
 Q&A: The IoT as a Disruptive Force | CC Picks: Embedded Programming

 FlashForth in the Lab | DIY LCDTV Server | Prototyping with SuperSpeed USB

| CC Archive Article: Quad Bench Power Supply SuperSpeed for FPGAs

| Software Dev Predictability | Estimate Software Costs | ESD Protection Tips

| Intro to Programmable Logic Controllers The Future of Embedded Security

EMBEDDED PROGRAMMING
APRIL 2015
ISSUE 297CIRCU

IT CELLAR | ISSU
E 297 | APRIL 2015

circuitcellar.com

circuitcellar.com

Fast-Forward with
FlashForth

Forth language programs on
Comet 67P Churyumov-Gerasimenko,

in a university lab, and in an
electronics system near you

www.picotech.com/pco539

MIXED SIGNAL
OSCILLOSCOPES

4 ANALOG + 16 DIGITAL CHANNELS
RAPIDLY DEBUG COMPLEX MIXED SIGNAL DESIGNS
• USB 3.0
• ULTRA DEEP MEMORY
• SEGMENTED MEMORY
• RAPID TRIGGERS
• SEGMENTED MEMORY
• RA RA R PID TRIGGERS

INCLUDES AUTOMATIC MEASUREMENTS, SPECTRUM ANALYZER, SDK,
ADVANCED TRIGGERS, COLOR PERSISTENCE, SERIAL DECODING
(CAN, LIN, RS232, I²C, I²S, FLEXRAY, SPI), MASKS, MATH CHANNELS,
ALL AS STANDARD, WITH FREE UPDATES . 5 YEAR WARRANTY

3204D MSO 3205D MSO 3206D MSO 3404D MSO 3405D MSO 3406D MSO

Channels 2 analog, 16 digital 4 analog, 16 digital

Bandwidth 60 MHz 100 MHz 200 MHz 60 MHz 100 MHz 200 MHz

Buffer memory 128 MS 256 MS 512 MS 128 M 5S 256 MS 12 MS

Max. sampling rate 1 GS/s

Signal generator Function generator + Arbitrary waveform generator

Digital inputs 100 MHz max. frequency, 500 MS/s max. sampling rate

www.picotech.com/pco539

Each month, you’re challenged to find an error in a
schematic or in code that’s presented on the challenge

webpage. Locate the error for a chance to win prizes and
recognition in Circuit Cellar magazine!

Prizes such as a NetBurner MOD54415 LC Development kit or
a Circuit Cellar subscription will be announced each month.

MONTHLY

ENGINEERING CHALLENGE

Sponsored by NetBurner

Participate: circuitcellar.com/engineering-challenge-netburner
Launch: 1st of each month

Deadline: 20th of each month

No purchase necessary to enter or win. Void where prohibited by law. Registration required. Prizes subject to change based on
availability. Review these terms before submitting each Entry. More info: circuitcellar.com/engineering-challenge-netburner-terms

www.circuitcellar.com/engineering-challenge-netburner
www.circuitcellar.com/engineering-challenge-netburner-terms

CIRCUIT CELLAR • APRIL 2015 #2972

Issue 297 April 2015 | ISSN 1528-0608

CIRCUIT CELLAR® (ISSN 1528-0608) is published monthly by:

Circuit Cellar, Inc.
111 Founders Plaza, Suite 904

East Hartford, CT 06108

Periodical rates paid at East Hartford, CT, and additional offices.
One-year (12 issues) subscription rate US and possessions

$50, Canada $65, Foreign/ ROW $75. All subscription orders
payable in US funds only via Visa, MasterCard, international

postal money order, or check drawn on US bank.

SUBSCRIPTIONS

Circuit Cellar, P.O. Box 462256, Escondido, CA 92046

E-mail: circuitcellar@pcspublink.com

Phone: 800.269.6301

Internet: circuitcellar.com

Address Changes/Problems: circuitcellar@pcspublink.com

Postmaster: Send address changes to
Circuit Cellar, P.O. Box 462256, Escondido, CA 92046

ADVERTISING

Strategic Media Marketing, Inc.
2 Main Street, Gloucester, MA 01930 USA

Phone: 978.281.7708

Fax: 978.281.7706

E-mail: circuitcellar@smmarketing.us
Advertising rates and terms available on request.

New Products:
New Products, Circuit Cellar, 111 Founders Plaza, Suite 904

East Hartford, CT 06108, E-mail: newproducts@circuitcellar.com

HEAD OFFICE

Circuit Cellar, Inc. 111 Founders Plaza, Suite 904
East Hartford, CT 06108

Phone: 860.289.0800

COVER PHOTOGRAPHY

Chris Rakoczy, www.rakoczyphoto.com

COPYRIGHT NOTICE

Entire contents copyright © 2015 by Circuit Cellar, Inc. All
rights reserved. Circuit Cellar is a registered trademark of
Circuit Cellar, Inc. Reproduction of this publication in whole
or in part without written consent from Circuit Cellar, Inc. is

prohibited.

DISCLAIMER

Circuit Cellar® makes no warranties and assumes no
responsibility or liability of any kind for errors in these
programs or schematics or for the consequences of any

such errors. Furthermore, because of possible variation in
the quality and condition of materials and workmanship of
reader-assembled projects, Circuit Cellar® disclaims any
responsibility for the safe and proper function of reader-

assembled projects based upon or from plans, descriptions, or
information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational
purposes. Circuit Cellar® makes no claims or warrants that
readers have a right to build things based upon these ideas
under patent or other relevant intellectual property law in

their jurisdiction, or that readers have a right to construct or
operate any of the devices described herein under the relevant

patent or other intellectual property law of the reader’s
jurisdiction. The reader assumes any risk of infringement

liability for constructing or operating such devices.

© Circuit Cellar 2015 Printed in the United States

THE TEAM

EDITOR-IN-CHIEF
C. J. Abate

ART DIRECTOR
KC Prescott

ADVERTISING COORDINATOR
Kim Hopkins

PRESIDENT
Hugo Van haecke

COLUMNISTS

Jeff Bachiochi (From the
Bench), Ayse K. Coskun

(Green Computing), Bob
Japenga (Embedded
in Thin Slices), Robert
Lacoste (The Darker
Side), Ed Nisley (Above
the Ground Plance),
George Novacek (The
Consummate Engineer),
and Colin O’Flynn
(Programmable Logic in
Practice)

FOUNDER
Steve Ciarcia

PROJECT EDITORS
Chris Coulston, Ken
Davidson, and David
Tweed

OFFICE ASSISTANT
Debbie Lavoie

TOPICS IN EMBEDDED PROGRAMMING
Circuit Cellar articles on embedded programming have become increasingly

popular since 2011, which is when we actively set out to seek and publish more
content on the subject. That year, we ran a variety of memorable, well-received
articles, such as George Novacek’s “Reliable Programming Work Toward Fault-
Free Software.” We also contracted Bob Japenga to write regular column on
embedded Linux.

This month, we continue the tradition with insightful embedded programming-
related articles on Flash language, software development predictability, and tips
for embedded software development. Let’s begin by reviewing what you’ll find
in each article.

In “FlashForth in the Laboratory,” Peter Jacobs first provides some basic
background information on the Forth language, which is well suited for real-time
machine control (p. 18). He then covers FlashForth and explains how Forth is used
in a university lab to enable convenient real-time interaction with hardware.

On page 46, George Novacek tackles the topic of software failure modes
effects analysis. He takes a close look at software FMECA (SWFMECA) and its
potential for making software development more predictable.

Turn to page 50 for Bob Japenga’s new article on estimating the costs of
an embedded systems project. In particular, he presents four heuristics for
embedded software development.

Once you’ve had your fill of programming content, take a look the rest of the
issue. We present project articles as well as some handy electrical engineering
tips.

On page 28, Lindsay Meek describes his WIZnet WIZ550io-based LCDTV
Server project. The design enables an LCD TV equipped with a USB port to
stream media across a LAN.

This month, we have two articles on the topic of SuperSpeed USB. First,
John Hyde presents a guide to the end-to-end development of a SuperSpeed
USB device (p. 34). Then, on page 40, Colin O’Flynn covers the use value of
SuperSpeed USB for FPGAs.

Flip to page 54 for Robert Lacoste’s article on electrostatic discharge (ESD),
which can create problems for you electronics projects. Follow his advice to
protect your designs.

If you’re interested in learning about programmable logic controllers (PLC),
turn to Jeff Bachiochi’s article, “Ladder Logic,” on page 60. After covering the
basics, he explains how PLCs operate.

We wrap up the issue with an essay about the future of embedded security.
In “Security Agents for Embedded Intrusion Detection,” Syed Kamran Haider,
Devu Manikantan Shila, and Marten van Dijk cover the idea of an additional layer
of security for embedded devices (p. 80).

C. J. Abate
cabate@circuitcellar.com

mailto:circuitcellar@pcspublink.com
mailto:circuitcellar@pcspublink.com
mailto:circuitcellar@smmarketing.us
mailto:newproducts@circuitcellar.com
http://www.rakoczyphoto.com
mailto:cabate@circuitcellar.com

circuitcellar.com 3

OUR NETWORK

SUPPORTING COMPANIES

NOT A SUPPORTING COMPANY YET?

Contact Peter Wostrel (circuitcellar@smmarketing.us, Phone 978.281.7708, Fax 978.281.7706)
to reserve your own space for the next edition of our members’ magazine.

Accutrace	 7

All Electronics Corp.	 79

Custom Computer Services	 79

Elprotronic, Inc.	 31

EMAC, Inc.	 39

ESC 2015 - Boston	 65

ESC 2015 - Silicon Valley	 49

HuMANDATA, Ltd.	 33

IAR Systems	 21

Imagineering, Inc.	 C4

Ironwood Electronics	 79

Jeffery Kerr, LLC	 79

Lauterbach GmbH	 25

MaxBotix, Inc.	 79

MyRO Electronic Control Devices, Inc.	 79

NetBurner, Inc.	 1, 15

Pico Technology, Ltd.	 C2

Saelig Co., Inc.	 31

Scidyne Corp.	 79

Technologic Systems	 27, 45

FOUNDER
Steve Ciarcia

PROJECT EDITORS
Chris Coulston, Ken
Davidson, and David
Tweed

OFFICE ASSISTANT
Debbie Lavoie

mailto:circuitcellar@smmarketing.us

CIRCUIT CELLAR • APRIL 2015 #2974

CONTENTS APRIL 2015 • ISSUE 297

EMBEDDED
PROGRAMMING

 � CC COMMUNITY
06 : QUESTIONS & ANSWERS
The Internet of Things: A Very Disruptive Force
An Interview with Geoff Lees
Thoughts on the Internet of Things and future of the
embedded systems industry

 �INDUSTRY & ENTERPRISE
10 : EDITORS' PICKS
Four of the CC staff’s favorite embedded programming
projects

12 : PRODUCT NEWS

17 : CLIENT PROFILE
Triangle Research International, Inc. (Blaine, WA)

 FEATURES
20 : FlashForth in the Laboratory
By Peter Jacobs
A look at FlashForth, a newer 16-bit implementation of
Forth, and its use in a university lab

28 : LCDTV Server
Streaming Media to a TV via the USB Port
By Lindsay Meek
A project that enables an LCD TV equipped with a USB
port to stream media across a LAN

Visual studio
+ USB Suite

Host application
runs here

Develop host application

Eclipse +
GCC Tools

Firmware
runs here

Develop FX3 Fireware

GPIF LL
Designer

Loaded at
run time

Develop state machines

RAM

VHDL
Toolset

Loaded at
run time

Develop state machines

RAM

External
FPGA / ASIC

or sensor

DEVELOPMENT OF A SUPERSPEED DEVICE

LCDTV SERVER PROJECT

BUILD A QUAD BENCH POWER SUPPLY

circuitcellar.com 5

CONTENTS

34 : Rapid Prototyping of SuperSpeed USB Devices
By John Hyde
A guide to the end-to-end development of a
SuperSpeed USB device

67 : FROM THE ARCHIVES
Quad Bench Power Supply
By Brian Millier
How to build a low-capacity bench power supply

 COLUMNS
40 : PROGRAMMABLE LOGIC IN PRACTICE
Super Speed for FPGAs
By Colin O’Flynn
FPGAs can use USB 3.0 and 3.1 bandwidth for
innovative applications

46 : THE CONSUMMATE ENGINEER
Software FMEA/FMECA
Toward Better Software Development Predictability
By George Novacek
An analysis of software FMECA and its potential for
making software development more predictable

50 : EMBEDDED IN THIN SLICES
Estimating Your Embedded Systems Project (Part 3)
Four Heuristics for Embedded Software Development
By Bob Japenga
Tips for estimating costs associated with an embedded
systems project

54 : THE DARKER SIDE
Let's Play with Electrostatic Discharge
By Robert Lacoste
A review of several “ESD events” and advice for
protecting your projects

60 : FROM THE BENCH
Ladder Logic (Part 1)
An Introduction to PLCs
By Jeff Bachiochi
An introduction to PLCs and how they operate

 TESTS & CHALLENGES
77 : TEST YOUR EQ

78 : CROSSWORD

 TECH THE FUTURE
80 : Security Agents for Embedded Intrusion
Detection
By Syed Kamran Haider, Devu Maikantan Shila, &
Marten van Dijk
Why a comprehensive embedded systems security plan
is more important than ever

HOW TO MANAGE ELECTROSTATIC DISCHARGE

@editor_cc
@circuitcellar circuitcellar

WORKING WITH SUPERSPEED USB

CIRCUIT CELLAR • APRIL 2015 #2976
CO

M
M

U
NI

TY

QUESTIONS & ANSWERS

CIRCUIT CELLAR: A bit of business first. Could first
comment on Freescale’s success in the market? The
company’s stock is doing pretty well.

GEOFF: Yes, we don’t know more than everyone else. I
believe the high stock price is a reward for the quality of
our services, products and commitment to our clients. We
also have shown excellent results over the last seven or
eight quarters and have been successful in addressing the
volume markets more efficiently.

CIRCUIT CELLAR: The Embedded World Show is one
of the biggest that specifically focuses on embedded
technologies, new products, and design. What makes this
show special?

GEOFF: In Europe we go to the Electronica in Munich and
also to this show. At Electronica, we meet up with our
clients and distributors. This Embedded show has a much
more technical focus. Here we meet with the individual
designers and technical teams of our clients and see most
in-depth technical discussions. At the Electronica show we

The Internet of Things
A Very Disruptive Force
An Interview with Geoff Lees

We met with Geoff Lees (Senior Vice President & General
Manager of Microcontrollers, Freescale) at the 2015 Em-
bedded World Show in Nuremberg, Germany. We asked
him about the Internet of Things, the big changes on
the embedded systems horizon, and what it takes to be
a successful engineer.

THERE ARE NO GAMES INVOLVED IN OUR PRICING

Take the Accutrace Challenge and see WHY OUR PRICING CANNOT BE BEATEN

www.PCB4u.com sales@PCB4u.com

From same day quick turn prototype to production in under 10 days
Full CAD and CAM review plus design rule check on ALL �erber �les
Materials: Fr4, Rigid, Flex, Metal Core (Aluminum), Polymide, Rogers, Isola, etc.
HDI Capabilities: Blind/Buried Mocrovias, 10+N+10, Via-in-Pad Technology,
Sequential Lamination, Any Layer, etc.
Our HDI Advantage: Direct Laser Drilling, Plasma De-Smear Technology, Laser
Microvia, Conductive Plate Shut.Microvia, Conductive Plate Shut.

Our Capabilities:

If you do, than we
 will match the price
 AND give you $100

 towards your
 next order!

http://www.PCB4u.com
mailto:sales@PCB4u.com

CIRCUIT CELLAR • APRIL 2015 #2978
CO

M
M

U
NI

TY

QUESTIONS & ANSWERS

talk business; here we talk more technology
and what it can do for the client.

CIRCUIT CELLAR: Talking about individual
engineers, we remember last year in your
press conference you mentioned a focus on
hobbyists. That’s quite remarkable for a
company like Freescale. We also see there
is a small “maker lab” in your booth at the
show.

GEOFF: It is important to address makers
and hobbyists for two reasons. First, there
are the sheer numbers. At Maker Show in
New York, you see there a 100,000 people
showing up. At a show like this, it is 20,000 to
25,000. Here we see the engineering teams
of companies. But what is interesting about
the maker community is that individuals
can have an idea or innovation, create and
build the prototypes, but instead of having
a company making this, they have the

community and can even go to market.

CIRCUIT CELLAR: Sometimes we get the
idea that the bigger companies are looking
at the crowd-funding communities as part
of—or as a replacement for—their own
R&D activities. How does that work for a
company like Freescale?

GEOFF: One thing that’s very clear in today’s
world is speed. Sometimes an individual,
with very little obstruction, can have speed
that cannot be matched by companies—and
someone who can respond or react to the
requirements almost instantaneously has
an advantage. There are so many of these.
Finding and communicating with them is
almost an impossible task. You really have
to watch carefully. It is almost impossible to
know where the next innovation is coming
from.

CIRCUIT CELLAR: You call the Internet of
Things, the Internet of Tomorrow?

GEOFF: The IoT is a very disruptive force. It
started out as a buzz, but it is in the “nature”
of microcontrollers to connect and to
communicate. With new Wi-Fi concepts, low-
power and IPv6 the road is clear for many
new applications. To demonstrate the new
technologies we have a “bigger than big”
truck driving through the US. We put it in the
parking lot of companies and demo not only
our own products, but also their products as
well as the solutions of their competitors.
With a show you get the designers or
marketing people. With the truck we also
have CEOs and CTOs for a coffee—the guys
who would not even consider visiting our
website!

CIRCUIT CELLAR: But how will the IoT affect
us?

GEOFF: I currently have eight apps on my
phone that are all IoT controls, monitoring
my house, solar panels, and vehicle. I expect
that number will grow. Also, devices will
talk to devices and create new independent
controls. “Big Ass Fans” is a nice example
of that. That company is making fans but is
also playing a role in home automation. Their
latest model fan talks to the NEST. Only a

“The IoT is a very disruptive force. It started out as a buzz, but it is in
the ‘nature’ of microcontrollers to connect and to communicate.”

circuitcellar.com 9
CO

M
M

U
NITY

QUESTIONS & ANSWERS

small difference in temperature can set the
fan to work rather than your air conditioning,
either by cooling down or circulating the
hotter air downwards.

CIRCUIT CELLAR: Everyone knows that
standards are key to making the IoT really
happen. What role does Freescale have in
this?

GEOFF: We joined up with the Thread
Group. This initiative started with only eight
companies, and that number has grown to 50
in five months, and now we see around 1,000
companies that look for information. If we
see a growth from eight to 50 to 1,000, you
know that there is a momentum which will
result in new standards. The Thread Group
uses existing (IEEE 8082.15.4) technologies
and standards to build a new wireless
mesh protocol that will enable to overcome
the current limitations in wireless home
automation. The Thread Networks will aim
at the simple installation of new nodes and
it can scale up to 250 and more devices in
a single network. No company—whether you
are Cisco or IBM or Oracle—has the power
to set the standard on their own, maybe a
part of it, but not all. This will go as usual,
an initiative will gain critical mass, and then
the momentum drives it through. This will all
be about momentum.

CIRCUIT CELLAR: Apart from the standards,
what do we need on the technology side to
make the Internet of Tomorrow?

GEOFF: Let me give an example. In last
year’s first quarter, Simon Segars, CEO of
ARM, announced that they shipped 50 billion
ARM cores in their partners’ products since
the start of the company in 1990. That is
fascinating, and even more fascinating if you
realize that 10 billion were shipped in the
last 10 months. The ARM technology is one
of the big driving forces. I hear everyone is
explaining that the microcontroller market
has matured. I would say the next five years
we will see many things happening. ARM,
integrated Wi-Fi, and IPv6 will play key roles
in this.

CIRCUIT CELLAR: Are you an engineer?

GEOFF: Yes. I started out with programming
Motorola architectures almost 35 years ago. I
was using the first CMOS 6805 controllers and
also worked with other architectures from
Intel and Zilog. I ended up in distribution as
an application engineer and in applications
management. By then microcontrollers had
become a phenomenal business success and

the applications were becoming more and
more interesting.

CIRCUIT CELLAR: You’ve worked for several
top companies: Siemens, Philips, NXP, and
now for Freescale. What were the biggest
lessons you learned? And what makes an
engineer stand out these days?

GEOFF: I think the emergence of the ARM
architecture and the low-power architecture
really was a trendsetter. I was involved in
bringing the ARM7TDMI with Integrated
Flash to the market, and that really changed
everything. But also after that, being able to
explore the Thumb Instruction set and work
with ARM on that. The other big change I
noticed is the miniaturization. The designs I
worked on in the 1980s did not fit on one
board. It took several boards and additional
analog boards. I worked on projects with
seven processor boards, and now we have all
the functionality in only one device! So
miniaturization and low power have been the
most remarkable for me as an engineer. You
ask me what makes an engineer stand out?
Never stand still, always follow the path of
technology, always look for effective use and
how to get a successful product. As soon you
stop doing this, the technology stagnates,
and for me that is something I never want to
see.

THE MAKING OF A SILICON POWERHOUSE
Soon after this interview was finished, NXP Semiconductors announced
it would acquire Freescale. The combination of these two companies will
create a new silicon powerhouse. Both companies have strong focuses on
the mobile and automotive market, which are two areas where we can
expect significant growth in the coming years.

CIRCUIT CELLAR • APRIL 2015 #29710

EDITORS' PICKS

CO
M

M
U

NI
TY

An Introduction to Verilog
By Kareem Matariyeh (Circuit Cellar 221, 2008)

If you are new to programming FPGAs and
CPLDs or looking for a new design language,
Kareem Matariyeh has the solution for you.
In this article, he introduces you to Verilog.
Although the hardware description language
has been used in the ASIC industry for years, it
has all the tools to help you implement complex
designs, such as a creating a VGA interface or
writing to an Ethernet controller.

Matariyeh writes: “This article is mostly
tailored to engineers who need to learn Verilog
and do not know or know little about the
language. Those who know VHDL will benefit
from reading this article as well and should
be able to pick up Verilog fairly quickly after
reviewing the example listings and reading
content from the Resources at the end of the
article. This article does not go over hardware,
but I have included some links that will help you
learn more about how the hardware interacts
with this language at the end.”

Embedded Programming

This is how Verilog projects are depicted from a top-level design view.

RelatedTasks.v SRAMController.v

WRBlock.v AddressBlock.v DataBlock.v

WriteController.v AddressCounter.v

ReadController.v DirectAddress.v

These articles and others on topics relating to Embedded Programming are
available at www.cc-webshop.com.

Embedded Object-Oriented Programming
By Chris Cantrell (Circuit Cellar 187, 2006)

To be an effective software engineer, you
must have the right tools on hand for generating
top-notch code. Object-oriented programming
is one such tool. Chris Cantrell explains how to
use object-oriented programming to take your
embedded designs to the next level.

Cantrell writes: “Object-oriented
programming isn’t one big tool. It’s actually
a collection of smaller tools that work
together. You’re free to pick and choose your
object-oriented features and your degree of
commitment. In this article, I’ll cover five major
themes and describe how they have evolved
from styles in C to automatic features in C++.
Each feature has its benefits and costs. I’ll
discuss the pros and cons of each so you can
clearly decide when to use each. Where possible,
I will measure the runtime performance cost of
a feature by timing code running on a Game
Boy Advance. After familiarizing you with these
object-oriented features, I’ll explain how they’re
the embedded world.”

C

struct Point {
int x;
int y;
};

void initPoint(struct Point * p) {
 p->x=0; p->y=0;
}

int getX(struct Point * p) {
 return p->x;
}

void setXY(structPoint *p, int a, int b) {
 p->x = a; p->y = b;
}

int main(void) {
 int i;
 struct Point p;
 initPoint(&p);
 i = getX(&p);
 return 0;
}

C++

struct Point {
 int x;
 int y;

 Point() {
 x=0; y=0;
// this->x=0; this->y=0;
 }

 int getX() {
 return x;
// return this->x;
 }

 void setXY(int a, int b) {
 x = a; y = b;
// this->x = a; this->y = b;
 }

};

int main(void) {
 int i;
 Point p;
 i = p.getX();
 return 0;
}

Functions and data go hand in hand. In C language (on the left), functions that
manipulate a structure’s data must be passed a pointer to the target structure.
In C++ (on the right), you forge this relationship automatically by putting the
functions inside the structure’s definition. The resulting binary code is identical..

http://www.cc-webshop.com

circuitcellar.com 11

EDITORS' PICKS

CO
M

M
U

NITY

Microprocessor Glue Logic with Verilog HDL
By Mark Balch (Circuit Cellar 158, 2003)

For reasons of availability and practicality, you may
soon find it necessary to design custom logic for your
digital projects. There are various design techniques to
choose from, but you’ll want one that suits your specific
needs. Mark Balch explains how Verilog HDL may prove
to be the perfect solution for your more complex digital
designs.

Balch writes: “After you decide to implement logic
within a PLD, you’ll need a design methodology to move
ahead and solve the problem at hand. It is possible to use
the same design techniques as those used for discrete
7400 logic implementations. The trouble with graphical
logic representations is that they are bulky and prone
to human error. Hardware description languages (HDL)
were developed to ease the implementation of more
complex digital designs by representing logic with high-
level semantic constructs found in mainstream computer
programming languages. One of the major HDLs in use
today is Verilog, which began as a proprietary product
and was eventually transformed into an open standard.”

Verilog gate, or instance, level design entails the manual connection
of logical entities in a netlist-like form. A typical design uses this
style for interconnecting hierarchal blocks rather than actually
creating Boolean equations.

Control Center Software Design
By Scott Weber (Circuit Cellar 273, 2013)

A collection of nearly autonomous microcontroller-based,
RS-485 interconnected devices was a useful addition to
this designer’s home. But it also came with inconveniences.
What if the devices needed updates or quality checks?
A simple control panel solved the dilemma. This article
describes the control panel’s basic structure and its Model
View-Controller (MVC) paradigm, which is used to organize
the software functionality.

Weber writes: “I built a simple control panel that displays
to a four-line LCD module, showing me the information I
want to see. The control panel also enables me or anyone
else to control the devices. In this article, I will describe
the control panel’s basic structure and go into depth
about the software paradigm referred to as the ‘Model-
View-Controller (MVC).’ This paradigm is used to organize
software functionality into a structure that is easier to
develop, maintain, and enhance. It takes more ROM to
handle it, but in some circumstances, the trade-off is worth
it. I figured this is one of those cases.”

The completed control panel includes a three-gang wall box. Scott
used a nibbling tool to cut out the display’s bezel.

These articles are available at www.cc-webshop.com.

module my_logic (
 A, B, C, Y
);

input A, B, C;
output Y;

wire and1_out, and2_out,
notA;

and_gate u_and1 (
 .in1 (A),
 .in2 (B),
 .out (and1_out)
);

not_gate u_not (
 .in (A),
 .out (notA)
);

and_gate u_and2 (
 .in1 (notA),
 .in2 (C),
 .out (and2_out)
);

or_gate u_or (
 .in1 (and1_out),
 .in2 (and2_out),
 .out (Y)
);

endmodule

View

Model

Devices

Control

User buttons

LCD

In this MVC interaction, the user input is read by the controller and
used to send commands into the network and change the view. The
model information is passed to the view so it can display selected
information to the user.

http://www.cc-webshop.com

CIRCUIT CELLAR • APRIL 2015 #29712
IN

D
U

ST
RY

 &
 E

NT
ER

PR
IS

E

PRODUCT NEWS

SIMPLE SWITCHER NANO MODULES
Texas Instruments has introduced four new SIMPLE

SWITCHER nano power modules for space-constrained
applications. The compact 17- and 5-V modules expand TI’s
SIMPLE SWITCHER module portfolio to address 100-mA to
2-A industrial designs, such as servers, factory automation,
test and measurement, and network security cameras.

TI’s 17-V, 0.65-A LMZ21700 and 1-A LMZ21701—as well
as the 5-V, 1-A LMZ20501 and 2-A LMZ20502 DC/DC power
modules—achieve an overall solution size of up to 40%
smaller than a discrete implementation. The modules
combine high efficiency with high density and reduce EMI,

even while operating at low power. All four modules enable
designers to easily add more features and functionality to
their systems in a smaller form factor, while speeding time
to market.Watch a demonstration on how to create a high-
density, multi-output design.

Key features and benefits:

•	 Small solution sizes reduces board space by 40%
when compared to discrete solutions.

•	 Low component count simplifies design and increases
system reliability.

•	 Modules provide effective power management over
the entire operating range.

•	 Low output ripple at less than 10 mVPP for noise
sensitive rails.

•	 Low EMI complies with the CISPR 22 (Class B)
radiated and conducted electromagnetic interference
standard.

•	 Modules enable easy implementation of multiple
power rail sequencing using Power Good pin.

The four nano modules are available now in volume
production. The LMZ21700 and LMZ21701 cost $1.55 and
$1.75, respectively, in 1,000-unit quantities. The LMZ20501
and LMZ20502 cost $1.55 and $1.90, respectively, in 1,000-
unit quantities.

Texas Instruments
www.ti.com

NEW MOTION MODULE FOR EASY MOTION MONITORING
Microchip Technology announced at the Embedded

World conference in Germany the MM7150 Motion Module,
which combines Microchip’s SSC7150 motion co-processor
combined with nine-axis sensors. Included in compact form
factor are an accelerometer, magnetometer, and gyroscope.
With a simple I2C connection to most MCUs/MPUs, embedded
applications and Internet of Things (IoT) systems can easily
tap into the module’s advanced motion and position data.

