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Application Engineering
An Interview with Carmen Parisi
Carmen Parisi is an applications engineer who co-hosts an engineering 
podcast in his spare time. In this interview, he describes his work, shares 
some engineering tips, and  tells us about a fun prank he played on an 
unsuspecting designer.

CIRCUIT CELLAR: Where are you located?

CARMEN: Currently, I’m living and working 
in Raleigh-Durham, NC, around the Research 
Triangle Park area between the two cities with 
my wife and new dog Sadie. Kelly and I moved 
down about three years ago from Buffalo, NY, 
and really like it here. There’s a lot of tech 
companies and engineers around, tons of stuff 
to do, and great food and beer scenes. Plus, 
as a hearty Northerner, I get to laugh at the 
“cold” winters we experience. Come summer, 
though, I melt into a puddle on the pavement. 
Snow all the way for me, but Kelly disagrees.

CIRCUIT CELLAR: When did you decide to 
pursue electrical engineering and why?

CARMEN: Ever since I was a kid I had a 
fascination with tools and how things worked. 
I would always have a toy sword and various 
tools stuffed into my belt and would volunteer 
to help my dad around the house building a 
deck around the pool or fixing the fence.
 Once I got into high school, I took a few 
basic engineering courses during which time 
I got bit by the engineering bug. The course 
that really “doomed” me to a life of electronics 
was a Robotics course taught by my favorite 
teacher C, as we called him. He put me through 
my paces learning how to solder, reading 
schematics, programming in BASIC, and 
robbing Fort Knox using a LEGO Mindstorms 
robot. C’s class solidified my choice to go to 
college for engineering, and shortly thereafter, 
I picked electrical over mechanical for my 
major.  

CIRCUIT CELLAR: When was the first time you 
used a microcontroller in a project?

CARMEN: If we’re counting LEGO Mindstorms, 

then the Robotics class in tenth grade with C 
where we had to build a robot to lift a golden 
brick and run away with it (thus “robbing Fort 
Knox”). I met all the individual milestones 
with my group for the project, but we couldn’t 
get the whole thing working smoothly from 
beginning to end. I guess that was my first 
time learning how to successfully fail too which 
has turned out to be a very useful skill.
 My first real microcontroller experience 
was the summer after sophomore year when 
I took a college course at a local community 
college offering a few classes to high school 
students interested in engineering. During that 
course I learned more basic circuit theory, 
got introduced briefly to SMT soldering, and 
built some robots using the Parallax BOE Bot. 
Looking back, I’d say this was the time my 
analog career kicked off as I slowly started 
to realize that I was more interested in the 
circuits themselves than the overall robot.

CIRCUIT CELLAR: Tell us about your 
university-level schooling.

CARMEN: I still consider myself a student in 
that I’m always looking to learn new things 
and grow as an engineer, but my formal 
schooling is over for the foreseeable future. In 
2011, I completed a combined BS/MS degree 
in Electrical Engineering at the Rochester 
Institute of Technology in Rochester, NY. I 
initially started off interested in robotics but 
after working with a great analog designer on 
my first co-op at GE, I switched into the analog 
circuit and semiconductor track and never 
looked back.

CIRCUIT CELLAR: Can you tell us about your 
work in graduate school? 

CARMEN: Sure thing. My graduate work was 
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primarily with the Communications professor 
who needed a proof of concept built to test 
out a theory that looked plausible on paper. 
Prior to my joining the Comms Lab, my advisor 
and two past grad students had worked out 
a method of securing wireless channels using 
the randomness of the channel itself. There 
was an initial front end of sorts to test the idea 
out but I don’t think it was ever tested.
 I looked over the circuit design, decided 
to scrap it and start fresh, and immediately 
realized I had a big job ahead of me. Cue the 
analog professor becoming my co-advisor. 
Mixing circuits, active filters, phase detectors, 
ADCs, and communication theory swam 
through my head as I slowly cajoled the circuit 
to life. Two PCB revisions later the circuit 
worked in that it took the RF input signal and 
spat out some bits at the other end, but after 
my advisor applied his algorithm to the data, 

we weren’t able to generate symmetric keys 
on different boards. Whether this was from 
an error in theory or with my board I never 
found out, as I ended the project there to focus 
on my full-time job leaving with a grad paper 
instead of a full thesis.
 I still have all my old lab notebooks, 
schematics, and board layouts on my bookshelf 
at home. I think the files are sitting on a hard 
drive somewhere too. Looking at them now, I 
can spot a lot of little errors I’d like to fix due to 
my inexperience at the time and some maybe 
a few not so little errors too. 

CIRCUIT CELLAR: What did you do after 
school? 

CARMEN: After I left RIT, I moved down here 
to Raleigh-Durham to start my career as an 
Applications Engineer working on switching 
regulators with Intersil. Back in 2009 I had 
done a summer stint as an FAE at a small 
field office in Long Island with the company 
which got me interested in working in the 
semiconductor industry. 
 Life on the road as an FAE didn’t appeal to 
me after spending my college years constantly 
moving around for co-ops, so my former 
boss set me up with an interview here at the 
RTP design center. On the way down for the 
interview, I got stuck in Dulles for the night 
thanks to some bad weather in Rochester 
causing me to miss my connection. I wound up 
getting a bare 3 hours of sleep that night on 

an empty terminal bench. The next morning, 
groggy and sleep deprived, I suited up in the 
family restroom and flew out for six wonderful 
hours of technical interviews. I was absolutely 
wiped out by the end of the day but managed 
to survive the ordeal. The rest is history.

CIRCUIT CELLAR: Tell us about the work you 
are doing as an applications engineer for 
Intersil.

CARMEN: Well, for starters, being an apps 
engineer is exactly the rock n’ roll lifestyle I’m 
sure all your readers expect it to be. I roll into 
the office every morning and have the roadies 
warm up my iron for me!
 In reality though, I work on buck regulators 
for computing applications like notebooks, 
tablets, ultrabooks, with maybe a bit of desktop 
work from time to time. Most of the parts I 

work on are for the primary 
core voltage on Intel processors. 
Sometimes, should the part 
integrate multiple regulators, I’ll 
work on a graphics rail or one 
of the other many voltage rails 
present on a motherboard. For 
each new processor tock (tick? 

I always confuse the two), Intel releases a 
laundry list of specs that have to be met in 
order to provide power to their CPUs and my 
parts are designed to those specs. 
 When I work apps on a brand spanking new 
chip, I’ll first work with the design engineers 
to run some feasibility studies and help define 
any new features for the IC. These tests 
range from tuning a similar part to the new 
Intel specs to see if the control scheme hits 
any corners or has stability issues to beating 
up some power FETs to determine if they can 
handle the new current requirements we have 
to meet. Once the chip tapes out, I’ll start 
work on preliminary documentation—a rough 
datasheet draft or early reference design based 
on feasibility testing and simulations—for the 
field to use when working with customers. 
During this time, I also design the evaluation 
board I’ll use to validate the part and send to 
customers for sampling.
 The real meat and potatoes of my job is 
silicon validation. I’ve got an exhaustive 
spreadsheet of bench tests to do that 
functionally verify the IC over a wide range 
of corners. The first few weeks after silicon 
comes back I’m working full throttle, round 
the clock if need be, to make sure there are 
no show stopping bugs we need to address. I 
never see my office during validation. Instead 
I’m spending all my time in the lab hunched 
over the eval board or squinting at my scope. 
Things calm down slightly after the initial 
validation, but the work is still nowhere near 

When I work apps on a brand spanking new chip, I’ll first 
work with the design engineers to run some feasibility 
studies and help define any new features for the IC. 
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done. Now I’m working with design and test 
engineers to debug any issues that crept up 
during validation and implement fixes. Ideally, 
a board-level change is found because PCB or 
apps level schematic changes are much easier 
and cheaper than silicon spins. In conjunction 
with this work, I’ll also refine my reference 
designs and documentation as well as work 
with the field on initial customer designs by 
answering questions and checking over layouts 
and schematics to make sure everything’s 
optimal for their builds. 
 Up until the part releases, I’ll continue 
cycling through validation, debug, and 
customer support as needed, squeezing in 
documentation when I get a chance too. At 
any given time, I’m also supporting old parts 
still in production or, if I’m in a lull with my 
work, getting pulled onto other chips to help 
out other apps engineers in a jam.
 The last part I released, 
and my first as the lead 
apps guy, was the ISL95813, 
a single phase regulator 
for Haswell and Broadwell 
systems. My next part is 
scheduled for release next 
year which I can’t talk too 
much about, but it’s really cool.

CIRCUIT CELLAR: During your time at Intersil, 
you must have learned some important 
lessons about professional engineering. Can 
you share one or two things you took from 
the experience?

CARMEN: Most importantly, good 
communication skills are key. A large chunk 
of my job is talking to other engineers and 
customers across the country and overseas. 
Their whole interaction with me is through the 
emails and reports I send out and I want to 
make sure they’re top notch. You don’t need 
to be a poet laureate by any means, but if you 
come across like a rock head, it will be much 
harder to get taken seriously and problems 
will drag out longer than necessary. Proofread 
your work; make sure you’re getting your point 
across clearly; and tailor your email, report, 
PowerPoint, whatever, to your audience’s level 
of technical expertise. Study up on how to make 
a slideshow that won’t bore your audience or 
read a technical writing guide. It can’t hurt.
 Secondly, document, document, document—
even if it’s only for your own reference. And 
keep it somewhat organized so you can find 
what you need again without too much hassle. 
Yes, it can help CYA, but also I’ve saved myself 
a ton of time not redoing the same derivations 
or looking back at a difficult test setup I had 
documented in my notebooks. It’s especially 
nice being able to pull up old data from past 

parts to see why the heck we did what we did 
years later.

CIRCUIT CELLAR: Tell us about your most 
recent electrical engineering project. What 
did you build and why? 

CARMEN: Well, I can’t talk too much about 
work since all my projects at the moment are 
either customer related or under development, 
but suffice it to say I’m working on a lot of low 
power, multi-role chips.
 Outside of work though for nearly two 
years now I’ve been co-hosting a podcast 
which keeps me plenty busy. The show’s 
called The Engineering Commons (http://
theengineeringcommons.com) and it gets 
released every other week by myself and three 
other engineers scattered across the US. It 
was originally started by Chris Gammell and 

Jeff Shelton, but when Chris left the show for 
other projects back in 2013, I threw my hat 
into the ring when Jeff put the word out he 
was looking for new co-hosts. We discuss the 
engineering discipline as a whole rather than 
focus on any one field and some of our favorite 
topics include education, the value of co-ops, 
life in the workplace, and the stories of other 
engineers we bring on to interview. 
 The semiconductor field is pretty niche, 
and so through the show, I get exposed to all 
sorts of new ideas and philosophies, whether 
it’s from researching a topic when coming 
up with show notes or hearing the stories 
of engineers and professors from across 
the globe. Some of my favorite episodes are 
the ones while interviewing a guest I barely 
have to say anything and not just because I 
hate hearing my voice when I re-listen to an 
episode! Hearing someone get really into a 
story and talk about their passion I can’t help 
but get drawn in and become excited myself.  
All us engineers are alike; no matter the field 
once you get us going about that tricky bug 
we finally tracked down, the ridiculous meeting 
that happened the other day, or those ah-ha 
moments when a solution just clicks in your 
head we just can’t help but gush and it makes 
for great content.
 I’ve put out nearly 50 episodes with Jeff, 
Adam, and Brian, and I can’t wait to do the 
next 50!

CIRCUIT CELLAR: On FakeEEQuips.com, you 

The last part I released, and my first as the lead apps guy, 
was the ISL95813, a single phase regulator for Haswell and 
Broadwell systems.

http://theengineeringcommons.com
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write: “In my brief time as an engineer, I’ve 
come to realize that I’d much rather spend 
hours at a bench with an o’scope and an 
iron looking for the cause of an oscillation 
than slogging through a pile of code to find 
a missing semi-colon or parenthesis.” Ok, 
but must you code at least some of the time, 
right?

CARMEN: Surprisingly, no. But that is changing 
somewhat as the nature of my job evolves with 
time. Don’t get me wrong, I can code, but it’s 
neither my forte nor can I say I like it all that 
much. I do use Excel, MathCad, and various 
simulators to do some basic calculations and 
plot data, but never firmware development or 
anything along those lines. 
 That being said, I am learning Python on 
my own time to do some longer term projects 
at work I cooked up for myself and I do toy 
around with at home with an Arduino. I guess 
I’m not a complete code curmudgeon, but the 
overwhelming majority of my time is spent on 
the bench counting nano-Coulombs of charge 
stored in FETs during their deadtime period or 
dancing on the edge of a transient response 
spec to see if just one more cap can come off 
from the output filter and I’d have it no other 
way.

CIRCUIT CELLAR: We read through your 2013 
EEWeb blog post, “Capacitor Voltage Ratings 
in VCORE Applications.” Can you provide 
some component picking tips here for our 
readers? Perhaps you’ve learned a few things 
since writing the post?

CARMEN: In regards to regulators, sure, I can 

share some quick rules of thumb that have 
worked for me. Pick the biggest inductor, 
in terms of physical size, you can for an 
application. A physically big inductor means 
you’ll have lower DCR (less DC loss, better 
efficiency) and better thermal performance. 
If you have a regulator with the power FETs 
integrated this counts double because with a 
good layout the inductor can help pull heat 
out of the IC package and keep the FETs happy 
while loaded. Picking the actual inductance 
value is worthy of an article in and of itself 
as you trade-off between several factors like 
current ripple, DCM output voltage ripple, and 
overshoot on load current release. 
 Another tip is don’t cheap out on ceramic 
caps. All caps are not created equal, and that’s 
actually what inspired my EEWeb article. I was 
seeing a difference in transient performance 
between two eval boards, one populated in 
house, one built up elsewhere, and I was in the 
lab late that night figuring out root cause. Turns 
out when we built up boards in our lab we used 
good-quality MLCCs giving better performance 
for the same number of caps on the output. In 
my inexperience I never called out a specific 
part number for the output ceramics in the 
BOM for the assembly house because I didn’t 
think it mattered. Well, the board house just 
used whatever was on hand leading to my late 
night. Who has two thumbs and always specs 
his favorite caps now? Carmen Parisi, nice to 
meet you. For space-constrained applications 
cheap MLCCs could mean another four or five 
pieces are required to meet Intel specs due 
to their poor high frequency performance on 
repetitive load scenarios. 
 Sadly, as with all such rules, these ones 
apply until they don’t at which point you’re 
probably pulling your hair out trying to get a 
design to work before you realize it or have 
some requirement you can’t negotiate in your 
favor. Not that I’d know from experience or 
anything (he mumbled looking at his shoes).

CIRCUIT CELLAR: Tell our readers about the 
prank circuit gag you pulled on the designer 
you worked with. And can you share an image 
of the prank circuit? 

CARMEN: A good way through the 813 
development I found some problems that ended 
up being non-issues because I misinterpreted 
a spec, had a test setup issue, or made a silly 
component choice in my design. The designer 
started ribbing me a bit by immediately calling 
everything a board issue from that point on. 
This kind of back and forth goes on all the time 
between apps and design and it’s always good 
natured in tone. I didn’t take it personally and 
took strides to be more thorough before ringing 
alarm bells going forward but I couldn’t let him Carmen's jury-rigged circuit
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get way Scot-free. 
 With my boss’ permission I waited until 
a slow day came along and rigged up a little 
circuit to the bottom of the eval board that 
would overdrive the compensation node of 
our regulator, propagate through the control 
loop, and cause seemingly random spikes in 
the output voltage. I took some waveforms 
and sent them off to the designer explaining 
how I found an operational corner that 
affected regulation we needed to address. 

Since he was a thorough designer 
and liked to regularly pop into 
the apps lab I actually spent my 
morning running the tests he 
asked me to just to keep up the 
illusion something was wrong if 
he showed up. 
 I kept him digging through 
the schematics trying to find 
his mistake until mid-afternoon 
before I brought him in the lab 
and slowly flipped the board 
over while telling him I found the 
error was caused by a parasitic 
circuit. At this point a couple 
other engineers who were in on 
the gag had found reasons to 
be in the lab for the reveal and 
we all had a good laugh. The 
designer took it pretty well, and I 
even bought him a beer for being 
a good sport.

CIRCUIT CELLAR: A lot engineering students 
read Circuit Cellar. Do you have any advice 
for them as they start looking for their first 
internships or jobs?

CARMEN: My boss at GE told me after I got 
hired for my first co-op what made me stand 
out at the Career Fair, and during the interview 
process, was how excited I was taking the plant 
tour, seeing all the labs, and learning about 
the job’s day to day responsibilities. Looking 

Carmen's prank circuit diagram

Bad circuit waveforms 
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for your first co-op can be tough because you 
typically don’t have any industry experience 
or upper level design courses to boost your 
resume. Maybe you don’t even know which end 
of the soldering iron to hold so your passion 
is really the only card you have to play. Make 
sure it shines through! Now that I stand on 
the other side of the booth screening potential 
candidates I can say it truly does make all the 
difference. The students that stick in my mind 
are the ones who in the brief time we talk make 
me think they really care about the work they’ll 
do and I’m much more likely to recommend 
them to the managers back at the office.
 I talked earlier about the importance of 
communication and one thing that’s helped 
keep my skills sharp is volunteering at the NC 
Mini Maker Faire Learn to Solder booth. You 
really learn how to distill an idea to its core 
concepts when there’s a four year old wielding 
a hot iron and your fingers are on the front 
line.  I’d definitely recommend getting involved 
in a similar role to learn how to think on your 
feet and teach other what you know. 
 Another piece of advice I have to offer from 
my experience is no one really minds how 
many questions you ask them so long as they 
don’t feel like they’re doing your work for you. 
Practically every time (though thankfully not 
too often) I’ve gone up to a coworker for help 
the first thing I’m usually asked is: “What 
have you done already?” If my answer was 
along the lines of “Not much,” then I’m quickly 
shuffled out of their office mentally beating 
myself up because I didn’t put in a solid effort. 
Instead, if I show up with calculations, test 
results, or anything to show I’ve tried first, 
my coworkers are usually much more inclined 
to help me out.

CIRCUIT CELLAR: Tell us your thoughts on 
the future of electrical engineering? Is there 
a particular technology or area of EE that 
excites you?

CARMEN: One thing that excites me personally 
is “The End of Moore’s Law,” as I’ve seen it 
called in various articles. If and when we 
hit the limit of what we’re able to do with 
conventional transistors, what happens next? 
Will we have to focus on making firmware and 
software as efficient as possible or will some 
new, exotic technology emerge? How will it 
maintain backwards compatibility with the 
technology that exists today? Beats the hell out 
of me, but I can’t wait to see it. All I know 
is I had enough trouble doing semiconductor 
math in grad school, I couldn’t imagine trying 
to characterize and model one of these new 
3-D FETs for the first time. Someone else can 
lead that revolution. Call me when the circuits 
need designing!

 Outside of technology, I love talking about 
engineering education, and it’s a frequent topic 
we cover on The Engineering Commons. There’s 
a lot of really smart people working to shake 
up the education system whether it’s through 
expanding the Maker Movement, adding more 
practical hands-on classes to the curriculum, 
creating Renaissance Engineers, or doing 
away with degrees all together. I encourage 
everyone to listen to some of our episodes on 
the topic because it’s truly fascinating stuff. 

CIRCUIT CELLAR: Tell us about your personal 
workspace.

CARMEN: A quick aside about the office, the Dr. 
Seuss quote is a carryover from the previous 
owners whose son slept in the room. 
 In my office, where I record my podcast 
aside from a mic and headphones, there is 
a small power supply and hand-held DMM. 
Along with a small bin of scavenged parts 
that’s the extent of my electronics gear. Hardly 
anything to brag about but I get by. At some 
nebulous point in the future I’m hoping to get 
an inexpensive scope too but who knows when 
that will be. 
 Other than that I’m also outfitting my 
garage with a workbench and tool chests 
so I can keep all my stuff in one place and 
organized. Finally being able to do basic car 
repairs is awesome now that I’m not in an 
apartment and can store things like a jack 
and more than a standard toolbox worth of 
gear. I’m fortunate enough to get to do a lot 
of circuit hacking and crazy one-off designs 
during my day job debugging silicon (see my 
recent EDN article for one example), so I find 
the car work and general house repairs a nice 
change of pace from electronics.
 Having just moved into a house at the 
beginning of the year and so far all of our 
money has been sunk into making it look like 
real adults live inside instead of circuit cellar 
gear. I’m not complaining because I’ve been 
able to do a lot of tool shopping to pick up a 
few essentials and few “essentials” since I’ve 
never really gotten over my childhood hang up 
on tools and can always justify a purchase. 

