
 Q&A with an Application Engineer | Editors’ Picks: Wireless Projects

 Build an Electronics Testing Platform | DIY Five-Function Signal Analyzer

| Four Reverse Engineering Projects | Arduino-Based Tube Stereo Preamp

 Practical EMC Requirements | ISE Project Management | Embedded Software

Development | Electroluminescence 101 The Future of Embedded Linux

WIRELESS COMMUNICATIONS
FEBRUARY 2015

ISSUE 295CIRCU
IT CELLAR | ISSU

E 295 | FEBRUARY 2015
circuitcellar.com

circuitcellar.com

Tips for Dealing with
High-Speed Signal

Transmission Errors

Bit Error Rates Explained,
BER Testers, BER vs. Noise
Experimentation, & More

C

M

Y

CM

MY

CY

CMY

K

COREMODULE-AD-NOV2013_NV_CC.pdf 1 9/23/2013 10:20:30 AM

mailto: sales@netburner.com
www.netburner.com
www.netburner.com/kits

The Newest Products for Your Newest Designs®

Mouser and Mouser Electronics are registered trademarks of Mouser Electronics, Inc. Other products, logos, and company names mentioned herein, may be trademarks of their respective owners.

More new products
More new technologies
More added every day

Authorized distributor of semiconductors
and electronic components for design engineers.
Authorized distributor of semiconductors
and electronic components for design engineers.

C

M

Y

CM

MY

CY

CMY

K

Mouser_NewestProducts_CircuitCellar_2-1.pdf 1 12/15/14 3:01 PM

www.mouser.com

CIRCUIT CELLAR • FEBRUARY 2015 #2952

Issue 295 February 2015 | ISSN 1528-0608

CIRCUIT CELLAR® (ISSN 1528-0608) is published monthly by:

Circuit Cellar, Inc.
111 Founders Plaza, Suite 300

East Hartford, CT 06108

Periodical rates paid at East Hartford, CT, and additional offices.
One-year (12 issues) subscription rate US and possessions

$50, Canada $65, Foreign/ ROW $75. All subscription orders
payable in US funds only via Visa, MasterCard, international

postal money order, or check drawn on US bank.

SUBSCRIPTIONS

Circuit Cellar, P.O. Box 462256, Escondido, CA 92046

E-mail: circuitcellar@pcspublink.com

Phone: 800.269.6301

Internet: circuitcellar.com

Address Changes/Problems: circuitcellar@pcspublink.com

Postmaster: Send address changes to
Circuit Cellar, P.O. Box 462256, Escondido, CA 92046

ADVERTISING

Strategic Media Marketing, Inc.
2 Main Street, Gloucester, MA 01930 USA

Phone: 978.281.7708

Fax: 978.281.7706

E-mail: circuitcellar@smmarketing.us
Advertising rates and terms available on request.

New Products:
New Products, Circuit Cellar, 111 Founders Plaza, Suite 300

East Hartford, CT 06108, E-mail: newproducts@circuitcellar.com

HEAD OFFICE

Circuit Cellar, Inc. 111 Founders Plaza, Suite 300
East Hartford, CT 06108

Phone: 860.289.0800

COVER PHOTOGRAPHY

Chris Rakoczy, www.rakoczyphoto.com

COPYRIGHT NOTICE

Entire contents copyright © 2015 by Circuit Cellar, Inc. All
rights reserved. Circuit Cellar is a registered trademark of
Circuit Cellar, Inc. Reproduction of this publication in whole
or in part without written consent from Circuit Cellar, Inc. is

prohibited.

DISCLAIMER

Circuit Cellar® makes no warranties and assumes no
responsibility or liability of any kind for errors in these
programs or schematics or for the consequences of any

such errors. Furthermore, because of possible variation in
the quality and condition of materials and workmanship of
reader-assembled projects, Circuit Cellar® disclaims any
responsibility for the safe and proper function of reader-

assembled projects based upon or from plans, descriptions, or
information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational
purposes. Circuit Cellar® makes no claims or warrants that
readers have a right to build things based upon these ideas
under patent or other relevant intellectual property law in

their jurisdiction, or that readers have a right to construct or
operate any of the devices described herein under the relevant

patent or other intellectual property law of the reader’s
jurisdiction. The reader assumes any risk of infringement

liability for constructing or operating such devices.

© Circuit Cellar 2015 Printed in the United States

THE TEAM

EDITOR-IN-CHIEF
C. J. Abate

ART DIRECTOR
KC Prescott

ADVERTISING COORDINATOR
Kim Hopkins

PRESIDENT
Hugo Van haecke

COLUMNISTS

Jeff Bachiochi (From the
Bench), Ayse K. Coskun

(Green Computing), Bob
Japenga (Embedded
in Thin Slices), Robert
Lacoste (The Darker
Side), Ed Nisley (Above
the Ground Plance),
George Novacek (The
Consummate Engineer),
and Colin O’Flynn
(Programmable Logic in
Practice)

FOUNDER
Steve Ciarcia

PROJECT EDITORS
Chris Coulston, Ken
Davidson, and David
Tweed

OFFICE ASSISTANT
Alice Roberts

2015 UPDATES: CC NEWSLETTER & CALENDAR
The new year is in full swing. So I will take this opportunity to update you on a few

important items.

SUBMISSIONS & EDITORIAL CALENDAR
The free Circuit Cellar Newsletter is an excellent way to receive essential electrical

engineering tips, embedded systems industry news, and exciting product deals via e-mail
to your inbox on a regular basis. If you’re looking for useful electrical engineering-related
information, we’ve got you covered: embedded development, programmable logic, wireless
communications, robotics, analog techniques, embedded programming, and more! Join
the over 25,000 others who receive the Circuit Cellar Newsletter each week. For more
information, go to http://circuitcellar.com/circuit-cellar-newsletter-subscribe/.

SUBMISSIONS & EDITORIAL CALENDAR
Circuit Cellar publishes articles, books, and website content (workspaces, tutorials,

project posts)by talented authors on embedded technology-related topics. When you
publish with Circuit Cellar, you are reaching an educated professional audience of engineers,
programmers, and academics around the globe.

We offer three main publishing opportunities:
• Article Publishing (2000-to-4000-word feature articles, product reviews, and

columns in Circuit Cellar magazine)
• Book Publishing (full-length books on relevant engineering topics, lab manuals,

DIY project books, etc.)
• Website Publishing (project write-ups, workspaces, and more at CircuitCellar.com)
Our editors carefully review all proposals and finished submissions before making final

decisions about publication. Your submission should meet all the requirement specified in
our Authors Guide, which you can access at http://bit.ly/1Bde7VM.

Here is our 2015 editorial calendar.

ISSUE MONTH PROPOSAL DEADLINE SUBMISSION DEADLINE
294 January September 1, 2014 October 1, 2014
295 February October 1, 2014 November 1, 2014
296 March November 1, 2014 December 1, 2014
297 April December 1, 2014 January 1, 2015
298 May January 1, 2015 February 1, 2015
299 June February 1, 2015 March 1, 2015
300 July March 1, 2015 April 1, 2015
301 August April 1, 2015 May 1, 2015
302 September May 1, 2015 June 1, 2015
303 October June 1, 2015 July 1, 2015
304 November July 1, 2015 August 1, 2015
305 December August 1, 2015 September 1, 2015

C. J. Abate
cabate@circuitcellar.com

mailto:circuitcellar@pcspublink.com
mailto:circuitcellar@pcspublink.com
mailto:circuitcellar@smmarketing.us
mailto:newproducts@circuitcellar.com
http://www.rakoczyphoto.com
http://circuitcellar.com/circuit-cellar-newsletter-subscribe/
http://bit.ly/1Bde7VM
mailto:cabate@circuitcellar.com

circuitcellar.com 3

OUR NETWORK

SUPPORTING COMPANIES

NOT A SUPPORTING COMPANY YET?

Contact Peter Wostrel (circuitcellar@smmarketing.us, Phone 978.281.7708, Fax 978.281.7706)
to reserve your own space for the next edition of our members’ magazine.

Accutrace 7

All Electronics Corp. 79

Custom Computer Services 79

EMAC, Inc. 15

HuMANDATA, Ltd. 79

IAR Systems 11

Imagineering, Inc. C4

Ironwood Electronics 79

Jeffery Kerr, LLC 79

Lemos International 15

MaxBotix, Inc. 79

Mouser Electronics 1

MyRO Electronic Control Devices, Inc. 79

NetBurner, Inc. C2

R.E. Simth, Inc. 45

Saelig Co., Inc. 27

Technologic Systems 17, 33

Triangle Research International, Inc. 79

FOUNDER
Steve Ciarcia

PROJECT EDITORS
Chris Coulston, Ken
Davidson, and David
Tweed

OFFICE ASSISTANT
Alice Roberts

TRENDING INFO
You’ll receive electrical engineering tips, interesting electronics
projects, embedded systems industry news, and exclusive
product deals via e-mail to your inbox on a regular basis.
If you’re looking for essential electrical engineering-related
information, we’ve got you covered: micrcontroller-based
projects, embedded development, programmable logic,
wireless communications, robotics, analog techniques,
embedded programming, and more!

Subscribe now to stay up-to-date with our latest content,
news, and offers!

FREE at circuitcellar.com

mailto:circuitcellar@smmarketing.us
www.circuitcellar.com

CIRCUIT CELLAR • FEBRUARY 2015 #2954

CONTENTS FEBRUARY 2015 • ISSUE 295

WIRELESS
COMMUNICATIONS

ELECTRONICS TESTING PLATFORM

 CC COMMUNITY
06 : QUESTIONS & ANSWERS
Application Engineering
An Interview with Carmen Parisi
An applications engineer describes his work and
shares some engineering tips

14 : EDITORS' PICKS
Several interesting wireless communications projects
that will stimulate your creativity

 INDUSTRY & ENTERPRISE
16 : PRODUCT NEWS

19 : CLIENT PROFILE
EarthLCD.com (Costa Mesa, CA)

 FEATURES
20 : Electronics Testing Platform (Part 1)
Base Unit Construction
By Gerard Fonte
Build a base unit for a DIY multifunction test instrument

28 : Five-Function, Network-Connected Signal
Analyzer
By Neal Martini
A test tool featuring a digital scope, spectrum analyzer,
signal generator, noise generator, & filter response viewer

40 : Reverse Engineering Review
Insights from Four Projects
By Fergus Dixon
How to overcome several reverse engineering challenges

46 : Budgie
An Arduino-Based Tube Stereo Preamplifier
By Shannon Parks
How to upgrade a DIY preamplifier with an Arduino

 COLUMNS
52 : THE CONSUMMATE ENGINEER
Essential Electromagnetic Compliance (Part 3)
Practical EMC Requirements
By George Novacek
EMC requirements for electronic instruments & systems

WIRELESS PROJECTS

circuitcellar.com 5

CONTENTS

55 : PROGRAMMABLE LOGIC IN PRACTICE
The DIY Approach to ISE Project Management
By Colin O’Flynn
Tips for managing an FPGA project that involves
several automatically generated (COREGen) modules

60 : EMBEDDED IN THIN SLICES
Estimating Your Embedded Systems Project (Part 2)
Challenges Unique to Embedded Software Development
By Bob Japenga
An analysis of issues unique to the process of
estimating an embedded systems project

64 : THE DARKER SIDE
Let's Count Errors
An Introduction to BER Testers
By Robert Lacoste
Details of how a bit error rate (BER) tester can help you
properly measure error rates

70 : FROM THE BENCH
Solid-State Lighting (Part 1)
An Introduction to Electroluminescence
By Jeff Bachiochi
A thorough explanation of electroluminescence (EL) and
tips for setting up an EL controller

 TESTS & CHALLENGES
77 : TEST YOUR EQ

78 : CROSSWORD

 TECH THE FUTURE
80 : The Future of Embedded Linux
By David Lynch
The rate of embedded Linux adoption is growing and
likely won’t slow down anytime soon

FIVE-FUNCTION, NETWORK-CONNECTED SIGNAL ANALYZER

@editor_cc
@circuitcellar circuitcellar

PRANK CIRCUIT

BIT ERROR RATE (BER) TESTER

REVERSE ENGINEERING PROJECTS

CIRCUIT CELLAR • FEBRUARY 2015 #2956
CO

M
M

U
NI

TY

QUESTIONS & ANSWERS

Application Engineering
An Interview with Carmen Parisi
Carmen Parisi is an applications engineer who co-hosts an engineering
podcast in his spare time. In this interview, he describes his work, shares
some engineering tips, and tells us about a fun prank he played on an
unsuspecting designer.

CIRCUIT CELLAR: Where are you located?

CARMEN: Currently, I’m living and working
in Raleigh-Durham, NC, around the Research
Triangle Park area between the two cities with
my wife and new dog Sadie. Kelly and I moved
down about three years ago from Buffalo, NY,
and really like it here. There’s a lot of tech
companies and engineers around, tons of stuff
to do, and great food and beer scenes. Plus,
as a hearty Northerner, I get to laugh at the
“cold” winters we experience. Come summer,
though, I melt into a puddle on the pavement.
Snow all the way for me, but Kelly disagrees.

CIRCUIT CELLAR: When did you decide to
pursue electrical engineering and why?

CARMEN: Ever since I was a kid I had a
fascination with tools and how things worked.
I would always have a toy sword and various
tools stuffed into my belt and would volunteer
to help my dad around the house building a
deck around the pool or fixing the fence.
 Once I got into high school, I took a few
basic engineering courses during which time
I got bit by the engineering bug. The course
that really “doomed” me to a life of electronics
was a Robotics course taught by my favorite
teacher C, as we called him. He put me through
my paces learning how to solder, reading
schematics, programming in BASIC, and
robbing Fort Knox using a LEGO Mindstorms
robot. C’s class solidified my choice to go to
college for engineering, and shortly thereafter,
I picked electrical over mechanical for my
major.

CIRCUIT CELLAR: When was the first time you
used a microcontroller in a project?

CARMEN: If we’re counting LEGO Mindstorms,

then the Robotics class in tenth grade with C
where we had to build a robot to lift a golden
brick and run away with it (thus “robbing Fort
Knox”). I met all the individual milestones
with my group for the project, but we couldn’t
get the whole thing working smoothly from
beginning to end. I guess that was my first
time learning how to successfully fail too which
has turned out to be a very useful skill.
 My first real microcontroller experience
was the summer after sophomore year when
I took a college course at a local community
college offering a few classes to high school
students interested in engineering. During that
course I learned more basic circuit theory,
got introduced briefly to SMT soldering, and
built some robots using the Parallax BOE Bot.
Looking back, I’d say this was the time my
analog career kicked off as I slowly started
to realize that I was more interested in the
circuits themselves than the overall robot.

CIRCUIT CELLAR: Tell us about your
university-level schooling.

CARMEN: I still consider myself a student in
that I’m always looking to learn new things
and grow as an engineer, but my formal
schooling is over for the foreseeable future. In
2011, I completed a combined BS/MS degree
in Electrical Engineering at the Rochester
Institute of Technology in Rochester, NY. I
initially started off interested in robotics but
after working with a great analog designer on
my first co-op at GE, I switched into the analog
circuit and semiconductor track and never
looked back.

CIRCUIT CELLAR: Can you tell us about your
work in graduate school?

CARMEN: Sure thing. My graduate work was

THERE ARE NO GAMES INVOLVED IN OUR PRICING

Take the Accutrace Challenge and see WHY OUR PRICING CANNOT BE BEATEN

www.PCB4u.com sales@PCB4u.com

From same day quick turn prototype to production in under 10 days
Full CAD and CAM review plus design rule check on ALL �erber �les
Materials: Fr4, Rigid, Flex, Metal Core (Aluminum), Polymide, Rogers, Isola, etc.
HDI Capabilities: Blind/Buried Mocrovias, 10+N+10, Via-in-Pad Technology,
Sequential Lamination, Any Layer, etc.
Our HDI Advantage: Direct Laser Drilling, Plasma De-Smear Technology, Laser
Microvia, Conductive Plate Shut.Microvia, Conductive Plate Shut.

Our Capabilities:

If you do, than we
 will match the price
 AND give you $100

 towards your
 next order!

http://www.PCB4u.com
mailto:sales@PCB4u.com

CIRCUIT CELLAR • FEBRUARY 2015 #2958
CO

M
M

U
NI

TY

QUESTIONS & ANSWERS

primarily with the Communications professor
who needed a proof of concept built to test
out a theory that looked plausible on paper.
Prior to my joining the Comms Lab, my advisor
and two past grad students had worked out
a method of securing wireless channels using
the randomness of the channel itself. There
was an initial front end of sorts to test the idea
out but I don’t think it was ever tested.
 I looked over the circuit design, decided
to scrap it and start fresh, and immediately
realized I had a big job ahead of me. Cue the
analog professor becoming my co-advisor.
Mixing circuits, active filters, phase detectors,
ADCs, and communication theory swam
through my head as I slowly cajoled the circuit
to life. Two PCB revisions later the circuit
worked in that it took the RF input signal and
spat out some bits at the other end, but after
my advisor applied his algorithm to the data,

we weren’t able to generate symmetric keys
on different boards. Whether this was from
an error in theory or with my board I never
found out, as I ended the project there to focus
on my full-time job leaving with a grad paper
instead of a full thesis.
 I still have all my old lab notebooks,
schematics, and board layouts on my bookshelf
at home. I think the files are sitting on a hard
drive somewhere too. Looking at them now, I
can spot a lot of little errors I’d like to fix due to
my inexperience at the time and some maybe
a few not so little errors too.

CIRCUIT CELLAR: What did you do after
school?

CARMEN: After I left RIT, I moved down here
to Raleigh-Durham to start my career as an
Applications Engineer working on switching
regulators with Intersil. Back in 2009 I had
done a summer stint as an FAE at a small
field office in Long Island with the company
which got me interested in working in the
semiconductor industry.
 Life on the road as an FAE didn’t appeal to
me after spending my college years constantly
moving around for co-ops, so my former
boss set me up with an interview here at the
RTP design center. On the way down for the
interview, I got stuck in Dulles for the night
thanks to some bad weather in Rochester
causing me to miss my connection. I wound up
getting a bare 3 hours of sleep that night on

an empty terminal bench. The next morning,
groggy and sleep deprived, I suited up in the
family restroom and flew out for six wonderful
hours of technical interviews. I was absolutely
wiped out by the end of the day but managed
to survive the ordeal. The rest is history.

CIRCUIT CELLAR: Tell us about the work you
are doing as an applications engineer for
Intersil.

CARMEN: Well, for starters, being an apps
engineer is exactly the rock n’ roll lifestyle I’m
sure all your readers expect it to be. I roll into
the office every morning and have the roadies
warm up my iron for me!
 In reality though, I work on buck regulators
for computing applications like notebooks,
tablets, ultrabooks, with maybe a bit of desktop
work from time to time. Most of the parts I

work on are for the primary
core voltage on Intel processors.
Sometimes, should the part
integrate multiple regulators, I’ll
work on a graphics rail or one
of the other many voltage rails
present on a motherboard. For
each new processor tock (tick?

I always confuse the two), Intel releases a
laundry list of specs that have to be met in
order to provide power to their CPUs and my
parts are designed to those specs.
 When I work apps on a brand spanking new
chip, I’ll first work with the design engineers
to run some feasibility studies and help define
any new features for the IC. These tests
range from tuning a similar part to the new
Intel specs to see if the control scheme hits
any corners or has stability issues to beating
up some power FETs to determine if they can
handle the new current requirements we have
to meet. Once the chip tapes out, I’ll start
work on preliminary documentation—a rough
datasheet draft or early reference design based
on feasibility testing and simulations—for the
field to use when working with customers.
During this time, I also design the evaluation
board I’ll use to validate the part and send to
customers for sampling.
 The real meat and potatoes of my job is
silicon validation. I’ve got an exhaustive
spreadsheet of bench tests to do that
functionally verify the IC over a wide range
of corners. The first few weeks after silicon
comes back I’m working full throttle, round
the clock if need be, to make sure there are
no show stopping bugs we need to address. I
never see my office during validation. Instead
I’m spending all my time in the lab hunched
over the eval board or squinting at my scope.
Things calm down slightly after the initial
validation, but the work is still nowhere near

When I work apps on a brand spanking new chip, I’ll first
work with the design engineers to run some feasibility
studies and help define any new features for the IC.

circuitcellar.com 9
CO

M
M

U
NITY

QUESTIONS & ANSWERS

done. Now I’m working with design and test
engineers to debug any issues that crept up
during validation and implement fixes. Ideally,
a board-level change is found because PCB or
apps level schematic changes are much easier
and cheaper than silicon spins. In conjunction
with this work, I’ll also refine my reference
designs and documentation as well as work
with the field on initial customer designs by
answering questions and checking over layouts
and schematics to make sure everything’s
optimal for their builds.
 Up until the part releases, I’ll continue
cycling through validation, debug, and
customer support as needed, squeezing in
documentation when I get a chance too. At
any given time, I’m also supporting old parts
still in production or, if I’m in a lull with my
work, getting pulled onto other chips to help
out other apps engineers in a jam.
 The last part I released,
and my first as the lead
apps guy, was the ISL95813,
a single phase regulator
for Haswell and Broadwell
systems. My next part is
scheduled for release next
year which I can’t talk too
much about, but it’s really cool.

CIRCUIT CELLAR: During your time at Intersil,
you must have learned some important
lessons about professional engineering. Can
you share one or two things you took from
the experience?

CARMEN: Most importantly, good
communication skills are key. A large chunk
of my job is talking to other engineers and
customers across the country and overseas.
Their whole interaction with me is through the
emails and reports I send out and I want to
make sure they’re top notch. You don’t need
to be a poet laureate by any means, but if you
come across like a rock head, it will be much
harder to get taken seriously and problems
will drag out longer than necessary. Proofread
your work; make sure you’re getting your point
across clearly; and tailor your email, report,
PowerPoint, whatever, to your audience’s level
of technical expertise. Study up on how to make
a slideshow that won’t bore your audience or
read a technical writing guide. It can’t hurt.
 Secondly, document, document, document—
even if it’s only for your own reference. And
keep it somewhat organized so you can find
what you need again without too much hassle.
Yes, it can help CYA, but also I’ve saved myself
a ton of time not redoing the same derivations
or looking back at a difficult test setup I had
documented in my notebooks. It’s especially
nice being able to pull up old data from past

parts to see why the heck we did what we did
years later.

CIRCUIT CELLAR: Tell us about your most
recent electrical engineering project. What
did you build and why?

CARMEN: Well, I can’t talk too much about
work since all my projects at the moment are
either customer related or under development,
but suffice it to say I’m working on a lot of low
power, multi-role chips.
 Outside of work though for nearly two
years now I’ve been co-hosting a podcast
which keeps me plenty busy. The show’s
called The Engineering Commons (http://
theengineeringcommons.com) and it gets
released every other week by myself and three
other engineers scattered across the US. It
was originally started by Chris Gammell and

Jeff Shelton, but when Chris left the show for
other projects back in 2013, I threw my hat
into the ring when Jeff put the word out he
was looking for new co-hosts. We discuss the
engineering discipline as a whole rather than
focus on any one field and some of our favorite
topics include education, the value of co-ops,
life in the workplace, and the stories of other
engineers we bring on to interview.
 The semiconductor field is pretty niche,
and so through the show, I get exposed to all
sorts of new ideas and philosophies, whether
it’s from researching a topic when coming
up with show notes or hearing the stories
of engineers and professors from across
the globe. Some of my favorite episodes are
the ones while interviewing a guest I barely
have to say anything and not just because I
hate hearing my voice when I re-listen to an
episode! Hearing someone get really into a
story and talk about their passion I can’t help
but get drawn in and become excited myself.
All us engineers are alike; no matter the field
once you get us going about that tricky bug
we finally tracked down, the ridiculous meeting
that happened the other day, or those ah-ha
moments when a solution just clicks in your
head we just can’t help but gush and it makes
for great content.
 I’ve put out nearly 50 episodes with Jeff,
Adam, and Brian, and I can’t wait to do the
next 50!

CIRCUIT CELLAR: On FakeEEQuips.com, you

The last part I released, and my first as the lead apps guy,
was the ISL95813, a single phase regulator for Haswell and
Broadwell systems.

http://theengineeringcommons.com

CIRCUIT CELLAR • FEBRUARY 2015 #29510
CO

M
M

U
NI

TY

QUESTIONS & ANSWERS

write: “In my brief time as an engineer, I’ve
come to realize that I’d much rather spend
hours at a bench with an o’scope and an
iron looking for the cause of an oscillation
than slogging through a pile of code to find
a missing semi-colon or parenthesis.” Ok,
but must you code at least some of the time,
right?

CARMEN: Surprisingly, no. But that is changing
somewhat as the nature of my job evolves with
time. Don’t get me wrong, I can code, but it’s
neither my forte nor can I say I like it all that
much. I do use Excel, MathCad, and various
simulators to do some basic calculations and
plot data, but never firmware development or
anything along those lines.
 That being said, I am learning Python on
my own time to do some longer term projects
at work I cooked up for myself and I do toy
around with at home with an Arduino. I guess
I’m not a complete code curmudgeon, but the
overwhelming majority of my time is spent on
the bench counting nano-Coulombs of charge
stored in FETs during their deadtime period or
dancing on the edge of a transient response
spec to see if just one more cap can come off
from the output filter and I’d have it no other
way.

CIRCUIT CELLAR: We read through your 2013
EEWeb blog post, “Capacitor Voltage Ratings
in VCORE Applications.” Can you provide
some component picking tips here for our
readers? Perhaps you’ve learned a few things
since writing the post?

CARMEN: In regards to regulators, sure, I can

share some quick rules of thumb that have
worked for me. Pick the biggest inductor,
in terms of physical size, you can for an
application. A physically big inductor means
you’ll have lower DCR (less DC loss, better
efficiency) and better thermal performance.
If you have a regulator with the power FETs
integrated this counts double because with a
good layout the inductor can help pull heat
out of the IC package and keep the FETs happy
while loaded. Picking the actual inductance
value is worthy of an article in and of itself
as you trade-off between several factors like
current ripple, DCM output voltage ripple, and
overshoot on load current release.
 Another tip is don’t cheap out on ceramic
caps. All caps are not created equal, and that’s
actually what inspired my EEWeb article. I was
seeing a difference in transient performance
between two eval boards, one populated in
house, one built up elsewhere, and I was in the
lab late that night figuring out root cause. Turns
out when we built up boards in our lab we used
good-quality MLCCs giving better performance
for the same number of caps on the output. In
my inexperience I never called out a specific
part number for the output ceramics in the
BOM for the assembly house because I didn’t
think it mattered. Well, the board house just
used whatever was on hand leading to my late
night. Who has two thumbs and always specs
his favorite caps now? Carmen Parisi, nice to
meet you. For space-constrained applications
cheap MLCCs could mean another four or five
pieces are required to meet Intel specs due
to their poor high frequency performance on
repetitive load scenarios.
 Sadly, as with all such rules, these ones
apply until they don’t at which point you’re
probably pulling your hair out trying to get a
design to work before you realize it or have
some requirement you can’t negotiate in your
favor. Not that I’d know from experience or
anything (he mumbled looking at his shoes).

CIRCUIT CELLAR: Tell our readers about the
prank circuit gag you pulled on the designer
you worked with. And can you share an image
of the prank circuit?

CARMEN: A good way through the 813
development I found some problems that ended
up being non-issues because I misinterpreted
a spec, had a test setup issue, or made a silly
component choice in my design. The designer
started ribbing me a bit by immediately calling
everything a board issue from that point on.
This kind of back and forth goes on all the time
between apps and design and it’s always good
natured in tone. I didn’t take it personally and
took strides to be more thorough before ringing
alarm bells going forward but I couldn’t let him Carmen's jury-rigged circuit

www.iar.com/crun

CIRCUIT CELLAR • FEBRUARY 2015 #29512
CO

M
M

U
NI

TY

QUESTIONS & ANSWERS

get way Scot-free.
 With my boss’ permission I waited until
a slow day came along and rigged up a little
circuit to the bottom of the eval board that
would overdrive the compensation node of
our regulator, propagate through the control
loop, and cause seemingly random spikes in
the output voltage. I took some waveforms
and sent them off to the designer explaining
how I found an operational corner that
affected regulation we needed to address.

Since he was a thorough designer
and liked to regularly pop into
the apps lab I actually spent my
morning running the tests he
asked me to just to keep up the
illusion something was wrong if
he showed up.
 I kept him digging through
the schematics trying to find
his mistake until mid-afternoon
before I brought him in the lab
and slowly flipped the board
over while telling him I found the
error was caused by a parasitic
circuit. At this point a couple
other engineers who were in on
the gag had found reasons to
be in the lab for the reveal and
we all had a good laugh. The
designer took it pretty well, and I
even bought him a beer for being
a good sport.