The SSC7150 motion co-processor is preprogrammed with
sensor fusion algorithms that intelligently filter, compensate,
and combine the raw sensor data to provide highly accurate
position and orientation information. The small module
self-calibrates during operation utilizing data from the
prepopulated sensors—Bosch BMC150 (six-axis digital
compass) and the BMG160 (three-axis gyroscope).

The single-sided MM7150 motion module is easily soldered
down during the manufacturing process. You can develop
motion applications for a variety of products with Microchip’s
MM7150 PICtail Plus Daughter Board. The MM7150 Motion
Module is well suited for a wide range of applications:
embedded (e.g., portable devices and robotics), industrial
(e.g., commercial trucks, industrial automation, and patient
tracking), and consumer electronics (e.g., IoT, remote
controls, and wearable devices).

The MM7150 is supported by the MM7150 PICtail Plus
Daughter Board (AC243007, $50) that plugs directly into
Microchip’s Explorer 16 Development Board (DM240001, $129)

to enable quick and easy prototyping utilizing Microchip’s
extensive installed base of PIC microcontrollers.

The 17 mm × 17 mm MM7150 is priced at $26.76 each in
1,000-unit quantities.

Microchip Technology
www.microchip.com

http://www.ti.com
http://www.microchip.com

circuitcellar.com 13
IND

U
STRY &

 ENTERPRISE

PRODUCT NEWS

NEW IoT-ENABLED PRODCUCT PORTFOLIO &SEVERCES
Wind River recently announced that it has enhanced and

expanded its Wind River Helix product portfolio to address
the system-level opportunities and challenges of the Internet
of Things (IoT). In addition, the company has created an IoT
professional services offering to assist
customers with the creation and
deployment of IoT apps.

Wind River has added application
and data services in the cloud to its
industry-leading operating-based
technology stack that is an integral
part of the Intel IoT Platform. The
Edge Management System agent
has been integrated with VxWorks
real-time operating system (RTOS),
systems and IoT software platform
via Wind River Edge Management
System, its recently launched cloud Wind River Linux, and Wind
River Intelligent Device Platform.

The agents bring secure cloud connectivity to Wind River
products to facilitate data capture, rules-based data analysis
and response, configuration, and file transfer. Specifically, these
integrations provide device-level execution capabilities, remote
management and provisioning capabilities at the gateway, as
well as cloud-based delivery of software updates. This allows
for seamless interaction with edge devices and simplified device-
side application development.

To complement its new IoT-enabled product portfolio,
Wind River now has an IoT professional services offering to

bring IoT concepts to critical infrastructure and other markets
where safety and security are imperatives. The new offering
will assist customers in configuring IoT systems and getting
them to market faster with reduced risk and lower cost of

ownership. Services include an
IoT startup package, device agent
configuration, application/agent
interfacing, cloud applications
development, and IoT safety and
security requirements support.

Further expanding its
operating system suite, Wind
River has also announced the
availability of Microkernel Profile
for VxWorks. The microkernel
profile is a tiny-footprint RTOS to
facilitate the creation of IoT-ready

differentiated devices, such as sensor hubs, microcontrollers, and
wearables, as well as High Performance Embedded Computing
(HPEC) platforms to address intensive data processing. It is
based on proven digital signal processing RTOS technology
deployed in countless applications.

These product additions and enhancements are the latest in a
series of IoT-related updates to the company’s operating system
suite, which include Security Profile for VxWorks, Virtualization
Profile for VxWorks, and Security Profile for Wind River Linux.

Wind River
www.windriver.com

TWO SOURCE/MEASURE UNITS FOR N6700 MODULAR POWER SYSTEMS
Keysight Technologies recently added two source/measure

units (SMUs) to its N6700 Series modular power systems. The
N6785A two-quadrant SMU is for battery drain analysis. The
N6786A two-quadrant SMU is for functional test. Both SMUs
provide power output up to 80 W.

The two new SMUs expand the popular N6780A Series
SMU family by offering up
to 4× more power than
the previous models. The
new models offer superior
sourcing, measurement,
and analysis so engineers
can deliver the best possible
battery life in their devices.
The N6785A and N6786A
SMUs allow engineers to test
devices that require current
up to 8 A, such as tablets,
large smartphones, police/
military hand-held radios, and
components of these devices.

The N6780A Series SMUs
eliminate the challenges of measuring dynamic currents with
a feature called seamless measurement ranging. With seamless
measurement ranging, engineers can precisely measure
dynamic currents without any glitches or disruptions to the
measurement. As the current drawn by the device under test
(DUT) changes, the SMU automatically detects the change

and switches to the current measurement range that will
return the most precise measurement.

When combined with the SMU’s built-in 18-bit digitizer,
seamless measurement ranging enables unprecedented
effective vertical resolution of ~28-bits. This capability lets
users visualize current drain from nA to A in one pass. All

data needed is presented
in a single picture, which
helps users unlock
insights to deliver
exceptional battery life.

The new SMUs are
a part of the N6700
modular power system,
which consists of the
N6700 low-profile
mainframes for ATE
applications and the
N6705B DC power
analyzer mainframe for
R&D. The product family
has four mainframes

and more than 30 DC power modules, providing a complete
spectrum of solutions, from R&D through design validation
and manufacturing.

Keysight Technologies
www.keysight.com

http://www.windriver.com
http://www.keysight.com

CIRCUIT CELLAR • APRIL 2015 #29714
IN

D
U

ST
RY

 &
 E

NT
ER

PR
IS

E

PRODUCT NEWS

3.3-V/5-V 4-Mbps CAN TRANSCEIVER
Linear Technology Corp. recently introduced the LTC2875, an

exceptionally rugged, high-voltage-tolerant controller area network
(CAN) transceiver to greatly reduce field failures without the need
of costly external protection devices. In practical CAN systems,
installation cross-wiring faults, ground voltage faults or lightning
induced surge voltages can cause overvoltage conditions that
exceed absolute maximum ratings of typical transceivers. The
LTC2875 features ±60-V overvoltage fault and ±25-kV HBM ESD
protection on the data transmission lines, protecting bus pins
during operation and shutdown. Whether a circuit is transmitting,
receiving or powered off, the LTC2875 tolerates any voltage within

±60 V without damage, increasing the robustness of typical CAN
networks.

CAN bus systems are becoming increasingly popular in industrial
controls, instrumentation networks and automotive electronics.
The CAN bus has a well defined protocol stack, with support for
standalone controllers, FPGAs and ASICs, making implementation
easier over alternative interfaces, such as RS-485. The LTC2875
provides the flexibility to be powered from a 3.3-V or 5-V rail, which
is very useful in industrial applications where a 5V rail may not
be present. In addition to the high fault and ESD protection, the
device features a low electromagnetic emission (EME) driver with
a transmit data (TXD) dominant timer to prevent faulty controllers
from clamping the bus, as well as a high electromagnetic immunity
(EMI) receiver with an extended ±36-V common mode range to
enable operation in electrically noisy environments and in the
presence of ground loops. The LTC2875 features a high speed data
rate of 4 Mbps with an adjustable slew rate for data rates as low
as 1 kbps. A shutdown mode brings all of the LTC2875’s outputs to
high impedance and reduces power consumption to 1 µA.

The LTC2875 is offered in commercial, industrial, automotive
and military (–55°C to 125°C) temperature grades and is available
in 3 mm × 3 mm DFN-8 and SO-8 packages, with industry-standard
pinouts.

Pricing starts at $1.72 each in 1,000-piece quantities.

Linear Technology
www.linear.com

4-PLL GENERATORS FOR NEXT-GEN CONSUMER & NETWORKING PRODUCTS
Cypress Semiconductor Corp. has announced a new

high-performance programmable clock generator family
that’s intended to simplify the design of consumer and
networking systems. The new CY27410 4-PLL (phase-locked
loop) clock generator can generate up to 12 programmable
output frequencies on a single chip with superior jitter
performance. The clock reduces both board space and BOM
costs by consolidating system components to provide a
flexible, low-cost solution.

With support for frequencies up to 700 MHz and
RMS phase jitter of 0.7 ps, the CY27410 family supports
reference clocks for PCIe 1.0/2.0/3.0, SATA1.0/2.0, 10GbE,
and USB1.0/2.0/3.0 peripherals. The devices support
on-board programming using I2C interface, adding to
design flexibility. They can also store up to eight different
configuration settings that are selectable using external
digital control pins.

The family supports 12 single-ended clock outputs, as
well as eight differential output pairs that can be configured
as HCSL, LVPECL, LVDS, CML, or LVCMOS outputs. The
devices also integrate a unique combination of value-added
features that simplify design, including VCXO, glitch-free
outputs, EMI-reduction, configurability as a zero or nonzero
delay buffer, early/late clocks and PLL cascading.

The CY27410 clocks come with the CY3679 evaluation
kit and CyClockWizard 2.0 programming software to help

designers create their desired frequencies and to easily
check device performance.

The CY27410 clock generators are currently sampling.
Production expected in Q2 2015. The devices are available
in a 48-pin QFN package.

Cypress Semiconductor Corp.
www.cypress.com

http://www.linear.com
http://www.cypress.com

C

M

Y

CM

MY

CY

CMY

K

COREMODULE-AD-NOV2013_NV_CC.pdf 1 9/23/2013 10:20:30 AM

www.netburner.com/kits
mailto:sales@netburner.com
www.netburner.com

CIRCUIT CELLAR • APRIL 2015 #29716
IN

D
U

ST
RY

 &
 E

NT
ER

PR
IS

E

PRODUCT NEWS

GECKO BLUETOOTH SMART SOLUTIONS FOR LOW-POWER WIRELESS CONNECTIVITY
Silicon Labs today has launched a Bluetooth Smart solutions

portfolio intended to minimize the energy consumption, cost,
and complexity of wireless Internet of Things (IoT) designs.
Silicon Labs’s new Blue Gecko solutions include ultra-low-power
wireless system-on-chip (SoC) devices, embedded modules,
and Bluegiga’s software development kit (SDK) and Bluetooth
Smart software stack. Blue Gecko
wireless SoCs and modules help
you simplify design and speed
time to market for a wide range
of applications (e.g., connected
home, wearable, and automotive).

The Blue Gecko portfolio
addresses the largest, fastest-
growing low-power wireless
connectivity opportunity in the
IoT market. It provides developers
with the flexibility to begin
development with modules and
transition to SoCs when needed
with little to no system redesign.

The first in a family of wireless
SoCs optimized for IoT applications,
Blue Gecko SoCs combine Silicon Labs’ energy-friendly EFM32
Gecko MCU technology with an ultra-low-power Bluetooth Smart
transceiver. This innovative, single-die solution provides industry-
leading energy efficiency, the fastest wake-up times, superior
RF sensitivity and no-compromise MCU features combined with
the Bluegiga Bluetooth Smart software stack to help developers
reduce system power, cost and time to market. Unlike other
Bluetooth Smart IC alternatives, a Blue Gecko SoC can transmit
+10 dBm or higher output power with its fully integrated power
amplifier and balun, further reducing design complexity.

Blue Gecko SoCs are based on the ARM Cortex-M3 and M4
cores and offer 128- to 256-KB flash sizes and 16- to 32-KB RAM
sizes. The SoCs integrate an array of low-energy peripherals
as well as Silicon Labs’s Peripheral Reflex System (PRS) for
autonomous peripheral operation. The Blue Gecko SoC family

also offers a roadmap of enhanced flash and RAM memory sizes
and additional package options to meet future application needs.

Bluegiga modules based on Blue Gecko SoCs are designed
to help developers accelerate time to market and reduce
development costs and compliance risks by providing a
precertified, plug-and-play RF design. Bluegiga Bluetooth Smart

modules incorporate all features of
Blue Gecko SoCs and are certified
for use in all key markets including
North America, Europe, Japan and
South Korea. Bluegiga modules
include the Bluegiga Bluetooth
Smart software stack and profile
toolkit and come with 256 kB flash
and 32-KB RAM, providing ample
available memory for onboard
applications. Flexible hardware
interfaces enable easy connection
to a variety of peripherals and
sensors, and an integrated antenna
makes RF operation consistent and
straightforward for the design

engineer. Bluegiga Bluetooth Smart
modules provide very low power operation, enabling wireless
system designs to be powered from a standard 3-V coin cell
battery or two AAA batteries.

Samples of Bluegiga modules based on Blue Gecko SoCs are
scheduled to be available in late Q2 2015. Samples of Blue Gecko
wireless SoCs are planned to be available in early Q3 in 5 mm
× 5 mm QFN32 and 7 mm × 7 mm QFN48 packages. Pricing for
Blue Gecko-based Bluegiga modules starts at $4.99 in 10,000-
unit quantities. Blue Gecko SoC start at $0.99 in 100,000-unit
quantities. The Bluegiga SDK and Bluetooth Smart software
stack will be available to Silicon Labs customers at no charge.

Silicon Laboratories
www.silabs.com

M2M/IoT INTEGRATION PLATFORM
Eurotech recently announced the official release

of Everyware Cloud 3.5 (EC), the M2M/IoT Integration
Platform. The EC machine-to-machine (M2M)
Integration Platform is intended to simplify device and
data management by connecting distributed devices
over secure and reliable cloud services. It enables you
to connect, configure, and manage devices through
the lifecycle, from deployment to retirement.

With EC 3.5 a set of new remote features is
available: device configuration, device control, device
provisioning, and device update. These features
enable the Everyware Cloud Web Console to be the
single point of administration for all connected
devices, and make the Everyware Cloud REST APIs
the single programmable interface to remote devices.
In addition, security and reliability are enhanced
with Two-Factors-Authentication and platform Health
Monitoring.

By using EC, you benefit from:

•	 Short time to market
•	 Pay-as-you-go
•	 Open Standard based
•	 Flexible Deployment from public cloud, to cloud-in-a-box

(Everyware Server)
•	 Device Enablement for effective asset management and

asset maintenance
•	 Data Enablement
•	 System Enablement for reliable, scalable, secure and user-

friendly platform administration
•	 IoT Application Enablement for simple integration with

enterprise business software applications

You can try EC for free for 90 days.

Eurotech
www.eurotech.com

http://www.silabs.com
http://www.eurotech.com

circuitcellar.com 17

CLIENT PROFILE

IND
U

STRY &
 ENTERPRISE

Triangle Research International, Inc.
www.triplc.com
11871 Horseshoe Way #2109
Richmond, BC V7A5H5, Canada

CONTACT: Wayne Lye (wayne@triplc.com)

FEATURED PRODUCTS: The FMD88-10 is one of the
most popular Triangle Research Super PLCs with eight
DI, eight DO, 10 analog I/Os, integrated Ethernet, RS-
485/232, powerful TRiLOGI Ladder+BASIC programming,
expandability. Prices start at $229 before OEM quantity
discounts (www.triplc.com/fmd88-10.htm). The SmartTILE-
Fx is for the OEM who needs an in-house custom-build PLC.
It is an advanced Fx-series PLC brain-board with integrated
Ethernet that easily plugs into a customer-designed carrier
I/O board. It supports up to 256 DI/DO and analog I/Os
including UART interface. I costs $99 to $195 depending on
the quantity (www.triplc.com/smarttile.htm).

WHY SHOULD CC READERS BE INTERESTED? Compared
to building a controller from scratch each time, the
SmartTILE-FX lets OEMs custom-build their own PLC to
significantly shorten time to market for all new product
line releases, save money from reduced assembly man
hours, eliminate unnecessary components that come with

off-the-shelf PLCs, and develop a consistent standard for
post-sales equipment troubleshooting, maintenance, and
related training.

Circuit Cellar prides itself on presenting readers with
information about innovative companies, organizations,
products, and services relating to embedded technologies.
This space is where Circuit Cellar enables clients to present
readers useful information, special deals, and more.

cc-webshop.com

Circuit Cellar 2014
Digital Archive

With this digital subscription, you have
access to all 12 issues of Circuit Cellar 2014
from any computer or tablet at anytime.
Readers can explore project ideas,
bookmark pages, and make annotations
throughout each issue.

Circuit Cellar 2014 CD
CD includes 12 issues of Circuit Cellar in
PDF format along with related article code.

Order yours today

http://www.triplc.com
mailto:wayne@triplc.com
http://www.triplc.com/fmd88-10.htm
http://www.triplc.com/smarttile.htm
www.cc-webshop.com

CIRCUIT CELLAR • APRIL 2015 #29718
FE

AT
U

RE
S

The recent arrival of the Rosetta Lander
PHILAE at comet 67P/Churyumov-

Gerasimenko is a good example of the Forth
programming system controlling a low-
resource system.[1,2] Forth, which has been
in use for more than 40 years, excels at
real-time machine control and is particularly
convenient for low-resource microcontrollers
where it can provide a fully interactive
development environment on a single chip.
[3] As Mahon Kelly and Nicholas Spies explain in
FORTH: A Text and Reference, it is also a flexible
programming environment, produces fast
programs, is miserly with memory, and allows
complete control of the microcontroller.[4]

At The University of Queensland’s
Hypersonics Laboratory, researchers use a
number of shock tubes and expansion tubes to
produce very high-speed flows for the testing
of Scramjet engines and reentry aeroshells.
Test flow speeds can reach 15 km per second,
but are usually of very short duration, from
a couple of hundred microseconds up to
several milliseconds. In support of some of
the experiments, we build a few bespoke
monitoring, signaling, and signal-conditioning
devices that have a microcontroller as a
central component and FlashForth as the

development environment. This combination
has proven to be a convenient substrate for
building small devices. With command-line
access to the hardware peripherals via a serial
port, the programmer can sit and interactively
manipulate the register bits to experiment
on new hardware and, when the peripheral
is understood, the same commands may be
captured as word definitions for building the
final application.

BACKGROUND ON FORTH
Invented by Charles Moore, Forth is an

extensible language that provides a basic
structure of stacks and a dictionary.[3] It can
be augmented for any particular problem.
Having the stack brought to the fore in the
programmer’s thoughts is somewhat unusual
for a programming language; however,
variables are available for persistent data that
needs to be accessed by multiple sections of
code. Although arrays and data structures are
usually not provided in the base system, it is
easy to add the required words via Forth’s
defining words and use them as normal.
Making an array-defining word is a typical
text book exercise. Forth has some subtle
ideas, but, as noted by Kelly and Spies, you

FlashForth in the
Laboratory

The Forth language—which has been around for 40 years—is well
suited for real-time machine control and some instances when you
need to implement in a low-resource environment. FlashForth is
a newer 16-bit implementation of Forth that merges the separate
memories of the Harvard architecture into a single 64-KB memory
model with little overhead. This article details how Forth is used
in a university lab to enable convenient real-time interaction with
hardware.

By Peter Jacobs (Australia)

circuitcellar.com 19
FEATU

RES

don’t need many of them to write useful
programs.

Mikael Nordman’s FlashForth is a fairly
recent 16-bit implementation of Forth for
Microchip Technology PIC and Atmel AVR
microcontrollers that elegantly unifies
the separate memories of the Harvard
architecture into a single 64-KB memory
model with very little overhead. It is available
for download, licensed with the GNU GPL,
and is easy to program into your choice
of microcontroller. There are variants of
FlashForth for PIC18, PIC24, dsPIC33, and
Atmel ATmega microcontrollers. A tutorial
guide for the use of FlashForth on a range of
simple hardware devices is also available for
download (https://espace.library.uq.edu.au/
view/UQ:330707).

A TASTE OF FLASHFORTH
When trying FlashForth, the first task

is to program the interpreter provided
at the SourceForge project site into your
microcontroller using a suitable device
programmer. There is assembly source
code for all variants, but there is also a
preassembled binary file for the ATmega
microcontrollers, such as the ATmega328
found on Arduino-style boards. Once the
FlashForth interpreter is resident on your
microcontroller, your principal development
environment can be as simple as a terminal
program running on a PC, connected via a
convenient serial port or USB-to-serial bridge.
For extra convenience, the terminal program
should have the ability to send the content of
files down the serial connection.

Forth is an interactive environment,
with an input buffer that accepts text from
the user console and a text interpreter that
is a mix of classic interpreter and compiler,
depending on its state. FlashForth starts in

interpret mode and certain words can be
used to change into compile mode and back
again. A simplified view of the process of
interpreting the text from the input buffer
is shown in Figure 1. Words within the text
are delimited by spaces. Given a new word,
the interpreter searches the dictionary for its
definition. If a matching definition is found,
it is used, either compiled into the current

FIGURE 1
Flowchart for the FlashForth outer interpreter.

Interpret

Parse new word
from input buffer

Compile
mode?

Immediate
word?

Yes

Yes

Yes

Yes

Yes

Compile
mode?

Compile value
into current
definition

Compile word
into current
definition

Push value
onto stack

Execute
word

Yes
End

End

Reset stack

Is null?

In dictionary?

Is number? Print "undefined" message

Print "ok" message

No

No

No

No

No

No

FIGURE 2
A schematic diagram for the converter
board

https://espace.library.uq.edu.au/view/UQ:330707
https://espace.library.uq.edu.au/view/UQ:330707

CIRCUIT CELLAR • APRIL 2015 #29720
FE

AT
U

RE
S

definition or executed. If the word was not
found in the dictionary, an attempt is made
to interpret it as a number. If this fails, an
error message is written and the stack reset.
Successfully interpreted numbers are either
pushed onto the data stack (interpret mode)
or compiled into the current definition. For
example, entering the following:

2 3 *

That is followed by a return and results in the
message:

ok<#,ram> 6

This shows the classic reverse Polish
notation in action. The 2 is not found in the
dictionary but is identified as a number and
pushed onto the top of the data stack. The 3 is
likewise identified and pushed on top of the 2.
Then the * token is looked up and it is found
to be defined as the word for multiplication
of two numbers. Since FlashForth is in
interpret mode, this definition is executed by
the inner interpreter, which expects to find
appropriate data sitting on the data stack. In

this case, the top two elements are consumed
by multiply and, on completion of its work,
the result 6 is left on the top of the stack.
The outer interpreter then indicates that it
has done its work successfully by writing the
prompt ok, followed by <#,ram>, indicating
that numbers are represented in decimal
and that the current data memory context is
static RAM and, lastly, a listing of the data
stack elements.

In Forth programming, your program is
written by defining new words. These words
use previously defined words until, at the top-
level, a single word is defined that is the main
word to run your application program. In this
way, your application is an extension of Forth.
Most words are created as colon definitions
(starting with : and ending with ;) that are
compiled into the dictionary. The program
can be compiled as a series of small pieces
that can each be tested interactively. This
then allows convenient exploration of new
hardware via experimentation, something
that we can put to good use in the teaching
laboratories, as well.

For example, let’s make a word to compute
a circle’s circumference from its diameter.

: circumf (n1 -- n2) 355 113 */ ;

Our definition makes use of the fact that
355/113 is a pretty good approximation to pi.
It is compiled into the dictionary as the word
circumf and is now available for use. The
stack-effect comment (between parentheses)
indicates that, when executed, circumf will
expect the value for diameter to be sitting
as the top element of the data stack. When
executed, the numbers 355 and 113 will
be pushed onto the stack after n1, then the
scale operation */ will take all three 16-bit
integer values from the stack and compute
the 16-bit result. To avoid loss of precision,
the scale operator uses a 32-bit intermediate
representation as the computation is being
done. The stack effect comment also indicates
that the 16-bit result will be left on the stack.
Note that the spaces around the opening
parenthesis of the stack effect comment
are significant. Without them, the comment
would not be identified as such, the token
circumf(n1 would be considered a valid
name and we wouldn’t have ended up with the
definition as we intended. Anyway, exercising
our new definition, we might try:

301 circumf ok<#,ram> 945

If we were using floating point numbers,
we might expect a result of around 945.6
but the integer arithmetic has given us the
truncated value of 945. Although all of the

LISTING 1
Source code for the blink example.

\ Blink LED on pin 13 of Arduino Uno.
-blink
marker -blink

$24 constant ddrb
$25 constant portb
%100000 constant bit5

: setup
 bit5 ddrb mset \ digital output
;

: main
 setup
 begin
 bit5 portb mset \ turn LED on
 #1000 ms
 bit5 portb mclr \ turn LED off
 #1000 ms
 again
;

ABOUT THE AUTHOR
Peter Jacobs (peterj@mech.uq.edu.au) is a lecturer in the School of Me-
chanical and Mining Engineering at The University of Queensland, where he
teaches students in the mechanical and mechatronic streams. His interests
in computing range from small sensor systems based on microcontrollers to
large simulations of high speed gas flows on cluster computers.

mailto:peterj@mech.uq.edu.au

www.iar.com/crun

CIRCUIT CELLAR • APRIL 2015 #29722
FE

AT
U

RE
S

numbers put into and received from the
definition have been adequately represented
as 16-bit values, this example has benefited
from the scale operator using a 32-bit
intermediate result.

So far, this is all a little too much like
interaction with a standard personal
computer. I started off this article by saying
that Forth excels in the programming of
resource-limited systems, so let’s have a look
at the classic blink-LED example for Arduino

so we get a feel for how FlashForth interacts
with hardware. The FlashForth binary, as
provided for download on the FlashForth web
site, can be easily programmed into the Atmel
ATmega328 microcontroller on the SparkFun
RedBoard.

Starting with a fresh installation, the
code in Listing 1 can be typed in or sent as a
raw file via the serial port connection. Here,
the first three lines are just a bit of house-
keeping that make our lives a bit easier. The
first is a single-line comment, introduced by
a backslash character, and this is purely an
aid for my memory. We’ll get to the second
line shortly. The third line marks the state of
the dictionary, such that the next time the
-blink word is executed, the dictionary state
and data-memory allocations will be reset to
their state before the mark was made. On the
first occasion that this file is loaded, -blink
(to be executed on the second line) is not
found in the dictionary, and the interpreter
will just say so. However, on subsequent
reloads of the same file, the execution of this
word will reset the dictionary and memory
allocations, so that the following definitions
in the file can be remade. FlashForth is a
little different from PC-based Forths that run
fully in RAM. FlashForth definitions are put
into nonvolatile program (flash) memory and
cannot be accidentally overwritten. They must
be explicitly removed from program memory
and the marker mechanism is one way of

PHOTO 1
PIC24FV16KM202-I/SP microcontroller
mounted on strip-board with signal
conditioning for channels A0 through
A3.

PHOTO 2
Boxed converter board with BNC connectors for the analog signals.

circuitcellar.com 23
FEATU

RES

doing that. To completely reset the dictionary
and memory allocations, back to the default
values of a fresh FlashForth install, we can
use the word empty.

The Arduino-like boards typically have
a light-emitting diode attached to pin 13
and the RedBoard is no exception. This pin
is controlled by bit 5 on digital port B. To
make the rest of the program a little more
readable, the next three lines of code define
constants ddrb, portb, and bit5 for
later use. Note the use of $ and % prefixes
to indicate hexadecimal and binary number
representations, respectively. The setup and
main words have been defined to model the
corresponding setup and loop functions in
the original Arduino tutorial code.

The setup word in Listing 1 uses the bit5
bit-mask and ddrb data-direction register
address to set the relevant bit for output. The
mset word expects a bit-mask and a memory
address to be sitting on the stack. When
executed, it sets the bits at the specified
memory location to the corresponding
nonzero bits of the bit-mask. Here bit5 has
only one nonzero bit.

The main word starts by invoking setup
and then enters a loop, starting with begin
and ending with again. The body of the
loop first turns the LED on by setting the
appropriate bit in the portb register, waits 1
second, turns the LED off by clearing the same
bit in the portb register, and waits another
second.

Ignoring the reverse Polish notation
of Forth, there is a close correspondence
between the FlashForth code and the Arduino
code. The advantage of the FlashForth
environment is that it is fully interactive and
resides completely on the microcontroller. You
are free to interact with the bits of just about
any register and explore the microcontroller’s
hardware. Once you understand the
hardware, particular actions may be defined
into useful words and retained for future use.
Further reading on FlashForth the language
is available for download (https://espace.
library.uq.edu.au/view/UQ:321883). Although
I concentrate on the simplest FlashForth
variant for the PIC24 and AVR microcontrollers
in this article, there is built-in USB capability
for various PIC18 microcontrollers.

PERIODIC A/D CONVERSION
For a class laboratory exercise recently

conducted by members of the Hypersonics
Laboratory, we needed to quickly assemble a
three-channel 12-bit ADC as part of a color-
ratio pyrometer. The converter needed to
report voltages at the rate of a couple of times
per second. The period between samples was
somewhat arbitrary but needed to be known

LISTING 2
Source code for configuring and using the analog-to-digital converter module.

-my-adc
marker -my-adc
\ Read and report the analog value on AN0 through AN3.

