 10 Lines 1300 to 1305
 // protected boolean detectImpulse(short[] samples)
 // Method details in Listing 10 Lines 1350 to 1356
 // protected boolean detectTGBN(short[] samples)
 // Method details in Listing 10 Lines 1400 to 1406
 1449. }LISTING 5

SoundAnalysis.java – Definition of the
variables for onCreate() method

circuitcellar.com 37
FEATU

RES

this method (Line 801).
We based the countdown indicator from

one on the Internet (see Listing 7), which
will set a text “Captured,” indicating that the
record is over (Listing 7, Lines 850–877). The
onTick() method fires at regular intervals to
show the number of seconds remaining until
the recording finishes. onFinish() is called
when the time is up to set the text “Captured”
on the screen. Note that we will use an
onTick()_Article4 method in our next article
(Line 860), which has not been implemented
yet. More details of the public constructors
and methods used in this class are at
developer.android.com/reference/android/os/
CountDownTimer.html#onTick(long).

There’s a special health feature available
with this app! Please note than the recorder
only starts recording after a sound impulse
above the background noise level has been
detected. You can validate your finger yoga
practice by showing you can snap your fingers
together loud enough to test the app.

Now let’s consider some tricks or treats
for Android.

 ASYNCTASK: PRE-EXECUTION
A process can run on multiple threads

within the Android system. When the
application first runs, it will use the User
Interface (UI) thread to controls everything
we see on the screen. While doing shorter
operations on this thread is acceptable, doing
longer operations may cause the system to
stop responding to user interaction, causing
the user to think that the program is running
slowly or has stopped running.

To fix this, Android uses the AsyncTask
class so that you can shift longer operations
to different threads and keep the main UI
thread running smoothly. An asynchronous
task is defined on Android using three types:
Async<Params, Progress, Result>, as well as
four steps: onPreExecute, doInBackground,
onProgressUpdate, and onPostExecute.

onPreExecute in Listing 8 is the first step
to be invoked and sets up our SoundAnalysis
activity. This task initializes the AudioRecorder
using the following format: AudioRecord
(int audioSource, int sampleRateInHz,
int channelConfig, int audioFormat, int
bufferSizeInBytes (Line 912).

Our audio source is the device’s
microphone. The sample rate and number
of channels have been configured in the
ints.xml file. The audio format “ENCODING_
PCM_16BIT” means that our audio buffer will
be filled with signed integer values ranging
from the maximum value of –327637 to a
minimum value of 32768.

Every time a media recorder or player is
initialized, it is really important to verify that

it has been initialized correctly. If another
activity, such as our audio record playback,
is already using the media recorder, we won’t
be able to initialize it again. The initialization

750. @Override protected void onStart(){
751. TextHandleNumberRecords =(TextView) findViewById
 (R.id.number_records);
752. TextHandleNumberRecords.setText(getResources().
 getString(R.string.number_records_remaining)
 +Integer.toString(getResources().
 getInteger(R.integer.num_records)));
753. TextHandleNumberTGBN=
 (TextView)findViewById (R.id. number_tgbn_sounds);
754. TextHandleNumberTGBN.setText(getResources().
 getString(R.string. number_tgbn_recorded)
 +Integer.toString(getResources().getInteger
 (R.integer.number_tgbn_scratch)));
755. super.onStart();
756. textViewTime = (TextView)findViewById
 (R.id.textViewTime);
757. captureAudio = new CaptureAudio();
758. captureAudio.execute();
759. }

800. protected void onPause(){
801. captureAudio.cancel(false);
802. super.onPause();
803. finish();
804. }

LISTING 6
SoundAnalysis.java — onStart() and onPause() methods

850. public class CounterClass extends CountDownTimer {
851. public CounterClass(long millisInFuture,
 long countDownInterval) {
852. super(millisInFuture, countDownInterval);
853. }

854. @Override public void onFinish(){
855. textViewTime.setText(“Captured”);}

860. public void onTick_Article4 // SPOILER ALERT
 (long millisUntilFinished){} //USED IN ARTICLE 4

870. @Override public void onTick(long millisUntilFinished){
871. long millis = millisUntilFinished;
872. String hms = String.format(“%02d”,
 TimeUnit.MILLISECONDS.
 toSeconds(millis) - TimeUnit.MINUTES.toSeconds
 (TimeUnit.MILLISECONDS.toMinutes(millis)));
873. System.out.println(hms);
874. textViewTime.setText(hms);
875. onTick_Article4(millisUntilFinished);
876. }
877. }

LISTING 7
SoundAnalysis.java — CounterClass class

CIRCUIT CELLAR • SEPTEMBER 2015 #30238
FE

AT
U

RE
S

will then fail but we won’t be warned. In most
cases, the activity crashes the application
when it runs, with error messages appearing
on the LogCat. We want to save this
precious time for hunting ghosts instead of
debugging the application, so we create a
message that pops up on the screen if the
recorder initialization fails (Line 914). If the
initialization fails, the warning toast message
is displayed and the audio recorder is released
(Line 915). Watch the order for the different
initializations to avoid the Android equivalent
of the Blue Screen of Death: “Illegal State
Exception.”

ASYNCTASK: DO IN BACKGROUND
In theory, all we need to do now is to

start recording the noise. The buffer, which
is internal to the AudioRecord instance, will
be filled up with data. While recording, we
need a number of operations to update the
user interface. Once again, these operations
don’t have to be done in parallel with the
recording task, which takes the most time.

Ghosts are not the only ones to do tasks in
the background. We can also perform several
tasks that don’t have to be all synchronized
with one another, using Android AsyncTask.

The doInBackground method is called to
operate the background computation, which
can take time (see Listing 9). We use it to
initialize the number of records and TGBN
sounds and the buffers (Line 952 to 958)
before starting the record using the previously
initialized MediaRecorder recorder (Line
959). Until the number of records remaining
reaches 0, we save the recorded data into a
buffer and make sure that this buffer is full
before computing a result (Lines 963 and
964).

If an impulse above the background sound
level is detected we start to collect data,
“detectImpulse”, decrease the number of
records remaining, update the UI thread and
fill the buffer sampleBuffer with the current
data plus the data that have just been captured
(Lines 965 to 972). During this recording, if a
TGBN sound has been detected, “detectTGBN”

ABOUT THE AUTHORS
Adrien Gaspard (gasp.adrien@gmail.com) earned a Masters of Engineering from CPE Lyon, France, in February 2015. He tackled
his final practicum as an exchange student in Electrical and Computer Engineering at the University of Calgary. He undertook
self-directed term projects directed towards the possible use of noise cancelling to solve the community noise problem in Calgary
community of Ranchlands. Adrien intends to focus his career in the fields of embedded systems and wireless telecommunications.

Mike Smith (Mike.Smith@ucalgary.ca) has been contributing to Circuit Cellar since the 1980s. He is a professor of Computer En-
gineering at the University of Calgary, Canada. Mike’s main interests are in developing new biomedical engineering algorithms
and moving them onto multi-core and multiple-processor embedded systems in a systematic and reliable fashion. He is a recent
convert to the application of agile methodologies in the embedded environment. Mike has been an Analog Devices University
Ambassador since 2001.

900. private class CaptureAudio extends AsyncTask<Void,
 Integer, Integer>{
910. protected void onPreExecute(){
911. int bufferSize = 2 * AudioRecord.getMinBufferSize
 (getResources().getInteger(R.integer.sample_rate),
 getResources().getInteger(R.integer.num_channels),
 AudioFormat.ENCODING_PCM_16BIT);
912. recorder = new AudioRecord(AudioSource.MIC,
 getResources().getInteger(R.integer.sample_rate),
 getResources().getInteger(R.integer.num_channels),
 AudioFormat.ENCODING_PCM_16BIT,bufferSize);
913. if(recorder.getState() !=
 AudioRecord.STATE_INITIALIZED){
914. Toast.makeText(SoundAnalysis.this, getResources().
 getString(R.string.recorder_init_fail),
 Toast.LENGTH_LONG).show();
915. recorder.release();
916. recorder = null;
917. return;
918. }
919. }

LISTING 8
SoundAnalysis.java — Pre-execution

mailto:gasp.adrien@gmail.com
mailto:Mike.Smith@ucalgary.ca

Each month, you’re challenged to find an error in a
schematic or in code that’s presented on the challenge

webpage. Locate the error for a chance to win prizes and
recognition in Circuit Cellar magazine!

Prizes such as a NetBurner MOD54415 LC Development kit or
a Circuit Cellar subscription will be announced each month.

MONTHLY

ENGINEERING CHALLENGE

Sponsored by NetBurner

Participate: circuitcellar.com/engineering-challenge-netburner
Launch: 1st of each month

Deadline: 20th of each month

No purchase necessary to enter or win. Void where prohibited by law. Registration required. Prizes subject to change based on
availability. Review these terms before submitting each Entry. More info: circuitcellar.com/engineering-challenge-netburner-terms

www.circuitcellar.com/engineering-challenge-netburner

CIRCUIT CELLAR • SEPTEMBER 2015 #30240
FE

AT
U

RE
S

950. protected Integer doInBackground(Void ... params){
951. if(recorder == null) {return -1;}
952. int remainingRecords =
 getResources().getInteger(R.integer.num_records);
953. int numberTGBN=
 getResources().getInteger(R.integer.num_tgbn);
954. int detectBufferLength = getResources().getInteger
 (R.integer.detect_buffer_length);
 //length = sampleRate * recordTime
955. int sampleBufferLength = getResources().getInteger
 (R.integer.sample_rate) * getResources().getInteger
 (R.integer.capture_time);
 // SPOILER ALERT! UNCOMMENTED IN ARTICLES 4 and 5
956. //sampleBufferLength=
 //nearestPow2Length(sampleBufferLength);
957. short[] detectBuffer = new short[detectBufferLength];
958. short[][] sampleBuffer = new short
 [remainingRecords][sampleBufferLength];
959. recorder.startRecording();

960. while(remainingRecords > 0){
961. publishProgress(-1, -1, -1, -1, -1, -1);
962. int samplesRead = 0;

963. while(samplesRead < detectBufferLength)
964. samplesRead += recorder.read(detectBuffer,
 samplesRead, detectBufferLength - samplesRead);

965. if(detectImpulse(detectBuffer)) {
966. remainingRecords--;
967. publishProgress(-1, remainingRecords, -1,0, -1, -1);
968. System.arraycopy(detectBuffer, 0,
 sampleBuffer[remainingRecords], 0,
 detectBufferLength);
969. samplesRead = detectBufferLength;
970. while(samplesRead < sampleBufferLength)
971. samplesRead += recorder.read(sampleBuffer
 [remainingRecords], samplesRead,
 sampleBufferLength - samplesRead);
972. }
973. if(detectTGBN (detectBuffer)){
974. numberTGBN++;
975. publishProgress(1, remainingRecords,
 numberTGBN,-1, -1, -1);
976. }
977. if(isCancelled()){
978. detectBuffer = null; sampleBuffer = null;
979. return -1;
980. }
981. }//end while(remainingrecord> 0)
982. detectBuffer = null;
983. sampleBuffer = null;
984. if(recorder != null){recorder.release(); recorder = null;}
985. if(!isCancelled()){publishProgress(-1, -1, -1, -1, -1, -1);}
986. return 0;
987. }LISTING 9

SoundAnalysis.java — CaptureAudio –
doInBackground()

circuitcellar.com 41
FEATU

RES

1200. protected void onProgressUpdate(Integer ... data){
1201. if(data[0] == 1){
1202. mediaPlayer.start();
1203. Toast.makeText(SoundAnalysis.this, getString(R.string. TGBN_detected),
 Toast.LENGTH_SHORT).show();}
1204. if(data[1] != -1)
1205. TextHandleNumberRecords.setText(getResources().getString
 (R.string.number_records_remaining)+ Integer.toString(data[1]));
1206. if(data[2] != -1)
1207. TextHandleNumberTGBN.setText(getResources().getString
 (R.string. number_tgbn_recorded)+ Integer.
toString(data[2]-1));
1208. if(data[3] != -1)
1209. timer.start();
1210. if (data[4]!=-1) { /*IMPLEMENTED IN NEXT ARTICLE */ }
1217. if (data[5] !=-1) { /*IMPLEMENTED IN NEXT ARTICLE */ }
1220. }

1250. protected void onPostExecute(Integer data){
1251. if(recorder != null){
1252. recorder.release();
1253. recorder = null;
1254. }
1259. }

LISTING 10
SoundAnalysis.java — CaptureAudio –
onProgressUpdate()

1300. protected void onCancelled(){
1301. if(recorder != null){
1302. recorder.release();
1303. recorder = null;
1304. }
1305. }

1306. int threshold = getResources().getInteger(R.integer.detect_threshold_impulse);
1307. int threshold_tgbn = getResources().getInteger (R.integer.
 detect_threshold_tgbn_sound);

1350. protected boolean detectImpulse(short[] samples){
1351. for(int k = 0; k < samples.length; k++){
1352. if((samples[k] >= threshold) &&(samples[k]< threshold_tgbn))
1353. return true;
1354. }
1355. return false;
1356. }

1400. protected boolean detectTGBN (short[] samples){
1401. for(int k = 0; k < samples.length; k++){
1402. if(samples[k] >= threshold_tgbn) {return true;}
1403. }
1404. return false;
1405. }
1406. }
1449. }

LISTING 11
SoundAnalysis.java — CaptureAudio –
Detecting Impulses

CIRCUIT CELLAR • SEPTEMBER 2015 #30242
FE

AT
U

RE
S

is called. The counter tracking the number
of TGBN sounds detected is increased by one
and the scary sound is outputted (Lines 973
to 976).

To update the records and TGBN counters,
we use “publishProgress” to publish the
activity progresses on the UI. publishProgress
works with OnProgressUpdate (see Listing 10),
which is detailed later. The functions that
detect the impulses, “detectImpulse” and
“detectTGBN” are given an inputted short

type table containing all our samples (Lines
965 and 973). These two functions are also
detailed later.

ASYNCTASK: UPDATE THE APP
PROGRESS

onProgressUpdate displays the task
progress on the UI, while the background task
is still executing (see Listing 10). This method
works in parallel with “publishProgress.”
The values passed in parameters in

IMPLEMENTATION ISSUES
As of April 2015, we have tested out our code on two

phones running on different versions of Android. The TGBN
detector works perfectly on an older Samsung phone, which
runs on Android KitKat (API 19) and has an SD memory card.
We have also tried with a Google Nexus 5 phone running on
two versions of Lollipop, API 21 (Lollipop 5.0.1) and API 22
(Lollipop 5.1). That phone does not possess a SD memory
card needed to save data on external memory.

The reason why we mention recording for just “7
seconds” in this article is that the following often occurs on
the Google phone running Android Lollipop 5.0.1 (API 21)
after that time:

Error: fatal signal 11 (SIGSEGV) code 1 fault
 address 0xa146f00c in tid 260 7(Asynctask #3)

This problem seems to have occurred for a lot of developers
given the net discussions. SIGSEGV is caused by a
segmentation fault or access violation raised by hardware
with memory protection. This error APPEARS fixed with the
most recent Lollipop 5.1 (API 22).