CIRCUIT CELLAR: A lot engineering students
read Circuit Cellar. Do you have any advice
for them as they start looking for their first
internships or jobs?

CARMEN: My boss at GE told me after I got
hired for my first co-op what made me stand
out at the Career Fair, and during the interview
process, was how excited I was taking the plant
tour, seeing all the labs, and learning about
the job’s day to day responsibilities. Looking

Carmen's prank circuit diagram

Bad circuit waveforms

circuitcellar.com 13
CO

M
M

U
NITY

QUESTIONS & ANSWERS

for your first co-op can be tough because you
typically don’t have any industry experience
or upper level design courses to boost your
resume. Maybe you don’t even know which end
of the soldering iron to hold so your passion
is really the only card you have to play. Make
sure it shines through! Now that I stand on
the other side of the booth screening potential
candidates I can say it truly does make all the
difference. The students that stick in my mind
are the ones who in the brief time we talk make
me think they really care about the work they’ll
do and I’m much more likely to recommend
them to the managers back at the office.
 I talked earlier about the importance of
communication and one thing that’s helped
keep my skills sharp is volunteering at the NC
Mini Maker Faire Learn to Solder booth. You
really learn how to distill an idea to its core
concepts when there’s a four year old wielding
a hot iron and your fingers are on the front
line. I’d definitely recommend getting involved
in a similar role to learn how to think on your
feet and teach other what you know.
 Another piece of advice I have to offer from
my experience is no one really minds how
many questions you ask them so long as they
don’t feel like they’re doing your work for you.
Practically every time (though thankfully not
too often) I’ve gone up to a coworker for help
the first thing I’m usually asked is: “What
have you done already?” If my answer was
along the lines of “Not much,” then I’m quickly
shuffled out of their office mentally beating
myself up because I didn’t put in a solid effort.
Instead, if I show up with calculations, test
results, or anything to show I’ve tried first,
my coworkers are usually much more inclined
to help me out.

CIRCUIT CELLAR: Tell us your thoughts on
the future of electrical engineering? Is there
a particular technology or area of EE that
excites you?

CARMEN: One thing that excites me personally
is “The End of Moore’s Law,” as I’ve seen it
called in various articles. If and when we
hit the limit of what we’re able to do with
conventional transistors, what happens next?
Will we have to focus on making firmware and
software as efficient as possible or will some
new, exotic technology emerge? How will it
maintain backwards compatibility with the
technology that exists today? Beats the hell out
of me, but I can’t wait to see it. All I know
is I had enough trouble doing semiconductor
math in grad school, I couldn’t imagine trying
to characterize and model one of these new
3-D FETs for the first time. Someone else can
lead that revolution. Call me when the circuits
need designing!

 Outside of technology, I love talking about
engineering education, and it’s a frequent topic
we cover on The Engineering Commons. There’s
a lot of really smart people working to shake
up the education system whether it’s through
expanding the Maker Movement, adding more
practical hands-on classes to the curriculum,
creating Renaissance Engineers, or doing
away with degrees all together. I encourage
everyone to listen to some of our episodes on
the topic because it’s truly fascinating stuff.

CIRCUIT CELLAR: Tell us about your personal
workspace.

CARMEN: A quick aside about the office, the Dr.
Seuss quote is a carryover from the previous
owners whose son slept in the room.
 In my office, where I record my podcast
aside from a mic and headphones, there is
a small power supply and hand-held DMM.
Along with a small bin of scavenged parts
that’s the extent of my electronics gear. Hardly
anything to brag about but I get by. At some
nebulous point in the future I’m hoping to get
an inexpensive scope too but who knows when
that will be.
 Other than that I’m also outfitting my
garage with a workbench and tool chests
so I can keep all my stuff in one place and
organized. Finally being able to do basic car
repairs is awesome now that I’m not in an
apartment and can store things like a jack
and more than a standard toolbox worth of
gear. I’m fortunate enough to get to do a lot
of circuit hacking and crazy one-off designs
during my day job debugging silicon (see my
recent EDN article for one example), so I find
the car work and general house repairs a nice
change of pace from electronics.
 Having just moved into a house at the
beginning of the year and so far all of our
money has been sunk into making it look like
real adults live inside instead of circuit cellar
gear. I’m not complaining because I’ve been
able to do a lot of tool shopping to pick up a
few essentials and few “essentials” since I’ve
never really gotten over my childhood hang up
on tools and can always justify a purchase.

Carmen's workspace

CIRCUIT CELLAR • FEBRUARY 2015 #29514

EDITORS' PICKS

CO
M

M
U

NI
TY

WIRELESS CAN YARD LAMP CONTROL
John Dammeyer
Circuit Cellar 157, 2003

In addition to providing a sense of security from intruders, sensor-
controlled yard lamps make it safer for you to walk on your property
after dusk. But they can pose problems, particularly when a flash
triggered by a nocturnal animal awakens you from a dream. Other
systems like solar-powered lights have problems, too. Wouldn’t it be
nice to have more control over the technologies you use? Check out
the CANRF module John built for yard lamp control.

Wireless Communications

The interface to the CANRF module is simple. The
processor is marked as a PIC12C509, but you can use a
PIC12C508 or PIC12CE674. You can install a 0-Ω R9 to allow
for processor control of the power supply to cause the unit
to power down and draw only microamps. Or, remove R9
and connect the A/D channel 0 of the PIC12CE674 to a
temperature sensor via J2.

These articles and others on topics relating to Wireless Communications are available
in the CC Webshop. Go to www.cc-webshop.com.

The module is mounted on a 2.625″ × 3.75″ metal plate.
The battery holder for the four AA cells is screwed to the
bottom, and the antenna is a quarterwavelength piece of
solid 22-gauge wire.

MODULATION & DEMODULATION
Ed Nisley
Circuit Cellar 159, 2003

Our understanding of radio technology has
come a long way since Hertz’s nineteenth-century
experimentations. In this column, Ed shows you what
a simple AM modulator does to a carrier and an audio
tone. In addition, he describes how you can demodulate
the signal to recover the audio.

A simple RC filter attenuates the unwanted signals and leaves a
reasonably clean output. The frequency separation is much higher
for real RF, making the filter correspondingly more effective.

An n-channel JFET serves as a voltage-controlled resistor that makes the op-
amp gain linearly proportional to the modulation input. The overall circuit
is basically a two-quadrant multiplier that produces an AM signal at the
carrier frequency.

http://www.cc-webshop.com

circuitcellar.com 15

CC WORLD

CO
M

M
U

NITY

WIRELESS MONITORING SYSTEM
Alberto Ricci Bitti
Circuit Cellar 167, 2004

In addition to providing a sense of security from
intruders, sensor-controlled yard lamps make it safer
for you to walk on your property after dusk. But
they can pose problems, particularly when a flash
triggered by a nocturnal animal awakens you from
a dream. Other systems like solar-powered lights
have problems, too. Wouldn’t it be nice to have more
control over the technologies you use? Check out the
CANRF module John built for yard lamp control.

The receiver has few parts. Pull-ups, an oscillator, reset generation, and EEPROM are
all included in the MCU. Connections to LCD pins 15 and 16 (backlight) and R2 can vary
to suit your LCD’s specifications. Older LCDs need a contrast control voltage to be set
on pin 3. The relay can trigger a phone dialer when a trap triggers.

The receiver box is recycled from an old soldering station. The receiver is simple
enough to be assembled on a prototype board. The display and keyboard are fixed
to the front panel with thick double-adhesive tape.

Low Power ARM Module

OVER

30
YEARS OF

SINGLE BOARD
SOLUTIONS

Since 1985

Phone: (618) 529-4525 · Fax: (618) 457-0110 · www.emacinc.com

http://www.emacinc.com/products/system_on_module/SoM-A5D36

SoM-A5D36

EQUIPMENT MONITOR AND CONTROL

Industrial Temperature

l Atmel ARM Cortex A5 536Mhz Processor
l 4GB of eMMC Flash
l 512 MB of LP DDR2 RAM
l 16MB of Serial Data Flash
l 22 GPIO (3.3V) Lines
l 6x Serial Ports
l 24-bit LCD Controller
l Up to 720P Video
l Touch Controller
l External Address/Data Bus
l Internal Real time clock/calendar
l 4 PWM Channels, 5 Timer/Counters
l 10/100/1000 BaseT Ethernet
l 2x USB 2.0 High Speed Host ports
l 1x USB 2.0 High Speed Host/Device port
l 6 channels of 12 bit A/D (0 to 3.3V)
l 200 pin SODIMM form factor (2.66" x 2.375")

Designed and manufactured in the USA, the SoM-A5D36 is a System on
Module (SoM) based on the Atmel ARM Cortex A5 ATSAMA5D36 processor.
This low power, wide temperature ARM 536 MHZ SoM utilizes 4GB of
eMMC Flash, 16MB of serial data flash, and up to 512MB of LP DDR2 RAM.
Like other modules in EMAC's SoM product line, the SoM-A5D36 is
designed to plug into a custom or off-the-shelf carrier board containing all
the connectors and any additional I/O components that may be required.
Qty 1 pricing is $155. Please contact EMAC for OEM & Distributor Pricing.

http://www.emacinc.com/products/system_on_module/SoM-A5D36
http://www.emacinc.com
mailto:orders@lemosint.com
www.lemosint.com

CIRCUIT CELLAR • FEBRUARY 2015 #29516
IN

D
U

ST
RY

 &
 E

NT
ER

PR
IS

E

PRODUCT NEWS

DUAL ETHERNET MODULE OPERATES
AS INDEPENDENT PORTS OR SWITCH

The NetBurner MOD54417 network core module
provides 10/100 Ethernet connectivity with two Ethernet
ports. The ports can operate independently, each
with its own MAC address, or as an Ethernet switch,
simplifying network infrastructure (i.e., daisy chaining)
by enabling Ethernet devices to connect through it.

The module is industrial temperature rated (–40 to
+85°C) and also provides: 8 UARTs, 4 I2C, 2 CAN, 3 SPI,
1-Wire, a MicroSD flash card socket, 42 digital I/O, eight 12-bit
analog-to-digital inputs, two 12-bit digital-to-analog outputs, and five PWM
outputs. Wireless 802.11 b/g/n communication is available with the optional Wi-Fi
add-on.

The NetBurner Network Development Kit (NNDK) provides a complete software and tools
package including the Real-Time Operating System, full featured TCP/IP Stack, Web Server,
DHCP Server, Eclipse development environment, C/C++ compiler and debugger. The NNDK is focused on
ease of use and you will have your first custom program running within a few hours of receiving the kit. The
price of the MOD54417 ranges $94 to $129.

NetBurner
www.netburner.com

QUAD OUTPUT PROGRAMMABLE UNIVERSAL PMIC

Exar Corp. recently announced the XR77129, a quad
output programmable universal PMIC with an input operating
voltage range of 6 to 40 V. Its patented control architecture
is well suited for 40-V inputs using a 17-bit wide PID voltage
mode VIN feed forward architecture. This controller offers
a single input, quad output, step-down switching regulator
controller with integrated gate drivers and dual LDO outputs.
It can also monitor and dynamically control and configure
the power system through an I2C interface. Five configurable
GPIOs allow for fast system integration for fault reporting
and status or for sequencing control.

The XR77129 can be configured to power nearly any FPGA,
SoC, or DSP system with the use of Exar’s PowerArchitect
and programmed through an I²C-based SMBus compliant
serial interface. PowerArchitect 5.2 has been upgraded to
support the additional capabilities of the XR77129 including
output voltage ranges beyond the native 0.6 to 5.5 V with the
use of external feedback resistors. The XR77129 wide input

voltage range, low quiescent current of 450 µA (standby) and
4 mA (operating) make it a logical choice for a wide range
of systems, including 18 to 36 VDC, 24 VDC or rectified AC
systems used in the industrial automation and embedded
applications.

The XR77129 is available now in an RoHS-compliant,
green/halogen-free, space-saving 7 mm × 7 mm TQFN. It
costs $9.95 in 1,000-piece quantities.

Summary of features:

• 6 to 40 V input voltage
• Quad channel step-down controller
• Digital PWM 105 kHz to 1.23 MHz operation
• SMBus-compliant I²C interface
• Supported by PowerArchitect 5.2 or later

Exar
www.exar.com

http://www.netburner.com
http://www.exar.com

OPEN

RUGGED

LONG LIFE

ORIG
IN

AL
Unique embedded
solutions add
value for our
customers

Support every
step of the way
with open
source vision

Embedded
systems that
are built to
endure

We’ve never
discontinued a
product in 30
years

DESIGN YOUR SOLUTION TODAY
CALL 480-837-5200

Features can include:
5, 7, and 10 Inch Touchscreens

Up to 1 GHz ARM CPU, 2 GB RAM, 4 GB eMMC Flash

Fanless Operation from -20 ºC to 70 ºC

Optional Cellular, WiFi and XBee Radios

Supports Android & Linux with Fast Boot Times

Ethernet, USB, DIO, CAN, RS-232, Modbus, SPI

Touch Panel Computers
Panel Mount or Fully Enclosed

Series start at

$409
Qty 1

Qty 100

$369

Pricing starts at
$129

Qty 1Qty 100

$168

TS-7670 Industrial Computer
GPS Radio and Cellular Modem

Guaranteed available until 2025

Easy development w/ Debian and Linux 2.6
Boots quickly to your Embedded Application

Low power with 10mW sleep state

Bene�ts:

-40 to +85C, 100% soldered-on components

454MHz ARM CPU

Up to 256MB RAM

1x USB Host

4x DIO, 2x CAN

2x mSD Card Socket

2GB NAND Flash

1x Battery Backed RTC

2x COM, 1x RS-485

1x 10/100 Ethernet 1x Temperature Sensor

Features:

Coming Soon:
TS-7680: Like the TS-7670 w/ WiFi & Bluetooth

low cost plastic
enclosure available

TS-TPC-8390-4800 Rear View TS-TPC-8390-4800 Angled View

www.embeddedARM.com
www.embeddedARM.com

CIRCUIT CELLAR • FEBRUARY 2015 #29518
IN

D
U

ST
RY

 &
 E

NT
ER

PR
IS

E

PRODUCT NEWS

NEW STM32 MICRCONTROLLERS IN SMALL MEMORY SIZES
Nordic STMicroelectronics’s new STM32F446 microcontrollers

feature ARM Cortex-M4 based processing combined with 256-
or 512-KB on-chip flash memory options. In addition to using
STMicro’s ART Accelerator, the microcontrollers feature smart
architecture, advanced flash technology, and an embedded ARM
Cortex-M4 core to achieve a performance of 225 DMIPS and 608
CoreMark at 180 MHz executing from embedded flash.

Key features include:

• At 180 MHz, the STM32F446 delivers 225 DMIPS/608
CoreMark performance executing from flash memory
with 0-wait states. The DSP instructions and the floating-
point unit expand the range of addressable applications.

• Using a 90-nm process, the current consumption in
Run mode and executing from flash memory is as low
as 200 µA/MHz at 180 MHz. In Stop mode, the power
consumption is 50 µA typical.

• Two dedicated audio PLL, SPDIF input, three half-duplex
I²S, and two serial audio interfaces (SAI) supporting
full-duplex I²S as well as time division multiplex (TDM)
mode.

• Up to 20 communication interfaces (including 4x USARTs
plus 2x UARTs running at up to 11.25 Mbps, 4x SPI
running at up to 45 Mbps, 3x I²C with a new optional
digital filter capability, 2x CAN, SDIO, HDMI CEC and
camera interface)

• Two 12-bit DACs, three 12-bit ADCs reaching 2.4 MSPS
or 7.2 MSPS in interleaved mode up to 17 timers: 16-
and 32-bit running at up to 180 MHz

• Easily extendable memory range using the flexible 90-
MHz memory controller with a 32-bit parallel interface,
and supporting Compact Flash, SRAM, PSRAM, NOR,
NAND and SDRAM memories

• Cost-effective NOR flash extension with the 90-MHz Dual
quadSPI interface supporting memory-mapped mode

• STM32F446 samples are now available for lead
customers. Volume production is scheduled for Q1 2015
in packages from a tiny WLCSP81 measuring 3.728 ×
3.85 mm to a 20 × 20 mm LQFP144 with 256- or 512-KB
flash memory, all with 128-KB SRAM.

Pricing starts at $3.75 for the STM32F446RC in a 64-pin
LQFP64 package with 256-KB flash memory and 128-KB SRAM
for orders of 10,000 units.

STMicroelectronics
www.st.com

NEW EZ APP LYNX LIBRARY FOR SMART BLUETOOTH SENSORS
CCS C-Aware IDE now includes the EZ App Lynx

library. Quickly create a Bluetooth wireless sensor, or
controller, that may be viewed or managed on a paired
mobile device using the EZ App Lynx Android app.

The free EZ App Lynx Library was created to shorten
the design time for smart Bluetooth app development.
With EZ App Lynx, and no required hardware or software
expertise, the library removes the barriers to entry for
smartphone app developers who want to take advantage
of a growing number of Bluetooth enabled smartphones
and tablets. The new library allows for any GUI, on the
App, to be created at run time from a PIC program. The
library offers many useful sensor interface components,
which allow for: Status Bars, Gas Gauges, Sliders, Buttons,
Text Fields, and more.

EZ App Lynx Library Features and Advantages:

• No app design knowledge required
• Source code libraries included with all CCS C Compilers
• Included with maintenance update download
• EZ App Lynx App

• Available for Android in Google Play Store (iOS
available soon)

• Build your own EZ App Lynx App in minutes with
simple C library calls on the PIC

• Quick and easy prototyping

CCS
www.ccsinfo.com

http://www.st.com
http://www.ccsinfo.com

circuitcellar.com 19

CLIENT PROFILE

IND
U

STRY &
 ENTERPRISE

EarthLCD.com
www.earthlcd.com
3184 Airway Ave., Suite J, Costa Mesa, CA 92626
CONTACT: Randy Schafer (randy@earthlcd.com)

FEATURED PRODUCTS: The ezLCD-405 5.6” VGA Smart,
Touchscreen can be used as an intelligent display or as a
standalone device, easy-to-use, command driven programmable
firmware environment, and easy-to-customize your firmware
with our free tools. The ezLCD-405 is based on the STMicro
STM32F429 ARM M4 microcontroller. Also an optional ucLinux BSP
is available. The arLCD by EarthMake.com is a Smart Touchscreen
LCD combining an 3.5” Touchscreen, ezLCD GPU and the Arduino
Uno designed for the maker market.

WHY SHOULD CC READERS BE INTERESTED? arLCD is a full smart
ezLCD GPU with the Arduino Uno R3 on the same PCB in a thin,
easy-to-integrate package. It can be used in many applications
such as thermostat control, lighting controls, home security, audio
control, water level gauge, robotics, and industrial automation. The
arLCD combines the best of ezLCD-3xx and the Arduino UNO. The
arLCD is not just an LCD and you should not confuse it with a snail’s
pace 2.8 LCD shield that uses almost all your I/O pins!

SPECIAL OFFER: Receive a 10% discount off your first EarthLCD
product! Promo code: CIRCUITCELLAR

Circuit Cellar prides itself on presenting readers with information
about innovative companies, organizations, products, and services
relating to embedded technologies. This space is where Circuit
Cellar enables clients to present readers useful information, special
deals, and more.

Now offering student
SUBSCRIPTIONS!

www.circuitcellar.com/subscription

Sign up today and SAVE 50% • Sign

When textbooks just aren’t enough, supplement
your study supplies with a subscription to Circuit
Cellar. From programming to soldering, robotics
to Internet and connectivity, Circuit Cellar delivers
the critical analysis you require to thrive and excel
in your electronics engineering courses.

http://www.earthlcd.com
mailto:randy@earthlcd.com
www.circuitcellar.com/subscription

CIRCUIT CELLAR • FEBRUARY 2015 #29520
FE

AT
U

RE
S

This is a bit different from most Circuit
Cellar projects. It’s a professionally

designed, open-source hardware and
software product. I got tired of duplicating
many facets of embedded computers in my
instrumentation applications. So, I created
a standard platform (base unit) that drives
the typical input and output requirements
of any instrument. This includes a standard
2 × 16 LCD, 25 switches, and 10 LEDs (see
Photo 1). Note that this is not a prototyping
system. This is designed to go directly into
production. The base unit hardware design
and software are free for noncommercial and
commercial purposes. (Use at your own risk!)
All specialized plug-in boards that will follow
are for noncommercial use only.

The object of the base unit is to provide
a platform for the development of a series
of very inexpensive, yet high-performance,
professional test instruments. The first
plug-in instrument is a sweep generator. It’s
digitally synthesized, sweeps from 3 Hz to 25
MHz (Nyquist limit), has 0.3- and 3-Hz steps
with 50 PPM accuracy, differential outputs,
operates in burst or continuous modes, low
distortion sine wave (0.1%), triangle wave,
square wave, linear or log sweep, fixed
frequency and single-step modes, internal
and external control, EEPROM save of up
to eight set-ups, directly drives 51-Ω loads
and 8-Ω speakers, and a has lot of other
nice features. It also has a true marker/
cursor (not marker generator) that precisely

Electronics Testing
Platform (Part 1)

Gerard’s affordable, multifunctional
test instrument would be a handy
tool for anyone focused on
rapid product development.
In this article, he explains
how he engineered the
base unit, which is
a platform for the
development of test
instruments. Next
month he details the
construction of a plug-in
sweep generator board.

By Gerard Fonte (US)

PHOTO 1
The base unit is a fixed-form-factor
product development system. Adding
an internal plug-in board and changing
the front-panel overlay creates a new
product.

Base Unit
Construction

circuitcellar.com 21
FEATU

RES

identifies the frequency at any point in
the sweep on your oscilloscope. But that’s
the teaser for the next installment. (Other
upcoming plug-in test instruments include
a micro-ohmmeter—yes, it measures
millionths of ohms—a pico-ammeter, an AC
mains analyzer, and others.)

The base unit is also different from other
development systems. It’s designed around
reuseable hardware and software modules.
This makes product development much
faster. The 2 × 16 character LCD, 10 LEDs,
and 25 switches are fixed in hardware. This
means that the driver software for these is
also fixed. There is absolutely no rewriting of
code to change pin assignments and so on.
Additionally, the hardware was designed to
use the minimum number of microprocessor
resources. The LCD uses seven I/O pins, the
LEDs use four pins, and the switches use only
one pin. That leaves 19 available I/O pins, as
well as most of the special features.

Most products will not need all of these
switches and LEDs. We’ll see later that it’s
a simple matter to fabricate a professional-
looking overlay to mask out these unneeded
components. The software supports larger
LCD modules, if needed.

PIC MICROPROCESSOR
I chose a Microchip Technology PIC16F887

8-bit processor for a number of reasons. It
has several nice features: 8-KB program space
(flash memory), 368 bytes of RAM, 256 bytes
of EEPROM, a 10-bit ADC, two pulse-width
modulators (PWMs), three timer/counters,
an internal oscillator, and more. It only costs
about $3.50. But the major reason for choosing
the PIC16F887 was the tremendous amount of
free support directly from Microchip. MPLAB
from Microchip is a complete development
system that has everything you need to get
up and running, including: assembler, editor,
debugger, programmer (software), project
manager, and more. It’s easy to use and very
well documented. And it supports all devices
from Microchip.

The only hardware you need is their
programmer. The PICkit-2 costs about $35
(PG464120) and is widely available (see
Photo 2). This programs nearly all of their
products directly. It also allows in-circuit,
real time debugging. This is an absolutely
great feature. You can put a break-point in
your program and then run the hardware
with real inputs and outputs. When you get
to your break-point, the system stops and
displays any variables you want. Then you
can single-step through the code and watch
the variables change. It’s much, much easier,
faster and more accurate than running a
simulation.

I/O BOARD
The base unit is comprised of four

components: an LCD, a microprocessor board,
an I/O board, and a case/power supply. The
I/O board was designed to be as flexible as
possible. You can use SMT (1206 size) LEDs or
through-hole LEDs. You can use SMT resistors
(1206 size) or through-hole resistors. And
finally, you have the choice of using 6-mm
square (0.24”) four-pin switches or 6-mm,
2-pin switches (see Photo 3).

PHOTO 3
How to use one analog pin to read 25
switches and four pins to drive eight
LEDs

PHOTO 2
PICkit-2 programmer and debugger

CIRCUIT CELLAR • FEBRUARY 2015 #29522
FE

AT
U

RE
S

I chose 25 switches because it seemed that
the typical 4 × 4 matrix of 16 switches might
be too small. It seems very possible that
future modules would require a hexadecimal
input, so a 16-switch keyboard wouldn’t
have anything left over for other functions.
Normally a 5 × 5 matrix of switches would
require 10 pins on the microprocessor. Since
this is way too many pins to commit for just
switches, I used a different approach.

Figure 1 shows how these 25 switches are

read by a single pin. A simple resistive divider/
ladder was used. It connects to an analog I/O
pin of the microprocessor. Each switch closure
will provide a particular voltage so it is pretty
easy to figure out in software which switch
was pressed.

There is a little trick used to make the
software easier. Since we are only using the
top 8 bits of the 10-bit ADC, the voltage range
is 256 counts. It would be nice if each switch
voltage was exactly 10 bits apart instead of

FIGURE 1
Twenty-five switches are read by a
single pin.

FIGURE 2
This is a schematic of the
microprocessor board. R2 does
double duty. C5 and C9 are
nonpolarized electolytics.

circuitcellar.com 23
FEATU

RES

10.24 counts (i.e., 256 counts/25 switches).
The trick is to add a 26th resistor that is
0.6× the other resistors. In this way there
will be 250 counts for the 25 resistors and
6 counts for the 26th resistor for a total of
256 counts. Placing this 26th resistor at the
top of the ladder “removes” 6 counts from
full-scale. Therefore, the switch values will
start at 0 (no switch pressed) and go by 10s
to 250. It’s very convenient and it only costs
one additional resistor.

The actual resistor values aren’t critical
but should be in the 500 Ω to 2 kΩ range
and have 1% tolerance. For best operation,
the A/D expects to see less than 10-kΩ input
impedance. Since both VCC and ground are
defined as “zero” ohms impedance, the
highest impedance will be at the center of
the resistor ladder. This is about 12 kΩ for
1-kΩ resistors. But we aren’t concerned with
absolute precision and we are only using 8
bits of a 10-bit ADC. So, using 2-kΩ resistors
will work acceptably well. I used 1.58-kΩ
resistors. This made the 26th resistor 948 Ω
(0.6 x 1.58 kΩ), but a 1-kΩ resistor worked
fine. An additional 1-MΩ (R2) to ground is
needed to drain off any floating charge on
the input pin when no switch is pressed (see
Figure 2).

There is the valid question of the
approach’s reliability. Can we be sure
that different manufactured units will be
consistent? Or will there be a need to tweak
the software and hardware? To answer the
questions, I built eight I/O boards—six used
through-hole resistors and two used SMT
resistors. Two used “948” ohm resistors (750
and 200 Ω in series) for the 26th resistor
(both through-hole) and six used 1-kΩ, 1%
resistors. I ran a statistical analysis to
calculate the mean and standard deviation of
all the 25 possible switch-press resistances
(without the 1-MΩ pull-down resistor). The
worst-case switch (at the end of the resistor
string) had a standard deviation of only
82 Ω. Since the difference between switch
resistances is 1,580 Ω, this corresponds to
a difference of over 19 standard deviation
units or “19 sigmas” between switch values.
The “one failure in a million” quality control
procedure is only “6 sigmas.” The resistance
ladder is very reliable.

But what about A/D conversion error?
Is this a possible source of concern? The
10-bit ADC can resolve 1,024 steps. The
difference between adjacent switches is
40 of these steps. If you sum all the worst
possible errors in the ADC, they only come
to six steps. The A/D conversion error is not
a concern, either.

Ten LEDs are used on the I/O board.
Again, using 10 independent pins for these

is too wasteful of microprocessor resources.
I used a “Complementary Drive” approach
from the Microchip’s application note TB029.
Just four pins are needed to drive up to 12
LEDs. The key to understanding this circuit
is to realize that only two pins are set as
outputs at any time: one high and one low.
The other two lines are set as inputs and are
effectively disconnected from the circuit. By
properly choosing which pin to drive high and
which pin to drive low, any particular LED
can be turned on. In general, multiple LEDs
cannot be on at the same time; however,
there are special cases. Having only one LED
on at a time is not a particular problem. Many
applications require multiplexing the LEDs
to make it appear that several are on at the
same time.