\ Registers of interest on the PIC24FV16KM202
$0770 constant pmd1
$02c0 constant trisa
$02c8 constant trisb
$0300 constant adc1buf0
$0340 constant ad1con1
$0342 constant ad1con2
$0344 constant ad1con3
$0348 constant ad1chs
$04e0 constant ansa
$04e2 constant ansb

: init-adc (--)
 1 pmd1 mclr \ enable the AD converter
 %11 trisa mset \ want RA1-RA0 as analog input
 %11 ansa mset
 %11 trisb mset \ want RB1-RB0 as analog input
 %11 ansb mset
 \ leave ad1con2 at default 0 to get AVDD-AVSS range
 $9f00 ad1con3 ! \ RC clock with 31 TAD sampling time
 $8470 ad1con1 ! \ 12-bit mode, auto-convert but
											 \ manually start sampling
;

: set-adc-chan (u --)
 %11 and ad1chs ! \ allow only selection of AN0 through AN3
;

: adc@ (-- u)
 1 ad1con1 mclr \ Clear DONE
 %10 ad1con1 mset \ Start sampling
 begin 1 ad1con1 mtst until \ Wait until DONE
 adc1buf0 @
;

\ Exercise the application, writing digitized values
\ periodically until any key is pressed.
: test-adc (--)
 decimal
 init-adc
 begin
 #0 set-adc-chan adc@ u.
 #1 set-adc-chan adc@ u.
 #2 set-adc-chan adc@ u.
 #3 set-adc-chan adc@ u.
 cr
 #500 ms
 key? until
;

https://espace.library.uq.edu.au/view/UQ:321883
https://espace.library.uq.edu.au/view/UQ:321883

CIRCUIT CELLAR • APRIL 2015 #29724
FE

AT
U

RE
S

accurately.
We chose a Microchip Technology

PIC24FV16KM202-I/SP microcontroller to do
the conversions and report the data as text
because it can conveniently operate at 5 V
and has a number of nice analog peripherals,
which we happened to have been exploring
for other applications in the lab. The
microcontroller was tethered to a personal
computer running Python for data recording
and processing. This connection was provided
by a FTDI TTL-232 cable which also powered
the microcontroller.

Figure 2 is a schematic diagram for
the converter board. Photo 1 shows the
components assembled on to strip-board.
Since we were building only three of these and
the discrete components were few, this form
of construction was convenient. However,
because of the laboratory environment, it
was important to house the boards in robust
cases with BNC connectors for the analog
voltages (see Photo 2). Discounting labor, this
packaging dominated the cost of the build.

With power and serial-port communication
coming through the TTL-232 cable, there’s
not a lot beyond the resistor dividers and
capacitors for the A0 through A3 analog
channels at the top left of the photograph.
This signal conditioning is used to get the
0-10V output from the photodetectors into the
0- to 5-V range of the microcontroller and to
provide an adequate input to the ADC. Since
the optical system needed to be calibrated
every time it was adjusted and we were only
interested in the ratio of the photodetector
signals, feeding the USB voltage to the
microcontroller and using it as the reference
voltage for the ADCs was not a problem. Note
that, although not indicated in the schematic
diagram, the selection of bias voltage was
only available on analog channel 0. The others
were hard-wired to the zero volt rail.

Development of the firmware first explored
the use of the ADC on the microcontroller, then
the use of the Timer1 peripheral hardware
for regulating the period of the main loop.
The final application program made use of
the service words defined for controlling the
peripheral modules.

Listing 2 shows the FlashForth firmware
for interacting with the ADC. It starts with the
definitions for the various registers of interest,
followed by definitions of service words and
ends with a sample application to try out all
that has been defined. The init-adc word
sets the shared port pins appropriately and
configures the ADC peripheral hardware. The
set-adc-chan word masks the channel
selection value to limit it to the appropriate
range and then writes it into the ad1chs
register in order to route the selected input

LISTING 3
Source code for using the hardware timer and compare-capture module.

-my-timer
marker -my-timer
\ Use MCCP1 as a timer to provide a regular period for
\ the super-loop.

\ Registers of interest on the PIC24FV16KM202
$0772 constant pmd2
$0084 constant ifs0
$0140 constant ccp1con1L
$0150 constant ccp1tmrL
$0152 constant ccp1tmrH
$0154 constant ccp1prL
$0156 constant ccp1prH

eeprom 2variable period-count \ 32-bit count
ram variable my-count

: init-tmr (--)
 1 pmd2 mclr \ Enable MCCP1 peripheral
 $80e0 ccp1con1L ! \ 32-bit with internal clock and 64 prescale
 \ With F_cy = 16MHz, we expect a timer tick every 4 microseconds.
;

: reset-tmr (ud --)
 ccp1prH ! ccp1prL ! \ Set period-register count
 0 ccp1tmrH ! 0 ccp1tmrL ! \ Clear timer count
 $80 ifs0 mclr \ Clear CCT1IF
;

: wait-for-tmr (--)
 begin
 cwd \ We may be here a while, so clear the WDT
 $80 ifs0 mtst \ CCT1IF
 until
;

: stop-tmr (--)
 $8000 ccp1con1L mclr
;

: set-ms-period (u --)
 #250 um* \ Scale from milliseconds to ticks.
 period-count 2!
;

#500 set-ms-period \ Set a 0.5 second period by default.

\ Exercise the periodic tick, until a key is pressed
: test-tmr (--)
 init-tmr
 0 my-count !
 begin
 period-count 2@ reset-tmr \ 32-bit value
 my-count @ dup u. 1+ my-count ! \ Print and increment
 \ loop count
 wait-for-tmr
 key? until
;

circuitcellar.com 25
FEATU

RES

pin to the ADC. The adc@ word sets off the
ADC sampling process and waits for the
conversion to be complete. It then fetches
the ADC result value from the adc1buf0
register and leaves it on the top of the data
stack. Finally, the test-adc word exercises
the previously-defined service words by
periodically sampling all four channels and
writing the results to the user console. The
u. word renders the ADC result to the console
as an unsigned value.

Since we wanted the reporting period to
be precise, we elected to control the period
with a hardware timer. Rather than use the
ms word to get delays, we wait at the end
of each pass through the main loop for the
expiry of the hardware timer. Listing 3 shows
the firmware for interacting with the capture-
compare timer module 1. After defining names
for the registers of interest, we make use
of FlashForth’s elegant handling of memory
contexts. The period-count variable is
mostly kept constant but we would like to be
able to adjust it occasionally without having
to reprogram the firmware. This is an obvious
application for the microcontroller’s EEPROM
and FlashForth makes it easy to define a
double variable (i.e., a 32-bit variable) in
EEPROM and then be able to access it as
conveniently as any other address in memory.
After defining period-count in the EEPROM
context, the memory context is changed back
to static RAM for the my-count variable.
This particular variable will be changed

LISTING 4
Source code for the top-level application

-main-app
marker -main-app
\ Sample analog channels AN0 through AN3 in a timed super-loop.
\ This file uses the words defined in my-adc.txt and my-timer-16MHz.txt.
\ Note that the period, in milliseconds can be set with set-ms-period.
\ Run the periodic super-loop, until a key is pressed
: run-app (--)
 decimal
 init-adc
 init-tmr
 0 my-count !
 begin
 period-count 2@ reset-tmr
 my-count @ dup u. 1+ my-count ! \ Print and increment
 #0 set-adc-chan adc@ u.
 #1 set-adc-chan adc@ u.
 #2 set-adc-chan adc@ u.
 #3 set-adc-chan adc@ u.
 cr
 wait-for-tmr
 key? until
;

TRACE32®

advertisement_arm-overview.indd 1 08.10.2014 11:03:14

www.lauterbach.com/1553

CIRCUIT CELLAR • APRIL 2015 #29726
FE

AT
U

RE
S

frequently, once for each pass through the
main loop. Next come the definitions for the
service words init-tmr, reset-tmr, wait-
for-tmr, and stop-tmr whose names are
fairly self-explanatory. The wait-for-timer
word blocks until the timer has reached the
previously set compare value. The final
service word set-ms-period accepts the
requested time period in milliseconds and
computes the appropriate period count in
timer ticks and stores it into the EEPROM
variable. We immediately use that word to set
a default period of 500 ms and, finally, define
the test-tmr word to exercise the service
words conveniently.

It is worth noting that the code in Listing 3
was not developed linearly, as it appears now.
The firmware started small, with just
the register definitions. Some interactive
exploration followed, in which register bits
were set and cleared (and the datasheet
reread many tines) to get an understanding of
the timer and its associated output-compare
module. As each piece of the puzzle was
understood, such as turning-on or turning-

off the timer, that piece of code was put
into a word definition. The overall code grew
nonlinearly and iteratively.

Once the hardware modules were
understood and the service words complete,
the main application was developed from
the text of the two testing words. Listing 4
shows the definition of the run-app top-level
word that defines our application code. After
initializing the hardware modules and storing
zero in the my-count variable, the main loop
resets the hardware timer with the 32-bit
period count, increments and prints the value
of the my-count variable as a form of time
stamp, and then samples and reports the four
analog channels. The microcontroller then
waits for the timer to expire and goes around
the loop again, so long as no character has
been received from the attached PC. If a
character has been received, the run-app
word finishes and control returns to the
FlashForth interpreter.

Although this example has kept the
microcontroller tethered to the personal
computer, we often have started with our
FlashForth devices tethered to a computer
for development and configuration but then
“run them stand-alone for most experiments.
The final touch when making a stand-alone
embedded application is to redirect execution
of our main word at start up. This can be
done with:

‘ run-app is turnkey

The single-quote word gets the execution
token for the run-app word and this is then
saved in the turnkey vector. At power-up, the
microcontroller will listen for an incoming
escape character and, if one is not received
within 2 s, the run-app word will be executed
automatically.

FLASHFORTH FOR EMBEDDED
In our lab, we have found that Forth enables

convenient real-time interaction with hardware.
Although we have just provided a simple
example here, the laboratory has a range of
FlashForth programmed devices for monitoring
shock-tunnel processes, reporting pressure
measurements, and triggering fuel-injection
systems and LED flash lamps. The convenient
interactive environment has allowed the
development of the firmware through a simple,
layered process. As each peripheral was
understood and the service words coded, we
could then work on the next aspect of the
program. You should try FlashForth for your
embedded applications.

circuitcellar.com/ccmaterials

REFERENCES

[1] E. Hand and D. Cleary,
“Updated: Main mission for
Philae comet lander comes
to an end,” Science, 2014,
http://news.sciencemag.org/
europe/2014/11/updated-
main-mission-philae-comet-
lander-comes-end.

[2] The CPUSHACK Museum,
“Here comes Philae! Powered
by an RTX2010,” 2014, www.
cpushack.com/2014/11/12/
here-comes-philae-powered-
by-an-rtx2010/.

[3] E. D. Rather, D. R. Col-
burn, and C. H. Moore, “The
Evolution of Forth,” ACM
SIGPLAN Notices Vol. 28 No.
3, 1993, www.forth.com/re-
sources/evolution/index.html

[4] M. G. Kelly and N. Spies, FORTH: A Text and
Reference, Prentice-Hall, 1986.

[5] M. Nordman, “FLASHFORTH for the Microchip
PIC18, 24, 30, 33 Series and Atmel ATmega (Ar-
duino) Series,” 2014, http://flashforth.com/.

RESOURCES

“Blink,” www.arduino.cc/en/Tutorial/Blink.

P.A. Jacobs, “A tutorial guide to programming
PIC18, PIC24 and Atmega microcontrollers
with FlashForth,” 2014, https://espace.library.
uq.edu.au/view/UQ:330707.

P. Jacobs, P. Zawaski, and M. Nordman, “El-
ements of FlashForth,” 2014, https://espace.
library.uq.edu.au/view/UQ:321883.

SOURCES

ATMega328 Microcontroller
Atmel Corp. | www.atmel.com
	
TTL-232 Cable
FTDI | www.ftdichip.com

PIC24FV16KM202 Microcontroller
Microchip Technology | www.microchip.com

RedBoard
SparkFun | www.sparkfun.com

http://news.sciencemag.org/
http://www.cpushack.com/2014/11/12/
http://www.cpushack.com/2014/11/12/
http://www.forth.com/re-sources/evolution/index.html
http://www.forth.com/re-sources/evolution/index.html
http://www.forth.com/re-sources/evolution/index.html
http://flashforth.com/
http://www.arduino.cc/en/Tutorial/Blink
https://espace.library
https://espace
http://www.atmel.com
http://www.ftdichip.com
http://www.microchip.com
http://www.sparkfun.com
www.circuitcellar.com/ccmaterials

OPEN

RUGGED

LONG LIFE

ORIG
IN

AL
Unique embedded
solutions add
value for our
customers

Support every
step of the way
with open
source vision

Embedded
systems that
are built to
endure

We’ve never
discontinued a
product in 30
years

DESIGN YOUR SOLUTION TODAY
CALL 480-837-5200

TS-4900 Computer Module
1 GHz i.MX6 with WiFi & Bluetooth

Available w/ TS-TPC-8390
Touch Panel Computer

TS-7970: SBC Version
of the TS-4900NEW!

Pricing Starts At

$134
Qty 1

Qty 100

$99

1 GHz Single or Quad Core Cortex A9 ARM CPU

-40 ºC to 85 ºC Industrial Temperature Range

4 KLut FPGA, 1x Gigabit Ethernet, 1x PCI Express Bus

Wireless 802.11 b/g/n and Bluetooth 4.0

1x mSD slot, 1x SATA II, 1x USB Host, 1x USB OTG

Up to 2 GB DDR3 RAM and 4 GB eMMC Flash

70x DIO, 4x I2C, 1x I2S, 2x SPI, 2x CAN

Runs Android, QNX, Linux 3.10, Yocto, QT, OpenGL

1x LVDS & 1x RGB Display Port

Coming Soon: Windows Support

Pricing starts at
$168

Qty 1Qty 100

$129

TS-7670 Industrial Computer
GPS Radio and Cellular Modem

Guaranteed available until 2025

Easy development w/ Debian and Linux 2.6
Boots quickly to your Embedded Application

Low power with 10mW sleep state

Bene�ts:

-40 to +85C, 100% soldered-on components

454MHz ARM CPU

Up to 256MB RAM

1x USB Host

4x DIO, 2x CAN

2x mSD Card Socket

2GB NAND/eMMC Flash

1x Battery Backed RTC

2x COM, 1x RS-485

1x 10/100 Ethernet 1x Temperature Sensor

Features:

NEW!
TS-7680: Like the TS-7670 w/ WiFi & Bluetooth

low cost plastic
enclosure available

www.embeddedARM.com
www.embeddedARM.com

CIRCUIT CELLAR • APRIL 2015 #29728
FE

AT
U

RE
S

My LCDTV Server design is a small adapter
intended to plug into a “not so smart”

LCD TV or portable DVD player and give it the
capability to play streaming media. It does this
by attaching itself to the USB port of the TV
and emulating a standard USB flash memory.
The TV accesses the USB port while searching
for media, and the adapter intercepts the
read requests and transmits them across a
powerline LAN to a media server. The media
server is then able to respond with content,
which is then reformatted and sent back to the
TV. So, the TV still believes it is communicating
with a flash memory when in fact it could be
coming from any number of online streaming
media services. This allows existing players
to be retrofitted with a device to upgrade
them to be “smarter” and connectible to the
Internet, thus prolonging their usefulness
and avoiding the curbside garbage collection.
Modern media servers such as Tversity also
have the ability to automatically transcode
content on the fly from newer media formats
such as H.264 and MKV to older formats like
MPEG.

The LCDTV Server consists of two main
system components: the hardware adapter
itself that translates the USB to and from

Ethernet requests and a server-side process
(see Figure 1). This process receives the
Ethernet requests from the adapter and
translates them into DLNA/UPNP accesses
suitable for communicating to media
servers.

HARDWARE ARCHITECTURE
The system’s hardware comprises a

WIZnet WIZ550io Ethernet SPI module and
a small PCB containing a USB plug, power
supply, and microprocessor. The WIZ550io
module is a good choice for a high-bandwidth
media-streaming application because it
comes equipped with 100-MBps Ethernet and
uses hardware-accelerated packet and TCP
socket processing. It also supports an 80-
MBps maximum data rate over its SPI port,
so it isn’t a significant bottleneck during
the transfer of media data. In addition, the
WIZ550io is ready-built, so the process of
designing the adapter prototype is easy.
You can use a simple two-layer PCB for the
microcontroller and avoid paying careful
attention to the 100-MBps Ethernet track
routing.

The WIZ550io module interfaces to the PCB
using two single-in-line connectors, which

LCDTV Server

Lindsay’s LCDTV Server project enables an LCD TV equipped with a
USB port to stream media across a LAN. The small adapter converts
the mass storage device requests coming from the USB into LAN
media requests using a virtual file system. When combined with a
power line-to-Ethernet Bridge, the user can watch digital video on
an older TV from anywhere in the neighborhood.

By Lindsay Meek (Australia)

Streaming Media to a TV via the USB Port

circuitcellar.com 29
FEATU

RES

provides the SPI along with its requirement
for 3.3-V regulated power and the RDY
signaling line, used to indicate when it has
initialized. The PCB contains the USB device-
class interface, which plugs into the LCD TV.
The USB port provides the power output of 5
V at 500 mA, which is then regulated down to
3.3 V for the microprocessor and WIZ55oio
module using a simple linear regulator. It is
estimated the maximum current draw from
the adapter is approximately 156 mA, which
is well within the supply capabilities.

A Microchip Technology PIC24FJ64GB002
microcontroller is used to implement the USB
mass-storage device and WIZ5500 interfaces
(see Figure 2). This microprocessor has a
relatively small footprint and includes a full-
speed, 12-MBps USB peripheral. Another of
the microprocessor’s advantages is that it can
operate from its internal oscillator without
violating the USB timing specification, which
saves a bit of PCB space and the cost of an
external 12-MHz crystal. The microprocessor’s
SPI peripheral can also operate in FIFO mode,
which enables overlapped SPI/CPU processing
during data transfers and helps to accelerate
the transfer rate.

SOFTWARE ARCHITECTURE
The adapter’s software consists of three

main system modules: a USB mass-storage
device driver for communicating with the LCD
TV, an ATA-over-Ethernet (ATAOE) client for
communicating with the server, and a driver
for communicating with the W5500 chip on
the WIZ550io module. The code compiles
using Microchip Technology’s MPLAB X and
the XC16 Compiler-Lite.

The USB mass-storage device driver
is initialized when the adapter is plugged
into the TV. This device driver is based on
the USB framework provided by Microchip
Technology in its application libraries.
The driver communicates with the TV and
provides two internal API functions FILEIO_
NET_MediaDetect and FILEIO_NET_
SectorRead, which are used to detect the
presence of the media and read a 512-byte
sector, respectively. These two functions are
used to communicate with the ATAOE client,
which uses MediaDetect to broadcast “are
you there” messages to the LAN and wait for
a valid response from the server. Once the
server has been detected, the USB mass-
storage device driver is informed that the
media is detected. It then relays SectorRead
requests from the TV, which are translated
to ATAOE requests and transmitted to the
server.

The ATAOE protocol is a lightweight
Ethernet protocol that encapsulates ATA disk
drive commands into Ethernet packets. It was

FIGURE 1
An overview of the TV Server System

TV
(media player)

USB MSD Host

USB MSD Device

TVSERVER

ATAOE Client
WIZ550io

ATAOE – DLNA
Gateway

DJMOUNT
DLNA ClientATAOE Server

LAN

FAT32 Disk emulator

DLNA
Media server

FIGURE 2
The system’s complete circuitry.

CIRCUIT CELLAR • APRIL 2015 #29730
FE

AT
U

RE
S

originally developed for disk driver clusters in
server farms, but due to its elegant simplicity,
it is suited to high-speed disk I/O over a LAN
using a simple embedded protocol stack. It
also has a 1:1 correspondence to the USB
mass-storage device commands, which
perhaps are also based on the ATA disk drive
command set. The ATAOE client is only around
400 lines of additional C code to the USB mass
storage driver.

The ATAOE client consists of the single
function read_net, which reads a single
sector from the server at a nominated disk
logical block address. This function determines
if the server has been detected, and if not it
will broadcast the ATAOE config commands
onto the LAN until the server responds. It
then transmits the ATA read sector packets
to the server, waits for the response and then
returns the data to the USB mass storage

device. If the server does not respond after
several retries, the client will reset and
attempt to re-acquire the server.

The read_net function also includes
several performance optimizations to improve
data throughput during the media streaming
process. Most are based on the premise that
the media is read in a linear sequence and the
next data proceeds the current data.

Each ATAOE read sector request contains
two sectors instead of one, anticipating that
the next read_net request will be for this
sector. The driver records the location of
the data inside the W5500 memory. Thus, if
it detects a read to this sector on the next
request, it will copy the data directly from
the W5500 memory rather than making
another request. This optimization improves
throughput by avoiding one read request
every two, which would invoke a round-trip
delay.

In addition, the ATAOE client issues a
“speculative” read request after it receives the
response from the server to first read request
of two sectors. This speculative request is for
an additional two sectors ahead of the current
request. It is allowed to execute in parallel
whilst the USB device is returning the data
from the previous request.

The ATAOE client communicates with
the W5500 chip via a driver. This driver is a
modified version of the Socket API provided
by WIZnet. The driver was stripped back and
optimized to work with the PIC SPI hardware
and communicate efficiently in RAW mode on
W5500 Socket 0. Socket 0 is used in RAW mode
as ATAOE is a low-level Ethernet Protocol,
which uses a different frame identifier to
standard IP. The Socket is initialized to use
most of the available packet buffer RAM inside
the W5500, with a small amount reserved for
debugging via a Telnet Server on Port 23/
Socket 1.

The other area of the driver that is
optimized is the transfer of data from the
W5500 packet buffer to memory of the PIC
via the WIZCHIP_READ_BUF function. This
was recoded in assembler for maximum
speed. It has a dedicated subroutine for
transferring 512-byte disk sectors in groups
of 4 bytes at a time. The assembler algorithm
takes advantage of the SPI FIFO capability
of the microprocessor by transmitting SPI
bytes “ahead” of the responses, allowing
overlapped processing to take place between
SPI data transfers and storing the incoming
data in RAM.

SERVER-SIDE PROCESS
The other main component of the TV

Server is a server-side process. This process
is used to translate the ATAOE requests

PHOTO 1
The TV Server Adaptor

circuitcellar.com 31
FEATU

RES

coming from the TV server adaptor onto
the DLNA Media Network. It does this using
three main software components linked to
each other: an ATAOE server, a disk drive
emulator, and a DLNA network interface via
the DJMount package. It runs under Linux
in order to use DJMount and also get a good
network performance.

The ATAOE server component is responsible
for providing the interface to the ATAOE client
running on the TV server adapter. The server
uses the standard sockets library built into
Linux and sets the socket into RAW mode
for directly processing Ethernet frames. It
responds to ATAOE configuration broadcasts
by announcing the network address of its
virtual disk drive emulator. The adapter
detects the presence of the server and
responds by sending read sector requests.
The read sector requests are intercepted by
the ATAOE server and sent to the disk drive
emulator, where virtual disk sectors of media
information are formed and transmitted back
to the TV for display.

The disk drive emulator implements an
virtual 200-GB FAT32 file system. The emulator
intercepts the read sector requests coming
from TV server adapter and determines an
appropriate response based on its virtual

disk geometry. So there is a function for
“rendering” the Master Boot Record, the File
Information Sector, the Boot Record, the File
Allocation Tables, the Directories and finally
the Media Files themselves.

The emulator maintains a linked list of
directory and file entries, which contains the
important FAT information such as the start
and stop cluster address and the length, as
well as the full network name needed for
locating the data via the DLNA media network.
This list is generated at startup by recursively
browsing the entire contents of the local DLNA
network.

The virtual clusters are allocated
dynamically and to simplify the
implementation, the files always use a linear
range of clusters, and each directory is limited
to a maximum size of one cluster (32 Kb). The
FAT32 32-byte directory entries are rendered
into cluster memory buffers, which are then
linked to the directory entries in order to
speed up browsing from the TV.

The media files that are located during
the recursive browse of the network are also
allocated onto the linked list. They are given
a range of cluster addresses based on the file
size. The files are not loaded into memory
until the individual clusters are accessed by

www.elprotronic.com
www.saelig.com

CIRCUIT CELLAR • APRIL 2015 #29732
FE

AT
U

RE
S

the TV.
The file “renderer” uses a data streaming

algorithm that runs in a separate thread to
the main ATAOE server, once again in order
to improve the system throughput. The
streaming process uses double-buffering so
it attempts to “read-ahead” the next set of
clusters into a separate data buffer before
the request is actually received from the TV.
This allows the server to overlap the data
transfer from the media server and to the
TV. Through a process of experimentation, a
good cache size was determined to be four
clusters (128 Kb). This size is also dynamically
reduced to be one cluster to minimize latency
during random access file reads, which the TV
sometimes does whilst browsing directories
and generating thumbnail images. The four
cluster read-ahead is only enabled when the
server detects the multiple consecutive reads
of media playback.

The final software component “DJMount”
is responsible for retrieving directories and
media files from the DLNA media servers. This
is an open-source package which hides the
complexity of the DLNA/UPNP media protocols
and presents a relatively-simple file system
interface. Hence, it provides the POSIX-style
functions of getdir, getattr, and open/

close/read file.
In order to convert DJMount into a FAT32/

ATAOE server, it was modified slightly such
that the highest level of the program was
re-written. The standard distribution links
with the ‘Fuse’ library which provides a
file-system-in-user-space, containing a
fuse_main function. This was re-written
to implement the server algorithms and
embedded into an extra source file confuse.c
inside the main DJMOUNT build directory. The
Makefile.in was also adjusted to compile the
target tvserver instead of djmount.

The last tweak that was made to the server
process was the ability to change the location
of the initial FAT32 root directory. This was
done as it was found some media players
could only scan and display a few levels deep
into the directory tree.

PERFORMANCE TESTS
Some tests were done on the system,

using a Ubuntu server hosting the server-side
process and a Tversity DLNA server. Some
sample videos were tested at VCD (MPEG-I)
and DVD resolutions (MPEG-II and H.264).
The playback was smooth and uninterrupted
over a 100-MBps LAN cable; however, it could
be seen from the almost solid ‘busy LED’ on
the adapter that is was heavily loaded during
DVD sequences with a lot of motion in the
video frame.

The next test was to introduce a pair of
generic 150-MBps Ethernet-over-Power-Line
transceivers. I found the transceivers did
reduce the playback performance slightly,
with frequent “stuttering” on the screen
during DVD playback. I traced the source
of the problem to my fan-heater and solar
inverter, which seemed to be interfering with
the power-line signal when they operated.

The upper bandwidth limits of the SPI
and USB interfaces also prevented higher
definition videos from streaming smoothly.
The PIC24’s SPI peripheral maximum speed
was only capable of 8 MBps despite having
a higher internal clock speed, and the USB
needs to be “high” speed instead of “full”
speed to exceed 12 MBps. Microchip have
recently released a new 32-bit MZ series
which promises faster peripherals including
a high-speed USB.

SUCCESSFUL STREAMING
The experiment with the prototype showed

that the concept worked, and it is possible to
stream video to a modern “not so smart” TV
with minimal additional hardware. And with
the addition of Ethernet-over-power adapters,
the media can be streamed anywhere in the
house, and in my case, beyond the range of
my Wi-Fi access point.

circuitcellar.com/ccmaterials

RESOURCES

Djmount 0.71, http://djmount.
sourceforge.net/

Microchip Technology, Library
for Applications www.microchip.
com/pagehandler/en-us/
devtools/mla/.

———, PIC24FJ64GB002 Data

Sheet, www.microchip.com/TechDoc.aspx?-
type=datasheet&product=PIC24FJ64GB002.

WIZnet, Socket APIs V1.02, https://github.com/
Wiznet/W5500_EVB/tree/master/ioLibrary/Ethernet.

———, “W5500 Data Sheet,” www.wiznet.co.kr.

———, “WIZ550io Data Sheet,” www.wiznet.co.kr.

SOURCES

PIC24FJ64GB002 Microcontroller

Microchip Technology | www.microchip.com

WIZ550io Ethernet module

WIZnet | www.wiznet.co.kr

ABOUT THE AUTHOR
Lindsay Meek is currently employed in Magellan Power’s R&D department. He
holds a bachelor’s degree in engineering, as well as a master’s of philosophy.
Lindsay is interested in emerging technologies and enjoys participating in
international design contests.

http://djmount
http://www.microchip
http://www.microchip.com/TechDoc.aspx?-type=datasheet&product=PIC24FJ64GB002
http://www.microchip.com/TechDoc.aspx?-type=datasheet&product=PIC24FJ64GB002
https://github.com/
http://www.wiznet.co.kr
http://www.wiznet.co.kr
http://www.microchip.com
http://www.wiznet.co.kr

Technical documents are available for free before purchasing

See all our products, A/D D/A conversion board,
boards with USB chip from FTDI and accessories at :

www.hdl.co.jp/CC1501
HuMANDATA LTD.
TEL：+81-72-620-2002 （Japanese）FAX：+81-72-620-2003（Japanese/English）
E-Mail : s2@hdl.co.jp URL : http://www2.hdl.co.jp/en/

HUMANDATA

Easy and Quickly Mountable on 68-pin IC socket

PLCC68 SeriesStamp size FPGA/CPLD Module
PLCC68 series is a very small size FPGA & CPLD Module designed to be
used with 68-pin IC socket. It's very convenient to use on universal
boards.
PLCC68 series requires only single 3.3V power supply.
The pin assignments are the same for all series. I/O power supplies are
separated in two banks (A and B, 25 I/Os each).