Carmen's workspace
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WIRELESS CAN YARD LAMP CONTROL
John Dammeyer
Circuit Cellar 157, 2003

In addition to providing a sense of security from intruders, sensor-
controlled yard lamps make it safer for you to walk on your property 
after dusk. But they can pose problems, particularly when a flash 
triggered by a nocturnal animal awakens you from a dream. Other 
systems like solar-powered lights have problems, too. Wouldn’t it be 
nice to have more control over the technologies you use? Check out 
the CANRF module John built for yard lamp control.

Wireless Communications

The interface to the CANRF module is simple. The 
processor is marked as a PIC12C509, but you can use a 
PIC12C508 or PIC12CE674. You can install a 0-Ω R9 to allow 
for processor control of the power supply to cause the unit 
to power down and draw only microamps. Or, remove R9 
and connect the A/D channel 0 of the PIC12CE674 to a 
temperature sensor via J2.

These articles and others on topics relating to Wireless Communications are available 
in the CC Webshop. Go to www.cc-webshop.com. 

The module is mounted on a 2.625″ × 3.75″ metal plate. 
The battery holder for the four AA cells is screwed to the 
bottom, and the antenna is a quarterwavelength piece of 
solid 22-gauge wire.

MODULATION & DEMODULATION
Ed Nisley
Circuit Cellar 159, 2003

Our understanding of radio technology has 
come a long way since Hertz’s nineteenth-century 
experimentations. In this column, Ed shows you what 
a simple AM modulator does to a carrier and an audio 
tone. In addition, he describes how you can demodulate 
the signal to recover the audio.

A simple RC filter attenuates the unwanted signals and leaves a 
reasonably clean output. The frequency separation is much higher 
for real RF, making the filter correspondingly more effective.

An n-channel JFET serves as a voltage-controlled resistor that makes the op-
amp gain linearly proportional to the modulation input. The overall circuit 
is basically a two-quadrant multiplier that produces an AM signal at the 
carrier frequency.

http://www.cc-webshop.com
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WIRELESS MONITORING SYSTEM
Alberto Ricci Bitti
Circuit Cellar 167, 2004

In addition to providing a sense of security from 
intruders, sensor-controlled yard lamps make it safer 
for you to walk on your property after dusk. But 
they can pose problems, particularly when a flash 
triggered by a nocturnal animal awakens you from 
a dream. Other systems like solar-powered lights 
have problems, too. Wouldn’t it be nice to have more 
control over the technologies you use? Check out the 
CANRF module John built for yard lamp control.

The receiver has few parts. Pull-ups, an oscillator, reset generation, and EEPROM are 
all included in the MCU. Connections to LCD pins 15 and 16 (backlight) and R2 can vary 
to suit your LCD’s specifications. Older LCDs need a contrast control voltage to be set 
on pin 3. The relay can trigger a phone dialer when a trap triggers.

The receiver box is recycled from an old soldering station. The receiver is simple 
enough to be assembled on a prototype board. The display and keyboard are fixed 
to the front panel with thick double-adhesive tape.

Low Power ARM Module

OVER

30
YEARS OF

SINGLE BOARD
SOLUTIONS

Since 1985

Phone: ( 618) 529-4525 · Fax: (618) 457-0110 ·  www.emacinc.com

http://www.emacinc.com/products/system_on_module/SoM-A5D36

SoM-A5D36

EQUIPMENT MONITOR AND CONTROL

Industrial Temperature

l Atmel ARM Cortex A5 536Mhz Processor
l 4GB of eMMC Flash
l 512 MB of LP DDR2 RAM
l 16MB of Serial Data Flash
l 22 GPIO (3.3V) Lines
l 6x Serial Ports 
l 24-bit LCD Controller
l Up to 720P Video
l Touch Controller
l External Address/Data Bus
l Internal Real time clock/calendar 
l 4 PWM Channels, 5 Timer/Counters
l 10/100/1000 BaseT Ethernet
l 2x USB 2.0 High Speed Host ports
l 1x USB 2.0 High Speed Host/Device port
l 6 channels of 12 bit A/D (0 to 3.3V)
l 200 pin SODIMM form factor (2.66" x 2.375")

Designed and manufactured in the USA, the SoM-A5D36 is a System on 
Module (SoM) based on the Atmel ARM Cortex A5 ATSAMA5D36 processor. 
This low power, wide temperature ARM 536 MHZ SoM utilizes 4GB of 
eMMC Flash, 16MB of serial data flash, and up to 512MB of LP DDR2 RAM. 
Like other modules in EMAC's SoM product line, the SoM-A5D36 is 
designed to plug into a custom or off-the-shelf carrier board containing all 
the connectors and any additional I/O components that may be required. 
Qty 1 pricing is $155. Please contact EMAC for OEM & Distributor Pricing.

http://www.emacinc.com/products/system_on_module/SoM-A5D36
http://www.emacinc.com
mailto:orders@lemosint.com
www.lemosint.com
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DUAL ETHERNET MODULE OPERATES  
AS INDEPENDENT PORTS OR SWITCH

The NetBurner MOD54417 network core module 
provides 10/100 Ethernet connectivity with two Ethernet 
ports. The ports can operate independently, each 
with its own MAC address, or as an Ethernet switch, 
simplifying network infrastructure (i.e., daisy chaining) 
by enabling Ethernet devices to connect through it.

The module is industrial temperature rated (–40 to 
+85°C) and also provides: 8 UARTs, 4 I2C, 2 CAN, 3 SPI, 
1-Wire, a MicroSD flash card socket, 42 digital I/O, eight 12-bit 
analog-to-digital inputs, two 12-bit digital-to-analog outputs, and five PWM 
outputs.  Wireless 802.11 b/g/n communication is available with the optional Wi-Fi 
add-on.

The NetBurner Network Development Kit (NNDK) provides a complete software and tools 
package including the Real-Time Operating System, full featured TCP/IP Stack, Web Server, 
DHCP Server, Eclipse development environment, C/C++ compiler and debugger.  The NNDK is focused on 
ease of use and you will have your first custom program running within a few hours of receiving the kit. The 
price of the MOD54417 ranges $94 to $129.

NetBurner
www.netburner.com

QUAD OUTPUT PROGRAMMABLE UNIVERSAL PMIC

Exar Corp. recently announced the XR77129, a quad 
output programmable universal PMIC with an input operating 
voltage range of 6 to 40 V. Its patented control architecture 
is well suited for 40-V inputs using a 17-bit wide PID voltage 
mode VIN feed forward architecture. This controller offers 
a single input, quad output, step-down switching regulator 
controller with integrated gate drivers and dual LDO outputs. 
It can also monitor and dynamically control and configure 
the power system through an I2C interface. Five configurable 
GPIOs allow for fast system integration for fault reporting 
and status or for sequencing control.

The XR77129 can be configured to power nearly any FPGA, 
SoC, or DSP system with the use of Exar’s PowerArchitect 
and programmed through an I²C-based SMBus compliant 
serial interface. PowerArchitect 5.2 has been upgraded to 
support the additional capabilities of the XR77129 including 
output voltage ranges beyond the native 0.6 to 5.5 V with the 
use of external feedback resistors. The XR77129 wide input 

voltage range, low quiescent current of 450 µA (standby) and 
4 mA (operating) make it a logical choice for a wide range 
of systems, including 18 to 36 VDC, 24 VDC or rectified AC 
systems used in the industrial automation and embedded 
applications.

The XR77129 is available now in an RoHS-compliant, 
green/halogen-free, space-saving 7 mm × 7 mm TQFN. It 
costs $9.95 in 1,000-piece quantities.

Summary of features:

•       6 to 40 V input voltage
•       Quad channel step-down controller
•       Digital PWM 105 kHz to 1.23 MHz operation
•       SMBus-compliant I²C interface
•       Supported by PowerArchitect 5.2 or later

Exar
www.exar.com

http://www.netburner.com
http://www.exar.com
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solutions add 
value for our 
customers

Support every 
step of the way 
with open 
source vision

Embedded 
systems that 
are built to  
endure

We’ve never 
discontinued a 
product in 30 
years 

DESIGN YOUR SOLUTION TODAY
CALL 480-837-5200

Features can include:
5, 7, and 10 Inch Touchscreens

Up to 1 GHz ARM CPU, 2 GB RAM, 4 GB eMMC Flash

Fanless Operation from -20 ºC to 70 ºC

Optional Cellular, WiFi and XBee Radios

Supports Android & Linux with Fast Boot Times

Ethernet, USB, DIO, CAN, RS-232, Modbus, SPI

Touch Panel Computers
Panel Mount or Fully Enclosed

Series start at

$409
Qty 1

Qty 100

$369

Pricing starts at
$129

Qty 1Qty 100

$168

TS-7670 Industrial Computer
GPS Radio and Cellular Modem

Guaranteed available until 2025

Easy development w/ Debian and Linux 2.6
Boots quickly to your Embedded Application

Low power with 10mW sleep state

Bene�ts:

-40 to +85C, 100% soldered-on components

454MHz ARM CPU

Up to 256MB RAM

1x USB Host

4x DIO, 2x CAN

2x mSD Card Socket

2GB NAND Flash

1x Battery Backed RTC

2x COM, 1x RS-485

1x 10/100 Ethernet 1x Temperature Sensor

Features:

Coming Soon:  
TS-7680:  Like the TS-7670 w/ WiFi & Bluetooth

low cost plastic
enclosure available

TS-TPC-8390-4800 Rear View TS-TPC-8390-4800 Angled View

www.embeddedARM.com
www.embeddedARM.com
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NEW STM32 MICRCONTROLLERS IN SMALL MEMORY SIZES
Nordic STMicroelectronics’s new STM32F446 microcontrollers 

feature ARM Cortex-M4 based processing combined with 256- 
or 512-KB on-chip flash memory options. In addition to using 
STMicro’s ART Accelerator, the microcontrollers feature smart 
architecture, advanced flash technology, and an embedded ARM 
Cortex-M4 core to achieve a performance of 225 DMIPS and 608 
CoreMark at 180 MHz executing from embedded flash.

Key features include:

• At 180 MHz, the STM32F446 delivers 225 DMIPS/608 
CoreMark performance executing from flash memory 
with 0-wait states. The DSP instructions and the floating-
point unit expand the range of addressable applications.

• Using a 90-nm process, the current consumption in 
Run mode and executing from flash memory is as low 
as 200 µA/MHz at 180 MHz. In Stop mode, the power 
consumption is 50 µA typical.

• Two dedicated audio PLL, SPDIF input, three half-duplex 
I²S, and two serial audio interfaces (SAI) supporting 
full-duplex I²S as well as time division multiplex (TDM) 
mode.

• Up to 20 communication interfaces (including 4x USARTs 
plus 2x UARTs running at up to 11.25 Mbps, 4x SPI 
running at up to 45 Mbps, 3x I²C with a new optional 
digital filter capability, 2x CAN, SDIO, HDMI CEC and 
camera interface)

• Two 12-bit DACs, three 12-bit ADCs reaching 2.4 MSPS 
or 7.2 MSPS in interleaved mode up to 17 timers: 16- 
and 32-bit running at up to 180 MHz

• Easily extendable memory range using the flexible 90-
MHz memory controller with a 32-bit parallel interface, 
and supporting Compact Flash, SRAM, PSRAM, NOR, 
NAND and SDRAM memories

• Cost-effective NOR flash extension with the 90-MHz Dual 
quadSPI interface supporting memory-mapped mode

• STM32F446 samples are now available for lead 
customers. Volume production is scheduled for Q1 2015 
in packages from a tiny WLCSP81 measuring 3.728 × 
3.85 mm to a 20 × 20 mm LQFP144 with 256- or 512-KB 
flash memory, all with 128-KB SRAM. 

Pricing starts at $3.75 for the STM32F446RC in a 64-pin 
LQFP64 package with 256-KB flash memory and 128-KB SRAM 
for orders of 10,000 units.

STMicroelectronics
www.st.com

NEW EZ APP LYNX LIBRARY FOR SMART BLUETOOTH SENSORS
CCS C-Aware IDE now includes the EZ App Lynx 

library. Quickly create a Bluetooth wireless sensor, or 
controller, that may be viewed or managed on a paired 
mobile device using the EZ App Lynx Android app.

The free EZ App Lynx Library was created to shorten 
the design time for smart Bluetooth app development. 
With EZ App Lynx, and no required hardware or software 
expertise, the library removes the barriers to entry for 
smartphone app developers who want to take advantage 
of a growing number of Bluetooth enabled smartphones 
and tablets. The new library allows for any GUI, on the 
App, to be created at run time from a PIC program. The 
library offers many useful sensor interface components, 
which allow for: Status Bars, Gas Gauges, Sliders, Buttons, 
Text Fields, and more.

EZ App Lynx Library Features and Advantages:

• No app design knowledge required
• Source code libraries included with all CCS C Compilers
• Included with maintenance update download
• EZ App Lynx App

• Available for Android in Google Play Store (iOS 
available soon)

• Build your own EZ App Lynx App in minutes with 
simple C library calls on the PIC

• Quick and easy prototyping

CCS
www.ccsinfo.com

http://www.st.com
http://www.ccsinfo.com
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EarthLCD.com
www.earthlcd.com
3184 Airway Ave., Suite J, Costa Mesa, CA 92626
CONTACT: Randy Schafer (randy@earthlcd.com)

FEATURED PRODUCTS: The ezLCD-405 5.6” VGA Smart, 
Touchscreen can be used as an intelligent display or as a 
standalone device, easy-to-use, command driven programmable 
firmware environment, and easy-to-customize your firmware 
with our free tools. The ezLCD-405 is based on the STMicro 
STM32F429 ARM M4 microcontroller. Also an optional ucLinux BSP 
is available. The arLCD by EarthMake.com is a Smart Touchscreen 
LCD combining an 3.5” Touchscreen, ezLCD GPU and the Arduino 
Uno designed for the maker market. 

WHY SHOULD CC READERS BE INTERESTED? arLCD is a full smart 
ezLCD GPU with the Arduino Uno R3 on the same PCB in a thin, 
easy-to-integrate package. It can be used in many applications 
such as thermostat control, lighting controls, home security, audio 
control, water level gauge, robotics, and industrial automation. The 
arLCD combines the best of ezLCD-3xx and the Arduino UNO. The 
arLCD is not just an LCD and you should not confuse it with a snail’s 
pace 2.8 LCD shield that uses almost all your I/O pins!

SPECIAL OFFER: Receive a 10% discount off your first EarthLCD 
product! Promo code: CIRCUITCELLAR

Circuit Cellar prides itself on presenting readers with information 
about innovative companies, organizations, products, and services 
relating to embedded technologies. This space is where Circuit 
Cellar enables clients to present readers useful information, special 
deals, and more.

Now offering student 
SUBSCRIPTIONS!

www.circuitcellar.com/subscription

Sign up today and SAVE 50% • Sign

When textbooks just aren’t enough, supplement 
your study supplies with a subscription to Circuit  
Cellar. From programming to soldering, robotics 
to Internet and connectivity, Circuit Cellar delivers 
the critical analysis you require to thrive and excel 
in your electronics  engineering courses.

http://www.earthlcd.com
mailto:randy@earthlcd.com
www.circuitcellar.com/subscription
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This is a bit different from most Circuit 
Cellar projects. It’s a professionally 

designed, open-source hardware and 
software product. I got tired of duplicating 
many facets of embedded computers in my 
instrumentation applications. So, I created 
a standard platform (base unit) that drives 
the typical input and output requirements 
of any instrument. This includes a standard 
2 × 16 LCD, 25 switches, and 10 LEDs (see 
Photo 1). Note that this is not a prototyping 
system. This is designed to go directly into 
production. The base unit hardware design 
and software are free for noncommercial and 
commercial purposes. (Use at your own risk!) 
All specialized plug-in boards that will follow 
are for noncommercial use only.    

The object of the base unit is to provide 
a platform for the development of a series 
of very inexpensive, yet high-performance, 
professional test instruments. The first 
plug-in instrument is a sweep generator. It’s 
digitally synthesized, sweeps from 3 Hz to 25 
MHz (Nyquist limit), has 0.3- and 3-Hz steps 
with 50 PPM accuracy, differential outputs, 
operates in burst or continuous modes, low 
distortion sine wave (0.1%), triangle wave, 
square wave, linear or log sweep, fixed 
frequency and single-step modes, internal 
and external control, EEPROM save of up 
to eight set-ups, directly drives 51-Ω loads 
and 8-Ω speakers, and a has lot of other 
nice features. It also has a true marker/
cursor (not marker generator) that precisely 

Electronics Testing 
Platform (Part 1)

Gerard’s affordable, multifunctional 
test instrument would be a handy 
tool for anyone focused on 
rapid product development. 
In this article, he explains 
how he engineered the 
base unit, which is 
a platform for the 
development of test 
instruments. Next 
month he details the 
construction of a plug-in 
sweep generator board.  

By Gerard Fonte (US)

PHOTO 1
The base unit is a fixed-form-factor 
product development system. Adding 
an internal plug-in board and changing 
the front-panel overlay creates a new 
product.

Base Unit 
Construction
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identifies the frequency at any point in 
the sweep on your oscilloscope. But that’s 
the teaser for the next installment. (Other 
upcoming plug-in test instruments include 
a micro-ohmmeter—yes, it measures 
millionths of ohms—a pico-ammeter, an AC 
mains analyzer, and others.) 

The base unit is also different from other 
development systems. It’s designed around 
reuseable hardware and software modules. 
This makes product development much 
faster. The 2 × 16 character LCD, 10 LEDs, 
and 25 switches are fixed in hardware. This 
means that the driver software for these is 
also fixed. There is absolutely no rewriting of 
code to change pin assignments and so on. 
Additionally, the hardware was designed to 
use the minimum number of microprocessor 
resources. The LCD uses seven I/O pins, the 
LEDs use four pins, and the switches use only 
one pin. That leaves 19 available I/O pins, as 
well as most of the special features.      

Most products will not need all of these 
switches and LEDs.  We’ll see later that it’s 
a simple matter to fabricate a professional-
looking overlay to mask out these unneeded 
components. The software supports larger 
LCD modules, if needed.

PIC MICROPROCESSOR
I chose a Microchip Technology PIC16F887 

8-bit processor for a number of reasons. It 
has several nice features: 8-KB program space 
(flash memory), 368 bytes of RAM, 256 bytes 
of EEPROM, a 10-bit ADC, two pulse-width 
modulators (PWMs), three timer/counters, 
an internal oscillator, and more. It only costs 
about $3.50. But the major reason for choosing 
the PIC16F887 was the tremendous amount of 
free support directly from Microchip. MPLAB 
from Microchip is a complete development 
system that has everything you need to get 
up and running, including: assembler, editor, 
debugger, programmer (software), project 
manager, and more. It’s easy to use and very 
well documented. And it supports all devices 
from Microchip.  

The only hardware you need is their 
programmer. The PICkit-2 costs about $35 
(PG464120) and is widely available (see 
Photo 2). This programs nearly all of their 
products directly. It also allows in-circuit, 
real time debugging. This is an absolutely 
great feature. You can put a break-point in 
your program and then run the hardware 
with real inputs and outputs. When you get 
to your break-point, the system stops and 
displays any variables you want. Then you 
can single-step through the code and watch 
the variables change. It’s much, much easier, 
faster and more accurate than running a 
simulation.

I/O BOARD
The base unit is comprised of four 

components: an LCD, a microprocessor board, 
an I/O board, and a case/power supply. The 
I/O board was designed to be as flexible as 
possible. You can use SMT (1206 size) LEDs or 
through-hole LEDs. You can use SMT resistors 
(1206 size) or through-hole resistors. And 
finally, you have the choice of using 6-mm 
square (0.24”) four-pin switches or 6-mm, 
2-pin switches (see Photo 3).

PHOTO 3
How to use one analog pin to read 25 
switches and four pins to drive eight 
LEDs

PHOTO 2
PICkit-2 programmer and debugger
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I chose 25 switches because it seemed that 
the typical 4 × 4 matrix of 16 switches might 
be too small. It seems very possible that 
future modules would require a hexadecimal 
input, so a 16-switch keyboard wouldn’t 
have anything left over for other functions. 
Normally a 5 × 5 matrix of switches would 
require 10 pins on the microprocessor. Since 
this is way too many pins to commit for just 
switches, I used a different approach.  