The four LED pins and the three pins for the
switches (VCC, GND, and switch voltage) are
brought out to a seven-pin header strip (J4).
This plugs into the microprocessor board. The
four LED lines are connected to the low-order
Port D pins on the microprocessor. I chose
these pins because they had no other function
than digital I/O. This leaves the multipurpose
pins available for future applications.

The choice for using bit 3 of Port B (which
can be configured as an analog input) for the
switch analog input is special. Port B bit 3 is
also the “Low-Voltage Program” pin. It is not
used by the regular PICkit-2 programmer.
The default state for this pin is to activate
the low-voltage option. So, if you don’t
know (or remember) to properly configure
this pin at start-up, you can enter the “Low
Voltage Programming State” if this pin floats
high (which is very common). The result is
a microprocessor that appears completely

PHOTO 4
Before and after adding the laminate overlay. Note that the high-intensity LEDs shine through.

ABOUT THE AUTHOR
Gerard Fonte i s the
principal engineer at
The PAK Engineers and
has nearly 30 years of
hands-on experience
that includes missi le
guidance systems, elec-
tronic warfare, gravity
navigation, and projects
that “don’t exist.” He
has well over 100 pub-
lications. Gerard was
awarded the Engineers’
Council Outstanding En-
gineering Merit Award
in 2006 for his work on
Egyptian pyramid con-
struction. He holds a
BA degree in Psychology
and a MS degree in Nat-
ural Science.

CIRCUIT CELLAR • FEBRUARY 2015 #29524
FE

AT
U

RE
S

dead. My solution is to always pull this pin low
to eliminate that possibility. Since I already
have a pull-down resistor on that pin, it’s very
convenient to use it for the switch input.

By using inexpensive “tactile” switches
and a little ingenuity, you can make a
“membrane” switch panel. The basic method
for this is shown in Photo 4. The front panel
is then covered with a paper overlay which is

“laminated” on both sides with 2” wide, clear,
cellophane tape used for packaging. (This is
available at your local office-supply store.)
You can be as creative as you like. Double-
sided tape holds the membrane in place.

The top of the switch actuator should
be even with the top of the plastic cover or
perhaps slightly higher (according to your
taste). In order to do this, the holes must
be big enough to partially pass the switch
body (unless you choose a switch with a long
actuator). A small spacer (a 4-40 nut) will
work for the switches shown (which are fairly
standard). Different switches may require
different spacers. Note that if you mount the
through-hole resistors on the same side of
the PCB as the switches you must be careful
to make them lie perfectly flat. Otherwise,
they can be too high and cause a problem
with the spacing. If you use a PCB with plated
through holes, you can mount the resistors
on the bottom of the board and eliminate this
concern.

The LEDs can be the standard T1 3/4 size,
but they will protrude from the cover. You can
also use SMT LEDs. If you go this route, use
super-bright parts (600–1,000 Mcd). These
are so bright that they will shine right through
the paper and tape overlay.

LCD
Often LEDs simply do not provide enough

information. For that reason, an LCD is
included. A commonly available 2 × 16 display
was chosen (Hantronix HDM16216). It has the
connector above the display. In addition, it is
3.15” × 1.42” (80 mm × 36 mm) and uses either
a 4- or 8-bit interface. It turns out that these
LCDs (incorporating an HD44780 controller)
are incredibly generic. I referenced an AND
LCD Products catalog from 1988 (an AND-491
display), a Microchip Application Note written
in 1997 (using a Hitachi LM032L display),
and a couple of recent magazine articles. All
displays had identical pinouts and identical
software commands. The only difference I
was able to find was a small timing variation
during the initialization of the LCD. The 4-bit
interface is used here to save I/O pins for
future modules.

Deciding which seven pins to connect to
the LCD wasn’t simple. I wanted to leave
as many multipurpose microprocessor pins
available for future use, especially the analog
pins. I wired the R/W interface line directly
to ground to save an I/O pin, so the LCD
becomes write-only. I can’t see any future
need to read the data in the LCD memory.
The high-order Port C pins had secondary
uses for serial communications which do not
seem that useful for test and measurement
designs. The four LCD data connections went circuitcellar.com/ccmaterials

SOURCES

HDM16216 LCD

Hantronix | www.hantronix.com

PIC16F887 Microcontroller

Microchip | www.microchip.com

PHOTO 5
The back of the LCD showing added
pins (mates to J2). Note the nylon
spacer nuts. The top of I/O board
is shown and metal spacer-nuts are
below board (not visible). I/O board
connector mates to J4.

PHOTO 6
Top view of microprocessor board. Header pins around microprocessor mate to future plug-in modules.
Mounting holes align with LCD screws but friction from J2 and J4 pins seems sufficient.

http://www.hantronix.com
http://www.microchip.com

circuitcellar.com 25
FEATU

RES

there. However, the low-order pins are used
for the internal timers. These are useful, so I
had to connect the remaining two LCD digital
lines to different ports. The last free plain,
digital I/O pin was Port D bit 4. I connected
the LCD Enable line there. The other Port D

pins were also associated with the timers so I
didn’t want to use them. I ended up using Port
E bit 1 for the R/S LCD line. It’s a plain analog/
digital line with no other special functions.
This leaves all of the special-function analog
pins available as well as all the timer pins.

EMBEDDED DEVELOPMENT TIPS AND TECHNIQUES
With all those pins, it’s easy to lose track of which pin is

which. The simple answer is to label them. Use your word-
processor to create the label you want. Mine shows the
port identifications, power, and every fifth pin number (see
sidebar Photo 1.) If you can’t create a list to size, make it
an image and shrink it as needed. Print it, cut it out, and
attach it to the chip with double-sided tape. You will be
amazed at how much time and grief it saves.

Using your oscilloscope or voltmeter to measure the
output of a pin gets old real fast. Instead, build a simple
10-pin logic-state display (or two). All you need is a
10-segment bar graph LED, 20-pin socket, 10 resistors,
a 10-pin SIP header, and a ground clip (see sidebar
Figure 1). The resistors can be a SIP network instead of
individual parts (but the most they come in is nine so you’ll
still need one discrete resistor). The value of the resistors

depends on the efficiency of the display and the capability
of your microcontroller. Typical values are 510 to 2,000 Ω.
Mount them next to the LED (see sidebar Photo 2) so that
they will not touch/short other components. This works
especially well in single-step mode. (And, of course, this
can certainly affect input pins. So be careful.)

While the PICkit2 device ($35) is an integrated part

of the free Microchip MPLAB Development System, the
“PICkit2 Programmer” software is a separate free download
application direct from Microchip that allows it to act as a
simple three-pin logic analyzer. (It isn’t included as part of
Microchip’s MPLAB.) Obviously, three pins aren’t very much
and it’s not very sophisticated or fast. But for debugging
microcontrollers, it’s fast enough. It’s perfect for serial
data streams where you have Clock, Data, and Enable lines.
And yes, it works for any TTL circuit or microcontroller.
It’s a completely stand-alone application. Sidebar Photo 3
shows the output of a discrete TTL counting circuit.

SIDEBAR PHOTO 2
Here are two LED bar graph logic displays. The right one shows the SIP
header connected to the LED bar graph socket and the positioning of the
resistors better. (A socket is not an absolute requirement.)

SIDEBAR PHOTO 1
LEDs and labels make things a lot easier. (Full-on green LEDs appear blue
for some unknown reason.)

SIDEBAR PHOTO 3
Separate software turns the PICkit2 programmer into a three-channel
logic analyzer.

SIDEBAR FIGURE 1
The poor-man's logic-analyzer can't get much simpler.

CIRCUIT CELLAR • FEBRUARY 2015 #29526
FE

AT
U

RE
S

I promptly drafted the CCP2 timer/PWM line
of Port C to provide the analog voltage to the
control the LCD contrast (LCD pin 3). Software
sends out a PWM signal that is filtered into
a DC value (see Figure 2). (The contrast is
software controlled.) Once set up, this timer
needs nothing more from the microprocessor
and operates entirely on its own. I tested this
with a variety of LCDs. Curiously, the yellow
back-light version required a negative LCD
bias voltage. Hence, a somewhat complicated
circuit is needed to support all tested versions.

The value of back-light resistor (if needed)
depends on the display. My yellow backlight

used 51 Ω while the white one needed 200 Ω.
Verify what you need with the manufacturer’s
datasheet.

A 16-pin header strip is soldered to the back
of the LCD circuit board which is mounted to
the front panel with four screws and connects
to J2. I had to open up the 2.5-mm mounting
holes very slightly to pass 4-40 hardware
(0.098” vs. 0.107”). In order to make the face
of the display was flush with the cover, a 4-40
nylon nut/spacer is needed. I had to trim the
sides of spacer nuts to fit. Additional nylon
nuts were used to mount the circuit board
because metal nuts would have touched board
traces. Photo 5 provides a view of this. Note
that the display PCB and I/O PCB should be the
same height from the front panel for proper
connection to the microprocessor board (via J2
and J4).

MICROPROCESSOR BOARD
The microprocessor board is not much

more than a simple 5-V, DC power supply, the
microprocessor, some connectors, and a few
passive components. The power supply is a
standard three-terminal type.

Header-strips are placed adjacent to the
microprocessor. This is where the various
future modules will connect. These pins are
also very useful during testing and debugging.
Photo 6 shows the top physical layout.

Photo 7 shows the bottom layout view.
These two header-strip-sockets (J2 and
J4) plug into the LCD and I/O board. Their
placement is critical for proper connector
mating. Drilling the mounting holes for the
I/O board a little oversize helps in getting
things aligned.

There is a six-pin, right-angle, header-
strip is used to connect to the PICkit2 for
programming and debugging (J1). A three-
pin straight header-strip (J5) connects to the
power. Friction from the connectors is usually
sufficient to hold the microcontroller board in
place. However, it can be mounted in place
by increasing the length of the LCD mounting
screws to 1″ or longer. (Use spacers or extra
nuts to set the proper height.)

A 14-pin socket is available for crystal
or oscillator options. Normally, the internal
microprocessor oscillator is used, but future
projects may need the precision of a crystal. The
socket is wired to accept four-, six-, eight-, and
14-pin DIP oscillators directly. Some oscillators
have an “Enable” function that turns them on
or off. This is brought out to a pad for possible
future use. You can also use a bare crystal
with capacitors. Just connect them as shown
in Figure 3 using a DIP-header. The capacitor
values depend on the crystal. The RC oscillator
option can also be implemented.

I also included a reset switch (SW1). Call

PHOTO 7
The bottom of the microprocessor board. Socket headers mate to J2 (I/O board) and J4 (LCD).

FIGURE 3
Crystal oscillator hook-up

PHOTO 8
The bottom of the case holds AC components.

circuitcellar.com 27
FEATU

RES

me old-fashioned but I like to be able to reset
the microprocessor without having to remove
power and wait for the capacitors to discharge.
Being in control of the microprocessor is
important to me.

Lastly, it is important to remember that
future modules will plug into the header strips
around the microprocessor. This means that
all components (excluding the power supply)
must be shorter than 0.400″. This is only a
concern for the PWM capacitors C5 and C9.
Either use a short type or else lay them flat
instead of mounting them straight up.

AC POWER SUPPLY
The AC power supply is just a transformer

switch and fuse (see Photo 8). Since future
instruments will probably need op-amps and
other non-five volt devices it’s necessary to be
flexible. A 24-V, center-tapped transformer
can provide appropriate bipolar voltages.
I used 0.25” quick connects, a power entry
module, and a lighted DPST power switch. The
transformer connects to the microprocessor
board via a three-pin connector (yellow).

FREE STUFF
All the driver software is available for

free (for noncommercial and commercial

use) on the Circuit Cellar FTP site. There are
lots of routines for driving the LCD, lighting
the LEDs, and decoding the switches. It also
includes all of the support routines (like
timing and A/D code).

Additionally, there is a front panel
diagram that provides the dimensions and
placements for the holes on the front panel
(non-commercial use only). The easiest way
to construct the front panel is to print out
the diagram as actual size. Then tape this
to the front panel and drill/cut through this
template. Double-sided tape works best.

PLUG-IN BOARD
This is the first part for a number of future

test instruments. The basic hardware and
software is fixed, which makes product
development very rapid. In the next
installment, I’ll describe a small and
inexpensive plug-in board (2.5″ × 3.8″) and
turn the base unit into a nice sweep generator.
Of course, you can design your own plug-in
boards for whatever you want. That’s another
nice feature.

Author’s Note: A parts list is posted on the
Circuit Cellar FTP site: ftp://ftp.circuitcellar.
com/pub/Circuit_Cellar/2014/.

such as this book,
designing a microprocessor
 can be easy.
Okay, maybe not easy, but certainly less
complicated. Monte Dalrymple has taken his
years of experience designing embedded
architecture and microprocessors and compiled
his knowledge into one comprehensive guide to
processor design in the real world.

cc-webshop.com

Verilog HDL
With the right tools

Monte demonstrates
how Verilog hardware
description language
(HDL) enables you
to depict, simulate,
and synthesize an
electronic design so
you can reduce your
workload and increase
productivity.

ftp://ftp.circuitcellar
www.cc-webshop.com
www.saelig.com

CIRCUIT CELLAR • FEBRUARY 2015 #29528
FE

AT
U

RE
S

I wanted my students in a Communication
Theory course I teach to get an appreciation

for real-world signal sampling. So, initially, I
set out to design a network-connected ADC
system accessible to my students over a LAN.
I intended to enable them to modify various
sampling parameters and then observe the
impact on data integrity. But, as the project
progressed, my design evolved and I ended
up with a much more capable system. The
resulting five-function, network-connected
test tool was my entry (project number
WZ1281) to the WIZnet Connect the Magic
2014 Design Challenge (see Photo 1). The
WIZnet WIZ550io Ethernet module-connect
design functions include a digital oscilloscope,
spectrum analyzer, signal generator, noise
generator, and a filter response viewer (see
Figure 1). Using the system’s PCB running
Microchip Technology dsPIC33 firmware and
a PC application running the user interface

(UI)—both of which communicate over a
network—you have a very powerful signal
analysis tool (see Photo 2).

SYSTEM CAPABILITIES
The test tool is capable of displaying a time

plot of the input signal (digital oscilloscope)
and the Fourier spectrum (spectrum analyzer)
of that signal. Additionally the system has
the ability to generate test signals (signal
generator) or noise signals (noise generator)
that can be fed into the system’s input for
analysis or used in an external user application.
And finally, the system gives you the ability to
deliver an impulse into an unknown filter and
subsequently transform the impulse response
to view the filter’s transfer function (filter
response viewer).

Figure 1 shows where the system’s various
functions are executed. The antialiasing
filtering, signal sampling, signal generation,

Five-Function, Network-
Connected Signal Analyzer

This five-function, network-connected test tool would be an excellent addition to
your workbench. The system includes a digital oscilloscope, spectrum analyzer,
signal generator, noise generator, and filter response viewer.

By Neal Martini (US)

PHOTO 1
The analyzer project

noise generation, and impulse generation
(used in filter response mode) are handled by
the dsPIC33-based hardware PCB. The design
is networked to a PC using a WIZ550io module.
The PC application provides the main UI. In
the UI, all critical parameters are passed to
the PCB over the network. The PC also does
the heavy lifting when it comes to spectrum
analysis. Very high-speed fast Fourier
transforms (FFT) are executed here. The UI
also provides you with very sophisticated
display capabilities. Additionally, the PC
application enables you to generate synthetic
signals and find the signals’ spectrum. This
standalone capability does not require the
PCB to be connected. It provides an easy way
for you to exercise the UI before the PCB is
constructed.

HARDWARE
Figure 2 depicts the main IC hardware

components: a Microchip Technology
dsPIC33EP512MC502, a WIZ550io module,
and Analog Devices ADP151 low-dropout,
low noise voltage regulators. I chose the
dsPIC33EP512MC502 for a variety of reasons.
First of all, I wanted to use a DIP package so
that my students could build a PCB of their own
if they chose to without having to solder a fine-
pitch SMT device. Because high accuracy is
desired for quality ADC sampling, I wanted an
external 8-MHz crystal. Utilizing the dsPIC33’s
internal PLL, the microprocessor runs at 60
MIPS. This ensures we can keep up with
the high-speed sampling and data transfers
required to deliver excellent performance. The
dsPIC33 also has about 50 KB of RAM, which
allows large data blocks to be saved without
the need for external memory. Also, since any
sampling system needs an analog interface,
the fact that this dsPIC33 has a built-in
amplifier is ideal. Additionally, the dsPIC33

circuitcellar.com 29
FEATU

RES

FIGURE 1
An overview of the five-function test tool

Timer

Timer

Sample
data

PWM

ADC
10/12 Bits

Low-pass filter

Low-pass filter

dsPIC33EP512MC502

Input

0 to −80 dBm

Data collection and signal generation

Signal/noise
generator out

Impulse
generator

SPI

WIZ550io

PC

Ethernet

Ethernet

Network communication

User interface and signal processing

Impulse generator out

PHOTO 2
PC application user interface

CIRCUIT CELLAR • FEBRUARY 2015 #29530
FE

AT
U

RE
S

contains several high-quality peripherals
needed for this application. The peripherals
and their functions include: Timers 1 and 3
(precise control of sampling and DDS signal
generation); high-speed PWM (DDS signal
generation and noise generation); a SPI
module (communication with the WIZ550io);
ADC (high-speed, 10 bit/12 bit analog-
to-digital conversion); and an operational
amplifier (front end antialiasing filter and
buffering).

The WIZ550io module manages the
communication to and from the PC over the
network. The control and data transfers are
easily handled utilizing the dsPIC33’s SPI
communication port and a few control lines
(RDY and RESET). Several passive components
on the PCB are mainly used to accomplish
antialiasing filtering and filtering for the PWM
output. (I’ll describe those shortly.)

You’ll note that two separate 3.3-VDC
regulators are included. This isolates the

PHOTO 3
The UI showing a synthetic FM signal
being specified

FIGURE 2
The PCB schematic

ICD

circuitcellar.com 31
FEATU

RES

analog ADC supply and minimizes digital noise
crossover. I selected the ADP151 because it
has a very low output noise (9 µVRMS) and a
very low dropout voltage (140 mV). The low
noise ensures a pure ADC supply. The ADP151
also requires very simple external filtering to
get its job done.

Various connectors are included to provide
programming capability (ICD), signal input,
generator output, and impulse output. The
WIZ550io module contains the Ethernet
connector.

SOFTWARE/FIRMWARE
The microprocessor firmware and the PC

software are contained in two project files.
The dsPIC33 firmware is written in C code
using MPLABS X IDE (free from Microchip
Technology). The project file is called
WIZ1281_Micrchip_MPLX_dsPIC33_Project.
The PC software is written in C# using
Visual Studio 2010 Express IDE (free from
Microsoft). The project file is called WIZ1281_
VisualStudio2010_C#_Project. In the following
section, I break down where the various
WZ1281 functions are executed.

In the dsPIC33EP5012MC502 firmware,
you have: timer-controlled analog-to-digital
conversion; timer-controlled PWM signal
generation; timer-controlled noise generation;
impulse generation; and communication with
WIZ550io module for Ethernet connection to
the PC.

In the PC software, you have: UI for
selecting all control variables (Fs, N, Averaging

n, ADC bit selection, FFT window type, etc.);
plotting of input data, power spectrum and
filter impulse response, and transfer function;
synthetic signal generation to exercise the UI;
and Ethernet communication with the PCB.

If you refer to the code posted on the Circuit
Cellar FTP site, you’ll see that I included a folder
called WZ1281_UI_Application_Installer. When
the setup.exe in this folder is executed, the
C# application WindowsFormsApplication1.
exe is automatically installed on your PC.
To run the application, you must have
Microsoft .NET 4.0 (or later) installed on
your PC. You can download it separately
from Microsoft (http://msdn.microsoft.com/
en-us/ library/5a4x27ek(v=vs.100).aspx),
or you can download Microsoft’s Visual
Studio 2010 Express (www.visualstudio.
com/en-us/downloads/download-visual-
studio-vs#DownloadFamilies_2) and the .NET
framework will be automatically included.

 You can operate the UI application
without the PCB attached. I added a synthetic
signal generation capability to the UI so you
can specify parameters for various sample

ABOUT THE AUTHOR
Neal Martini holds an MSEE from the University of Missouri, Rolla. He is
retired after 24 years of working for Hewlett-Packard in the LaserJet and
InkJet printing businesses. In addition to being involved with a variety of
boards, Neal works independently in product development in several appli-
cation areas.

// Declare W5500 driver SPI Functions
 reg_wizchip_cs_cbfunc(wizchip_select, wizchip_deselect);
 reg_wizchip_spi_cbfunc(wizchip_read, wizchip_write);

//Functions
void wizchip_select(void) {
 WIZCS = 0;}
void wizchip_deselect(void) {
 WIZCS = 1;}
void wizchip_write(uint8_t wb)
{
 uint8_t dummy;
 SPI1BUF = wb; // write to buffer for TX
 while(!SPI1STATbits.SPIRBF); // wait for TX complete
 dummy = SPI1BUF;
}
uint8_t wizchip_read()
{
 SPI1BUF = 0x00; // write to buffer for TX
 while(!SPI1STATbits.SPIRBF); // wait for TX complete
 return SPI1BUF; // read the received values
}

LISTING 1
Four functions control how the
dsPIC33’s SPI peripheral talks to the
WIZ550io

http://msdn.microsoft.com/en-us/library/5a4x27ek(v=vs.100).aspx
www.visualstudio.com/en-us/downloads/download-visual-studio-vs#DownloadFamilies_2

CIRCUIT CELLAR • FEBRUARY 2015 #29532
FE

AT
U

RE
S

signals (AM, FM, and Square Wave) and to
then generate the signal’s spectrum. This
enables you to interact with the UI and get a
good idea of how it operates before a PCB is
fabricated. Photo 3 is a screenshot of the UI
showing a synthetic FM signal being specified.
The upper plot is the FM time domain signal
and the lower plot is its spectrum.

ETHERNET COMMUNICATION
Let’s briefly review how Ethernet

communication is accomplished. On the
microprocessor end of the communication,
the ioLibrary_BSD drivers are used to handle
the WIZ550io communication. (The drivers
are available at http://wizwiki.net/wiki/doku.
php?id=products:w5500:driver.) In order
to use these drivers, four functions had
to be written to control how the dsPIC33’s
SPI peripheral talks to the WIZ550io.
Listing 1 shows the functions, including the
declaration of these functions to the driver.
Once this is done, communication with the
WIZ550io and the PC is readily accomplished
using the recv(sn,buf,size) and
send(sn,buf,size) functions included in
the ioLibrary_BSD drivers.

A default IP address is assigned to the
WIZ550io. But since I was attaching the
WZ1281 to a classroom LAN, I needed to
change the IP address. The classroom LAN
had a TP-LINK router that has a default IP of
192.168.0.1. In order to connect the system

to the LAN, I needed to have the first three
fields of the WIZ550io IP address match
that of the router. Then the fourth field was
arbitrarily assigned. I consequently assigned
an IP of 192.168.0.123 to the WIZ550io. There
are several alternatives I could’ve used here.
I could’ve directly connected to a PC and
then gone into the Windows Network Sharing
options and assigned an IP. Alternately, I
could’ve modified the firmware and software
to dynamically assign an IP using the DHCP
protocol in the router. I chose the simplest
approach for this application. Incidentally,
I also arbitrarily selected Port 4000 for this
application.

On the PC end of the Ethernet
communication, the C# code required to
establish a connection and pass commands and
data back and forth is very straightforward.
The TcpClient Class available in Windows
handles the communication. Listing 2 is the
code snippet to make the connection.

Once the connection is established,
the TcpClient functions clientStream.
Write(TxBuff, offset, size) and
clientStream.Read(RxBuff, offset,
size) are all that is needed to pass
commands and data between the PC and the
design at very high rates. This turned out to
be much easier than I had expected. Using
the WIZ550io and some fairly simple code, I
got a high-speed, network-connected device.

As I mentioned earlier, the analyzer has

var result = client.BeginConnect(IPAddress.Parse(“192.168.0.123”), 4000, null, null);
result.AsyncWaitHandle.WaitOne(TimeSpan.FromSeconds(1)); //timeout if no PCB
if(client.Connected)
 {
 clientStream = client.GetStream(); //get a client stream
 }

LISTING 2
The TcpClient Class is used to establish
the network link between the PC and
the WIZ550io.

PHOTO 4
An example of the oscilloscope mode
output

http://wizwiki.net/wiki/doku.php?id=products:w5500:driver

OPEN

RUGGED

LONG LIFE

ORIG
IN

AL
Unique embedded
solutions add
value for our
customers

Support every
step of the way
with open
source vision

Embedded
systems that
are built to
endure

We’ve never
discontinued a
product in 30
years

DESIGN YOUR SOLUTION TODAY
CALL 480-837-5200

TS-4900 Computer Module
1 GHz i.MX6 with WiFi & Bluetooth

Available w/ TS-8150
PC/104 Development Kit

TS-7970: SBC Version
of the TS-4900COMING

SOON!

Pricing Starts At

$134
Qty 1

Qty 100

$99

1 GHz Single or Quad Core Cortex A9 ARM CPU

-40 ºC to 85 ºC Industrial Temperature Range

4 KLut FPGA, 1x Gigabit Ethernet, 1x PCI Express Bus

Wireless 802.11 b/g/n and Bluetooth 4.0

1x mSD slot, 1x SATA II, 1x USB Host, 1x USB OTG

Up to 2 GB DDR3 RAM and 4 GB eMMC Flash

70x DIO, 4x I2C, 1x I2S, 2x SPI, 2x CAN

Runs Linux 3.10, Debian, Ubuntu, Yocto, QT, OpenGL

Coming Soon: QNX, Android and Windows Support

TS-7250-V2 Embedded Board
High Performance and Industrial Grade

Pricing Starts At

$199
Qty 1

Qty 100

$165

-40 ºC to 85 ºC industrial temperature range

Easy development w/ Debian and Linux 3.14

High data reliability with 2 GB SLC eMMC �ash

Several control I/O interfaces

Hardware �exibility with on-board FPGA

Bene�ts:

Launches your application in half a second

Up to 1 GHz ARM CPU

512 MB RAM

2x USB Host

1x USB Device

2x SD Card Socket

8 or 17 KLut FPGA

75x DIO, 1x CAN

6x Serial Ports

2x 10/100 Ethernet 1x PC/104 Connector

Features:

Available with TS-ENC720 enclosure
(Shown with optional microSD card)

www.embeddedARM.com
www.embeddedARM.com

CIRCUIT CELLAR • FEBRUARY 2015 #29534
FE

AT
U

RE
S

five basic operating modes. Now let’s cover
each one.

DIGITAL SCOPE
The digital oscilloscope (and sampling

in general) operating mode is essentially a
low-frequency sampling digital oscilloscope.
Although it’s limited to a sampling rate of
1.4 MHz (10 bit), it is very useful in many
applications. Photo 4 shows an example of
the oscilloscope mode output. The upper
plot is the input data plotted versus time.
In this case, the test signal connected to the
system’s input is an AM signal generated by
my HP signal generator.

In the UI, you can select the precise
sampling frequency (Fs, 1-Hz resolution), the
number of samples N (20,000 maximum), and
10- or 12-bit ADC. The plot update rate is
determined by the size of N. For example, if N
is 5,000, the display is updated approximately
eight times per second on my laptop PC. The
UI plot has cursor capability (shown in red)
for selection/display of time, frequency, and
magnitude information. There is also a very
powerful zoom capability available. Visual
Studio 2010 Express makes adding these
features a snap.

The Digital Oscilloscope’s sampling front
end consists of an antialiasing filter and an
amplifier. The operational amplifier and the
ADC are internal to the dsPIC33EP512MC502.
The passive components are external. The
filter architecture is multi-feedback (MFB).
I used Microchip FilterLab 2.0 to calculate
component values. The design is a two-
pole, low-pass filter with a cutoff frequency
of 500,000 Hz. The PCB layout reflects this
design.

Very early on, however, I realized that the
operational amplifier located in the dsPIC33
has a fairly large gain bandwidth product
(GBWP) of 6 MHz. Consequently, signals

above the ADC’s allowable sampling rates
easily pass through the amplifier, although
the amplitudes are attenuated somewhat.
So, if you move the cutoff frequency of the
antialiasing filter far up in frequency, you
can see signals at much higher frequencies
than the frequency of the ADC sampling. This
type of sampling is called sub-sampling and
allows you to use aliasing to your advantage.
Consequently, I am currently using very
soft filtering to allow this wide bandwidth
capability.