50 I/Os(External clock inputs are available)
3.3V single power supply operation

Voltage converters for auxiliary power supply
Very small size (25.3 x 25.3 [mm])
Separated power supply: Core, I/O
JTAG Signals (TCK, TMS, TDI, TDO)
All series have the same pin assignment
Mountable on IC socket [USAGE EXAMPLE][USAGE EXAMPLE]

FPGA : EP3C10U256C8N
3.3V single power supply operation
On-board oscillator, 50MHz
Configuration Device
8 Layers PCB
Board size : 25.3 x 25.3[mm]
Mountable on 68pin IC socket

ALTERA Series

XILINX Series

Universal board for AP/XP PLCC68 Module

FPGA : EP3C25U256C8N
3.3V single power supply operation
On-board oscillator, 50MHz
Configuration Device
8 Layers PCB
Board size : 25.3 x 25.3[mm]
Mountable on 68pin IC socket

FPGA : 5CEBA4U15C8N
3.3V single power supply operation
On-board oscillator, 50MHz
Configuration Device
8 Layers PCB
Board size : 25.3 x 25.3[mm]
Mountable on 68pin IC socket

AP68-06 Series
Cyclone V PLCC68 FPGA Module

FPGA : 5CEBA4U15C8N
FRAM
3.3 V single power supply operation
On-board oscillator, 50MHz
Configuration Device
8 Layer PCB
Mountable on 68pin IC socket

RoHS compliant

AP68-06Z Series
Cyclone V PLCC68 FPGA Module

RoHS compliant

AP68-04 Series
Cyclone III PLCC68 FPGA Module

RoHS compliant

AP68-03 Series
Cyclone III PLCC68 FPGA Module

RoHS compliant

AP68-02 Series
MAX V PLCC68 CPLD Module

RoHS compliant

AP68-01 Series
MAX II PLCC68 CPLD Module

RoHS compliant

ZKB-092 JTAG-BUFFER Circuit / JTAG Connector
Power input :
DC5V/2.1[mm] Jack / Terminal Block
3.3V Power Circuit
Power Switch / Power LED
Board size : 4.528"x 6.102" (115 x 155 mm)

RoHS compliant

RoHS compliant

FPGA : XC6SLX16-2CSG225C
3.3V single power supply operation
on-board oscillator, 50MHz
Configuration Device
Board size : 25.3 x 25.3[mm]
6 Layers PCB
Mountable on 68pin IC socket

FPGA : XC3S200AN-4FTG256C
3.3V single power supply operation
on-board oscillator, 50MHz
Board size : 25.3 x 25.3[mm]
6 Layers PCB
Mountable on 68pin IC socket

FPGA : XC6SLX45-2CSG324C
3.3V single power supply operation
on-board oscillator, 50MHz
Configuration Device
Board size : 25.3 x 25.3[mm]
6 Layers PCB
Mountable on 68pin IC socket

XP68-03 Series
Spartan-6 PLCC68 FPGA Module

XP68-02 Series
Spartan-3AN PLCC68 FPGA Module

RoHS compliant

XP68-01 Series
Spartan-6 PLCC68 FPGA Module

RoHS compliant

CPLD : 5M570ZF256C5N
3.3V single power supply operation
Board size : 25.3 x 25.3[mm]
Mountable on 68pin IC socket
4 Layers PCB

CPLD : EPM240F100C5N
 EPM570F100C5N
3.3V single power supply operation
Board size : 25.3 x 25.3[mm]
Mountable on 68pin IC socket
4 Layers PCB

We also have many other products
All stocked items are ready to be
shipped immediately

http://www.hdl.co.jp/CC1501
mailto:s2@hdl.co.jp
http://www2.hdl.co.jp/en/

CIRCUIT CELLAR • APRIL 2015 #29734
FE

AT
U

RE
S

What? Are you crazy? That is much too
hard! There are too many things to

consider and the development environment
is too expensive for my budget! Yes, I’ve
noticed that most PCs available today come
with SuperSpeed USB included, and tablets
and smart phones are not far behind. But
SuperSpeed devices, except for video cameras
and hard drives, are hard to find. This must
be because they are very difficult to design!

If this is your perception of SuperSpeed
device development then this article will be
an eye opener since it describes a new set
of game changing, development tools and
explains why SuperSpeed devices will soon
proliferate. This toolset—which includes low-
cost development boards, free software tools,
and a collection of working examples—is
designed for people who need to deal with
data that is generated, or consumed, at data
rates between 100 MBps and 400 MBps. This
is far in excess of the Arduino or similar

products usually covered in this magazine
but come and look at the “high-end” for a
moment, you’ll discover that it may well be
within your reach. This is what several of my
SuperSpeed customers have found. I am not
going to promise “easy,” but if you know C,
then it is certainly straight forward using a
methodical approach.

SuperSpeed USB is the third extension of
the USB Standard and it was designed with
data throughput and lower power levels in
mind. The USB 3.0 standard, which supports
data transfers of 5 Gbps (400 MBps) has
recently been superseded by USB 3.1, which
describes data transfers of 10 Gbps (1G Bps).
Today’s silicon supports 5 Gbps and all USB
silicon vendors are working hard to develop 10
Gbps parts; however, since USB 3.1 changed
low-level bus signaling, it will be late 2015 or
early 2016 before commercial parts become
available. Today’s silicon will implement these
signaling changes such that today’s designs

Rapid Prototyping of
SuperSpeed USB Devices

SuperSpeed USB is the third extension of the USB Standard, and
it was designed with data throughput and lower power levels in
mind. Use this article as a guide to the end-to-end development of
a SuperSpeed USB device.

By John Hyde (US)

PHOTO 1
Credit card-sized SuperSpeed Explorer Board

circuitcellar.com 35
FEATU

RES

are easily upgraded to 10 Gbps. Another focus
of SuperSpeed USB was to reduce the overall
system power and it accomplished this by
eliminating the need for a device to be polled
and therefore the USB links can be switched
to lower power states more often. The new
USB 3.1 Gen 2 silicon will operate the same
only faster and using less power.

LOW-COST HARDWARE
Photo 1 shows a credit card-sized

development board based upon Cypress
Semiconductor’s FX3 SuperSpeed device
controller. Cypress calls this the SuperSpeed
Explorer Kit. Figure 1 shows a block
diagram of the FX3 and its interfaces to the
development board connectors. The FX3 is a
system-on-a-chip containing a USB 3.1 Gen
1 (5 Gbps) interface including PHY, a 32-bit
parallel interface that can run up to 100 MHz,
512 KB of RAM for buffering and program
storage, an ARM CPU and a collection of low-
speed serial interfaces. Since all USB 3.1 Gen
1 devices are required to operate at high
speed (480 Mbps), the FX3 includes a USB
2.0 PHY, and it can also operate as an OTG
host at this speed. Alongside the USB block is
the EZ-Dtect block that, when enabled by the
processor, allows the USB-PHY to detect the
presence of a connection to a USB charger.
The board contains an integrated debugger,
EEPROM for boot code and a user button and
LED. All signals from the parallel bus and
serial interfaces and power are connected to
two 40-pin, 0.1” connectors.

The FX3 was specifically designed with
data throughput in mind and it includes a
distributed DMA controller that can support

simultaneous read and write transfers of up to
800 MBps. It is expected that USB bulk packets
will be used to get maximum throughput on
SuperSpeed USB since they are 1-KB long and
they can be burst up to 16 packets deep. Let’s
consider the host computer sending data to
the FX3. Blocks of data 16-KB long will arrive
at the FX3’s USB interface. These must be
buffered by the FX3, which writes the blocks
directly to system RAM at SuperSpeed data
rates. (There are no separate packet buffers
and the RAM is zero wait states.) The host will
want to send multiple 16-KB blocks so the FX3
should have multiple buffers to keep up with
back-to-back data transfers. The FX3 can use
up to 256 KB of its RAM for data buffering.
As soon as the first 16-KB block arrives from
USB it is presented to the parallel interface
which can start to output it as the second 16-
KB block is arriving from USB. This concurrent
USB-read and parallel interface-write will
boost throughput. The parallel interface is
called GPIF II in Figure 1. This is an acronym
for General Programmable InterFace Gen 2
(the Cypress FX2 has a GPIF I), and it is a
programmable state machine.

The GPIF II subsystem is FPGA-like in
nature; it contains some hardware–assist
blocks such as counters and comparators
but is mainly uncommitted logic that must
be programmed on power up. You develop a
state machine that implements the protocol
required to move these 16-KB DMA buffers to
the outside world. Cypress provides examples
of industry standard protocols such as
master FIFO, slave FIFO and async RAM but
you can also develop your own if you have
to interface to some custom hardware. There

FIGURE 1
Block diagram of FX3 showing
connections to the SuperSpeed
Explorer Board

40-pin 0.1" Connector

Voltage
regulators

Power
modes

USB
3.0

Device

EZ-Dtect
I2C UART SPI I2S RAM

GPIF II

Data

GPIO

CLK

Control

Integrated
debugger

USB 2.0
Connector

Boot ROM
ITCM
DTCM

EEPROM
40-pin 0.1" Connector

Distributed
DMA Controller

USB 3.0
Connector

RAM

I2C/USB
19.2-MHz

XTAL

Timers
counters

Clocks VIC JTAG
ARM CPU

ICACHE DCACHE

CIRCUIT CELLAR • APRIL 2015 #29736
FE

AT
U

RE
S

are 14 bidirectional control lines available
to implement these standard or custom
protocols. In the simplest case, the GPIF state
machine could output 32 bits with a 100-MHz
clock and the external hardware would need
to strobe this data. Typically, you would add
flow control such as FIFO_Full and this will
reduce the data rate to something that the
external hardware can handle. You would also
need DataValid in case USB is not keeping
up. Note that the FX3 will not be the bottleneck
since it can run constantly at 400 MBps.

HOST COMPUTER SOFTWARE
In this simple Byte Mover example, you

will need to write a custom program on the
host computer since Windows, Mac OS nor
Linux support a generic byte mover device.
Cypress provides an example FX3 device
driver, including source code, for each of
these OSes but this is still a daunting task to
undertake. There is a better way.

In my first example I used the DMA
controller to move data from the USB

subsystem to the GPIF II subsystem. This
can be done at 400 MBps and does not need
any involvement from the CPU except for the
initial setup of the connection. I can also move
the data via the CPU but this will decrease the
throughput. The CPU is a 200-MHz ARM that
can inspect, process and pass on modified
data. This will allow you, for example, to add
a higher level protocol to the data. Cypress
provides examples using the USB Video Class
(UVC) driver and the Mass Storage Class
(MSC) driver. The CPU handles all of the class
requests then packs the data into the correct
format as expected by the device driver—this
means that development of a video capture or
recording device, for example, would need no
driver development. In fact, Cypress has an
accessory board that connects to an Aptina
image sensor and an FX3 firmware example
enabling an HD video camera to be designed
with only modest effort. All of the source code
and hardware design files are available and
described in an Application Note AN75779, so
if your sensor is a little different, then that
is the only piece of the project that you need
focus upon. This is a single chip sensor to USB
UVC solution.

High-end video cameras use MIPI CSI-
2 (Camera Serial Interface version 2) links.
Cypress have a software compatible variant of
the FX3, called the CX3, that uses a customized
GPIF interface to collect up to four lanes of
1-Gbps MIPI CSI-2 data to support a wide
range of industry-standard image formats
and is capable of streaming uncompressed
4K UHD video at 15 fps or 1080P video at 30
fps. A reference design, shown in Photo 2, is
available to get you off to a running start.

Cypress has another software compatible
variant of the FX3 called the FX3S which
has a different customized GPIF II interface
specifically designed for mass storage
devices. The FX3S has two storage ports
which each supports SD 3.0, eMMC 4.41 and
SDIO 3.0 standards. The FX3S supports
multiple configurations including a single-
chip RAID1 solution, this implementation
is shown in Photo 3 and is described in an
Applications Note (AN89661) with all source
code and hardware design files available for
your customization.

If you look inside the currently available
SuperSpeed camera products, you will
discover a Cypress FX3 or derivative 95% of
the time.

CONNECTING TO THE REAL WORLD
Coming back to the SuperSpeed Explorer

Kit, it is most likely that you will connect
an external FPGA to the GPIF II interface
using the two 40-pin connectors. If you
are an experienced FPGA designer then you

PHOTO 3
Single chip RAID1 reference design
using FX3S (Source: Pactron (http://
www.pactroninc.com)

PHOTO 2
Video camera reference design using
CX3 (Source: e-con systems (http://
www.e-consystems.com/)

http://www.e-consystems.com/
http://www.e-consystems.com/
http://www.pactroninc.com
http://www.pactroninc.com

circuitcellar.com 37
FEATU

RES

are probably using a Xilinx Spartan 601
development board or an Altera Cyclone III
development board. Cypress has adapter
boards that enable either of the FPGA
boards to be connected to the SuperSpeed
Explorer kit. These are shown in Photo 4a
and Photo 4b. If you are new to FPGAs then
Cypress has a CPLD board, shown in Photo 5,
that connects directly onto the SuperSpeed
Explorer kit such that initial design ideas may
be tried. The CPLD board contains a Xilinx
CoolRunner XC2C256 CPLD and the WebPack
tools are a free download from www.xilinx.
com. This site also includes a wide variety of
applications notes and training materials if
you are new to the world of programmable
logic. Also in development by a third party is
an analog processing board, designed around
a Cypress PSoC 5, which will form the basis of
a high-performance analog data acquisition
system.

I called the article “Rapid Prototyping”
since all of the elements needed to create
a working prototype are readily available
for your customization. Figure 2 shows the
development of a SuperSpeed device divided
into managable pieces. Windows is the primary
development platform, but there is also
support for Mac OS and Linux. A free Software
Development Kit (SDK) is downloadable from
www.cypress.com/fx3sdk. This SDK includes
software examples for a Windows host,
firmware examples for the FX3, and GPIF II
Designer examples for the GPIF II interface.
It is likely that the building blocks that you
need are already available.

PROJECT DEVELOPMENT
Host application software uses the

standard Windows Visual Studio environment
and examples are provided for native C++
applications and managed C# applications.
Cypress provides a device driver that supports
fast data transfers using standard APIs and
very fast data transfers using standard
APIs with Overlapped IO operations. Several
utilities are also provided including a USB
Control Center that enables FX3 programs to
be downloaded to the SuperSpeed Explorer
kit for debug. I have provided Cypress with
a collection of examples and these are also
downloadable from the FX3 web page. One of
the examples is a comprehensive Benchmark
program that allows you to characterize
the performance of your PC platform; this
includes host controller, memory and disk
performance. You will discover that the FX3 is
never the bottleneck and can deliver whatever
datarate the PC can support directly to the
GPIF II interface and your hardware.

FX3 firmware development involves
C programming with an FX3 Program

Framework and uses an Eclipse Toolset with
integrated GCC cross compiler plugins. The
low-level timing details of the FX3’s heavily-
coupled units, especially the distributed DMA
channels, require a lot of set up. Rather than
burden the developer with these intricate,
low-level details, Cypress provides a Real
Time Operating System (RTOS) and a set of
device drivers for all of the subsystems shown

PHOTO 4
Commercial FPGA boards from Xilinx
and Altera can be connected to the
SuperSpeed Explorer Board (Source:
Cypress Semiconductor www.cypress.
com/fx3)

a)

b)

FIGURE 2
Four pieces of software are typically needed for a full system solution

Visual studio
+ USB Suite

Host application
runs here

Develop host application

Eclipse +
GCC Tools

Firmware
runs here

Develop FX3 Fireware

GPIF LL
Designer

Loaded at
run time

Develop state machines

RAM

VHDL
Toolset

Loaded at
run time

Develop state machines

RAM

External
FPGA / ASIC

or sensor

http://www.xilinx
http://www.cypress.com/fx3sdk
http://www.cypress

CIRCUIT CELLAR • APRIL 2015 #29738
FE

AT
U

RE
S

in Figure 1. The RTOS is Express Logic’s
ThreadX (Version 5.1) and all of its features
are imported into the FX3 environment. A
high-level, block-oriented API Framework is
presented to the developer so that focus can
be placed on what your application will do
and not on how it will do it. You can ignore
the RTOS and just write your application as
a single threaded user task or you could take
full advantage of the real time capabilities
and partition your application into several
cooperating tasks. The choice is yours and
I recommend starting with a single thread
then move onto several threads as your
applications needs evolve.

The FX3 Program Framework handles all
of the USB communications. The RTOS USB
driver does all of the necessary enumeration
and run-time power management on your
behalf. You provide the USB descriptors
and set the power management policy. USB
endpoints are connected to DMA channels and
all data is buffered and delivered automatically
by the DMA hardware. A USB class template
describes what must be done if you need to
develop your own class driver and, of course,
several examples are included.

Most FX3 application programs consist
of using the Framework APIs to set up
the hardware units and then let them do
their work. The CPU is notified of errors or
completions and typically operates as a

“traffic cop” controlling the high level policy
and operation of the application. Having
an operating system “underneath” the
application, which handles all of the low-level
details, makes FX3 firmware development
more productive. Cypress supplies an
integrated JTAG debugger which can set
breakpoints and examine registers, variables
or memory but I found that I did not use this.
Since there is an RTOS scheduling multiple
cooperating tasks then the last thing I want to
do is to stop the CPU at a breakpoint! I found
it more productive to have a debug monitor
that runs as a task that is aware of the real
time environment and RTOS data constructs.
I implemented several monitor commands
which query or set variables including I/O
and GPIF state. One of the examples I wrote
raised I/O lines when certain RTOS events
happened, such as a thread starting or
stopping, semaphore write etc. This allowed
me to observe the operation of the running
tasks using a logic analyzer.

A typical SuperSpeed device will need one
or more high speed data channels and an
additional control channel. A video camera,
for example, may need pan and tilt or setup
of camera features such as white balance. The
FX3 has a “supporting-cast” of low-speed
subsystems: UART, I2C, SPI and I2S. Each
subsystem has additional hardware and a
block-oriented, hardware interface such that
the DMA controller can read or write them
just like the USB and GPIF subsystems. You
need not access data or status registers of
these low-speed subsystems. The same DMA
channel API is used to communicate with
the low speed susbsystems and this reduces
programming effort and debug time. Many
concurrent DMA transfers are supported and
the available bus bandwidth is allocated at
50% for the CPU (if it needs it, in general the
CPU will be asleep), then each DMA channel
is served with a round-robin priority scheme.

The UART is connected to an on-board
UART-to-USB device so that all that is needed
to use the debug monitor with a standard
terminal emulation program, such as Clear
Terminal or TeraTerm, is a USB cable. The FX3
includes a boot loader in ROM and can load
its program from an EEPROM included on the
SuperSpeed Explorer Kit or it can request a
program be downloaded via USB from the
computer host.

The CPLD board allows you to develop
protocols with the GPIF II subsystem. The
examples include basic counters so that the
data path can also be verified. The code for
the CPLD is written in a hardware descriptiopn
language such as VHDL or Verilog. The
examples provided by Cypress are in Verilog.
The Xilinx toolchain “compiles” the Verilog

circuitcellar.com/ccmaterials

SOURCES

FX3 SuperSpeed device controller and GPIF II
Master Interface

Cypress Semiconductor | www.cypress.com

ThreadX RTOS Ver. 5.1

Express Logic | www.rtos.com

CoolRunner XC2C256 CPLD

Xilinx | www.xilinx.com

PHOTO 5
The CPLD Accessory Board plugs
directly onto the SuperSpeed Explorer
Board

http://www.cypress.com
http://www.rtos.com
http://www.xilinx.com
www.circuitcellar.com/ccmaterials

circuitcellar.com 39
FEATU

RES

code into an XSVF binary programming file.
One of the Cypress FX3 examples is a CPLD_
Programmer which can take these XSVF files
and can program the CPLD so no additional
cables or hardware is required.

SYSTEM DEBUG
The SuperSpeed Explorer Kit has extended

pins on its two 40-way connectors so that “test-
points” for all of the GPIF signals are readily
accessible (see Photo 1). A logic analyzer, or
oscillscope, can be attached to these test
points so that the communication protocol
between GPIF and the real world external
hardware can be observed and debugged.
The GPIF clock can be run up to 100 MHz but
it can, if necessary, be divided down to lower
frequencies (as low as 100 kHz) so that low-cost
logic analyzers, such as the popular USBee DX,
can be used to debug the logic of the protocol.
Once this logic is working the clock can be
raised back to 100 MHz and USB-captured data
files are used for final system verification. The
examples, that can be downloaded from www.
cypress.com/fx3, include a variety of simple
data exchange programs, including counters,
so that individual elements of the design can be
tested and reliable data transfer verified.

This article has discussed the end-to-end
development of a SuperSpeed USB device using
the FX3-based SuperSpeed Explorer Kit. It is
low cost and the software tools are free and I
know that this will help SuperSpeed technology
be more accessible to peripheral developers. If
you have a lot of data that you have to move,
or some data that is generated at 400 MBps
rates, then it is time to look into the design of
a SuperSpeed USB device. This is now readily
achievable with the new toolset from Cypress
and at power levels that are lower than an
equivalent USB 2.0 solution.

Happy developing.

ABOUT THE AUTHOR
John Hyde is Principle at USB Design By Example, a consultancy firm he
created after “retiring” from Intel in 2002. John has been involved in USB
since its inception and wrote his first USB Design By Example book in 1999.
He works with a wide variety of USB companies on the architecture, design,
and debugging of their embedded products. He has written five “how-to”
books and is now working on an update to his SuperSpeed book and a new
USB Type-C Design By Example book. John earned a BSc in Electronics from
Southampton University and now lives in Portland, OR.

Low Power ARM Module

OVER

30
YEARS OF

SINGLE BOARD
SOLUTIONS

Since 1985

Phone: (618) 529-4525 · Fax: (618) 457-0110 · www.emacinc.com

http://www.emacinc.com/products/system_on_module/SoM-A5D36

SoM-A5D36

EQUIPMENT MONITOR AND CONTROL

Industrial Temperature

l Atmel ARM Cortex A5 536Mhz Processor
l 4GB of eMMC Flash
l 512 MB of LP DDR2 RAM
l 16MB of Serial Data Flash
l 22 GPIO (3.3V) Lines
l 6x Serial Ports
l 24-bit LCD Controller
l Up to 720P Video
l Touch Controller
l External Address/Data Bus
l Internal Real time clock/calendar
l 4 PWM Channels, 5 Timer/Counters
l 10/100/1000 BaseT Ethernet
l 2x USB 2.0 High Speed Host ports
l 1x USB 2.0 High Speed Host/Device port
l 6 channels of 12 bit A/D (0 to 3.3V)
l 200 pin SODIMM form factor (2.66" x 2.375")

Designed and manufactured in the USA, the SoM-A5D36 is a System on
Module (SoM) based on the Atmel ARM Cortex A5 ATSAMA5D36 processor.
This low power, wide temperature ARM 536 MHZ SoM utilizes 4GB of
eMMC Flash, 16MB of serial data flash, and up to 512MB of LP DDR2 RAM.
Like other modules in EMAC's SoM product line, the SoM-A5D36 is
designed to plug into a custom or off-the-shelf carrier board containing all
the connectors and any additional I/O components that may be required.
Qty 1 pricing is $155. Please contact EMAC for OEM & Distributor Pricing.

such as this book,
designing a microprocessor
 can be easy.
Okay, maybe not easy, but certainly less
complicated. Monte Dalrymple has taken his
years of experience designing embedded
architecture and microprocessors and compiled
his knowledge into one comprehensive guide to
processor design in the real world.

cc-webshop.com

Verilog HDL
With the right tools

Monte demonstrates
how Verilog hardware
description language
(HDL) enables you
to depict, simulate,
and synthesize an
electronic design so
you can reduce your
workload and increase
productivity.

http://www.cypress.com/fx3
http://www.cypress.com/fx3
http://www.emacinc.com/products/system_on_module/SoM-A5D36
http://www.emacinc.com
www.cc-webshop.com
www.emacinc.com

CIRCUIT CELLAR • APRIL 2015 #29740
CO

LU
M

NS

Using USB 2.0 in your design is a fairly
routine operation now. Not only are

there a number of dedicated interface chips
(such as made popular by FTDI), numerous
microcontrollers are available with full- or
high-speed USB 2.0 interfaces, many of
which can also be interfaced to an FPGA
through external memory support of the
microcontroller.

USB 2.0 high speed has a maximum
theoretical throughput of 480 Mbps, or 60
MBps. If you are trying to quickly stream data,
you might find that inadequate. Streaming
two channels of ADC data for software defined
radio (SDR) applications can easily use more
bandwidth than that, especially if you are
trying to use a 10- or 12-bit ADC over a fairly
wide bandwidth.

USB 3.0 and 3.1 jump the maximum
throughput to 5 and 10 Gbps, respectively
(or 625 MBps and 1.25 GBps). At such data
rates, you’ve got to ask what happens on the
other side. These rates are much faster than
your typical hard drive can deal with—which
means you’re either just buffering to RAM,
computing on the fly with incoming data,

or have a much more expensive storage
solution!

Of course your application might not
need such fast data rates (nor should you
necessarily expect to achieve them), but it
might require something a little above USB
2.0 high speed. I expect many applications
to fall into this category, aiming to achieve
around 100 to 400 MBps. In this article I’ll
briefly introduce what’s new in USB 3.0,
discuss debugging your design, and outline
your options for adding a USB 3.0 interface to
your FPGA project.

It’s also worth noting that USB 3.0
increases the amount of power that can be
provided to 900 mA, up from the 500 mA USB
2.0 would allow. Even if your device doesn’t
need USB 3.0 speeds, it may require USB 3.0
power.

This article is designed to give you a brief
introduction to tools you can use to design
your own USB 3.0 device. Some recent product
releases have made USB 3.0 development
accessible to everyone from novices to full-
time engineers, and I’m going to highlight my
experiences with them.

Super Speed for FPGAs
The USB 3.0 SuperSpeed Standard (and the recently
released USB 3.1 SuperSpeed+) brings the ability to stream
data at breakneck speeds. Such speeds are probably of
little use for standard microcontroller projects, but FPGAs
can easily make use of this bandwidth for everything from
software-defined radios to logic analyzers. This article will
briefly introduce some of the available options for using
this interface, concentrating on the Cypress FX3 chip.

By Colin O’Flynn (Canada)

PROGRAMMABLE LOGIC IN PRACTICE

circuitcellar.com 41
CO

LU
M

NS

SPEEDING AWAY
So what is USB 3.0 SuperSpeed? You might

have noticed the blue USB SuperSpeed ports
on your new laptop, and if you look closely
at them, you would notice another row of
contacts “behind” the normal USB contacts,
which mate with a cable as shown in Photo
1. I’d like to take a moment to appreciate that
the protocol designers are sending a 5-Gbps
signal over an external cable that might be up
to 3 m long—which puts things in perspective
next time you are doing a high-speed digital
PCB, wondering about running some signals
more than a few centimeters!

Physically, you might notice USB 3.0 cable
in Photo 1 has both transmit and receive data
pairs, allowing the protocol to operate in
full-duplex mode. With USB 2.0, this wasn’t
possible, meaning that if you need to stream
data in both directions simultaneously, USB
3.0 contains an even larger speed boost than
you might expect.

With USB 3.1 a new connector type called
Type C was introduced—consumers will
appreciate that the cable is reversible—no
more figuring out which way is “up” on the
USB connector. This connector is also used for
providing up to a 10-Gbps transfer rate, and
a special “power delivery” mode allows up to
100 W of power. To limit connector and wire
current, the 100-W power transfer occurs
at 20 V instead of the more usual 5 V. This
article will be strictly limited to USB 3.0, but if
you need either the higher power delivery or
speed of USB 3.1, I wanted you to be aware
of its existence.

If you are interested in more details
of USB 3.0, I highly recommend Donovan

Anderson and Jay Trodden’s book, USB 3.0
Technology. But you can also download the full
USB specification from the USB Implementers
Forum, which includes considerable amount
of ‘plain English’ background and information
in addition to the detailed specifications.

DEBUGGING IN SUPERSPEED
As in USB 2.0 designs, I consider having

a hardware protocol analyzer a necessity.
If you are using well-defined example code
you might be able to get away without one,
but my experience is that hardware protocol
analyzers very quickly pay for themselves
in rapid troubleshooting of USB interface
problems.

I’m using a TotalPhase Beagle 5000
protocol analyzer (see Photo 2), although
there are several other vendors of USB
protocol analyzers too. A view of typical USB
3.0 data transfer is shown in Photo 3, which

PHOTO 1
I cut away a cheap USB 3.0 cable
to show you the second row of
connectors used for high-speed data
transfer. When plugged into a USB
2.0 port the USB 3.0 contacts won’t
be used; the existing USB 2.0 contacts
allow full compatibility of old devices
with new computers and vice-versa.
With USB 3.0 two Shielded Data Pairs
(SDP) are present, as one is dedicated
for transmit and one is dedicated for
receive.

PHOTO 2
The hardware setup used here is a Cypress FX3 SuperSpeed Explorer Kit far left, with a TotalPhase Beagle 5000 V2 hardware analyzer
used to snoop the USB 3.0 traffic. The SMA connector on the Beagle 5000 is the trigger out which will be used to precisely determine
the location of error events.

CIRCUIT CELLAR • APRIL 2015 #29742
CO

LU
M

NS

was captured running the streaming example
on the FX3 board. In this capture you can
see the new link layer in USB 3.0, which has
four buffers accessible from the link layer
(i.e., before being sent to the protocol layer).
The “Link Credit” messages you see on the
USB analyzer window is flow control being
performed for those buffers, as the chip
advertises the availability of buffer space.

One feature to look for on your USB
analyzer is a “trigger out.” This allows you
to correlate events on the USB trace with real
life. In Photo 4, I’ve set the trigger out to
pulse on physical-layer errors. You can see
a huge jump in errors during a short time,
and having the view on the oscilloscope helps
you determine if these errors come up due
to power supply transients, perhaps due to
a large load your device is switching. Or if
you are debugging your FPGA interface,
this “trigger out” can help you trigger
other instruments such as the ChipScope
Analyzer. For more information, refer to my
article, “Using Internal Logic Analyzers for

FPGAs” (Circuit Cellar 279, 2013). I previously
discussed some more in-depth uses of these
trigger features in my 2010 article, “Advanced
USB Design Debugging” (Circuit Cellar 241).