Being only able to record 7 s for TGBN ghost BOOm sound
busting is no big deal. After all, six recordings will give
you 42, the answer to everything. However, our long-term
plans are to record the Acoustic Ecology simultaneously in
several home over a weekend or a week. For that, we need
more equipment than our local acoustic firm friends have
available to loan. We offer two solutions if you encounter
the same issue using a phone running Lollipop 5.0.1.

There is a tool to help you fixing this kind of access
violation errors. “NDK-STACK” allows analyzing stack
traces as they appear in the output of the LogCat. Tutorials
are available online (e.g., https://yssays.wordpress.
com/2011/12/27/android-ndk-stack-tool/).

The easiest fixes: Hunt your old phone out of its drawer,
keep using the KitKat OS, and keep searching the net. Or
upgrade your more recent phone to the latest version of
Android—Android 5.1. This bug is really annoying, and
somebody with more skills will find a solution soon.

We are on our way to come full circle back to the start
of Part 1 in this series. Thank heaven for that local teenager
down the road!

200. <?xml version=”1.0” encoding=”utf-8”?>
201. <resources>
205. <!-- SAME AS Article 1 Listing 3, Lines 205 to 214 -->
220. <!-- SAME AS Article 2 Listing 4, Lines 220 to 224 -->
230. <!-- String required for the third part of the application, record and
 output Boo sound if TGBN sound is detected -->
231. <string name=”error”>An error has occurred</string>
232. <string name=”recorder_init_fail”>Recording device initialization
 failed</string>
233. <string name=”press_to_start_detecting_TGBN”>Press to start
 detecting TGBN</string>
234. <string name=”press_to_start_WAT_A_RECORDER”>Press to start
 recording</string>
235. <string name=”number_records_remaining”>Number of records
 remaining: </string>
236. <string name=”number_tgbn_recorded”>Number of TGBN sounds
 detected: </string>
237. <string name=”TGBN_detected”>a BOOm has been
 detected!</string>
238. <string name=”title_activity_sound_analysis”>Sound
 Analysis</string>
249. </resources>

LISTING 12
Preset string values must be set in
strings.xml from WAT_AN_APP\res\
values

https://yssays.wordpress

circuitcellar.com 43
FEATU

RES

publishProgress are stored in a data array
that is given to the onProgressUpdate method.
publishProgress is then presented as follows:
publishProgress(data[0], data[1], data[2],
data[3]).

We use onProgressUpdate to start the
media player if a TGBN sound is detected and
to display the message “a BOOm has been
detected!” on the screen (data [0], Lines 1201
to 1203). It also decreases the number of
impulses remaining if an impulse is detected
and recorded (data [1], Lines 1204 and 1205),
increases the counter if a TGBN sound has
been detected (data [2], Lines 1206 and 1207)
and starts the countdown once an impulse has
been detected (data [3], Lines 1208 and 1209).
The empty curly brackets in Lines 1210 and
1211 are needed to keep the compiler happy
until we use the last two data items, data[4]
and data[5], passed to publishProgress() in
the next article.

ASYNCTASK: POST EXECUTION
onPostExecute is invoked after the

background task finishes (see Listing 9, Lines
1250–1254). We use it to release the recorder,
as we are not recording any more at that
point and to verify that no error has occurred
during the asynchronous operations.

Listing 11 describes the onCancelled()
method (Lines 1300–1305). If a task cancels,
we simply need to release the recorder if it
has not been done before. While working with
asynchronous tasks, a task can be cancelled
at any time by invoking cancel(boolean).
Invoking such a method implies that
onCancelled() will be invoked instead of
onPostExecute() after doInBackground()
returns.

The functions used to detect impulses
(Lines 1350–1356) and to detect a TGBN
sound (Lines 1400–1406) are also described
in Listing 11. To detect an impulse and start
recording, we process our samples one by
one and compare them to two thresholds
set to 10000 and 25000 (Lines 1351–1354).
The samples must be within this range for
the recorder to start. At the end of each
recording, if these data are greater than or
equal to a threshold set to 25000, Line 1402,
the detectTGBN function is called and we have
detected one of the ghosts mucking about in
the room. Our detector then increases the
TGBN sound counter and outputs the scary
sound.

To avoid compiler errors, update the
Preset Strings in strings.xml as shown in
Listing 12. For more information, functions
and examples concerning asynchronous
tasks on Android are available at developer
android.com/reference/ android/os/
AsyncTask.html.

SPECTRAL ANALYSIS
We are now done with developing a

long-term, sound-gathering device for our
community noise nuisance task. By side-
tracking into our ghost detection mission
and practicing some finger yoga activities,
we hope you have had a few chuckles while
getting familiar with the world of Android
development.

Nevertheless, our job as noise detectives
has just started. In the next articles, we are
going to work on “spectral” rather than
“sound” analysis. We will implement a fast
Fourier transform (FFT) algorithm to
transform our recorded data into the
frequency domain, before graphing the
results. This will enable us to develop a tool
displaying the time and frequency domain
analysis of a sound. After tracking sounds and
proving their existence in a room, we can now
start studying them in detail. Perhaps finding
those room resonances we mentioned in Part
1 of this series are just another way of
detecting the nests that ghosts build in our
homes!

Authors’ Note: Recently, Orchisama Das
(Jadavpur University, India) joined Mike
and Adrien as a summer research student
with travel funds from the Mitacs Globalink
international exchange program (www.mitacs.
ca/en/programs/globalink). Her work was to
upgrade the WAT-AN-APP “Sound Ecology”
App to use a database to store and analyze
multiple sound records. (A forthcoming Circuit
Cellar articles series is in the works for 2016.)

To help proofreading the WAT-AN-APP
Circuit Cellar articles, Orchi produced a Java
program running inside Eclipse to allow the
readers to cut-and-paste the code from listings
in Circuit Cellar article PDF files directly into
.jar files and automatically remove the line
number comments. The “WANT-A-FASTER way
to code WAT-AN-APP” can be found on the
Circuit Cellar FTP site.

Then interesting things started to happen!
To publicize the work of their not-for-profit
organization, Mitacs put out a press release
about the neat projects undertaken by the
40-plus students in their 2015 international
exchange program at the University of
Calgary. Suddenly, Orchi and Mike were being
interviewed for TV, radio, and in hardcopy
(front page coverage) about the current and
future plans for the Android Sound Capture
WAT-AN-APP and the “realness or otherwise” of
local community noise nuisances! Interested
readers can find details of local and national
coverage on the “Ranchlands’ Hum” tab at
People.Ucalgary.ca/~TheHum or by typing
“Ranchlands Hum Smith Orchi” into a search
engine.

http://www.mitacs.ca/en/programs/globalink
http://www.mitacs.ca/en/programs/globalink

CIRCUIT CELLAR • SEPTEMBER 2015 #30244
CC

 R
EB

O
O

T

So you’ve designed a brand new Ethernet-
based device. Perhaps it’s a clock, a

weather sensor, or an industrial controller
device. You plan to hang it proudly on your
wall and connect it to a RJ-45 wall socket. But
how are you going to power it? Where will the
system get its juice? Surely, you aren’t going
to disgrace your design with a brick wart.
There must be a better way!

Why not feed power over the CAT-5 cable?
Well, you’re not the first person to consider
this technique.

Standard CAT-5 cable has four pairs, and
only two are used for data in a typical 10- or
100-Mbps installation (see Figure 1a). So, it
sounds obvious to stick a few DC volts down the
spare pairs. Oh, yes. But hang on, life is never
so simple. This is technology, remember?
There has to be a catch somewhere. So, sit
down and relax, I have the story.

It may not come as a surprise that the
wise men at the IEEE thought about this for
a while and came up with a standard (IEEE
802.3af). This standard has been around since
1999, but progress has been relatively slow.
It started to take off only recently, mainly

because of the availability of inexpensive
specialist components. Tom Cantrell and
Jeff Bachiochi have covered some of the
available components and modules (Circuit
Cellar 165 and 187). A wide range of parts
are now available, including dedicated
switching transistors, isolation transformers,
and high-quality nonsaturating magnetics,
making power over Ethernet (PoE) a practical
proposition.

TECHNICALITIES
The IEEE document covers two main

methods for sending power down the CAT-
5 wire. One involves using the spare pairs.
The other involves sharing with the existing
data lines using center-tapped transformers
(see Figures 1b and 1c). The latter method
is beneficial when spare cable capacity isn’t
available.

The method involving spare pins allows a
decent amount of current to be drawn because
the two spare pairs are paralleled together to
increase capacity by reducing the total DC
resistance. The present IEEE specifications
allow up to 13 W of power to be transferred

Power Over Ethernet
Solutions

Powering devices over Ethernet cabling seems easy, but there’s more to it
than meets the eye. Eddie explains how it all works.

By Eddie Insam (England)

Editor's Note: This article first
appeared in Circuit Cellar 195, 2006.

circuitcellar.com 45
CC REBO

O
T

this way. This may not be enough for some
heavy-duty devices, but it’s quite acceptable
for medium-size and small items such as TV
cameras and VoIP phones. An updated PoePlus
standard is currently being considered. This
will allow for up to 30-W capacity, while still
remaining backwards compatible.

Transmitting power with center-
tapped transformers is more limited. Pulse
transformers and other magnetics in the
Ethernet controller must be designed to
take the full DC power load current without
saturating. That isn’t an easy task for miniature
surface-mounted components. The advantage
of this alternative is that it leaves the extra
pairs alone, an essential consideration in
higher-speed gigabit Ethernet, which requires
all four pairs to carry data.

POWER SUPPLY
Why can’t you just stick any old power

supply across the spare wires? Because you
don’t know what’s at the remote end, and
you may run the risk of blowing up sensitive
equipment. If you don’t believe me, take a
look at Figure 2, which is a typical Ethernet
terminator. This kind of circuitry is sometimes
contained within a single metal enclosure called
a MagJack. Note the two 50-W resistors R3
and R4 across the center taps of transformers
T3 and T4. They are branched in series to
form an effective 150-W DC load across the
input lines. Also note the two 50-W resistors
R1 and R2 right across pins 7 and 8 and 4 and
5. These present a controlled impedance load
to the otherwise non-terminated wires. They
are there for robustness and noise reduction.
This hookup is sometimes known as a Bob
Smith termination.

If you connect a 48-VDC raw supply into
such a socket, you will be driving a good third
of an amp through these tiny resistors. This
is guaranteed to vaporize them to kingdom
come. Tiny SMD resistors are not built for
such treatment.

Admittedly, some terminators and
MagJacks have extra series capacitors to
protect the resistors, and not all Ethernet
devices use such extra networks. However,
you don’t want the power supply to blow the
other devices that have them.

There are other potential problems
that can be blamed on bad design or pure
accident. For example, a wireman could
accidentally short or swap the CAT-5 pairs.
All possibilities have to be considered, and
many are mentioned in a 1999 IEEE report
entitled “DTE Power Problem Set and Solution
Methodology.”

Needless to say, the good people at
the IEEE have devised cunning schemes to
preempt the aforementioned challenges. In

FIGURE 1
Standard 10- and 100-Mbps Ethernet devices use just two of the four available pairs. The spare wires can
be used to transmit power to the remote. Two possible methods are shown (b and c). But watch out! The
power source must be smart enough to detect shorts and overloads and to avoid damaging components at
the far end.

1
2
3
6
4
5
7
8

1
2
3
6
4
5
7
8

+
–

1
2
3
6
4
5
7
8

+
–Power source

Ethernet device

FIGURE 2
This is a typical Ethernet termination. The resistors strapped to the spare data pins and center taps are there
to balance the line and to reduce noise. They can quickly flash to smithereens in true Harry Potter style if
any unmanaged DC power is placed on the cable.

1

2
3
4
5
6
7
8 R1

R2 C1

T1

T2

R3 R4

C2

T3

T4

R5

R6

R7

TX

RX

CIRCUIT CELLAR • SEPTEMBER 2015 #30246
CC

 R
EB

O
O

T

simple terms, the smart power supply can
figure out what’s happening at the load end.
It does this by taking a number of graded
impedance measurements before applying
full power. These impedance signatures tell
the supply whether or not it’s safe to apply
full power. Full power is applied only when
it’s safe to do so. Furthermore, the load is
regularly monitored during normal operation
to ensure nothing drastic has happened. This
allows the supply to turn off the wick if it
detects any suspicious problems, when the
load fails, or when it is disconnected. This
arrangement, of course, needs cooperating
equipment at the load end to provide the right
dummy impedances at the right time.

Apart from the safety factor, the IEEE
standard helps to reduce overall energy loss,
because only those sockets that have a valid
load can be programmed with power. During
sensing, the supply knows the range of power
loading taken by a load, and it ensures that

the correct amount of current is delivered
(within a reasonable range). No more, no less.

PC-CONTROLLED POWER?
So, does the power supply need to be

computer controlled? Well, yes, but what isn’t
nowadays?

The operating algorithm is relatively
straightforward, and even the tiniest
microprocessor can handle it. You just
need a power supply that can deliver a
programmable voltage between 2 and 48 V,
a means of sensing the load current, and a
means of measuring its output voltage from
which you can compute the load impedance
and various other parameters. The rest is just
software. Mind you, and as you would suspect,
the IEEE standard is not that straightforward.
Many options are included to cater for all
eventualities. For example, there are options
for sensing an AC load as well as the DC
load, but many of these are just optional
enhancements. You can get away with just
sensing a plain DC resistive load. Figure 3
shows what the supply looks like.

How about the load end? The power source
does its validation by sensing the impedance
of the load at different source voltage levels.
While this is taking place, the load needs to
behave a bit like a nonlinear resistor, which is
otherwise called a signature impedance (see
Figure 4). The circuitry to do this is relatively
simple, and there are a number of ICs that
will do the job for you. The basic circuit is best

110/240 V

Microprocessor

+ –

+
–

Current
sense

0–350 mA

60-V Reg

Voltage
 sense
0–50 V

FIGURE 3
A power supply will include a
microcontroller in a standard design
configuration to sense load current
and generate output voltage levels
accordingly.

350 mA

Operating range

140 mA

20 mA

12 mA
4 mA

5 mA

Lo
ad

 c
ur

re
nt

25k slope
25k slope (class 0)

0 V 2.7 V

Detection phase

10.1 V 14. 5 V 20.5 V 30 V 36 V 42 V

Classifcation phase Power phase

30 mA

FIGURE 4
There are three distinct phases. The simplest of loads will present a 24.5-kW resistance until the input voltage rises above 30 V, at which point the actual driven circuit will be
switched into operation.

circuitcellar.com 47
CC REBO

O
T

described in terms of discrete components.
Figure 5 shows the basic principle.

HOW IT WORKS
First, I need to introduce some jargon.

Don’t forget that I’m talking about IEEE
standards, so the use of jaw-churning techno-
speak is essential.

Power sourcing equipment (PSE) is a term
for the source end, or power supply. Powered
device (PD) is the equipment at the user
end or load. An endpoint feed describes the
arrangement or situation where the power
supply is fitted inside the source box (e.g.,
inside an Ethernet router), so only one cable
link is needed between the router and the PD.