R7 is set to 50 Ω to provide a standard
test instrument input impedance. The signal
gain of the amplifier is determined by R9
and R8 (R9/R8 = 4 kΩ/1 kΩ = gain of 4). As I
stated above, to soften the low-pass filter, I
eliminated the second pole. R10 is therefore
0 Ω and C12 is not loaded. C11 is a 10-pF
capacitor providing of single pole near 4 MHz.

Since the ADC input needs to be between
0 and 3.3 V, a 0.3-V reference is supplied to
the plus input to the operational amplifier.
The DC bias voltage that this generates at
the ADC input is: ADCbias = (1 + R9/R8) VREF
= 1.5 V. This is nicely in the middle of the
operating range of the ADC, allowing bipolar
signal input capability.

The range of input signal that can be
applied is determined on the high end by the
saturation point of the operational amplifier
and, on the low end, by the number of bits
in the ADC. Using the 12-bit ADC, there is
a very linear response from 0.225 VRMS to
22.5 µVRMS. For those of you familiar with the
decibel (dB) terminology, this is a dynamic
range of 80 dB, which is very respectable
considering the simplicity of the hardware.

Timer3 in the dsPIC33 is used to trigger
the ADC. The trigger period is determined by
the sampling frequency Fs requested by the
user. The timer period set by PR3 is:

PHOTO 5
Analyzing an AM signal utilizing
windowing to minimize leakage in
the Power Spectrum

circuitcellar.com 35
FEATU

RES

PR3 = 1 = 1

F

F
MHz
F

OSC

S S

2 60

– –

FOSC of 120 MHz is selected to provide
excellent resolution on the sampling period.
Also, an external crystal is included to keep
the ADC sampling jitter to a minimum.
Incidentally, you may have noticed a box on
the UI labeled “Low Spur Fs.” Although you can
select any FS, this box calculates the sampling
rate closest to the desired FS that minimizes
jitter. Jitter results when the sampling period
is not an exact integer multiple of the ADC
conversion cycle time. You can decide to use
the low-spur FS or not.

One final parameter to mention is the
box labeled “ADCS” on the UI. ADCS is a
constant used by the dsPIC33 to generate
the ADC conversion clock period (TAD). TAD
is calculated as follows: TAD = Tcy(ADCS + 1),
where Tcy = 1/60 MHz.

Microchip Technology recommends
minimum TADs of 75 and 117 ns for 10- and
12-bit ADC, respectively. This is an ADCS of
4 and 6, respectively. I found that you can
go down to ADCS of 2 and still get excellent
signal detection capability. This allows much
higher sampling rates. The only thing that
is degraded is that the magnitude accuracy
degrades somewhat. It’s fun to play with
this parameter and observe the impact on
performance.

SPECTRUM ANALYZER
A spectrum analyzer is a powerful tool used

to analyze signals. It provides information
about a signals makeup that cannot be seen by
looking at the amplitude versus time version
of a signal. Because of the inherent gain in the
process of calculating the power spectrum,
signals buried in noise can be detected with

relative ease. The power spectrum produced
by this design shows the breakdown of a
signal into its sinusoidal components. The
plotted spectrum is a power versus frequency
representation that shows what frequency
sinusoids are present and at what relative
power level. There is an enormous amount
of material available on spectrum analysis.
Including a full explanation here would be too
extensive. For the following discussion, I will
assume the reader has a basic knowledge of
what a spectrum and its uses. Let me state a
few things that will help explain the capability
of the system’s spectrum analyzer mode.

The FFT is a very fast and efficient algorithm
widely employed that is used to calculate the
power levels of N/2 frequency bins. The plot of
these N/2 frequency bins versus power levels
is the signal’s power spectrum.

The resolution of the resulting power
spectrum is FS/N. For example, if N is 5,000
and FS is 500,000 Hz, there will be N/2 (2,500)
frequency bins in the output spectrum, spaced
at FS/N (100 Hz).

The larger the N value, the better the
frequency resolution. Also the inherent gain
of the FFT process increases as N increases.
A rule of thumb here is that you improve the
signal to noise ratio (SNR) by about 3 dB if you
double N. The larger N also slows stuff down,
however.

The sampling frequency FS, number of

PHOTO 6
Display of a FSK encoded binary bit
stream and its Spectrum

N
Spectrum Update
Rate (Hz)

5000 8.33
10000 3.96
15000 2.48
20000 1.70

TABLE 1
Speed versus N

CIRCUIT CELLAR • FEBRUARY 2015 #29536
FE

AT
U

RE
S

samples N, number of averages (n), and
window type can all be selected in the UI.
Averaging here refers to straight arithmetic
summing of the power magnitude levels
and dividing by n. This type of averaging is
called incoherent averaging and the resulting
improvement to the SNR is approximately:
10log10(√n).

When a signal has sinusoidal components
that do not fall into the exact center of one of
the calculated frequency bins, a phenomenon
called “leakage” occurs. When this happens,
the frequency bins overlap and power
spectrum distortion occurs. Windowing is a
common technique used to minimize leakage.
Simply stated, windowing is the process of
taking the input signal and multiplying it by
a shaped curve before the FFT is performed.
This multiplication effectively softens the
amplitudes of the time samples at the
beginning and end of the block of samples.
There are 6 different popular window types
available in the UI.

Now let’s look at a few power spectra
resulting from real data input into the system.
The first example shows the spectrum
generated when is the same AM signal shown
in the digital oscilloscope discussion above is
reused. However, in this test, windowing is
applied (see Photo 5). First of all, note that
the top plot now shows the AM signal after
it is multiplied by the window function. Note
how the amplitudes fall off as you approach
the ends of the block of data. The bottom plot
is the power spectrum. I am using the zoom
capability here to show the spectrum detail.
This is a classical sinusoidally modulated AM
signal’s power spectrum. From the spectrum
you can see that the sinusoidal tone (carrier)
being modulated is at about 9 kHz (center
tone). The spacing of the two side signals
from the carrier tells you that the modulating
frequency is 500 Hz. Also the level of the
side signals indicates about a 50% level of
modulation. That kind of information would
be difficult to extract if you just look at the
time based data.

Photo 6 is another example. This is the
spectrum of frequency shift keyed (FSK)
signal used to encode a binary bit stream.
You can see in the top plot the time domain
data where the frequency switching is visible.
Looking at the two spectrum peaks, you can
see that the two FSK frequencies are 6,000
and 9,000 Hz. The number of power spectra
being averaged in this example is chosen to
be 10 in the UI.

The FFT and windowing are all done in the
PC. These could be done in the microprocessor,
but you would not get even close to the rates
that the FFTs are done in the PC. The FFT

// Receive data over the network
int read = 0, offset = 0, toRead = 2 * N;
while (toRead > 0 && (read = clientStream.Read(RxBuff, offset, toRead)) > 0)
 {
 toRead -= read;
 offset += read;
 }

DCterm = myFunctions.DCtermCalc(N, RxBuff, ScaleFactor); //calculates DC term

//subtracts DC, scales for ADC bits, puts data in real part of din[]
myFunctions.Filldin(N, DCterm, RxBuff, ScaleFactor, AmpGain, din);

myFunctions.windowing(N, din, WindowType, 1, din); //window data
plotTime.PerformClick(); //plot input time series
fftwf.execute(fplan); //Do FFT

//convert to dBm and average spectra (code not shown here)

plotFreq.PerformClick(); //plot frequency domain data (spectrum)

LISTING 3
PC code to get samples over the
network and scale, window, FFT,
and plot time domain and frequency
domain data

Update
PWM Duty

cycle

Sine lookup table

PWM LPF Signal gen output

Phase accumulator

Phase phase increment

24 Bits

t

32 Bits

8 Bits

Address

0

255

+

FIGURE 3
The direct digital synthesis signal
(DDS) generator

circuitcellar.com 37
FEATU

RES

library routines I am using were originally
developed in 1999 (www.fftw.org). I was
fortunate to find another source online that
modified the original C-based code into a C#
wrapped implementation (https://github.com/
tszalay/FFTWSharp). I extracted the pieces I
needed into my C# application and interfaced
the code to my UI.

The overall speed of the spectrum
analyzer mode is very good. The speed is of
course dictated by the sample block size N
selected. As I stated earlier, you want large
N for higher spectrum resolution and small N
for speed. The following data in Table 1 will
give you an idea of the speed versus N trade-
off. The update rate includes all steps in the
process: sampling, data transfer, windowing,
and performing the FFT and plotting.

Finally, Listing 3 is a code snippet that
is the heart of the PC based C# application.
This is where all the signal processing takes
place.

DDS SIGNAL GENERATOR
Figure 3 shows the direct digital synthesis

signal (DDS) generator. I decided to add
a simple signal generator to the system so
that the students could exercise the spectrum
analyzer without needing an external
commercial signal generator. The generated
signal can obviously be used to feed some
external circuit if you need it.

The DDS technique for generating
sinusoids has been around for a while, so I
am not claiming to be doing anything new
here. Looking at the block diagram, you see
a PWM attached to a low-pass filter (LPF).
This combination acts essentially like a DAC.
If the duty cycle of the PWM was constant, for
example, the LPF output would be a DC value.
If we vary the duty cycle to match the varying
amplitude of a sine wave we want to generate,
the LPF output will be that sine wave.

The dsPIC33 PWM is running at 468,750
Hz (i.e., FSYS/256 = 120 MHz/256). This is

PHOTO 7
Time and frequency output when the
DDS Signal Generator is producing a
10-kHz sine wave and is connected to
the analyzers input.

// generation of signal generator lookup table; one cycle
for(i = 0; i<256; i++)
 SIN8[i] = (uint8_t) (128 + 127 * sin((PI * i)/128) + .5); //.5
is for rounding

//calculate the phase increment
DDSd = ((FrequencyDesired * pow(2,32))/468750.0) + .5;

//Timer1 interrupt service routine
void __attribute__((__interrupt__, no_auto_psv)) _T1Interrupt(void)
{
PDC1 = SIN8[(DDSp>>24)]; //do table lookup using upper 8 bits of DDSp
DDSp += DDSd; //increment phase accumulator
IFS0bits.T1IF = 0; //Clear Timer1 interrupt flag
}

LISTING 4
DDS Signal Generator code to create
a look-up table, calculate the phase
increment and update the PWM duty
cycle

http://www.fftw.org
https://github.com/tszalay/FFTWSharp

CIRCUIT CELLAR • FEBRUARY 2015 #29538
FE

AT
U

RE
S

also the DDS update rate. Once per PWM
cycle, I calculate the amplitude of the desired
sine wave and then set the PWM duty cycle
to generate that amplitude. To select the
desired amplitude/PWM duty cycle, I used a
one cycle sine wave table. I simply select the
amplitude from the table that corresponds
to where the desired sine wave would be in
a sine cycle at the DDS update point in time
and update the duty cycle accordingly. A 32-
bit phase accumulator (called DDSp in the
code) is used to keep track of the phase of
the desired sine wave. Once per DDS update
cycle, the phase accumulator is incremented
by what the phase increase (called DDSd in
the code) is for the desired sine wave. The
phase increment is calculated as follows:
Phase increment = (232) FrequencyDesired/
DDS update rate. For example, if you want
a 10,000-Hz sine wave, the phase increment
would be 91,625,968. This value is added to
the contents of the phase accumulator at the
DDS update rate. Therefore the 32-bit phase
accumulator accurately tracks the phase of
the desired sine wave at any point in time.
Since having a look-up table with 232 entries
in RAM is prohibitive, we take the upper 8
MSB and use them as the address into the
single cycle lookup table.

Incidentally, one needs to be careful
when selecting the cutoff frequency of the
LPF located at the PWM output. You want the
cutoff to be low enough to adequately smooth
the PWM pulses (ripple), but high enough to
pass the signal you are trying to generate.
Fortunately, there is an online resource
(http://sim.okawa-denshi.jp/en/PWMtool.php)
available that makes the design process easy.

Photo 7 shows a UI output that results
when a signal generator frequency of
10,000 Hz is selected. In this test, the signal
generator’s output is connected to the input
of the WZ1281. The upper plot shows the
signal generator’s output sine wave. It looks
pretty good there. The spectrum shows
the signal quality in more detail. You can
see the 10,000-Hz signal, but you also see
that there are other spurious components
present. These distortions are down about
40 dB from the desired signal, however,
which is pretty good for a simple generator.
I did this fairly quickly and intend to revisit
the design and make some improvements
to reduce the distortion components even
more. A few improvements I intend to try
are a larger look-up table located in ROM and
faster DDS update rates. The pseudocode in
Listing 4 shows the essential pieces of the
DDS generator.

FILTER RESPONSE VIEWER
To understand what this operating mode is

all about, take a look at the transfer function
of a typical first order low pass filter in Max
Kamenetsky’s demonstration, “Filtered Audio
Demo” (http://web.stanford.edu/~boyd/
ee102/conv_demo.pdf). This particular filter
has a cutoff frequency of 1,000 Hz. It shows
what frequencies the filter passes and how
frequencies are attenuated. As it turns out,
this plot is actually the FFT of the filter’s
impulse response. The beauty of this is that
if you know an arbitrary filter’s impulse
response, you can find its transfer function
by taking the FFT of the impulse response.
The next obvious question is: How do you get
a filter’s impulse response?

An impulse is simply a high amplitude
pulse that exists over a very short period
of time. In my project, I approximate an
impulse by outputting a single 3.3-V pulse
for one sample period of N samples and then
output 0 V for the other (N–1) samples. If you
feed such a pulse into and unknown filter, the
resulting filter output is an approximation of
the filter’s impulse response. If you FFT this
response, you get an approximation to the
filter’s transfer function!

Now let’s look at a real example. I used
a simple band-pass filter in this example.
Figure 4 shows how things were connected.
The component values are nominally L = 18
µH and C = 1 µF. This band-pass filter has a
resonant frequency equal to 37,513 Hz (i.e.,
1/(2∏√(LC)). Photo 8 depicts the UI that
results when the filter analysis mode is on.
The upper plot is the impulse response and
the lower plot is the filter’s transfer function.
Observe the band-pass filter’s peak in the FFT
output. Very cool!

FIGURE 4
Test setup to demonstrate the Filter
Response Viewer. With L = 18 µH
and C = 1 µF, the band-pass filter’s
resonant frequency is 37,523 Hz.

circuitcellar.com/ccmaterials

SOURCES

ADP151 Low-dropout low noise voltage
regulator

Analog Devices | www.analog.com

dsPIC33EP512MC502 Digital signal controller

Microchip Technology | www.microchip.com

WIZ550io Ethernet module

WIZnet | www.wiznet.co.kr

http://sim.okawa-denshi.jp/en/PWMtool.php
http://www.analog.com
http://www.microchip.com
http://www.wiznet.co.kr
http://web.stanford.edu/~boyd/ee102/conv_demo.pdf

circuitcellar.com 39
FEATU

RES

PHOTO 8
Test band-pass filter impulse response
and filter transfer function

Besides determining the transfer
function of an arbitrary filter, you can use
Filter Response Viewer to analyze unknown
components. For example, if in the above test
you used a known capacitor and an unknown
inductor, you could read the resonant peak off
the power spectrum and then use a resonance
equation in reverse to estimate the L value.
I intend to add this feature to the UI in the
future.

NOISE GENERATOR
The noise generator uses the same PWM

and LPF combination that is used for the
signal generator. The difference, however,
is that once per PWM cycle the duty cycle
is changed to a random 8-bit number. The
LPF output is consequently a random level.
Photo 9 shows the system in the noise
generation mode. Observe the random
nature of the time domain data in the upper
plot. The lower plot shows the FFT of this
random signal. The noise is not “white”

(flat across frequency), but it is still useful
in many applications. Before I got the Filter
Analysis mode working so successfully, I
was using this noise signal to drive filters I
wanted to analyze. To do this, you first get
the spectrum of the noise signal generator
connected to the system’s input, without the
filter present. Then you save that spectrum
by pressing the button in the lower right of
the UI. Next, you insert the filter and press
the Saved-Current button in the lower right
of the UI. The spectrum is then the transfer
function of the filter being analyzed.

I guess this write-up got a little long.
There is a lot here to talk about. There are
also many improvements that I am
contemplating. The next big feature I am
going to attack is to add radio signal
demodulation to the system’s feature set.
Since I can already “see” signals up to several
megahertz. By using simple demodulation
techniques, I will be able to “listen” to all kind
of radio signals.

PHOTO 9
The Noise Generator connected to the
analyzer produces random amplitude
levels in the time domain data

CIRCUIT CELLAR • FEBRUARY 2015 #29540
FE

AT
U

RE
S

Reverse engineering is the process of starting
with a finished product and finding out

exactly how it works. Normally, an electronic
project starts with a requirement from the
customer. The engineer then prototypes
and tests any new circuit designs, draws the
schematic, lays out the board, writes the
firmware, tests everything, and then repeats
the design-fix-test process continually raising
the quality, performance, and reliability of
the system. When the product passes the test
criteria and is ready, it is shipped to the end
user. Reverse engineering is the opposite. The
engineer starts out as the end user, discovers
what the product does, studies how it works,
and derives out the schematic from the board
layouts and sometimes even works out the
firmware. Reverse engineering is an extreme
form of engineering. It’s like comparing a
leisurely Sunday run to finishing a marathon
or a hill climb to climbing Everest. (Note how
sneaking in references to extreme sports
makes this sound much cooler.) This article
describes four separate reverse engineering
projects and how the initial challenge was

overcome. One of the projects involves
reading the code from a locked Microchip
Technology microcontroller.

PROJECT 1
One of my colleagues, who is the

biomedical manager at a large hospital, was
having issues with hospital gas panels failing
and wanted a cheaper repair option. The
gas panels were designed and manufactured
by a local company that had gone bankrupt
several years earlier. After taking a unit away
to look it over, I found that the gas panel had
a bright green vacuum fluorescent display
with connectors for up to 24 inputs. Each
input would show whether the gas supply was
normal or in alarm, and thanks to some clever
design would also show on the display an
open or short circuit on the cable to the gas
cylinder. There were 0 to 5-V analog inputs.
There was a rechargeable 3.6-V battery
on each gas panel to save RAM memory
on power off (now this is usually done with
EEPROM memory). The problem was that the
gas panel would lose its memory when the

Reverse Engineering Review

Reverse engineering an electronic system can be
a rewarding yet challenging endeavor. This article
details four reverse engineering projects and how
the initial challenges were overcome.

By Fergus Dixon (Australia)

Insights from Four Projects

circuitcellar.com 41
FEATU

RES

battery failed or dropped below 2 V. Random
characters would then appear on the screen,
and the system error light would illuminate
(see Photo 1).

The suggestion was to look at the
microcontroller since this is usually where the
memory was stored. The microcontroller was
the popular but now obsolete Motorola 6805.
A quick glance at the datasheet showed that
it had no EEPROM or nonvolatile memory (i.e.,
memory that is not affected by a power-off
cycle). Looking at the chips, one of the eight-
pin chips was a Philips PCF8570 I2C memory
chip with 256 bytes of memory and there
were five of these making up to 1,280 bytes
of memory. Since the display had one line of
40 characters and there were 24 alarm inputs
each with an alarm message, a start-up
message, and a normal operation message,
there needed to be at least 26 messages × 40
characters or 1,040 characters, so this had
to be where the message data was stored.
The battery was the backup for this RAM, so
it appeared the memory was battery-backed
RAM (BBRAM). The memory voltage supply
was held up by the battery, but when the
battery failed, it dragged down the voltage
supply rail. A quick inspection of the battery
terminals showed some fuzziness and fine
crystals indicating that it was leaking and was
probably not operational any more.

To read the memory required an I2C
reader. The easiest way to do this at the time
was to make a prototype board using a Atmel
ATmega32 and use two pins to drive the SDA
and SCL lines. The output data was ported
through a RS-232 converter to a computer.
I wish I had more research here since I2C
reader/writers are very cheap and I did not
realize that the Atmel TWI port was actually
an I2C port but with a different name due to
the Philips trademark. Anyway, I read the
datasheets for the I2C interface and made a
small circuit which could read and write to
one of the I2C memory chips. The I2C interface
consists of Start bits, Write bits, Read bits,
and Stop bits with the SCL clock line always
being driven from the microcontroller but the
SDA line being bidirectional (i.e., an input or
an output).

After building the prototype and reading
and writing to memory, the circuit managed
to read and write the whole 1,280 bytes of
memory in the gas panel, which was quite
easy since the memory chips addresses lines
were sequential (i.e., 000 001 010 011 100).
The microcontroller was removed from the
PLCC socket during this process to prevent
any spurious I2C communications. The next
part was to read the memory from a working
machine since the gas panel I had was now
full of corrupted data. After a few trips to

the hospital later, I had the memory in a
file, and straight away, the alarm messages
could be seen as ASCII data. Each message
was preceded by one byte which determined
whether the gas alarm input was a warning,
an alarm or turned off (see Photo 2).

The last challenge was the system error
light. Even though the gas panel could now
be programmed with the correct messages,
the system error light remained on. A quick
solution was to remove the driving resistor to
this light, but then that meant any real system
error would be missed. Looking through
the gas alarm panel memory again showed
that each alarm message had a trailing byte
which looked like a checksum. The simplest
checksum can be found by adding up all the
bytes and this almost worked. Then I realized
that the trailing spaces in the alarm messages
were also used in the checksum and the game
was over. Since then, a lot of gas panels have
been able to repaired using the prototype
circuit.

PHOTO 1
Medical services alarm panel

PHOTO 2
Gas panel programmer

CIRCUIT CELLAR • FEBRUARY 2015 #29542
FE

AT
U

RE
S

PROJECT 2
The next project involved a beauty therapy

device. This device involved a pump which
supplies cyclic vacuum pressure to ladies’
bottoms (seriously) to turn golf ball skin
textures into a ping pong texture (according
to the advert). This is also called “body
contouring.” The machine had a graphic
monochrome display and had a countdown
counter which recorded how many treatments
were left. When the counter was at zero, a card
could be swiped across the machine resetting
the treatment counter to 25 or 50 more
treatments. The problem was the customer
could not source supply of these cards and
asked if the cards could be replicated.

When the machine was disassembled,
there were two boards, a power supply board
and a control/display board. To remove the
control board, I had to remove four PCB
clips, and over one clip was a captive magnet
which acted as a security device. On the other
side, the RFID reader/write board could be
inspected which showed a model number.
A Google search revealed the manufacturer
of the RFID cards was also in France (same
as the manufacture of the machine). After
several emails, I had all the datasheets and
we purchased a few sets of the readers and
cards to play with.

The simple RFID reader/write used a basic
TTL-based (0 to 5 V) serial port. Understanding
how the interface worked was not trivial, but
after a few, days the RFID interface started to
work. Worryingly, the RFID card had a 64-bit
encryption key. If each combination of the key
was checked running at one test a second, it
would take 58 billion years and I didn’t really
have that sort of spare time, not to mention
what the bill would be to the customer!

Then the project took a wrong turn. A cable
between the power board and the control
board had French-style blade connectors that
were impossible to insert without shorting
out two pins—nowhere near as good as the
standard IDC ribbon cable box connectors.
During one test, I noticed I had left this
cable off the control board, which explained
why there was no display, so I powered off
the unit. Unknown to me at the time, the
power board retained charge and the voltage
levels were still active for a few hours when
turned off especially with no load connected
(i.e., the control board). Plugging the control
board with the blade connector with power off
created a small spark which was a bad sign.
On the next power on, the display was blank
and so the unit was now faulty. After a bit
of cursing and venting over the next day, the
best course of action was decided to let the
customer know straight away and get another
machine, and get this project finished before
any more problems could happen.

The problem of breaking the 64-bit
security code was proving to be a bigger hill
to climb than at first thought especially since
the hill was in the order of 58 billion meters
times higher than expected (maybe higher
than Everest). Sometimes the best way to deal
with problems is to go around and not keep
banging into them in order to get over them—
the so-called workaround or lateral thinking.

So rather than breaking the code, what
about programming a card and reader with a
new code and then swapping the RFID reader
out with the new reader? Since the data was
sent through a serial port and serial ports
cannot be encrypted, the best way would be

FIGURE 1
The RS-232 to 5-V converter

PHOTO 3
RFID card programmer

circuitcellar.com 43
FEATU

RES

to swipe a card and eavesdrop on the RS-232
lines at the same time. Since I had used the
two cards I had, it was back to the customer
to take one of the last cards he had and
there were signs of the customer‘s patience
wearing a bit thin now. Anyway, back at the
ranch, I wired in a serial port on the laptop to
eavesdrop and then took a break to prepare
mentally (see Figure 1). When the card was
swiped, it all worked perfectly, and I could
see that 16 bytes were being read out of the
RFID card (see Photo 3). One of the numbers
was a 50 indicating 50 treatments, while
another number was 90 for the number of
days the card would be valid. And that was
pretty much it. The process would now be to
reprogram some RFID readers, which took
around 10 s each, and then swap the RFID
reader in each unit. The first beauty salon
took around an hour and went well. The same
day, three more machines were upgraded in
various parts of the city and then I handed
over the upgrade work to a service company
who could travel into country areas. In the
instructions there was a large message to not
disconnect the interconnecting cable.

So overall, the project was mostly a
success except for the one damaged machine.
Later on, there was some more work done
by reprogramming a lot of cards. Since each
card took around 20 s to program, this was
easy work compare to the original project.

PROJECT 3
The next project involved a business

relationship between two companies that
had soured. The contract assembly company
had been making a PCB assembly for several
years for a local company and doing an
excellent job, so good that they decided it
would be in everyone’s best interests if they
not only manufactured the boards but also
sold them direct to the public. The customer
had paid for and owned the IP and was right
to be outraged.

While this project was simple, there was
still 10 years of design behind it. The aim
was to bring the design back in house. The
schematic and layout could be worked out
but writing the firmware from scratch was
a formidable task. Using the board, the
track connections were used to work out
a schematic and this schematic was then
used to re-layout the board. This layout was
then checked against the original board and
was a double check that the schematic was
accurate.

With the firmware, a Microchip Technology
PICkit2 was plugged into the board to read
the firmware. After the program was read,
it showed all zeros. It was unlikely that the
real firmware would be all zeros and the

PICkit showed in the configuration byte that
the ROM lock bit was turned on. Well that
was disappointing but to be expected. The
next step was to call for reinforcements.
The Arduino is an excellent kit that allows
for fast prototyping with a free C compiler
and IDE. Since Microchip makes available
the programming interface in a datasheet,
an Arduino Uno with a breadboard was used
to build a custom Microchip programmer
with the hope of finding a side door into the
firmware. After all, apart from the three power
pins (VCC/5V, GND, and VPP/12V), there was
only the data and clock pins. How hard could
it be? Well it took a full day of programming to
write an Arduino sketch which could read and
program the data to a new chip. One difficulty
was to apply 12 V to the VPP pin before turning
on the 5 V to the VCC pin. The most obvious
way to read the firmware was to turn off the
lock bit in the configuration byte and then
read the firmware. After several attempts,
the lock bit was turned off and then the code

PHOTO 4
Arduino screenshot

ABOUT THE AUTHOR
Fergus Dixon holds a BE from Sydney University. After working for 12 years
in various fields such as packaging, mining, and medical and control systems,
he started Stirling Rock International (SRI), which provides custom electron-
ic designs. After 14 years (and two Australian design awards), Fergus now
runs several businesses, including Electronic System Design and Virtronics.
He spends most of his spare time maintaining and improving the popular
program “Simulator for Arduino.”

CIRCUIT CELLAR • FEBRUARY 2015 #29544
FE

AT
U

RE
S

was read. When the bytes starting appearing
in the Arduino Serial Monitor in a non-random
manner, there was a great feeling that the door
had been opened (see Photo 4). Doing a quick
upgrade to the Arduino sketch, the bytes were
then also shown as ASCII characters in the
serial monitor. When readable messages such
as “Version 1.03” appear, it is looking good.
Since the customer had paid for the firmware
design, there were no ethical dilemmas here.

Microchip quotes the Digital Millennium
Act for all the security protection devices
on its parts, and it is worth reading up on
this. After this project, I added a page to
my website offering a service of unlocking
Microchip firmware for a small $60 deposit.
Well, there were many responses, but not
one offered any money with even this amount
being too much. In the end, emails were
ignored (there were too many, maybe 50 a
month), the webpage was taken down, and
the whole idea was dropped, which sorted out
any ethical dilemma problem.