Figure 1 shows how these 25 switches are 

read by a single pin. A simple resistive divider/
ladder was used. It connects to an analog I/O 
pin of the microprocessor. Each switch closure 
will provide a particular voltage so it is pretty 
easy to figure out in software which switch 
was pressed. 

There is a little trick used to make the 
software easier. Since we are only using the 
top 8 bits of the 10-bit ADC, the voltage range 
is 256 counts. It would be nice if each switch 
voltage was exactly 10 bits apart instead of 

FIGURE 1
Twenty-five switches are read by a 
single pin.

FIGURE 2  
This is a schematic of the 
microprocessor board. R2 does 
double duty. C5 and C9 are 
nonpolarized electolytics.
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10.24 counts (i.e., 256 counts/25 switches). 
The trick is to add a 26th resistor that is 
0.6× the other resistors. In this way there 
will be 250 counts for the 25 resistors and 
6 counts for the 26th resistor for a total of 
256 counts. Placing this 26th resistor at the 
top of the ladder “removes” 6 counts from 
full-scale. Therefore, the switch values will 
start at 0 (no switch pressed) and go by 10s 
to 250. It’s very convenient and it only costs 
one additional resistor.

The actual resistor values aren’t critical 
but should be in the 500 Ω to 2 kΩ range 
and have 1% tolerance. For best operation, 
the A/D expects to see less than 10-kΩ input 
impedance. Since both VCC and ground are 
defined as “zero” ohms impedance, the 
highest impedance will be at the center of 
the resistor ladder. This is about 12 kΩ for 
1-kΩ resistors. But we aren’t concerned with 
absolute precision and we are only using 8 
bits of a 10-bit ADC. So, using 2-kΩ resistors 
will work acceptably well. I used 1.58-kΩ 
resistors. This made the 26th resistor 948 Ω 
(0.6 x 1.58 kΩ), but a 1-kΩ resistor worked 
fine.  An additional 1-MΩ (R2) to ground is 
needed to drain off any floating charge on 
the input pin when no switch is pressed (see 
Figure 2). 

There is the valid question of the 
approach’s reliability. Can we be sure 
that different manufactured units will be 
consistent? Or will there be a need to tweak 
the software and hardware? To answer the 
questions, I built eight I/O boards—six used 
through-hole resistors and two used SMT 
resistors. Two used “948” ohm resistors (750 
and 200 Ω in series) for the 26th resistor 
(both through-hole) and six used 1-kΩ, 1% 
resistors. I ran a statistical analysis to 
calculate the mean and standard deviation of 
all the 25 possible switch-press resistances 
(without the 1-MΩ pull-down resistor). The 
worst-case switch (at the end of the resistor 
string) had a standard deviation of only 
82 Ω. Since the difference between switch 
resistances is 1,580 Ω, this corresponds to 
a difference of over 19 standard deviation 
units or “19 sigmas” between switch values. 
The “one failure in a million” quality control 
procedure is only “6 sigmas.” The resistance 
ladder is very reliable.   

But what about A/D conversion error? 
Is this a possible source of concern? The 
10-bit ADC can resolve 1,024 steps. The 
difference between adjacent switches is 
40 of these steps. If you sum all the worst 
possible errors in the ADC, they only come 
to six steps. The A/D conversion error is not 
a concern, either.        

Ten LEDs are used on the I/O board. 
Again, using 10 independent pins for these 

is too wasteful of microprocessor resources. 
I used a “Complementary Drive” approach 
from the Microchip’s application note TB029. 
Just four pins are needed to drive up to 12 
LEDs.  The key to understanding this circuit 
is to realize that only two pins are set as 
outputs at any time: one high and one low. 
The other two lines are set as inputs and are 
effectively disconnected from the circuit. By 
properly choosing which pin to drive high and 
which pin to drive low, any particular LED 
can be turned on. In general, multiple LEDs 
cannot be on at the same time; however, 
there are special cases. Having only one LED 
on at a time is not a particular problem. Many 
applications require multiplexing the LEDs 
to make it appear that several are on at the 
same time.  

The four LED pins and the three pins for the 
switches (VCC, GND, and switch voltage) are 
brought out to a seven-pin header strip (J4). 
This plugs into the microprocessor board. The 
four LED lines are connected to the low-order 
Port D pins on the microprocessor. I chose 
these pins because they had no other function 
than digital I/O. This leaves the multipurpose 
pins available for future applications.  

The choice for using bit 3 of Port B (which 
can be configured as an analog input) for the 
switch analog input is special. Port B bit 3 is 
also the “Low-Voltage Program” pin. It is not 
used by the regular PICkit-2 programmer. 
The default state for this pin is to activate 
the low-voltage option. So, if you don’t 
know (or remember) to properly configure 
this pin at start-up, you can enter the “Low 
Voltage Programming State” if this pin floats 
high (which is very common). The result is 
a microprocessor that appears completely 

PHOTO 4
Before and after adding the laminate overlay. Note that the high-intensity LEDs shine through.
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dead. My solution is to always pull this pin low 
to eliminate that possibility. Since I already 
have a pull-down resistor on that pin, it’s very 
convenient to use it for the switch input. 

By using inexpensive “tactile” switches 
and a little ingenuity, you can make a 
“membrane” switch panel. The basic method 
for this is shown in Photo 4.  The front panel 
is then covered with a paper overlay which is 

“laminated” on both sides with 2” wide, clear, 
cellophane tape used for packaging. (This is 
available at your local office-supply store.)   
You can be as creative as you like.  Double-
sided tape holds the membrane in place. 

The top of the switch actuator should 
be even with the top of the plastic cover or 
perhaps slightly higher (according to your 
taste). In order to do this, the holes must 
be big enough to partially pass the switch 
body (unless you choose a switch with a long 
actuator). A small spacer (a 4-40 nut) will 
work for the switches shown (which are fairly 
standard). Different switches may require 
different spacers. Note that if you mount the 
through-hole resistors on the same side of 
the PCB as the switches you must be careful 
to make them lie perfectly flat. Otherwise, 
they can be too high and cause a problem 
with the spacing. If you use a PCB with plated 
through holes, you can mount the resistors 
on the bottom of the board and eliminate this 
concern. 

The LEDs can be the standard T1 3/4 size, 
but they will protrude from the cover. You can 
also use SMT LEDs. If you go this route, use 
super-bright parts (600–1,000 Mcd). These 
are so bright that they will shine right through 
the paper and tape overlay. 

LCD
Often LEDs simply do not provide enough 

information. For that reason, an LCD is 
included. A commonly available 2 × 16 display 
was chosen (Hantronix HDM16216). It has the 
connector above the display. In addition, it is 
3.15” × 1.42” (80 mm × 36 mm) and uses either 
a 4- or 8-bit interface. It turns out that these 
LCDs (incorporating an HD44780 controller) 
are incredibly generic. I referenced an AND 
LCD Products catalog from 1988 (an AND-491 
display), a Microchip Application Note written 
in 1997 (using a Hitachi LM032L display), 
and a couple of recent magazine articles. All 
displays had identical pinouts and identical 
software commands. The only difference I 
was able to find was a small timing variation 
during the initialization of the LCD. The 4-bit 
interface is used here to save I/O pins for 
future modules. 

Deciding which seven pins to connect to 
the LCD wasn’t simple. I wanted to leave 
as many multipurpose microprocessor pins 
available for future use, especially the analog 
pins. I wired the R/W interface line directly 
to ground to save an I/O pin, so the LCD 
becomes write-only. I can’t see any future 
need to read the data in the LCD memory.  
The high-order Port C pins had secondary 
uses for serial communications which do not 
seem that useful for test and measurement 
designs.  The four LCD data connections went circuitcellar.com/ccmaterials

SOURCES

HDM16216 LCD

Hantronix | www.hantronix.com

PIC16F887 Microcontroller

Microchip | www.microchip.com

PHOTO 5
The back of the LCD  showing added 
pins (mates to J2). Note the nylon 
spacer nuts. The top of I/O board 
is shown and metal spacer-nuts are 
below board (not visible). I/O board 
connector mates to J4.

PHOTO 6
Top view of microprocessor board. Header pins around microprocessor mate to future plug-in modules.  
Mounting holes align with LCD screws but friction from J2 and J4 pins seems sufficient.  

http://www.hantronix.com
http://www.microchip.com
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there. However, the low-order pins are used 
for the internal timers. These are useful, so I 
had to connect the remaining two LCD digital 
lines to different ports. The last free plain, 
digital I/O pin was Port D bit 4. I connected 
the LCD Enable line there. The other Port D 

pins were also associated with the timers so I 
didn’t want to use them. I ended up using Port 
E bit 1 for the R/S LCD line. It’s a plain analog/
digital line with no other special functions. 
This leaves all of the special-function analog 
pins available as well as all the timer pins.  

EMBEDDED DEVELOPMENT TIPS AND TECHNIQUES
With all those pins, it’s easy to lose track of which pin is 

which. The simple answer is to label them.  Use your word-
processor to create the label you want. Mine shows the 
port identifications, power, and every fifth pin number (see 
sidebar Photo 1.)  If you can’t create a list to size, make it 
an image and shrink it as needed. Print it, cut it out, and 
attach it to the chip with double-sided tape.  You will be 
amazed at how much time and grief it saves.

Using your oscilloscope or voltmeter to measure the 
output of a pin gets old real fast.  Instead, build a simple 
10-pin logic-state display (or two). All you need is a 
10-segment bar graph LED, 20-pin socket, 10 resistors, 
a 10-pin SIP header, and a ground clip (see sidebar 
Figure 1). The resistors can be a SIP network instead of 
individual parts (but the most they come in is nine so you’ll 
still need one discrete resistor). The value of the resistors 

depends on the efficiency of the display and the capability 
of your microcontroller. Typical values are 510 to 2,000 Ω. 
Mount them next to the LED (see sidebar Photo 2) so that 
they will not touch/short other components. This works 
especially well in single-step mode. (And, of course, this 
can certainly affect input pins. So be careful.)  

While the PICkit2 device ($35) is an integrated part 

of the free Microchip MPLAB Development System, the 
“PICkit2 Programmer” software is a separate free download 
application direct from Microchip that allows it to act as a 
simple three-pin logic analyzer. (It isn’t included as part of 
Microchip’s MPLAB.) Obviously, three pins aren’t very much 
and it’s not very sophisticated or fast. But for debugging 
microcontrollers, it’s fast enough. It’s perfect for serial 
data streams where you have Clock, Data, and Enable lines. 
And yes, it works for any TTL circuit or microcontroller. 
It’s a completely stand-alone application. Sidebar Photo 3 
shows the output of a discrete TTL counting circuit. 

SIDEBAR PHOTO 2
Here are two LED bar graph logic displays. The right one shows the SIP 
header connected to the LED bar graph socket and the positioning of the 
resistors better. (A socket is not an absolute requirement.)

SIDEBAR PHOTO 1
LEDs and labels make things a lot easier.  (Full-on green LEDs appear blue 
for some unknown reason.)

SIDEBAR PHOTO 3
Separate software turns the PICkit2 programmer into a three-channel 
logic analyzer.

SIDEBAR FIGURE 1
The poor-man's logic-analyzer can't get much simpler.
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I promptly drafted the CCP2 timer/PWM line 
of Port C to provide the analog voltage to the 
control the LCD contrast (LCD pin 3). Software 
sends out a PWM signal that is filtered into 
a DC value (see Figure 2). (The contrast is 
software controlled.) Once set up, this timer 
needs nothing more from the microprocessor 
and operates entirely on its own. I tested this 
with a variety of LCDs. Curiously, the yellow 
back-light version required a negative LCD 
bias voltage. Hence, a somewhat complicated 
circuit is needed to support all tested versions.

The value of back-light resistor (if needed) 
depends on the display. My yellow backlight 

used 51 Ω while the white one needed 200 Ω. 
Verify what you need with the manufacturer’s 
datasheet.

A 16-pin header strip is soldered to the back 
of the LCD circuit board which is mounted to 
the front panel with four screws and connects 
to J2. I had to open up the 2.5-mm mounting 
holes very slightly to pass 4-40 hardware 
(0.098” vs. 0.107”). In order to make the face 
of the display was flush with the cover, a 4-40 
nylon nut/spacer is needed. I had to trim the 
sides of spacer nuts to fit. Additional nylon 
nuts were used to mount the circuit board 
because metal nuts would have touched board 
traces. Photo 5 provides a view of this. Note 
that the display PCB and I/O PCB should be the 
same height from the front panel for proper 
connection to the microprocessor board (via J2 
and J4).  

MICROPROCESSOR BOARD
The microprocessor board is not much 

more than a simple 5-V, DC power supply, the 
microprocessor, some connectors, and a few 
passive components. The power supply is a 
standard three-terminal type. 

Header-strips are placed adjacent to the 
microprocessor. This is where the various 
future modules will connect. These pins are 
also very useful during testing and debugging. 
Photo 6 shows the top physical layout.

Photo 7 shows the bottom layout view. 
These two header-strip-sockets (J2 and 
J4) plug into the LCD and I/O board. Their 
placement is critical for proper connector 
mating. Drilling the mounting holes for the 
I/O board a little oversize helps in getting 
things aligned. 

There is a six-pin, right-angle, header-
strip is used to connect to the PICkit2 for 
programming and debugging (J1). A three-
pin straight header-strip (J5) connects to the 
power. Friction from the connectors is usually 
sufficient to hold the microcontroller board in 
place. However, it can be mounted in place 
by increasing the length of the LCD mounting 
screws to 1″ or longer. (Use spacers or extra 
nuts to set the proper height.)  

A 14-pin socket is available for crystal 
or oscillator options. Normally, the internal 
microprocessor oscillator is used, but future 
projects may need the precision of a crystal. The 
socket is wired to accept four-, six-, eight-, and 
14-pin DIP oscillators directly. Some oscillators 
have an “Enable” function that turns them on 
or off. This is brought out to a pad for possible 
future use. You can also use a bare crystal 
with capacitors. Just connect them as shown 
in Figure 3 using a DIP-header.  The capacitor 
values depend on the crystal. The RC oscillator 
option can also be implemented.

I also included a reset switch (SW1). Call 

PHOTO 7
The bottom of the microprocessor board. Socket headers mate to J2 (I/O board) and J4 (LCD).

FIGURE 3
Crystal oscillator hook-up

PHOTO 8
The bottom of the case holds AC components.
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me old-fashioned but I like to be able to reset 
the microprocessor without having to remove 
power and wait for the capacitors to discharge. 
Being in control of the microprocessor is 
important to me. 

Lastly, it is important to remember that 
future modules will plug into the header strips 
around the microprocessor. This means that 
all components (excluding the power supply) 
must be shorter than 0.400″. This is only a 
concern for the PWM capacitors C5 and C9. 
Either use a short type or else lay them flat 
instead of mounting them straight up. 

AC POWER SUPPLY
The AC power supply is just a transformer 

switch and fuse (see Photo 8).  Since future 
instruments will probably need op-amps and 
other non-five volt devices it’s necessary to be 
flexible.  A 24-V, center-tapped transformer 
can provide appropriate bipolar voltages. 
I used 0.25” quick connects, a power entry 
module, and a lighted DPST power switch. The 
transformer connects to the microprocessor 
board via a three-pin connector (yellow).     

FREE STUFF  
All the driver software is available for 

free (for noncommercial and commercial 

use) on the Circuit Cellar FTP site. There are 
lots of routines for driving the LCD, lighting 
the LEDs, and decoding the switches. It also 
includes all of the support routines (like 
timing and A/D code).

Additionally, there is a front panel 
diagram that provides the dimensions and 
placements for the holes on the front panel 
(non-commercial use only). The easiest way 
to construct the front panel is to print out 
the diagram as actual size. Then tape this 
to the front panel and drill/cut through this 
template. Double-sided tape works best.

PLUG-IN BOARD
This is the first part for a number of future 

test instruments. The basic hardware and 
software is fixed, which makes product 
development very rapid. In the next 
installment, I’ll describe a small and 
inexpensive plug-in board (2.5″ × 3.8″) and 
turn the base unit into a nice sweep generator. 
Of course, you can design your own plug-in 
boards for whatever you want. That’s another 
nice feature. 

Author’s Note: A parts list is posted on the 
Circuit Cellar FTP site: ftp://ftp.circuitcellar.
com/pub/Circuit_Cellar/2014/.

such as this book, 
designing a microprocessor
                                 can be easy. 
Okay, maybe not easy, but certainly less 
complicated. Monte Dalrymple has taken his 
years of experience designing embedded 
architecture and microprocessors and compiled   
his knowledge into one comprehensive guide to 
processor design in the real world. 

cc-webshop.com

Verilog HDL
With the right tools

Monte demonstrates 
how Verilog hardware 
description language 
(HDL) enables you 
to depict, simulate, 
and synthesize an 
electronic design so 
you can reduce your 
workload and increase 
productivity.
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www.saelig.com
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I wanted my students in a Communication 
Theory course I teach to get an appreciation 

for real-world signal sampling. So, initially, I 
set out to design a network-connected ADC 
system accessible to my students over a LAN. 
I intended to enable them to modify various 
sampling parameters and then observe the 
impact on data integrity. But, as the project 
progressed, my design evolved and I ended 
up with a much more capable system. The 
resulting five-function, network-connected 
test tool was my entry (project number 
WZ1281) to the WIZnet Connect the Magic 
2014 Design Challenge (see Photo 1). The 
WIZnet WIZ550io Ethernet module-connect 
design functions include a digital oscilloscope, 
spectrum analyzer, signal generator, noise 
generator, and a filter response viewer (see 
Figure 1). Using the system’s PCB running 
Microchip Technology dsPIC33 firmware and 
a PC application running the user interface 

(UI)—both of which communicate over a 
network—you have a very powerful signal 
analysis tool (see Photo 2). 

SYSTEM CAPABILITIES
The test tool is capable of displaying a time 

plot of the input signal (digital oscilloscope) 
and the Fourier spectrum (spectrum analyzer) 
of that signal. Additionally the system has 
the ability to generate test signals (signal 
generator) or noise signals (noise generator) 
that can be fed into the system’s input for 
analysis or used in an external user application. 
And finally, the system gives you the ability to 
deliver an impulse into an unknown filter and 
subsequently transform the impulse response 
to view the filter’s transfer function (filter 
response viewer).

Figure 1 shows where the system’s various 
functions are executed. The antialiasing 
filtering, signal sampling, signal generation, 

Five-Function, Network-
Connected Signal Analyzer

This five-function, network-connected test tool would be an excellent addition to 
your workbench. The system includes a digital oscilloscope, spectrum analyzer, 
signal generator, noise generator, and filter response viewer.

By Neal Martini (US)

PHOTO 1
The analyzer project 



noise generation, and impulse generation 
(used in filter response mode) are handled by 
the dsPIC33-based hardware PCB. The design 
is networked to a PC using a WIZ550io module. 
The PC application provides the main UI. In 
the UI, all critical parameters are passed to 
the PCB over the network. The PC also does 
the heavy lifting when it comes to spectrum 
analysis. Very high-speed fast Fourier 
transforms (FFT) are executed here. The UI 
also provides you with very sophisticated 
display capabilities. Additionally, the PC 
application enables you to generate synthetic 
signals and find the signals’ spectrum. This 
standalone capability does not require the 
PCB to be connected. It provides an easy way 
for you to exercise the UI before the PCB is 
constructed. 

HARDWARE
Figure 2 depicts the main IC hardware 

components: a Microchip Technology 
dsPIC33EP512MC502, a WIZ550io module, 
and Analog Devices ADP151 low-dropout, 
low noise voltage regulators. I chose the 
dsPIC33EP512MC502 for a variety of reasons. 
First of all, I wanted to use a DIP package so 
that my students could build a PCB of their own 
if they chose to without having to solder a fine-
pitch SMT device. Because high accuracy is 
desired for quality ADC sampling, I wanted an 
external 8-MHz crystal. Utilizing the dsPIC33’s 
internal PLL, the microprocessor runs at 60 
MIPS. This ensures we can keep up with 
the high-speed sampling and data transfers 
required to deliver excellent performance. The 
dsPIC33 also has about 50 KB of RAM, which 
allows large data blocks to be saved without 
the need for external memory. Also, since any 
sampling system needs an analog interface, 
the fact that this dsPIC33 has a built-in 
amplifier is ideal. Additionally, the dsPIC33 
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FIGURE 1
An overview of the five-function test tool
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PHOTO 2
PC  application user interface
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contains several high-quality peripherals 
needed for this application. The peripherals 
and their functions include: Timers 1 and 3 
(precise control of sampling and DDS signal 
generation); high-speed PWM (DDS signal 
generation and noise generation); a SPI 
module (communication with the WIZ550io); 
ADC (high-speed, 10 bit/12 bit analog-
to-digital conversion); and an operational 
amplifier (front end antialiasing filter and 
buffering).