A midspan feed unit (MFU) is a separate
box that’s added somewhere between the
router and the PD to provide the power. This
necessitates two CAT-5 links, one between the
router and the MFU, and another between the
MFU and the PD. You need to buy an MFU if you
already have a router that doesn’t provide PoE.
If you start from scratch, you may prefer to
buy a router with a built-in endpoint feed. Are
you still with me? Don’t go away. There’s more.

The voltage level at the power supply is
specified as between 44 and 57 V, whereas
this is widened to 36 and 57 V at the user end
to allow for reasonable ohmic drop down the
CAT-5 cable. The PSE is allowed to supply up to
15.4 W of power with a maximum current limit
of 350 mA. The maximum power consumption
at the PD is about 13 W, which corresponds to
a nominal current of 270 mA at 48 V. CAT-5
runs can be considerably long, and a lot of
ohmic loss can be expected. This is one of
the reasons why the standards suggest that
pairs 4 and 5 and 7 and 8 should be paralleled
together to halve the cable’s resistance.

Although the specifications define which
pin should be positive and negative, the load
must not assume anything. Murphy’s law! The
PD must also ensure that the internal supply is

floating with respect to the input power feed.
So, it needs to include a bridge rectifier on
the input plus a floating transformer-isolated
power converter.

So, how does it work? Let’s take it in
stages. Take a look at Figure 4. When there
is no load applied (i.e., when the user end PD
is disconnected or during first power on), the
source (PSE) repeatedly sits in a short loop
sensing the line for an ohmic signature. This
is the detection phase. It does this by placing
at least two spot voltage levels between
2 and 10 V and then measuring the line
currents drawn at these points. The current
difference is taken rather than the absolute
values because this makes for a more precise
derivation of the signature impedance. It also
compensates for fixed losses such as diode
drops. A current limiter on the line ensures
the load can draw no more than 5 mA just in
case there is a short or similar problem.

The two test voltages are changed
relatively slowly to avoid any glitches. The
specifications suggest between 2 and 500 ms
between readings. During the detection
phase, the load has to present a 24.5-kW
resistive component in parallel with a 0.1-mF
capacitor. This is not a real component
value; it’s a theoretical average. You can’t
buy 24.5-kW resistors in the shops. To be
more precise, any load between 23.75 and
26.25 kW is considered valid. Loads below

To RJ-45
Jack

60 V

24.5
kΩ

100 nF

28 V

51 kΩ

IRF530N

15 V

250 kΩ

< 3 kΩ

36–52 V 12 V

+

–

Isolated
converter

Load

FIGURE 5
Take a look at the operation of a
typical PD in stages.

Class Load by PD Usage Power range
0 0–4 mA Default 0.44 to 12.95 W (full range)

1 9–12 mA Optional 0.44 to 3.84 W

2 17–20 mA Optional 3.84 to 6.49 W

3 26–30 mA Optional 6.49 to 12.95 W

TABLE 1
Take a look at the PD power classification scheme. This allows the supply to provide only as much power as
the device demands.

CIRCUIT CELLAR • SEPTEMBER 2015 #30248
CC

 R
EB

O
O

T

15 kW or above 33 kW are considered invalid.
Loads outside of these two ranges are in no
man’s land and may or may not indicate the
presence of a (possibly faulty) PD.

If this all sounds confusing, it’s because
this is the way standards tend to specify
things that need to lie in ranges. Mere mortals
like us need to know only that the resistance
needs to be about 25 kW. The capacitor is
required for an optional alternative AC load
sensing method. I’ll cover this later.

When the 24.5-kW resistor is detected,
the PSE proceeds to the next stage: the
classification phase. If at any point the
load measures too low or too high, the PSE
assumes there is no valid termination and
removes the power altogether. It then waits
a couple of seconds and then starts again
from the detection phase, repeating the cycle
forever. In the worst case, an incompatible or
bad PD will see a maximum of 10 V or 5 mA
applied across it and no harm will be done.
This is somewhat more preferable than being
hit with 48 V at full current!

The purpose of the classification phase is
to determine the range of load currents the
user device will need. In other words, the PD
tells the PSE how much current it is going to
need. The use of limited power ranges could be
useful for loads that need critical monitoring
or to avoid users connecting unauthorized
devices to certain sockets. A main application
for this is to allow limited resource PSEs to
allocate different power levels to different
outlets or to allow the PSE to enable only
certain PDs in case of an emergency or other
priority. In practice, however, this may create
more problems than it can solve. Table 1
shows some of the available options.

During the classification phase, the PSE
applies two or more voltages between 15.5

and 20.5 V (current limited to 100 mA) and
measures the new signature impedance. The
PD recognizes these new voltage levels and
switches in a suitable load resistor according
to its expected needs. Note that if the PD
retains the original 24.5-kW resistor, it will
be classified as Class 0 and default to full-
power range, which is very convenient. In
other words, the simple do-nothing option
will give you the full power range. Who says
committees never come up with practical
ideas? The PSE will have a further chance of
detecting improper loads or shorts during this
stage. It will remove the power altogether if
anything feels suspicious.

Having passed the classification phase, the
PSE can now slowly ramp up to full power,
so the voltage now goes up to the 48 V per
300 mA current limit. At the same time, the
PD will connect the line to its internal circuits
powering the user electronics. After this
new stage and while providing full power,
the PSE will constantly monitor the load for
current drawn. The PD will guarantee to sink
a defined maintain power signature (MPS). In
other words, if the load current rises above
400 mA at any time or drops below 10 mA for
than 250 ms, the PSE will assume the load has
gone funny, kill the supply, and revert to its
detection phase as before. There is a defined
back-off period of 2 s to avoid the entire thing
going into wild oscillations.

A well-known scenario to be avoided
is when a valid PD device has just been
unplugged from an Ethernet wall socket and a
legacy device is plugged in immediately after.
If the PSE doesn’t recognize this situation
quickly, it can damage the legacy device
because full power is still being applied to the
line. This is where the alternative AC sensing
method scores. A 500-Hz AC common-mode
signal is superimposed on the DC. Any AC
disconnection can be detected immediately,
whereas a DC disconnection has to rely on
slow voltage decays before it can be correctly
detected. Note that the supply can optionally
use either AC or DC sensing, but the load
must include methods for supporting both.
In practice, this is just a 100-nF capacitor in
parallel with our beloved 24.5-kW resistor.

THE LOAD’S JOB
During initialization, the PD presents a

variable impedance to the supply depending
on the input voltage across its input pins.
Between 0 and 10 V, the load looks like a 24.5-
kW resistor (plus the voltage drop effects of
the bridge rectifier). Between 10 and 20 V, it
can still be a simple resistor, but it’s calculated
to give the current load specified in Table 1.
Alternatively, it can keep the same 24.5 kW
to respond for Class 0 and the full power

PHOTO 1
The D-Link DWL-P50 is a ready-to-
go module. Ethernet in, Ethernet out,
and a choice between 12- and 5-VDC
outputs.

www.cc-webshop.com

CIRCUIT CELLAR • SEPTEMBER 2015 #30250
CC

 R
EB

O
O

T

range. As the input voltage ramps up between
30 and 42 V, the user load is switched in. If
during full power the input falls below 36 V,
the PD disconnects itself from the supply. This
is known as under voltage lock out (UVLO).

It’s the PD’s responsibility to ensure that
the load doesn’t take more than the rated
power or less than a minimum threshold
current to make sure it doesn’t get turned off.
This minimum current is specified as 10 mA
for at least 75 ms in every 325 ms. Unplugging
the PD can then be easily recognized by the
PSE as it sees the current drop below 10 mA.

The disadvantaged products in this
scheme are low-power devices that need to
include a bleed resistor just to ensure that the
minimum current threshold is met. So much
for energy conservation!

TYPICAL PD
Figure 5 shows a most basic PD. It has

been divided into sections to show the
relative responsibilities. Figure 5a shows a
bridge rectifier. It’s always good practice
to use a bridge in case the wires have been
swapped around. A PD can make use of both
alternative sources by having two bridges,
each connected to the two power options
shown in Figures 1b and 1c.

Figure 5b shows the main 24.5-kW
signature-sensing resistor and a 100-nF
capacitor to provide an AC signature load.
There is also a 60-V Zener diode to provide
some sort of overall protection. (An extra
fuse connected between this and the input
line would not come amiss.) In this simplified
circuit, the classification phase is also
managed with the same 24.5-kW resistor,
classifying the unit as Class 0.

Figure 5c is a simple gated switch that
turns the load on when the input voltage
reaches about 30 V. Figure 5d denotes that
the load has to sink at least 10 mA. Figure
5e represents a 36- to 42-V converter, which
must be floating (e.g., transformer isolated).
Modules in the RECOM International Econoline
series are typical examples. They are small
potted modules (e.g., an RS4805 that takes 36
to 72 DC input and 5 V at 200-mA output all in
a small SIL footprint).

TYPICAL PSE
Figure 3 shows a basic PSE design. Of

course, you’ll usually use a premade PSE
rather than make your own.

The supply consists of a decent 48-VDC
power supply and a series regulator controlled
by the D/A output from a microprocessor
(possibly via a PWM output). The series
resistor emulates the current limit and a place
to take a sample of the current drawn. One
such controller is needed for each Ethernet
line or RJ-45 outlet.

The design is pretty straightforward
because accuracy is not primordial. One tricky
part of the design is the wide-ranging metering
of the output current, which needs to cover a
range of 100 mA to more than 300 mA. This
necessitates either a high-resolution (14-bit)
ADC or a means of switching in different shunt
resistors for the different ranges.

Note that the series pass transistor won’t
need much heat sinking. It will normally be
operating either fully on (when delivering
full power) or at limited current during the
initialization phases. The software consists of
a simple timed loop to cover the detection,
classification, and power delivery phases one
at a time. The IEEE 802.af document describes
procedures for implementing a version of this
flowchart if you have the time and inclination

ABOUT THE AUTHOR
Eddie Insam (edinsam@eix.co.uk) lives next to the Thames in southern
England. He has been designing specialist signal processing and telecom
systems for more than 20 years.

circuitcellar.com/ccmaterials

RESOURCES

J. Bachiochi, “Power Over
Ethernet Primer,” Circuit Cel-
lar 187, February 2006.

T. Cantrell, “Powered Points,”
Circuit Cellar 165, April 2004.

IEEE, IEEE Standards In-
terpretation for IEEE Std
802.3af-2003, IEEE, New York,
NY, 2005.

Maxim Integrated Products,
“MAX5941A/MAX5941B: IEEE
802.3af-Compliant Pow-
er-Over-Ethernet Interface/
PWM Controller for Power De-
vices,” 19-3069, rev. 4, 2006,
http://pdfserv.maxim-ic.com/
en/ds/MAX5941AMAX5941B.
pdf.

M. McCormack, “DTE Power Problem Set and
Methodology,” 1999, www.ieee802.org/3/pow-
er_study/public/nov99/mccormack_1_1199.pdf.

SOURCES

DWL-P50 PoE Adapter
D-Link Corp. | www.dlink.com

LTC4257 PoE Interface controller
Linear Technology Corp. | www.linear.com

LM5070/71 PoE PD Interface and PWM
controller
National Semiconductors | www.national.com

Power modules
Recom International Power | www.recom-inter-
national.com

HV110 PD Controller IC
Supertex, Inc. | www.supertex.com

TPS2370 Power interface switch
Texas Instruments, Inc. | www.ti.com

mailto:edinsam@eix.co.uk
http://pdfserv.maxim-ic.com/
http://www.ieee802.org/3/pow-er_study/public/nov99/mccormack_1_1199.pdf
http://www.ieee802.org/3/pow-er_study/public/nov99/mccormack_1_1199.pdf
http://www.ieee802.org/3/pow-er_study/public/nov99/mccormack_1_1199.pdf
http://www.dlink.com
http://www.linear.com
http://www.national.com
http://www.recom-inter-national.com
http://www.recom-inter-national.com
http://www.recom-inter-national.com
http://www.supertex.com
http://www.ti.com
www.circuitcellar.com/materials

circuitcellar.com 51
CC REBO

O
T

to decipher the gripping notation and
methodologies used.

INTEGRATING POE
Of course, you may not be interested in

making your own circuits. There are plenty
of ready-made chip and module solutions
available out there to make it all easier. But
understanding the principles involved will
ensure that you won’t get caught in many
gotchas!

The MAX5940/1 was one of the first kids
in the block. These chips provide all of the
802.3af interface detection, classification,
and switching facilities. One of the chips is
normally used in conjunction with a separate
Maxim 48-V switching down regulator
(MAX5014) to provide a complete power
supply function.

National Semiconductor’s LM5070, LM5071,
and LM5072 are typical of the all-in-one-chip
solutions. They integrate a current-mode DC-
to-DC controller, user-programmable under-
voltage threshold, a fault current control loop,
and many other functions. The LM5071 and
LM5072 can accept power from an external
AC/DC adapter (a wall wart).

The Texas Instruments TPS2370,
TPS23750, and TPS23770 are also big

contenders. They combine the functionality
of the older TPS2375 controllers and need a
minimum number of external components.
Similar devices are also available from
Linear Technology (LTC4257) and Supertex
(HV110).

Chip solutions are also available for
the PSE end. Some of these have multiple
controllers, which allow four, eight, or even
12 power supply controllers from one chip.
Current devices are the Maxim MAX5945,
the Texas Instruments TPS2383, the Linear
Technology LTC4258, and the PowerDsine
PD640xx series. For instant satisfaction,
check out the PowerDsine 3001 (a single port
mid-span supply) and the corresponding
D-Link DWL-P50 end load adapter, which are
considered complete modules. The latter
comprises a floating supply that can generate
either 5 or 12 VDC at the flick of a switch (see
Photo 1). This pair can provide a relatively
inexpensive solution for small PoE needs.
Similar products are also available from
suppliers such as Hyperlink Technologies.

You’re sure to see many more PoE
solutions in VoIP phones, CCTV cameras, and
industrial Ethernet applications. Integrating
a PoE supply into a module will be
commonplace.

Circuit Cellar feature articles are contributed by professional

engineers, academics, and students from around the globe.

Each month, the editorial staff reviews dozens of article

proposals and submissions. Only the best make it into the

pages of this internationally respected magazine.

Get published. Get noticed. Get paid.

Do you have what it takes?

Email: editor@circuitcellar.com

Contact C. J. Abate, Editor-in-Chief, today to discuss the
embedded design projects and programming
applications you’ve been working
on and your article could be
featured in an upcoming issue
or online at circuitcellar.com.

mailto:editor@circuitcellar.com

CIRCUIT CELLAR • SEPTEMBER 2015 #30252
CO

LU
M

NS

GREEN COMPUTING

Data is a renewable resource. As long as
the universe and the intelligent mind to

observe it exist, this resource will not deplete.
Moreover, it is infinite. The more you dig, the
more you get; but as with all resources, there
is a cost/benefit cut point. In this aptly named
“Information Age” where we are generating
and harvesting data in an unprecedented rate,
making the most benefit while processing as
much as possible data in the most efficient
manner is paramount.

Unfortunately, we are also in an age
where the level of contamination in the world
has observed unprecedented increases and
reached to critical levels. It is clear that we
cannot maintain our current development
and processing methods and very likely, the
era following the Information Age will be
the “Sustainability Age.” All main industries,
including the data processing industry, will have
to develop and adopt sustainable methods.