PROJECT 4
I’m currently working on an energy meter,

but the reverse engineering part is finished.
With rising energy prices, climate change a
hot topic and a drive to become more green,
energy usage is very important and this is a
growing industry for engineers. The aim of the
energy meter is to monitor the power from a
mains power outlet in the home and send it
wirelessly to an iDevice or smart phone. Since
energy meters are very common and also
very cheap, we bought a few to find out how
they worked and what their weaknesses were.
The answer was very interesting.

With the energy meters, there were three
main circuit modules: a power supply to
create a 5-V supply from 230 or 110 VIN; an
energy-measuring circuit including current
and voltage sensors; and a microcontroller
and display. With the power supply, most of
the circuits used an X2 capacitor and low
value resistor (i.e., 100 Ω) and a 12-V Zener
diode that would generate a 12-V supply
that could only supply 30 mA at most. This
is called a capacitive dropper power supply.
The drawback with these circuits is the X2
capacitor can degrade over a few years and
then the supply will stop working. Metalized
polyester film capacitors are better with the
best option being an XY capacitor which has
self-healing properties.

With the energy measuring circuit,
the current sensor was either a current
transformer or a low value shunt such as 0.01
Ω. The current transformer needs some extra
wiring to wrap the wire through the center
of the current transformer and the cost is a
lot higher than a simple low value resistor or

circuitcellar.com/ccmaterials

RESOURCE

Digital Millennium Act, http://
en.wikipedia.org/wiki/Digital_
Millennium_Copyright_Act.

SOURCES

PIC12F675 Microcontroller and PICkit2

Microchip Technology | www.microchip.com

RFID cards and card readers

STid | www.stid.com

X2 Self-healing capacitors

Vishay Intertechnology | www.vishay.com

PHOTO 5
The new energy meter

http://www.microchip.com
http://www.stid.com
http://www.vishay.com
http://en.wikipedia.org/wiki/Digital_Millennium_Copyright_Act

circuitcellar.com 45
FEATU

RES

shunt. On all the off the shelf energy meters,
the energy measuring chip usually had the
markings rubbed off but they were all the same
24-pin-wide SOIC package. On one board, the
chip markings were still there, which showed
the chip to be a Cirrus Logic CS5460 chip.

The microcontroller was usually a black
blob called a chip-on-board. Black blobs
are used in mass production to keep the
cost down. At around $12 for the cheapest
energy meter, this method was definitely
working. The displays were usually LCD and
this was the biggest problem. LCDs are great
for outdoor use and the main benefit is high
visibility in daylight, low cost, and low current
drain. The downside was that the LCDs just
were not visible inside especially at night, and
if the power outlet was at ground level they
were impossible to view at any time. Another
strange point was that every board had a
24C02 eight-pin memory chip. The 24C02 is
a 2K EEPROM chip and was a strange choice
considering much larger memory chips are
now commonly available. The reason for this
could be this chip was from old surplus stock,
which meant all the meters were designed
and made at the same factory (in China, of
course), which also would explain why the
meters all used similar LCDs.

The main problem with these energy
meters was that they were almost unusable.
After being set up, they would be forgotten
about in a short period. Basically, they were
complicated, boring, barely visible and mostly
unusable. So the plan for the new energy meter
was to design one which was exciting to use,
easy to use, had a bright display, and could be
connected remotely. Photo 5 is current circuit
of the new energy meter design which uses a
high contrast OLED display.

RE-ENGINEER CAREFULLY
So overall, reverse engineering can be

rewarding once the initial learning curve is
climbed. Reviewing someone else’s circuits
is a great way to pick up new tips and tricks
on design methods. The downsides are the
legal issues since no company wants their
designs copied. Of the four projects above,
two of them resulted in legal issues and one
more resulted in a nasty email from a
competitor. And whatever you do, think
twice about reverse engineering any military
hardware unless you are a thrill seeker.
Before tackling any reverse engineering
project, ask yourself if it is really worthwhile
and always make sure the customer takes
legal responsibility.

$45.00 board only Enclosur es, Cables,
Power Supplies and Other

Accessories

IBS485HV
5 Port Isolated

RS485 Repeater

$349.00

ASC24T
RS232<=>RS485 ATE Converter

RS485/422/232/TTL

• Converters
• Repeaters
• Multi-Repeaters
• Hubs
• Fiber Optics
• Isolators

• Extended Distance Units

• Serial to Digital I/O

• Large Multi-Drop Networks

• Custom Units &
Smart Units

• Industrial, 3.0 KV Isolation

Call the RS485 Wizards
513-874-4796

www.rs485.com

INTRODUCING THE SMFCOMX!

When it comes to robotics,
the future is now! the future is now!

Get it today at
ccwebshop.com

Advanced Control
Robotics
simplifies the
theory and best
practices of
advanced robot
technologies,
making it ideal
reading for
beginners and
experts alike.

With this book,
you’ll learn about:

• Communication
• Technologies
• Control Robotics
• Embedded Technology
• Programming Language
• Visual Debugging...
 and more

http://www.rs485.com
www.cc-webshop.com

CIRCUIT CELLAR • FEBRUARY 2015 #29546
FE

AT
U

RE
S

In recent years, open-source Arduino
prototyping boards have become an

attractive option for hobbyists. You can start
tinkering with an Arduino for less than $10
and a programmer tool is not needed. All
you really need is a PC with a USB cable. The
intuitive Arduino software enables you to
compile and load programs called “sketches”
onto the Arduino board. It consists of an
integrated development environment (IDE)
and C-like programming language and is
compatible with Windows, Mac OS, and
Linux. Arduino “shields,” which are add-on
modules, permit fast prototyping with many
I/O capabilities. During a single afternoon, a
useful gadget—possibly a garage door monitor
or wireless attic temperature sensor—can be
assembled with minimal effort. Browsing the
Internet, you can find applications that range
from ingenious to ridiculous. The Arduino
prototyping system is incredibly versatile.

In the 1980s, commercial stereo
preamplifiers started using IC
microcontrollers that permitted
cleaner designs with push-button
control, relays for signal switching,
and a wireless remote. While reading
an article about the Arduino, Shannon
realized these modern features could
easily be incorporated into a DIY
preamplifier design.

By Shannon Parks (US)

Budgie
An Arduino-Based Tube Stereo
Preamplifier

PHOTO 1
The Budgie preamplifier contains a single-ended, Class-A, all vacuum tube audio path.

Several of the Arduino’s most often used
capabilities became the genesis of my Budgie
preamplifier (see Photo 1). I found these
features were incredibly useful:

• A bank of relays could switch between the
four stereo inputs as well as control mute,
standby, gain, and bass boost settings.

• A red power LED could use PWM to indicate if
the preamplifier is muted or in standby.

• An IR receiver with a remote could control a
motor-driven volume potentiometer, change
the source input selection, and turn the unit
on/off. Any IR remote could be used with a
code learning mode.

• A backlit display could easily show all the
settings at a glance.

• Momentary push buttons could select the
input device, bass boost, gain, and mute
settings.

• Instead of using several Arduino shields
wired to an Arduino board, all the circuits
could fit on one custom PCB along with the
power supply and the microcontroller (see
Photo 2).

While there are many versions of Arduino
boards, I chose the Arduino Nano. At only
0.73” × 1.70”, the tiny Nano can be embedded
using a 32-pin dual in-line package (DIP)
socket, which cleans up the design. It can be
programmed in-circuit and be removed and
easily replaced (see Photo 3).

The audio circuit remains the heart of
any preamplifier. With a little creativity, the
well-regarded 12B4 triode can be used. Its
high perveance means that current will flow
with a much smaller cathode-plate voltage
differential than is typical with vacuum tubes.
An external 24-V desktop supply can provide
all the voltages the tube requires without
need for further regulation, which simplifies
the design.

The Arduino boards, as with all
microcontrollers, are limited by their number
of I/O pins, which are simply referred to as
“pins.” The Nano has 14 digital pins (D0 to
D13) and eight analog pins (A0 to A7). Digital
pins are either low (0 V) or high (5 V). As
an output, a digital pin can source up to 40
mA and do tasks (e.g., turning on an LED or
forward biasing a transistor switch). A digital
pin can be set up as an input to process the
remote control code stream of digital 1s and
0s received from the IR sensor.

The analog pins have an internal ADC,
which enables 1,024 values (10-bit resolution)
between 0 and 5 V. This is useful for reading
voltages in approximately 5-mV increments.
The Budgie preamplifier uses one such
input to monitor a voltage divider circuit
implemented with five 1-kΩ resistors in

series. This pin receives four unique voltage
levels from the push buttons to determine
which was pressed. A special feature of the
analog pins is that they can also be configured
as digital pins. The Budgie does this for the
display. For this application, A0 is renamed
D14, A1 is renamed D15, and so on.

SHIFT REGISTER CIRCUIT
The Budgie preamplifier uses a serial-

in, parallel-out (SIPO) shift register to drive
a bank of relays (see Figure 1). Only four
Arduino digital outputs—enable, clock, latch,
and data—are needed to control eight DPDT
relays. These correspond to the four outputs
labeled D3, D4, D5, and D7 shown in Figure
2. The Texas Instruments TPIC6C595 shift
register used in this project has heavy-duty
field-effect transistor (FET) outputs that can
handle voltages higher than logic levels. This
is necessary for operating the 24-V relays. It
also acts as a protective buffer between the
Arduino and the relays.

POWER LED
The red power LED is directly driven by the

Arduino (see Figure 2). Normally the output
(D6) is high with the maximum LED brightness
limited by a 200-Ω resistor that biases the LED
at about 16 mA. When the preamplifier output is
active, the PWM control is not used as it can add
400-Hz noise (the PWM switching frequency) to
the audio circuit. However, it can be used when
the output is muted or in standby.

IR REMOTE CIRCUIT
The D8 input is the only digital pin

configured as an input (see Figure 2). An IR
sensor with a built-in preamplifier sends all
sensed IR commands from a remote control
to the microcontroller.

circuitcellar.com 47
FEATU

RES

PHOTO 2
All the circuits have been placed
on one custom PCB along with
the power supply and the
microcontroller.

CIRCUIT CELLAR • FEBRUARY 2015 #29548
FE

AT
U

RE
S

A special software library called “IRremote”
simplifies the handling of the raw datastream
into 4-byte codes. This data can be processed
in real-time or stored in the EEPROM during
learning mode.

MOTOR DRIVER FOR THE VOLUME
POTENTIOMETER

A Texas Instruments SN754410NE
specialized integrated circuit (IC) controls the
motor of the Alps volume potentiometer and
acts as a buffer between the microcontroller
and a motor. The D10, D11, and D12 outputs
are used. The IC simplifies a process that
would otherwise need careful design. Two
digital pins control the direction of the motor
on the volume potentiometer while a third
digital pin enables the motor driver.

1602 LCD
The 1602 LCD—16 characters per line by

two lines—is probably the most used display
in the Arduino realm. It is controlled using the
standard software library “LiquidCrystal” in
4-bit mode, so a total of seven digital pins
are needed: register select (RS), enable
(EN), backlight, and four data lines. These

FIGURE 1
A serial-in, parallel-out (SIPO) shift
register is used to drive a bank of
relays.

PHOTO 3
The Arduino Nano is a small, complete, and breadboard-friendly board based on Atmel’s ATmega328
microcontroller.

circuitcellar.com 49
FEATU

RES

are assigned to Nano outputs D9, and D13
through D18 (see Figure 2).

PUSH BUTTONS
A voltage divider string of resistors is

connected to four push buttons: input, bass
boost, gain, and mute (see the A5 input in
Figure 2). Each button has a different voltage
level that the analog input reads to determine

which button was pressed. Multiple keys
pressed at the same time will generate unique
voltages and be processed as special functions.

POWER SUPPLY
The external 24-V desktop supply must be

a Class-I grounded type and should be rated
above 1 A. Some supplies may have a tendency
to trip their current limit at initial power-up due

ABOUT THE AUTHOR
Shannon Parks built his
first tube amplifier—
a clone of the Dynaco
ST35—in 2001 and was
immediately hooked.
He manages the DIY-
tube forums and is the
owner of Parks Audio,
LLC (www.parksaudio
llc.com). He lives with
his wife and daughter
in Mahomet, IL.

FIGURE 2
These Budgie diagrams show how to
set up the Arduino Nano, LCD, power
supply, push button, IR, and motor
control circuits.

FIGURE 3
The 12B4 audio circuit has about 23-
dB gain, which is more than is needed.

www.parksaudiollc.com

CIRCUIT CELLAR • FEBRUARY 2015 #29550
FE

AT
U

RE
S

to the heavy inrush from the cold tube filaments.
The relays and tubes operate at 24 V without
needing further regulation to eliminate wasted
power and heatsinks on the Budgie PCB. The
24-V supply also powers two lower current 5-V
supplies. A polarity diode and then a 12-V power
Zener diode drop the incoming 24 V to around
11 V so the linear regulators don’t dissipate
too much heat from the voltage differential
(see Figure 2). The 7805 regulator on the PCB
(U2) is solely for the motorized Alps volume
potentiometer. Meanwhile, the 5-V regulator
on-board the Nano powers all other 5-V
circuits including the display backlight.

AUDIO CIRCUIT DESCRIPTION
The 12B4 triode was originally designed to

be used in televisions as a vertical deflection
amplifier. New-old-stock (NOS) 12B4s still

exist. They can be purchased from most
US tube resellers. However, a European
equivalent doesn’t exist. The 12B4 works
well in preamplifiers as a one-tube solution,
having both high input impedance and low
output impedance, without need for an
output transformer. An audio circuit can then
be distilled down to a simple circuit with few
parts consisting of a volume potentiometer
and a grounded cathode gain stage.

The 12B4 has about 23-dB gain, which is
more than is needed. This extra gain is used as
feedback to the grid, in what is often referred
to as an anode follower circuit. The noise,
distortion, and output impedance are reduced
(see Figure 3). Using relays controlled by
the Arduino enables switching between two
feedback amounts for adjustable gain. For
this preamplifier, I chose 0- and 6-dB overall
gain. A second relay enables a bass boost with
a series capacitor.

You only need a lightweight 15-to-20-V
plate voltage to operate the 12B4s at 5
mA. Linearity is very good due to the small
signal levels involved, as rarely will the
output be greater than 2 VPP. A constant
current source (CCS) active load is used
with the 12B4s instead of a traditional
plate resistor. This maximizes the possible
output voltage swing before clipping. For
example, a 12B4 biased at 5-mA plate
current with a 20-kΩ plate resistor would
drop 100 V and would then require a 120-V
supply voltage or higher. Conversely, the
CCS will only drop about 2 V. Its naturally
high impedance also improves the tube’s
gain and linearity while providing high
levels of power supply noise rejection.
A single resistor from the supply to the
emitter sets the current, which can be

RESOURCES
Future Technology Devices International (FTDI), Ltd., www.ftdichip.com.

Parks Audio, LLC, www.parksaudiollc.com/arduino.

SOURCES
RK168 Series volume potentiometers
Alps Electric Co., Ltd. | www.alps.com

Arduino Nano
Arduino | http://arduino.cc/en/main/software

ATmega328 Microcontroller
Atmel, Corp. | www.atmel.com

TPIC6C595 Shift register and SN754410NE IC
Texas Instruments, Inc. | www.ti.com

5⁄8"

11⁄64" 3 ⁄8"

21⁄32"

10"

15⁄16"

11⁄16"

21⁄32"

11⁄64"

3"

19⁄16"

FIGURE 4
The template shows where to drill the
holes when assembling the Budgie’s
chassis.

http://www.ftdichip.com
http://www.parksaudiollc.com/arduino
http://www.alps.com
http://arduino.cc/en/main/software
http://www.atmel.com
http://www.ti.com

circuitcellar.com 51
FEATU

RES

calculated with the following formula:

voltage drop of red LED V

 =

1.7 V 0.65 V

BE−()

−()
RSET

210
 = 5 mA

Ω

The adjustable cathode resistor is initially set
to 300 Ω for good performance, but the lowest
distortion can accomplished by adjusting the trim
potentiometer to achieve maximum output signal.
This tweak can be done with a free smartphone
app such as Signal Generator outputting a 500-mV
1-kHz sine wave. Use any digital multimeter (DMM)
set to AC to measure the output level and adjust the
cathode potentiometer for maximum output. Note
that the DMM doesn’t need to be TrueRMS as the
measurement is relative, not absolute. Also, don’t
forget to adjust the volume potentiometer all the way
clockwise.

CHASSIS ASSEMBLY
The Budgie chassis uses an inverted Hammond

powder-coated 6” × 10” × 2” box. I can provide a
front panel express file for a ready-made top plate
via my website (see Resources). Most of the chassis
holes are on this one panel, but three holes must be
drilled into the front of the chassis for the power LED,
the IR sensor, and the volume control. A template
with detailed dimensions facilitates drilling these
holes (see Figure 4).

COMPILING & LOADING ARDUINO CODE
The first time you connect the Arduino Nano to

your computer with a USB cable, the device drivers
for the Future Technology Devices International
(FTDI) virtual com port will be prompted to load. Once
you successfully install the drivers, start the Arduino
software. First make sure you have your COM port
set correctly in the Arduino software (Tools> Serial
Port…). Then configure the software for the Nano:
“Tools>Board> Arduino Nano w/ ATmega328.” Then
go to “Sketch>Import Library…>Add Library…” and
select the IR remote library from the Budgie files
folder, which decodes all the raw IR data. Clicking
the “Upload” icon will first compile and then upload
the sketch to your Nano’s flash memory. After you’ve
uploaded your sketch, disconnect the USB connection
before you power the Budgie with 24 V to prevent
reverse current into your computer’s USB port and
possible damage.

COMPLETED BUDGIE
The entire project can be assembled for

approximately $250 (see Parts List). As an introduction
to the world of Arduino microcontrollers, it’s a
comprehensive starter kit. Elements of the design
(e.g., the IR-controlled volume potentiometer) could
be used as a stand-alone project. Once you experience
the relative ease of microcontroller programming
with the Arduino, you’ll find no shortage of creative
applications.

BUDGIE PREAMPLIFIER PARTS LIST
Capacitors
C1, C2 2.2 µF, 250 V, 18.8 × 12.6-15LS 667-ECW-F2225JA
C3, C4 470 µF, 10 V, 6.3D 2.5LS 647-UVZ1A471MED
C5, C6, C8 47 µF, 35 V, 5D 2LS 647-UVZ1V470MDD
C7 100 µF, 35 V, 6.3D 2.5LS 647-UVZ1V101MED
C9 47 µF, 50 V, 5D 2LS 647-UVZ1H4R7MDD
C10, C11 6,800 pF, 63 V, 7.2 × 4.5-5LS 505-FKP26800/63/2.5
C12 0.1 µF, 63 V, 7.2 × 2.5-5LS 80-R82DC3100AA50K
C13, C14 0.1 µF, 100 V, 7.2 × 2.5-5LS 505-MKP20.1/100/5

Chassis
Hammond 6 x 10 x 2 Black Chassis 546-1441-16BK3
Quantity 2 Clear window plug 593-LPC020
Quantity 2 Clear window plug retainer 593-RTN150

Circuits
U1 Half-H motor driver 595-SN754410NE
U2 5-V regulator 7805 595-UA7805CKCT
U3 IR detector, 38 kHz 782-TSOP34838
U4 Power shift register 595-TPIC6C595N
Quantity 2 16-pin DIP socket 571-1-390261-4

Diodes
D1,D2 T-1 0.75 5-mm red LED 859-LTL-4223
D3,D5-D12 1N4001 50-V 1-A diode 512-1N4001
D4 12-V, 5-W Zener diode 863-1N5349BRLG
D13 Red power LED 645-551-0407F

Miscellaneous
J1, J5–J8 Terminal blocks 3P 571-2828363
J2 32-pin DIP socket 517-4832-6000-CP
J3 16-pin SIP header 649-68001-416HLF
J4 Terminal blocks 2P 571-2828372
SW1–SW4 Round push-button switch 10KB012
SW5 SPST on/off rocker 540-SRB22A2FBBNN
Quantity 1 Arduino Nano V. 3.0 992-ARD-NANO30
Quantity 5 RCA panel jacks—white 568-NYS367-9
Quantity 5 RCA panel jacks—red 568-NYS367-2
Quantity 1 2.1-mm DC connector 163-4021
Quantity 4 Rubber feet 517-SJ-5023BK
Quantity 6 Hex standoff 0.187 × 0.375 534-1892
Quantity 4 #6-32 × 0.5” sheet metal screw, Phillips pan head
Quantity 12 #4-40 × 0.25” machine screw, Phillips pan head
Quantity 1 Red LCD 1602 display module (HD44780 or compatible)
Quantity 1 30 × 22 Aluminum volume knob
Quantity 2 12B4/12B4A triode
Quantity 2 9-pin Ceramic tube socket PCB (0.75” top diameter)
Quantity 1 24-V/1-A DC supply (three prong)

Resistors
R1, R2 210 Ω, 0.25 W 271-210-RC
R3, R4 47.5 kΩ, 0.25 W 271-47.5K-RC
R5, R6 1 MΩ, 0.25 W 271-1.0M-RC
R7, R8 100 kΩ, 0.25 W 271-100K-RC
R9 1 kΩ, 0.25 W 271-1K-RC
R10, R12 110 kΩ, 0.25 W 271-110K-RC
R11, R13, R16, R17 332 kΩ, 0.25 W 660-MF1/4DC3323F
R14 200 Ω, 0.25 W 271-200-RC
R15, R18, R19 100 Ω, 0.25 W 271-100-RC
R20 10 kΩ, 0.25 W 271-10K-RC
R21 4.7 kΩ, 0.25 W 271-4.7K-RC
RN1 1 kΩ, 10-pin array, isolated 269-1.0K-RC
VR1 100 kΩ, dual log ALPS RK168 688-RK16812MG099
VR2, VR3 500-Ω potentiometer 72-T93YB-500
VR4 10-kΩ potentiometer 72-T93YB-10K
F1 1.5-A fuse, Slo-Blo 576-047301.5MRT1L
RL1-RL7 Omron G5V 24-V DPDT 653-G5V-2-H1-DC24
RL8 Omron G5NB 24-V SPST-NO 653-G5NB-1A-DC24

Transistors
Q1,Q2 2N3906 PNP 512-2N3906BU
Q3 2N3904 NPN 512-2N3904BU

Budgie PCBs are available from Shannon Parks (www.parksaudiollc.com/arduino).
Part numbers in the third column indicate the items are available from Mouser
Electronics (www.mouser.com).

http://www.parksaudiollc.com/arduino
http://www.mouser.com

CIRCUIT CELLAR • FEBRUARY 2015 #29552
CO

LU
M

NS

THE CONSUMMATE ENGINEER

This month I’d like to consider electromagnetic
compliance (EMC) requirements for

airborne equipment. As you’ll see, the
requirements are not too different from
other industries, such as nuclear, medical,
and automotive, where the sustained, safe
operation of electronic devices is paramount.
EMC standards address more than just
the effects of the EMI fields on the internal
circuitry of a product. They’re also concerned
with the effects of the EMI generated inside
the product on the outside world, as well as
its effects on internal circuits. Power supply
fluctuations, effects of lightning strikes, and
other electrical issues are also considerations.
EMC requirements for different products may
vary greatly. It is up to the project engineers
to establish the mandatory prerequisites. It is
a good engineering practice to always provide
for a healthy safety margin.

DO-160 STANDARD
EMC requirements for airborne equipment

are published in DO-160 standard. Similarly,
there are specific standards for military,
industrial, and consumer products. It is not
uncommon to see customers increasing the
mandatory requirements to ensure sufficient
safety margins. EMC design engineers need to
know if and why a customer increased those

test levels to avoid unnecessary and expensive
inclusion of their own safety margins.

The first EMC constraint listed in DO-
160 is the magnetic effect. This is to make
sure that the equipment does not produce
magnetic flux affecting compasses or flux
gates within a certain distance. It is specified
in five categories, with the most stringent
one providing for a compass immediately
adjacent to the equipment not to be
affected. The least stringent one is for the
tested equipment to be 3 m (approximately
10′) away from a compass. Most electronic
controllers enclosed in a metal cabinet with
no strong magnetic field generated inside
pass the test easily.

The power input specification is divided
into several categories, for AC and DC
supplies. Typical examples are 14-VDC and 28-
VDC systems powered from a generator with
a rectifier and a large storage battery. The
type of power determines many attributes,
such as voltage range, AC distortion, power
factor, phase displacement, phase unbalance,
ripple, inrush current, reset, momentary
power interruption, transients, emergency
operation, and more.

For DC operating conditions—for example,
for a 14-VDC system (i.e., a 12-VNOM, six-cell,
lead-acid battery)—the normal operating

Essential Electromagnetic
Compliance (Part 3)

Practical EMC Requirements
Last month, George detailed the causes of electromagnetic interference
(EMI) and explained the difference between DM and CM signals. This month,
he covers the practical EMC requirements for electronic instruments and
systems.

By George Novacek (Canada)

ABOUT THE AUTHOR
George Novacek is a
professional engineer
with a degree in Cyber-
netics and Closed-Loop
Control. Now retired,
he was most recently
president of a multina-
tional manufacturer for
embedded control sys-
tems for aerospace ap-
plications. George wrote
26 feature articles for
Circuit Cellar between
1999 and 2004. Con-
tact him at gnovacek@
nexicom.net with “Cir-
cuit Cellar”in the sub-
ject line.

circuitcellar.com 53
CO

LU
M

NS

voltage is 11.0 to 15.15 V. The equipment
must also operate during short abnormal
conditions, when the input voltage may vary
between 10.25 and 16.1 V, as well as 9.0 V
for emergency operation. When operating at
the minimum voltage, the equipment must,
in Category A, survive a 200-ms power
interruption without a hiccup. In Category B,
it is 50 ms. In Categories D and Z, it’s a full 1
s. When the size and weight of the equipment
are limited, a 200-ms interrupt is a tall order,
to say nothing about the reduced reliability
electrolytic capacitors present. The common
solution to this dilemma in systems with two
independent power buses is to OR the supplies
and provide just 50-ms power interruption
storage capacity. (Refer to my 2012 article,
“Diode ORing,” Circuit Cellar 263.)

Surviving a power supply surge voltage is
another tough requirement. Category Z calls
for 80 VDC to be applied to the power input for
100 ms, followed by 48 VDC for 1 s. Category
D calls for 425 and 345 VDC, respectively!
Considering the power the clamps (e.g.,
transzorbs) must dissipate, a preregulator is
usually needed for the equipment to survive
this condition.

Another issue is the survival of a voltage
spike without failure or degradation of
performance. Category A must survive a
600-V, 2-µs spike. In addition, the equipment
must not be susceptible to an audio frequency
appearing on the power lines. This is a
conducted interference, which can be caused,
for instance, by common connections with a
load. It is a ripple of varying frequency and
magnitude to which a system must be immune.
A 14-VDC system must not be affected by 2
VRMS 1 to 15 kHz ripple superimposed on its
power lines.

Induced signal susceptibility defines the
levels of interference induced in interconnect
circuits. This applies to interference caused
by AC power—which is 50 or 60 Hz in most
applications—but can range between 350 to
650 Hz on aircraft with 400-HzNOM power. It
also applies to transients caused by switching
inductive loads.

SUSCEPTIBILITY OR IMMUNITY
The effects of the external interference

on the equipment are called either
susceptibility or immunity. The two terms
are reciprocal; both are used. We strive for
the lowest susceptibility, which means the
highest immunity. Susceptibility/immunity
can be either radiated (i.e., in response to
electromagnetic (EM) fields) or conducted,
meaning there is a conductive path through
which the interference can get inside the
equipment. There are numerous categories
for various types of environment and use,

including high-intensity radiated fields
(HIRF) immunity. Table 1 shows conducted
susceptibility for seven categories. The
immunity is measured from 10 kHz to 400 MHz
by maximum current in milliamperes induced
into the conductors through a transformer,
as the magnetic field is predominant at these
frequencies.

Radiated susceptibility is determined
by the maximum field strength in volts per
meter (V/m) to which the device is immune.
The e-field can be steady, modulated and/or
pulsed. The immunity is typically measured
from 100 MHz to 18 GHz. I’ve had specifications
going up to 40 GHz. There are 10 categories,
with the field strength ranging from as little
as 1 to 7,200 V/m between 4 and 6 GHz.