The WIZ550io module manages the 
communication to and from the PC over the 
network. The control and data transfers are 
easily handled utilizing the dsPIC33’s SPI 
communication port and a few control lines 
(RDY and RESET). Several passive components 
on the PCB are mainly used to accomplish 
antialiasing filtering and filtering for the PWM 
output. (I’ll describe those shortly.)

You’ll note that two separate 3.3-VDC 
regulators are included. This isolates the 

PHOTO 3
The UI showing a synthetic FM signal 
being specified

FIGURE 2 
The PCB schematic

ICD
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analog ADC supply and minimizes digital noise 
crossover. I selected the ADP151 because it 
has a very low output noise (9 µVRMS) and a 
very low dropout voltage (140 mV). The low 
noise ensures a pure ADC supply. The ADP151 
also requires very simple external filtering to 
get its job done.

Various connectors are included to provide 
programming capability (ICD), signal input, 
generator output, and impulse output. The 
WIZ550io module contains the Ethernet 
connector. 

SOFTWARE/FIRMWARE
The microprocessor firmware and the PC 

software are contained in two project files. 
The dsPIC33 firmware is written in C code 
using MPLABS X IDE (free from Microchip 
Technology). The project file is called 
WIZ1281_Micrchip_MPLX_dsPIC33_Project. 
The PC software is written in C# using 
Visual Studio 2010 Express IDE (free from 
Microsoft). The project file is called WIZ1281_
VisualStudio2010_C#_Project. In the following 
section, I break down where the various 
WZ1281 functions are executed.

In the dsPIC33EP5012MC502 firmware, 
you have: timer-controlled analog-to-digital 
conversion; timer-controlled PWM signal 
generation; timer-controlled noise generation; 
impulse generation; and communication with 
WIZ550io module for Ethernet connection to 
the PC.

In the PC software, you have: UI for 
selecting all control variables (Fs, N, Averaging 

n, ADC bit selection, FFT window type, etc.); 
plotting of input data, power spectrum and 
filter impulse response, and transfer function; 
synthetic signal generation to exercise the UI; 
and Ethernet communication with the PCB.

If you refer to the code posted on the Circuit 
Cellar FTP site, you’ll see that I included a folder 
called WZ1281_UI_Application_Installer. When 
the setup.exe in this folder is executed, the 
C# application WindowsFormsApplication1.
exe is automatically installed on your PC. 
To run the application, you must have 
Microsoft .NET 4.0 (or later) installed on 
your PC. You can download it separately 
from Microsoft (http://msdn.microsoft.com/
en-us/ library/5a4x27ek(v=vs.100).aspx), 
or you can download Microsoft’s Visual 
Studio 2010 Express (www.visualstudio.
com/en-us/downloads/download-visual-
studio-vs#DownloadFamilies_2) and the .NET 
framework will be automatically included.

 You can operate the UI application 
without the PCB attached. I added a synthetic 
signal generation capability to the UI so you 
can specify parameters for various sample 

ABOUT THE AUTHOR
Neal Martini holds an MSEE from the University of Missouri, Rolla. He is 
retired after 24 years of working for Hewlett-Packard in the LaserJet and 
InkJet printing businesses. In addition to being involved with a variety of 
boards, Neal works independently in product development in several appli-
cation areas. 

// Declare W5500 driver SPI Functions
    reg_wizchip_cs_cbfunc(wizchip_select, wizchip_deselect);
    reg_wizchip_spi_cbfunc(wizchip_read, wizchip_write);

//Functions
void  wizchip_select(void) {
    WIZCS = 0;}
void  wizchip_deselect(void) {
    WIZCS = 1;}
void  wizchip_write(uint8_t wb)
{
    uint8_t dummy;
    SPI1BUF = wb;   // write to buffer for TX
    while( !SPI1STATbits.SPIRBF );   // wait for TX complete
    dummy = SPI1BUF;                               
}
uint8_t wizchip_read()
{
    SPI1BUF = 0x00;   // write to buffer for TX
    while( !SPI1STATbits.SPIRBF );   // wait for TX complete
    return SPI1BUF;   // read the received values
}

LISTING 1 
Four functions control how the 
dsPIC33’s SPI peripheral talks to the 
WIZ550io

http://msdn.microsoft.com/en-us/library/5a4x27ek(v=vs.100).aspx
www.visualstudio.com/en-us/downloads/download-visual-studio-vs#DownloadFamilies_2
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signals (AM, FM, and Square Wave) and to 
then generate the signal’s spectrum. This 
enables you to interact with the UI and get a 
good idea of how it operates before a PCB is 
fabricated. Photo 3 is a screenshot of the UI 
showing a synthetic FM signal being specified. 
The upper plot is the FM time domain signal 
and the lower plot is its spectrum.

ETHERNET COMMUNICATION
Let’s briefly review how Ethernet 

communication is accomplished. On the 
microprocessor end of the communication, 
the ioLibrary_BSD drivers are used to handle 
the WIZ550io communication. (The drivers 
are available at http://wizwiki.net/wiki/doku.
php?id=products:w5500:driver.) In order 
to use these drivers, four functions had 
to be written to control how the dsPIC33’s 
SPI peripheral talks to the WIZ550io. 
Listing 1 shows the functions, including the 
declaration of these functions to the driver. 
Once this is done, communication with the 
WIZ550io and the PC is readily accomplished 
using the recv(sn,buf,size) and 
send(sn,buf,size) functions included in 
the ioLibrary_BSD drivers.

A default IP address is assigned to the 
WIZ550io. But since I was attaching the 
WZ1281 to a classroom LAN, I needed to 
change the IP address. The classroom LAN 
had a TP-LINK router that has a default IP of 
192.168.0.1. In order to connect the system 

to the LAN, I needed to have the first three 
fields of the WIZ550io IP address match 
that of the router. Then the fourth field was 
arbitrarily assigned. I consequently assigned 
an IP of 192.168.0.123 to the WIZ550io. There 
are several alternatives I could’ve used here. 
I could’ve directly connected to a PC and 
then gone into the Windows Network Sharing 
options and assigned an IP. Alternately, I 
could’ve modified the firmware and software 
to dynamically assign an IP using the DHCP 
protocol in the router. I chose the simplest 
approach for this application. Incidentally, 
I also arbitrarily selected Port 4000 for this 
application. 

On the PC end of the Ethernet 
communication, the C# code required to 
establish a connection and pass commands and 
data back and forth is very straightforward. 
The TcpClient Class available in Windows 
handles the communication. Listing 2 is the 
code snippet to make the connection.

Once the connection is established, 
the TcpClient functions clientStream.
Write(TxBuff, offset, size) and 
clientStream.Read(RxBuff, offset, 
size) are all that is needed to pass 
commands and data between the PC and the 
design at very high rates. This turned out to 
be much easier than I had expected. Using 
the WIZ550io and some fairly simple code, I 
got a high-speed, network-connected device. 

As I mentioned earlier, the analyzer has 

var result = client.BeginConnect(IPAddress.Parse(“192.168.0.123”), 4000, null, null);
result.AsyncWaitHandle.WaitOne(TimeSpan.FromSeconds(1));        //timeout if no PCB
if(client.Connected)
     {
      clientStream = client.GetStream();   //get a client stream 
     }

LISTING 2
The TcpClient Class is used to establish 
the network link between the PC and 
the WIZ550io.

PHOTO 4
An example of the oscilloscope mode 
output

http://wizwiki.net/wiki/doku.php?id=products:w5500:driver
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five basic operating modes. Now let’s cover 
each one.

DIGITAL SCOPE
The digital oscilloscope (and sampling 

in general) operating mode is essentially a 
low-frequency sampling digital oscilloscope. 
Although it’s limited to a sampling rate of 
1.4 MHz (10 bit), it is very useful in many 
applications. Photo 4 shows an example of 
the oscilloscope mode output. The upper 
plot is the input data plotted versus time. 
In this case, the test signal connected to the 
system’s input is an AM signal generated by 
my HP signal generator. 

In the UI, you can select the precise 
sampling frequency (Fs, 1-Hz resolution), the 
number of samples N (20,000 maximum), and 
10- or 12-bit ADC. The plot update rate is 
determined by the size of N. For example, if N 
is 5,000, the display is updated approximately 
eight times per second on my laptop PC. The 
UI plot has cursor capability (shown in red) 
for selection/display of time, frequency, and 
magnitude information. There is also a very 
powerful zoom capability available. Visual 
Studio 2010 Express makes adding these 
features a snap. 

The Digital Oscilloscope’s sampling front 
end consists of an antialiasing filter and an 
amplifier. The operational amplifier and the 
ADC are internal to the dsPIC33EP512MC502. 
The passive components are external. The 
filter architecture is multi-feedback (MFB). 
I used Microchip FilterLab 2.0 to calculate 
component values. The design is a two-
pole, low-pass filter with a cutoff frequency 
of 500,000 Hz. The PCB layout reflects this 
design.

Very early on, however, I realized that the 
operational amplifier located in the dsPIC33 
has a fairly large gain bandwidth product 
(GBWP) of 6 MHz. Consequently, signals 

above the ADC’s allowable sampling rates 
easily pass through the amplifier, although 
the amplitudes are attenuated somewhat. 
So, if you move the cutoff frequency of the 
antialiasing filter far up in frequency, you 
can see signals at much higher frequencies 
than the frequency of the ADC sampling. This 
type of sampling is called sub-sampling and 
allows you to use aliasing to your advantage. 
Consequently, I am currently using very 
soft filtering to allow this wide bandwidth 
capability.

R7 is set to 50 Ω to provide a standard 
test instrument input impedance. The signal 
gain of the amplifier is determined by R9 
and R8 (R9/R8 = 4 kΩ/1 kΩ = gain of 4). As I 
stated above, to soften the low-pass filter, I 
eliminated the second pole. R10 is therefore 
0 Ω and C12 is not loaded. C11 is a 10-pF 
capacitor providing of single pole near 4 MHz.

Since the ADC input needs to be between 
0 and 3.3 V, a 0.3-V reference is supplied to 
the plus input to the operational amplifier. 
The DC bias voltage that this generates at 
the ADC input is: ADCbias = (1 + R9/R8) VREF 
= 1.5 V. This is nicely in the middle of the 
operating range of the ADC, allowing bipolar 
signal input capability.

The range of input signal that can be 
applied is determined on the high end by the 
saturation point of the operational amplifier 
and, on the low end, by the number of bits 
in the ADC. Using the 12-bit ADC, there is 
a very linear response from 0.225 VRMS to 
22.5 µVRMS. For those of you familiar with the 
decibel (dB) terminology, this is a dynamic 
range of 80 dB, which is very respectable 
considering the simplicity of the hardware. 

Timer3 in the dsPIC33 is used to trigger 
the ADC. The trigger period is determined by 
the sampling frequency Fs requested by the 
user. The timer period set by PR3 is:

PHOTO 5
Analyzing an AM signal utilizing 
windowing to minimize leakage in 
the Power Spectrum
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FOSC of 120 MHz is selected to provide 
excellent resolution on the sampling period. 
Also, an external crystal is included to keep 
the ADC sampling jitter to a minimum. 
Incidentally, you may have noticed a box on 
the UI labeled “Low Spur Fs.” Although you can 
select any FS, this box calculates the sampling 
rate closest to the desired FS that minimizes 
jitter. Jitter results when the sampling period 
is not an exact integer multiple of the ADC 
conversion cycle time. You can decide to use 
the low-spur FS or not.

One final parameter to mention is the 
box labeled “ADCS” on the UI. ADCS is a 
constant used by the dsPIC33 to generate 
the ADC conversion clock period (TAD). TAD 
is calculated as follows: TAD = Tcy(ADCS + 1), 
where Tcy = 1/60 MHz.

Microchip Technology recommends 
minimum TADs of 75 and 117 ns for 10- and 
12-bit ADC, respectively. This is an ADCS of 
4 and 6, respectively. I found that you can 
go down to ADCS of 2 and still get excellent 
signal detection capability. This allows much 
higher sampling rates. The only thing that 
is degraded is that the magnitude accuracy 
degrades somewhat. It’s fun to play with 
this parameter and observe the impact on 
performance.  

SPECTRUM ANALYZER
A spectrum analyzer is a powerful tool used 

to analyze signals. It provides information 
about a signals makeup that cannot be seen by 
looking at the amplitude versus time version 
of a signal. Because of the inherent gain in the 
process of calculating the power spectrum, 
signals buried in noise can be detected with 

relative ease. The power spectrum produced 
by this design shows the breakdown of a 
signal into its sinusoidal components. The 
plotted spectrum is a power versus frequency 
representation that shows what frequency 
sinusoids are present and at what relative 
power level. There is an enormous amount 
of material available on spectrum analysis. 
Including a full explanation here would be too 
extensive. For the following discussion, I will 
assume the reader has a basic knowledge of 
what a spectrum and its uses. Let me state a 
few things that will help explain the capability 
of the system’s spectrum analyzer mode.

The FFT is a very fast and efficient algorithm 
widely employed that is used to calculate the 
power levels of N/2 frequency bins. The plot of 
these N/2 frequency bins versus power levels 
is the signal’s power spectrum.

The resolution of the resulting power 
spectrum is FS/N. For example, if N is 5,000 
and FS is 500,000 Hz, there will be N/2 (2,500) 
frequency bins in the output spectrum, spaced 
at FS/N (100 Hz). 

The larger the N value, the better the 
frequency resolution. Also the inherent gain 
of the FFT process increases as N increases. 
A rule of thumb here is that you improve the 
signal to noise ratio (SNR) by about 3 dB if you 
double N. The larger N also slows stuff down, 
however.

The sampling frequency FS, number of 

PHOTO 6
Display of a FSK encoded binary bit 
stream and its Spectrum

N
Spectrum Update 
Rate (Hz)

5000  8.33
10000  3.96
15000  2.48
20000  1.70

TABLE 1
Speed versus N
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samples N, number of averages (n), and 
window type can all be selected in the UI. 
Averaging here refers to straight arithmetic 
summing of the power magnitude levels 
and dividing by n. This type of averaging is 
called incoherent averaging and the resulting 
improvement to the SNR is approximately: 
10log10(√n). 

When a signal has sinusoidal components 
that do not fall into the exact center of one of 
the calculated frequency bins, a phenomenon 
called “leakage” occurs. When this happens, 
the frequency bins overlap and power 
spectrum distortion occurs. Windowing is a 
common technique used to minimize leakage. 
Simply stated, windowing is the process of 
taking the input signal and multiplying it by 
a shaped curve before the FFT is performed. 
This multiplication effectively softens the 
amplitudes of the time samples at the 
beginning and end of the block of samples. 
There are 6 different popular window types 
available in the UI.

Now let’s look at a few power spectra 
resulting from real data input into the system.  
The first example shows the spectrum 
generated when is the same AM signal shown 
in the digital oscilloscope discussion above is 
reused. However, in this test, windowing is 
applied (see Photo 5). First of all, note that 
the top plot now shows the AM signal after 
it is multiplied by the window function. Note 
how the amplitudes fall off as you approach 
the ends of the block of data. The bottom plot 
is the power spectrum. I am using the zoom 
capability here to show the spectrum detail. 
This is a classical sinusoidally modulated AM 
signal’s power spectrum. From the spectrum 
you can see that the sinusoidal tone (carrier) 
being modulated is at about 9 kHz (center 
tone). The spacing of the two side signals 
from the carrier tells you that the modulating 
frequency is 500 Hz. Also the level of the 
side signals indicates about a 50% level of 
modulation. That kind of information would 
be difficult to extract if you just look at the 
time based data. 

Photo 6 is another example. This is the 
spectrum of frequency shift keyed (FSK) 
signal used to encode a binary bit stream. 
You can see in the top plot the time domain 
data where the frequency switching is visible. 
Looking at the two spectrum peaks, you can 
see that the two FSK frequencies are 6,000 
and 9,000 Hz. The number of power spectra 
being averaged in this example is chosen to 
be 10 in the UI. 

The FFT and windowing are all done in the 
PC. These could be done in the microprocessor, 
but you would not get even close to the rates 
that the FFTs are done in the PC. The FFT 

// Receive data over the network
int read = 0, offset = 0, toRead = 2 * N;
while (toRead > 0 && (read = clientStream.Read(RxBuff, offset, toRead)) > 0)
     {
      toRead -= read;
      offset += read;
     }
           
DCterm = myFunctions.DCtermCalc(N, RxBuff, ScaleFactor);    //calculates DC term

//subtracts DC, scales for ADC bits, puts data in real part of din[]
myFunctions.Filldin(N, DCterm, RxBuff, ScaleFactor, AmpGain, din);
 
myFunctions.windowing(N, din, WindowType, 1, din);      //window data  
plotTime.PerformClick();       //plot input time series
fftwf.execute(fplan);          //Do FFT

//convert to dBm and average spectra (code not shown here)
            
plotFreq.PerformClick();  //plot frequency domain data (spectrum)

LISTING 3
PC code to get samples over the 
network and scale, window, FFT, 
and plot time domain and frequency 
domain data

Update
PWM Duty

cycle

Sine lookup table

PWM LPF Signal gen output

Phase accumulator

Phase phase increment

24 Bits

t

32 Bits

8 Bits

Address

0

255

+

FIGURE 3
The direct digital synthesis signal 
(DDS) generator
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library routines I am using were originally 
developed in 1999 (www.fftw.org). I was 
fortunate to find another source online that 
modified the original C-based code into a C# 
wrapped implementation (https://github.com/
tszalay/FFTWSharp). I extracted the pieces I 
needed into my C# application and interfaced 
the code to my UI. 

The overall speed of the spectrum 
analyzer mode is very good. The speed is of 
course dictated by the sample block size N 
selected. As I stated earlier, you want large 
N for higher spectrum resolution and small N 
for speed. The following data in Table 1 will 
give you an idea of the speed versus N trade-
off. The update rate includes all steps in the 
process: sampling, data transfer, windowing, 
and performing the FFT and plotting.

Finally, Listing 3 is a code snippet that 
is the heart of the PC based C# application. 
This is where all the signal processing takes 
place.

DDS SIGNAL GENERATOR
Figure 3 shows the direct digital synthesis 

signal (DDS) generator. I decided to add 
a simple signal generator to the system so 
that the students could exercise the spectrum 
analyzer without needing an external 
commercial signal generator. The generated 
signal can obviously be used to feed some 
external circuit if you need it. 

The DDS technique for generating 
sinusoids has been around for a while, so I 
am not claiming to be doing anything new 
here. Looking at the block diagram, you see 
a PWM attached to a low-pass filter (LPF). 
This combination acts essentially like a DAC. 
If the duty cycle of the PWM was constant, for 
example, the LPF output would be a DC value. 
If we vary the duty cycle to match the varying 
amplitude of a sine wave we want to generate, 
the LPF output will be that sine wave.

The dsPIC33 PWM is running at 468,750 
Hz (i.e., FSYS/256 = 120 MHz/256). This is 

PHOTO 7
Time and frequency output when the 
DDS Signal Generator is producing a 
10-kHz sine wave and is connected to 
the analyzers input.