BIG DATA ANALYTICS & CLOUD
COMPUTING

The process of extracting gains from huge
quantities of data is called “big data analytics”
and delivery of on-demand computing
resources over the Internet on a pay-for-use
basis is called “cloud computing.” Big data
analytics and cloud computing are beyond
their hype stage and well into their maturity.
They ascended separately in popularity in
similar timeframes by providing positive
feedback to each other’s import.

Big data analytics was initially driven by
the massive increase in the enterprise data

volume caused by the shift to mobile and
social mediums and the commercial desire
to make use of this large volume of data,
but it has now gained wide acceptance in
various other fields such as oil drilling,
telecommunication, credit management,
architecture, and datacenter design. Similarly,
cloud computing was initially spurred by the
growth in Internet-based communication,
commerce, entertainment, and management
solutions, but it has also penetrated diverse
markets such as healthcare, automotive
design, financial services, and governance.

There is a grift relationship and constant
forward-backward feedback between these
two game changing paradigms. As big data
analytics solutions promise untapped gains
to be obtained from existing enterprise data
sets, many large companies started to employ
various sized big data analytics frameworks
and most of these frameworks are running
on cloud computing infrastructures. Similarly,
as cloud computing solutions made collecting,
storing, and processing of large quantities
of data cheaper and available, many large
entities started to store previously discarded
datasets, which are then used as motivations
for employment of big data analytics
frameworks.

BIG DATA ANALYTICS & SMART
POWER

Energy industry is among the biggest
industries that started to utilize the power
of big data analytics for intelligent decisions
and improvements in efficiency. The available

Sustainable Big Data Analytics in
the Cloud

Data is the oldest renewable resource and thanks to the increase in our
computing efficiency and capacity, we finally started to harvest and process
it in big quantities. It is imperative to come up with sustainable processing
mechanisms to make the most out of this valuable resource and if possible use
its power to improve sustainable practices. This article investigates whether
the current practices in big data analytics are sustainable or not.

By Ata Turk (US)

circuitcellar.com 53
CO

LU
M

NS

capacities for new renewable energy resources
such as solar and wind are too low and also
the current cost of ownership for these
resources are relatively high making their
adoption difficult. Currently, solutions that
improve energy efficiency offer the largest
possible gains for attaining sustainability in
energy usage.

By making use of smart meters and
smart grids and intelligently processing
the enormous amount of data created by
these technologies, energy providers can
now do the following: forecast demand and
determine the need for new investments;
predict and prevent outages by identifying
stressed portions of the energy grid and
organize maintenance activities accordingly;
and devise and offer incentives for shaping
customer usage by increasing user energy
usage awareness and offering varied energy
pricing mechanisms to cost-savvy customers.
Some example practices employed by energy
providers include modeling wind patterns
to optimize the location and design of new
wind turbine sites, developing apps that tell
users how and where they use electricity, and
letting users compare their electricity usage
with their neighbors to encourage them
reduce wasted energy.

SUSTAINABLE BIG DATA
ANALYTICS

Even though big data analytics can
offer improvements in energy efficiency,
it still requires huge amounts of data to be
stored and processed, which itself requires
energy. The environmental impacts of the
infrastructures used for supporting big data
analytics and cloud computing solutions
increase dramatically as the number and
capacity of datacenters providing the
necessary services for these products
increase with their popularity.

It is undisputable that datacenters are
major power hogs. According to Department
of Energy, there are already more than
3 million datacenters in US, and these
datacenters consume 2% of all US electricity
use. According to GreenPeace, datacenters all
around the world are responsible from 2% of
the global carbon emission, a carbon footprint
paralleling that of the aviation industry.

Note that computing in the cloud generally
provides better utilization of resources and
hence can be argued to lead to lowered
environmental impact. Cloud computing is
applauded for enabling: resource scaling
with changing demand; improved utilization
with virtualization and multi-tenancy; and
economies of scale that lead to reduced
management overhead, reduced power loss,
and hence reduced costs. A recent study

from Lawrence Berkeley National Laboratory
indicates that the amount of energy saved by
businesses moving to the cloud can be as high
as 87% (see Figure 1).[1]

Furthermore, most major cloud providers
started to engage in transforming the
energy used in their datacenters to greener
renewable energy solutions. As an example,
Apple’s cloud datacenters are 100% powered
by renewable energy sources. Google engages
in long-term power purchase agreements
with renewable energy providers that are in
the same region with their datacenters. This
approach enables financing of new renewable
energy installation projects by providing
long-term financial guarantees. Microsoft
and Intel are running carbon neutral by
procuring green power equal to the volume
of their consumption of electricity as well
and other cloud providers such as Rackspace
and Amazon also made commitments to
becoming carbon neutral and switching to
100% renewable energy sources within few
years. As seen in these examples, the energy
spent in the datacenters act as locomotion for
the investments made in renewable energy
sources.

In addition, cloud datacenters can
participate in power regulation programs
of electricity providers and help service
operators in matching electricity supply
with the power demand. As datacenters
are huge energy consumers and some of
the computations performed in them have
relatively flexible timing constraints, they
can regulate their power usage to a certain
extent to participate in these programs to
gain monetary advantages and to ease the
burden on infrastructure providers. Check
Ayse K. Coskun’s articles “Data Centers in
the Smart Grid” (Circuit Cellar 286, 2014) and
“Application-Aware Power Capping” (Circuit
Cellar 280, 2013) for more details on the power
regulation opportunities on datacenters.

FIGURE 1
Moving to the cloud can save up to
87% of IT energy.[1]

By moving 86 million
US office workers

to the cloud

We would use
up to 87%
less energy

That’s enough to
power Los Angeles

for one year

CIRCUIT CELLAR • SEPTEMBER 2015 #30254
CO

LU
M

NS

Regardless of all these positive side
effects, researchers and datacenter managers
keep looking for more energy efficient
and environmental friendly datacenter
management schemes, as energy costs are still
a major component of datacenter costs. There
are many studies that focus on improving the
power usage effectiveness of datacenters.
Power usage effectiveness is the ratio of total
amount of energy used by a datacenter to the
total amount of energy used for computation.

The difference power between datacenter
and compute power usage is the facility
overhead power spent to datacenter services
such as cooling, power distribution, lighting,
etc. The current average datacenter power
usage effectiveness is 1.7. Companies such
as Google and Facebook developed various
novel datacenter designs empowered with
ingenious cooling mechanisms and publicized
these designs. State-of-the-art datacenters
built according to these designs can achieve
power usage effectiveness ratios as low as
1.1, meaning that these datacenters can
operate with overheads as low as 10%.

BIG DATA ANALYTICS
FRAMEWORK HADOOP

After investigating the sustainability
and energy efficiency of the underlying
infrastructures sustaining big data analytics,
let’s have a look at the energy efficiency of
software frameworks for big data analytics.
Hadoop is the most popular data processing
framework that is commonly used in all
stages of big data analytics as it can easily
act as a data extraction, transformation, and
loading framework, or as a data warehouse
that harbors various data sources in one
place and enables appropriate mappings and
joins among these sources, or as a query

FIGURE 2
A standard big data analytics platform workflow: Structured and unstructured data sources are gathered and consolidated into an analytical data store. Analytics tools use real-
time and historical data coming from the data platform for providing insights.

circuitcellar.com/ccmaterials

REFERENCES
[1] E. Masanet, et al, “The
Energy Efficiency Potential Of
Cloud-Based Software: A U.S.
Case Study,” Lawrence Berkeley
National Laboratory, 2013.

[2] R. McDougall, et al, “Towards an Elastic
Elephant: Enabling Hadoop for the Cloud,”
VMware Technical Journal, Vol. 2, No. 2, 2013.

[3] Í. Goiri, K. Le, T. D. Nguyen, J. Guitart,
J. Torres, and R. Bianchini, “GreenHadoop:
leveraging green energy in data-processing
frameworks,” in Proceedings of the 7th ACM
European Conference on Computer Systems
(EuroSys ‘12), 2012.

www.circuitcellar.com/materials

circuitcellar.com 55
CO

LU
M

NS

processing and analytics framework that
draws the final value added analytics results.
Hadoop implements the MapReduce parallel
processing paradigm and incorporates a
distributed file system component (Hadoop
Distributed File System) to be able to scale to
very large datasets.

The term Hadoop interchangeably is
also used for referring to the applications
in the “Hadoop ecosystem,” which include
applications such as Apache Pig, Apache
Hive, Apache HBase, and Apache Spark that
can run on top of or alongside Hadoop. With
the increase in big data analytics requests of
many businesses and the advancements in
cloud computing that enable easy access to
large-scale processing and storage capacities
on demand, utilization of applications in the
Hadoop-ecosystem keep observing a steady
increase as well.

Figure 2 showcases a classic big data
analytics platform workflow. The platform
is fed by structured and unstructured data
sources. Data is gathered and consolidated
into an analytical data store. Analytics tools
use the real time and historical data coming
from the data platform for providing insights.

As big data analytics and cloud computing
keep on converging and merging, many cloud
providers such as Amazon Web Services,
Google Compute Engine, Rackspace, and
Microsoft Azure started to offer various “big
data as a service” solutions that run on VMs
on the cloud, starting with offering Hadoop as
a service solutions. These services automate
provisioning of Hadoop clusters on the cloud to
ease data analytics deployments and Hadoop
clusters running on virtualized environments
are starting to become the norm rather than
the exception. Arguably, even though there
are many companies specialized on Hadoop
services such as Cloudera, Hortonworks, and
MapR, Amazon is the company that makes
most money from Hadoop with its Elastic Map
Reduce solution.

Big data analytics solutions evolved
separately from cloud computing and initial
big data applications assumed that they
would run on separate dedicated clusters
that will only cater to them. As such, Hadoop
assumes that its data storage and data
processing services will be collocated in
the same physical machine, and it tries to
maximize data locality in its data placement
and replication strategies to obtain the best
I/O performance. However, in cloud-based
Hadoop deployments, collocating data and
compute services in the same set of servers
is not preferred and these services are
separated. This enables migrating live VMs and
spinning up/down compute VMs as demand
increases/decreases without causing costly

data migrates.[2] It also enables standard
energy efficiency mechanisms to be applied
even on Hadoop clusters as compute tasks
now can be treated as independent stateless
processes that can be easily migrated and
packed into fewer number of physical servers
if capacity and SLAs permit. Furthermore, as
some of the workloads processed in Hadoop
deployments are less time sensitive, Hadoop
can enable participation in energy regulation
programs or increase green energy usage.[3]

Separation of data and compute services
comes at the cost of a loss in data locality
and performance degradation, but recent
improvements in networking technologies
can alleviate some of the adverse effects of
remote data access and there are studies
indicating that the importance of data locality
under these never networking technologies is
negligible. Still, Hadoop requires storage in
various stages of computation and organization
of these storage sources can have an impact
on the performance and energy utilization
of a virtualized deployment.[2] Furthermore,
storage technologies keep on advancing as
well, and with the widespread adoption of flash
disks and ramdisks, data locality will start to
matter again as the difference between the
network I/O and storage I/O capacity will
widen again. The performance and power
implications of such novel deployments are still
not well investigated and remain as an open
research topic.

SUSTAINABILITY SUPPORTED
The largest public clouds supporting many

big data analytics frameworks and datasets are
running on energy efficient cloud datacenters
that support investments into renewable energy
sources. Furthermore, big data analytics is
actively used by the energy industry for making
intelligent decisions and improvements in
efficiency. Finally, big data analytics frameworks
such as Hadoop can moderate their computation
to support green computing solutions and/or
power provider energy regulations, although
energy efficiency improvements for these
frameworks especially under new hardware
infrastructures is open for investigation.
According to these observations it is safe to
claim that current practices in big data analytics
support sustainability.

ABOUT THE AUTHOR
Ata Turk (ataturk@bu.edu) is a postdoctoral researcher in the Electrical and
Computer Engineering Department at Boston University. He received MS
and PhD degrees in Computer Science from the Bilkent University, Turkey.
His research interests include information retrieval, data analytics, and
combinatorial optimization for performance, energy, and cost improvements
in cloud computing applications. He worked at Yahoo Labs in Barcelona,
Spain, prior to his current position at Boston University.

mailto:ataturk@bu.edu

CIRCUIT CELLAR • SEPTEMBER 2015 #30256
CO

LU
M

NS

THE CONSUMMATE ENGINEER

Transformers 101 (Part 1)

During the past year, George has presented
introductions to a variety of essential electronics
topics, including resistors and capacitors. In this
series, he tackles the subject of transformers.

By George Novacek (Canada)

Essential Characteristics

Before I delve into the subject of
transformers, let’s refresh what we know

about inductors because they form the basis
for all transformers. Defined by Faraday’s
Law, an undulating current i flowing through
a coil whose inductance is constant will
generate a back EMF voltage across the coil’s
terminals.

v di
dt

 = -L

This is a defining equation for inductors.
The energy stored in the magnetic field of an
ideal coil is:

P = LI21
2

×

Let me emphasize: an ideal coil has
zero resistance of the winding and no
parasitic capacitance between the turns.
The fundamental characteristic of an ideal
inductor is that it is a reactive element with
frequency-dependent impedance Z.

Z = = j2 fLj Lω π

MAGNETISM
When voltage is applied across an

inductor’s terminals, a current flows through
the coil. This generates magnetic field and,
consequently, magnetic flux. These elements
are responsible for generating the back
electromagnetic force (EMF) which works
to slow down the rate of rise of the current
through the inductor. With a DC voltage step

(closing the switch in Figure 1) the current
eventually saturates at VBAT/R, where R
represents the resistance of the winding plus
any other resistance added in series, such as
the wiring.

The relationship between the inductor’s
current I (in amperes, A), its inductance
L (in henries, H) and the magnetic flux F is
expressed as:

L = 10-8Φ
I

×

When two (or more) inductors operate
close to each other, such as in transformers,
their respective magnetic fluxes affect each
other through mutual inductance M, which
is sometimes expressed as a coefficient of
coupling (k). For two coupled coils, mutual
inductance M is:

M = 10 = 10-8 -8Φ Φ2 1

1

1 2

2

, ,

I I
× ×

F2,1 is the magnetic flux in the second coil
caused by the current in the first coil. F1,2 is
the magnetic flux in the first coil caused by
the current in the second coil. And I1 and I2
are the respective currents in the first and
the second coil. Mutual inductance and the
degree of coupling k affect the transformer’s
characteristics. To achieve high efficiency in
power and signal transformers, the coupling
needs to be maximized. The maximum mutual
inductance between two coils L1 and L2 occurs
when magnetic flux of one coil crosses all
the turns of the second coil and vice versa.

circuitcellar.com 57
CO

LU
M

NS

The maximum achievable mutual inductance
value is:

M = L2MAX L1 ×

And the coefficient of coupling k equals:

k =
M
M

MAX

k is the ratio of an actual (measured)
mutual inductance M divided by calculated
MMAX. It has no dimension; its maximum value
is 1. What applies for power and some signal
transformers does not necessarily apply to
high frequency resonating signal transformers
in applications such as band-pass or band-
reject filters, coupling transformers for
tuned intermediate frequency (IF) filters and
so forth. There, for example, the degree of
coupling affects the frequency response and
the slope of the filter. This is a separate topic,
beyond the scope of this article.