INTERFACE OPTIONS
When it comes to USB 3.0 interfaces, you

have a few immediate options. One of the most
popular is a single-chip solution by Cypress
Semiconductor, the EZ-USB FX3 device. If you
are familiar with Cypress’s line of EZ-USB
interface chips for USB 2.0, it will be a familiar
idea—a high-speed microcontroller with USB
3.0 interface, which has a flexible high-speed
parallel interface that can interface to many
different types of parallel busses. The FX3
series upgrades from an 8051 core to an
ARM926EJ core running at 200 MHz, with 256
or 512 KB of SRAM.

Of the options I’m presenting, this device
is the easiest to interface to your design. The
parallel interface can run in synchronous or
asynchronous mode, and you can choose
between multiple data bus widths. The
maximum bandwidth over the external
interface is 3.2 Gbps (32 bits at 100 MHz).

It’s worth emphasizing that you get a
very serious micrcontroller with your USB
3.0 interface—the FX3 device should be
considered as a fairly integral part of your
design, as you’d hate to waste the available
ARM9 processor! The FX3 devices are
relatively costly—about $20 in quantities of
100—but you get a lot of silicon for the price
(see Figure 1).

A more complicated, but cheaper, option is
the USB3380 chip from PLX Technology. The
USB3380 chip is a PCIe-to-USB 3.0 bridge,
which can work in either direction. This means
you can use it to drive a PCIe card over USB
3.0, or you can appear as a USB 3.0 peripheral
controlled by PCIe. The second option is of
particular interest: many FPGAs provide a PCIe
interface block, which provides the physical
interface required by the USB3380 chip. The
supporting documentation and examples are
considerably less complete, and you will have
much work ahead of you in getting the PCIe
interface talking to the USB3380 chip. (This
comes from my own experiences using the
device, not just reading the press releases.)
The upside is the lower cost: the USB3380 is
around $12 in 100-piece quantities.

If your FPGA has sufficiently fast
transceivers, you can also run the USB 3.0
core directly on the FPGA. Various third-party
cores are available at considerable cost; but
amazingly, an open-source USB 3.0 core is
available as part of Project Daisho, the USB
3.0 core in this project having been written
by Marshall H. This targets an Altera Cyclone
IV FPGA, and requires a USB 3.0 transceiver

PHOTO 3
Monitoring a data transfer using the TotalPhase Beagle 5000 shows us some details of the USB 3.0 data
transfer process. Significant changes exist at lower layers which you can see here, but at higher layers the
same basic ideas are used (such as interfaces and endpoints) as in USB 2.0.

PHOTO 4
As in USB 2.0, having a hardware protocol analyzer is useful when errors could be caused by anything from
improper PCB layout to software issues to power supply problems. Here I’m using the ‘Trigger Out’ feature
to mark whenever physical-layer (PHY) errors occur, allowing me correlate this burst of errors with other
issues such as a large load switching nearby.

circuitcellar.com 43
CO

LU
M

NS

physical interface, such as the TI TUSB1310A
(about $10 USD in Qty 100).

A final option to investigate is the FTDI
FT600/FT601. They are a line of USB 3.0
interface chips in a slightly more prototype
friendly package compared to the FX3 (QFN
instead of BGA), but with a more rigid
interface design. The external 16/32-bit
FIFO-style interface appears almost identical
to their earlier USB 2.0 products, and with a
maximum throughput of 400 MBps for the 32-
bit bus (same as the FX3). At the time I wrote
this article, only preliminary datasheets were
available, and no pricing information was
available.

The remainder of this article will look only
at the Cypress FX3. My assumption is that
for many designs the engineering effort is a
considerable portion of the overall cost. The
slightly higher cost of the FX3 device will be
offset by the greatly reduced engineering
effort (as will be described), and the fairly
simple interface requirements of the FX3
allow you to avoid the need to select an FPGA
with Gigabit transceivers. The FTDI device
may end up being an interesting contender
too (having similar interface requirements),
but it was only just being released as I wrote
this article, so I cannot comment on real-
world usability of this device.

DEVELOPING WITH THE FX3
Cypress recently released their USB

SuperSpeed Explorer Kit, which is a $49 kit
using the CYUSB3014 EZ-USB FX3 device,
shown previously in Photo 1. In tandem with
this, you can use the book SuperSpeed Device
Design by Example by John Hyde, which
contains extensive and well-documented

examples for this development board. This
combination means for $80 you can get a
complete hardware development kit and
printed reference, along with a software
development environment, debugger for
the microcontroller, and this ecosystem has
several expansion boards for connections
to FPGAs and CPLDs. While I hate to write a
column which simply says “go buy this for
more details,” this combination of an excellent
reference book with low-cost hardware is
impossible to resist. I had been meaning to
write a column on USB 3.0 for some time now,
but having bought this combination myself, it
really drove home that development for USB
3.0 doesn’t have to be complex!

For connecting the FX3 evaluation board
to your FPGA, you can buy interposer boards
for some Xilinx and Altera FPGA boards, or
spin your own if it doesn’t fit the available
options. As mentioned previously, the FX3 is
designed to work using the DMA to shuffle
data between the USB endpoints and your
external interface. For FPGA interfacing the

PHOTO 5
While I don’t expect you to be able to
see the details of the GPIF II Designer
software here, it does demonstrate
the convenience of having ‘live’
timing diagrams which would match
your specific interface requests, with
the ability to switch between read,
write, and burst examples.

ABOUT THE AUTHOR
Colin O’Flynn (coflynn@newae.com) has
been bui lding and breaking electronic
dev i ces fo r many years . He i s cur-
rent ly completing a PhD at Dalhousie
University in Halifax, NS, Canada. His
most recent work focuses on embed-
ded security, but he stil l enjoys every-
thing from FPGA development to hand-
s o l d e r i n g p r o t o t y p e c i r c u i t s .
Some o f h i s work i s pos ted on h i s
website at www.colinoflynn.com.

mailto:coflynn@newae.com
http://www.colinoflynn.com

CIRCUIT CELLAR • APRIL 2015 #29744
CO

LU
M

NS

“address data” interface is fairly standard,
and makes it easy to map registers within the
FPGA, along with performing bursts of data
transfer.

As the FX3 provides other standard
peripherals (SPI, I2C, and UART) you also
have the option of using the external interface
for high-bandwidth communication, and
using another interface for low-bandwidth
applications such as setting registers. Or if
your application requires the configuration
of an ADC or DAC over I2C/SPI, this can be
done directly from the FX3, requiring you to
only design the data conversion blocks in the

FPGA. The only caveat here is the device on the
explorer kit does not support the SPI interface
when a 32-bit external bus is being used.

Cypress provides the GPIF II Designer
software which helps you configure the device
for any specific external bus setup, such as
address-data or FIFO. This includes detailed
timing diagrams as shown in Photo 5, which
simplifies the design of your FPGA interface
code. It’s also worth noting that SuperSpeed
Device Design by Example includes Verilog
source code for Master and Slave FIFO
interfaces, which can help jump-start your
FPGA design. This source code is freely
available from Cypress on the companion
website for the book.

The output of the GPIF II Designer only
provides you with configuration settings you
can load for the interface; it doesn’t tell the
chip how data will be sent over the interface.
Several examples are provided with the FX3
Software Development Kit (SDK) demonstrating
the use of DMA to shuffle data between the
USB endpoints and the external interface, and
if you need even more examples see the Device
Design by Example book.

Finally, you’ll need the computer interface
side. A DLL is provided with high-level interface
examples for C++ and C#, which is used by the
examples from Cypress and in the Design by
Example book. If using another language such
as Python you can typically still access this DLL—
for example, using ctypes on Python. (Refer to
my blog post at ProgrammableLogicInPractice.
com for more details.) But if you just need
to sling data between USB endpoints, you
can use generic interfaces such as the
open-source libusb. This has the advantage
of having existing interfaces for almost
any programming languages. Listing 1
shows an example of using Python to read
from the “Streaming” example that comes
preprogrammed on the FX3 Explorer Kit. This
example simply continuously sends data over
the USB 3.0 connection, but you can see it’s
trivial to read data from these endpoints; in
this case, I’m reading 1,024 bytes being sent
from the FX3 device.

FINISHING TOUCHES
In this column I can only touch on the

basics of USB 3.0 SuperSpeed development.
But hopefully, this introduction will
demonstrate that this new standard is in
reach of almost any embedded engineer,
thanks to the release of copious examples and
low-cost development tools.

As usual I’ll post more detailed links and
videos to the companion website at www.
ProgrammableLogicInPractice.com, although
a few of the critical ones are listed in the
Resources section of this article too.

LISTING 1
Communicating with USB 3.0 devices
can use a standard interface library,
such as this example using libusb in
Python to read data from a specific
endpoint.

>>> import usb.core
>>> import usb.util
>>> dev = usb.core.find(idVendor=0x04b4, idProduct=0x00F1)
>>> print dev
<usb.core.Device object at 0x0225EE10>
>>> dev.set_configuration()
>>> dev.read(0x81, 1024)
array(‘B’, [170, 170, 170, 170, 170, 170, 170
, 170, 170, 170, 170, 170, 170, 170, 170, 170
... many more lines ...
, 170, 170, 170, 170, 170, 170, 170, 170, 170
, 170, 170, 170, 170, 170, 170, 170, 170, 170])

circuitcellar.com/ccmaterials

RESOURCES
D. Anderson and J. Trod-
den, USB 3.0 Technolo-
gy, MindShare Press, 2013,
www.mindshare.com/Learn/
USB_3.1/Books.

Cypress Semiconductor, FX3
Resource Page, www.cypress.
com/fx3/.

J. Hyde, SuperSpeed Device Design by Exam-
ple, CreateSpace, 2014. Download examples
from the book online at www.cypress.com/
fx3book.

Project Daisho (includes open-source USB 3.0
controller), https://github.com/mossmann/
daisho.

SOURCES
FX3 SuperSpeed device controller
Cypress Semiconductor | www.cypress.com

TotalPhase Beagle 5000 USB SuperSpeed
Analyzer
Total Phase | www.totalphase.com

ARM926EJ-S SRAM

GPIF II
External bus

interface

Direct memory
access (DMA)

channels
32 × USB
Endpoints

USB
Interface

I2C I2SUART SPI

FIGURE 1
The block diagram of the Cypress FX3
shows that it is primarily designed
around a high-speed Direct Memory
Access (DMA) engine; a necessity
to keep up with potential USB 3.0
data flows. External connections are
omitted on this diagram for clarity.

http://www.ProgrammableLogicInPractice.com
http://www.ProgrammableLogicInPractice.com
http://www.mindshare.com/Learn/
http://www.cypress
http://www.cypress.com/
https://github.com/mossmann/
http://www.cypress.com
http://www.totalphase.com

OPEN

RUGGED

LONG LIFE

ORIG
IN

AL
Unique embedded
solutions add
value for our
customers

Support every
step of the way
with open
source vision

Embedded
systems that
are built to
endure

We’ve never
discontinued a
product in 30
years

DESIGN YOUR SOLUTION TODAY
CALL 480-837-5200

TS-7700 Embedded Board
High Performance Compact SBC

Pricing Starts At

$165
Qty 1

Qty 100

$119

800 MHz or 1 GHz Marvell PXA168 ARM CPU

-40 ºC to 85 ºC Industrial Temperature Range

8 KLut FPGA, 1x 10/100 Ethernet, 2x USB Host

2x microSD Card Sockets for Redundant Storage

55x 3.3V DIO, 6x TTL UARTs, 1x I2C, 1x 12S, 1x CAN

512 MB DDR3 RAM, 128 bytes NVRAM

On board temperature sensor and watchdog timer

Runs Linux 2.6.34 or 3.14 with Debian Wheezy

Available with TS-ENC750 enclosure
and TS-752 interface board

TS-4600: 450 MHz low cost w/ 2 Ethernets
TS-4710: Up to 1 GHz PXA168 w/ video
TS-4720: Like TS-4710 + 2 GB eMMC Flash & 2 Ethernets
TS-4200: Atmel ARM9 w/ super low power
TS-4800: 800 MHz FreeScale iMX515 w/ video

Computer-on-Modules
State of the Art Embedded Design

TS-7250-V2 Embedded Board
High Performance and Industrial Grade

Pricing Starts At

$199
Qty 1

Qty 100

$165

-40 ºC to 85 ºC industrial temperature range

Easy development w/ Debian and Linux 3.14

High data reliability with 2 GB SLC eMMC �ash

Several control I/O interfaces

Hardware �exibility with on-board FPGA

Bene�ts:

Launches your application in half a second

Up to 1 GHz ARM CPU

512 MB RAM

2x USB Host

1x USB Device

2x SD Card Socket

8 or 17 KLut FPGA

75x DIO, 1x CAN

6x Serial Ports

2x 10/100 Ethernet 1x PC/104 Connector

Features:

Available with TS-ENC720 enclosure
(Shown with optional microSD card)

www.embeddedARM.com
www.embeddedARM.com

CIRCUIT CELLAR • APRIL 2015 #29746
CO

LU
M

NS

THE CONSUMMATE ENGINEER

The roots of failure modes effects and
criticality analysis (FMECA) and failure

modes effects analysis (FMEA) date back to
World War II. FMEA is a subset of FMECA in
which the criticality assessment has been
omitted. Therefore, for simplicity, I’ll be
using the terms FMECA and SWFMECA only
in this article. FMECA was developed for
identification of potential hardware failures
and their mitigation to ensure mission
success. During the 1950s, FMECA became
indispensable for analyses of equipment in
critical applications, such as those occurring
in military, aerospace, nuclear, medical,
automotive, and other industries.

FMECA is a structured, bottom-up
approach considering a failure of each and
every component, its impact on the system
and how to prevent or mitigate such a failure.
FMECA is often combined with fault tree
analysis (FTA) or event tree analyses (ETA).
The FTA differs from the ETA only in that the

former is focused on failures as the top event,
the latter on some specific events. Those
analyses start with an event and then drill
down through the system to their root cause.

In recent years, much effort has been
spent on bringing hardware related analyses,
such as reliability prediction, FTA, and FMECA
into the realm of software engineering.[1, 2, 3]
Software failure modes and effects analysis
(SWFMEA) and software failure modes,
effects, and criticality analysis (SWFMECA) are
intended to be software analyses analogous
to the hardware ones. In this article I’ll
cover SWFMECA as it specifically relates to
embedded controllers.

Unlike the classic hardware FMECA based
on statistically determined failure rates of
hardware components, software analyses
assume that the software design is never
perfect because it contains faults introduced
unintentionally by software developers. It
is further assumed that in any complicated

Software FMEA/FMECA

The analytical methods of failure modes effects and criticality analysis (FMECA)
and failure modes effects analysis (FMEA) have been around since the 1940s. In
recent years, much effort has been spent on bringing hardware related analyses
such as FMECA into the realm of software engineering. This month, George takes
a close look at software FMECA (SWFMECA) and its potential for making software
development more predictable.

By George Novacek (Canada)

Toward Better Software Development Predictability

circuitcellar.com 47
CO

LU
M

NS

software there will always be latent faults,
regardless of development techniques,
languages, and quality procedures used. This
is likely true, but can it be quantified?

SOFTWARE ANALYSIS
SWFMECA should consider the likelihood of

latent faults in a product and/or system, which
may become patent during operational use
and cause the product or the system to fail.
The goal is to assess severity of the potential
faults, their likelihood of occurrence, and the
likelihood of their escaping to the customer.
SWFMECA should assess the probability of
mistakes being made during the development
process, including integration, verification
and validation (V&V), and the severity
of these faults on the resulting failures.
SWFMECA is also intended to determine the
faults’ criticality by combining fault likelihood
with the consequent failure severity. This
should help to determine the risk arising
from software in a system. SWFMECA should
examine the development process and the
product behavior in two separate analyses.

First, Development SWFMECA should
address the development, testing and V&V
process. This requires understanding of
the software development process, the V&V
techniques and quality control during that
process. It should establish what types of
faults may occur when using a particular
design technique, programming language
and the fault coverage of the verification
and validation techniques. Second, Product
SWFMECA should analyze the design and its
implementation and establish the probability
of the failure modes. It must also be based on
thorough understanding of the processes as
well as the product and its use.

In my opinion, SWFMECA is a bit of a
misnomer with little resemblance to the
hardware FMECA. Speculations what faults
might be hidden in every line of code or every
activity during software development is hardly
realistic. However, there is resemblance with
the functional level FMECA. There, system
level effects of failures of functions can be
established and addressed accordingly.
Establishing the probability of those failures
is another matter.

The data needed for such considerations
are mostly subjective, their sources
esoteric and their reliability debatable.
The data are developed statistically, based
on history, experience and long term fault
data collection. Some data may be available
from polling numerous industries, but how
applicable they are to a specific developer
is difficult to determine. Plausible data may
perhaps be developed by long established
software developers producing a specific

type of software (e.g., Windows applications),
but development of embedded controllers
with their high mix of hardware/software
architectures and relatively low-volume
production doesn’t seem to fit the mold.

Engineers understand that hardware has
limited life and customers have no problem
accepting mean time between failures (MTBF)
as a reality. But software does not fail due to
age or fatigue. It’s all in the workmanship.
I have never seen an embedded software
specification requiring software to have some
minimum probability of faults. Zero seems
always implied.

SCORING & ANALYSIS
In the course of SWFMECA preparation,

scores for potential faults should be
determined: severity, likelihood of occurrence,
and potential for escaping to the finished
product.[4] The scores between 1 to 10 are
multiplied and thus the risk priority number
(RPN) is obtained. An RPN larger than 200
should warrant prevention and mitigation
planning. Yet the scores are very much
subjective—that is, they’re dependent on the
software complexity, the people, and other
impossible to accurately predict factors. For
embedded controllers the determination of
the RPN appears to be just an analysis for the
sake of analysis.

Statistical analyses are used every day
from science to business management.
Their usefulness depends on the number
of samples and even with an abundance of
samples there are no guarantees. SWFMECA
can be instrumental for fine-tuning the
software development process. In embedded
controllers, however, software related failures
are addressed by FMECA. SWFMECA alone
cannot justify the release of a product. FIGURE 1

Software development “V” model

System requirements

Software requirements

Software design Software intergration

Hardware/software
intergration

System intergration
and calibration

Coding

Ve
rifi

ca
tio

n a
nd

 va
lid

ati
on

CIRCUIT CELLAR • APRIL 2015 #29748
CO

LU
M

NS

EMBEDDED SOFTWARE
In embedded controllers, causes of

software failures are often hardware related
and exact outcomes are difficult to predict.
Software faults need to be addressed by
testing, code analyses, and, most important,
mitigated by the architecture. Redundancy,
hardware monitors, and others are time
proven methods.

Software begins as an idea expressed
in requirements. Design of the system
architecture, including hardware/software
partitioning is next, followed by software
requirements, usually presented as flow
charts, state diagrams, pseudo code, and
so forth. High and low levels of design
follow, until a code is compiled. Integration
and testing come next. This is shown in the
ubiquitous chart in Figure 1.[5]

During an embedded controller design,
I would not consider performing the RPN
calculation, just as I would not try to calculate
software reliability. I consider those purely
statistical calculations to be of little practical
use. However, SWFMECA activity with
software ETA and FTA based on functions
should be performed as a part of the system
FMECA. The software review can be to a large
degree automated by tools, such as Software

Call Tree and many others. Automation
notwithstanding, one should always check the
results for plausibility.

TOOLS
Software Call Tree tells us how different

modules interface and how a fault or an
event would propagate through the system.
Similarly, Object Relational Diagram shows
how objects’ internal states affect each
other. And then there are Control Flow
Diagram, Entity Relationship Diagram, Data
Flow Diagram, McCabe Logical Path, State
Transition Diagram, and others. Those tools
are not inexpensive, but they do generate data
which make it possible to produce high-quality
software. However, it is important to plan all
the tests and analyses ahead of the time. It is
easy to get mired in so many evaluations that
the project’s cost and schedule suffer with
little benefit to software quality.

The assumed probability of a software
fault becomes a moot point. We should
never plunge ahead releasing a code just
because we’re satisfied that our statistical
development model renders what we think is
an acceptable probability of a failure. Instead,
we must assume that every function may fail
for whatever reason and take steps to ensure
those failures are mitigated by the system
architecture.

System architecture and software analyses
can only be started upon determination
that the requirements for the system are
sufficiently robust. It is not unusual for a
customer to insist on beginning development
before signing the specification, which is
often full of TBDs (i.e., “to be defined”). This
may be leaving so many open issues that
the design cannot and should not be started
in earnest. Besides, development at such a
stage is a violation of certification rules and
will likely result in exceeding the budget and
the schedule. Unfortunately, customers can’t
or don’t always want to understand this and
their pressure often prevails.

The ongoing desire to introduce software
into the hardware paradigm is understandable.
It could bring software development into a
fully predictable scientific realm. So far it has
been resisting those attempts, remaining to a
large degree an art. Whether it can ever
become a fully deterministic process, in my
view, is doubtful. After all, every creative
process is an art. But great strides have been
made in development of tools, especially
those for analyses, helping to make the
process increasingly more predictable.

circuitcellar.com/ccmaterials

RESOURCES
G. Novacek, “Failure Mode
and Criticality Analysis,” Cir-
cuit Cellar 270, 2013.

———, “Product Reliability (Parts 1 and 2),”
Circuit Cellar 268–269, 2012.

———, “Software Reliability,” Circuit Cellar
273, 2013.

———, “Software Safety,” Circuit Cellar 285,
2014.

R. W. Stoddard, ASQ Reliability Division Webi-
nar, http://media.asq.org/113401/web.mp4.

ABOUT THE AUTHOR
George Novacek is a professional engineer
with a degree in Cybernetics and Closed-
Loop Control. Now retired, he was most re-
cently president of a multinational manu-
facturer for embedded control systems for
aerospace applications. George wrote 26
feature articles for Circuit Cellar between
1999 and 2004. Contact him at gnovacek@
nexicom.net with “Circuit Cellar”in the sub-
ject line.

http://media.asq.org/113401/web.mp4
mailto:gnovacek@nexicom.net
www.circuitcellar.com/ccmaterials

Experience extraordinary training
for embedded systems professionals

at ESC Conference Series 2015!
The Embedded Systems Conference (ESC) is the industry’s largest,

most comprehensive technical conference for embedded systems
professionals in the U.S. ESC is excited to announce an expanded 2015

USA Conference Series, taking place in Boston (May 6-7), Silicon
Valley (July 20-22), and Minneapolis (November 4-5).

The ESC series continues in Silicon Valley, a leading hub for high-tech innovation
and development; its home to many of the world’s largest high tech corporations,
as well as thousands of high-tech startup companies. Silicon Valley boasts more

engineers per square foot than anywhere else on earth.

Come join us at the Santa Clara Marriot and check out some of our
sponsors for the event:

Rohde & Schwarz | All Quallity & Service, Inc. (AQS) | AdaCore | Altium, Inc.
AMP Display | Azul Systems, Inc. | Chefree Technology Corp | Code | Data Image

Corporation | EBS Net Inc. | EMA Design Automation | STMicroelectronics | Teledyne
LeCroy | Toradex Inc. | WolfSSL | Embedded Works | Green Hills Software, Inc. | IEEE
Ironwood Electronics | Lauterbach | Micro Computer Control Corp. | Pico Technology

Rigol Technologies | Gemalto | Silex Technology America | Symmetry Electronics
 The QT Company | Trusted Computing Group

Register today at www.embeddedconf.com/silicon_valley with promo code
CircuitCellar15SV and get 15% off an All Access Pass. The offer ends July 15, 2015.

http://www.embeddedconf.com/silicon_valley

CIRCUIT CELLAR • APRIL 2015 #29750
CO

LU
M

NS

“People who spend their time, and earn
their living, studying a particular topic

produce poorer predictions than dart-
throwing monkeys.” This quote from a Nobel
prize winner who knows his stuff is a jarring
introduction to our final installment in our
article series dealing with estimating the
cost and schedule of our embedded software
systems. Is this whole process of software
estimation no better than what dart-throwing
monkeys could come up with? In the opening
article, I said that accurate estimating is
extremely difficult. But I also said that there is
some hope. This month I would like to provide
some thin slices of help for anyone who is
asked to estimate how many man hours it will
take to create an embedded system or even
a part of an embedded system. And the help
will come from the author of that quote.

Daniel Kahneman is a psychologist who
won the Nobel Prize in Economics in 2002.
The above quote is taken from his 2012
book entitled Thinking, Fast and Slow, which
summarizes his decades of research on the
psychology of judgment, decision-making,
and behavioral economics. Kahneman has
provided some key insights into how we

approach the impossible task of estimating
costs of developing embedded software
systems.

This article will not delve into function
points, use-case points, software metrics,
COCOMO models, SEER-SEM, or any of the
other methods for estimating software.
These are good, useful, and well documented
in the literature. We use function points,
use-case points and software metrics in
our company. I would heartily recommend
that you understand function points, use-
case points, and develop software metrics.
In particular, develop software metrics that
relate to your experience of function points
or use-case points. In other words, count the
function points or use-case points during the
estimation phase of three to four projects
and see what you learn about yourself, your
estimating process, and your projects. Go
back to completed projects and determine the
number of function points or use-case points
and factor that into a metric.

What I want to do this month is to look
at estimating from 5,000′. I want to see how
Kahneman’s research can help us become
better at estimating software. The stated

EMBEDDED IN THIN SLICES

Bob concludes his series on estimating the costs for designing and developing
your embedded systems project. He looks at four heuristics and how by knowing
them you can get better at this task.

By Bob Japenga (US)

Estimating Your Embedded
Systems Project (Part 3)
Four Heuristics for Embedded Software Development

circuitcellar.com 51
CO

LU
M

NS

purpose of his book was, in his words,
to “learn to recognize situations in which
mistakes are likely and try harder to avoid
significant mistakes when stakes are high.”
If we can glean that from his book, we will
become better at estimating the costs of
embedded software systems.

Kahneman proposes almost 50 heuristics
in his book. A heuristic is a method or process
that enables us to learn something on our
own. Only a few of them are applicable to us
in estimating software. But if we can master
them, they will enable us to become better at
estimating embedded software.

PRIMING
Sometimes one of our customers will

tell us that a project needs to be completed
in three months. Or that it needs to be
completed for under $15,000. These numbers
can have a very bad effect on our ability to
accurately estimate a software project. I
am amazed how often my estimate closely
parallels the customer’s estimate. Can it be
that the customer really knows how long it is
going to take or how much it is going to cost?
Or is something else going on?

A heuristic discussed by Kahneman in his
book is called priming. He and other researchers
have demonstrated that our behavior can be
primed by what goes immediately before us.
For example, he cites one study, where two
groups of young people (aged 18–22) were
asked to form some sentences from a set of
five words. One group had a set of five words
associated with the elderly. After the exercise,
the young people were asked to walk through a
corridor. Those who worked with words about
the elderly walked slower than the other group!
Experiments like this have been repeated many
times with a wide variety of different priming
mechanisms. The evidence seems to indicate
that we are deeply influenced by priming.

How are we to use this knowledge about
ourselves to become better at estimating?
First, as much as possible, we need to avoid
obtaining from our customer or bosses
expected costs and schedule before we make
our estimates. Estimating is difficult and I
really want to know what the customer or my
boss expects me to estimate. But resist the
urge. Priming is a powerful and proven effect
and we must avoid it as much as possible.
Watch out when your boss tells you that he
needs this in two weeks and then asks you to
estimate it.

If however, the cat is out of the bag, we
need to make an extra effort to not let that
number influence us. This is by far the harder
of the two options. Once primed, even when
I take herculean strides to not be influenced,
the priming has its effect. But at least I am

aware of the effect. Develop your estimate
with your usual method of function points or
use-case points or whatever, and if it comes
in the same ball park as the “primed” number,
be wary of your numbers and extra-vigilant—
run your numbers again.

ANCHORING EFFECT
I have noticed that a lot of my estimates

seem to be remarkably similar to previous
estimates. Could it be that my projects are so
similar that it always takes 40 hours to write
the software specification for all projects? Or
that user interface designs always take 160
man hours. Or is something else at work?

One of the heuristics Kahneman has
identified is what he calls the anchoring effect.
The anchoring effect “occurs when people
consider a particular value for an unknown
quantity before estimating that quantity.”
With serious academic rigor, Kahneman
demonstrates how we are influenced by
previous numbers. For example, he tells us
that if we were asked if we thought that Gandhi
was 114 years old when he died, we would
immediately say “No.” If we were then asked
how old we thought he was when he died, our
number would be higher than if we were first
asked if we thought Gandhi was 35 years old
when he died. That first number acts as an
anchor to pull our estimate in its direction.
Kahneman’s claims that this phenomenon is
“one of the most reliable and robust results of
experimental psychology: the estimates stay
close to the number that people considered
[previous]—hence the image of an anchor.”
This means that we will be affected by it when
we do our estimating.

Anchoring is closely related to priming.
I would make the distinction that priming
involves numbers related to the estimate (the
customer’s estimate for the same project).
Anchoring happens when I take numbers
from an unrelated project into account before
I make my estimate.

How can we take this knowledge and
become better at estimating? Here is where
software metrics come into play. Look back
over the last several estimates of unrelated
projects. Were the estimates similar to each
other? How did the actuals compare to the
estimates? If you see a correlation with the
estimates but not in the actuals, anchoring is
a possible cause. Develop a range of estimates
based on actuals and use these when making
a new estimate. For example, imagine that
the user interface took 120 hours on project
A, 130 hours on project B, and 250 hours on
project C. Attempt to identify the similarities
and the differences and place a weighted value
to each. How many menu items or screens
were involved? Was it a graphical interface?