// generation of signal generator lookup table; one cycle
for(i = 0; i<256; i++)          
        SIN8[i] = (uint8_t) (128 + 127 * sin((PI * i)/128) + .5);   //.5 
is for rounding

//calculate the phase increment
DDSd  =  ((FrequencyDesired * pow(2,32))/468750.0) + .5;

//Timer1 interrupt service routine
void __attribute__((__interrupt__, no_auto_psv)) _T1Interrupt(void)
{
PDC1 = SIN8[(DDSp>>24)];                //do table lookup using upper 8 bits of DDSp
DDSp += DDSd;       //increment phase accumulator
IFS0bits.T1IF = 0; //Clear Timer1 interrupt flag
}

LISTING 4
DDS Signal Generator code to create 
a look-up table, calculate the phase 
increment and update the PWM duty 
cycle

http://www.fftw.org
https://github.com/tszalay/FFTWSharp
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also the DDS update rate. Once per PWM 
cycle, I calculate the amplitude of the desired 
sine wave and then set the PWM duty cycle 
to generate that amplitude. To select the 
desired amplitude/PWM duty cycle, I used a 
one cycle sine wave table. I simply select the 
amplitude from the table that corresponds 
to where the desired sine wave would be in 
a sine cycle at the DDS update point in time 
and update the duty cycle accordingly. A 32-
bit phase accumulator (called DDSp in the 
code) is used to keep track of the phase of 
the desired sine wave. Once per DDS update 
cycle, the phase accumulator is incremented 
by what the phase increase (called DDSd in 
the code) is for the desired sine wave. The 
phase increment is calculated as follows: 
Phase increment = (232) FrequencyDesired/
DDS update rate. For example, if you want 
a 10,000-Hz sine wave, the phase increment 
would be 91,625,968. This value is added to 
the contents of the phase accumulator at the 
DDS update rate. Therefore the 32-bit phase 
accumulator accurately tracks the phase of 
the desired sine wave at any point in time. 
Since having a look-up table with 232 entries 
in RAM is prohibitive, we take the upper 8 
MSB and use them as the address into the 
single cycle lookup table.

Incidentally, one needs to be careful 
when selecting the cutoff frequency of the 
LPF located at the PWM output. You want the 
cutoff to be low enough to adequately smooth 
the PWM pulses (ripple), but high enough to 
pass the signal you are trying to generate. 
Fortunately, there is an online resource 
(http://sim.okawa-denshi.jp/en/PWMtool.php) 
available that makes the design process easy.

Photo 7 shows a UI output that results 
when a signal generator frequency of 
10,000 Hz is selected. In this test, the signal 
generator’s output is connected to the input 
of the WZ1281. The upper plot shows the 
signal generator’s output sine wave. It looks 
pretty good there. The spectrum shows 
the signal quality in more detail. You can 
see the 10,000-Hz signal, but you also see 
that there are other spurious components 
present. These distortions are down about 
40 dB from the desired signal, however, 
which is pretty good for a simple generator. 
I did this fairly quickly and intend to revisit 
the design and make some improvements 
to reduce the distortion components even 
more. A few improvements I intend to try 
are a larger look-up table located in ROM and 
faster DDS update rates. The pseudocode in 
Listing 4 shows the essential pieces of the 
DDS generator.

FILTER RESPONSE VIEWER
To understand what this operating mode is 

all about, take a look at the transfer function 
of a typical first order low pass filter in Max 
Kamenetsky’s demonstration, “Filtered Audio 
Demo” (http://web.stanford.edu/~boyd/
ee102/conv_demo.pdf). This particular filter 
has a cutoff frequency of 1,000 Hz. It shows 
what frequencies the filter passes and how 
frequencies are attenuated. As it turns out, 
this plot is actually the FFT of the filter’s 
impulse response. The beauty of this is that 
if you know an arbitrary filter’s impulse 
response, you can find its transfer function 
by taking the FFT of the impulse response. 
The next obvious question is: How do you get 
a filter’s impulse response? 

An impulse is simply a high amplitude 
pulse that exists over a very short period 
of time. In my project, I approximate an 
impulse by outputting a single 3.3-V pulse 
for one sample period of N samples and then 
output 0 V for the other (N–1) samples. If you 
feed such a pulse into and unknown filter, the 
resulting filter output is an approximation of 
the filter’s impulse response. If you FFT this 
response, you get an approximation to the 
filter’s transfer function! 

Now let’s look at a real example. I used 
a simple band-pass filter in this example. 
Figure 4 shows how things were connected. 
The component values are nominally L = 18 
µH and C = 1 µF. This band-pass filter has a 
resonant frequency equal to 37,513 Hz (i.e., 
1/(2∏√(LC)). Photo 8 depicts the UI that 
results when the filter analysis mode is on. 
The upper plot is the impulse response and 
the lower plot is the filter’s transfer function. 
Observe the band-pass filter’s peak in the FFT 
output. Very cool!

FIGURE 4
Test setup to demonstrate the Filter 
Response Viewer. With L = 18 µH 
and C = 1 µF, the band-pass filter’s 
resonant frequency is 37,523 Hz.

circuitcellar.com/ccmaterials
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PHOTO 8
Test band-pass filter impulse response 
and filter transfer function

Besides determining the transfer 
function of an arbitrary filter, you can use 
Filter Response Viewer to analyze unknown 
components. For example, if in the above test 
you used a known capacitor and an unknown 
inductor, you could read the resonant peak off 
the power spectrum and then use a resonance 
equation in reverse to estimate the L value. 
I intend to add this feature to the UI in the 
future.

NOISE GENERATOR
The noise generator uses the same PWM 

and LPF combination that is used for the 
signal generator. The difference, however, 
is that once per PWM cycle the duty cycle 
is changed to a random 8-bit number. The 
LPF output is consequently a random level. 
Photo 9 shows the system in the noise 
generation mode. Observe the random 
nature of the time domain data in the upper 
plot. The lower plot shows the FFT of this 
random signal. The noise is not “white” 

(flat across frequency), but it is still useful 
in many applications. Before I got the Filter 
Analysis mode working so successfully, I 
was using this noise signal to drive filters I 
wanted to analyze. To do this, you first get 
the spectrum of the noise signal generator 
connected to the system’s input, without the 
filter present. Then you save that spectrum 
by pressing the button in the lower right of 
the UI. Next, you insert the filter and press 
the Saved-Current button in the lower right 
of the UI. The spectrum is then the transfer 
function of the filter being analyzed. 

I guess this write-up got a little long. 
There is a lot here to talk about. There are 
also many improvements that I am 
contemplating. The next big feature I am 
going to attack is to add radio signal 
demodulation to the system’s feature set. 
Since I can already “see” signals up to several 
megahertz. By using simple demodulation 
techniques, I will be able to “listen” to all kind 
of radio signals.  

PHOTO 9
The Noise Generator connected to the 
analyzer produces random amplitude 
levels in the time domain data
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Reverse engineering is the process of starting 
with a finished product and finding out 

exactly how it works. Normally, an electronic 
project starts with a requirement from the 
customer. The engineer then prototypes 
and tests any new circuit designs, draws the 
schematic, lays out the board, writes the 
firmware, tests everything, and then repeats 
the design-fix-test process continually raising 
the quality, performance, and reliability of 
the system. When the product passes the test 
criteria and is ready, it is shipped to the end 
user. Reverse engineering is the opposite. The 
engineer starts out as the end user, discovers 
what the product does, studies how it works, 
and derives out the schematic from the board 
layouts and sometimes even works out the 
firmware. Reverse engineering is an extreme 
form of engineering. It’s like comparing a 
leisurely Sunday run to finishing a marathon 
or a hill climb to climbing Everest. (Note how 
sneaking in references to extreme sports 
makes this sound much cooler.) This article 
describes four separate reverse engineering 
projects and how the initial challenge was 

overcome. One of the projects involves 
reading the code from a locked Microchip 
Technology microcontroller.

PROJECT 1 
One of my colleagues, who is the 

biomedical manager at a large hospital, was 
having issues with hospital gas panels failing 
and wanted a cheaper repair option. The 
gas panels were designed and manufactured 
by a local company that had gone bankrupt 
several years earlier. After taking a unit away 
to look it over, I found that the gas panel had 
a bright green vacuum fluorescent display 
with connectors for up to 24 inputs. Each 
input would show whether the gas supply was 
normal or in alarm, and thanks to some clever 
design would also show on the display an 
open or short circuit on the cable to the gas 
cylinder. There were 0 to 5-V analog inputs. 
There was a rechargeable 3.6-V battery 
on each gas panel to save RAM memory 
on power off (now this is usually done with 
EEPROM memory). The problem was that the 
gas panel would lose its memory when the 
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battery failed or dropped below 2 V. Random 
characters would then appear on the screen, 
and the system error light would illuminate 
(see Photo 1). 

The suggestion was to look at the 
microcontroller since this is usually where the 
memory was stored. The microcontroller was 
the popular but now obsolete Motorola 6805. 
A quick glance at the datasheet showed that 
it had no EEPROM or nonvolatile memory (i.e., 
memory that is not affected by a power-off 
cycle). Looking at the chips, one of the eight-
pin chips was a Philips PCF8570 I2C memory 
chip with 256 bytes of memory and there 
were five of these making up to 1,280 bytes 
of memory. Since the display had one line of 
40 characters and there were 24 alarm inputs 
each with an alarm message, a start-up 
message, and a normal operation message, 
there needed to be at least 26 messages × 40 
characters or 1,040 characters, so this had 
to be where the message data was stored. 
The battery was the backup for this RAM, so 
it appeared the memory was battery-backed 
RAM (BBRAM). The memory voltage supply 
was held up by the battery, but when the 
battery failed, it dragged down the voltage 
supply rail. A quick inspection of the battery 
terminals showed some fuzziness and fine 
crystals indicating that it was leaking and was 
probably not operational any more.

To read the memory required an I2C 
reader. The easiest way to do this at the time 
was to make a prototype board using a Atmel 
ATmega32 and use two pins to drive the SDA 
and SCL lines. The output data was ported 
through a RS-232 converter to a computer. 
I wish I had more research here since I2C 
reader/writers are very cheap and I did not 
realize that the Atmel TWI port was actually 
an I2C port but with a different name due to 
the Philips trademark. Anyway, I read the 
datasheets for the I2C interface and made a 
small circuit which could read and write to 
one of the I2C memory chips. The I2C interface 
consists of Start bits, Write bits, Read bits, 
and Stop bits with the SCL clock line always 
being driven from the microcontroller but the 
SDA line being bidirectional (i.e., an input or 
an output).

After building the prototype and reading 
and writing to memory,  the circuit managed 
to read and write the whole 1,280 bytes of 
memory in the gas panel, which was quite 
easy since the memory chips addresses lines 
were sequential (i.e., 000 001 010 011 100). 
The microcontroller was removed from the 
PLCC socket during this process to prevent 
any spurious I2C communications. The next 
part was to read the memory from a working 
machine since the gas panel I had was now 
full of corrupted data. After a few trips to 

the hospital later, I had the memory in a 
file, and straight away, the alarm messages 
could be seen as ASCII data. Each message 
was preceded by one byte which determined 
whether the gas alarm input was a warning, 
an alarm or turned off (see Photo 2).

The last challenge was the system error 
light. Even though the gas panel could now 
be programmed with the correct messages, 
the system error light remained on. A quick 
solution was to remove the driving resistor to 
this light, but then that meant any real system 
error would be missed. Looking through 
the gas alarm panel memory again showed 
that each alarm message had a trailing byte 
which looked like a checksum. The simplest 
checksum can be found by adding up all the 
bytes and this almost worked. Then I realized 
that the trailing spaces in the alarm messages 
were also used in the checksum and the game 
was over. Since then, a lot of gas panels have 
been able to repaired using the prototype 
circuit.

PHOTO 1
Medical services alarm panel

PHOTO 2
Gas panel programmer
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PROJECT 2
The next project involved a beauty therapy 

device. This device involved a pump which 
supplies cyclic vacuum pressure to ladies’ 
bottoms (seriously) to turn golf ball skin 
textures into a ping pong texture (according 
to the advert). This is also called “body 
contouring.” The machine had a graphic 
monochrome display and had a countdown 
counter which recorded how many treatments 
were left. When the counter was at zero, a card 
could be swiped across the machine resetting 
the treatment counter to 25 or 50 more 
treatments. The problem was the customer 
could not source supply of these cards and 
asked if the cards could be replicated.

When the machine was disassembled, 
there were two boards, a power supply board 
and a control/display board. To remove the 
control board, I had to remove four PCB 
clips, and over one clip was a captive magnet 
which acted as a security device. On the other 
side, the RFID reader/write board could be 
inspected which showed a model number. 
A Google search revealed the manufacturer 
of the RFID cards was also in France (same 
as the manufacture of the machine). After 
several emails, I had all the datasheets and 
we purchased a few sets of the readers and 
cards to play with. 

The simple RFID reader/write used a basic 
TTL-based (0 to 5 V) serial port. Understanding 
how the interface worked was not trivial, but 
after a few, days the RFID interface started to 
work. Worryingly, the RFID card had a 64-bit 
encryption key. If each combination of the key 
was checked running at one test a second, it 
would take 58 billion years and I didn’t really 
have that sort of spare time, not to mention 
what the bill would be to the customer!

Then the project took a wrong turn. A cable 
between the power board and the control 
board had French-style blade connectors that 
were impossible to insert without shorting 
out two pins—nowhere near as good as the 
standard IDC ribbon cable box connectors. 
During one test, I noticed I had left this 
cable off the control board, which explained 
why there was no display, so I powered off 
the unit. Unknown to me at the time, the 
power board retained charge and the voltage 
levels were still active for a few hours when 
turned off especially with no load connected 
(i.e., the control board). Plugging the control 
board with the blade connector with power off 
created a small spark which was a bad sign. 
On the next power on, the display was blank 
and so the unit was now faulty. After a bit 
of cursing and venting over the next day, the 
best course of action was decided to let the 
customer know straight away and get another 
machine, and get this project finished before 
any more problems could happen.

The problem of breaking the 64-bit 
security code was proving to be a bigger hill 
to climb than at first thought especially since 
the hill was in the order of 58 billion meters 
times higher than expected (maybe higher 
than Everest). Sometimes the best way to deal 
with problems is to go around and not keep 
banging into them in order to get over them—
the so-called workaround or lateral thinking. 

So rather than breaking the code, what 
about programming a card and reader with a 
new code and then swapping the RFID reader 
out with the new reader? Since the data was 
sent through a serial port and serial ports 
cannot be encrypted, the best way would be 

FIGURE 1
The RS-232 to 5-V converter

PHOTO 3
RFID card programmer
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to swipe a card and eavesdrop on the RS-232 
lines at the same time. Since I had used the 
two cards I had, it was back to the customer 
to take one of the last cards he had and 
there were signs of the customer‘s patience 
wearing a bit thin now. Anyway, back at the 
ranch, I wired in a serial port on the laptop to 
eavesdrop and then took a break to prepare 
mentally (see Figure 1). When the card was 
swiped, it all worked perfectly, and I could 
see that 16 bytes were being read out of the 
RFID card (see Photo 3). One of the numbers 
was a 50 indicating 50 treatments, while 
another number was 90 for the number of 
days the card would be valid. And that was 
pretty much it. The process would now be to 
reprogram some RFID readers, which took 
around 10 s each, and then swap the RFID 
reader in each unit. The first beauty salon 
took around an hour and went well. The same 
day, three more machines were upgraded in 
various parts of the city and then I handed 
over the upgrade work to a service company 
who could travel into country areas. In the 
instructions there was a large message to not 
disconnect the interconnecting cable.

So overall, the project was mostly a 
success except for the one damaged machine. 
Later on, there was some more work done 
by reprogramming a lot of cards. Since each 
card took around 20 s to program, this was 
easy work compare to the original project.

PROJECT 3
The next project involved a business 

relationship between two companies that 
had soured. The contract assembly company 
had been making a PCB assembly for several 
years for a local company and doing an 
excellent job, so good that they decided it 
would be in everyone’s best interests if they 
not only manufactured the boards but also 
sold them direct to the public. The customer 
had paid for and owned the IP and was right 
to be outraged. 

While this project was simple, there was 
still 10 years of design behind it. The aim 
was to bring the design back in house. The 
schematic and layout could be worked out 
but writing the firmware from scratch was 
a formidable task. Using the board, the 
track connections were used to work out 
a schematic and this schematic was then 
used to re-layout the board. This layout was 
then checked against the original board and 
was a double check that the schematic was 
accurate.

With the firmware, a Microchip Technology 
PICkit2 was plugged into the board to read 
the firmware. After the program was read, 
it showed all zeros. It was unlikely that the 
real firmware would be all zeros and the 

PICkit showed in the configuration byte that 
the ROM lock bit was turned on. Well that 
was disappointing but to be expected. The 
next step was to call for reinforcements. 
The Arduino is an excellent kit that allows 
for fast prototyping with a free C compiler 
and IDE. Since Microchip makes available 
the programming interface in a datasheet, 
an Arduino Uno with a breadboard was used 
to build a custom Microchip programmer 
with the hope of finding a side door into the 
firmware. After all, apart from the three power 
pins (VCC/5V, GND, and VPP/12V), there was 
only the data and clock pins. How hard could 
it be? Well it took a full day of programming to 
write an Arduino sketch which could read and 
program the data to a new chip. One difficulty 
was to apply 12 V to the VPP pin before turning 
on the 5 V to the VCC pin. The most obvious 
way to read the firmware was to turn off the 
lock bit in the configuration byte and then 
read the firmware. After several attempts, 
the lock bit was turned off and then the code 

PHOTO 4
Arduino screenshot
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was read. When the bytes starting appearing 
in the Arduino Serial Monitor in a non-random 
manner, there was a great feeling that the door 
had been opened (see Photo 4). Doing a quick 
upgrade to the Arduino sketch, the bytes were 
then also shown as ASCII characters in the 
serial monitor. When readable messages such 
as “Version 1.03” appear, it is looking good. 
Since the customer had paid for the firmware 
design, there were no ethical dilemmas here. 

Microchip quotes the Digital Millennium 
Act for all the security protection devices 
on its parts, and it is worth reading up on 
this. After this project, I added a page to 
my website offering a service of unlocking 
Microchip firmware for a small $60 deposit. 
Well, there were many responses, but not 
one offered any money with even this amount 
being too much. In the end, emails were 
ignored (there were too many, maybe 50 a 
month), the webpage was taken down, and 
the whole idea was dropped, which sorted out 
any ethical dilemma problem. 

PROJECT 4
I’m currently working on an energy meter, 

but the reverse engineering part is finished. 
With rising energy prices, climate change a 
hot topic and a drive to become more green, 
energy usage is very important and this is a 
growing industry for engineers. The aim of the 
energy meter is to monitor the power from a 
mains power outlet in the home and send it 
wirelessly to an iDevice or smart phone. Since 
energy meters are very common and also 
very cheap, we bought a few to find out how 
they worked and what their weaknesses were. 
The answer was very interesting.

With the energy meters, there were three 
main circuit modules: a power supply to 
create a 5-V supply from 230 or 110 VIN; an 
energy-measuring circuit including current 
and voltage sensors; and a microcontroller 
and display. With the power supply, most of 
the circuits used an X2 capacitor and low 
value resistor (i.e., 100 Ω) and a 12-V Zener 
diode that would generate a 12-V supply 
that could only supply 30 mA at most. This 
is called a capacitive dropper power supply. 
The drawback with these circuits is the X2 
capacitor can degrade over a few years and 
then the supply will stop working. Metalized 
polyester film capacitors are better with the 
best option being an XY capacitor which has 
self-healing properties.

With the energy measuring circuit, 
the current sensor was either a current 
transformer or a low value shunt such as 0.01 
Ω. The current transformer needs some extra 
wiring to wrap the wire through the center 
of the current transformer and the cost is a 
lot higher than a simple low value resistor or 

circuitcellar.com/ccmaterials

RESOURCE

Digital Millennium Act, http://
en.wikipedia.org/wiki/Digital_
Millennium_Copyright_Act.
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PIC12F675 Microcontroller and PICkit2

Microchip Technology | www.microchip.com
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PHOTO 5
The new energy meter
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shunt. On all the off the shelf energy meters, 
the energy measuring chip usually had the 
markings rubbed off but they were all the same 
24-pin-wide SOIC package. On one board, the 
chip markings were still there, which showed 
the chip to be a Cirrus Logic CS5460 chip.

The microcontroller was usually a black 
blob called a chip-on-board. Black blobs 
are used in mass production to keep the 
cost down. At around $12 for the cheapest 
energy meter, this method was definitely 
working. The displays were usually LCD and 
this was the biggest problem. LCDs are great 
for outdoor use and the main benefit is high 
visibility in daylight, low cost, and low current 
drain. The downside was that the LCDs just 
were not visible inside especially at night, and 
if the power outlet was at ground level they 
were impossible to view at any time. Another 
strange point was that every board had a 
24C02 eight-pin memory chip. The 24C02 is 
a 2K EEPROM chip and was a strange choice 
considering much larger memory chips are 
now commonly available. The reason for this 
could be this chip was from old surplus stock, 
which meant all the meters were designed 
and made at the same factory (in China, of 
course), which also would explain why the 
meters all used similar LCDs.