Emission of RF energy is just as important
as susceptibility. It can also be conducted

FIGURE 1
Conducted emissions levels versus frequency per DO-160 on power lines

Frequency

[MHz]

Category Levels [mA]
M O R S T W Y

0.01 0.6 3 0.6 0.03 0.15 3 6

0.5 30 150 30 1.5 7.5 150 300

1 70 250 30 1.5 7.5 150 300

30 70 250 30 1.5 7.5 150 300

40 * * 30 1.5 7.5 150 300

100 * * * * * * 300

400 32 50 3 0.15 0.75 32 100

TABLE 1
Conducted susceptibility test levels. (*Values are interpolated.)

CIRCUIT CELLAR • FEBRUARY 2015 #29554
CO

LU
M

NS

and/or radiated. System designers, when
specifying immunity and emissions for
individual instruments in a system, make
emission levels significantly lower than
immunity to achieve safe margin within the
system.

Figure 1 shows conducted emissions levels
for power lines per DO-160. The emissions
are measured in decibels referenced to

microamperes (dBµA) of interference current
on the external lines.

The levels are +20 dBµA higher for
interconnecting lines (to sensors, loads, etc.)
as they are not shared with other equipment.
These categories are typical. For others, refer
to the document, “DO-160G Environmental
Conditions and Test Procedures for Airborne
Equipment,” RTCA, 2010.

Radiated interference is defined by the
maximum field strength the equipment is
allowed to radiate. It is expressed as dBµV/m,
which is the decibel level referenced to 1-µV per
meter e-field strength. Figure 2 shows Category
P and Q.[1] Notice the notches of reduced
field strength. Their purpose is to prevent
interference with aircraft communications
equipment, satellite links, and other official
equipment operating at those frequencies.

The next issue an EMC engineer must
address is the susceptibility to lightning-
induced transients, which are called indirect
lightning effects. Direct effects apply to
externally placed equipment, such as power
and telephone lines or antennas. Indirect
lightning immunity is verified by two types
of tests: pin injection and bulk injection. Pin
injection tests the circuits’ damage tolerance.
The device is not operational, while each and
every pin of its connectors is zapped by pulses
of different characteristics and strength. The
device must survive all these tests.

Table 2 shows pin injection tests
performed with three different waveforms
in five different susceptibility levels, level 5
being the strongest. VOC stands for the pulse
generator’s open circuit voltage. ISC stands
for short circuit current. Notice that a Level 5
circuit must be able to survive 3,200 V and up
to 1,600 A without damage.

Bulk injection tests levels ensure there is
no functional upset when the test currents
are injected through transformers. These
are induction coils with device’s harnesses
threaded through them. Single and multiple
strokes, and bursts are applied while the
device must continue to work.

Finally, the device must survive electrostatic
discharge (ESD) without damage or functional
upset. Many microelectronic components
today contain a rudimentary ESD protection
that might be sufficient for consumer use.
Equipment with extensive EMI, HIRF and
lightning protection (such as discussed here)
is inherently protected against ESD, although
this needs to be verified by test.

EMC IMPLEMENTATION
I trust you now have a good understanding

of EMC requirements. In the last installment
of this article series, I’ll cover the practical
implementation of EMC.

circuitcellar.com/ccmaterials

REFERENCE
[1] RTCA, “DO-160G Environmental Conditions and
Test Procedures for Airborne Equipment,” 2010.

RESOURCE
K. Armstrong, Interference Technology Webi-
nar, www.interferencetechnology.com.

O. Hartal, Electromagnetic Compatibility by De-
sign, R&BV Enterprises, 1993.

FIGURE 2
Radiated emissions levels for categories P and Q

TABLE 2
Lightning pulse generator settings for damage tolerance test

Level
Waveform

3/3 4/1 5A/5A
VOC/ISC VOC/ISC VOC/ISC

1 100/4 50/10 50/50
2 250/10 125/25 125/125
3 600/24 300/60 300/300
4 1,500/60 750/150 750/750
5 3,200/128 1,600/320 1,600/1,600

http://www.interferencetechnology.com

circuitcellar.com 55
CO

LU
M

NS

Like most pieces of software, you probably
use Xilinx ISE without giving too much

thought to its internal project file format. But
if you’ve tried keeping a Xilinx ISE Project File
in a revision-control system (such as GIT),
you were probably quickly forced to learn
details of the file format. This is because if
multiple people open and save the project,
they might each cause small conflicting

changes in the project file. This is made even
more difficult if you need to support CORE
Generator (COREGen) modules, which have
been generated through a graphical wizard
(see Figure 1), and files may change with
different versions of the tools.

This month I’m going to describe how I
solved this problem for my own projects,
and ended up with something I called

The DIY Approach to
ISE Project Management

FIGURE 1
Xilinx provides the CORE Generator
(COREGen) utility, which graphically
configures a wide variety of blocks for
your FPGA design. These blocks have
been tested by Xilinx and are a great
resource for the FPGA designer. But
because they are generated through
a GUI, they can be difficult to reliably
port to different projects.

Managing an FPGA project that involves several
automatically generated (COREGen) modules can be
a difficult task. This article shows how to use a simple
Python script to allow you to easily target different
hardware versions with the same source files, without
needing to manually recreate or update the COREGen
modules or other files.

By Colin O’Flynn (Canada)

PROGRAMMABLE LOGIC IN PRACTICE

CIRCUIT CELLAR • FEBRUARY 2015 #29556
CO

LU
M

NS

MakeISE. Rather than attempting to keep the
auto generated files in the GIT repository,
I instead keep a simple file that is able to
generate all the required project files for the
Xilinx ISE tools. Once you have the project
files locally, ISE can make all the changes
it requires without having to worry about
these changes conflicting with other users.

In addition, this scripting method makes
supporting the CORE Generator modules
more reliable. If you want to port a design
to a new device (e.g., moving from Spartan
6 LX9 to LX16), you need to recreate the
COREGen modules using the graphical
wizard. This requires all sorts of manual
adjustment to settings (What type of FIFO?
What flags to enable?), and it’s easy to forget
one of the flags when regenerating the
project. Instead, the system I’ll demonstrate
here stores all those settings, for all the
COREGen modules, in a single file. When it’s
time to port to a different device, you can
be confident your new modules have all the
proper settings.

It’s worth noting that this isn’t the first
attempt to solve such a problem. There is a
larger project called HDLMake which is part
of the Open Hardware Repository, which
can also do things like run the synthesis or
simulation commands without requiring the
GUI. For my projects I wanted something
simpler—something I could easily include as
part of my project, using only a single Python
file. With that goal in mind, let’s begin to
look at the file formats in use.

ISE FILE FORMATS
There are effectively two separate file

types of interest to us, and I’ll briefly outline
what those files contain. The first is the
Xilinx ISE project file, which has the .xise
extension. Note there is also a file with the
.gise extension, but that will be automatically
generated by ISE. We can completely define
the project with just a XISE file, so the tool
only needs to generate that file.

The XISE file is XML-based, making
modification fairly easy. Opening an example
file shows up that there are three main
sections. Examples are shown in Listing 1.
First, we have the version number of the ISE
tool. We can generally set this to something
“older” if required (i.e., set to version 14.2),
and later versions of the tools will open the
file no problem. Next, we will have a listing
of all the project files. This can include our
constraint file (UCF), source files (Verilog/
VHDL), and COREGen files (XCO). Finally, we
have a list of all the properties. This can
include device and package, options about
synthesis or implementation, command-line
options for the place and route tools, and

LISTING 1
This shows a snippet of some areas of the Xilinx ISE Project File, which has the .xise extension. The file is
XML-based, and this simple example has a single source code file.

...
 <version xil_pn:ise_version=”14.6”
xil_pn:schema_version=”2”/>

 <files>
 <file xil_pn:name=”interface.v” xil_pn:type=”FILE_VERILOG”>
 <association xil_pn:name=”BehavioralSimulation”
xil_pn:seqID=”1”/>
 <association xil_pn:name=”Implementation”
xil_pn:seqID=”3”/>
 </file>
 </files>

 <properties>
 <property xil_pn:name=”AES Initial Vector spartan6” xil_
pn:value=”” xil_pn:valueState=”default”/>
 <property xil_pn:name=”AES Key (Hex String) spartan6” xil_
pn:value=”” xil_pn:valueState=”default”/>
 ...
 <property xil_pn:name=”Device” xil_pn:value=”xc6slx25”
xil_pn:valueState=”non-default”/>
 <property xil_pn:name=”Device Family” xil_
pn:value=”Spartan6” xil_pn:valueState=”non-default”/>
 <property xil_pn:name=”Device Speed Grade/Select ABS
Minimum” xil_pn:value=”-3” xil_pn:valueState=”default”/>
 ...
 <property xil_pn:name=”Package” xil_pn:value=”ftg256”
xil_pn:valueState=”non-default”/>
 ...
 <property xil_pn:name=”Watchdog Timer Value spartan6” xil_
pn:value=”0xFFFF” xil_pn:valueState=”default”/>
 <property xil_pn:name=”Working Directory” xil_pn:value=”.”
xil_pn:valueState=”non-default”/>
 <property xil_pn:name=”Write Timing Constraints” xil_
pn:value=”false” xil_pn:valueState=”default”/>
 </properties>

...

FIGURE 2
If the project using a COREGen file only contains an XCO file, the system will offer to automatically generate
the other required files. But it’s sufficient to completely define the module using just the XCO file.

circuitcellar.com 57
CO

LU
M

NS

everything else you can configure through
the GUI.

The next file of interest is the COREGen
module, which is defined by a file with the
.xco extension. Based on this file the tools
will auto-generate a number of other files,
but we can completely define our core using
a single XCO file. The first time it is opened
ISE will offer to automatically generate the
missing files, which we happily accept (see
Figure 2). The format of the XCO file is shown
in Listing 2, where we can see a simple file
format to set various parameters.

INTRODUCING MakeISE
MakeISE uses a template file as a

reference, which is then modified with
specifics to your project. This template is
simply an empty project generated by ISE.
We modify this file to adjust properties (such
as the FPGA device), along with adding our
source files. Similarly to generate COREGen
files, we will first generate an example XCO
file by configuring the core through the GUI.
This configuration will be used as the base,
and modifications (such as changes in the
part number) will be made to this file. The
MakeISE flow is shown in Figure 3, where
you can see the template files are part of the
input to MakeISE.

The MakeISE program is a single Python
file. It does not depend on anything besides
the default modules present in Python 2.x,
making it easy to deploy to end users, as
almost any Python install will allow them to
run the file.

MakeISE is called with one or two
arguments: at minimum it requires the name
of the MakeISE Project file (normally using
the extension .in although you can use any
extension), and optionally the name of a XISE
file to write, although by default uses the same
root filename as the input file. An example
input file is shown in Listing 3, and I’ll discuss
in more detail each of the sections next.

SECTION OVERVIEWS
The first section, titled [ISE

Configuration], is directly used to modify
properties in the XISE file. The template file
is given by the InputFile line, and the
remaining lines are used to change properties
from the template. This section contains
information about the target device (family,
part number, package, and speed grade)
that will be automatically be remembered
and used in writing the COREGen XCO files in
addition to the XISE file. If you need to change
any project options from their default, you
can do this here: the example shows changing
the include directory along with adding a
command-line option to the map process.

LISTING 2
This shows a snippet of the .xco file, which defines a COREGen module.

...
SET createndf = false
SET designentry = Verilog
SET device = xc6slx25
SET devicefamily = spartan6
SET flowvendor = Other
SET formalverification = false
SET foundationsym = false
SET implementationfiletype = Ngc
SET package = ftg256
...
CSET clock_enable_type=Slave_Interface_Clock_Enable
CSET clock_type_axi=Common_Clock
CSET component_name=fifoonly_adcfifo
CSET data_count=false
CSET data_count_width=13
CSET disable_timing_violations=false
CSET disable_timing_violations_axi=false
CSET dout_reset_value=0
CSET empty_threshold_assert_value=4
CSET empty_threshold_assert_value_axis=1022
...

FIGURE 3
The MakeISE project uses a number of templates as a reference, which avoids it needing to understand the
exact file format. It also allows you to use existing working files as templates, and it simply modifies the
target device or other parameters. The resulting project file references your existing source code (Verilog/
VHDL), and the automatically generated include file makes supporting multiple hardware targets easier.

CIRCUIT CELLAR • FEBRUARY 2015 #29558
CO

LU
M

NS

The next two sections are source files which
are added to the project. The section titled
[UCF Files] adds the UCF constraint file
to the project. Note the script doesn’t verify
the location of files or copy them. It simply
generates a project file with the given filename
included as a source. You are responsible for
ensuring the UCF file is located in the correct
location, which could be the same location as
the .in file, or some subdirectory.

The next section titled [Verilog
Files] can be a simple list of Verilog
source code files, but it can also include
auto-generated files. In the example in
Listing 3, the file setup.v actually doesn’t
exist, but is automatically generated by the
MakeISE script. The generation of this file
will be described in a later section.

Finally we get to the [CoreGen Files]
section, which is one of the more powerful
aspects of this script. If you have existing
COREGen files, you can add them to the
project, just like the Verilog files. But the
more interesting aspect is the ability to
automatically generate COREGen files based
on a template, which is used in the example
from Listing 3. Here we have a new section
named [ADC FIFO CoreGen Setup]
which will be used for generation of the
COREGen file fifoonly_adcfifo.xco.

The section [ADC FIFO CoreGen
Setup] again uses an input template file,
which was a dual-clock FIFO core with
different input and output widths, generated
using the CORE Generator wizard. This
allows me to take advantage of the COREGen
wizard in ensuring the appropriate options
were correctly configured, and I only need
to specify any deviations from the original
file. The device part number is automatically
changed based on settings in the [ISE
Configuration] section—meaning, I
don’t need to worry about if I change from
a Spartan 6 LX9 to a LX16. The COREGen file
will automatically be updated to reflect the
correct device and package.

Various options can also be configured.
In this case the depth of the FIFO is
configurable from the project file. When
changing from a larger (LX25) to a smaller
(LX9) device, I might need to adjust
the size of the FIFO. Note that you can
use a $CALCULATE$ directive to make
the parameter settings automatically
dependent on each other. In this example,
because my FIFO input width is 8 bytes,
and my output FIFO width is 32 bytes,
the output depth is four times less than
the input depth. You must verify that any
properties which should be linked have
been. It’s wise to try changing a property
you’ll be overwriting using the wizard, and

LISTING 4
This shows the contents of the setup.v file that was automatically generated, and allows you to easily use
the same source code for multiple hardware versions. The only file that needs to change between hardware
versions is the MakeISE project file.

//AUTOMATICALLY GENERATED - MAY BE OVERWRITTEN
`define BOARD_REV2
`define UART_CLK 40000000
`define UART_BAUD 512000

LISTING 2
This shows a snippet of the .xco file, which defines a COREGen module.

[ISE Configuration]
InputFile = ise_verilog_template.xise.in
Version = 14.4
Device Family = Spartan6
Package = ftg256
Device = xc6slx25
Speed Grade = -3
Verilog Include Directories = ../../../hdl|../../
refproject
Other Map Command Line Options = -convert_bram8

[UCF Files]
system.ucf

[Verilog Files]
#Can have comments too anywhere
simpletop.v
simplemodule.v
setup.v = Setup File

[CoreGen Files]
fifoonly_adcfifo.xco = ADC FIFO CoreGen Setup

[ADC FIFO CoreGen Setup]
InputFile = fifoonly_adcfifo.xco.in
input_depth = 8192
output_depth = CALCULATE $input_depth$ / 4
full_threshold_assert_value = CALCULATE $input_depth$
- 2
full_threshold_negate_value = CALCULATE $input_depth$
- 1
write_data_count_width = 16
read_data_count_width = 16
data_count_width = 16

[Setup File]
BOARD_REV2
UART_CLK = 40000000
UART_BAUD = 512000

circuitcellar.com 59
CO

LU
M

NS

seeing which properties in the resulting
XCO file change. In this example, beyond
just the output depth being linked, the
thresholds for the full flags also change.

Finally, we come back to the automatically
generated Verilog file. In this case the section
called [Setup File] will be used for
automatically generating a file called setup.v.
This file simply has a number of defines, the
resulting file is shown in Listing 4. The idea
of this file is it can be used to set parameters
that might change between various hardware
versions of your design, so you can simply
use setup.v as an include in your source
files. Using standard ifdef…endif sections
allows you to enable or disable certain
modules based on the defines.

AUTOMATIC JOY
Supporting multiple hardware targets

shouldn’t be a major hassle, as one of the
nice aspects of programmable logic is the
ability to fine-tune the design for larger or
smaller implementation sizes. Your high-
end product version might contain a larger
(and thus more expensive) FPGA compared
to another configuration. But you shouldn’t
have to manually maintain all the project

files and COREGen modules between the
two versions. That’s just asking for trouble!

Hopefully, this article gave you enough
of a teaser that it encouraged you to try out
MakeISE yourself, and save yourself some
headaches of manually recreating your ISE
project files. As usual, I linked some
addition video examples on
ProgrammableLogicInPractice.com. For full
details, you can check out the MakeISE
project at https://github.com/colinoflynn/
makeise.

ABOUT THE AUTHOR
Colin O’Flynn (coflynn@newae.com) has
been bui lding and breaking electronic
dev i ces fo r many years . He i s cur-
rent ly completing a PhD at Dalhousie
University in Halifax, NS, Canada. His
most recent work focuses on embed-
ded security, but he stil l enjoys every-
thing from FPGA development to hand-
s o l d e r i n g p r o t o t y p e c i r c u i t s .
Some o f h i s work i s pos ted on h i s
website at www.colinoflynn.com.

You’ll receive electrical engineering tips,
interesting electronics projects, embedded
systems industry news, and exclusive product
deals via e-mail to your inbox on a regular
basis. If you’re looking for essential electrical
engineering-related information, we’ve got
you covered: micrcontroller-based projects,
embedded development, programmable
logic, wireless communications,
robotics, analog techniques, embedded
programming, and more!

Subscribe now to stay up-to-date with
our latest content, news, and offers!

Sign up for the

 FREE Circuit Cellar Newsletter!

circuitcellar.com

mailto:coflynn@newae.com
http://www.colinoflynn.com
https://github.com/colinoflynn/makeise
www.circuitcellar.com

CIRCUIT CELLAR • FEBRUARY 2015 #29560
CO

LU
M

NS

Recently, we were asked to estimate the
cost to develop a system that would

interface with every device of a particular type
manufactured in a particular country. Our job
was to design a system to extract data from
these devices. There are 10 international
standards applicable to these devices in
this country. These standards define the
protocol for accessing this data. The data is
available on one of three possible hardware
data busses. Some of the data available on
these busses is in the public domain and
some is only available from the manufacturer.
There are over 150 different types of these
devices sold each year in this country. Each
year, another 150 new or similar types are
sold. The specification is perfectly clear. By
the way, can you have the estimate to me
by Monday? Hmmm! I saw an advertisement
the other day that said a company’s one-
day seminar would teach me to accurately
estimate firmware schedules. Maybe if I took
that class on Friday, I could get the accurate
schedule by the end of business on Monday.

How can one estimate something like this?
Here is axiom number one: Don’t believe
anyone who tells you he can teach you to
accurately estimate your firmware schedule in
a one-day seminar. Or in a one week seminar.
Or even after 10 years of doing it every day.
Accurate? No! But we can get better. And
the best way I know how is by first defining
the problems. That was the focus of the first
article in our series.

Last time, we looked at the general problem
of estimating software development costs.
This month we will look at the challenges
that are unique to embedded software
development. Certainly there are things that
make embedded software more challenging
to develop than other types of software. But
what makes embedded software that much
harder to estimate?

BIGGER SURFACE AREA
Recently, I reviewed last month’s article

with our team and asked the question: Why is
estimating embedded systems more difficult

EMBEDDED IN THIN SLICES

This month Bob continues his series on estimating the costs for designing and
developing your embedded systems project. He covers the issues unique to
estimating an embedded systems project.

By Bob Japenga (US)

Estimating Your Embedded
Systems Project (Part 2)
Challenges Unique to Embedded Software
Development

circuitcellar.com 61
CO

LU
M

NS

than estimating other kinds of software? One
engineer said, “The surface area is much
bigger.” What he was saying is that all of the
standard problems with estimating just got
multiplied. Let’s just review what we said last
time and see how some of these issues are
more complicated for embedded systems.

UNCLEAR REQUIREMENTS
The accuracy of our software estimates

can only be as good as our understanding of
the requirements. This difficulty is multiplied
with embedded systems because of the
complexity of the interfaces. In addition,
there are a lot of requirements that only
become clear after you implement. The
datasheet of a small microprocessor we use
on one project is 1,400 pages long. There
are just a lot more requirements that can
be unclear or misunderstood. We approved
a rework once to one of our designs that
required the manufacturer to add a wire to
one end of a capacitor. After about a hundred
were shipped, the capacitors started shorting
(especially problematic for bypass capacitors).
Buried in the capacitor’s datasheet was the
requirement to not
touch the capacitor with
a soldiering iron. The
rework needed to be
performed with a hot
air process. It was very
clear on page 78 of the
capacitor’s datasheet!

The specifications
can also be wrong.
Many times errata come
out after you have
started your design.
We once missed an
errata in an 800-page
microprocessor datasheet that said, “Oh, by
the way, this device has a 256-MB address
range but can only address 16 MB of NOR
flash!”

THAT ELUSIVE BUG
Embedded real-time systems and systems

with concurrency make debugging much
more difficult. That we can plan for. But those
elusive bugs that take two weeks in non-
embedded systems can take two months on
embedded systems because your tools are
not as powerful and the complexity of the
design is that much greater.

HIDDEN COMPLEXITY
The scale of complexity is greatly

multiplied in embedded systems. We are
supposed to write software that interfaces
with other very complex devices. Take this
simple requirement from a datasheet of

chip we interface with: “To reset the chip,
hold RESET_N low for 300–500 ms.” On the
surface that seems straightforward. But what
is hidden and not written in the manual is
that if the RESET_N is held low for more than
1,000 ms, the chip powers down and will not
start when the RESET_N line is brought high.
If for some reason your function that releases
RESET_N gets delayed, the chip would not
become operational as you expected. This
requirement of raising RESET_N becomes a
hard deadline that you might not expect to be
as such. These kinds of hidden complexities
are legion in embedded systems.

PROGRAMMER EFFICIENCY
Two years ago, I sat with one of the best

embedded designers I know. He was running
out of real time on a project. The problems
were so complex that it took two of us
with a combined experience of 60 years of
designing embedded systems to figure out
what was going on and how to fix it. Where
a less-efficient programmer might be four
times less efficient than your best designer,
in an embedded environment that same

programmer might be
10 times less efficient.

OPTIMISM &
HUBRIS

A couple months
ago, one of our
customers asked
us to add a splash
screen and a progress
bar to the start of a
device. One of our best
designers saw that
u-boot had hooks for
sending an image to

our display. Linux had a progress bar app
(psplash) that worked with our display. (If you
want to have an open-source progress bar for
Linux (psplash), check out the Yocto project’s
distribution http://git.yoctoproject.org/cgit/
cgit.cgi/psplash/tree/.) The system was built
on a BeagleBone architecture so others must
have done this before. The on-line community
support for this architecture is huge. We
knew we could get lots of help. In addition,
we have done similar projects in about four
days without this kind of support. We know
how to do this. We can deliver this fully tested
in four days. (The BeagleBone open source
reference design is showing up in the designs
of a number of companies. You can find more
about it at http://beagleboard.org/.)

At the end of four days, we found that the
hooks in u-boot didn’t work. No one in the
online community knew how to make them
work. At the end of two weeks, we discovered

Embedded real-time systems
and systems with concur-
rency make debugging much
more difficult. That we can
plan for.

http://beagleboard.org/
http://git.yoctoproject.org/cgit/cgit.cgi/psplash/tree

CIRCUIT CELLAR • FEBRUARY 2015 #29562
CO

LU
M

NS

that the u-boot image was inverted from
what the Linux driver was expecting. At
the end of four weeks, we discovered that
the progress bar did not play well with this
particular display. At the end of six weeks, we
discovered that the customer did not provide
us with the right code base to start with.
We were optimistic. Embedded systems will
amplify the negative effects of your optimism
and hubris enough to put you out of business.
(The u-boot open-source universal bootloader
software has been at the start of every
Linux project we have designed. You can find
more about it at www.denx.de/wiki/U-Boot/
WebHome.)

CUSTOMER SCHEDULE CREEP
Customer schedule creep is a specific

instance of “The Other Guy” problem we
talked about last time. But it has a unique
feature to it. We are now six months behind
schedule releasing a new version of embedded
software for a product we designed for a
customer. One of the driving factors in the
delay is that the customer still doesn’t have
their portion of their web server operational.
Every day it slips, our team has to work
on other things instead of completing the
testing. Each day the team might spend a half
hour coordinating with the customer. None of
this 60 hours was estimated. The inefficiency
of this schedule creep is even more costly.
Fred Brooks in The Mythical Man-Month puts
it this way: “Disaster is due to termites, not
tornadoes.”

Some of this is common to non-embedded
software. But embedded software by its
very nature is embedded in stuff. And often,
stuff that is being designed in parallel. As a
minimum, it must talk with hardware that
is often not completely designed. It may
also talk with other machines that are being
developed in parallel. How well those are
designed and when they are delivered can
be a multiplier in the schedule and cost of an
embedded system.

PARTNER QUALITY
Another instance of “The Other Guy”

problem is with your partners. Some of the
partners we interface with are the hardware
we run on, the busses we communicate
on, the networks we connect to, the other
devices we talk to, the hardware designer
who designed our board, the hardware layout
team that laid out the PCB, and the hardware
build team that actually built the board. How
well they do their job has a direct bearing
on how much it will cost you to develop your
embedded system.

Let me share two examples. We have a
supplier who builds our printed circuit boards
and assembles them during our development
stage. We love this supplier because their
work is impeccable. Sometimes our customers
require us to get the boards built someplace
else or by them. Invariably, parts are put in
backwards. Ball Grid Arrays (BGA) parts are
not X-rayed to verify their connections. Flow
soldering techniques cause modules to reflow
and not re-center on their footprint. When we
get the boards, it might take us two to three
days more to debug and troubleshoot these
problems because of the supplier. Remember
that we are checking out a new design which
can have flaws in it as well. How does one
estimate for that extra two to three days? You
don’t know the quality of that supplier until
you have used them.

Another problem we have is with other
hardware designers. When we design the
boards, we know the quality factor of our
designers. They may not be perfect, but they
are a known quantity. We know by experience
how long it will take to integrate the boards
designed by our own people because we have
metrics and experience. But what if you are
designing embedded software that runs on a
board that is designed by “the other guy?” Our
experience shows that it can ruin a schedule
in two ways. The first is the extra time it
takes to “bring the board up” because there
are more errors in the design than you are
used to. This can easily add several weeks to a
schedule. But often we find that it takes more
turns of the board than it normally takes you
to get an operational board. During that extra
two to three weeks, your team is much less
efficient. Do you assign them to a new project?
That is not practical. So the software team
becomes less efficient. They work on “cleaning
up the code” and “doing some documentation.”
Sounds good, but these are schedule killers.
And for estimating, the problem is: how do you
know the quality factor in advance?

TESTING DIFFICULTIES
Embedded systems are much more

difficult to test than conventional software

ABOUT THE AUTHOR
Bob Japenga has been designing embedded
systems since 1973. In 1988, along with his
best friend, he started MicroTools, which spe-
cializes in creating a variety of real-time em-
bedded systems. With a combined embedded
systems experience base of more than 200
years, they love to tackle impossible problems
together. Bob has been awarded 11 patents in
many areas of embedded systems and motion
control. You can reach him at rjapenga@mi-
crotoolsinc.com.

www.denx.de/wiki/U-Boot/WebHome
mailto:rjapenga@microtoolsinc.om

circuitcellar.com 63
CO

LU
M

NS

systems. That additional difficulty can be
planned for and the estimate adjusted to take
that into account. The problem comes when
we don’t think through these difficulties when
we estimate the project. We developed a tiny
embedded device that was implanted into a
human body. This device communicated to
the outside world via infrared. The device
sent 8 bytes every millisecond. We accurately
estimated the time it would take to design
the hardware and the software necessary
to accomplish these requirements. However,
when it came to test it, we did not have a
means to easily do that. There were no off-
the-shelf tools to read the IrDA and provide
an integrity check to it. How does one know
that all 8,000 bytes are correct every second?
A special test tool was needed to display and
analyze that it was meeting its requirements.
But special test tools take time and money to
design. They can drastically expand the effort
required to design and develop an embedded
system.