A current flowing through a wire generates
a circular magnetic field that’s perpendicular
to the wire. The total flux is the product of the
field strength and loop area, perpendicular
to the loop. In a solenoid (a coil) each wire
loop contributes to the flux and, consequently,
field lines inside the solenoid become nearly
straight lines. All of the flux passes through
the solenoid, perpendicular to its axis. The
magnitude of the flux is proportional to the
electrical current through the solenoid.

The magnetic field can be described by the
right hand rule. Imagine you hold a wire in
your right hand such, that the thumb points in
the direction of the current flow. The magnetic
flux curls like your fingers around the wire.
The magnetic flux, also called induction field
has intensity and direction in every point in
space, forming continuous loops in space.

The magnetic field is characterized by its
field strength H, which relates to the electrical
current flow only. When a permeable core is
inserted in the solenoid, the induction field
quantity called B enters the picture. The
relationship between B and H is based on the
relative permeability of the magnetic core,
where µ0 is the permeability of air or vacuum,
equaling to 1. With no ferromagnetic core B
= H.

B = H0 rµ µ× ×

This relationship is depicted in Figure 2.
The flux B within an air-core solenoid versus
its field strength H would be just a straight
line, crossing where the axes cross. With
a permeable core the flux B is not linear
and exhibits hysteresis. When a solenoid
is energized by AC current, the initial
magnetization flux moves first from point A to

C. With the magnetic field H reducing and then
inverting its polarity, the flux B moves along
the left curve C to D and then again from D
to C on the right. The characteristics of the
curve depend on the permeable material of
the core as well as the range of H.

Manufacturers provide B/H relationship
for sinusoidal excitation. The nonlinear
relationship of B/H varies with peak B
values, material, frequency and waveform.
Cores for operation above 20 kHz are often
characterized with square wave excitation.

Transformers are often loaded with
nonlinear loads, such as rectifiers with
capacitor output filters. Consequently, the
selection of a core material becomes very
important. Power and audio transformers’
cores are built as stacked laminations,
torroids, and other designs to reduce losses,
such as those due to eddy currents. Ferrite
cores regularly use an air gap. For most
applications it is crucial to avoid core’s
magnetic saturation and to operate within the
linear B/H region.

Magnitude of the H field is reduced by the
permeability factor µr. With the exception

FIGURE 1
Back EMF works against the current
supplied by the battery.

R

Vbat

L

i(t)

v(t)

FIGURE 2
Magnetic field vs. magnetic flux and hysteresis

C

A

D

+Br

+Hc

+H
−H

−Br
B
H
—µ =

−Bs

−B

+Bs

+Hc

+B

CIRCUIT CELLAR • SEPTEMBER 2015 #30258
CO

LU
M

NS

of very high-frequency applications, most
transformers need a ferromagnetic core to
increase the permeability and, thus, decrease
the necessary number of turns of the winding.
The flux concentrates in the core. If there is a
small air gap in the core, the field H will equal
to B, while in the core it will be H = B/µr. This
results in a discontinuity of the H field lines,
now reaching outside the core. This effect has
been used in devices such as erase, record
and playback heads in tape recorders, hard
drives, etc.

POWER TRANSFORMER
Let’s consider a typical 60-Hz power

transformer. Transformers have a primary
winding and one or more secondary windings

placed around a magnetic path. The primary
winding takes energy from a power source,
such as 120VAC and transforms it via
secondary winding into a desired voltage.

The current flowing through n turns of wire
in the primary winding, called magnetizing
current, establishes the H field. Without a
core this would have to be huge. Adding a
ferromagnetic core such as iron reduces
the current by the permeability of iron to a
reasonable magnitude.

In Grounding and Shielding Techniques
(Wiley-IEEE Press, 2007), Ralph Morrison
provides example of a 60Hz transformer with
a magnetizing current of 50mA. Permeability
of the core µr = 20,000. Should the core be
removed, the required magnetizing current
would jump to 1,000A.

The H field created by the primary winding
generates magnetic flux B through the core.
Secondary coils added around the path of the
flux are magnetically coupled to it. According
to Faraday’s law, the secondary winding
voltage will follow the B field changes as
follows, where F = BA.

V = n A × × d
dt
Φ

A is the area of the core and n is the
number of turns. Voltages on all windings,
therefore, will be proportional to each other
by the number of turns, ohmic losses due
to the wire resistance notwithstanding. The
windings are balanced by their ampere-
turns. If the primary has 1,000 turns and the
secondary 100 turns, for instance, the load
current in the primary coil will be 10% of
the secondary current. This is illustrated in
Figure 3.

Notice that because of the need for the
magnetizing current, a transformer cannot
achieve full 100% efficiency. Transformers
may have numerous windings and each
winding may have many taps. Transformers
can also provide isolation of many thousands
volts between all their windings. They also
serve to suppress common mode interference
from communication signals, such as
Ethernet, MIL-STD-1553B and others. One
exception is an autotransformer, where only
one winding with taps exists. While it is less
costly to build, it provides no isolation or
common mode interference reduction.

TRANSFORMER DESIGN
In the second part of this article series, I’ll

detail some aspects of the transformer
design. There are many empirical equations
for calculating the transformer characteristics.
Relying on them in the course of your design
will achieve something within a wide ballpark
of the measured values at best.

circuitcellar.com/ccmaterials

RESOURCES
R. Lee, L. Wilson, and C. E. Carter, Electronic
Transformers and Circuits, Wiley Interscience,
1988.

R. Morrison, Grounding and Shielding
Techniques, Wiley-IEEE Press, 2007.

G. Novacek, “Inductors 101,” Circuit Cellar
292, 2014.

R. Schmitt, Electromagnetics Explained,
Newness, 2002.

ABOUT THE AUTHOR
George Novacek is a professional engineer
with a degree in Cybernetics and Closed-Loop
Control. Now retired, he was most recently
president of a multinational manufacturer for
embedded control systems for aerospace ap-
plications. George wrote 26 feature articles for

Circuit Cellar between 1999 and 2004. Contact him at gnovacek@nexicom.net
with “Circuit Cellar”in the subject line.

FIGURE 3
Transformer balancing by ampere-
turns

10 V/10 A

20 V/1 A

120 VAC
1 A + I MAGNETIZING

mailto:gnovacek@nexicom.net
www.circuitcellar.com/materials

Circuit Cellar is always adding new items to

help with your design projects. Stop by often

for the latest deals.

Have you
stopped by
the shop lately?

back issues
books

audio

co

nt
es

t c
ds

ar
ch

ive
 cd

s

www.cc-webshop.com

http://www.cc-webshop.com

CIRCUIT CELLAR • SEPTEMBER 2015 #30260
CO

LU
M

NS

Ed was recently challenged to build something with
an unclaimed 8 × 8 RGB LED matrix. Never one to pass
on an engineering challenge, he built an interesting
Arduino-based desktop radiation monitor.

By Ed Nisley (US)

A while ago, Sophi dumped a pile of tech
gadgetry on the work table at the local

makerspace and asked all present to make
it vanish. When an 8 × 8 RGB LED matrix
remained unclaimed after the initial scrum,
she flicked it across the table and asked me if
I wanted to make something of it. Combined
with a few bits from my heap and an idea
from one of her spectacular Burning Man
installations, the prototype of a small desk
toy shown in Photo 1 took shape.

The white LED to the upper left of the
Arduino Pro Mini flashes whenever an
external Geiger-tube radiation sensor detects
a beta or gamma particle, whereupon one of
the RGB LEDs changes color. The background
radiation on my desk ticks along at a dozen
counts per minute, producing a slowly
changing display.

In this column, I’ll describe how to
multiplex an LED matrix with simple shift
registers and transistors, as well as explain
why specialized hardware makes more
ambitious projects feasible. You’ll also see
how to generate reasonably random numbers
from randomly timed pulses. An Arduino
can certainly handle more complex display
algorithms, but that’s a simple matter of
software.

MULTIPLEXING LEDS
The 8 × 8 RGB LED matrix contains 192

diodes in a package with only 32 pins, so
it obviously requires external multiplexing
hardware. The one I used has common anode
matrix connections: each of the eight rows
has one pin connected to all 24 LED anodes
along that row. Each of the eight columns
has three pins, one apiece for the cathodes
of the eight red, green, and blue LEDs in that
column. This type of display depends on the
ability of human eyes to see rapidly blinking
lights as steady sources, because only one
row of LEDs will be illuminated at any time.
You see the entire panel glowing at once, as
shown in Photos 1, 2, and 4, as do cameras
with relatively long exposure times.

The persistence of vision fails when your
eyes move, because each blink activates
different cells in your retina. The effect
becomes more striking in dim illumination:
you’ve probably noticed how LED automobile
taillights form dotted contrails as your
gaze shifts between traffic, the dashboard,
roadside signs, and back to traffic. I find LED
taillights distracting, although some people
can’t distinguish them from incandescent
bulbs.

Because each LED emits light only 1/8 of

ABOVE THE GROUND PLANE

PHOTO 1
A simple handwired protoboard works well enough with a
1 MHz shift clock. Connections to the 9 VDC wall wart and
Geiger monitor emerge from the 3D printed board holder at
the upper right. The LED matrix covers most of the circuitry.

Random
LED Dots

circuitcellar.com 61
CO

LU
M

NS

the time, the matrix will be 1/8 as bright as it
would be with constantly lit LEDs. The usual
remedy requires driving the LEDs at their
maximum pulsed-current rating, with results
that I explored in my July and September
2013 columns on LED characterization. Large
arrays intended for outdoor use require
high-power drive circuitry and elaborate
thermal control, but a desk toy can produce
enough light with very low currents and low-
cost generic hardware.

The diodes in the LED matrix have no
memory, which means the driver must
maintain a bitmap of the entire display
state and periodically refresh the matrix. An
eight-color RGB display requires one bit per
LED, so the 8x8 matrix I’m using requires
24 bytes of RAM. The amount of data grows
as the square of the matrix size: a 16x16
matrix fills 96 bytes and a 32x32 display
soaks up 384 bytes. The Atmel ATmega 328
microcontroller on the Arduino Pro Mini has
2 KB of RAM, of which about 1.5 KB will be
available for simple programs, putting an
obvious upper limit on the display size.

If the display hardware supports per-LED
brightness control, then the memory use
grows accordingly. Sixteen brightness levels
requires four bits for every LED, which means
the bitmap for a 32x32 matrix will blot up all
of the Arduino’s RAM. Obviously, Arduino-
class microcontrollers are best suited for
small displays with relatively few colors. The

simple hardware I used allows on-off control
of each LED, for a total of eight colors.

Another limit comes from the output
bandwidth required to transfer the data fast
enough to reduce visible flicker. I set the
ATmega328’s hardware SPI to shift data at
1 µs/bit, which is a reasonable compromise

typedef struct {
 const byte Row;
 byte ColR;
 byte ColG;
 byte ColB;
} LED_BYTES;

#define NUMROWS 8
#define NUMCOLS 8

LED_BYTES LEDs[NUMROWS] = {
 {0x80,0,0,0},
 {0x40,0,0,0},
 {0x20,0,0,0},
 {0x10,0,0,0},
 {0x08,0,0,0},
 {0x04,0,0,0},
 {0x02,0,0,0},
 {0x01,0,0,0},
};

byte RowIndex;

LISTING 1
Each array element contains the
bit patterns for one row of the LED
matrix: illuminating the entire matrix
requires sending all eight elements
in rapid succession. The function
handling the SPI output inverts the
bit patterns to match the active-low
circuitry driving the matrix.

FIGURE 1
Properly multiplexing the LED matrix
requires activating each row in
sequence, so the firmware ensures
the 74HC595 shift register contains
only a single 0 bit. Each PNP transistor
must supply enough current for all 24
LEDs in its row.

CIRCUIT CELLAR • SEPTEMBER 2015 #30262
CO

LU
M

NS

between speed and circuit design. Although
the SPI clock can run up to 8 MHz, the per-
byte software overhead doesn’t decrease

and the overall refresh rate won’t improve as
much as you might expect. In addition, the
simple circuit layout and power distribution I
used won’t support such high bit rates.

With a 1 MHz data rate and nothing else
on its mind, the Arduino can refresh the
entire matrix every 800 µs. At that pace,
even 1/8 duty cycle LEDs don’t flicker at all.

Homework: figure the duty cycle and
data rate for a 128x128 RGB matrix with 256
brightness levels for each LED, refreshed at
100 Hz. Compare that with the LCD panel in
your phone to understand the limitations of
small microcontrollers.

BINARY IN AN ANALOG WORLD
The LED matrix has 32 connections: eight

current sources for the anodes in each row
and 24 current sinks for the RGB LED cathodes
along each column. Because ATmega 328
microcontrollers don’t have that many I/O
pins, I used four 74HC595 parallel-output
shift registers to provide direct control over
each signal.

The row drivers must source enough
current to light up all 24 LEDs in each row at
the same time. Although I used relatively low
LED currents, as I’ll describe later, the total
current for one row can exceed 100 mA, far

FIGURE 2
The 74HC595 shift registers act as
current sinks for the LEDs in each row,
with the resistors limiting the current.
Because the blue LEDs have the lowest
luminous efficiency, they require the
highest current. The other resistors
set the red and green LED current for
equivalent brightness, so that turning
on all three LEDs produces white light.

PHOTO 2
A close look shows the individual RGB LED chips in each site wash the white walls
with their color. As a result, you can’t get perfect white light no matter how carefully
you balance the LED currents.

circuitcellar.com 63
CO

LU
M

NS

FIGURE 3
An Arduino Pro Mini refreshes the LED
matrix using hardware-assisted SPI.
Pulses from a Geiger-tube radiation
sensor generate random numbers to
update the LED colors.

exceeding the microcontroller’s 40 mA per-
pin absolute maximum current rating. As a
rule of thumb for most digital logic chips,
you shouldn’t exceed 20 mA per pin without
carefully considering the part’s data sheet:
obviously, some buffering was in order.

I used ordinary 2N2907 bipolar

transistors as current amplifiers for the LED
anodes, as shown in Figure 1, with the shift
register outputs acting as analog current
sinks. Each shift register output will pull 4
mA through the base of its 2N2907A PNP
transistor when it goes low, due to the 1 kΩ
resistor. The 2N2907A data sheet specifies

www.cc-webshop.com
www.saelig.com

CIRCUIT CELLAR • SEPTEMBER 2015 #30264
CO

LU
M

NS

a minimum DC current gain of 100, so the
transistor will remain saturated for collector
currents under 400 mA. At IC = 100 mA, the
transistors act as switches with VCE around
half a volt.

For proper multiplexing, the Arduino

program must ensure that only one shift
register output bit will be active at any time.
The data structure and initialized array
definition in Listing 1 set up the proper
bit patterns, with the const byte attribute
telling the compiler to prevent inadvertent
changes to the row selection bits during
execution. I use active-high bit patterns in
the array, because they’re easier to work
with, and invert the bits before sending them
to the SPI hardware.

Pop Quiz: Is the array initialization
sufficient to prevent multiple row activation?

With one output low and its PNP transistor
turned on, the column drivers must limit
the current through the 24 LEDs in that
row. The three groups of resistors shown in
Figure 2 allow simple on-off control with a
fixed brightness for all eight LEDs of each
color, with the shift register outputs acting
as analog current sinks.