The main problem with these energy 
meters was that they were almost unusable. 
After being set up, they would be forgotten 
about in a short period. Basically, they were 
complicated, boring, barely visible and mostly 
unusable. So the plan for the new energy meter 
was to design one which was exciting to use, 
easy to use, had a bright display, and could be 
connected remotely. Photo 5 is current circuit 
of the new energy meter design which uses a 
high contrast OLED display.

RE-ENGINEER CAREFULLY
So overall, reverse engineering can be 

rewarding once the initial learning curve is 
climbed. Reviewing someone else’s circuits 
is a great way to pick up new tips and tricks 
on design methods. The downsides are the 
legal issues since no company wants their 
designs copied. Of the four projects above, 
two of them resulted in legal issues and one 
more resulted in a nasty email from a 
competitor. And whatever you do, think 
twice about reverse engineering any military 
hardware unless you are a thrill seeker. 
Before tackling any reverse engineering 
project, ask yourself if it is really worthwhile 
and always make sure the customer takes 
legal responsibility. 
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In recent years, open-source Arduino 
prototyping boards have become an 

attractive option for hobbyists. You can start 
tinkering with an Arduino for less than $10 
and a programmer tool is not needed. All 
you really need is a PC with a USB cable. The 
intuitive Arduino software enables you to 
compile and load programs called “sketches” 
onto the Arduino board. It consists of an 
integrated development environment (IDE) 
and C-like programming language and is 
compatible with Windows, Mac OS, and 
Linux. Arduino “shields,” which are add-on 
modules, permit fast prototyping with many 
I/O capabilities. During a single afternoon, a 
useful gadget—possibly a garage door monitor 
or wireless attic temperature sensor—can be 
assembled with minimal effort. Browsing the 
Internet, you can find applications that range 
from ingenious to ridiculous. The Arduino 
prototyping system is incredibly versatile.

In the 1980s, commercial stereo 
preamplifiers started using IC 
microcontrollers that permitted 
cleaner designs with push-button 
control, relays for signal switching, 
and a wireless remote. While reading 
an article about the Arduino, Shannon 
realized these modern features could 
easily be incorporated into a DIY 
preamplifier design.

By Shannon Parks (US)

Budgie
An Arduino-Based Tube Stereo 
Preamplifier

PHOTO 1
The Budgie preamplifier contains a single-ended, Class-A, all vacuum tube audio path.



Several of the Arduino’s most often used 
capabilities became the genesis of my Budgie 
preamplifier (see Photo 1). I found these 
features were incredibly useful:

• A bank of relays could switch between the 
four stereo inputs as well as control mute, 
standby, gain, and bass boost settings.

• A red power LED could use PWM to indicate if 
the preamplifier is muted or in standby.

• An IR receiver with a remote could control a 
motor-driven volume potentiometer, change 
the source input selection, and turn the unit 
on/off. Any IR remote could be used with a 
code learning mode.

• A backlit display could easily show all the 
settings at a glance.

• Momentary push buttons could select the 
input device, bass boost, gain, and mute 
settings.

• Instead of using several Arduino shields 
wired to an Arduino board, all the circuits 
could fit on one custom PCB along with the 
power supply and the microcontroller (see 
Photo 2).

While there are many versions of Arduino 
boards, I chose the Arduino Nano. At only 
0.73” × 1.70”, the tiny Nano can be embedded 
using a 32-pin dual in-line package (DIP) 
socket, which cleans up the design. It can be 
programmed in-circuit and be removed and 
easily replaced (see Photo 3). 

The audio circuit remains the heart of 
any preamplifier. With a little creativity, the 
well-regarded 12B4 triode can be used. Its 
high perveance means that current will flow 
with a much smaller cathode-plate voltage 
differential than is typical with vacuum tubes. 
An external 24-V desktop supply can provide 
all the voltages the tube requires without 
need for further regulation, which simplifies 
the design.

The Arduino boards, as with all 
microcontrollers, are limited by their number 
of I/O pins, which are simply referred to as 
“pins.” The Nano has 14 digital pins (D0 to 
D13) and eight analog pins (A0 to A7). Digital 
pins are either low (0 V) or high (5 V). As 
an output, a digital pin can source up to 40 
mA and do tasks (e.g., turning on an LED or 
forward biasing a transistor switch). A digital 
pin can be set up as an input to process the 
remote control code stream of digital 1s and 
0s received from the IR sensor.

The analog pins have an internal ADC, 
which enables 1,024 values (10-bit resolution) 
between 0 and 5 V. This is useful for reading 
voltages in approximately 5-mV increments. 
The Budgie preamplifier uses one such 
input to monitor a voltage divider circuit 
implemented with five 1-kΩ resistors in 

series. This pin receives four unique voltage 
levels from the push buttons to determine 
which was pressed. A special feature of the 
analog pins is that they can also be configured 
as digital pins. The Budgie does this for the 
display. For this application, A0 is renamed 
D14, A1 is renamed D15, and so on. 

SHIFT REGISTER CIRCUIT
The Budgie preamplifier uses a serial-

in, parallel-out (SIPO) shift register to drive 
a bank of relays (see Figure 1). Only four 
Arduino digital outputs—enable, clock, latch, 
and data—are needed to control eight DPDT 
relays. These correspond to the four outputs 
labeled D3, D4, D5, and D7 shown in Figure 
2. The Texas Instruments TPIC6C595 shift 
register used in this project has heavy-duty 
field-effect transistor (FET) outputs that can 
handle voltages higher than logic levels. This 
is necessary for operating the 24-V relays. It 
also acts as a protective buffer between the 
Arduino and the relays.

POWER LED
The red power LED is directly driven by the 

Arduino (see Figure 2). Normally the output 
(D6) is high with the maximum LED brightness 
limited by a 200-Ω resistor that biases the LED 
at about 16 mA. When the preamplifier output is 
active, the PWM control is not used as it can add 
400-Hz noise (the PWM switching frequency) to 
the audio circuit. However, it can be used when 
the output is muted or in standby.

IR REMOTE CIRCUIT
The D8 input is the only digital pin 

configured as an input (see Figure 2). An IR 
sensor with a built-in preamplifier sends all 
sensed IR commands from a remote control 
to the microcontroller. 
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PHOTO 2
All the circuits have been placed 
on one custom PCB along with 
the power supply and the 
microcontroller.
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A special software library called “IRremote” 
simplifies the handling of the raw datastream 
into 4-byte codes. This data can be processed 
in real-time or stored in the EEPROM during 
learning mode.

MOTOR DRIVER FOR THE VOLUME 
POTENTIOMETER

A Texas Instruments SN754410NE 
specialized integrated circuit (IC) controls the 
motor of the Alps volume potentiometer and 
acts as a buffer between the microcontroller 
and a motor. The D10, D11, and D12 outputs 
are used. The IC simplifies a process that 
would otherwise need careful design. Two 
digital pins control the direction of the motor 
on the volume potentiometer while a third 
digital pin enables the motor driver.

1602 LCD 
The 1602 LCD—16 characters per line by 

two lines—is probably the most used display 
in the Arduino realm. It is controlled using the 
standard software library “LiquidCrystal” in 
4-bit mode, so a total of seven digital pins 
are needed: register select (RS), enable 
(EN), backlight, and four data lines. These 

FIGURE 1
A serial-in, parallel-out (SIPO) shift 
register is used to drive a bank of 
relays.

PHOTO 3
The Arduino Nano is a small, complete, and breadboard-friendly board based on Atmel’s ATmega328 
microcontroller.
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are assigned to Nano outputs D9, and D13 
through D18 (see Figure 2).

PUSH BUTTONS
A voltage divider string of resistors is 

connected to four push buttons: input, bass 
boost, gain, and mute (see the A5 input in 
Figure 2). Each button has a different voltage 
level that the analog input reads to determine 

which button was pressed. Multiple keys 
pressed at the same time will generate unique 
voltages and be processed as special functions. 

POWER SUPPLY
The external 24-V desktop supply must be 

a Class-I grounded type and should be rated 
above 1 A. Some supplies may have a tendency 
to trip their current limit at initial power-up due 

ABOUT THE AUTHOR
Shannon Parks built his 
first tube amplifier— 
a clone of the Dynaco 
ST35—in 2001 and was 
immediately hooked. 
He manages the DIY-
tube forums and is the 
owner of Parks Audio, 
LLC (www.parksaudio 
llc.com). He lives with 
his wife and daughter 
in Mahomet, IL.

FIGURE 2
These Budgie diagrams show how to 
set up the Arduino Nano, LCD, power 
supply, push button, IR, and motor 
control circuits.

FIGURE 3
The 12B4 audio circuit has about 23-
dB gain, which is more than is needed. 

www.parksaudiollc.com
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to the heavy inrush from the cold tube filaments. 
The relays and tubes operate at 24 V without 
needing further regulation to eliminate wasted 
power and heatsinks on the Budgie PCB. The 
24-V supply also powers two lower current 5-V 
supplies. A polarity diode and then a 12-V power 
Zener diode drop the incoming 24 V to around 
11 V so the linear regulators don’t dissipate 
too much heat from the voltage differential 
(see Figure 2). The 7805 regulator on the PCB 
(U2) is solely for the motorized Alps volume 
potentiometer. Meanwhile, the 5-V regulator 
on-board the Nano powers all other 5-V 
circuits including the display backlight. 

AUDIO CIRCUIT DESCRIPTION
The 12B4 triode was originally designed to 

be used in televisions as a vertical deflection 
amplifier. New-old-stock (NOS) 12B4s still 

exist. They can be purchased from most 
US tube resellers. However, a European 
equivalent doesn’t exist. The 12B4 works 
well in preamplifiers as a one-tube solution, 
having both high input impedance and low 
output impedance, without need for an 
output transformer. An audio circuit can then 
be distilled down to a simple circuit with few 
parts consisting of a volume potentiometer 
and a grounded cathode gain stage.

The 12B4 has about 23-dB gain, which is 
more than is needed. This extra gain is used as 
feedback to the grid, in what is often referred 
to as an anode follower circuit. The noise, 
distortion, and output impedance are reduced 
(see Figure 3). Using relays controlled by 
the Arduino enables switching between two 
feedback amounts for adjustable gain. For 
this preamplifier, I chose 0- and 6-dB overall 
gain. A second relay enables a bass boost with 
a series capacitor.

You only need a lightweight 15-to-20-V 
plate voltage to operate the 12B4s at 5 
mA. Linearity is very good due to the small 
signal levels involved, as rarely will the 
output be greater than 2 VPP. A constant 
current source (CCS) active load is used 
with the 12B4s instead of a traditional 
plate resistor. This maximizes the possible 
output voltage swing before clipping. For 
example, a 12B4 biased at 5-mA plate 
current with a 20-kΩ plate resistor would 
drop 100 V and would then require a 120-V 
supply voltage or higher. Conversely, the 
CCS will only drop about 2 V. Its naturally 
high impedance also improves the tube’s 
gain and linearity while providing high 
levels of power supply noise rejection. 
A single resistor from the supply to the 
emitter sets the current, which can be 

RESOURCES
Future Technology Devices International (FTDI), Ltd., www.ftdichip.com.

Parks Audio, LLC, www.parksaudiollc.com/arduino.

SOURCES
RK168 Series volume potentiometers
Alps Electric Co., Ltd. | www.alps.com

Arduino Nano 
Arduino | http://arduino.cc/en/main/software

ATmega328 Microcontroller
Atmel, Corp. | www.atmel.com

TPIC6C595 Shift register and SN754410NE IC
Texas Instruments, Inc. | www.ti.com
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FIGURE 4
The template shows where to drill the 
holes when assembling the Budgie’s 
chassis. 

http://www.ftdichip.com
http://www.parksaudiollc.com/arduino
http://www.alps.com
http://arduino.cc/en/main/software
http://www.atmel.com
http://www.ti.com
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calculated with the following formula: 

voltage drop of red LED  V
 

 = 

1.7 V  0.65 V

BE−( )

−( )
RSET

210  
 = 5 mA

Ω

The adjustable cathode resistor is initially set 
to 300 Ω for good performance, but the lowest 
distortion can accomplished by adjusting the trim 
potentiometer to achieve maximum output signal. 
This tweak can be done with a free smartphone 
app such as Signal Generator outputting a 500-mV 
1-kHz sine wave. Use any digital multimeter (DMM)  
set to AC to measure the output level and adjust the 
cathode potentiometer for maximum output. Note 
that the DMM doesn’t need to be TrueRMS as the 
measurement is relative, not absolute. Also, don’t 
forget to adjust the volume potentiometer all the way 
clockwise.

CHASSIS ASSEMBLY
The Budgie chassis uses an inverted Hammond 

powder-coated 6” × 10” × 2” box. I can provide a 
front panel express file for a ready-made top plate  
via my website (see Resources). Most of the chassis 
holes are on this one panel, but three holes must be 
drilled into the front of the chassis for the power LED, 
the IR sensor, and the volume control. A template 
with detailed dimensions facilitates drilling these 
holes (see Figure 4).

COMPILING & LOADING ARDUINO CODE
The first time you connect the Arduino Nano to 

your computer with a USB cable, the device drivers 
for the Future Technology Devices International 
(FTDI) virtual com port will be prompted to load. Once 
you successfully install the drivers, start the Arduino 
software. First make sure you have your COM port 
set correctly in the Arduino software (Tools> Serial 
Port…). Then configure the software for the Nano: 
“Tools>Board> Arduino Nano w/ ATmega328.” Then 
go to “Sketch>Import Library…>Add Library…” and 
select the IR remote library from the Budgie files 
folder, which decodes all the raw IR data. Clicking 
the “Upload” icon will first compile and then upload 
the sketch to your Nano’s flash memory. After you’ve 
uploaded your sketch, disconnect the USB connection 
before you power the Budgie with 24 V to prevent 
reverse current into your computer’s USB port and 
possible damage.

COMPLETED BUDGIE
The entire project can be assembled for 

approximately $250 (see Parts List). As an introduction 
to the world of Arduino microcontrollers, it’s a 
comprehensive starter kit. Elements of the design 
(e.g., the IR-controlled volume potentiometer) could 
be used as a stand-alone project. Once you experience 
the relative ease of microcontroller programming 
with the Arduino, you’ll find no shortage of creative 
applications. 

BUDGIE PREAMPLIFIER PARTS LIST
Capacitors
C1, C2  2.2 µF, 250 V, 18.8 × 12.6-15LS 667-ECW-F2225JA
C3, C4  470 µF, 10 V, 6.3D 2.5LS 647-UVZ1A471MED
C5, C6, C8  47 µF, 35 V, 5D 2LS 647-UVZ1V470MDD
C7  100 µF, 35 V, 6.3D 2.5LS 647-UVZ1V101MED
C9  47 µF, 50 V, 5D 2LS 647-UVZ1H4R7MDD
C10, C11  6,800 pF, 63 V, 7.2 × 4.5-5LS 505-FKP26800/63/2.5
C12  0.1 µF, 63 V, 7.2 × 2.5-5LS 80-R82DC3100AA50K
C13, C14  0.1 µF, 100 V, 7.2 × 2.5-5LS 505-MKP20.1/100/5

Chassis  
Hammond 6 x 10 x 2 Black Chassis 546-1441-16BK3
Quantity 2  Clear window plug 593-LPC020
Quantity 2  Clear window plug retainer 593-RTN150

Circuits
U1  Half-H motor driver 595-SN754410NE
U2  5-V regulator 7805 595-UA7805CKCT
U3  IR detector, 38 kHz 782-TSOP34838
U4  Power shift register 595-TPIC6C595N
Quantity 2  16-pin DIP socket 571-1-390261-4

Diodes
D1,D2  T-1 0.75 5-mm red LED 859-LTL-4223 
D3,D5-D12  1N4001 50-V 1-A diode 512-1N4001 
D4   12-V, 5-W Zener diode  863-1N5349BRLG
D13   Red power LED 645-551-0407F 

Miscellaneous
J1, J5–J8  Terminal blocks 3P 571-2828363 
J2  32-pin DIP socket 517-4832-6000-CP
J3  16-pin SIP header 649-68001-416HLF
J4  Terminal blocks 2P 571-2828372 
SW1–SW4  Round push-button switch 10KB012 
SW5  SPST on/off rocker 540-SRB22A2FBBNN
Quantity 1  Arduino Nano V. 3.0 992-ARD-NANO30
Quantity 5  RCA panel jacks—white 568-NYS367-9 
Quantity 5  RCA panel jacks—red 568-NYS367-2 
Quantity 1  2.1-mm DC connector 163-4021 
Quantity 4  Rubber feet 517-SJ-5023BK 
Quantity 6  Hex standoff 0.187 × 0.375  534-1892
Quantity 4  #6-32 × 0.5” sheet metal screw, Phillips pan head
Quantity 12   #4-40 × 0.25” machine screw, Phillips pan head
Quantity 1  Red LCD 1602 display module (HD44780 or compatible)
Quantity 1  30 × 22 Aluminum volume knob
Quantity 2  12B4/12B4A triode
Quantity 2  9-pin Ceramic tube socket PCB (0.75” top diameter)
Quantity 1  24-V/1-A DC supply (three prong)

Resistors
R1, R2  210 Ω, 0.25 W 271-210-RC
R3, R4  47.5 kΩ, 0.25 W 271-47.5K-RC
R5, R6  1 MΩ, 0.25 W 271-1.0M-RC
R7, R8  100 kΩ, 0.25 W 271-100K-RC
R9  1 kΩ, 0.25 W 271-1K-RC
R10, R12  110 kΩ, 0.25 W 271-110K-RC
R11, R13, R16, R17  332 kΩ, 0.25 W 660-MF1/4DC3323F
R14  200 Ω, 0.25 W 271-200-RC
R15, R18, R19  100 Ω, 0.25 W 271-100-RC
R20  10 kΩ, 0.25 W 271-10K-RC
R21  4.7 kΩ, 0.25 W 271-4.7K-RC
RN1  1 kΩ, 10-pin array, isolated 269-1.0K-RC
VR1  100 kΩ, dual log ALPS RK168 688-RK16812MG099
VR2, VR3  500-Ω potentiometer 72-T93YB-500
VR4  10-kΩ potentiometer 72-T93YB-10K
F1  1.5-A fuse, Slo-Blo 576-047301.5MRT1L
RL1-RL7  Omron G5V 24-V DPDT 653-G5V-2-H1-DC24
RL8  Omron G5NB 24-V SPST-NO 653-G5NB-1A-DC24

Transistors
Q1,Q2  2N3906 PNP 512-2N3906BU
Q3  2N3904 NPN 512-2N3904BU

Budgie PCBs are available from Shannon Parks (www.parksaudiollc.com/arduino). 
Part numbers in the third column indicate the items are available from Mouser 
Electronics (www.mouser.com).

http://www.parksaudiollc.com/arduino
http://www.mouser.com
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THE CONSUMMATE ENGINEER

This month I’d like to consider electromagnetic 
compliance (EMC) requirements for 

airborne equipment. As you’ll see, the 
requirements are not too different from 
other industries, such as nuclear, medical, 
and automotive, where the sustained, safe 
operation of electronic devices is paramount. 
EMC standards address more than just 
the effects of the EMI fields on the internal 
circuitry of a product. They’re also concerned 
with the effects of the EMI generated inside 
the product on the outside world, as well as 
its effects on internal circuits. Power supply 
fluctuations, effects of lightning strikes, and 
other electrical issues are also considerations. 
EMC requirements for different products may 
vary greatly. It is up to the project engineers 
to establish the mandatory prerequisites. It is 
a good engineering practice to always provide 
for a healthy safety margin. 

DO-160 STANDARD
EMC requirements for airborne equipment 

are published in DO-160 standard. Similarly, 
there are specific standards for military, 
industrial, and consumer products. It is not 
uncommon to see customers increasing the 
mandatory requirements to ensure sufficient 
safety margins. EMC design engineers need to 
know if and why a customer increased those 

test levels to avoid unnecessary and expensive 
inclusion of their own safety margins.

The first EMC constraint listed in DO-
160 is the magnetic effect. This is to make 
sure that the equipment does not produce 
magnetic flux affecting compasses or flux 
gates within a certain distance. It is specified 
in five categories, with the most stringent 
one providing for a compass immediately 
adjacent to the equipment not to be 
affected. The least stringent one is for the 
tested equipment to be 3 m (approximately 
10′) away from a compass. Most electronic 
controllers enclosed in a metal cabinet with 
no strong magnetic field generated inside 
pass the test easily.