CIRCUIT CELLAR • APRIL 2015 #29752
CO

LU
M

NS

Was a working driver provided? Was it a touch
screen or keypad or both?

To avoid the anchoring effect on new
estimates, we need to ruthlessly dissect
previous projects into their subcomponents
using software metrics. In other words,
keep track of how long it took to write the
specification, design the user interface,
design the manufacturing test fixture, etc.
Then when we approach a new project we
need to make a quantitative comparison
between the smaller elements. For example,
the user interface is about twice as complex
as project B and half as complex as project C.
This quantitative approach can help us avoid
the anchoring effect.

OPTIMISTIC BIAS
Kahneman describes many biases that

affect our ability to estimate. He posits that the
optimistic bias may be the most significant. In
my earlier articles in this series, I discussed
optimism as it relates to estimating but it
bears repeating. I would recommend reading
chapters 23 and 24 of Kahneman’s book in an
attempt to hammer home how pervasive this
heuristic is and learn to make adjustments.

How do we counter this optimistic bias?
I would say that a thorough knowledge of
our optimistic bias is a good start. Software
metrics can help if you develop actual
numbers and then compare them to your
estimates during a post-mortem. But human
nature such as it is, unless we learn to
develop a sort of “humility before the data”
we can ignore the stubborn facts the metrics
show us. A simple mantra that could be said
after you have completed your estimate and
before you submit it, is to repeat these words:
All evidence shows that I am repeatedly over
optimistic in what I think I can do. How should
this estimate change based on that?

SMALL SAMPLE SIZE
We all know that using a small sample of

data sets us up for errors in estimating or
drawing conclusions. But Kahneman takes us
to a new level of awareness of the danger of
using small samples. For example he cites
a study of the incidence of kidney cancer
in 3,141 counties in the United States. The
counties with the lowest incidence per capita

are “mostly rural, sparsely populated, and
located … in the Midwest, the South and
the West.” Upon hearing this, most of us
immediately start jumping to conclusions. But
he goes on to also state that counties with the
highest incidence per capita are also mostly
rural, sparsely populated, and located in the
Midwest, the South and the West. I leave it
to you to figure out why sample size is the
reason for this apparent contradiction. Email
me if you want some help.

In using our software metrics to estimate
embedded software systems, we have to
recognize that we have an extremely small
sample size that we are drawing upon. I
have been in this business since 1973. I
have estimated almost 1,000 such projects.
Yet even with all that experience, that is an
extremely small sample to accurately predict
how the next project is going to go.

So what can be done in light of this last
heuristic? I recommend that you doggedly
pursue from other companies the results
of actual projects. Most companies are not
willing to part with this information. But I
have found that it doesn’t hurt to ask. In
non-competing situations, we can learn a lot
as we expand our sample. There are a lot of
numbers floating around the web. Take the
time to create your own data base of “the
other guy’s” actual development time.

On one project, we had expended an
immense amount over our original estimates.
After the project we found that another
company designed a very similar product and
took 2× to 3× as much calendar time and cost.
Had we had that number in the beginning, we
may have been more accurate in our original
estimates.

Although your environment is unique to
you and your company, industry standard
metrics like hours/line of code and hours/
function point or hours/use-case point can
help expand your sample. These metrics are
prone to many errors and are widely variable.
Nonetheless they are another data point for
your estimate. They help us limited engineers
do the impossible: expand our sample without
actually doing the work.

HOW ACCURATE?
Accurately estimating embedded software

systems is impossible. Don’t let anyone tell
you otherwise. Hopefully, with some input
from this series, you will become a little
better at it than you were before. And that is
no small accomplishment. It is with some
reluctance that I close this article series since
I know that I have taken a very thin slice of a
very big topic. Email me if you would like me
to elaborate more fully on any of these topics
in the coming months. circuitcellar.com/ccmaterials

ABOUT THE AUTHOR
Bob Japenga has been
designing embedded
systems since 1973. In
1988, along with his best
friend, he started Micro-
Tools, which specializes
in creating a variety of
real-time embedded sys-
tems. With a combined
embedded systems ex-
perience base of more
than 200 years, they
love to tackle impossible
problems together. Bob
has been awarded 11
patents in many areas of
embedded systems and
motion control. You can
reach him at rjapenga@
microtoolsinc.com.

RESOURCES
D. Kahneman, Thinking, Fast and Slow, Farrar,
Straus, and Giroux, New York, NY, 2012.

mailto:rjapenga@microtoolsinc.com
www.circuitcellar.com/ccmaterials

If you’ve ever wanted to design and program with the ADuC841
microcontroller, or other microcontrollers in the 8051 family, this is the book

for you. With introductory and advanced labs, you’ll soon master the
many ways to use a microcontroller. Perfect for academics!

Now
Just
$35.00

If you’ve ever wanted to design and program with the ADuC841

ADuC841 Microcontroller Design Manual:
From Microcontroller Theory to Design Projects

www.cc-webshop.com
Buy it today!

http://www.cc-webshop.com

CIRCUIT CELLAR • APRIL 2015 #29754
CO

LU
M

NS

Welcome back to the Darker Side column.
Every child is amazed by sparks. I leave

near Paris, France, and we have old science
museum called Palais de la Découverte.
You might have something similar close
to you. I remember that I was more than
astonished the first time I visited it and saw
an electrostatic experiment. A young girl was
installed in a Faraday cage, and exposed to
1,000,000,000-V electrostatic discharges! The
sparks were several feet long, and her hair
was, well, strangely straight.

Electrostatic discharge, or ESD for short,
is not only impressive. It’s also the cause of
plenty of failures in electronic circuits. Simply
speaking, a 5- or 3.3-V circuit isn’t suppose to
survive to 1,000 V. But think about it twice:
such a voltage is very common between your
body and the ground. Have you ever walked
on a carpet? Just touch any electronic part, or
any connector not sufficiently protected, and
you will have a dead piece of silicon. Moreover,
even if your product is well insulated,
nearby ESD can easily create strong induced
currents, which can either destroy something

or at least generate nasty reset pulses to an
on-board microcontroller.

Even some experienced electronic
designers are ignoring ESD. That’s risky. ESD
events exist, so you’d better be prepared. In
addition, regulatory groups often require ESD
testing before selling products. This is true in
Europe with CE marking requirements. (Refer
to my December 2011 column on the subject
in Circuit Cellar 257.) And, last but not least,
dealing with ESD can be really fun!

THE ORIGIN OF ESD
As Wikipedia explains, the main

contributor to ESD is triboelectric charging.
Some nonconductive materials (e.g., skin,
glass, mica, hair, and paper) love to give
away electrons, while other materials (e.g.,
acrylic, PVC, polyester, and Teflon) prefer to
receive them. John Carl Wilcke published the
first ranked list of such materials in 1757.
Take a pair of these materials and put them
in contact. There will be a slight transfer of
electrons between them, according to their
preferences. Next, quickly move them away

Let’s Play with
Electrostatic Discharge

THE DARKER SIDE

Electrostatic discharges (ESD) can create big problems for your
electronic systems. Even well-insulated systems can fall victim
to ESD. Robert details several “ESD events” and provides tips for
protecting your projects.

By Robert Lacoste (France)

circuitcellar.com 55
CO

LU
M

NS

from each other. As they are insulators, the
electrons are not moving that quickly, so one
of the materials stays positively charged and
the other remains negatively charged. That’s
triboelectricity. The accumulated charge Q (in
coulombs) is simply the number of transferred
electrons multiplied by the charge of an
individual electron (i.e., 1.6 × 10–19 C). Next,
move this charge between the electrodes of a
capacitor C (in farads). A voltage V (in volts)
will appear between these electrodes. And
the relationship between these three values is
simply V = Q/C. So, the voltage will be higher
is the charge is higher or if the capacitor is
lower valued.

That’s exactly how the first friction-based
electrostatic generators worked. Take a glass
disk, rotate it over a woolen cloth, add a
collecting conductor and a storage capacitor,
and you will have recreated the early 18th-
century generators. Rubbing the two surfaces
creates successive contact/release between
the materials as they have a rough surface.
These generators were then improved up to
the Van De Graaff and Tesla generators just
before 1939.

The bad news is that exactly the same
phenomenon exists between your shoes
and the carpet, or between a plane and the
surrounding air (which is also an insulator).
And this explains the sparks that appear at
the end of your finger when you want to open
your car after exiting your home, especially if
the weather is dry. According to Henry W. Ott
in Electromagnetic Compatibility Engineering
(which is one of my favorite books), walking
across a carpet can generate voltages up to
35,000 V if the ambient humidity is lower than
20%. Come close to any grounded conductor
and you will have a nice spark. Do you know
what such a high-voltage spark looks like? I
can’t easily generate 35,000 V, but I do have
a 25,000-V Shaffner NSG432 ESD generator in
my lab, which is close. I switched it on at full
voltage and spent some time to get a good
picture for you (see Photo 1). Impressive,
isn’t it?

THE HUMAN BODY MODEL
ESD events are difficult to reproduce as

the voltages and capacitor values are varying.
In order to facilitate the job of the designers
and testers, standards were fortunately
defined. The idea is to specify a reasonable
model for the prime source of ESD concerns:
humans. As usual, several models exist, but
one of the most common is the one specified
in the European standard EN61000-4-2. In
this one, the human body is assumed to be
equivalent to a 150-pF capacitor with one
grounded terminal and the other connected to
the test finger through a 330-Ω resistor. The

capacitor is initially charged to a voltage of
4- to 15-kV depending on the test and product
specifications.

Where do these values of 150 pF and
330 Ω come from? The model assumes that
the capacitor formed between each of our
feet and the ground is about 50 pF (see
Figure 1). There is also the so-called free-
space capacitance of the body. (That is the
capacitance when the second electrode is an
infinity. There are more details in Ott’s book.)
For a human, this free space capacitance is
about 50 pF too. Add some surrounding walls
and you will understand that the 150 pF of the
standard is not unreasonable. Lastly, the 330-Ω
resistor simulates the resistance of the skin
(which is, of course, far from stable).

BASIC TEST SETUP
I know that you prefer experiments over

long talks, so I built one for you (see Photo 2).

50 pF

50 pF

50 pF 50 pF

330 Ω

Vehicle

∞

FIGURE 1
The human body model assumes a total capacitance of 100 to 300 pF to the ground and a contact resistance
of some hundred ohms. Note that 150 pF and 330 Ω are standardized values.

PHOTO 1
A 25,000-V spark is up to 1-cm long.
Nice, isn’t it ?

CIRCUIT CELLAR • APRIL 2015 #29756
CO

LU
M

NS

I etched a simple 2″ long track on a PCB. (The
other side is a full ground plane.) I connected
my NSG432 ESD generator to one end of the
track and set it to 8 kV. I soldered a 47-kΩ
load resistor on the other end to simulate a
load, and I measured the voltage across this
resistor with my Keysight Technology DSO-X
3024A digital scope. (Keysight Technology
is the new name of Agilent instruments,
which was the new name of Hewlett Packard
instruments. It’s difficult to follow.)

Of course, connecting directly a 8-kV
generator to the delicate input of a $4,000
scope would not be a clever idea, except
may be if you are looking for an excuse
to buy a new scope! So, I used an old but
impressive Tektronix P6015 high-voltage
1:1000 attenuation probe, which is also
visible in Photo 2. I got this monster on eBay
a while ago and was happy to find a use for
it. This probe is even supplied with a bottle
of fluorocarbon gas to fill it when you want
to use it close to its 20-kV limit. Probably not
environmental friendly, but impressive.

Then it was time to test. I configured the
scope for one-shot triggering, kept my hands
off, and fired the ESD gun. The good news is
that the scope survived, and I got the plot
you see in Photo 3. The maximum measured
voltage was 5 V, which means 5 kV due to
the 1:1000 attenuation of the probe. This
is not too far from the 8-kV setting of the
ESD generator. The difference is due to the
impedance of the PCB track, which tamper
the very fast positive edge of the electrostatic
discharge. The horizontal scale is 5 µs per
division, which means that the ESD-generated
voltage stayed above 1 kV for about 13 µs. So,
an ESD event is quite fast. Do you remember
that an energy is a power times a duration?
This implies that the energy of an ESD
spike is reasonably low, even if it is largely
enough to destroy virtually any unprotected
electronic component. Remember these key
characteristics of ESD: voltage is very high,
duration is very short, and energy is quite
low. This is very different from other kind
of surges. In particular, ESD must not be
confused with lightning. When a line receives
(directly or not) a lightning blast, the voltage
is usually lower than ESD, but its duration is
far longer, so energy is far higher. Not the
same subject.

ESD PROTECTION DEVICES
OK, let’s come back to ESD. How can you

protect a product from ESD events? Using
ESD protection devices, of course. They
come in different flavors. For low-power
applications, the most common is the so-
called transient voltage suppressor diode, or
TVS for short. (“Transil” is, as far as I know,
an equivalent denomination.) A TVS diode
is a kind of specially designed Zener diode.
As a Zener, a TVS has a specified clamping
voltage and conduct when a higher voltage is
applied on its terminals. In order to protect
from spikes, they must be very fast, and they
are. Their response times are measured in
tens of picoseconds, as long as they are well
used. More on that later. Both unipolar and
bipolar variants exist, and you must select the
appropriate one for your circuit. The unipolar

PHOTO 2
My test setup includes an NSG432 generator (left), a small test PCB, a DSO-X 3024 digital scope (top), and
an impressive 20-kV 1:1000 Tektronix P6105 probe (bottom right).

PHOTO 3
The ESD surge, measured without any protection devices, is up to 5 kV. The horizontal scale is here 5 µs
per division.

circuitcellar.com 57
CO

LU
M

NS

TVS should be used on a signal with is always
above ground level, like a TTL input. The
bipolar TVS includes two Zener diodes and has
a symmetrical behavior. It can protect a line
which accept a positive or negative voltage
input. For example, Photo 4 shows you a TVS
design kit from Würth Electronik, but you can
find also similar devices from companies like
Vishay, Littlefuse, Texas Instruments, and
tens of others.

Here are a few notes of caution. Firstly,
you must select a TVS with a voltage rating
appropriate to your circuit. The margin
should be high enough to avoid any functional
degradation. Usually, the threshold voltage
with be twice higher than the nominal
line voltage. The goal of a TVS is to avoid
spikes of some kilovolts, not to protect a
5-V input from a 10-V DC voltage. That
should be managed by other components
if required. Wolfgang Kemper’s 2010 Texas
Instruments application report, “Reading
and Understanding an ESD Protection,” is an
excellent reference, which describes all the
parameters of a TVS diode.

Note that specific TVS exists for fast I/O
lines like USB or Ethernet. You’d better use
them if you have these kind of interfaces. Most
importantly, you must take care to reduce as
much as possible the parasitic inductance of
the TVS pins connections. On any product, the
TVS diode must always be installed as close
as possible to the signal input. The PCB track
from input to TVS diode must be minimal. As
critical is the ground connection. It should be
as short as possible and directly connected
to the ground input, which means directly
connected to the ground pin of the input
connector. A point of emphasis: Any extra
millimeters on the TVS connections to either
signal input or ground return will drastically
reduce the efficiency of the protection. And
a final note of caution: TVSes are quite
resistant; but if they fail, they usually fail as
short circuits.

Other ESD protection devices are available,
even if they are not as typical as TVSes. The
well-know metal-oxide varistor (MOV) is an
example. A varistor is a voltage-dependent
resistor; its resistance become drastically
lower above a threshold voltage. As compared
to a TVS, a varistor can absorb far higher
energy levels, but it is also far slower (some
microseconds). Unfortunately, ESD events are
very fast and the voltage can be up to some
kilovolts in nanoseconds. Therefore, varistors
are not very efficient for ESD protection. They
are, however, perfect for lightning protection.
Gas discharge tubes are also protection
devices. They are, like varistors, mainly used
for lightning protection, but they provide a
very low parasitic capacitance, which makes

them a great choice for antenna protection in
particular.

LET’S TRY !
OK. It’s time to switch on the soldering

iron one more time. I took my test board
and added a small TVS diode from the Würth
Elektronic WE-VE series in a surface-mounted
0603 package. I soldered it directly on the
PCB track, and connected its ground pin to
the ground plane on the bottom side of the
PCB through a via (see Photo 5). I zapped the
input with my ESD generator once more and
looked at the oscilloscope plot (see Photo 6).

The effect of the TVS diode is more than
impressive. Firstly the spike maximum voltage

PHOTO 4
ESD protection devices come in
different small packages. This is a
design kit from Wüth Elektronik.

PHOTO 5
A TVS diode must be positioned as closely to the input as possible and with very short return paths. Here the
tiny 0603 SMT TVS diode is connected directly to the bottom ground plane layer thanks to a via.

CIRCUIT CELLAR • APRIL 2015 #29758
CO

LU
M

NS

was reduced from 5,000 V down to 100 V.
That is 50× lower. Even more important,
the duration of the ESD event, as seen by
the receiving circuit, is now far shorter. Just
compare with the first plot (see Photo 3),
where the duration was around 15 µs. It is
now down to 100 ns or so, which is 150× lower.
Some calculations? Once again, an energy is
the product of a power and duration. And do
you remember that power is proportional to
the square of a voltage? This means that the
energy of the spike was roughly reduced by a
factor of (50 × 50) × 150, which is 375,000×.
A significant energy reduction with a small
0603 TVS diode, isn’t it ?

ESD-SAFE DESIGNS
So, TVS diodes are the key components

to add to your design if you suspect that
an input line could be ESD prone. But in
some cases, the remaining energy still will
be too high for sensitive electronic devices.
How can you ensure it will be harmless?
First, refer back to Photo 6. You can see
that the remaining energy is now a kind
of fast oscillation, meaning that the TVS
diode converted the ESD pulse into a kind of
high frequency burst. How can you reduce
it? With a low-pass filter, of course. Just
add, after the TVS diode, a serial resistor
and a parallel capacitor to ground and you
will have a low pass RC filter, which will
drastically reduce the remaining spike. Or,
even better, replace the resistor by a ferrite
bead to implement an LC filter and you’ll
have the close-to-perfect ESD protection
you see in Figure 2.

PHOTO 6
With a TVS the waveform is completely
different. The maximum voltage is
reduced to 100 V and the time scale is
far shorter. Here the horizontal scale is
500 ns per division.

circuitcellar.com/ccmaterials

RESOURCES
W. Kemper, “Reading and Un-
derstanding an ESD Protec-
tion,” Texas Instruments, 2010,
www.ti.com/lit/an/slla305
/slla305.pdf.

A. Khan, “Electrostatic Dis-
charge (ESD) Tutorial,” Cy-
press Semiconductor Corp.,

2012, www.cypress.com/?docID=35736.

H. W. Ott, Electromagnetic Compatibility Engi-
neering, Wiley, 2009.

SOURCES
DSO-X 3024A Digital oscilloscope
Keysight Technologies | www.keysight.com

NSG432 Static discharge simulator
Schaffner | www.schaffner.com

P6015 High voltage probe
Tektronix | www.tektronix.com

82350120563 WE-VE ESD Suppressor
Würth Elektronik | http://katalog.we-online.
de/en/pbs/WE-VE

FIGURE 2
An ESD protection requires a TVS
as close as possible to the input. A
filtering network (R/C or L/C) close
to the load reduces high-frequency
spikes. Lastly, a small capacitor close
to the input reduces transmitted
perturbations but this has nothing to
do with ESD.

http://www.ti.com/lit/an/slla305
http://www.cypress.com/?docID=35736
http://www.keysight.com
http://www.schaffner.com
http://www.tektronix.com
http://katalog.we-online

circuitcellar.com 59
CO

LU
M

NS

You might think that this schematic is
far too complex for the job. It could be the
case for your design, but I want to present
you with the safest approach. All the details
are important. Firstly, as discussed, the TVS
diode (D1) must be the first component on the
signal path as it must be as close as possible
to the input. Its ground connection should be
as short as possible and directly connected to
the signal ground input. If the enclosure is a
metallic box, then grounding it at this point is
probably the best choice. Forget the capacitor
C2 for the moment. Then, the low-pass filter
is made with the ferrite choke L1 and the
capacitor C1. On the schematic, I intentionally
put this L1/C1 low-pass filter quite far from
the input components. Why? Simply because
it’s extra protection. Every inch of track
between the TVS diode and the circuit to
be protected will drastically reduce the ESD
transient, as it will act as a good inductor.
If you have some spare room on your circuit
board, you should try to do the same.

The L1/C1 filter will reduce the remaining
spike energy down to reasonable levels.
The difficulty with such a circuit is that it is
impossible to predict the amplitude of the
remaining pulse with real-life ESD events.
May be it will be very low, or may be it will
still be some tens of volts, depending on the
characteristics of the electrostatic discharge.
But, wait. Now you are sure that the energy will
be low, thanks to D1, and that the surge will be
slow, thanks to L1 and C1. So now any classic
over-voltage protection method is applicable.
You can add a standard Zener diode to limit
the spike voltage to any threshold you want,
or you can simply add two diodes D2 and D3
to limit the voltage excursion from ground to
VCC as shown.

Now lets go back to C2. This capacitor
is as close as possible to the input. It has
nothing to do with ESD but to electromagnetic
compatibility (EMC). Its role is to make a low
pass filter with L1, but this time in the reverse
direction. It is filtering out noise coming from
the internal circuit and will avoid it to leak
externally. You may need it or not. It’s your
game.

WRAPPING UP
Electrostatic discharge causes problems

for engineers. In this article, I only briefly
covered the topic. Once again I strongly
recommend you to read Ott’s book and the
other articles listed in Resources section of
this article.

Even if they are different phenomenons,
ESD and EMC have something in common. The
difficulties associated with them are much
greater if the ground is not well managed.
Grounding is fundamental. A TVS diode won’t

help if the PCB doesn’t provide a good, full
ground plane. Nor will it help if the PCB
ground is not closely linked to the input and
enclosure ground. Do you want an example of
what could happen if you include a PCB in a
metallic box with external wires but without
a proper ground connection? Photo 7 shows
what’s referred to as a secondary spike.
A first spike is created by an ESD event on
the metallic enclosure. The voltage of the
enclosure climbs to some thousand volts, and
another spike fires between any internal part
of this enclosure and the electronic circuit!
OK, for this picture I intentionally used a
worst-case situation, but this happens. Just
add a solid ground connection between the
PCB and the enclosure and you will avoid it.

Here we are. ESD is fun topic to study. But
but it sure can be a nasty reality to deal with
from time to time.

PHOTO 7
An illustration of indirect ESD spikes. Here you see that a first spike is created between the gun and the
enclosure. A second spike appears between the enclosure and the electronic board.

ABOUT THE AUTHOR
Robert Lacoste lives in France, near Paris. He has
25 years of experience in embedded systems,
analog designs, and wireless telecommunica-
tions. A prize winner in more than 15 interna-
tional design contests, in 2003 he started his
consulting company, ALCIOM, to share his pas-
sion for innovative mixed-signal designs. His
book (Robert Lacoste’s The Darker Side) was
published by Elsevier/Newnes in 2009. You can reach him at rlacoste@alciom.
com. Don’t forget to put “darker side” in the subject line to bypass spam filters.

mailto:rlacoste@alciom.com

CIRCUIT CELLAR • APRIL 2015 #29760
CO

LU
M

NS

If we ignore the fig leaf, “skins” were most
likely the first fashion statement. These

predated the weaving of fibers that may reach
back about 100,000 years. Before evidence of
the sewing needle, which goes back tens of
thousands of years, clothing was more or less
wrapped or draped. However, it wasn’t until
just a few thousand years BC that spun fibers,
made into yarn, were woven to make fabrics.
This process involved a frame or loom that
was used to hold many parallel fibers in place

so perpendicular fibers could be interwoven
between them, creating a “sheet” of fabric.
While fabric could be dyed to give it a bit of
color, a new process was developed using
dyed fibers of different colors and adjusting
the weave to select which colors were visible.
This allowed for the weaving of textiles with
very complex patterns. It’s a very labor-
intensive operation.

The production of fabric didn’t advance
from a cottage industry until about the 15th

Ladder Logic (Part 1)

By Jeff Bachiochi (US)

A true programmable logic control-
ler (PLC) is more than just a micro-
controller. This article is an excel-
lent introduction to PLC technology
and its various uses. After covering
the basics, Jeff explains how PLCs
operate.

FROM THE BENCH

An Introduction
to PLCs

PHOTO 1
Even the semiautomated hand driven treadle looms required extensive setup and proficient operators until the
invention of using punched cards to select heddles by Austrian Joseph Jacquard at the end of 19th century. (“Hand-
Driven Jacquard Loom,” Edal Anton Lefterov, http://en.wikipedia.org/wiki/Jacquard_loom)

http://en.wikipedia.org/wiki/Jacquard_loom

circuitcellar.com 61
CO

LU
M

NS

century. Prior to the industrial revolution
passing the shuttle between the weaves was
a hand operation. Once mechanized, the
weaver’s sole task was to adjust the heddles,
the mechanism that pulls a particular fiber
up. Raising a number of fibers above the
rest leaves a gap in which the shuttle can be
passed. Multiple heddles could be raised by
a single treadle or foot pedal. Each treadle
moved a different combination of heddles
each forming a unique row pattern. The
over all pattern is produced by following a
particular sequence of treadle changes, one
for each pass of the shuttle (row).

In 1801 Joseph Jacquard demonstrated a
loom that automated the complete process
of manufacturing textiles. Virtual treadles
were created by punching a hole in a giant
card indicating the heddles that should be
raised. Each card corresponds to one row of
the design. By chaining prepunched cards in
a linear chain, a sequence of patterns could
be “programmed” into the continuous loop of
chained cards (see Photo 1). Punched cards?
Programming?

COUNT ON IT
Merchants and traders had a continual need

for keeping track of their daily transactions.
Many used a counting frame or abacus as a
calculating tool. It’s easy to imagine how
manual manipulation could be automated by
substituting gears for beads (see Photo 2) and
then continue by morphing into a desktop
device used by companies worldwide (see
Photo 3).

People counting was an ongoing event
that reaches back thousands of years.
Census data had to be estimated because it
took so long to collect the data that it was
outdated before it could be compiled. Once
communication improved and the question
of quantity could be answered in a timely
fashion, it became evident that other data
would be informative. Thus began the
collection of massive amounts of information.
Yet even with efficient collection, it often took
years just to document it, not to mention
analyze it.

Just over 100 years ago, Herman Hollerith
developed a system for storing census data
on punched cards for the 1890 US census. His
“tabulator” was a glorified adding machine,
which could rapidly tabulate the census
statistics by reading the holes in the punched
cards. (His company later merged to become
IBM.) As can be inferred by Photo 4, the
tabulator used the holes in the nonconducting
card material to enable electromagnets to
advance mechanical counters. Here the inputs
(card holes) were directly wired to the outputs
(counters) creating a specific operation. By

replacing the interconnections with a control
(patch) panel, the operation (intent) of the
device became programmable. Thus, we have
the basis of a generic device where all of its
resources can be reconfigured.

Prior to vacuum tubes (and transistors),
all operations were controlled via relays, or
electromagnets that operate one of more
switches. Most relays have at least one
normally open (NO) contact and one normally
closed (NC) contact in addition to the COM
contact (switch wiper). The contacts reflect
the state while remaining isolated from
the electromagnetic coil. This allowed the
contacts to be connected in combinatorial
ways via the patch panels.

LADDER LOGIC
Relays grouped into logic circuits are often

called line diagrams, because the inputs and

PHOTO 3
Results adding machine produced in Germany circa 1950s. (Source: “Mechanical Calculating Machine,” Roger
McLassus, http://en.wikipedia.org/wiki/Adding_machine)

PHOTO 2
Older adding machines like this used
a mechanism of gears similar to a
car odometer. (Source: “Old Adding
Machine,” David R. Ingham, http://
en.wikipedia.org/wiki/Adding_machine)

http://en.wikipedia.org/wiki/Adding_machine
http://en.wikipedia.org/wiki/Adding_machine
http://en.wikipedia.org/wiki/Adding_machine

CIRCUIT CELLAR • APRIL 2015 #29762
CO

LU
M

NS

outputs are essentially drawn in a series of
lines. Figure 1 the physical connections,
symbol, and logic table for two types of relays
used in control logic, those whose contacts
are NC while not powered and those whose
contacts are NO while not powered.

A relay logic circuit is an electrical
network consisting of lines or rungs (contact
interconnections) that must have continuity to
enable an output device. A typical application
may consist of a number of rungs (circuits),
with each rung defining rules for its output.
The output state is based on the combination
of state or contact conditions of its (input)
devices, such as input switches and control
relays. Input states can be connected in
series, parallel, or series-parallel to obtain
the logic required for the output. The relay
logic circuit forms an electrical schematic
diagram for the control of output devices.
Relay logic diagrams represent the physical
interconnection of devices.

When unpowered a relay is defined
as having an input state=0. The relay is
energized the input state=1. An NC relay’s
output state=1, when the relay is unpowered.
Energizing the relay opens the contacts and
the output state=0. The NO relay’s output
state=0, while the relay is unpowered.
However, when energized, the contacts close
and the output state=1. Figure 2 shows how a
relay’s coils and contacts are physically wired
on a “rung” to form logic functions. A rung
consists of input states and/or relay contact
states to form the rules for a particular
output’s state.