Each LED color requires a different ballast
resistor, chosen for the LED’s efficiency at
converting current to light and the human
eye’s response to that color. Because blue
LEDs have the lowest efficiency, red LEDs
the highest, eyes respond best to green, and
I wanted more-or-less white light when all
three LEDs turned on, choosing the resistors
required some trial-and-error.

Data sheets for 74HC595 shift registers

PHOTO 3
Each rising edge of the 1 MHz SPI clock (upper trace) clocks data into the 74HC595 shift registers. The
last eight data bits (lower trace) control the row drivers, so only one bit will be low. The code in Listing 2
produces the gaps between the bytes as it loads the next set byte into the SPI hardware.

void WaitSPIF(void) {
 while (! (SPSR & (1 << SPIF))) {
 continue;
 }
}

byte SendRecSPI(byte Dbyte) { // send one byte, get another in exchange
 SPDR = Dbyte;
 WaitSPIF();
 return SPDR; // SPIF will be cleared
}

void UpdateLEDs(byte i) {

 SendRecSPI(~LEDs[i].ColB); // low-active outputs
 SendRecSPI(~LEDs[i].ColG);
 SendRecSPI(~LEDs[i].ColR);
 SendRecSPI(~LEDs[i].Row);

 analogWrite(PIN_DIMMING,LEDS_OFF); // turn off LED to quench current
 PulsePin(PIN_LATCH); // make new shift reg contents visible
 analogWrite(PIN_DIMMING,LEDS_ON);

}

LISTING 2
These three functions handle the SPI hardware interface. Sending all four bytes with a 1 MHz clock requires 35 µs.

circuitcellar.com 65
CO

LU
M

NS

specify 35 mA maximum for any output pin
and 70 mA maximum through the IC’s ground
pin. The ground pin current limit poses the
tightest constraint when using the outputs
as current sinks: all of the current from eight
LEDs must pass through that single pin.

Because blue LEDs have the lowest visual
response, I set them to a nominal 10 mA
and picked the red and green LED currents
to produce equivalent brightness, with the
result shown in Photo 2. Obviously, the light
from the RGB site in the lower left corner
isn’t pure white, but it’s close enough for my
purposes.

Note that the 74HC595 chip must sink
80 mA when all the blue LEDs turn on,
somewhat in excess of its maximum rating.
In comparison, the green LEDs require 7
mA and the red LEDs only 2 mA, so those
74HC595 chips operate well within their
limits, even with all eight LEDs turned on.

Because I’m setting the LEDs with random
data, however, it’s very rare for all the blue
LEDs in a single row to be on at the same
time and, in fact, you’d expect only half of
them to be on at once. A slight change to the
program could slant the odds by not turning
on the eighth LED in any row.

Pop Quiz: How many blue LEDs are on in
Photo 1? Which row has the maximum?

The TLC5916 LED driver I used for the
Totally Featureless WWVB Clock might
seem to be a better choice than these shift
registers, as its drivers allow a maximum

120 mA per LED. However, it also has a 5 mA
minimum regulated output, twice what the
red LEDs draw, so using it would require a
neutral-density filter atop the LED matrix to
produce a similar intensity.

Homework: Adapt the design to use the
specialized LED driver IC of your choice.

The closeup view in Photo 2 shows the
three individual LED chips in each site, lined

LISTING 3
This code executes on each pass through the main loop. When GeigerTicked is true, the conditional converts the timestamp of the new Geiger event into four bytes of white noise
that sets the color of a single LED. The loop iterates at 10 kHz and refreshes the entire LED matrix at 1.3 kHz, which is fast enough to require turning the LEDs off so that lengthy
computations don’t hold a single row on long enough to produce a visible flash.

if (GeigerTicked) {
 digitalWrite(PIN_HEARTBEAT,HIGH); // show a blip
 analogWrite(PIN_DIMMING,LEDS_OFF); // turn off LED array to prevent bright glitch

 Hash = jenkins_one_at_a_time_hash((char *)&GeigerTime,4); // whiten the noise

 GeigerTicked = false; // flag interrupt handler to resume recording
 SetLED(Hash);
}

UpdateLEDs(RowIndex++);
if (RowIndex >= NUMROWS) {
 RowIndex = 0;
 PulsePin(PIN_SYNC);
}

digitalWrite(PIN_HEARTBEAT,LOW); // always turn off the blip

LISTING 4
Setting the color of a single LED requires splitting the value into three separate bits, then inserting each bit
into the proper location in the column elements of that row.

void SetLED(unsigned long Value) {

byte Row = (Value >> 8) & 0x07;
byte Col = (Value >> 16) & 0x07;
byte Color = (Value >> 24) & 0x07;

byte BitMask = (0x80 >> Col);

 LEDs[Row].ColR &= ~BitMask;
 LEDs[Row].ColR |= (Color & 0x04) ? BitMask : 0;

 LEDs[Row].ColG &= ~BitMask;
 LEDs[Row].ColG |= (Color & 0x02) ? BitMask : 0;

 LEDs[Row].ColB &= ~BitMask;
 LEDs[Row].ColB |= (Color & 0x01) ? BitMask : 0;
}

CIRCUIT CELLAR • SEPTEMBER 2015 #30266
CO

LU
M

NS

up at the base of the conical white plastic
reflector that increases the visual effect.
Viewing the matrix at close range, as you
would for a desk toy, reveals the red and blue
LEDs wash the sides of the “white” reflector
with color, an effect that even carefully
adjusted LED currents can’t eliminate.
Fortunately, I’m not trying to achieve color-
corrected photorealistic results.

The Arduino Pro Mini in Figure 3 controls
the LED matrix using only five outputs:
unlike most Arduino projects, it has plenty of

spare I/O pins. The SPI hardware interface
supports both output (SDO) and input (SDI)
bits, although SDI isn’t used here. The -SS
pin must remain high when the Arduino is in
SPI Master mode, so the code sets it to be an
output with no connection. The Latch signal
pulses high after shifting all four bytes into
the shift registers.

The Dimming output connects to the
74HC595 column driver -G inputs. I use it
as a binary control: high to disable and low
to enable the driver output pins. You could
also use it as a PWM output, with increasing
PWM values reducing the overall LED matrix
brightness.

With that in mind, the UpdateLEDs function
in Listing 2 sends a single row of data from
the LED bitmap array to the shift registers.
The code inverts each byte before sending
it, because the bitmap array represents
selected rows and LEDs with active-high (1)
bits, while the drivers require active-low (0)
bits.

Photo 3 shows the SPI clock and data
signals that transfer a single row to the shift
registers. The 1 MHz SPI clock in the upper
trace transfers each byte in 8 µs and the
complete transfer occupies 35 µs, with the
gaps between the bytes corresponding to the
code in Listing 2. The rightmost byte, sent by
the last SendRecSPI call in Listing 2, goes to
the row driver in Figure 1 and has an obvious
only-one-low-bit pattern.

The program’s main loop calls UpdateLEDs
during each iteration to send successive
rows. Sending the entire contents of the
bitmap array to refresh all the LEDs requires
eight passes.

The next step: put some interesting data

circuitcellar.com/ccmaterials

RESOURCES
3D Printed Protoboard Holder,
http://softsolder.com/2015/05
/14/proto-board-holder-80x
110-mm-version/

Hardware Random Number
Generation, http://en.wikipe-
dia.org/wiki/Hardware_ran-
dom_number_generator

Jenkins One-At-A-Time
Hash Function, http://
en.wikipedia.org/wiki/
Jenkins_hash_function

More on Random Noise, http://softsolder.com/
2015/05/21/random-led-dots-radioactive-noise/

Sophi’s Art Projects, http://mix-engineering.com/

SOURCES
Adafruit RGB LED matrix display
Adafruit Industries |www.adafruit.com/
categories/327

8 × 8 Common-Anode RGB LED Matrix
Seeed Development | www.seeedstudio.com/
depot/60mm-square-88-led-matrix-super-
bright-rgb-p-113.html?cPath=163_165

Arduino Pro Mini microcontroller board
SparkFun (distributor) | www.sparkfun.com/
products/11113

TLC5916 LED Driver
Texas Instruments | http://focus.ti.com/docs/
prod/folders/print/tlc5916.html

PHOTO 4
An underexposed video frame
captures the full LED array. The
Arduino Pro Mini ‘s white LED glows
brightly, because that pin is also the
SPI hardware shift clock.

http://softsolder.com/2015/05
http://en.wikipe-dia.org/wiki/Hardware_ran-dom_number_generator
http://en.wikipe-dia.org/wiki/Hardware_ran-dom_number_generator
http://en.wikipe-dia.org/wiki/Hardware_ran-dom_number_generator
http://en.wikipe-dia.org/wiki/Hardware_ran-dom_number_generator
http://en.wikipe-dia.org/wiki/Hardware_ran-dom_number_generator
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://softsolder.com/
http://mix-engineering.com/
http://www.adafruit.com/
http://www.seeedstudio.com/
http://www.sparkfun.com/
http://focus.ti.com/docs/
www.circuitcellar.com/materials

circuitcellar.com 67
CO

LU
M

NS

into the bitmap array.

TIMESTAMPED RANDOMNESS
A microcontroller program with no inputs

is, essentially by definition, a deterministic
process: it will produce exactly the same
outputs after each reset. The Arduino
library’s random function actually returns a
fixed sequence of pseudorandom numbers,
unless you set the initial seed with a truly
random value from an input.

The -Geiger input in Figure 3 injects
true randomness into this program, because
it comes from an Aware Electronics RM-60
Geiger sensor that detects beta and gamma
radiation. The background radiation on my
desk produces about 12 pulses each minute
and, for more activity, a watch with a radium
dial positioned against the Geiger tube
produces 160 pulse/min.

Generating cryptographic-quality random
numbers from a radiation detector, as
described in the references, requires far
more effort than seemed warranted for this
gadget. Although radiation pulses occur at
truly random intervals, the absolute times
when those pulses occur form an ascending
sequence that’s obviously not random.
Finding the interval between two events
removes the sequence, but those intervals
have a relatively small average range that
depends on the radiation intensity.

John von Neumann described how to
eliminate the bias, at the cost of producing
less than one random bit for every four
pulses. That algorithm would require about
three minutes of background radiation to
generate the nine random bits that update
a single RGB LED, far longer than seemed
reasonable.

Because all I needed was a series of
reasonably random numbers (and I was
unwilling to increase the background
radiation level around my desk), I used an
interrupt handler to record the absolute time
in microseconds when each pulse occurs,
then passed those ascending values into a
hash algorithm that produces four bytes of
randomized bits with no obvious sequence.

A hash function summarizes a (possibly
lengthy) stream of input numbers or
characters by producing a fixed-length
output number. Because hash functions are
deterministic computer programs, hashing
the same stream always produces the same
output number, a characteristic of the digital
signature that verifies a larger message. In
this case, the hash function must map 32
bits of input data into 32 bits of output data.

I used the Jenkins One-At-A-Time hash, a
simple algorithm that thoroughly mixes its
input bits and runs quickly, so that feeding

it with absolute time values produces a
corresponding series of mixed bits that
resemble white noise. Cryptographically
secure hash functions, such as those in the
SHA family, require elaborate computations
that aren’t well-suited for Arduino-class
microcontrollers, so, even though the
Jenkins hash may not be crypto grade, it’s
good enough for my purposes.

The interrupt handler sets the
GeigerTicked boolean variable code to
indicate that it has recorded the time of a
new pulse in GeigerTime. When GeigerTicked
becomes true, the code in Listing 3 passes
GeigerTime, the pulse’s four-byte timestamp,
through the Jenkins hash function to produce
Hash. It then calls the SetLED function in
Listing 4 to extract a trio of three-bit values
from the hash that select an LED by row and
column, then set the color of that LED in the
bitmap array.

A four-byte integer can count 71.6
minutes of microseconds before it wraps to
zero. At 12 events per minute, each of those
860 events will (almost certainly) occur at a
different one of the 4.3 × 109 microseconds,
so the hash function will deliver unique
values for each event.

I haven’t bothered to run the tests
showing exactly how random these random
numbers might be, because it doesn’t matter.
Photo 4, a somewhat gritty video image
capture, shows another one of the 6.3 × 1057
possible color arrangements: so far, they’ve
all been pleasing to the eye. The pulses arrive
slowly enough that the display never seems
to change when you’re watching it, yet it’s
completely different after ten minutes.

After I got everything running, however, I
noticed that sometimes the white LED would
flash to indicate a pulse from the Geiger
sensor, but the LED matrix wouldn’t change.
It turns out that the randomly chosen new
color for an LED may be the same as the
old color: even though the code updates the
bitmap with every pulse, 12.5% of those
pulses produce no visible difference.

CONTACT RELEASE
The magenta 3D printed board holder

sufficed to get the circuit and firmware
running, but doesn’t provide enough
protection for a desk toy. I originally planned
to conceal all the hardware inside a black box
with a smoke-gray window over the matrix,
but perhaps showing off the tech with a
transparent box would be more appropriate.
It’s time for some rapid prototyping!

You can download the Arduino program
and the complete schematic in KiCad format
from the Circuit Cellar FTP site.

ABOUT THE AUTHOR
Ed Nisley is an EE and
author in Poughkeep-
sie, NY. Contact him at
ed.nisley@pobox.com
with “Circuit Cellar” in
the subject line to avoid
spam filters.

mailto:ed.nisley@pobox.com

CIRCUIT CELLAR • SEPTEMBER 2015 #30268
CO

LU
M

NS

While working to improve the ignition
system of the automobile during the

early 1970s, John Richard Wiegand discovered
a physical phenomenon we now know as the
Wiegand effect. The ability for a material to
retain a bistable magnetic state and change
state when exposed to an opposing magnetic
field. The material is produced in the form of
wire that has been first annealed to produce
a soft core and then cold-worked producing
a hard shell. This gives it a unique nonlinear
magnetic property.

The outer shell has high coercivity, or the
ability to withstand an external magnetic field
without becoming demagnetized, while the
inner core has a low coercivity. So the shell
resists any opposing magnetic field until its
magnetic hysteresis level is reached; then the
material rapidly changes its magnetic polarity.

This flip/flop occurs in just a few microseconds.
When used as the heart of a sensor

consisting of a short length of the material
surrounded by a coil, the rapid change in the
magnetic field induces a current spike in the
external coil. The Wiegand sensor will produce
both positive and negative spikes depending on
the polarity of the magnetic change. The high
repeatability threshold of the magnetic field
makes the Wiegand effect useful for positional
sensors and the like.

KEYCARDS
Keycards have been around for a long

time. In a September 1954 Popular Mechanics
article, “A House of Magic,” Thomas E. Stimson
details the use of key cards to open a gate at an
automated parking lot. Prior to the new craze
of smartcards and RFID technology, popular

Wiegand World
An Introduction to the Physical Layer &
Protocol

FROM THE BENCH

PHOTO 1
This typical harsh environment keypad outputs data using the
standard Wiegand formatted output. A minimum connection includes
+12 V, Common, and Wiegand 0 and 1 outputs. The outputs are
open collector and multiple units can coexist on the same connections.
While there is no protection against collision, this will most likely
cause the transmitted data to fail proper formatting.