The power input specification is divided 
into several categories, for AC and DC 
supplies. Typical examples are 14-VDC and 28-
VDC systems powered from a generator with 
a rectifier and a large storage battery. The 
type of power determines many attributes, 
such as voltage range, AC distortion, power 
factor, phase displacement, phase unbalance, 
ripple, inrush current, reset, momentary 
power interruption, transients, emergency 
operation, and more.

For DC operating conditions—for example, 
for a 14-VDC system (i.e., a 12-VNOM, six-cell, 
lead-acid battery)—the normal operating 

Essential Electromagnetic 
Compliance (Part 3)

Practical EMC Requirements
Last month, George detailed the causes of electromagnetic interference 
(EMI) and explained the difference between DM and CM signals. This month, 
he covers the practical EMC requirements for electronic instruments and 
systems.

By George Novacek (Canada)
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George Novacek is a 
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Control. Now retired, 
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embedded control sys-
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voltage is 11.0 to 15.15 V. The equipment 
must also operate during short abnormal 
conditions, when the input voltage may vary 
between 10.25 and 16.1 V, as well as 9.0 V 
for emergency operation. When operating at 
the minimum voltage, the equipment must,  
in Category A, survive a 200-ms power 
interruption without a hiccup. In Category B, 
it is 50 ms. In Categories D and Z, it’s a full 1 
s. When the size and weight of the equipment 
are limited, a 200-ms interrupt is a tall order, 
to say nothing about the reduced reliability 
electrolytic capacitors present. The common 
solution to this dilemma in systems with two 
independent power buses is to OR the supplies 
and provide just 50-ms power interruption 
storage capacity. (Refer to my 2012 article, 
“Diode ORing,” Circuit Cellar 263.)

Surviving a power supply surge voltage is 
another tough requirement. Category Z calls 
for 80 VDC to be applied to the power input for 
100 ms, followed by 48 VDC for 1 s. Category 
D calls for 425 and 345 VDC, respectively! 
Considering the power the clamps (e.g., 
transzorbs) must dissipate, a preregulator is 
usually needed for the equipment to survive 
this condition. 

Another issue is the survival of a voltage 
spike without failure or degradation of 
performance. Category A must survive a 
600-V, 2-µs spike. In addition, the equipment 
must not be susceptible to an audio frequency 
appearing on the power lines. This is a 
conducted interference, which can be caused, 
for instance, by common connections with a 
load. It is a ripple of varying frequency and 
magnitude to which a system must be immune. 
A 14-VDC system must not be affected by 2 
VRMS 1 to 15 kHz ripple superimposed on its 
power lines.

Induced signal susceptibility defines the 
levels of interference induced in interconnect 
circuits. This applies to interference caused 
by AC power—which is 50 or 60 Hz in most 
applications—but can range between 350 to 
650 Hz on aircraft with 400-HzNOM power. It 
also applies to transients caused by switching 
inductive loads.

SUSCEPTIBILITY OR IMMUNITY
The effects of the external interference 

on the equipment are called either 
susceptibility or immunity. The two terms 
are reciprocal; both are used. We strive for 
the lowest susceptibility, which means the 
highest immunity. Susceptibility/immunity 
can be either radiated (i.e., in response to 
electromagnetic (EM) fields) or conducted, 
meaning there is a conductive path through 
which the interference can get inside the 
equipment. There are numerous categories 
for various types of environment and use, 

including high-intensity radiated fields 
(HIRF) immunity. Table 1 shows conducted 
susceptibility for seven categories. The 
immunity is measured from 10 kHz to 400 MHz 
by maximum current in milliamperes induced 
into the conductors  through a transformer, 
as the magnetic field is predominant at these 
frequencies.

Radiated susceptibility is determined 
by the maximum field strength in volts per 
meter (V/m) to which the device is immune. 
The e-field can be steady, modulated and/or 
pulsed. The immunity is typically measured 
from 100 MHz to 18 GHz. I’ve had specifications 
going up to 40 GHz. There are 10 categories, 
with the field strength ranging from as little 
as 1 to 7,200 V/m between 4 and 6 GHz.

Emission of RF energy is just as important 
as susceptibility. It can also be conducted 

FIGURE 1
Conducted emissions levels versus frequency per DO-160 on power lines

Frequency

[MHz]

Category Levels [mA]
M O R S T W Y

0.01 0.6 3 0.6 0.03 0.15 3 6

0.5 30 150 30 1.5 7.5 150 300

1 70 250 30 1.5 7.5 150 300

30 70 250 30 1.5 7.5 150 300

40 * * 30 1.5 7.5 150 300

100 * * * * * * 300

400 32 50 3 0.15 0.75 32 100

TABLE 1
Conducted susceptibility test levels. (*Values are interpolated.)
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and/or radiated. System designers, when 
specifying immunity and emissions for 
individual instruments in a system, make 
emission levels significantly lower than 
immunity to achieve safe margin within the 
system.

Figure 1 shows conducted emissions levels 
for power lines per DO-160. The emissions 
are measured in decibels referenced to 

microamperes (dBµA) of interference current 
on the external lines.

The levels are +20 dBµA higher for 
interconnecting lines (to sensors, loads, etc.) 
as they are not shared with other equipment. 
These categories are typical. For others, refer 
to the document, “DO-160G Environmental 
Conditions and Test Procedures for Airborne 
Equipment,” RTCA, 2010.

Radiated interference is defined by the 
maximum field strength the equipment is 
allowed to radiate. It is expressed as dBµV/m, 
which is the decibel level referenced to 1-µV per 
meter e-field strength. Figure 2 shows Category 
P and Q.[1] Notice the notches of reduced 
field strength. Their purpose is to prevent 
interference with aircraft communications 
equipment, satellite links, and other official 
equipment operating at those frequencies.

The next issue an EMC engineer must 
address is the susceptibility to lightning-
induced transients, which are called indirect 
lightning effects. Direct effects apply to 
externally placed equipment, such as power 
and telephone lines or antennas. Indirect 
lightning immunity is verified by two types 
of tests: pin injection and bulk injection. Pin 
injection tests the circuits’ damage tolerance. 
The device is not operational, while each and 
every pin of its connectors is zapped by pulses 
of different characteristics and strength. The 
device must survive all these tests.

Table 2 shows pin injection tests 
performed with three different waveforms 
in five different susceptibility levels, level 5 
being the strongest. VOC stands for the pulse 
generator’s open circuit voltage. ISC stands 
for short circuit current. Notice that a Level 5 
circuit must be able to survive 3,200 V and up 
to 1,600 A without damage. 

Bulk injection tests levels ensure there is 
no functional upset when the test currents 
are injected through transformers. These 
are induction coils with device’s harnesses 
threaded through them. Single and multiple 
strokes, and bursts are applied while the 
device must continue to work.

Finally, the device must survive electrostatic 
discharge (ESD) without damage or functional 
upset. Many microelectronic components 
today contain a rudimentary ESD protection 
that might be sufficient for consumer use. 
Equipment with extensive EMI, HIRF and 
lightning protection (such as discussed here) 
is inherently protected against ESD, although 
this needs to be verified by test.

EMC IMPLEMENTATION
I trust you now have a good understanding 

of EMC requirements. In the last installment 
of this article series, I’ll cover the practical 
implementation of EMC. 

circuitcellar.com/ccmaterials

REFERENCE
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RESOURCE
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FIGURE 2
Radiated emissions levels for categories P and Q

TABLE 2
Lightning pulse generator settings for damage tolerance test

Level
Waveform

3/3 4/1 5A/5A
VOC/ISC VOC/ISC VOC/ISC

1 100/4 50/10 50/50
2 250/10 125/25 125/125
3 600/24 300/60 300/300
4 1,500/60 750/150 750/750
5 3,200/128 1,600/320 1,600/1,600

http://www.interferencetechnology.com
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Like most pieces of software, you probably 
use Xilinx ISE without giving too much 

thought to its internal project file format. But 
if you’ve tried keeping a Xilinx ISE Project File 
in a revision-control system (such as GIT), 
you were probably quickly forced to learn 
details of the file format. This is because if 
multiple people open and save the project, 
they might each cause small conflicting 

changes in the project file. This is made even 
more difficult if you need to support CORE 
Generator (COREGen) modules, which have 
been generated through a graphical wizard 
(see Figure 1), and files may change with 
different versions of the tools.

This month I’m going to describe how I 
solved this problem for my own projects, 
and ended up with something I called 

The DIY Approach to 
ISE Project Management

FIGURE 1 
Xilinx provides the CORE Generator 
(COREGen) utility, which graphically 
configures a wide variety of blocks for 
your FPGA design. These blocks have 
been tested by Xilinx and are a great 
resource for the FPGA designer. But 
because they are generated through 
a GUI, they can be difficult to reliably 
port to different projects.

Managing an FPGA project that involves several 
automatically generated (COREGen) modules can be 
a difficult task. This article shows how to use a simple 
Python script to allow you to easily target different 
hardware versions with the same source files, without 
needing to manually recreate or update the COREGen 
modules or other files.

By Colin O’Flynn (Canada)

PROGRAMMABLE LOGIC IN PRACTICE
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MakeISE. Rather than attempting to keep the 
auto generated files in the GIT repository, 
I instead keep a simple file that is able to 
generate all the required project files for the 
Xilinx ISE tools. Once you have the project 
files locally, ISE can make all the changes 
it requires without having to worry about 
these changes conflicting with other users.

In addition, this scripting method makes 
supporting the CORE Generator modules 
more reliable. If you want to port a design 
to a new device (e.g., moving from Spartan 
6 LX9 to LX16), you need to recreate the 
COREGen modules using the graphical 
wizard. This requires all sorts of manual 
adjustment to settings (What type of FIFO? 
What flags to enable?), and it’s easy to forget 
one of the flags when regenerating the 
project. Instead, the system I’ll demonstrate 
here stores all those settings, for all the 
COREGen modules, in a single file. When it’s 
time to port to a different device, you can 
be confident your new modules have all the 
proper settings.

It’s worth noting that this isn’t the first 
attempt to solve such a problem. There is a 
larger project called HDLMake which is part 
of the Open Hardware Repository, which 
can also do things like run the synthesis or 
simulation commands without requiring the 
GUI. For my projects I wanted something 
simpler—something I could easily include as 
part of my project, using only a single Python 
file. With that goal in mind, let’s begin to 
look at the file formats in use.

ISE FILE FORMATS
There are effectively two separate file 

types of interest to us, and I’ll briefly outline 
what those files contain. The first is the 
Xilinx ISE project file, which has the .xise 
extension. Note there is also a file with the 
.gise extension, but that will be automatically 
generated by ISE. We can completely define 
the project with just a XISE file, so the tool 
only needs to generate that file.

The XISE file is XML-based, making 
modification fairly easy. Opening an example 
file shows up that there are three main 
sections. Examples are shown in Listing 1. 
First, we have the version number of the ISE 
tool. We can generally set this to something 
“older” if required (i.e., set to version 14.2), 
and later versions of the tools will open the 
file no problem. Next, we will have a listing 
of all the project files. This can include our 
constraint file (UCF), source files (Verilog/
VHDL), and COREGen files (XCO). Finally, we 
have a list of all the properties. This can 
include device and package, options about 
synthesis or implementation, command-line 
options for the place and route tools, and 

LISTING 1 
This shows a snippet of some areas of the Xilinx ISE Project File, which has the .xise extension. The file is 
XML-based, and this simple example has a single source code file.

...
  <version xil_pn:ise_version=”14.6” 
xil_pn:schema_version=”2”/>

  <files>
   <file xil_pn:name=”interface.v” xil_pn:type=”FILE_VERILOG”>
      <association xil_pn:name=”BehavioralSimulation” 
xil_pn:seqID=”1”/>
      <association xil_pn:name=”Implementation” 
xil_pn:seqID=”3”/>
    </file>
  </files>

  <properties>
    <property xil_pn:name=”AES Initial Vector spartan6” xil_
pn:value=”” xil_pn:valueState=”default”/>
    <property xil_pn:name=”AES Key (Hex String) spartan6” xil_
pn:value=”” xil_pn:valueState=”default”/>
    ...
    <property xil_pn:name=”Device” xil_pn:value=”xc6slx25” 
xil_pn:valueState=”non-default”/>
    <property xil_pn:name=”Device Family” xil_
pn:value=”Spartan6” xil_pn:valueState=”non-default”/>
    <property xil_pn:name=”Device Speed Grade/Select ABS 
Minimum” xil_pn:value=”-3” xil_pn:valueState=”default”/>
    ...
    <property xil_pn:name=”Package” xil_pn:value=”ftg256” 
xil_pn:valueState=”non-default”/>
    ...
    <property xil_pn:name=”Watchdog Timer Value spartan6” xil_
pn:value=”0xFFFF” xil_pn:valueState=”default”/>
    <property xil_pn:name=”Working Directory” xil_pn:value=”.” 
xil_pn:valueState=”non-default”/>
    <property xil_pn:name=”Write Timing Constraints” xil_
pn:value=”false” xil_pn:valueState=”default”/>    
  </properties>

...

FIGURE 2 
If the project using a COREGen file only contains an XCO file, the system will offer to automatically generate 
the other required files. But it’s sufficient to completely define the module using just the XCO file.
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everything else you can configure through 
the GUI.

The next file of interest is the COREGen 
module, which is defined by a file with the 
.xco extension. Based on this file the tools 
will auto-generate a number of other files, 
but we can completely define our core using 
a single XCO file. The first time it is opened 
ISE will offer to automatically generate the 
missing files, which we happily accept (see 
Figure 2). The format of the XCO file is shown 
in Listing 2, where we can see a simple file 
format to set various parameters.

INTRODUCING MakeISE
MakeISE uses a template file as a 

reference, which is then modified with 
specifics to your project. This template is 
simply an empty project generated by ISE. 
We modify this file to adjust properties (such 
as the FPGA device), along with adding our 
source files. Similarly to generate COREGen 
files, we will first generate an example XCO 
file by configuring the core through the GUI. 
This configuration will be used as the base, 
and modifications (such as changes in the 
part number) will be made to this file. The 
MakeISE flow is shown in Figure 3, where 
you can see the template files are part of the 
input to MakeISE.

The MakeISE program is a single Python 
file. It does not depend on anything besides 
the default modules present in Python 2.x, 
making it easy to deploy to end users, as 
almost any Python install will allow them to 
run the file.

MakeISE is called with one or two 
arguments: at minimum it requires the name 
of the MakeISE Project file (normally using 
the extension .in although you can use any 
extension), and optionally the name of a XISE 
file to write, although by default uses the same 
root filename as the input file. An example 
input file is shown in Listing 3, and I’ll discuss 
in more detail each of the sections next.

SECTION OVERVIEWS
The first section, titled [ISE 

Configuration], is directly used to modify 
properties in the XISE file. The template file 
is given by the InputFile line, and the 
remaining lines are used to change properties 
from the template. This section contains 
information about the target device (family, 
part number, package, and speed grade) 
that will be automatically be remembered 
and used in writing the COREGen XCO files in 
addition to the XISE file. If you need to change 
any project options from their default, you 
can do this here: the example shows changing 
the include directory along with adding a 
command-line option to the map process.

LISTING 2
This shows a snippet of the .xco file, which defines a COREGen module.

...
SET createndf = false
SET designentry = Verilog
SET device = xc6slx25
SET devicefamily = spartan6
SET flowvendor = Other
SET formalverification = false
SET foundationsym = false
SET implementationfiletype = Ngc
SET package = ftg256
...
CSET clock_enable_type=Slave_Interface_Clock_Enable
CSET clock_type_axi=Common_Clock
CSET component_name=fifoonly_adcfifo
CSET data_count=false
CSET data_count_width=13
CSET disable_timing_violations=false
CSET disable_timing_violations_axi=false
CSET dout_reset_value=0
CSET empty_threshold_assert_value=4
CSET empty_threshold_assert_value_axis=1022
...

FIGURE 3 
The MakeISE project uses a number of templates as a reference, which avoids it needing to understand the 
exact file format. It also allows you to use existing working files as templates, and it simply modifies the 
target device or other parameters. The resulting project file references your existing source code (Verilog/
VHDL), and the automatically generated include file makes supporting multiple hardware targets easier.
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The next two sections are source files which 
are added to the project. The section titled 
[UCF Files] adds the UCF constraint file 
to the project. Note the script doesn’t verify 
the location of files or copy them. It simply 
generates a project file with the given filename 
included as a source. You are responsible for 
ensuring the UCF file is located in the correct 
location, which could be the same location as 
the .in file, or some subdirectory.

The next section titled [Verilog 
Files] can be a simple list of Verilog 
source code files, but it can also include 
auto-generated files. In the example in 
Listing 3, the file setup.v actually doesn’t 
exist, but is automatically generated by the 
MakeISE script. The generation of this file 
will be described in a later section.

Finally we get to the [CoreGen Files] 
section, which is one of the more powerful 
aspects of this script. If you have existing 
COREGen files, you can add them to the 
project, just like the Verilog files. But the 
more interesting aspect is the ability to 
automatically generate COREGen files based 
on a template, which is used in the example 
from Listing 3. Here we have a new section 
named [ADC FIFO CoreGen Setup] 
which will be used for generation of the 
COREGen file fifoonly_adcfifo.xco.

The section [ADC FIFO CoreGen 
Setup] again uses an input template file, 
which was a dual-clock FIFO core with 
different input and output widths, generated 
using the CORE Generator wizard. This 
allows me to take advantage of the COREGen 
wizard in ensuring the appropriate options 
were correctly configured, and I only need 
to specify any deviations from the original 
file. The device part number is automatically 
changed based on settings in the [ISE 
Configuration] section—meaning, I 
don’t need to worry about if I change from 
a Spartan 6 LX9 to a LX16. The COREGen file 
will automatically be updated to reflect the 
correct device and package.

Various options can also be configured. 
In this case the depth of the FIFO is 
configurable from the project file. When 
changing from a larger (LX25) to a smaller 
(LX9) device, I might need to adjust 
the size of the FIFO. Note that you can 
use a $CALCULATE$ directive to make 
the parameter settings automatically 
dependent on each other. In this example, 
because my FIFO input width is 8 bytes, 
and my output FIFO width is 32 bytes, 
the output depth is four times less than 
the input depth. You must verify that any 
properties which should be linked have 
been. It’s wise to try changing a property 
you’ll be overwriting using the wizard, and 

LISTING 4
This shows the contents of the setup.v file that was automatically generated, and allows you to easily use 
the same source code for multiple hardware versions. The only file that needs to change between hardware 
versions is the MakeISE project file.

//AUTOMATICALLY GENERATED - MAY BE OVERWRITTEN
`define BOARD_REV2 
`define UART_CLK 40000000
`define UART_BAUD 512000

LISTING 2
This shows a snippet of the .xco file, which defines a COREGen module.

[ISE Configuration]
InputFile = ise_verilog_template.xise.in
Version = 14.4
Device Family = Spartan6
Package = ftg256
Device = xc6slx25
Speed Grade = -3
Verilog Include Directories = ../../../hdl|../../
refproject
Other Map Command Line Options = -convert_bram8

[UCF Files]
system.ucf

[Verilog Files]
#Can have comments too anywhere
simpletop.v
simplemodule.v
setup.v = Setup File

[CoreGen Files]
fifoonly_adcfifo.xco = ADC FIFO CoreGen Setup

[ADC FIFO CoreGen Setup]
InputFile = fifoonly_adcfifo.xco.in
input_depth = 8192
output_depth = CALCULATE $input_depth$ / 4
full_threshold_assert_value = CALCULATE $input_depth$ 
- 2
full_threshold_negate_value = CALCULATE $input_depth$ 
- 1
write_data_count_width = 16
read_data_count_width = 16
data_count_width = 16

[Setup File]
BOARD_REV2
UART_CLK = 40000000
UART_BAUD = 512000
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seeing which properties in the resulting 
XCO file change. In this example, beyond 
just the output depth being linked, the 
thresholds for the full flags also change.

Finally, we come back to the automatically 
generated Verilog file. In this case the section 
called [Setup File] will be used for 
automatically generating a file called setup.v. 
This file simply has a number of defines, the 
resulting file is shown in Listing 4. The idea 
of this file is it can be used to set parameters 
that might change between various hardware 
versions of your design, so you can simply 
use setup.v as an include in your source 
files. Using standard ifdef…endif sections 
allows you to enable or disable certain 
modules based on the defines.