PLC
Earlier I mentioned “control panels,”

which were patch bays used to reprogram
relay connections. While the ability for an
operator to redefine the rules of the game
has advantages, in the industrial world, this
could be a weak link in the reliability of a
production process. Affixing connections
with a level of permanence (hardwired)
makes more sense. A design engineer would
determine the rules required to achieve a
set of specific tasks structured to fulfill the
objective. He would then draw a line diagram
consisting of rungs (sets of rules to complete
an individual task) that would result in the
objective being reached. An electrician would
then wire the system of relays based on this
schematic. It’s easy to see that any error
by the design engineer or electrician could
require major debugging energy and delay
production.

It was the auto industry that pushed for
a better way. In the late 1960s, the modular
digital controller (modicon) was developed
to eliminate the need for all hardwired

FIGURE 1	
This shows the physical (contact and coil) connections for a relay and the four possible combinations of input
and output states.

PHOTO 4
Herman Hollerith’s tabulating machine used punched cards to hold data and tabulated the total number
of holes seen in each section (category) of a card. Note the bed-of-nails approach to data input. (Source:
“Hollerith Machine CHM,” Adam Schuster, Flickr: Proto IBM)

circuitcellar.com 63
CO

LU
M

NS

rule-based interconnections. This used a
microcontroller to monitor existing inputs
and drive existing outputs, based on the
already established rule-based objectives.
What this eliminated was all of the relays
used to define a rule the rules. Output relays
required to operate external equipment were
still required as were all inputs (sensors,
switches, etc.). However, the how input
states affect the output states could now be
handled within the microcontrollers. Would
design engineers now be required to become
microcontroller programmers?

The grand design of using a microcontroller
for the job of programmable controller
(PC) had already considered this potential
retraining issue. Note: To eliminate confusion
between the new personal computers (PC)
and the programmable controller, the
name was expanded to programmable logic
controller (PLC). To eliminate the need for a
design engineer to learn programming, an
application would be written that would take
the already established line diagram and
automatically translate the ladder logic into
the programming code necessary to replicate
the rule in software.

DIFFERENT STROKES
The relay-infested hardwired control

system of old is for the most part, a static
system. That is, an output state is based on
established input states. While a change may
be considered dynamic, the state itself (once
established) will affect the output directly
without any other outside assistance. With
the new PLC, things are a bit different.
Outputs can only change when an executing
program instructs it to change based on its
rule-based analysis of all inputs. The output
state is based on established input states, at
a particular point in time. The difference here
being the time required for execution of the
program code.

Yes, the physical relays do in fact have
some turn on/off time associated with them,
but in most cases the outputs of each rung
will settle into a fixed state on their own
schedule (independently). The PLC must use
a loop or scan, which consists of equating of
each “rung” sequentially. To keep potential
race conditions down, the PLC uses a scan
made up of three steps: read all inputs,
evaluate all rungs, and change any necessary
outputs.

Up to this point, the functions discussed
have been basic logic functions: AND, OR, XOR,
and the like. There are other useful functions
like counters and timers that up to now were
extremely cumbersome to implement outside
of the PLC. Like many new technologies
being implemented, each manufacturer had

FIGURE 2
These diagrams show how
a relays can be used to
perform logic functions.
Series connections produce
AND functions while parallel
connections look like OR
functions.

PHOTO 5
The Small Brick Open Source PLC consists of three circuit boards, a CPU board, and I/O. The enclosure is a
standard DIN mount case typical to many PLCs. (Source: Starting Electronics, http:/startingelectronics.com/
projects/small-open-source-PLC/PLC-components)

CIRCUIT CELLAR • APRIL 2015 #29764
CO

LU
M

NS

their own way implementing each function.
This generally means that one company’s
solution isn’t necessarily compatible with
other equipment. You probably have a
microcontroller manufacturer that you favor.
If you program it in assembly language,
chances are that can’t directly be used on
another manufacturer’s micro. However, by
using a higher-level language, like C, that
program can be used by any microcontroller
that supports C. Likewise, programming
with ladder logic for one PLC allows your
application to be implemented by other PLC
manufacturers. PLCOpen (www.plcopen.
org) was established to organize standards
for PLCs including the definition of different
programming languages that can be used to
program PLCs: Instruction List (IL), Ladder
Diagram (LD), Function Block Diagram (FBD),
and Structured Text (ST).

In the PLC industry, each manufacturer
provides its own tools to allow a user to
program an application for their particular
PLC. These tools will allow you to use some/
all of the various languages to write your
application and compile it for a specific
PLC. In addition, you will be able to save
and document your application. Export and
import commands make your application
somewhat transportable.

MORE THAN A MICRO
A true PLC is more than just a

microcontroller. Photo 5 shows the general
makeup of a PLC. It shows a three PCB
system made up of a microcontroller, status,
and I/O boards. I chose this photo because
it clearly shows the use optoisolators and
other protection on both the lower inputs and
upper outputs of the I/O board. Like most
PLCs this open source system is designed for
a DIN rail-mounted enclosure.

Harsh industrial environments call for
isolation and protection on both inputs
and outputs. This keeps everyone playing
nice. Your inputs and outputs can be a
combination of low and high voltage AC and/
or DC equipment, so many manufacturers
offer I/O, usually in blocks of eight AC or DC
inputs and AC, DC or relay outputs. As you
might expect wiring terminals for each I/O
bit require a great deal of real estate. So PLCs

often require large cabinets to handle all the
connections and necessary power supplies
(see Photo 6). On larger equipment it often
preferable to switch the power locally and
control that relay via a lower power control
from a PLC output as opposed to running high
current lines inside the control cabinet.

IDE
Limited or restricted software is available

for free from most manufacturers. Since the
final compiled code is different for almost
every make and model it is only applicable to
their equipment. To write unrestricted code
for, or as a third party maintain it, you may
be forced to purchase a copy of the software
to be able to complete the task.

Like most tools, they will not write the
application for you, but merely document
your logic and allow the microcontroller to
use your rules to perform the actions you
designate. So, even before you open the IDE
you should have a pretty good idea of all the
actions and rules necessary for the task at
hand. That being said, let’s take a quick look
at the typical IDE.

One of the first steps required in a
new project is to assign each of your
input devices to a hardware input bit and
hardware output bits to the external device
it will control. Good programming practice
would include assigning optional nicknames
and descriptions to each. Every bit of I/O is
assigned a virtual memory address. In fact
the memory map is well defined so you will
know where every input, output, status, and
internal function registers are located. Each
of these has a predefined group of addresses
such as counter values or communication
buffers. With the byte playing such a central
role in early computing, it’s no wonder octal
was used as it easily defines 1 of 8. It is
customary to use octal to describe groups of
inputs and outputs. There are no bits 8 and
9. After the bits 0 to 7 in group 0, come bits 0
to 7 in group 1. Thus, the octal designations
00–07 and 10–17.

The PLC application is a collection of
rules (conditions) that allow actions to take
place. Each action and its associated rules
can be visualized as a separate “rung” on the
application’s “ladder” of actions. The output
action will be true if the rung evaluation is
true otherwise it will be false. For example,
take an action of ‘opening’ an elevator door.
The elevator door has an NO sensor, X0 (input
bit 0) that must be physically closed by the
door. A call from any other floor (someone
pushing the up or down button) will energize
the C0 (Control relay bit 0) and close its NO
contacts. This set of conditions can be entered
by drag and dropping a NO contact to the

PHOTO 6
This ladder’s rung has one NO (open)
input and one NO virtual relay contact
in series with an output relay’s NO
(unpowered) coil. The output can only
be true (energized) if input 1 and
input 2 are both true (closed). (Source:
Starting Electronics)

ABOUT THE AUTHOR
Je f f Bachioch i (pro-
nounced BAH-key-AH-
key) has been writing
for Circuit Cellar since
1988. His background
includes product design
and manufac tur ing .
You can reach him at
jeff.bachiochi@imagine
thatnow.com or at www.
imaginethatnow.com.

http://www.plcopen.org
http://www.plcopen.org
http://www.imaginethatnow.com
http://www.imaginethatnow.com
mailto:jeff.bachiochi@imaginethatnow.com

Experience extraordinary training
for embedded systems professionals

at ESC Conference Series 2015!
The Embedded Systems Conference (ESC) is the industry’s largest,
most comprehensive technical conference for embedded systems

professionals in the U.S. ESC is excited to announce an expanded 2015
USA Conference Series, taking place in Boston (May 6-7), Silicon

Valley (July 20-22), and Minneapolis (November 4-5).

ESC’s first stop in 2015 is Boston, MA, known for its good mix of hi-tech, biotech/life
sciences, medical device, and military defense companies. It’s also home to the #1

engineering university in the world - MIT.

Come join us at the Boston Convention Center and check out some of
our sponsors for the event:

Rohde & Schwarz | Green Hills Software, Inc | AdaCore| Altium, Inc.
AMP Display | Azul Systems, Inc. | Convergence Promotions | IAR Systems AB

 Ironwood Electronics | MathWorks | Rigol Technologies | SmartBear Software
 Symmetry Electronics | Technologic Systems | Teledyne LeCroy

Toradex | Total Phase | Vision Components GmbH | WolfSSL | Lauterbach, Inc.
Phoenix Contract Software | Security Innovation | Code

 e-con Systems India Pvt. Ltd | Express Logic | XJTAG

Register today at www.embeddedconf.com/boston and get 15% off a Conference
Pass when using a promo code CircuitCellar15Bos, offer expires May 1, 2015.

http://www.embeddedconf.com/boston

CIRCUIT CELLAR • APRIL 2015 #29766
CO

LU
M

NS

beginning of a new rung and indicating the
condition comes from the X0 input. Next, add
a second NO contact in series (conditions in
series produce an AND, conditions in parallel
produce an OR) and indicate this condition
is C0, a virtual state. We want these two
conditions to produce the action of moving
the elevator car. This action is indicated by
replacing the NOP action at the end of the
rung with a NO coil icon (output) labeled as
Y0. Photo 6 shows what this looks like. If the
contacts of X0 are false, the door is open, the
elevator can never move. If no one has called
for the elevator, the virtual contacts of C0
remain open and the elevator car can’t move.
Only when door is closed (contact closes) and
a request has been made (contacts close)
can the output coil Y0 be true (energized).
It is assumed that the beginning of the rung
is power. If this power can find a complete
path through the rung, then the output will
be energized! Each rung produces a list of
instructions by the IDE. Refer to Photo 7
for the three instructions that represent
this rung. A complete application becomes a
single list of each rung’s instructions.

PLC instructions are grouped into three
types of tasks, two of which may be obvious
by the previous example: Contact and Coil
operations. Each has a number of associated
instructions. Most contact instructions
have to do with retrieving input or contact
information and evaluating it, while coil
instructions evaluate and adjust data or coil
states. The third type is the function. These
include timers, counters, and other higher
level tasks. Since you are most likely familiar
with the abilities of microcontrollers, you
can imagine other functions that weren’t
available via relay logic, like the monitoring of
analog signals and variable control available
through analog outputs. This growing list of

additional functions has greatly increased
the usefulness of the PLC and thus prolonged
its life.

THE IMPORT-EXPORT BUSINESS
Most useful for documentation purposes

the EXPORT command provides a number of
ways to put your application to paper. The
two most used are the ladder diagramming
and instruction list. If the instructions adhere
to the standard, they should be able to be
imported to any manufacturer’s IDE that
provides an IMPORT function. If you need to
replace your PLC with another model (or even
manufacturer), IMPORT allows you to bring
your proven code to the new hardware with
minimal hassle.

The plan is to explore this export file to
obtain key information that describes the
application. Next replicate the application
using some independent circuitry that we
can experiment with on the bench. While
the project may be based on a specific
microcontroller, the discussion should be
general enough that it can be implemented
for use with almost any microcontroller,
using the language of your choice.

While this introduction was more than
I originally intended to present, it barely
uncovers the power of the PLC. An interesting
aspect that I have left entirely untouched is
the PLCs ability to communicate with other
devices through a comm channel. This allows
one system to work in concert with other
systems perhaps as part of an assembly
line. Many PLC systems also include a user
interface that allows dynamic control of the
process. This permits skilled labor to interact
with the process. An interface might also give
visual feedback on the status of the system’s
process.

Process control is the foundation of
industry. It is necessary to enable the
continuous production of goods. While
automation does reduce the manufacturing
labor force required, it requires an increase
in labor in other areas of expertise. In
addition to operating personnel who closely
monitor and control the complex processes
from a central location, program engineers
are required to design and make application
changes, electrical engineers are needed to
maintain interconnections, mechanical
engineers are needed to maintain and replace
equipment, and system architects must
coordinate the integration of all systems in
the process facility. I for one am willing to
spend more for any product that says Made
in the USA. It’s a mighty symbol, and should
be the impetus for companies to invest in on-
shore facilities.

PHOTO 7
The IDE evaluates the ladder
diagram into PLC instructions. These
instructions describe the evaluation
process but not necessarily the actual
program code a particular PLC will use
to implement the application. PLC code
will be compiled specifically for that
PLC from the instruction list.

circuitcellar.com/ccmaterials

SOURCE
Small Brick Open-Source PLC
Starting Electronics | www.startingelectron-
ics.com

http://www.startingelectron-ics.com
http://www.startingelectron-ics.com
http://www.startingelectron-ics.com

circuitcellar.com 67
CC REBO

O
T

I hate to admit it, but my electronics bench
is not a pretty sight, at least in the midst of

a project anyway. Of course, I’m always in the
middle of some project that, more often than
not, contains two or three different projects in
various stages of completion. To make matters
worse, most of my projects involve microchips,
which have to be programmed. Because
I use ISP flash memory MCUs exclusively,
it makes sense to locate a computer on my
construction bench to facilitate programming
and testing. To save space, I initially used my
laptop’s parallel port for MCU programming.
It was only a matter of time before I popped
the laptop’s printer port by connecting it to a
prototype circuit with errors on it.

Fixing my laptop’s printer port would have
involved replacing its main board, which is an
expensive proposition. Therefore, I switched
over to a desktop computer (with a $20 ISA
printer port board) for programming and
testing purposes. The desktop, however, took
up much more room on my bench.

You can’t do without lots of testing
equipment, all of which takes up more bench
space. Amongst my test equipment, I have
several bench power supplies, which are
unfortunately large because I built them with
surplus power supply assemblies taken from
older, unused equipment. This seemed like a
good candidate for miniaturization.

At about the same time, I read a fine article
by Robert Lacoste describing a high-power
tracking lab power supply (“A Tracking Lab
Power Supply,” Circuit Cellar 139). Although
I liked many of Robert’s clever design ideas,
most of my recent projects seemed to need
only modest amounts of power. Therefore, I

decided to design my own low-capacity bench
supply that would be compact enough to fit in
a small case. In this article, I’ll describe that
power supply.

MY WISH LIST
Even though I mentioned that my recent

project’s power demands were fairly modest,
I frequently needed three or more discrete
voltage levels. This meant lugging out a couple
of different bench supplies and wiring all of
them to the circuit I was building. If the circuit
required all of the power supplies to cycle on
and off simultaneously, the above arrangement
was extremely inconvenient. In any event, it
took up too much space on my bench.

I decided that I wanted to have four
discrete voltage sources available. One power
supply would be ground referenced. Two
additional power supplies would be floating
power supplies. Each of these would have
the provision to switch either the positive or
negative terminal to the negative (ground)
terminal of the ground-referenced supply,
allowing for positive or negative output
voltage. Alternately, these supplies could be left
floating with respect to ground by leaving the
aforementioned switch in the center position.

This arrangement allows for one positive
and two positive, negative or floating voltage
outputs. To round off the complement, I added
Condor’s commercial 5-V, 3-A linear power
supply module, which I had on hand in my junk
box. Table 1 shows the capabilities of the four
power supplies.

I wanted to provide the metering of voltage
and current for the three variable power
supplies. The simultaneous voltage and current

Quad Bench
Power Supply

By Brian Millier (US)

The need for a bevy of equipment for building
and testing presents a problem: how to deliver
an adequate power supply while keeping
workbench clutter to a minimum. Brian
decided to tackle this classic engineering conundrum
with a small, low-capacity quad bench power supply.

FROM THE ARCHIVES

CIRCUIT CELLAR • APRIL 2015 #29768
CC

 R
EB

O
O

T

measurement of three completely independent
power supplies seemed to indicate the need
for six digital panel meters. Indeed, this is the
path that Robert Lacoste used in his tracking
lab supply.

I had used many of these DPM modules
before, so I was aware of the fact that the
modules require their negative measurement
terminal to float with respect to the DPM’s
own power supply. I solved this problem in the
past by providing the DPM module with its own
independent power source. Robert solved it
by designing a differential drive circuit for the
DPM. Either solution, when multiplied by six, is
not trivial. Add to this the fact that high-quality
DPMs cost about $40 in Canada, and you’ll see
why I started to consider a different solution.

I decided to incorporate an MCU into the
design to replace the six DPMs as well as six 10-
turn potentiometers, which are also becoming

expensive. In place of $240 worth of DPMs, I
used three inexpensive dual 12-bit ADCs, an
MCU, and an inexpensive LCD panel. The $100
worth of 10-turn potentiometers was replaced
with three dual digital potentiometers and two
inexpensive rotary encoders.

Using a microcontroller-based circuit
basically allows you to control the bench supply
with a computer for free. I have to admit that
I decided to add the commercial 5-V supply
module at the last minute; therefore, I didn’t
allow for the voltage or current monitoring of
this particular supply.

THE ANALOG CORE
Although there certainly is a digital

component to this project, the basic power
supply core is a standard analog series-pass
regulator design. I borrowed a bit of this
design from Robert’s lab supply circuit.

Basically, all three power supplies share
the same design. The ground-referenced
power supply provides less voltage and more
current than the floating supplies. Thus, it uses
a different transformer than the two floating
supplies. The ground-referenced supply’s
digital circuitry (for control of the digital

FIGURE 1
The ground-referenced power supply
includes an independent 5-V supply to
run the microcontroller module.

TABLE 1
As you can see, there are four power
supplies. I’ve included all of the
information you need to understand
their capabilities.

Supply
number

Voltage
range

Currnet
capacity Notes

1 2.5–8 V 500 mA Ground-referenced
2 2.5–15 V 300 mA Bipolar or floating
3 2.5–15 V 300 mA Bipolar or floating
2 5 V 3 A Fixed logic supply, commercial mode

circuitcellar.com 69
CC REBO

O
T

PHOTO 1
The ground-referenced power supply
PCB also contains the SIMM100 MCU
daughterboard. The IsoLoop isolators,
being SMD components, are mounted
on the bottom of the PCB and aren’t
in view.

potentiometer and ADC) can be connected
directly to the MCU port lines. The two floating
supplies, in addition to the different power
transformer, also need isolation circuitry to
connect to the MCU.

Figure 1 is the schematic for the ground-
referenced supply. As you can see, a 24VCT
PCB-mounted transformer provides all four
necessary voltage sources. A full wave rectifier
comprised of D4, D5, and C5 provides the 16
V that’s regulated down to the actual power
supply output. Diodes D6, R10, C8, and Zener
diode D7 provide the negative power supply
needed by the op-amps.

A UA7805 regulator is used to drop the
16-V supply down to the 5 V needed for the
digital potentiometer and ADC. Finally, an
independent 5-V power supply for the MCU is
provided by D3, C4, and U4, another UA7805
three-terminal regulator. Because I eventually
added a 5-V, 3-A commercial power supply
to the unit, I think it would have made more
sense to run the MCU from that supply instead.

The series-pass element is an IRL520
power MOSFET that’s driven by U1, which is
configured as a unity-gain buffer. I had the
IRL520 devices on hand, but I suspect that NPN
Darlington transistors could have been used in
their place with the advantage of a lower base
drive voltage requirement.

Voltage regulation is performed by
comparing a portion of the power supply
output voltage with the B-section output of the
digital potentiometer U6. A TL082, U3-B acts
as a comparator for this purpose. The full-
scale output of the digital potentiometer is 5 V,
and the power supply output voltage is scaled
down to this level by R5 and the potentiometer
R10. Without any initialization from the MCU,
the digital potentiometer presets itself to half
scale, or 2.5 V at power-up. When testing this
power supply, prior to connecting it to the
MCU, potentiometer R10 is adjusted to provide
an output voltage of 6.4 V at power-up. This
gives a resolution of 50 mV per step of the
digital potentiometer.	

Current limiting is provided by comparator
U3A and the A section of the digital
potentiometer. Current monitor IC U2, which
you’ll learn more about later, provides a
voltage that’s proportional to the output
current. Basically, comparator U3A compares a
voltage proportional to current draw, with the
current limit set point value programmed into
the digital potentiometer, and throttles back
the drive to the pass regulator when necessary.

The two sections of the TL082, acting as
comparators, have their outputs connected
to buffer U1’s input via diodes D1 and D2.
In combination with R1, these components
provide a NOR function. To be precise, if either
comparator’s output goes low, the drive to the

pass regulator (provided by R1) will be reduced
until the over-voltage/current condition ceases.	

Apart from the digital potentiometers
replacing mechanical ones, this circuit is
somewhat similar to that used by Robert in his
lab power supply. You’ll learn more about how
I used the high-side current monitor circuit a
little later.

Although Robert didn’t mention any
instability problems in his article, I experienced
them myself as I was building this circuit. I
found it necessary to use 0.01 capacitors
(C2, C3) for feedback compensation on both
comparators in order to eliminate RF oscillation
on the power supply output under varying load
conditions. I thought I could eliminate buffer
U1 in my design because of the low current
requirements of the MOSFET pass element;
however, the diode NOR circuit seemed to
produce RF oscillations on the power supply’s
output without this buffer in place.

The final part of the circuit is the metering
portion. In place of the DPMs, I used a
Microchip MCP3202, which is a dual 12-bit
ADC. This ADC is inexpensive (it costs less than
$3) and doesn’t need an external reference.
The fact that it uses an SPI interface really
simplifies the isolation circuitry needed in the
floating supplies.

Even though the MCP3202 can operate from
2.7 to 5.5 V, I chose to operate it from 5 V, because
that regulated voltage was easy to provide with a
UA7805. The disadvantage to this power supply
voltage was that the ADC’s full-scale input is also
5 V. Though the power supply’s output voltage
is scaled down to this range for the regulation
circuitry, the current-monitoring circuitry
converts current to a somewhat lower voltage.
Despite the fact that the actual scaling differs
between the floating and non-floating power
supplies, the net result is that current resolution
is only about 9 bits. This current resolution was
sufficient for my purposes, however.

CIRCUIT CELLAR • APRIL 2015 #29770
CC

 R
EB

O
O

T

The MCP42010 dual digital potentiometer
has a neat feature: it contains a Serial Out
terminal. Using this feature, you can daisy-
chain these devices and load many of them
simultaneously, using only three control
lines—CS, SCK, and SI (with the daisy-chained
devices being fed from the previous device’s
SO line).

Although I needed only one dual
potentiometer for each power supply, I used
this feature to daisy-chain the MC3202 ADC
device to the digital potentiometer, thereby
eliminating one—the CS control line—for the
nonessential ground-referenced supply. For
the floating supplies, it allowed me to provide
all of the necessary isolation in one device
package, which was beneficial.

To protect against short circuits, I added a
Raychem PolySwitch RXE075 resettable fuse,
which limits short-circuit current to 750 mA.
I did this because the Zetex high-side current
monitors need at least 2.5 V to operate properly.
A direct short circuit would not provide this,
and the current-limiting action would not work.
The PolySwitch fuses more than function: they
act as fuses and provide enough voltage drop
during short-circuit conditions to allow the
Zetex current monitors to operate.

Although it isn’t obvious from the
schematic, I designed this power supply’s

PCB to include a 30-pin SIMM connector. The
MCU module is a daughterboard on this PCB.
Also, the two isolation chips that interface
the MCU to the two floating power supplies
are contained on this PCB. Photo 1 depicts
the PCB and the backside of the MCU module.
I’ll describe both the MCU module and the
isolation circuits later.

SEE IF IT FLOATS
I’ve explained in detail the ground-

referenced power supply. There are only a few
differences between it and the two floating
power supplies; however, I’ve provided Figure
2 to show you these differences.

Where the ground-referenced supply was
meant to provide 8 V at about 500 mA, the
floating supplies were meant to provide higher
voltages for powering analog circuits such as
op-amps. I wanted at least a 15-V output, but
a current capacity of 300 mA was deemed
sufficient for my needs. I substituted a 34-V
transformer for T1. It’s the same size as the
24-V device used in the ground-referenced
supply, which was handy because all three
power supplies share a similar PCB layout.

The floating supplies need not include the
5-V regulated MCU power supply that was part
of the ground-referenced supply. The value of
the output voltage-scaling network is different

FIGURE 2
The floating supplies are almost
identical to Figure 1, but there are
different component values. Note that
the ground symbols in this figure are
local to this board alone (i.e., they are
not connected to ground on any other
boards shown in the other figures).

circuitcellar.com 71
CC REBO

O
T

from the ground-referenced supply. In this
case, potentiometer R10 is set to produce 12.8
V at power-up. This gives a resolution of 100
mV per digital potentiometer step.

The only remaining difference has to do
with the value of the current monitor-scaling
resistor R6. I increased the value of this
resistor from 100 to 220 W to scale the lower
current capacity of this supply into a voltage
that’s compatible with both the 5-V referenced
ADC and digital potentiometer.

THE ZETEX ZXCT1009
You can monitor the current drawn

from the power supplies in two ways. Both
methods involve inserting an accurate low-
value resistor in series with the power supply
output, and then measuring the voltage drop
across that resistor. A measure of the current
drawn then will be equal to the voltage drop/
resistor value. If that resistor is placed in
series with the negative output terminal of the
power supply, the resulting voltage drop will
be referenced to the power supply’s common
terminal. This makes it easy to measure with
an ADC (or DPM) that is powered by, and
referenced to, the power supply’s common
terminal.

The downside of this method is that
whatever voltage is dropped across, this
current sense resistor is lost (i.e., the load
gets a little less voltage than the power supply
thinks it is providing, and you see an inflated
reading on the voltage meter).

Alternately, you can place the current-
monitoring resistor in series with the positive
output terminal of the power supply. Then, the
voltage feedback network of the pass regulator
can be wired to follow this resistor, eliminating
the lost voltage problem that I described
earlier.

This method, however, introduces the main
problem associated with the measuring of a
small current-sense voltage riding on a large
common-mode voltage: the power supply
voltage itself. You can minimize this problem by
using a high-quality instrumentation amplifier
and precision-matched resistors, but they are
somewhat costly. This second approach is
called high-side monitoring.

In his lab supply project, Robert devised
a clever circuit to compensate for the lost
voltage problem that plagued the first method
I described. In my design, I chose to go with
the second approach—high-side monitoring.

I came to this decision after discovering
a clever IC made by Zetex called a high-side
current monitor. The ZXCT1009 is a three-pin
device in an SOT23 package that converts the
voltage dropped across a high-side current
sense resistor into a current. This current is sent
through a resistor to the power supply’s common

terminal, providing an easy-to-measure voltage
proportional to the current draw.

The problems of measuring the low sense
voltage riding on the high power supply
common-mode voltage are addressed inside the
ZXCT1009; therefore, you don’t have to worry
too much about this. Because the device costs
roughly $1, it certainly beats designing in an
instrumentation amplifier to perform this task.

However, the ZXCT1009 isn’t a universal
solution to the current-sensing problem. It
requires an input voltage of 2.5 V or greater,
so you can’t easily monitor current if you want
to run your power supply at voltages less
than this. The maximum input voltage it can
withstand is 20 V without additional circuitry.
Neither limitation was a deal breaker for me,
so I incorporated one of these devices in each
power supply. My biggest concern was holding
the tiny device steady while I soldered it to
the PCB!

You may want to consult the Zetex datasheet
for more information, but the only other detail
I’ll mention is that the device produces 10 mA
for every 1 V dropped across the current sense
resistor. I had 1-W, 1% 5-W resistors in my
junk box, so that’s what I used for the current-
sense resistors in all three supplies. This didn’t
waste too much of the power supply’s voltage
capability.

The lower-current floating supplies used a
220-W resistor to convert ZXCT1009’s output
current into a voltage. The higher-current,
ground-referenced supply has a fitted 100-W
resistor, and the MCU’s software performs the
math that’s necessary to convert the ADC’s output
into the correct current reading on the meter.

AN IDEAL ISOLATOR
After spending years servicing and

designing electronics devices, I have to
say that I’m as impressed with some of the
amazing things that were done with vacuum
tube circuits back in the old days, as I am with
some of the modern, miniature ICs that are
available today.

For this project, though, I pampered
myself with state-of-the-art devices rather
than depending on clever, but more involved,
circuits using conventional devices. I’ve
already described the Zetex current monitor,
which is one example of this. I continued with
this trend in choosing the isolation technique
for the floating power supplies.

The digital control and monitoring
signals for the two floating supplies have to
be electrically isolated from the ground-
referenced MCU circuit. Thanks to the clever
design of Microchip’s SPI digital potentiometer
and SPI ADC, each power supply needed only
four control signals: three outputs from the
MCU and one input.

ABOUT THE AUTHOR
Brian Millier runs Com-
puter Interface Consul-
tants. He was an in-
strumentation engineer
in the Department of
Chemistry at Dalhou-
sie University in Halifax,
Canada, for 29 years.

CIRCUIT CELLAR • APRIL 2015 #29772
CC

 R
EB

O
O

T

My first inclination was to use optoisolator
chips. I had just finished another project using
optoisolators to interface the same Microchip
SPI ADCs. In that project, meeting the ADC’s
SPI timing considerations given the rather
slow response of the optoisolators was a bit
tricky, although possible.