Wiegand technology has been around since the 1970s.
Jeff Bachiochi covers the history of the technology,
and covers the Wiegand interface and protocol. He
concludes with details about a microcontroller-based
Wiegand data display project.

By Jeff Bachiochi (US)

circuitcellar.com 69
CO

LU
M

NS

types of keycards included the mechanical
punched hole, barcode, and magnetic stripe
cards. Wiegand wire embedded cards became
popular because they were difficult to duplicate.
Since the key code is permanently set into
the card at manufacture by the positions of
the wires, Wiegand cards can’t be erased by
magnetic fields or reprogrammed as magnetic
stripe cards can. So, in high-security areas,
Wiegand cards were king.

The Wiegand plastic keycard has a series
of short lengths of Wiegand wire embedded
in it, which encodes the key by the presence
or absence of wires. A second track of wires
provides a clock track. The card is read by
pulling it through a slot in a reader device,
which has a fixed magnetic field and a sensor
coil. As each length of wire passes through the
magnetic field, its magnetic state flips, which
indicates a 1, and this is sensed by the coil. The
absence of a wire indicates a 0.

With the popularity of Wiegand on an
upturn, secure points of entry needed to be
tied to a central computer as building systems
grew in complexity over local control right at
each door. A new protocol was developed for
transmitting data over extended distances
from the point of entry to the central control
system. By the 1980s, the Wiegand interface
became a de facto wiring standard.

WIEGAND PHYSICAL LAYER
The Wiegand interface uses three wires: a

common ground and two data transmission
wires usually called DATA0 and DATA1. When
idle, both DATA0 and DATA1 are pulled up to
the “high” voltage level, usually +5 VDC. When
a 0 is sent, the DATA0 wire is pulled to a low
voltage (DATA1 stays high). When a 1 is sent,
the DATA1 wire is pulled to a low voltage
(DATA0 stays high). An advantage of the
Wiegand signaling format is that it allows very
long cable runs, far longer than other interface
standards of its day allowed.

Wiegand card readers pretty much defined
the Wiegand communication protocol, as it
followed the physical manufacturing format of

the embedded card data. Using a card as the
only access vehicle was secure, but a physical
keypad had wide spread appeal. Building off
Wiegand card success, the already established
communication format stuck for other types of
entry devices.

Photo 1 pictures a typical harsh-
environment keypad. These are typically in
the standard 3 × 4 key format consisting of
10 digits (0 to 9), plus asterisk (*) and pound
(#) keys. Most of the industry operates at a
supply voltage of 12 VDC. This allows for a bit
of drop in the supply lines, affording sufficient
overhead to an onboard 5-V regulator. While
many devices aren’t considered “smart,”
they all need some amount of smarts to
interface the user entry device (keypad) with a
communication protocol. Key entering consists
of a number of digits followed by the “#” used
as an enter/finished key. The “*” key is often a
cancel, flushing out any digits entered.

WIEGAND PROTOCOL
Based on the Wiegand swipe card

technology, the data format is presented in a
26-bit format, one even parity bit, 8 bits of
facility code, 16 bits of ID code, and a trailing
odd parity bit. The first parity bit is calculated
from the first 12 bits of the code and the
trailing parity bit from the last 12 bits. Most
access control system manufacturers adopted
Wiegand technology, but its limitations of only
8 bits for facility codes (0–255) and 16 bits for
card ID (0–65535) caused some to design their
own formats with varying complexity of field
numbers and lengths and parity checking. The
physical size limitations of the card dictated
that a maximum of 37 Wiegand wire filaments
could be placed in a standard card, as
dictated by CR80 or ISO/IEC 7810 standards.
Therefore, most Wiegand formats used in
physical access control are less than 37 bits in
length. While this doesn’t change the physical
communications layer, propriety data formats
don’t lend themselves to universal use.

Let’s take a look at the typical Wiegand
output for a Wiegand device. As you can see

FIGURE 1
The standard pulse width is typically
50 µs for either Wiegand 0 or Wiegand
1 data with an inter-pulse or delay
time of 2 ms.

50-µs Pulse

2-ms Pulse intervals
TTL Level

5 V
0 V

1 0 1 0

5 V
0 V

Data 1

Data 2

Data

CIRCUIT CELLAR • SEPTEMBER 2015 #30270
CO

LU
M

NS

in Figure 1, the Data1 pulses on the top trace
and Data0 pulses on the bottom trace do not
coincide—that is, they occur independently.
Open-collector drivers for each line are pulled
up to VCC with resistors. The pulse width is
typically 50 µs, but it can be between 20 and
200 µs. However, while the time between bits
has a delay time of 2 ms, it might be a short as
200 µs or as long as 10 ms.

A keypad device that is used to collect “ID
code” data will normally have the “facility
code” data preprogrammed so the user need
only enter the ID code consisting of up to five
digits followed by the “#” (enter key, the “*” is
a clear entry key). Upon pressing “#,” the logic
either limits the entry or appends zeros to the
left if necessary to create a five-digit number.
This number is limited to between 0 and 65535
so that it fits within a four-digit hex value.
Entering “1234” will be sent as “04D2” (hex)
because the Wiegand format limits the ID code
to four hexadecimal digits. Let’s say the facility
code is set to 170 (that’s “AA” in hex), then
the six-digit (hex) data would be “AA04D2.”

Once this data has the even and odd parity bit
added, it will be ready to output. If we look
at this data in binary, it is much easier to see
the parity: 1010-1010-0000-0100-1101-0010.
There are four 1 bits amongst the first 12 bits.
That’s an even number, so the even parity
must be “0” to keep the parity even. There
are five 1 bits in the last 12 bits, and that’s
already odd, so again the odd parity bit must
be a “0” to keep the parity odd. The parity bit
is set to whatever state is necessary for the
total set of 12 data bits plus 1 parity bit to be
the required parity. With the complete 26-bit
Wiegand format established, this string of data
is output through the Wiegand interface.

010101010 00000100110100100
 A A 0 4 D 2

WIEGAND DECODING
On the outside, it may look like a no-

brainer to decode a Wiegand communication
string. For the most part you’d be correct.
You would just watch the Data0 and Data1

FIGURE 2
The highest level interrupt collects any
changes of state (COS) that are seen
on either of the Wiegand data lines.
Related Pulse or Delay times since the
last COS are recorded as well so that
later these can be verified against the
actual Wiegand specs.

Wiegand
0 = 1 ?

Save state

RETI

Wiegand
1 = 1 ?

Wiegand 0
COS ?

Y Y

NN

High-level
interrupt COS

NewCOS = PORTB
Clear COS Interrupt

Clear and Start
Timer 5

WiegandTimerH
= Timer 1

Clear and Start
Timer 1 and 3

WiegandTimerH
= Timer 3

Clear and Start
Timer 1 and 3

WiegandTimerL
= Timer 1

Clear and Start
Timer 1

WiegandTimerL
= Timer 3

Clear and Start
Timer 3

circuitcellar.com 71
CO

LU
M

NS

outputs for any low pulse and log each pulse
as a 0 or 1. The transmission should have 26
data bits. However, if you want to assure the
transmission is legal, there is more to check
than just the number of bits received. Besides
the parity bit data checks, there is the width of
each pulse, the time between non-concurrent
pulses. We can set up minimum and maximum
pulse and delay times (as mentioned above)
and check the incoming data to make sure it
fits within these specifications.

There are various ways to implement
this. I chose to use the change of state (COS)
interrupt originally intended for capturing a
key press during a powered down sleep state.
You designate which inputs are to be used and
an interrupt is generated whenever there is a
change from present state. It is important to
note that the present state is updated when
you read the state, so it’s important to do
this right away, which will allow additional
changes to issue another interrupt (even if
mid interrupt). In this application, two inputs
are designated, one for Wiegand 0 and one for
Wiegand 1. A copy of the last read is saved, so
we have a reference to determine which input
has changed and to which state it has changed.

The Figure 2 shows the interrupt routine
used for each COS interrupt. Timer 5 is used
to determine a time out for the Wiegand
communication. Similar to a watchdog timer
it is reset each time a COS occurs. As long as
this continues the timer will not reach its time
out. Upon each COS the state (input and level)
is recorded along with the appropriate timer
count (in microseconds). We are not verifying
anything here, just keeping track of what is
happening at the inputs. Once Wiegand data
cease, the timer 5 will overflow, setting a flag
which is being tested in the main loop (see
Figure 3).

The main loop has two functions handling
user requests, commands received from
the UART, and Timer 5 timeouts, indicating
that a Wiegand data transfer has occurred.
A terminal program connected to the serial
port allows commands to be entered by the
user and Wiegand results to be displayed. The
command structure is simple. Most commands
are single letter entries: D, V, S, W, enable/
disable (toggle) Debug data, enable/disable
(toggle) Verbose data, display Status, and send
a Wiegand command. (It seemed a shame not
to include this along with Wiegand decoding.)
This last command requires two additional
commands to set the facility data (8-bit) and ID
data (16-bit) using the format Fxx and Ixxxx.
Debug displays Wiegand data as bits instead
of bytes. Verbose data displays the timing info
recorded for each COS.

All the heavy lifting occurs once Timer 5
overflows. Figure 4 outlines the process of

reviewing the state and timing data recorded
prior to Timer 5’s overflow. The process steps
through this list looking for the rising COS for
each input. This indicates the end of each data
pulse. The appropriate logic state—”0” for Data
0 and “1” for Data 1—is shifted into a FIFO
to collect the transmitted data states. Every
entry (whether it’s a pulse or delay) is checked
for proper timing based on preconfigured
constants for minimum and maximum times
for pulses and delays. Actually, the list’s first
entry skips a timing check, as the timer is free
running at this point (and meaningless.)

Once all the entries have been processed,
we can now determine if the data shifted into
the FIFO is legal. For this application, I am
just interested in the standard 26-bit Wiegand
format. Any other bit count indicates an illegal
Wiegand format. I’ve left sufficient wiggle
room for nonstandard formats. These could be
implemented but since many are proprietary,
I’ll leave this up to the reader.

The even and odd parity bits that bookend
the data help to indicate a potential error in the
data. Parity bits are the simplest form of error
detecting. They cannot be used to correct any
errors, as there is no way to determine which
particular bits are corrupted. Therefore, if
parity is determined to be incorrect, the entire
transmission is considered bad and is tossed
into the bit bucket. The parity bit is used to
force the data’s total parity to conform to the
chosen parity, either even or odd. If the data’s
parity is even and we want even parity, then
the parity bit is 0, which does not affect the

Initialization

Call Chk4RX1

RX1Char?

Wiegand
Timeout?

Call process
RX1

Y

Y

N

N

Call process
Wiegand

Clear Wiegand

FIGURE 3
The applications Main loop consists of
handling user requests and processing
any Wiegand data that has been
captured. While not necessary to the
final application, user commands allow
some flexibility in what is displayed.

CIRCUIT CELLAR • SEPTEMBER 2015 #30272
CO

LU
M

NS

total parity. If the data’s parity is even and we
want odd parity, then the parity bit is 1, which
changes the total parity.

As I mentioned earlier, the first 12 data bits
(that’s the facility code and the first 4-bits of
the ID code) use a leading even parity bit and
the last 12 data bits (ID code) use a trailing
odd parity bit for a total of 26-bits. If the first
13 bits do not conform to even parity and the
last 13-bits do not conform to odd parity, then
a bad parity message is displayed. Otherwise,
the Wiegand data is displayed in either bit or
byte form.

WIEGAND DATA DISPLAY
My first thought was to make this a

standalone project with a small LCD to display
each six-digit hex code picked off the Wiegand
data lines. When I was deciding how to build

this, I came across some old prototype PCBs
I had left over from a previous Bluetooth
project. I decided to use it just for that reason.
I could eliminate both the display and the wired
connection to my computer. This would allow
the project to connect directly to the four-
wire Wiegand bus and act as both a wireless
Wiegand logger and keypad emulator.

With this arrangement, I only needed to
bring my laptop (or Android phone) in the
vicinity to make a connection and monitor
Wiegand usage or enter a Wiegand code right
from my device. Using my laptop and Realterm
(terminal emulation program), I get output as
shown in Photo 2. You’ll notice some disturbing
messages prior to the timing for each COS.
The pulse and delay timing is outside of the
maximum allowable times in the Wiegand
specifications. I must have made some error in

FIGURE 4
While you can receive Wiegand
data without verifying specification
timing, recording timing information
allows you to compare and reject any
transmission that does not adhere to
the spec.

Wiegand 0
Pulse ?

Wiegand 1
Pulse ?

N

N
N

26 bits ?

SaveBit0Bad format
message

End of
list ?

Call
CheckWiegandTiming

Calculate
odd parity

Parity
match ?

Bad parity
message ?

Display Wiegand
value

Return

Calculate
even parity

SaveBit1N

Y

Y

Y

Y

Y

N

Process Wiegand

Get next state and timing
from COS List

ABOUT THE AUTHOR
Je f f Bach ioch i (pro-
nounced BAH-key-AH-
key) has been writing
for Circuit Cellar since
1988. His background
includes product design
and manu fac tur ing .
You can reach him at
jeff.bachiochi@imagine
thatnow.com or at www.
imaginethatnow.com.

http://www.imaginethatnow.com
http://www.imaginethatnow.com

If you’ve ever wanted to design and program with the ADuC841
microcontroller, or other microcontrollers in the 8051 family, this is the book

for you. With introductory and advanced labs, you’ll soon master the
many ways to use a microcontroller. Perfect for academics!

Now
Just
$35.00

If you’ve ever wanted to design and program with the ADuC841

ADuC841 Microcontroller Design Manual:
From Microcontroller Theory to Design Projects

www.cc-webshop.com
Buy it today!

http://www.cc-webshop.com

CIRCUIT CELLAR • SEPTEMBER 2015 #30274
CO

LU
M

NS

PHOTO 2
Communication with the project is
over a Bluetooth serial connection.
Here you can see a sign-on message
and the first Wiegand entry “1234”
is displayed as “AA 04D2.” Entering
“D” toggles debug mode on. A
second Wiegand entry “1234” is now
displayed in bit form. Entering “V”
toggles verbose mode on. Now we
see timing information on a third
Wiegand entry.

a routine somewhere. The resultant Wiegand
code displayed at the bottom of the screen is
correct. Hmm.

I connected a scope to the Wiegand bus to
see the actual timing. Photo 3 shows what I
found. The scope’s sweep parameter verified
that my timing information was correct.
This keypad was not within the standard
specification. How was that possible? I Googled
the keypad part number and was directed to
Essex Electronics (www.keyless.com). My
keypad didn’t seem to be in their line-up, so
I contacted them. I received an immediate
reply to assure me that my keypad was in
fact a customized device. I was assured that

other than the relaxed specs, the keypad was
identical to the company’s standard product,
KTP-103. The keypad is heavy. In fact, I was
so curious that I weighed it found it was 1 lb.
So, the mystery was solved and my application
was in fact giving me the correct information.