Another thing that can affect our ability
to estimate embedded system is the time
delay inherent in many designs between
making a change, testing the change and
reprogramming the device. When the time

delay is very small (as in non-embedded
systems), iterative designs can be created
much more quickly. Where this impacts our
estimates is that we often don’t know what
the time delay is and exactly how it will impact
the schedule. For example, let’s imagine that
over the course of the project you make 1,200
changes to your software requiring a compile
and load. If the compile and load time takes
70 s compared to 10 s, this can add three
extra days to your project. Often, during the
time we estimate, we don’t know with that
precision the compile and load time.

FACE THE IMPOSSIBLE
The surface area of complexity in

estimating embedded systems is many times
more complex than designing non-embedded
software. Knowing what some of the problems
are can help us get better at this impossible
task. Next time, we will look at how we can
address these problems and get a little better.
If you have some other suggestions about the
problems in estimating embedded software
systems and how you deal with them, drop
me a line. This is a field in which I need
constant improvement. And of course, I only
improve in thin slices.

cc-webshop.com

Circuit Cellar 2014
Digital Archive

With this digital subscription, you have
access to all 12 issues of Circuit Cellar 2014
from any computer or tablet at anytime.
Readers can explore project ideas,
bookmark pages, and make annotations
throughout each issue.

Circuit Cellar 2014 CD
CD includes 12 issues of Circuit Cellar in
PDF format along with related article code.

Order yours today

www.cc-webshop.com

CIRCUIT CELLAR • FEBRUARY 2015 #29564
CO

LU
M

NS

Welcome back to the Darker Side column.
I read that Thomas Jefferson once said,

“Delay is preferable to error.” This may be
often true, but in telecommunications—or,
more specifically, when it comes to signal
transmission—this is far from obvious. For
example, let’s think about a digital audio

transmission (music or voice). In such a
system, you can be sure than a wrong bit
value from time to time will be less noticeable
than a blank in the signal until the good bit
value can be received. Why? Simply because
the receiver (a human) has a quite high
tolerance for errors. The same is true for
video, but it is also the case for any data
transmission, even between two machines
as long as an error-correcting code is used
to recover from transmission errors. The
key here is that “some” transmission errors
could be acceptable, as long as they are not
too numerous. If not, they will jeopardize the
transmission itself. Where do transmission
errors come from? How can you measure
them? This is my topic for this month.

BIT ERROR RATES?
As you know, any information can

be digitally encoded as a stream of bits.
These bits then can be transmitted on the
transmission channel, wired or wireless,
through a succession of encoding and
decoding steps. I already presented the

Let’s Count Errors
THE DARKER SIDE

FIGURE 1
A receiver needs to compare a signal amplitude with a given threshold, which may lead to erroneous
decisions in the presence of noise. A bit error rate (BER) is simply the number of errors divided by the total
number of transmitted bits.

BER =

Transmitted Link Received

Decision
threshold

Sampling
times
Received
bits

0 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1

0 1 0 1 0

Number of transmitted bits

Number of bit errors

An Introduction to BER Testers

When working on applications that require high-speed
digital transmissions, signal transmission errors
can cause a variety of problems. As Robert explains,
bit error rate (BER) is the ratio of errors to total
transmitted bits. In this article, he explains how a BER
tester will help you properly measure error rates.

By Robert Lacoste (France)

circuitcellar.com 65
CO

LU
M

NS

different ways to transform bits into so-called
base-band signals in my 2011 article, “Line
Coding Techniques” (Circuit Cellar 255). I also
covered how to use modulation to put them
on a carrier frequency in my 2009 article,
“Digital Modulation Demystified” (Circuit
Cellar 233).

This month, I won’t detail a fancy
encoding scheme. I will use the example of
the simple nonreturn to zero (NRZ) base-band
encoding. This is a very complicated way to
say that the successive bits are transmitted
as two voltages (e.g., 0 V for a “0” and 3.3
V for a “1”) as with a simple UART. In such
a system, how does the receiver recover the
transmitted bit value? Of course, it will use a
voltage comparator and will check if the line
voltage is above or below a given threshold.
This threshold is ideally the middle between
0 and 3.3 V (say, 1.65 V). Everything above
is assumed to be a one; everything below is
a zero. The measurement and decision are
done once per bit at the bit-sampling time.
This process generates a received bit stream,
which is identical to the transmitted bit
stream as long as there are no errors. Now,
by definition, the bit error rate (BER) is simply
the ratio of the number of errors divided by
the total number of transmitted bits (see
Figure 1).

BIT ERRORS, WHY?
In my February 2010 article, “Living with

Errors” (Circuit Cellar 235), I introduced the
usual key contributor to bit errors—noise.
Plenty of noise sources interfere with the
transmission and degrade the clean 1s and 0s
generated by the transmitter. This noise can
be either human-generated (e.g., electrical
motors, wireless transmissions, or sparks) or
natural (e.g., high-energy particles, lightning,
or ionoscpheric effects). All these noises will
add to each other. Now the magical trick: If you
add plenty of independent phenomena (and
the key word here is “independent”), then you
will always get a Gaussian distribution (see
Figure 2). That’s why Gaussian shapes are
everywhere. Such a Gaussian distribution can
be characterized by two values: its average
(0 for a DC-centered noise) and its standard
deviation, which is exactly the same than its
round mean square (RMS) voltage.

An important fact about Gaussian
distribution is that it is boundless. Gaussian
noise with a 1-mV RMS voltage will have
occasionally very high values, even if the
associated probability is very low! As shown
in Figure 2, a 1-mV RMS noise will have an
instantaneous value higher than 3 mV only
0.1% of the time; but, from time to time, it will
be far higher than that. In fact, for a “perfect”
Gaussian noise, you will get a voltage as high

as you want if you wait enough time. That is
exactly what boundless means. The story is a
little different for real-life signals that can’t
go to thousands of volts for other reasons,
but you’ve got the idea.

Let’s go back to our NRZ transmission
example. If such a Gaussian noise is added to
the received signal (and you can be sure that
it will), the noise value will be higher than half
the voltage decision threshold from time to
time. The comparator will be fooled and you
will receive a wrong bit value. This explains
why any transmission link is prone to bit
errors. Of course, you can design a system for
a BER as low as you want, just by increasing
the signal over noise ratio, but you will never
be sure that the BER will be zero. That’s why
checksums are useful. They enable you to

BER Tester

BER

Clock

47R

Noise
generator

Trigger

Input
Oscilloscope

1
0

−1

Clock
output

Data
output

Data
input

Clock
input

Receiver
Error

counter
PRBS

Generator

FIGURE 3
Here my experiment’s setup. This figure also illustrates the internal blocks of a typical BER tester.

0.4

0.3

0.2

0.1%
2.1%

13.6%

34.1% 34.1%

13.6%

2.1%
0.1%

0.1

−3 −2 −1 1 2 3µ

0.0

FIGURE 2
This figure shows you the ubiquitous Gaussian distribution. As you can see, 95.4% of the time the noise
amplitude stays closer than two times the standard deviation around the average. But be careful because its
amplitude is not bounded. (Source: Wikipedia, http://en.wikipedia.org/wiki/Normal_distribution)

http://en.wikipedia.org/wiki/Normal_distribution

CIRCUIT CELLAR • FEBRUARY 2015 #29566
CO

LU
M

NS

detect remaining errors, but that’s another
story.

Gaussian noise is not the only source of bit
errors, but it is usually one of the predominant
contributors. There are numerous other
sources of error, such as inter-symbol
interference (i.e., increased error rate on a bit
depending on previous bit values) and timing
jitter. But for my purposes here, Gaussian
noise will be enough for the topic I want to
cover next: how to measure a bit error rate.

BER TESTERS
Specific test equipment is available for

measuring bit error rates. The concept of a

BER tester is very simple (see Figure 3). First,
it needs to generate a bit stream to test the
transmission link. This bit stream must be as
random as possible in order to detect potential
errors linked to specific bit sequences. This
is exactly what so-called pseudo-random
binary sequence (PRBS) generators are made
for. (More on that in a minute.) This PRBS
generator is clocked by a simple square
wave oscillator set at the desired bit rate.
The output of the PRBS generator, as well as
the clock if needed, is then connected to the
transmission channel to be tested.

At the other end of this transmission
channel, the BER tester needs to include an
associated receiver. In its simplest form,
this receiver is a voltage comparator with a
user set threshold and a register to latch the
comparator output value at each clock front.

Lastly, a BER tester includes an error
detector, which is nothing more than a digital
comparator between the sent and received
bits and a counter. Add some software and
you have a full-featured bit error rate tester
(BERT).

A BERT is a nice piece of test equipment,
but I assume you don’t have one in your lab.
BERTs cost a fortune and are rarely used. But
maybe you’d like to build one? This is actually
easy as long as you stay with reasonable
clock rates (say, a few tens of megahertz).
Although I won’t cover how to build a BERT
in this article, I did create a basic schematic

b)

a)

FIGURE 4
This is a simplified schematic of a
BER tester, with a PRBS generator
on the left and an error comparator
on the right. The plot shows you the
simulated output signal.

ABOUT THE AUTHOR
Robert Lacoste lives in France, near Paris. He has
25 years of experience in embedded systems,
analog designs, and wireless telecommunica-
tions. A prize winner in more than 15 interna-
tional design contests, in 2003 he started his
consulting company, ALCIOM, to share his pas-
sion for innovative mixed-signal designs. His
book (Robert Lacoste’s The Darker Side) was
published by Elsevier/Newnes in 2009. You can reach him at rlacoste@alciom.
com. Don’t forget to put “darker side” in the subject line to bypass spam filters.

mailto:rlacoste@alciom.com

circuitcellar.com 67
CO

LU
M

NS

for you (see Figure 4). Warning: This is only
a starting point. I’ve never actually built
the BERT and plenty of things are missing.
But I hope you’ll get the idea. The leftmost
section—from U3:A to U2:B—is an example of
a four-step PRBS generator. Such a generator
provides a pseudo-random sequence of 16
bits (24), which then repeats indefinitely.
I used my Labcenter Electronics Proteus
simulator to generate the output in Figure 3.
A simple web search for “PRBS” will bring up
find variants with any number of steps. An
excellent reference is Clive Maxfield’s 2006
EETimes article, “Tutorial: Linear Feedback
Shift Registers (LFSRs).”

In this example, I used four D registers
in the form of old 74HCT74 chips to design
this PRBS generator, but FPGAs aficionados
will enjoy playing around here. The resistor
R1 on my schematic is where the actual
transmission channel should be inserted. It is
followed by a basic comparator built around
two more D registers and an exclusive OR
gate. Just add an error counter and a clock
generator and you’ll have a basic BERT.

TO THE BENCH
OK, now I must confess that I’m lucky

enough to have two beautiful BER testers in
my company’s lab, and that’s why I didn’t
have to build one by myself! For these tests, I
used an Aeroflex Fastbit FB100A, configurable
from 100 bps up to 50 Mbps. It is running

under Windows NT, so you will conclude that
this is not actually a very recent system, but
it is working flawlessly. I bought it online for
about $500, which is probably around 1% of
its original price tag. It was a nice deal, even
with the hefty shipping cost.

I wanted to show you some actual bit
errors, so I switched on this BER tester,
and connected its transmitter output to its
receiver input through a 47-Ω resistor. I

PHOTO 1
This is my experimental setup. The
BER tester is lying on the table, with
noise generator and frequency meter
on the left and the digital oscilloscope
on the top.

PHOTO 2
This is a screenshot of the BER tester's main window. Notice the calculated BER value on the bottom right.

CIRCUIT CELLAR • FEBRUARY 2015 #29568
CO

LU
M

NS

then took an Agilent 33521A arbitrary signal
generator, configured it as a pseudo-Gaussian
noise source, and added it to the receiver
input through a DC-coupling capacitor. Lastly,
I connected my Teledyne LeCroy Waverunner
610ZI oscilloscope to the signal to show you
the actual signal waveform. The scope must
be triggered by the clock signal in order to
get a stable picture. The full setup is shown in
Photo 1. Nice, isn’t it ?

A BER tester has usually plenty of
configuration options. Photo 2 shows you the
main instrument display. It is logically split
into two sections: transmitter and receiver.
I manually set the transmitter to 10 Mbps
and the output amplitude to 3.3 V, and
measured the received signal amplitude on
the oscilloscope. I got a signal varying from
500 mV to 1.4 V (which is a 900-mV peak-
to-peak signal with a 0.95-V DC offset), as it
is heavily dampered by the 47-Ω resistor and
the impedance of the noise generator. This
roughly reduced the signal amplitude by half
but allowed to inject easily some noise for my
tests. So, I set accordingly the threshold of
the receiver to 0.95 V, roughly in the middle
of the signal amplitude.

My first test was with the noise generator
set to an amplitude of 160-mV RMS. This noise
voltage is quite low as compared to the 900-
mV amplitude of the signal so I expected no
bit errors. I simply clicked on RUN TEST and
left the test run for a while. Ten minutes and
a coffee later, the calculated bit error rate was
displayed by the analyzer: 6.22 × 10–8. That’s
very low, but not null! In fact the analyzer
told me that 5,836,012,884 bits were received
during these 10 min (which is close to the
expected count with a bit rate of 10 Mbps) and
363 of them where wrong. That shows you the
strength of such a test: even errors that would
be barely noticeable during a functional test
are quickly highlighted by a BER tester. This
could help you to quickly compare different
design choices, and to select the best one.

It is also interesting to see what happens
in the time domain. Have a look on Figure 5
and Figure 6. Both are screen copies of the
oscilloscope, with respectively a noise of 190-
mV RMS and 300-mV RMS. Some explanations
are needed to understand these plots: I
configured the Teledyne LeCroy Waverunner
oscilloscope in a special persistence mode,
which display different colors depending on
the recurrence of a signal. The hotter the
color, the more frequently the signal had this
voltage value. This is a wonderful tool to feel
the statistical properties of a moving signal.
Here you see that the signal is still quite clean
with 190 mV of noise, it doesn’t come too close
to the middle of the screen (see Figure 5). In
such a case telecommunication guys say that

FIGURE 5
With a low noise voltage—190-mV RMS in this case—the plot called an eye diagram stays open. The
histogram confirms that the voltage values for bit “0” and “1” are far enough from each other.

circuitcellar.com/ccmaterials

REFERENCES
C. Bianchi and A. Meloni, “Nat-
ural and Man-Made Terres-
trial Electromagnetic Noise:
An Outlook,” Annals of Geo-
physics, Vol. 50, No. 3, 2007,
www.earth-prints.org/bit-
stream/2122/3674/1/11bianchi.
pdf.

C. Maxfield, “Tutorial: Linear Feedback
Shift Registers (LFSRs) - Part 1,” EETimes.
com, 2006, www.eetimes.com/document.
asp?doc_id=1274550.

SOURCES
Fastbit FB100A Error rate tester
Aeroflex | aeroflex.com

Agilent 33521A arbitrary signal generator
(discontinued)
www.keysight.com

Proteus CAD tool suite and simulator
Labcenter | www.labcenter.co.uk

Waverunner 610ZI oscilloscope
Teledyne LeCroy | www.teledynelecroy.com

FIGURE 6
The situation is drastically different with a noise increased to 300 mV, giving a far higher bit error rate.

http://www.keysight.com
http://www.labcenter.co.uk
http://www.teledynelecroy.com
www.eetimes.com/document.asp?doc_id=1274550
www.earth-prints.org/bitstream/2122/3674/1/11bianchi.pdf

circuitcellar.com 69
CO

LU
M

NS

the eye diagram (which is the name of such
a plot) is open. Conversely the eye is closed
when I increase the noise to 300-mV RMS (see
Figure 6), meaning that the BER must be
far higher. And the measurement with the
BER tester confirmed these assumption:
between these two tests the BER climbed
from 4.7 × 10–6 to 2.1 × 10–3, which is 500
times higher!

Do you want to see another interesting
feature of a high end digital scope? They
could calculate and plot for you histograms
of the signal. Think of such an histogram
as a projection of the signal’s amplitude
on the vertical axis. The more the spot
stays at a given voltage, the higher the
corresponding histogram value will be. The
result is also represented in Figure 5 and
Figure 6 as a superposed yellow chart. As
expected, the histogram shows more or less
two Gaussian shapes. These two Gaussian
shapes correspond to the two stable signal
levels with the addition of the Gaussian noise.
When the noise is low (see Figure 5), the two
Gaussian’s are far from each other, implying
low BER. Conversely, Figure 6 shows that
the two distributions are starting to merge,
which is another way to say that the eye is
closed and the BER is high.

Before dismounting the experiment and
putting back the BER tester on the shelf, I
measured the BER for different noise levels.
The resulting plot is shown on Figure 7. This
is a very typical BER curve. The scale may be
varying, but you will find the same overall

shape in plenty of applications ranging from
wireless receivers to Ethernet transceivers or
telecommunication systems.

WRAPPING UP
OK, that’s the end of our journey in the

world of BER testers. I know it’s unlikely
that you’ll ever have a commercial tester at
your workbench. However, I am also sure
that you’re projects will occasionally suffer
from errors in signal transmissions. In some
cases, knowing what’s going on and how
to measure a BER can make the difference.
Just imagine two colleagues working on a
data transmission problem. One of them is
trying to find out what’s happening with its
debugger, scope, and multimeter, while the
other knows about BER testers and decides
to rent one for a couple of days. Who do you
think will solve the problem sooner, get a
big thanks from the customer, and receive a
bonus from the manager?

Don’t get me wrong. I’m not saying that
oscilloscopes can’t help, especially because eye
diagrams and advanced scope features are
invaluable. But knowing about dedicated
testing equipment and how it can provides
insights about data transmission can’t hurt!
Moreover, the increase in bit rates and system
complexity everywhere is going to make these
topics hotter than never. Running a fast USB or
gigabit Ethernet connection without too many
errors is significantly more difficult than
connecting a 9,600-bps RS-232 port! As usual,
I encourage you experiment yourself!

FIGURE 7
This plot of BER versus noise level, expressed as a signal-over-noise ratio, is very typical. Take care as the scale of both axes is logarithmic.

CIRCUIT CELLAR • FEBRUARY 2015 #29570
CO

LU
M

NS

I always thought of night lights as a
bit of Christmas all year round. These

candelabra-based 7.5-W bulbs (C7), which
are available all year in clear or white colors,
are used as appliance bulbs. Toward the end
of the year, the lights are available in retail
stores in many colors as replacements for
old strings of holiday lights. These days,
miniature plug bulbs have taken over and
provide more twinkle and less heat than the
larger C7 bulbs. LEDs are quickly replacing
the miniature incandescent bulbs and many
feature the ability to change color.

I grew up in a two-story house on a
quiet street in a once-bustling textile town.
The second floor had four bedrooms and the
home’s only bathroom. A short hall connected
all rooms and the stairway down to the main
floor. Mom was always nervous that one of
us would accidentally take a wrong turn in
the dark on a night trip to the bathroom,
so she put a night light in the hallway. We
would always find a colored Christmas bulb
to screw into the night light whenever the
bulb burnt out. One night the normal festive
shadows were replaced by an eerie glow. Was

this some alien invasion from a distant world?
Unfortunately, no.

This was my first exposure to the world
of electroluminescent (EL) materials. EL is the
nonthermal conversion of electrical energy
into light energy. Electrons passing through a
powder phosphor in between two electrodes
excite the phosphor to emit photons, giving
off an eerie glow. Product manufacturers
quickly caught on to this and augmented
their products with this new solid-state light.
The term light-emitting capacitor (LEC) was
coined in the 1960s. While this is a great
descriptive name, I’ve never heard it used.

BACKLIGHTING
The EL panel’s nondirectional emissions

make it a natural choice for backlighting. It’s
been used in watches, pagers, thermostats,
dashboards, and other products. Because of its
unique properties (see Table 1), it will continue
to be used in products for years to come.

If you’ve hiked or camped in the woods
after dark, you might have come across some
exposed phosphorus that takes on an eerie
glow. I’m guessing this is some form of either

Solid-State Lighting (Part 1)

By Jeff Bachiochi (US)

Electroluminescence (EL) is the
nonthermal conversion of electrical
energy into light energy. Jeff explains
how he set up an eight-channel EL
controller for programming and
animating up to eight EL panels.

FROM THE BENCH

circuitcellar.com 71
CO

LU
M

NS

photoluminescence (emission due to exposure
to light) or chemiluminescence (emission
due to a chemical reaction). Nature is full of
luminescence. As a kid I would never allow a
summer evening to slip by without catching
fireflies in a jar. Let’s take a closer look at
how this material is manufactured and can
be put to use.

The most common EL devices are known
as thin-film electroluminescent (TFEL). Most
TFEL devices comprise six layers: a substrate,
a conductor, an insulator, a layer of phosphors,
another insulator, and a second conductor.
Figure 1 depicts a typical TFEL construction.
Starting from the outside, the substrate is
a rigid or flexible material used as a base
on which the additional layers are applied.
The substrate can serve as the back or if
transparent, as a protective front surface.
Conductive layers form the device’s capacitive
electrodes exposing the inner phosphorus to
an alternating high voltage. Obviously, at least
one conductive layer must be transparent to
allow the emitted photons a way to escape. At
least one transparent insulation layer is used
to prevent the high voltage from arcing and
shorting out the conducting electrodes. The
high-voltage field penetrating the innermost
phosphorus layer provides an energy gain to
a phosphorus electron. The loss of energy in
the alternating field then allows a transition
of an excited phosphorus electron back to a
lower energy state releasing the difference in
energy between the two states as a photon.

While EL panels used in backlighting for
LCDs are typically a single continuous emitter,
a panel may contain multiple and separately
controlled areas. Custom EL panels are
becoming cost effective. While material, AC
frequency, and voltage can have an effect on
a panel’s color, you can choose from a number
of standard colors (see Photo 1).

LINE VOLTAGE
A simple nightlight doesn’t required

external electrical components beyond the EL
panel. The 120 VAC delivered by our power
grid falls within the specs of a typical EL
panel:

Voltage: 100 to ~220 V (Optimum: 120 V)
Frequency: 50 to 5,000 Hz (optimum:

 1,500–2,000Hz)

When an EL panel is used beyond the
reach of an AC outlet, the required AC must
be produced locally, via a converter. Most
distributors of EL panels also offer DC-AC
converters. Since the AC they produce is
potentially dangerous (high voltage), most are
encapsulated to insulate said circuitry from
the user. These may consist of an AA or AAA

battery holder, power switch, converter, and
output connector enclosed in a plastic case
or simply a potted converter with input and
output leads. The DC supply voltage required
can be from 3 to 12 V.

I find most EL converters have a CM rating
associated with them that is an important
consideration when choosing one for a project.
CM stands for square centimeters and is an
indication of how much EL material it will
drive. This is easy for EL panels, where the
size is listed (i.e., 10 cm × 10 cm is 100 CM).
However, EL material also comes in tape and
wire. If you are using this material, you can
figure that 20’ of wire or 40’ of tape is equal
to approximately 100 CM. Many converters
must have some minimum load to operate
without self-destructing. Driving a smaller

TABLE 1
Depending on the application, EL panels have distinct advantages over other types of backlighting.

Light

Glass

ITO

Insulator

Phosphor

Insulator

AI

FIGURE 1
TFEL devices utilize a thin phosphor
film, such as manganese-doped zinc
sulfide (ZnS:Mn), sandwiched between
two insulating films, surrounded by
transparent indium-tin-oxide (ITO)
and non-transparent conductive
electrode layers. An alternating
(pulsed) electrical potential (about
120–200 V) applied between the two
conducting electrodes generates
an electric field that can cause the
phosphorus electrons to obtain a
higher energy state and then release
photons with a loss of field energy.

Advantages Disadvantages

Low wattage
Not practical for general lighting
of large areas due to low lumen
output of phosphors

Long life (reduced lumen output
over time)

Poor lumens per watt

No external circuitry required
(when plugged directly into AC
power)

Reduced lumen output over time

Can be manufactured into flat
flexible panels and other small
shapes

Flexible flat EL sheets should not
be flexed

More durable and light weight
than LCDs or Plasma as display
backlights.

The lamps require significant AC
voltage:
60–600 V

Not directional emission, looks
good at all angles

EL requires a converter when
used with DC sources (uses higher
frequency AC power, audible)

EL displays can handle –60°C to
95°C

CIRCUIT CELLAR • FEBRUARY 2015 #29572
CO

LU
M

NS

load will increase light output (as the voltage
will be on the high side), while driving a larger
load will decrease light output (as the voltage
output will decrease with additional load).

ONE IS NEVER ENOUGH
Because you are already familiar with EL

used as backlighting on some phones, tablets,
laptops and monitor/TVs you may not be
intrigued until you see anything other than
white. There is something about color that
makes things really pop. Many are dabbling
in the wearable wave, which is a mating of
clothing and electronics. It could be adding
headphones to a hat, medical sensor to a
shirt, or EL as accents. While this brings back
visions of Tron, a totally different industry
has been gearing up to replace “high-priced”
neon with EL.

Advertising signage has embraced the EL
idea. While it doesn’t have the intensity of
neon, it has that same feel. It is inexpensive
to duplicate as multiple colors and shapes can
be combined into a single flat panel. Having
this type of single panel is not cost effective
for us. However, since the material can be
easily cut, you can be creative in your use.
Silk screening or masking with vinyl are other
approaches that may not even require cutting
standard-sized panels.

To achieve the animation of separate
glowing shapes you need to have control
over these separate areas. For instance, a
simple three-cell sign might use three single
panels each masked with the individual words
“Eat,” “At,” “Joes.” You might want the words
to illuminate one at a time and then flash
together. This would require a way of turning
on and off each EL panel individually. In this
case, we need three channels of control. Since
a port has 8 bits, this is a nice number to
work with. Let’s look at setting up an eight-
channel EL controller that will provide you with
a simple way of programming the animation
for up to eight EL panels.

CONTROLLING AC
Many of you have probably used a TRIAC

to control an AC voltage. While we could use
mechanical relays to do this, the solid-state
approach is a bit less expensive and doesn’t
have the potential contact wear issues that
relays can experience. Before we had electric
drills with squeeze speed control, there was
only one speed, on. I remember buying a
speed control from RadioShack with a knob
that let you control the speed of your drill.
This was a circuit containing a silicon control
rectifier (SCR), the precursor to the Triac.
The SCR is an electrically controlled one-way
switch. The device affects only one polarity of
the AC waveform. The knob or potentiometer
along with a fixed capacitor formed an RC
network that would delay the SCR switch from
turning on for its polarity once each full cycle.
This meant that if the SCR was prevented
from turning on at all that the drill would
receive only half of the AC voltage waveform
and run very slow (or not at all). By allowing
the SCR to turn on at various delays from the
zero-crossing point, you have full control over
the other half of the AC waveform and have
full control over one polarity of the waveform.
The AC itself provides the repetitive timing
necessary to control the SCR’s gate.

The obvious next step was using two
parallel SCRs (in opposite polarity) to control
both halves of the AC waveform. This was
again improved by combining all the circuitry
necessary into a single three terminal device,
the TRIAC. While many of today’s tools are DC
Lithium Ion based, TRIACs are still used in
devices that run on AC.

The DC-to-AC converter you might use
for you EL panels can be controlled using
a TRIAC. I’m talking about a rather high
voltage here (greater than 100 V), so use
caution when it comes to exposed circuitry.
In addition, if you want a microcontroller to
control this, it should be isolated from the
high voltage. Use an optical isolator to isolate
a microcontroller from the high-voltage AC.
Many configurations are available. I used a
device that has an LED as the control source
for an optically coupled switch for an external
TRIAC. Since the switch is optically coupled
to an LED, the logic side circuitry remains
physically disconnected from the high voltage
(except for optionally grounding one side of
the AC). The external TRIAC’s gate is turned
on whenever the isolated LED is illuminated.

The “when” is the important part here.
That’s because once a TRIAC has been turned
on by its gate, the TRIAC will stay on even if
the gate signal is removed until the AC voltage
reaches zero (which it does twice per cycle).
If the gate remains on, the TRIAC is turned
on again until again reaching zero and the

PHOTO 1
These are some 10 cm × 10 cm panels
I purchased from Adafruit.com and
Sparkfun.com. This picture was taken
in a darkened room as the lumen
output is not overwhelming.