Luckily, Jeff Bachiochi had just written a
column about isolation in which he outlined
a novel line of isolators made by Nonvolatile
Electronics (“You’re Not Alone—Dealing with
Isolation,” Circuit Cellar 142). Rather than using
an optical method to achieve galvanic isolation,
these isolators use magnetism. Although pulse
transformers have been around for ages and
can perform isolation using magnetism, they
are comparatively bulky, expensive, and don’t
pass DC levels.

The IsoLoop isolators, on the other hand,
use GMR or giant magnetoresistive devices
to sense the magnetic field change produced
by an excitation coil, which is nearby but
electrically isolated. The change in resistance
of the magnetic thin film layer is used, along
with other on-chip circuitry, to implement the
isolation function of the device. The IsoLoop
devices actually differentiate the input signal,
and send only short magnetic pulses through
their excitation coils during input signal
transitions. The resulting resistance changes
in the magnetic thin film layer—configured in
a Wheatstone bridge—are measured, and the
resulting output signal is actually the output of
an on-chip latch device.

Don’t be fooled by the use of the term
“giant” in GMR; these devices are tiny. Typically,
four isolators will fit into a 16-pin wide
SOIC package. The wide package is needed,
presumably, to allow the devices to withstand
the 2500 VRMS at which they are rated.

With regard to the packaging, I was
impressed with NVE’s decision to produce
several different device configurations. They

sell the normal quad devices with all four
channels configured in the same direction
(IL715); however, they also sell quad devices
containing two channels in each direction
(IL716). My favorite, the IL717, has three
channels in one direction and the remainder
going in the other direction. This configuration
is perfect for SPI device isolation, which needs
a Chip Select, Clock, and Data Out lines coming
out from the MCU and a Data In line going back
into the MCU.

Given the modest voltage isolation I needed
for this supply, I could have used a quad optical
isolator and wired up one section “backwards,”
so to speak, but the PCB layout would have been
much less neat. In cases where input and output
signals have to be isolated and substantial
voltage isolation is required, the only way
to achieve this—apart from using separate
devices—is to use an appropriately configured
device like those in this IsoLoop family.

I’ve actually saved the best part for last:
these IsoLoop devices are fast! The IL700
family exhibits a 100-Mbps data rate. In
addition, it has only 2-ns pulse width distortion
and 10-ns pulse delay.

 Unlike optoisolators, which require LED
drive voltage/current and often don’t provide
logic-level output signals, the IsoLoop devices
work directly with 3.3- or 5-V logic devices
including MCUs. Although an optical isolator
requires a steady drive current whenever its
LED is turned on, the IsoLoop devices use only
a short pulse of magnetism whenever the input
signal changes state (even though a small but
steady current is required for the detection
and latching circuitry in the chip).

 The IL717 that I used requires only a 2.5-
mA power supply current on its input side, and
6 mA on its output side. This difference arises
from the fact that the device has three channels
in one direction and only one in the other.

In my design, I did not have to give any
more thought to the SPI timing on the floating
channels than I did to the channel that wasn’t
isolated. Basically, what goes into the IL717 is
what comes out the other side!

There are only two cautionary notes that I
would add regarding these devices. First, IsoLoop
devices transmit their signal across the isolation
barrier only on signal transitions. The recovered
signal on the other side of the barrier is then
electrically latched. Practically, this means that
the output of the devices is indeterminate until
input transitions occur. For some applications,
this means that an initialization routine must be
performed to ensure that the device’s outputs
are in a known state after power-up.

The second cautionary note is just as
important. Because the devices rely on sending
a short magnetic pulse at each input transition,
it is important to place at least a 47-nF ceramic

PHOTO 2
I used a Lawicel SIMM100 module for
the microcontroller and associated
circuitry.

circuitcellar.com 73
CC REBO

O
T

decoupling capacitor between VDD and ground
on both input and output ports of the device.
The capacitors should be placed close to the
actual device pins.

I tried to share one capacitor between two
IsoLoop devices on the common MCU port side
of the two devices. This didn’t work. There were
random output errors on the device farthest
away from the sole capacitor that disappeared
completely when I followed directions!

MCU AND USER INTERFACE
As with every other project I’ve worked on

in the last two years, I chose the Atmel AVR
family for the MCU. In this case, I went with the
AT90S8535 for a couple of reasons. I needed
23 I/O lines to handle the three SPI channels,
LCD, rotary encoders, and RS-232. This ruled
out the use of smaller AVR devices. I could’ve
used the slightly less expensive AT90LS8515,
but I wanted to allow for the possibility of
adding a temperature-sensing meter/alarm
option to the circuit. The ’8535 has a 10-bit
ADC function that’s suitable for this purpose;
the ’8515 does not.

The ’8535 MCU has 8 KB of ISP flash
memory, which is just about right for the
necessary firmware. It also contains 512
bytes of EEPROM. I used a small amount of
the EEPROM to store default values for the
three programmable power supplies. That is
to say, the power supply will power up with the
same settings that existed at the time its Save
Configuration push button was last pressed.

To simplify construction, I decided to use a
SIMM100 SimmStick module made by Lawicel.
The SIMM100 is a 3.5² × 2.0² PCB containing the
’8535, power supply regulator, reset function,
RS-232 interface, ADC, ISP programming
headers, and a 30-pin SimmStick-style bus.
I’ve used this module for prototypes several
times in the past, but this is the first time
I’ve actually incorporated one into a finished
project. Photo 2 is the manufacturer’s picture
of an assembled module. For this project, I
populated a bare SIMM100 PCB with only the
components that I actually needed.

The MCU port signals needed to operate
the three SPI channels and interface the two
rotary encoders come out through the 30-pin
bus. As you now know, I designed the ground-
referenced power supply PCB to include space
to mount the SIMM100 module, as well as
the IsoLoop isolators. The SIMM100 mounts
at right angles to this PCB; it’s hard-wired
in place using 90° header pins. The floating
power supplies share a virtually identical PCB
layout apart from being smaller because of the
lack of traces and circuitry associated with the
SIMM100 bus and IsoLoop isolators.

The SIMM100 module has headers for the
ISP programming cable and RS-232 port.

I used its ADC header to run the LCD by
reassigning six of the ADC port pins to general
I/O pins.

When I buy in bulk, it’s inevitable that
by the time I use the last item in my stock,
something better has taken its place. After
contacting Lawicel to request a .jpg image of
the SIMM100 for this article, I was introduced
to the new line of AVR modules that the
company is developing.

Rather than a SimmStick-based module, the
new modules are 24- and 40-pin DIP modules
that are meant to replace Basic Stamps.
Instead of using PIC chips/serial EEPROM and
a Basic Interpreter, they implement the most
powerful members of Atmel’s AVR family—the
Mega chips.

Mega chips execute compiled code from
fast internal flash memory and contain much
more RAM and EEPROM than Stamps. Even
though flash programming AVR-family chips
is easy through SPI, using inexpensive printer
port programming cables, these modules go
one step further by incorporating RS-232
flash memory programming. This makes
field updates a snap. Take a look at the new
stAVeR40 module in Photo 3. I might have
used this module instead of the SIMM100 had
it existed when I started the project.

The user interface I settled on consisted of
a common 4 × 20 LCD panel along with two
rotary encoders. One encoder is used to scroll
through the various power supply parameters,
and the other adjusts the selected parameter.
The cost of LCDs and rotary encoders is
reasonable these days. Being able to eliminate
the substantial cost of six DPMs and six 10-
turn potentiometers was the main reason for
choosing an MCU-based design in the first place.
Photo 4 shows the front panel of the unit.

Inexpensive rotary encoders come in two
basic flavors: quadrature encoded and 2-bit
binary (Gray) coded. I’ve used the quadrature-
encoded style in the past, but the ones I used

PHOTO 3
Lawicel’s new stAVeR40 module is a
decent product. I might have used it
in place of the SimmStick had it been
available when I was designing my
project.

CIRCUIT CELLAR • APRIL 2015 #29774
CC

 R
EB

O
O

T

for this project have a 2-bit output (with Gray
coding). With only 2 bits, the encoder can
represent only four different values, even
though it has 32 detents per rotation. With
this in mind, it’s necessary for the firmware to
constantly poll both encoders and keep track
of the carry or borrow conditions that occur
as the encoder moves beyond a four-position
range. The main control loop in the firmware is
executed every few milliseconds, so keeping an
accurate track of the rotary encoder’s position
is accomplished readily.

The RS-232 port came as part of the
SIMM100 module. Thinking about the future, I
envision adding some firmware code to allow
the bench supply to be remotely controlled by
a host PC, and to allow for the data logging of
the various voltages/currents over time.

I haven’t provided you with a complete
block diagram, but I did incorporate a few
features that don’t show up on the individual
schematics. Previously, I mentioned adding an
additional commercial 5-V, 3-A supply for logic
circuits. I also added a 3PST switch, with one
section in series with each supply’s positive
output, to allow all power supplies to be
disconnected from the load during power-up.
A small DC computer-type fan was mounted on
the top of the outer case for cooling purposes,
because the pass-transistor heatsinks that I
used were not too large.

Lastly, Figure 3 shows you how the ’8535
MCU would typically be connected to the rest
of the circuit. It doesn’t show the exact wiring
of the SIMM100 including the bus connections,
because this detail isn’t needed when
constructing the circuit from scratch (i.e., if
you’re not using the SIMM100 module). The
SIMM100 documentation will give you all of the
necessary information regarding the header
and bus connections on the module.

FIRMWARE
If you’ve read any of my more recent

articles, then I’m going to sound like a broken
record in this section. I used an MCS Electronics
BASCOM-AVR compiler for this project (once
again). The code did not have to run extremely
fast, but floating-point and string operations
were needed. Because there was plenty of
flash memory available in the ’8535, it made
sense to program in Basic rather than using
Assembly language.

Skipping over the unit’s initialization
procedure for now, the control loop in the
program works basically as follows. Both
encoders are checked to see if the user has
moved them. If the Menu encoder is changed,
nothing is done, apart from moving an arrow
cursor amongst the various parameters that
can be changed. If the Adjust encoder is
moved, the appropriate routine is called to
adjust the necessary power supply’s voltage or
current limit setting. This is accomplished by
changing the value of the appropriate section
of the digital potentiometer located on the
proper supply PCB.

 Because each supply’s ADC is digitally
cascaded with that supply’s digital
potentiometer, the routine that updates the
digital potentiometers also reads the ADC all in
one operation. For that reason, in the absence
of any changes to the voltage or current-
limit settings, each power supply is sent a
control message at 0.5-s intervals to set its
digital potentiometers and read the dual ADC.
Constantly resetting the digital potentiometers
at this interval is unnecessary, but periodically
reading the ADCs is necessary to give you
timely voltage/current readings.

PHOTO 4
To the right of the output Johnson
posts are the switches that set the
polarity of the floating supplies—as
well as the switch that disconnects all
power supply outputs—while leaving
the unit still powered up.

PROJECT FILES

circuitcellar.com/ccmaterials

SOURCES
AT90S8535 Microcontroller
Atmel Corp.
www.atmel.com

Power supply module
Condor D.C. Power Supplies,
Inc.
www.condorpower.com

SIMM100, stAVRer modules
Lawicel HB
www.lawicel.com

BASCOM-AVR Compiler/programmer
MCS Electronics (Holland)
www.mcselec.com

MCP42010 Digital potentiometer, MCP3202 ADC
Microchip Technology, Inc.
www.microchip.com

IsoLoop high-speed digital isolators
Nonvolatile Electronics, Inc.
www.isoloop.com

RXE075
Raychem Corp.
www.raychem.com

ZXCT1009 Current monitor
Zetex Semiconductors
www.zetex.com

http://www.atmel.com
http://www.condorpower.com
http://www.lawicel.com
http://www.mcselec.com
http://www.microchip.com
http://www.isoloop.com
http://www.raychem.com
http://www.zetex.com

circuitcellar.com 75
CC REBO

O
T

The only remaining task in the control loop
is to check the state of the Save Configuration
push button. When it’s pressed, a routine is
called to save the current values of voltage and
current limit, for all three power supplies, to
data EEPROM.

At power-up, the data EEPROM is checked
for a valid configuration saved from a previous
use of the supply. If so, these voltage/current
settings are stored in RAM variables, and the
three supplies are initialized to these settings.
In the absence of valid configuration readings,
each power supply is set to half scale, and the
current limit settings are preset to maximum.

WRAP UP
I’m looking forward to the convenience of

using this multi-output yet compact power
supply in my future projects. As with all
projects, there were some compromises I
made along the way.

I chose Microchip’s dual 8-bit digital
potentiometers for the voltage/ current

settings. Basically, I felt the 50-mV voltage-
setting resolution (100 mV for floating
supplies) was sufficient for my purposes.
The resulting current-limit resolution of 20
mA (8 mA for floating supplies) also seemed
reasonable; however, dual 12-bit SPI DACs
are available, which would improve this
resolution substantially. Maxim makes some
nice serial DACs, but they come in such small
packages that I can’t handle or solder them
to a PCB.

The existing version of the firmware
uses 6800 of the total 8192 bytes of flash
memory. This leaves sufficient room to add
remote control via the RS-232 port in future.
Because the firmware is written in BASIC, it’s
reasonably easy to go into the code and add
additional features at a later date.

Although it was a bit of an overkill to use
the ultra-fast NVE IsoLoop devices for this
project, it made that part of the design rather
easy. I’d like to thank NVE for quickly sending me
a few samples to incorporate in my design.

FIGURE 3
Take a look at the MCU, IsoLoop
isolators, and the user interface. Some
of this circuitry is actually contained
on the SIMM100 module.

CIRCUIT CELLAR • APRIL 2015 #29776

1

4

3

Further information and ordering: www.cc-webshop.com
CONTACT US: Circuit Cellar, Inc. | Phone: 860.289.0800 | E-mail: custservice@circuitcellar.com

2

 2 ADVANCED CONTROL ROBOTICS
When it comes to robotics, the future is now! This book simplifies the

theory and best practices of advanced robot technologies by providing insight
to communication technologies, control robotics, embedded technology,
programming, and more. Complete with code samples, schematics, and
design tips. Great reading for beginners and experts alike.

Author: Hanno Sander
Item#BK-ELNL-978-0-963013-33-0

 4 CC VAULT
CC Vault is a pocket-sized USB that comes fully loaded with every

issue of Circuit Cellar magazine! This comprehensive archive provides an
unparalleled amount of embedded hardware and software design tips,
schematics, and source code. CC Vault contains all the trade secrets you
need to become a better, more educated electronics engineer!

Item #: CCVAULT

 3 CC 2014 CD
2014 was an exciting year for electronics engineers! The continued

success of open-source solutions, Internet of Things (IoT) revolutions, and
green-energy consciousness has changed the face of embedded design
indefinitely. In Circuit Cellar’s 2014 archive CD, you can find all of these hot
topics and gain insight into how experts, as well as your peers, are putting
the newest technologies to the test. You’ll have access to all articles,
schematics, and source code published from January to December 2014.

Item #: CD-018-CC2014

Previous Years Also Available

 1 CC 2014 DIGITAL ARCHIVE SUBSCRIPTION
Just when you thought it couldn’t get any easier than a thumb

drive...you can now acess a full year of Circuit Cellar from any
device connected to the Internet! (2014: 12 issues)

You get all the benifits of a printed copy—bookmark pages, make
annotations, and write in the margins—combined with the digial
advantages of easy storage, zoom, links, and search features.

Item #: CC-DA-2014

CC SHOP

http://www.cc-webshop.com
mailto:custservice@circuitcellar.com

circuitcellar.com 77
TESTS &

 CHALLENG
ES

TEST YOUR EQ
Contributed by David Tweed

What’s your EQ? The answers are posted at www.circuitcellar.com/
category/test-your-eq/. You can contact the quizmasters at
eq@circuitcellar.com.

ANSWER 1—The frequency generated at the QB output of the counter is
16.000 MHz × 3/13 = 3.6923 MHz. The ratio between this and 3.6864 MHz
is 1.0016, so the error expressed as a percentage is +0.16%. This is well
within the tolerance required for asynchronous serial communications.

ANSWER 2—The circuit generates rising edges (also falling edges) at
intervals of 4 clocks, 4 clocks and 5 clocks, but the ideal spacing would be
4.3333 clocks. Therefore two of the intervals are short by 1/3 clock and
one of them is long by 2/3 clock. Therefore, the cycle-to-cycle peak-to-
peak jitter is 1/3 + 2/3 = 1 full input clock period, or 62.5 ns. But taking an
average over a complete group of 13 clocks, no edge is displaced from its
“ideal” location by more than 1/3 clock, or 20.8 ns.

ANSWER 3—The following table shows the divider ratios required for various
standard baud rates.

As you can see, a modern UART can generate the clocks for baud
rates up to 38400 with the exact same error as the 3/13 counter
scheme—note that 26 and 52 are multiples of 13. But above that,
the frequency error increases. This is why microcontrollers with
built-in UARTs often run at “oddball” frequencies such as 11.0592
MHz or 12.288 MHz—these frequencies can be easily divided
down to produce precisely correct baud rates.

ANSWER 4—A UART receiver waits for the leading edge of the
start bit, and then samples the next 10 bits in the center of each
bit “cell.” If by the time it gets to the 10th cell, the sampling point
at the receiver has moved beyond the edge of the 10th bit (the
stop bit) defined by the transmitter, the transmission will fail. This
means that the timing error must be no more than ± 1/2 bit over
a 9.5-bit span, or a total error between transmitter and receiver
of ±5.26%. If the error is split evenly, this means that each baud
rate generator must be accurate to within ±2.63%. However, in
reality, the receiver cannot determine the location of the leading
edge precisely. Since it is using a 16× clock to do the sampling,
there could be as much as 1/16 of a bit delay before the receiver
actually recognizes the start bit, and all of its sampling points for
the subsequent bits will be delayed by that amount. This means
that the timing error must be no more than ± 7/16 of a bit by the
time we get to the last bit, which means that the maximum total
error is ±4.60%, or ±2.30% for each baud rate generator.

Answers to the EQ problems presented in Circuit Cellar 296

You’ll receive electrical engineering tips,
interesting electronics projects, embedded
systems industry news, and exclusive product
deals via e-mail to your inbox on a regular
basis. If you’re looking for essential electrical
engineering-related information, we’ve got
you covered: micrcontroller-based projects,
embedded development, programmable
logic, wireless communications,
robotics, analog techniques, embedded
programming, and more!

Subscribe now to stay up-to-date with
our latest content, news, and offers!

Sign up for the

 FREE Circuit Cellar Newsletter!

circuitcellar.com

http://www.circuitcellar.com/
mailto:eq@circuitcellar.com
www.circuitcellar.com

CIRCUIT CELLAR • APRIL 2015 #29778
TE

ST
S

&
 C

HA
LL

EN
G

ES

ACROSS
3.	 A switch actuated by another electrical signal
4.	 A permanent deviation from the design center of any

device or circuit
5.	 A component for a PCB use that has pins arranged in two

parallel rows
7.	 1/10th of a Bel
10.	 Convert analog information to digital data
12.	 Suppress a resonance by absorbing stored energy

through the application of mechanical or electrical
friction

15.	 To define or set limits on the boundaries of something
16.	 Two electrically conductive paths carrying the same

signal
18.	 State of having a stored excess or deficiency of electrons,

which imparts electrostatic polarity to a capacitor or
object

19.	 10.1 mal equals 10 what?
20.	 The tendency for a rapidly increasing or decreasing

electrical impulse to exceed momentarily its actual peak
level

CROSSWORD
The answers will be available at circuitcellar.com/category/crossword/

APRIL 2015

1 2

3

4

5

6

7 8

9

10 11

12 13 14

15

16 17 18

19

20

EclipseCrossword.com

DOWN
1.	 0.3937 inches
2.	 Sharing the same axis
6.	 A volume of space through which any radiated energy is

distributed
8.	 A circuit that extracts the modulations from a carrier
9.	 An electrochemical unit for producing DC electricity
11.	 Heart-shaped
13.	 Reroute a signal to a different circuit
14.	 An "erg" is a unit of work equal to 1–7 of these
17.	 A digital signal comprises a series of these

www.circuitcellar.com/category/crossword

circuitcellar.com 79

$20 for 5PCBs
2 layer,4x4inch, FR4(RoHS),0.063”,1oz,

2LPI,Green,1SK,Lead free HASL

Standard PCB: Promotion code:

CC14061

PCB & PCBA
Small to Mass QTY

INSTANT QUOTE AT:

www.myropcb.com
OR CALL:

1-888-PCB-MYRO

sales@ccsinfo.com
262-522-6500 x 35
PIC® MCU is a registered trademark of Microchip Technology Inc.

www.ccsinfo.com/CC415
Download Free Evaluation:

 void main(void) {
 while(TRUE) {
 output_high(PIN_B0);
 delay_ms(500);
 output_low(PIN_B0);
 delay_ms(500);

Blink an LED on any PIC®

Rapid PIC®
Development Tools

Powerful, Professional
& Optimized for PIC®!

 #use delay(crystal=20mhz)

}
}

#include <PIC16F887.h>

with an easy-to-use C Compiler!

Compiler April Issue_LED.indd 1 2/10/2015 4:14:14 PM

the directory of
PRODUCTS & SERVICES

For current rates, deadlines, and more information contact Peter Wostrel at 978.281.7708 or circuitcellar@smmarketing.us.

IDEA BOX

DIO24DIO24DIO24---ARDARDARD
Digital Interface
for Arduino and Compatibles

Call Toll-Free
1-877-SCIDYNE

(1-877-724-3963)

▪ 24 Programmable Input/Output Channels
▪ Connect I/O Racks, LEDs, Switches, and More
▪ 85ma Sink Output Capability
▪ Uses Standard SPI Software Library Functions
▪ Jumper Selectable and Off-Board SPI Enable
▪ Long Lead Stack-Through Connectors
▪ Industrial Operating Temperature Range
▪ RoHS Compliant

Learn More Details at . . .

Connect
with engineers
seeking your

design solutions.

Strategic Media Marketing, LLC

978.281.7708
circuitcellar@smmarketing.us

www.smmarketing.us

Magazine, e-newsletters,
website, advertorials, and more.

ReseRve adveRtising
space today!

mailto:circuitcellar@smmarketing.us
http://www.myropcb.com
http://www.ccsinfo.com/CC415
mailto:sales@ccsinfo.com
mailto:circuitcellar@smmarketing.us
http://www.smmarketing.us
www.ironwoodelectronics.com
www.maxbotix.com
mailto:info@maxbotix.com
www.picservo.com
www.allelectronics.com
www.cc-webshop.com
www.scidyne.com

CIRCUIT CELLAR • APRIL 2015 #29780
TE

CH
 T

HE
 F

U
TU

RE

K nowingly or unknowingly, we interact with
hundreds of networked-embedded devices

in our day-to-day lives such as mobile devices,
electronic households, medical equipment,
automobiles, media players, and many more. This
increased dependence of our lives on the networked-
embedded devices, nevertheless, has raised
serious security concerns. In the past, security of
embedded systems was
not a major concern
as these systems were
a stand-alone network
that contained only
trusted devices with little
or no communication
to the external world.
One could execute an
attack only with a direct
physical or local access
to the internal embedded
network or to the device. Today, however, almost
every embedded device is connected to other
devices or the external world (e.g., the Cloud)
for advanced monitoring and management
capabilities. On one hand, enabling networking
capabilities paves the way for a smarter world that
we currently live in, while on the other hand, the
same capability raises severe security concerns in
embedded devices. Recent attacks on embedded
device product portfolios in the Black Hat and
Defcon conferences has identified remote exploit
vulnerabilities (e.g., an adversary who exploits the
remote connectivity of embedded devices to launch
attacks such as privacy leakage, malware insertion,
and denial of service) as one of the major attack
vectors. A handful of research efforts along the lines
of traditional security defenses have been proposed
to enhance the security posture of these networked
devices. These solutions, however, do not entirely
solve the problem and we therefore argue the need
for a light weight intrusion-defense capability within
the embedded device.

In particular, we observe that the networking
capability of embedded devices can indeed be le-
veraged to provide an in-home secure proxy server
that monitors all the network traffic to and from
the devices. The proxy server will act as a gateway
performing policy based operations on all the traffic
to and from the interconnected embedded devices
inside the household. In order to do so, the proxy
server will implement an agent based computing
model where each embedded device is required to
run a light weight checker agent that periodically
reports the device status back to the server; the
server verifies the operation integrity and signals
back the device to perform its normal functionality.
A similar approach is proposed Ang Cui and Sal-
vatore J. Stolfo’s 2011 paper, “Defending Embed-
ded Systems with Software Symbiotes,” where a
piece of software called Symbiote is injected into
the device’s firmware that uses a secure checksum-

based approach to detect any malicious intrusions
into the device. In contrast to Symbiote, we exploit
lightweight checker agents at devices that merely
forward device status to the server and all the rela-
ted heavy computations are offloaded to the proxy
server, which in turn proves our approach com-
putationally efficient. Alternatively, the proposed
model incurs a very small computational overhead

in gathering and repor-
ting critical device status
messages to the server.
Also, the communication
overhead can be amorti-
zed under most circums-
tances as the sensor data
from the checker agents
can be piggybacked to
the original data mes-
sages being transferred
between the device and

the server. Our model, as what’s described in the
aforementioned Cui and Stolfo paper, can be easily
integrated with legacy embedded devices as the
only modification required to the legacy devices is
a “firmware upgrade that includes checker agents.”

To complete the picture, we propose an additio-
nal layer of security for modern embedded devices
by designing an AuditBox, as in the article, “Pillar-
box,” by K. Bowers, C. Hart, A. Juels, and N. Tri-
andopoulos. It keeps an obfuscated log of malicious
events taking place at the device which are reported
back to the server at predefined time intervals. This
enables our server to act accordingly by either re-
voking the device from the network or by restoring
it to a safe state. AuditBox will enforce integrity by
being able to verify whether the logs at the device
have been tampered with by an adversary who is
in control of the device and covertness by hiding
from an attacker with access to the device whether
the log reports detection of malicious behavior. To
realize these requirements, AuditBox will exploit the
concept of forward secure key generation.

Embedded systems security is of crucial im-
portance and the need of the hour. Along with the
advancement in embedded systems technology, we
need to put an equal emphasis on its security in
order for our world to be truly a smarter place.

Security Agents for Embedded
Intrusion Detection

Marten van Dijk is an Associate
Professor of Electrical and
Computing Engineering at the
University of Connecticut, with over
10 years research experience in
system security both in academia
(MIT CSAIL) and industry (Philips
Research and RSA Laboratories).

Dr. Devu Manikantan Shila is the
Principal Investigator for Cyber
Security area within the Embedded
Systems and Networks Group at
the United Technologies Research
Center (UTRC).

RESOURCES
K. Bowers, C. Hart, A. Juels, & N. Triandopoulos, “Pillar-
box: Combating Next-Generation Malware with Fast For-
ward-Secure Logging,” in Research in Attacks, Intrusions
and Defenses, ser. Lecture Notes in Computer Science, A.
Stavrou, H. Bos, and G. Portokalidis (Eds.), Springer, 2014,
http://dx.doi.org/10.1007/978-3-319-11379-1_3.

A. Cui & S. J. Stolfo, “Defending embedded systems with
software symbiotes,” in Proceedings of the 14th internati-
onal conference on Recent Advances in Intrusion Detection
(RAID’11), R. Sommer, D. Balzarotti, and G. Maier (Eds.),
Springer-Verlag, 2011, http://dx.doi.org/10.1007/978-3-
642-23644-0_19.

By Syed Kamran Haider, Devu Manikantan Shila,
and Marten van Dijk

Syed Kamran Haider is pursuing
a PhD in Computer Engineering
supervised by Marten van Dijk at the
University of Connecticut.

http://dx.doi.org/10.1007/978-3-319-11379-1_3
http://dx.doi.org/10.1007/978-3-642-23644-0_19
http://dx.doi.org/10.1007/978-3-642-23644-0_19

CC Vault

Unlock the power of embedded design.

Order yours today! cc-webshop.com
*CC Vault is a 16-GB USB drive.

A vault of need-to-know information in the fields of embedded
hardware, embedded software, and computer applications

This pocket-sized vault comes fully loaded with every issue of Circuit Cellar
magazine and serves as an unparalleled resource for embedded hardware
and software design tips, schematics, and source code.

From green energy design to ‘Net-enabled devices, maximizing power to
minimizing footprint, CC Vault* contains all the trade secrets you need to
become a better, more educated electronics engineer.

www.cc-webshop.com

We bring the full range of Electronic Contract
Manufacturing services to your fingertip!

This is the only place where you would put all
your eggs in one basket to get fastest time to
market. From concept design to prototype to
 full turnkey production on all your
 electronic products.

ENCLOSURES

KEYPADSASSEMBLYFABRICATION

www.PCBnet.com
 847-806-0003 sales@PCBnet.com
 Certified Woman-Owned Small Business

 Imagineering

Winner
Family Entrepreneurship

Award 2014

http://www.PCBnet.com
mailto:sales@PCBnet.com

	Issue 297- April 2015

	Editors Letter

	TOC

	Q&A: Geoff Lees

	Editors' Picks

	Product News

	Client Profile

	FlashForth in the Laboratory

	LCDTV Server

	Rapid Prototyping of SuperSpeed USB Devices

	Super Speed for FPGAs

	Software FMEA/FMECA

	Estimating Your Embedded Systems Project (Part 3)

	Let's Play with Electrostatic Discharge

	Ladder Logic (Part 1)

	Quad Bench Power Supply

	Test Your EQ

	Crossword

	Tech The Future