To send a Wiegand transmission doesn’t
require all the hoop jumping I had to implement
here to read a Wiegand transmission. A
single timer can be used to alternately time
the duration of each of my pulses and inter-
pulse delays. I have commands set up to allow
facility and ID codes to be entered and one
to send a Wiegand transmission using those
codes. To keep the open collector hardware
bus architecture intact, we can’t just turn the
Wiegand inputs to outputs and drive the bus
high or low. An open collector output is not
driven high, it’s pulled high by an external
resistor. This allows any device on the bus
to pull the bus low at any time. Any logic low
wins over a logic high. Without open collector
output drivers you need to play games. To
output a logic high (idle), the I/O is treated as
an input. To output a logic low (pulse), the I/O
is treated as an output with a logic low applied.
In fact we can leave the output loaded with a
“0” and just change the direction of the I/O bit.
That is, for a logic high the port bit remains as
a input, the external pull-up creates the logic
high on the bus, for a logic low the port bit

circuitcellar.com/ccmaterials

RESOURCES
T. E. Stimson, “A House of
Magic,” Popular Science, August
1954.

J. Wiegand, “Bistable Magnetic Device,” US
Patent US3820090 A, 1974, www.google.com/
patents/US3820090.

SOURCE
PIC18F23K22 Microcontroller
Microchip Technology | www.microchip.com

http://www.keyless.com
http://www.google.com/
http://www.microchip.com
www.circuitcellar.com/materials

circuitcellar.com 75
CO

LU
M

NS

PHOTO 3
The scope doesn’t lie. This Wiegand
transmission is out of spec. The low
pulse is measuring 1.4 ms with a
delay of 6.2 ms.

is changed to an output and the output driver
pulls the external pull-ups to ground. The fact
that a logic low remains on the port bits output
latch is a ‘don’t care’ when that port bit is
defined as an input. So here we are not forcing
an output high and low, just configuring the bit
as an input (for a 1) and output (for a 0).

IMPLEMENTATION
While this application was built using a

28-pin Microchip Technology PIC18F23K22
microcontroller, there are 16 I/Os that are
not used (see Figure 5). Certainly, a smaller

microcontroller could be used here, unless you
wish to add a keypad and/or display to make
a full-fledged input device. There is plenty of
room left for additional functions.

You can search the internet and find a
plethora of Wiegand interfaced devices still
being produced. While many manufacturers
have options available for other communication
medium, Wiegand is still king. With a vast
installed base, Wiegand is not going away any
time soon.

FIGURE 5
This application only requires about
six I/Os. The majority of room is taken
up by connectors as seen in here.
Note that 5-V logic is used to remain
compatible with the Wiegand bus.
Most bluetooth modules require the
use of 3.3 V, so series resistors are in
series with any driven lines to protect
the Bluetooth inputs.

CIRCUIT CELLAR • SEPTEMBER 2015 #30276

CC SHOP

4

 4 CC 2014 DIGITAL ARCHIVE SUBSCRIPTION
Just when you thought it couldn’t get any easier than a thumb

drive...you can now access a full year of Circuit Cellar from any
device connected to the Internet! (2014: 12 issues)

You get all the benefits of a printed copy—bookmark pages, make
annotations, and write in the margins—combined with the digital
advantages of easy storage, zoom, links, and search features.

Item #: CC-DA-2014

1

2

Further information and ordering: www.cc-webshop.com
CONTACT US: Circuit Cellar, Inc. | Phone: 860.289.0800 | E-mail: custservice@circuitcellar.com

3

 3 ADUC841 MICROCONTROLLER DESIGN MANUAL
This book presents a comprehensive guide to designing and programming with

the Analog Devices ADuC841 microcontroller and other microcontrollers in the 8051
family. It includes a set of introductory labs that detail how to use these microcon-
trollers’ most standard features, and includes a set of more advanced labs, many of
which make use of features available only on the ADuC841 microcontroller.

The more advanced labs include several projects that introduce you to ADCs,
DACs, and their applications. Other projects demonstrate some of the many ways
you can use a microcontroller to solve practical problems. The Keil μVision4 IDE is
introduced early on, and it is used throughout the book. This book is perfect for a
university classroom setting or for independent study.

Author: Shlomo Engelberg
Item #: CC-BK-9780963013347

 1 CC VAULT
CC Vault is a pocket-sized USB that comes fully loaded with every

issue of Circuit Cellar magazine! This comprehensive archive provides an
unparalleled amount of embedded hardware and software design tips,
schematics, and source code. CC Vault contains all the trade secrets you
need to become a better, more educated electronics engineer!

Item #: CCVAULT

 2 CC 2014 CD
2014 was an exciting year for electronics engineers! The continued

success of open-source solutions, Internet of Things (IoT) revolutions, and
green-energy consciousness has changed the face of embedded design
indefinitely. In Circuit Cellar’s 2014 archive CD, you can find all of these hot
topics and gain insight into how experts, as well as your peers, are putting
the newest technologies to the test. You’ll have access to all articles,
schematics, and source code published from January to December 2014.

Item #: CD-018-CC2014

Previous Years Also Available

http://www.cc-webshop.com
mailto:custservice@circuitcellar.com

circuitcellar.com 77
TESTS &

 CHALLENG
ES

TEST YOUR EQ
Contributed by David Tweed

PROBLEM 1—You have decided to build a small computer from
discrete transistors as a demonstration. After researching the
available technologies, you have decided to base your design on
NMOS logic, using a 3-input NOR gate as your basic building block,
as shown below.

Each gate uses three 2N7000 N-channel MOSFETs as pulldown
transistors, and a 10-kΩ resistor as a passive pullup. You figure that
you’ll need somewhere between 500 and 1000 of these gates to build
a useful computer—after all, the original PDP-8 12-bit minicomputer
CPU was built with only about 519 gates.

Approximately how fast will you be able to clock this computer?

PROBLEM 2—Assuming a supply voltage of 5 V, about how much
power would you expect this computer to consume?

PROBLEM 3—How many three-input gates does it take to construct
an edge-triggered (master-slave) D flip-flop?

PROBLEM 4—What famous computer was built using NOR gates
exclusively for the logic?

You’ll receive electrical engineering tips, interesting electronics
projects, embedded systems industry news, and exclusive product
deals via e-mail to your inbox on a regular basis. If you’re
looking for essential electrical engineering-
related information, we’ve got you covered:
micrcontroller-based projects, embedded
development, programmable logic, wireless
communications, robotics, analog techniques,
embedded programming, and more!

Subscribe now to stay up-to-date with our
latest content, news, and offers!

Sign up for the

 FREE Circuit Cellar Newsletter!

circuitcellar.com

The answers to these EQ problems will appear in
Circuit Cellar 303 (October 2015) and at CircuitCelllar.com.

www.circuitcellar.com
www.circuitcellar.com

CIRCUIT CELLAR • SEPTEMBER 2015 #30278
TE

ST
S

&
 C

HA
LL

EN
G

ES

ACROSS
3. Decrease amplitude
4. Light intensity
6. Quantum theory
9. The Great Explainer
10. Leyden jar
11. Measures small electrical currents by means of deflecting

magnetic coils
14. Metal containing iron
15. Big Blue
17. EW
19. 3.00 × 108 m/s

CROSSWORD
The answers will be available at circuitcellar.com/category/crossword/

SEPTEMBER 2015

1

2

3

4

5 6 7

8 9

10

11 12

13

14

15 16

17 18

19

EclipseCrossword.com

DOWN
1. ENUM
2. GaAs
5. F = qE + qv × B
6. Chunk of data
7. Introduced the LISA computer in 1983
8. 1 quadrillion bytes
12. Range = 30 and 300 MH
13. Error-detecting code
16. Batch file
18. Thinner than QFP

www.circuitcellar.com/category/crossword

circuitcellar.com 79

microEngineering Labs, Inc.
www.melabs.com 888-316-1753

PIC is a registered trademark of Microchip Technology Inc. in the USA and other countries.

Programmers for Microchip PIC® Microcontrollers
PC-Tethered USB Model (shown):

•Standalone software
•Command-line operation
•Hide GUI for automated use
•Override configuration with drop-downs

Stand-Alone Field Programmer:
•Power from target device or adapter
•Program file stored on SD-CARD
•Programming options stored in file
•Single-button operation

Program in-circuit or use adapters for unmounted chips.
Zero-Insertion-Force Adapters available for DIP, SOIC, SSOP, TQFP, and more.

Starting at $79.95

PIC® MCU is a registered trademark of Microchip Technology Inc.

FREE 45 Day Demo:
ccsinfo.com/CC915

sales@ccsinfo.com
262-522-6500 x 35

Built-in PID Functions
Included in CCS C Compilers

NEW!

Setup K values
Enable module & result
functions
Input new data to the
system & get the ouput

Setup PID in 3 steps:

setup_pid(PID_MODE_PID, K1, K2, K3)

Fast Calculations
with PID Module

Compiler September_PID Functions_Final.indd 1 7/20/2015 4:06:06 PM

the directory of
PRODUCTS & SERVICES

For current rates, deadlines, and more information contact Peter Wostrel at 978.281.7708 or circuitcellar@smmarketing.us.

IDEA BOX

DIO24DIO24DIO24---ARDARDARD
Digital Interface

Call Toll-Free
1-877-SCIDYNE

(1-877-724-3963)

▪ 24 Digital I/O Channels
▪ 85ma Output Sink Current
▪ Uses Standard SPI Library Routines
▪ Connects to I/O Racks, LEDs, Switches, Relays
▪ Industrial Operating Temperature Range

Learn More Details at . . .

XMEM+XMEM+XMEM+
ARDUINO Peripherals

External Memory plus
Parallel Bus Expansion

▪ For Mega 2560 and Mega ADK
▪ Adds Memory Space, Seamlessly
▪ 512K SRAM (32K x 16 banks)
▪ On-Board High-Speed Logic
▪ Buffered Address, Data, Control
▪ Supports 3.3V and 5V Circuitry

mailto:circuitcellar@smmarketing.us
mailto:sales@ccsinfo.com
http://www.melabs.com
www.myropcb.com
www.ironwoodelectronics.com
www.maxbotix.com
mailto:info@maxbotix.com
www.scidyne.com
www.ccsinfo.com/CC915
www.allelectronics.com
www.picservo.com

CIRCUIT CELLAR • SEPTEMBER 2015 #30280
TE

CH
 T

HE
 F

U
TU

RE

So many bytes, so little time. Five years ago,
I found myself looking for a new career.

After 20 years in the automotive sector, the
economic downturn hit home and my time had
come. I was lucky enough to find a position at
the University of Notre Dame designing and
building lab instrumentation
and data acquisition equipment
in the Department of Civil and
Environmental Engineering &
Earth Sciences, and teaching
microprocessor programming
in the evenings at Ivy Tech
Community College. The
transition from industry to
the academic world has been
challenging and rewarding.
Component and System modeling
using computer simulation is an
integral part of all engineering
disciplines. Much of the industry
simulation software started out
in a university computer lab.

A successful computer simu-
lation of a physical phenomenon
has several requirements. The
first requirement is a stable model based on
a set of equations relating to the physics and
scale of the event. For complex systems, this
model may not exist, and a simplified model
may be used to approximate the event as close
as possible. Assumptions are made where
data is scarce. The second requirement is a
set of initial conditions that all
the equation variables need to
start the simulation. These va-
lues are usually determined by
running real-world experiments
and capturing a “snapshot” of
the event at a specific time. The
quality of this data depends on
the technology available at the
time. The technology behind
sensors and data acquisition for
these experiments is evolving at
an incredible rate. Some sensors
that may have cost $500 10 years ago are
available now for $5 and have been miniaturi-
zed to one tenth of its original size to fit into a
cell phone or smart band. Equipment that was
too large to be used out of a lab environment
is now pocket sized and portable. Researchers
are taking advantage of this, and taking much
more data than ever imagined.

So how will this affect the future of simu-
lation? Multicore processors and distributed
computing are allowing researchers to run

more simulations and get results quicker. Our
world has become Internet driven and people
want data immediately, so data must become
available as close to real-time as possible. As
more and more sensors become wireless, low
cost, energy efficient, and “smart” due to the

Internet of Things movement,
empirical data is available from
places never before conceived.
Imagine the possible advance-
ments in weather modeling and
forecasting if every cell phone
in the world sent temperature,
humidity, barometric pressure,
GPS, and light intensity data to
a cloud database automatically.
More sensors lead to higher si-
mulation resolution and more
accuracy.

A popular saying, “garbage
in = garbage out,” still applies,
and is the bane of the Internet.
Our future programmers must
be able to sift through all of this
new data and determine the
good from the bad. Evil hackers

enjoy destroying databases, so security is a
major concern. Some of this new technology
that could be useful in research is being re-
jected by the public due to criminal use. For
example, a UAV “drone” that can survey a
farmer’s crop can also deliver contraband or
cause havoc at an airport or sporting event.

While these issues are tackled
in the courtroom and the FAA,
researchers are waiting to take
more data.

Simulation is still only a
guess at what may happen un-
der specific conditions based on
assumptions of how our world
works. The advancements in
sensor and data acquisition
technology will continue to im-
prove the accuracy of these
guesses, as long as we can de-

pend on the reliability of the input sources and
keep the evil hackers out of the databases.
Schools still need to train students on how to
determine good data from questionable data.
The terabyte question for the future of simu-
lation is whether or not we will be able to
find the data we need in the format we need,
searching through all these new data sources
in less time than it would take to run the origi-
nal experiments ourselves. So many bytes, so
little time.

The Future of Engineering Research
and Environment Systems Modeling
By R. Scott Coppersmith

R. Scott Coppersmith
earned a BSc in Electrical
Engineering at Michigan
Technological University.
He held several engineering
positions in the automotive
industry from the late 1980s
until 2010 when he joined
the University of Notre
Dame’s Civil Engineering
and Geological Sciences
department as Research
Engineer to help build
a Environmental Fluid
Dynamics laboratory and
assist students, faculty,
and visiting researchers
with their projects. Scott
also teaches a variety of
engineering courses (e.g.,
Intro to Microcontrollers and
Graphic Communication for
Manufacturing) at Ivy Tech
Community College.

Laser Particle Image Velocimetry
(PIV) Tank measuring 2-D flow through
a long cylinder

Flow movement due to heat flux
on inclined surface. Simulation of a
heated mountainside from the sun.

CC Vault

Unlock the power of embedded design.

Order yours today! cc-webshop.com
*CC Vault is a 16-GB USB drive.

A vault of need-to-know information in the fields of embedded
hardware, embedded software, and computer applications

This pocket-sized vault comes fully loaded with every issue of Circuit Cellar
magazine and serves as an unparalleled resource for embedded hardware
and software design tips, schematics, and source code.

From green energy design to ‘Net-enabled devices, maximizing power to
minimizing footprint, CC Vault* contains all the trade secrets you need to
become a better, more educated electronics engineer.

www.cc-webshop.com

We bring the full range of Electronic Contract
Manufacturing services to your fingertip!

This is the only place where you would put all
your eggs in one basket to get fastest time to
market. From concept design to prototype to
 full turnkey production on all your
 electronic products.

ENCLOSURES

KEYPADSASSEMBLYFABRICATION

www.PCBnet.com
 847-806-0003 sales@PCBnet.com
 Certified Woman-Owned Small Business

 Imagineering

Winner
Family Entrepreneurship

Award 2014

http://www.PCBnet.com
mailto:sales@PCBnet.com