ABOUT THE AUTHOR
Je f f Bachioch i (pro-
nounced BAH-key-AH-
key) has been writing
for Circuit Cellar since
1988. His background
includes product design
and manufac tur ing .
You can reach him at
jeff.bachiochi@imagine
thatnow.com or at www.
imaginethatnow.com.

mailto:jeff.bachiochi@imaginethatnow.com
www.imaginethatnow.com

circuitcellar.com 73
CO

LU
M

NS

Main termAnode 61

*NCCathode 52

Main termN/C 43

*Do not connect
 triac substrate

Main termAnode 61

*NCCathode 52

Main termN/C 43

*Do not connect
 triac substrate

Zero
crossing
circuit

gate drive has been removed. You can choose
when to turn it on for any half cycle based
on the zero-crossing. It is best to turn a
TRIAC on when the current is zero to prevent
(potential) instantaneous high currents. To
assure this is the case, you need either to
monitor zero crossings and apply a control
signal only when the voltage is minimum or
use a isolated device that contains a zero-
crossing detector.

Figure 2 shows the block diagrams of two
similar isolated devices, the MOC302x and
MOC303x. When all you want to do is turn
on or off the device, use an isolator that has
a zero-crossing detector (ZCD) built-in. This
allows the device to decide the appropriate
time to apply the gate drive. When you need
to perform PWM control of each cycle (for
dimming purposes), you must use an isolator
without zero-crossing so that you can force
the device on during any point in the cycle.
If a delay of 4 ms (approximately half of each
60-Hz half cycle) is repeated, the average
power to the load is reduced to around 50%.
This only works when you sync the delay to
each zero-crossings.

PROTOTYPE 1
The first circuit in this project will be

used to turn eight EL loads on and off. It is
based on providing an external AC source
using an available DC-to-AC converter.
Figure 3 shows eight similar TRIAC circuits
controlled via a microcontroller using zero-
crossing optoisolated devices for circuit and
safety protection. In this instance, we have
no control of the converter’s frequency—that
is, the AC frequency—so we allow the ZCD to
handle when in each cycle to apply the gate
voltage to the external TRIAC.

If I were manufacturing an “Eat at Joe’s”
sign, I could hard code the timing parameters
of the animation into the code. There would
be no reason to ever change these. However,
for experimental purposes, I want to be able
to change this on the fly. This means that
there must be some kind of user interface.
A simple serial interface handles this nicely.

I had to define a few commands to define
parameters. My first thought was to use
music instrument digital interface (MIDI),
which was designed as a way to translate
all aspects necessary to replicate a musical
score into individual command instructions
like note, duration, beat, instrument, and
volume. This is very structured and allows
multiple instruments to play in one cohesive
group. This orchestration is much like what
is necessary to animation objects. That’s
probably why other control equipment often
uses formats similar to the MIDI standard.
There is plenty of available software for

constructing MIDI commands with an easy-
to-use GUI. The MIDI command can then be
interpreted as actions other than choosing
how long a particular note is sounded for. I’m
not using this for two reasons: it requires a
special interface and the data is binary and
not ASCII. While the interface is not complex
(it’s essentially serial), there is a learning
curve associated with MIDI that really isn’t
necessary here. Also, I want all the commands
to be ASCII, so they can be typed in using a
simple terminal program, like RealTerm.

The protocol I used consists of a string of
commands that make up a single channel’s
animation. We only need three commands
here: Channel, ON, and OFF. Channel is
represented by the letter C, ON by the letter
O, and OFF by the letter X. Each of these
commands has a value associated with it. For
Channel, we use this to select the channel
number (1 to 8) for the remaining commands.
ON and OFF require a time or duration
represented by a decimal number between 1
and 255. The time is tenths of a second. So, if
you want a duration of 1 s, you use the value
10. This allows each command to indicate a
duration of up to 25.5 s. If we break down the
animation of the “Eat at Joe’s” sign into three
channels, we get:

C1 O5 X5 X5 X5 X10 X10 X10 X10 X10 <CR>
C2 X5 X5 O5 X5 X10 X10 X10 X10 X10 <CR>
C3 X5 X5 X5 X5 O10 O10 O10 X10 X10 <CR>

Note the following groups in Channel 3:
X5, X5, X5 X5, O10, O10, O10, X10,
and X10. Each group totals 10/10 tenths or

FIGURE 2
Here are two optically isolated TRIAC drivers that can be used with an external TRIAC to control the high-
voltage AC required to excite an EL panel. These devices have identical footprints so using an IC socket in a
circuit allows for some experimenting with either device. Without the zero-crossing detector the device can
turn on an external TRIAC at any point in each half cycle. The driver with the ZCD will delay any command
to turn on until a zero-crossing has occurred enabling an external TRIAC when the voltage is minimum.

CIRCUIT CELLAR • FEBRUARY 2015 #29574
CO

LU
M

NS

1 s. I wrote it like this so that it’s easier to
understand, as all actions are in sync (they
don’t necessarily have to be). Channel 1 is
on for 0.5 s and then off for0.5 s, while the
others channels remain off. Next, Channel 2 is
on for 0.5 s and then off for 0.5 s, while the
others channels remain off. Then, Channel 3
is on for 3 s while the others channels remain
off. Finally, all channels are off for 2 s. This
animation would then repeat endlessly.

The following command strings produce
the same results, but it is much more difficult
to relate the actions of one channel to another.

C1 O5 X65 <CR>

C2 X10 O5 X55 <CR>
C3 X20 O30 X20 <CR>

When commands are entered, execution
of the present animation stops. Command
strings entered are saved into EEPROM and
remain with the application until changed.
Animation begins using any commands stored
in EEPROM upon the next reset. The present
commands are sent out the serial port before
execution begins. This will allow the user to
check what is presently programmed into
the device. Only Channels entered will be
changed. Previously stored commands for
other Channels will remain unless they are
deliberately removed using a empty string.

C4 <CR>

TIMING IS EVERYTHING
As described earlier the animation timing

is based on tenths of a second. Therefore, we
need to initialize a timer to give a interrupt
every 0.1 s. Based on an internal clock
speed of 8 MHz, the execution speed of each
instruction will be 2 MHz (8 MHz/4), or 500 ns.

FIGURE 3
This is the basic control circuitry for eight EL panels connected to an external DC-AC converter. EL animation, or the programmed on/off sequences of each channel, is handled
using three commands via a serial terminal. Programmed sequences are saved to EEPROM.

circuitcellar.com/ccmaterials

RESOURCES
Edison Tech Center, “Electroluminescent Lamps,”
2013, www.edisontechcenter.org/electrolumi-
nescent.html.

What-When-How.com, “Organic Photovoltaic
Cells (OPVCs),” http://what-when-how.com/elec-
tronic-properties-of-materials/applications-op-
tical-properties-of-materials-part-7/.

www.edisontechcenter.org/electroluminescent.html
http://what-when-how.com/electronic-properties-of-materials/applications-optical-properties-of-materials-part-7

circuitcellar.com 75
CO

LU
M

NS

This is also the clock input for Timer 2, Timer
4, and Timer 6. Each timer has a prescaler, an
8-bit auto-reload counter, and a post-scaler.
The prescaler can slow the clock by a factor of
1, 4, 8, or 64. A prescale value of 64 will slow
the (500 ns) clock down to 32 µs. If we divide
this into the time we want (100,000 µs), we
get 3,125, which is too big for 8-bit register,
so we need reduce this further by the post-
scaler. Setting the post-scaler to divide by
16 will bring the count down to 195.3125. By
initializing the PR4 register to 195, the 8-bit
count down register is automatically loaded
with that value each time it reaches zero. So,
we have a clock slowed to 32 µs, counting
from 195 to 0 (32 µs × 195 counts = 6,240
µs), divide by a post-scale of 16 (6,240 µs ×
16 = 0.099840 µs). In reality, the actually
interrupt time will be off by 160 µs, which
is approximately 0.16%. This is due to the
fractional part of a 32-µs count times the
post-scaled divisor (32 µs × 0.3125 × 16 =
160 µs).

With a time base of 0.1 s, I can make
decisions on potential channel changes every
interrupt. Refer to Figure 4 to see what
must happen every 100 ms. At power-up, the
EEPROM content is sent out the serial port
as record of which channel parameters are
executing. Each channel is initialized with the
first command and duration read from the
EEPROM. With this done, the interrupts are
enabled, and when Timer 4 overflows, we get
an interrupt. Actually, there is no reason we
can’t just poll for the Timer 4 overflow in the
main loop; however, I use the interrupt to set
a “Check for Changes” flag and also produce
a debug pulse on an unused output pin. The
main loop does nothing until a character
is received or a Timer 4 interrupt sets the
“Check for Changes” flag.

It is important that we can complete any
necessary execution in less time than it takes
Timer 4 to overflow again. Therefore, I set a
second unused output bit when the routine
begins and clear it when finished. With
these two outputs, I can see when Timer 4
interrupts occur and how long the “Check for
Changes” routine takes in the main loop. It’s a
good idea to determine the routine time. You
can physically count the number of program
steps required for the longest path through
the routine, or you can use the stopwatch
function in the simulator to record the time.

Extensive use of the indirect registers
allows the same routines to be used as the
code cycles through all eight channels. In
reality, you don’t need to turn on any channel
that is already on (or vice versa). However,
it takes longer to check for the state of an
output then it does to just set or clear it again.
This is done for all channels each interrupt.

In addition we need to reduce the duration
count each interrupt. When that duration
reaches zero, an EEFLAG flag is set to indicate
that a new command is required. When a new
command read is equal to 0x0D, the command
pointer for that channel is reset, allowing the
string to repeat. When a channel reads 0x0D,
the command pointer is also checked to see
if there are any commands. If there are no
actual commands for the channel, a fake OFF
command with a duration of 255 is created
to prevent anything from happening on that
channel’s output. Any time you program
multiple channels to be on at the same time,
the brightness will be some what less since
all channels are all sharing the same AC
source.

ANIMATE
At times I wish I had a more artistic flair.

Coming up with flashy (no pun intended)
artwork is just not one of my talents. However,
with the basics under my belt, I can experiment
using EL to illuminate and animate. Next
month, I’ll continue this discussion with a bit
more information and a few more circuits you
might find interesting.

FIGURE 4
Here’s a flow chart of the
“Check for Changes” routine
that is executed each time
an interrupt occurs from
the Timer 4 overflow (100
ms). The present channel
command determines the
channel’s new output state
until the command’s duration
value (number of 100-ms
ticks) has been decremented
to zero. Once the state of all
channel outputs has been set,
if any command’s duration has
reached zero, a new command
is fetched for that channel from
the EEPROM.

Check for changes

Start with first channel

Channel
command =

ON?

Call
turn channel ON

Call
turn channel OFF

Channel
command =

OFF?

Decrement channel
duration count

Set EEFLAG Channel

Any EEFLAGS
Set?

Clear the timer flag

Return

Call
GetNextCommandIncrement channel

Channel
duration count

= 0?

All channels
done?

N

N

N

Y

Y

Y

N

Y

N

Y

CIRCUIT CELLAR • FEBRUARY 2015 #29576

CC SHOP

7

 1 CC VAULT
CC Vault is a pocket-sized USB

that comes fully loaded with ev-
ery issue of Circuit Cellar maga-
zine! This comprehensive archive
provides an unparalleled amount
of embedded hardware and soft-
ware design tips, schematics, and
source code. CC Vault contains
all the trade secrets you need to
become a better, more educated
electronics engineer!

Item #: CCVAULT

 2 CC 2014 CD
2014 was an exciting year for

electronics engineers! The continued
success of open-source solutions,
Internet of Things (IoT) revolutions,
and green-energy consciousness has
changed the face of embedded design
indefinitely. In Circuit Cellar’s 2014
archive CD, you can find all of these hot
topics and gain insight into how experts,
as well as your peers, are putting the
newest technologies to the test. You’ll
have access to all articles, schematics,
and source code published from January
to December 2014.

Item #: CD-018-CC2014

1

3

2

A Guide to Powerful Programming
for Embedded Systems

Circuit Cellar, Inc.
www.circuitcellar.com

Assembly Language
Essentials
A Guide to Powerful Programming for Embedded Systems

You must be a well-rounded professional to excel in the ever-evolving, rapidly developing
embedded design and programming industry. Simply put, when it comes to electronics
design and programming, the more topics you can master, the more you’ll flourish at your
workplace and at your personal workbench. This shouldn’t be a surprise, as the line
between the skills of a hardware engineer and software engineer is blurring. The former
should have a good grasp of programming in order to build efficient systems. The latter
should understand the details of the design (whether it’s a physical or virtual application)
for which he or she is writing code. Thus, to be successful, a modern professional
electronics engineer must have a solid grasp of both hardware design and programming.

Assembly Language Essentials is a matter-of-fact guide to Assembly that will introduce you
to the most fundamental programming language of a processor. Unlike other resources
about Assembly that focus exclusively on specific processors and platforms, this book uses
the architecture of a fictional processor with its own hardware and instruction set. This
enables you to consider the importance of Assembly language without having to deal with
predetermined hardware or architectural restrictions.

You’ll immediately find this thorough introduction to Assembly to be a valuable resource,
whether you know nothing about the language or you have used it before. The only
prerequisite is that you have a working knowledge of at least one higher-level programming
language, such as C or Java.

Assembly Language Essentials is an indispensible resource for electronics engineering
professionals, academics, and advanced students looking to enhance their programming
skills. The book provides the following, and more:

• An introduction to Assembly language and its functionality
• Significant definitions associated with Assembly language, as well as essential

terminology pertaining to higher-level programming languages and computer
architecture

• Important algorithms that may be built into high-level languages, but must be done
the “hard way” in Assembly language — multiplication, division, and polynomial
evaluation

• A presentation of Interrupt Service Routines with examples
• A free, downloadable Assembler program for experimenting with Assembly

Assembly
Language
Essentials

Larry Cicchinelli
Assem

bly Language Essentials
Larry Cicchinelli

Assembly Language Essentials cover4_Opmaak 1 23-2-11 14:32 Pagina 1

4

Further information and ordering: www.cc-webshop.com
CONTACT US: Circuit Cellar, Inc. | Phone: 860.289.0800 | E-mail: custservice@circuitcellar.com

 3 ADUC841 MICROCONTROLLER DESIGN MANUAL
This book presents a comprehensive guide to designing and programming with

the Analog Devices ADuC841 microcontroller and other microcontrollers in the 8051
family. It includes a set of introductory labs that detail how to use these microcon-
trollers’ most standard features, and includes a set of more advanced labs, many of
which make use of features available only on the ADuC841 microcontroller.

The more advanced labs include several projects that introduce you to ADCs,
DACs, and their applications. Other projects demonstrate some of the many ways
you can use a microcontroller to solve practical problems. The Keil μVision4 IDE is
introduced early on, and it is used throughout the book. This book is perfect for a
university classroom setting or for independent study.

Author: Shlomo Engelberg
Item #: CC-BK-9780963013347

 4 ASSEMBLY LANGUAGE
ESSENTIALS

Looking to brush up your program-
ming skills? Get back to to the basics
with this matter-of-fact guide to As-
sembly language. Perfect for advanc-
ing students and academics, this book
introduces you to a processor’s most
fundamental programming language.
It includes essential terminology per-
taining to higher-level programming,
important algorithms that can be built
into high-level language, a free down-
loadable Assembler program, and
much more.

Author: Larry Cicchinelli

http://www.circuitcellar.com
http://www.cc-webshop.com
mailto:custservice@circuitcellar.com

circuitcellar.com 77
TESTS &

 CHALLENG
ES

Circuit Cellar feature articles are contributed by professional

engineers, academics, and students from around the globe.

Each month, the editorial staff reviews dozens of article

proposals and submissions. Only the best make it into the

pages of this internationally respected magazine.

Get published. Get noticed. Get paid.

Do you have what it takes?

Email: editor@circuitcellar.com

Contact C. J. Abate, Editor-in-Chief, today to discuss the
embedded design projects and programming
applications you’ve been working
on and your article could be
featured in an upcoming issue
or online at circuitcellar.com.

TEST YOUR EQ
Contributed by David Tweed

What’s your EQ? The answers are posted at www.circuitcellar.com/
category/test-your-eq/. You can contact the quizmasters at
eq@circuitcellar.com.

PROBLEM 1
 The capacitance of the plates drops with increasing
distance, so the voltage between them rises, because the
charge doesn’t change and the voltage is equal to the charge
divided by the capacitance. At first, while the plate spacing
is still small relative to their diameter, The capacitance is
proportional to the inverse of the spacing, so the voltage rises
linearly with the spacing. However, as the spacing becomes
larger, the capacitance drops more slowly and the voltage
rises at a lower rate as well.
 While the plate spacing is small, the electric field is
almost entirely directly between the two plates, with only
minor “fringing” effects at the edges. Since the voltage rise
is proportional to the distance in this regime, the electric
field (e.g., in volts per meter) remains essentially constant.
However, once the plate spacing becomes comparable to the
diameter of the plates, and fringing effects begin to dominate,
the field begins to spread out and weaken. Ultimately, at
very large distances, at which the plates themselves can be
considered points, the voltage is essentially constant, and the
field strength directly between them becomes proportional to
the inverse of the distance.

PROBLEM 2
 There is an attractive force between the plates of a capacitor
created by the electric field. Physically moving the plates apart
requires doing work against this force, and this work becomes
the additional potential energy that is stored in the capacitor.

PROBLEM 3
 Dielectric materials are made of atoms, and the
atoms contain both positive and negative charges.
Although neither the positive nor the negative charges
are free to move about in the material (which is what
makes it an insulator), they can be shifted to varying
degress with respect to each other. An electric field
causes this shift, and the shift in turn creates an
opposing field that partially cancels the original field.
Part of the field’s energy is absorbed by the dielectric.
In a capacitor, the energy absorbed by the dielectric
reduces the field between the plates, and therefore
reduces the voltage that is created by a given amount
of charge. Since capacitance is defined to be the charge
divided by the voltage, this means that the capacitance
is higher with the dielectric than without it.

PROBLEM 4
 With certain dielectrics, most notably quartz and
certain ceramics, the displacement of charge also causes
a significant mechanical strain (physical movement)
of the crystal lattice. This effect works two ways—a
physical strain also causes a shift in electric charges,
creating an electric field. This effect can be exploited in
a number of ways, including transducers for vibration
and sound (mics and speakers), as well as devices that
have a strong mechanical resonance (e.g., crystals) that
can be used to create oscillators and filters.

mailto:editor@circuitcellar.com
mailto:eq@circuitcellar.com
www.circuitcellar.com/category/test-your-eq

CIRCUIT CELLAR • FEBRUARY 2015 #29578
TE

ST
S

&
 C

HA
LL

EN
G

ES

ACROSS

2. A connection or conductor that a number of circuits share
5. Comprises a cathode, plate, and control grid
6. The tendency for electrons at high frequencies to travel along the

surface of a conductor [two words]
7. Big Blue
9. Pa
10. Tube that protects a bundle of wires
15. 6.0221415 × 1023 atoms/mole
17. A capacitor
18. M
19. Measures the damping of resonator modes

CROSSWORD
The answers will be available at circuitcellar.com/crossword.

FEBRUARY 2015

1

2 3 4 5

6 7 8

9 10

11

12 13 14

15 16 17

18

19

EclipseCrossword.com

DOWN

1. Figure-8
3. Self-sustaining generation of a continuous electrical

signal
4. Cathode bias [two words]
8. In this code, common in telecommunications, each

bit of data is represented by at least one voltage level
transition.

11. WW
12. Straight line that touches a circuit a single point
13. Hot signal connector
14. Containing iron
16. R = V/I [two words]
17. 0.01 bar

www.circuitcellar.com/crossword

circuitcellar.com 79

RESEARCH
INTERNATIONAL

TRIANGLE

OEM Prices as low as $119
for full-feature Nano-10 PLC

tel : 1 877 TRI-PLCS
web : www.triplc.com/cci.htm

Programmable Logic Controllers

Join The

TRi

Powerful & Easy Ladder
+BASIC Programming
Ethernet integrated
MODBUS TCP/IP
DI/Os & AI/Os integrated

$20 for 5PCBs
2 layer,4x4inch, FR4(RoHS),0.063”,1oz,

2LPI,Green,1SK,Lead free HASL

Standard PCB: Promotion code:

CC14061

PCB & PCBA
Small to Mass QTY

INSTANT QUOTE AT:

www.myropcb.com
OR CALL:

1-888-PCB-MYRO
sales@ccsinfo.com
262-522-6500 x 35
PIC® MCU is a registered trademark of Microchip Technology Inc.

www.ccsinfo.com/CC215
Start Programming now!

RFID Development Kit

RFID ASAP!
Develop RFID with a PIC®

Exercises, Tutorials & Boards
Create RFID Systems Today!

Starting at

C Compilers available
for all PIC® MCU Devices

$90

www.maxbotix.com

UCXL-MaxSonar®-WR™
- Great for design engineers
- Multiple mounting options
- Light weight industrial sensor
- Incredible noise immunity
- Smallest IP67 sensor in size
- 1cm resolution
- Automatic calibration
- Ideal for outdoor UAV use

Phone: 218-454-0766 Email: sales@maxbotix.com

- 4-20mA output
- High noise tolerance
- IP67 rated
- 1.6 mm resolution
- Multi-Sensor operation
- Calibrated beam pattern
- 8Hz read rate
- End user solution
- Ideal for industrial use

4-20HR-MaxSonar®-WR™

- Calibrated beam pattern

HUMANDATA

All series same pin assignmentAll series same pin assignment

Stamp size FPGA/CPLD Module
PLCC68 Series

ALTERA SeriesRoHS compliant

XILINX Series RoHS compliant

See all our products, A/D D/A conversion board,
board with FTDI USB chip and accessories at : www.hdl.co.jp/CC

from JAPAN

FPGA(Spartan-6, Spartan-3AN)
Oscillator, Configuration Device

FPGA(Cyclone V, Cyclone III,
MAX V, MAX II, ...)
Oscillator, Configuration Device,
FRAM, ...

Designed for 68-pin PLCC socket
Very small size (25.3 x 25.3 [mm])
50 I/Os (External clock inputs available)
3.3V single power supply operation

All PLCC68 Series are in stock@Amazon!!All PLCC68 Series are in stock@Amazon!!

the directory of
PRODUCTS & SERVICES

For current rates, deadlines, and more information contact Peter Wostrel at 978.281.7708 or circuitcellar@smmarketing.us.

IDEA BOX

http://www.triplc.com/cci.htm
http://www.myropcb.com
mailto:sales@maxbotix.com
http://www.maxbotix.com
http://www.ccsinfo.com/CC215
mailto:sales@ccsinfo.com
http://www.hdl.co.jp/CC
mailto:circuitcellar@smmarketing.us
www.allelectronics.com
www.ironwoodelectronics.com
www.picservo.com

CIRCUIT CELLAR • FEBRUARY 2015 #29580
TE

CH
 T

HE
 F

U
TU

RE

David Lynch owns DLA Systems
(www.dlasys.net). He is a software
consultant and an architect, with
projects ranging from automated
warehouses to embedded OS
ports. When he is not working with
computers, he is busy attempting
to automate his house and coerce
his two children away from
screens and into the outdoors to
help build their home.

By David Lynch

My first computer was a Cosmac Elf. My
first “Desktop” was a $6,500 HeathKit

H8. An Arduino today costs $3 and has more
of nearly everything—except cost and size—
and even my kids can program it. I became
an embedded software developer without
knowing it. When that H8 needed bigger
floppy disks, a hard disk, or a network, you
wrote the drivers yourself—in assembler if
you were lucky and machine code if your were
not.

Embedded software today is on the cusp
of a revolution. The cost of hardware capable
of running Linux continues to decline. Rasp-
berry Pi (RPi) can be purchased for $25. A
Beagle Bone Black (BBB) costs $45. An incre-
asing number of designers are building pro-
ducts such as Cubi, GumStik, and Olinuxino
and seeking to replicate the achievements of
the RPi and BBB, which are modeled on the
LEGO-like success of Arduino.

These are not “embedded Linux systems.”
They are full-blown desktops—less periphe-
rals—that are more powerful than what I ow-
ned less than a decade ago. This is a big deal.
Hardware is inexpensive, and designs like the
BBB and RPi are becoming easily modifiable
commodities that can be completed quickly.
On the other hand, software is expensive and

slow. Time to market is critical. Target mar-
kets are increasingly small, with runs of a
few thousand units for a specific product and
purpose. Consumers are used to computers
in everything. They expect computers and as-
sume they will communicate with their smart
phones, tablets, and laptops. Each year, con-
sumers expect more.

There are not enough bare metal software
developers to hope to meet the demand, and
that will not improve. Worse, we can’t move
from concept to product with custom software
quickly enough to meet market demands. A
gigabyte of RAM adds $5 to the cost of a pro-
duct. The cost of an eight-week delay to value
engineer software to work in a few megabytes
of RAM instead, on a product that may only

ship 5,000 units per year, could make the pro-
duct unviable.

Products have to be inexpensive, high-qua-
lity, and fast. They have to be on the shelves
yesterday and tomorrow they will be gone.
The bare metal embedded model can’t deli-
ver that, and there are only so many software
developers out there with the skills needed to
breathe life into completely new hardware.

That is where the joy in embedded deve-
lopment is for me—getting completely new
hardware to load its first program. Once I get
that first LED to blink everything is downhill
from there. But increasingly, my work invol-
ves Linux systems integration for embedded
systems: getting an embedded Linux system
to boot faster, integrating MySQL, and re-
commending an embedded Linux distribution
such as Ubuntu or Debian to a client. When
I am lucky, I get to set up a GPIO or write a
driver—but frequently these tasks are done by
the OEM. Today’s embedded ARMs have eve-
rything, including the kitchen sink integrated
(probably two).

Modern embedded products are being
produced with client server architectures by
developers writing in Ruby, PHP, Java, or Py-
thon using Apache web servers and MySQL
databases and an assortment of web clients

communicating over an
alphabet soup of pro-
tocols to devices they
know nothing about.
Often, the application
developers are working
and testing on Linux or
even Windows desktops.
The time and skills nee-
ded to value engineer
the software to accom-
modate small savings
in hardware costs do

not exist. When clients ask for an embedded
software consultant, they are more likely after
an embedded IT expert, rather than someone
who writes device drives, or develops BSPs.

There will still be a need for those with the
skills to write a TCP/IP stack that uses 256
bytes of RAM on an 8-bit processor, but that
growing market will still be a shrinking por-
tion of the even faster growing embedded de-
vice market.

The future of embedded technology is more
of everything. We’ll require larger and more
powerful systems, such as embedded devices
running full Linux distributions like Ubuntu
(even if they are in systems as simple as a pet
treadmill) because it’s the easiest, most affor-
dable solution with a fast time to market.

The Future of Embedded Linux

Once I get that first LED to blink everything is downhill from there.

But increasingly, my work involves Linux systems integration for

embedded systems: getting an embedded Linux system to boot

faster, integrating MySQL, and recommending an embedded Linux

distribution such as Ubuntu or Debian to a client.

http://www.dlasys.net

Each month, you’re challenged to find an error in a
schematic or in code that’s presented on the challenge

webpage. Locate the error for a chance to win prizes and
recognition in Circuit Cellar magazine!

Prizes such as a NetBurner MOD54415 LC Development kit or
a Circuit Cellar subscription will be announced each month.

MONTHLY

ENGINEERING CHALLENGE

Sponsored by NetBurner

Participate: circuitcellar.com/engineering-challenge-netburner
Launch: 1st of each month

Deadline: 20th of each month

No purchase necessary to enter or win. Void where prohibited by law. Registration required. Prizes subject to change based on
availability. Review these terms before submitting each Entry. More info: circuitcellar.com/engineering-challenge-netburner-terms

www.circuitcellar.com/engineering-challenge-netburner
www.circuitcellar.com/engineering-challenge-netburner-terms

We bring the full range of Electronic Contract
Manufacturing services to your fingertip!

This is the only place where you would put all
your eggs in one basket to get fastest time to
market. From concept design to prototype to
 full turnkey production on all your
 electronic products.

ENCLOSURES

KEYPADSASSEMBLYFABRICATION

www.PCBnet.com
 847-806-0003 sales@PCBnet.com
 Certified Woman-Owned Small Business

 Imagineering

Winner
Family Enterpreneurship

Award 2014

http://www.PCBnet.com
mailto:sales@PCBnet.com

	Circuit Cellar - Feb. 2015 - Issue 295
	Editor's Letter
	Supporting Companies
	TOC
	Q&A: Carmen Parisi
	Editors' Picks
	Client Profile
	Electronics Testing Platform
	Five-Function, Network Connected Signal Analyzer
	Reverse Engineering Review
	Budgie: An Arduino-Based Tube Stereo Preamplifier
	Essential Electromagnetic Compliance
	The DIY Approach to ISE Project Management
	Estimating Your Embedded Systems Project
	Let's Count Errors
	Solid-State Lighting
	Test Your EQ
	Untitled
	Tech The Future