AUTOMATIC JOY
Supporting multiple hardware targets 

shouldn’t be a major hassle, as one of the 
nice aspects of programmable logic is the 
ability to fine-tune the design for larger or 
smaller implementation sizes. Your high-
end product version might contain a larger 
(and thus more expensive) FPGA compared 
to another configuration. But you shouldn’t 
have to manually maintain all the project 

files and COREGen modules between the 
two versions. That’s just asking for trouble!

Hopefully, this article gave you enough 
of a teaser that it encouraged you to try out 
MakeISE yourself, and save yourself some 
headaches of manually recreating your ISE 
project files. As usual, I linked some 
addition video examples on 
ProgrammableLogicInPractice.com. For full 
details, you can check out the MakeISE 
project at https://github.com/colinoflynn/
makeise. 
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Recently, we were asked to estimate the 
cost to develop a system that would 

interface with every device of a particular type 
manufactured in a particular country. Our job 
was to design a system to extract data from 
these devices. There are 10 international 
standards applicable to these devices in 
this country. These standards define the 
protocol for accessing this data. The data is 
available on one of three possible hardware 
data busses.  Some of the data available on 
these busses is in the public domain and 
some is only available from the manufacturer. 
There are over 150 different types of these 
devices sold each year in this country. Each 
year, another 150 new or similar types are 
sold. The specification is perfectly clear. By 
the way, can you have the estimate to me 
by Monday? Hmmm! I saw an advertisement 
the other day that said a company’s one-
day seminar would teach me to accurately 
estimate firmware schedules. Maybe if I took 
that class on Friday, I could get the accurate 
schedule by the end of business on Monday.

How can one estimate something like this? 
Here is axiom number one: Don’t believe 
anyone who tells you he can teach you to 
accurately estimate your firmware schedule in 
a one-day seminar. Or in a one week seminar. 
Or even after 10 years of doing it every day. 
Accurate? No! But we can get better. And 
the best way I know how is by first defining 
the problems. That was the focus of the first 
article in our series.

Last time, we looked at the general problem 
of estimating software development costs. 
This month we will look at the challenges 
that are unique to embedded software 
development. Certainly there are things that 
make embedded software more challenging 
to develop than other types of software. But 
what makes embedded software that much 
harder to estimate?

BIGGER SURFACE AREA 
Recently, I reviewed last month’s article 

with our team and asked the question: Why is 
estimating embedded systems more difficult 

EMBEDDED IN THIN SLICES

This month Bob continues his series on estimating the costs for designing and 
developing your embedded systems project. He covers the issues unique to 
estimating an embedded systems project.

By Bob Japenga (US)

Estimating Your Embedded 
Systems Project (Part 2)
Challenges Unique to Embedded Software 
Development
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than estimating other kinds of software? One 
engineer said, “The surface area is much 
bigger.” What he was saying is that all of the 
standard problems with estimating just got 
multiplied. Let’s just review what we said last 
time and see how some of these issues are 
more complicated for embedded systems.

UNCLEAR REQUIREMENTS
The accuracy of our software estimates 

can only be as good as our understanding of 
the requirements. This difficulty is multiplied 
with embedded systems because of the 
complexity of the interfaces. In addition, 
there are a lot of requirements that only 
become clear after you implement. The 
datasheet of a small microprocessor we use 
on one project is 1,400 pages long. There 
are just a lot more requirements that can 
be unclear or misunderstood. We approved 
a rework once to one of our designs that 
required the manufacturer to add a wire to 
one end of a capacitor. After about a hundred 
were shipped, the capacitors started shorting 
(especially problematic for bypass capacitors). 
Buried in the capacitor’s datasheet was the 
requirement to not 
touch the capacitor with 
a soldiering iron. The 
rework needed to be 
performed with a hot 
air process. It was very 
clear on page 78 of the 
capacitor’s datasheet!

The specifications 
can also be wrong. 
Many times errata come 
out after you have 
started your design.  
We once missed an 
errata in an 800-page 
microprocessor datasheet that said, “Oh, by 
the way, this device has a 256-MB address 
range but can only address 16 MB of NOR 
flash!” 

THAT ELUSIVE BUG 
Embedded real-time systems and systems 

with concurrency make debugging much 
more difficult. That we can plan for. But those 
elusive bugs that take two weeks in non-
embedded systems can take two months on 
embedded systems because your tools are 
not as powerful and the complexity of the 
design is that much greater.

HIDDEN COMPLEXITY
The scale of complexity is greatly 

multiplied in embedded systems. We are 
supposed to write software that interfaces 
with other very complex devices. Take this 
simple requirement from a datasheet of 

chip we interface with: “To reset the chip, 
hold RESET_N low for 300–500 ms.” On the 
surface that seems straightforward. But what 
is hidden and not written in the manual is 
that if the RESET_N is held low for more than 
1,000 ms, the chip powers down and will not 
start when the RESET_N line is brought high. 
If for some reason your function that releases 
RESET_N gets delayed, the chip would not 
become operational as you expected. This 
requirement of raising RESET_N becomes a 
hard deadline that you might not expect to be 
as such. These kinds of hidden complexities 
are legion in embedded systems.  

PROGRAMMER EFFICIENCY
Two years ago, I sat with one of the best 

embedded designers I know. He was running 
out of real time on a project. The problems 
were so complex that it took two of us 
with a combined experience of 60 years of 
designing embedded systems to figure out 
what was going on and how to fix it. Where 
a less-efficient programmer might be four 
times less efficient than your best designer, 
in an embedded environment that same 

programmer might be 
10 times less efficient.  

OPTIMISM & 
HUBRIS

A couple months 
ago, one of our 
customers asked 
us to add a splash 
screen and a progress 
bar to the start of a 
device. One of our best 
designers saw that 
u-boot had hooks for 
sending an image to 

our display. Linux had a progress bar app 
(psplash) that worked with our display. (If you 
want to have an open-source progress bar for 
Linux (psplash), check out the Yocto project’s 
distribution http://git.yoctoproject.org/cgit/
cgit.cgi/psplash/tree/.) The system was built 
on a BeagleBone architecture so others must 
have done this before. The on-line community 
support for this architecture is huge. We 
knew we could get lots of help. In addition, 
we have done similar projects in about four 
days without this kind of support. We know 
how to do this. We can deliver this fully tested 
in four days. (The BeagleBone open source 
reference design is showing up in the designs 
of a number of companies. You can find more 
about it at http://beagleboard.org/.)

At the end of four days, we found that the 
hooks in u-boot didn’t work. No one in the 
online community knew how to make them 
work. At the end of two weeks, we discovered 

Embedded real-time systems 
and systems with concur-
rency make debugging much 
more difficult. That we can 
plan for. 

http://beagleboard.org/
http://git.yoctoproject.org/cgit/cgit.cgi/psplash/tree
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that the u-boot image was inverted from 
what the Linux driver was expecting. At 
the end of four weeks, we discovered that 
the progress bar did not play well with this 
particular display. At the end of six weeks, we 
discovered that the customer did not provide 
us with the right code base to start with. 
We were optimistic. Embedded systems will 
amplify the negative effects of your optimism 
and hubris enough to put you out of business. 
(The u-boot open-source universal bootloader 
software has been at the start of every 
Linux project we have designed. You can find 
more about it at www.denx.de/wiki/U-Boot/
WebHome.)

CUSTOMER SCHEDULE CREEP
Customer schedule creep is a specific 

instance of “The Other Guy” problem we 
talked about last time. But it has a unique 
feature to it. We are now six months behind 
schedule releasing a new version of embedded 
software for a product we designed for a 
customer. One of the driving factors in the 
delay is that the customer still doesn’t have 
their portion of their web server operational. 
Every day it slips, our team has to work 
on other things instead of completing the 
testing. Each day the team might spend a half 
hour coordinating with the customer. None of 
this 60 hours was estimated. The inefficiency 
of this schedule creep is even more costly. 
Fred Brooks in The Mythical Man-Month puts 
it this way: “Disaster is due to termites, not 
tornadoes.”

Some of this is common to non-embedded 
software. But embedded software by its 
very nature is embedded in stuff. And often, 
stuff that is being designed in parallel. As a 
minimum, it must talk with hardware that 
is often not completely designed. It may 
also talk with other machines that are being 
developed in parallel. How well those are 
designed and when they are delivered can 
be a multiplier in the schedule and cost of an 
embedded system.

PARTNER QUALITY
Another instance of “The Other Guy” 

problem is with your partners. Some of the 
partners we interface with are the hardware 
we run on, the busses we communicate 
on, the networks we connect to, the other 
devices we talk to, the hardware designer 
who designed our board, the hardware layout 
team that laid out the PCB, and the hardware 
build team that actually built the board. How 
well they do their job has a direct bearing 
on how much it will cost you to develop your 
embedded system.

Let me share two examples. We have a 
supplier who builds our printed circuit boards 
and assembles them during our development 
stage. We love this supplier because their 
work is impeccable. Sometimes our customers 
require us to get the boards built someplace 
else or by them. Invariably, parts are put in 
backwards. Ball Grid Arrays (BGA) parts are 
not X-rayed to verify their connections. Flow 
soldering techniques cause modules to reflow 
and not re-center on their footprint. When we 
get the boards, it might take us two to three 
days more to debug and troubleshoot these 
problems because of the supplier. Remember 
that we are checking out a new design which 
can have flaws in it as well. How does one 
estimate for that extra two to three days? You 
don’t know the quality of that supplier until 
you have used them.

Another problem we have is with other 
hardware designers. When we design the 
boards, we know the quality factor of our 
designers. They may not be perfect, but they 
are a known quantity. We know by experience 
how long it will take to integrate the boards 
designed by our own people because we have 
metrics and experience. But what if you are 
designing embedded software that runs on a 
board that is designed by “the other guy?” Our 
experience shows that it can ruin a schedule 
in two ways. The first is the extra time it 
takes to “bring the board up” because there 
are more errors in the design than you are 
used to. This can easily add several weeks to a 
schedule. But often we find that it takes more 
turns of the board than it normally takes you 
to get an operational board. During that extra 
two to three weeks, your team is much less 
efficient. Do you assign them to a new project? 
That is not practical. So the software team 
becomes less efficient. They work on “cleaning 
up the code” and “doing some documentation.” 
Sounds good, but these are schedule killers. 
And for estimating, the problem is: how do you 
know the quality factor in advance?

TESTING DIFFICULTIES
Embedded systems are much more 

difficult to test than conventional software 
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systems. That additional difficulty can be 
planned for and the estimate adjusted to take 
that into account. The problem comes when 
we don’t think through these difficulties when 
we estimate the project. We developed a tiny 
embedded device that was implanted into a 
human body. This device communicated to 
the outside world via infrared. The device 
sent 8 bytes every millisecond. We accurately 
estimated the time it would take to design 
the hardware and the software necessary 
to accomplish these requirements. However, 
when it came to test it, we did not have a 
means to easily do that. There were no off-
the-shelf tools to read the IrDA and provide 
an integrity check to it. How does one know 
that all 8,000 bytes are correct every second? 
A special test tool was needed to display and 
analyze that it was meeting its requirements. 
But special test tools take time and money to 
design. They can drastically expand the effort 
required to design and develop an embedded 
system.

Another thing that can affect our ability 
to estimate embedded system is the time 
delay inherent in many designs between 
making a change, testing the change and 
reprogramming the device. When the time 

delay is very small (as in non-embedded 
systems), iterative designs can be created 
much more quickly. Where this impacts our 
estimates is that we often don’t know what 
the time delay is and exactly how it will impact 
the schedule. For example, let’s imagine that 
over the course of the project you make 1,200 
changes to your software requiring a compile 
and load. If the compile and load time takes 
70 s compared to 10 s, this can add three 
extra days to  your project. Often, during the 
time we estimate, we don’t know with that 
precision the compile and load time.

FACE THE IMPOSSIBLE
The surface area of complexity in 

estimating embedded systems is many times 
more complex than designing non-embedded 
software. Knowing what some of the problems 
are can help us get better at this impossible 
task. Next time, we will look at how we can 
address these problems and get a little better. 
If you have some other suggestions about the 
problems in estimating embedded software 
systems and how you deal with them, drop 
me a line. This is a field in which I need 
constant improvement. And of course, I only 
improve in thin slices. 
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Welcome back to the Darker Side column. 
I read that Thomas Jefferson once said, 

“Delay is preferable to error.” This may be 
often true, but in telecommunications—or, 
more specifically, when  it comes to signal 
transmission—this is far from obvious. For 
example, let’s think about a digital audio 

transmission (music or voice). In such a 
system, you can be sure than a wrong bit 
value from time to time will be less noticeable 
than a blank in the signal until the good bit 
value can be received. Why? Simply because 
the receiver (a human) has a quite high 
tolerance for errors. The same is true for 
video, but it is also the case for any data 
transmission, even between two machines 
as long as an error-correcting code is used 
to recover from transmission errors. The 
key here is that “some” transmission errors 
could be acceptable, as long as they are not 
too numerous. If not, they will jeopardize the 
transmission itself. Where do transmission 
errors come from? How can you measure 
them? This is my topic for this month. 

BIT ERROR RATES? 
As you know, any information can 

be digitally encoded as a stream of bits. 
These bits then can be transmitted on the 
transmission channel, wired or wireless, 
through a succession of encoding and 
decoding steps. I already presented the 

Let’s Count Errors
THE DARKER SIDE

FIGURE 1
A receiver needs to compare a signal amplitude with a given threshold, which may lead to erroneous 
decisions in the presence of noise. A bit error rate (BER) is simply the number of errors divided by the total 
number of transmitted bits.

BER =

Transmitted Link Received

Decision
threshold

Sampling
times
Received
bits

0 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1

0   1   0   1   0

Number of transmitted bits

Number of bit errors

An Introduction to BER Testers

When working on applications that require high-speed 
digital transmissions, signal transmission errors 
can cause a variety of problems. As Robert explains, 
bit error rate (BER) is the ratio of errors to total 
transmitted bits. In this article, he explains how a BER 
tester will help you properly measure error rates.

By Robert Lacoste (France)
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different ways to transform bits into so-called 
base-band signals in my 2011 article, “Line 
Coding Techniques” (Circuit Cellar 255). I also 
covered how to use modulation to put them 
on a carrier frequency in my 2009 article, 
“Digital Modulation Demystified” (Circuit 
Cellar 233).

This month, I won’t detail a fancy 
encoding scheme. I will use the example of 
the simple nonreturn to zero (NRZ) base-band 
encoding. This is a very complicated way to 
say that the successive bits are transmitted 
as two voltages (e.g., 0 V for a “0” and 3.3 
V for a “1”) as with a simple UART. In such 
a system, how does the receiver recover the 
transmitted bit value? Of course, it will use a 
voltage comparator and will check if the line 
voltage is above or below a given threshold. 
This threshold is ideally the middle between 
0 and 3.3 V (say, 1.65 V). Everything above 
is assumed to be a one; everything below is 
a zero. The measurement and decision are 
done once per bit at the bit-sampling time. 
This process generates a received bit stream, 
which is identical to the transmitted bit 
stream as long as there are no errors. Now, 
by definition, the bit error rate (BER) is simply 
the ratio of the number of errors divided by 
the total number of transmitted bits (see 
Figure 1). 

BIT ERRORS, WHY?
In my February 2010 article,  “Living with 

Errors” (Circuit Cellar 235), I introduced the 
usual key contributor to bit errors—noise. 
Plenty of noise sources interfere with the 
transmission and degrade the clean 1s and 0s 
generated by the transmitter. This noise can 
be either human-generated (e.g., electrical 
motors, wireless transmissions, or sparks) or 
natural (e.g., high-energy particles, lightning, 
or ionoscpheric effects). All these noises will 
add to each other. Now the magical trick: If you 
add plenty of independent phenomena (and 
the key word here is “independent”), then you 
will always get a Gaussian distribution (see 
Figure 2). That’s why Gaussian shapes are 
everywhere. Such a Gaussian distribution can 
be characterized by two values: its average 
(0 for a DC-centered noise) and its standard 
deviation, which is exactly the same than its 
round mean square (RMS) voltage. 

An important fact about Gaussian 
distribution is that it is boundless. Gaussian 
noise with a 1-mV RMS voltage will have 
occasionally very high values, even if the 
associated probability is very low! As shown 
in Figure 2, a 1-mV RMS noise will have an 
instantaneous value higher than 3 mV only 
0.1% of the time; but, from time to time, it will 
be far higher than that. In fact, for a “perfect” 
Gaussian noise, you will get a voltage as high 

as you want if you wait enough time. That is 
exactly what boundless means. The story is a 
little different for real-life signals that can’t 
go to thousands of volts for other reasons, 
but you’ve got the idea.

Let’s go back to our NRZ transmission 
example. If such a Gaussian noise is added to 
the received signal (and you can be sure that 
it will), the noise value will be higher than half 
the voltage decision threshold from time to 
time. The comparator will be fooled and you 
will receive a wrong bit value. This explains 
why any transmission link is prone to bit 
errors. Of course, you can design a system for 
a BER as low as you want, just by increasing 
the signal over noise ratio, but you will never 
be sure that the BER will be zero. That’s why 
checksums are useful. They enable you to 
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FIGURE 3
Here my experiment’s setup. This figure also illustrates the internal blocks of a typical BER tester.
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This figure shows you the ubiquitous Gaussian distribution. As you can see, 95.4% of the time the noise 
amplitude stays closer than two times the standard deviation around the average. But be careful because its 
amplitude is not bounded. (Source: Wikipedia, http://en.wikipedia.org/wiki/Normal_distribution)
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detect remaining errors, but that’s another 
story. 

Gaussian noise is not the only source of bit 
errors, but it is usually one of the predominant 
contributors. There are numerous other 
sources of error, such as inter-symbol 
interference (i.e., increased error rate on a bit 
depending on previous bit values) and timing 
jitter. But for my purposes here, Gaussian 
noise will be enough for the topic I want to 
cover next: how to measure a bit error rate.

BER TESTERS
Specific test equipment is available for 

measuring bit error rates. The concept of a 

BER tester is very simple (see Figure 3). First, 
it needs to generate a bit stream to test the 
transmission link. This bit stream must be as 
random as possible in order to detect potential 
errors linked to specific bit sequences. This 
is exactly what so-called pseudo-random 
binary sequence (PRBS) generators are made 
for. (More on that in a minute.) This PRBS 
generator is clocked by a simple square 
wave oscillator set at the desired bit rate. 
The output of the PRBS generator, as well as 
the clock if needed, is then connected to the 
transmission channel to be tested.

At the other end of this transmission 
channel, the BER tester needs to include an 
associated receiver. In its simplest form, 
this receiver is a voltage comparator with a 
user set threshold and a register to latch the 
comparator output value at each clock front. 

Lastly, a BER tester includes an error 
detector, which is nothing more than a digital 
comparator between the sent and received 
bits and a counter. Add some software and 
you have a full-featured bit error rate tester 
(BERT). 

A BERT is a nice piece of test equipment, 
but I assume you don’t have one in your lab. 
BERTs cost a fortune and are rarely used. But 
maybe you’d like to build one? This is actually 
easy as long as you stay with reasonable 
clock rates (say, a few tens of megahertz). 
Although I won’t cover how to build a BERT 
in this article, I did create a basic schematic 

b)

a)

FIGURE 4
This is a simplified schematic of a 
BER tester, with a PRBS generator 
on the left and an error comparator 
on the right. The plot shows you the 
simulated output signal. 
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for you (see Figure 4). Warning: This is only 
a starting point. I’ve never actually built 
the BERT and plenty of things are missing. 
But I hope you’ll get the idea. The leftmost 
section—from U3:A to U2:B—is an example of 
a four-step PRBS generator. Such a generator 
provides a pseudo-random sequence of 16 
bits (24), which then repeats indefinitely. 
I used my Labcenter Electronics Proteus 
simulator to generate the output in Figure 3. 
A simple web search for “PRBS” will bring up 
find variants with any number of steps. An 
excellent reference is Clive Maxfield’s 2006 
EETimes article, “Tutorial: Linear Feedback 
Shift Registers (LFSRs).” 

In this example, I used four D registers 
in the form of old 74HCT74 chips to design 
this PRBS generator, but FPGAs aficionados 
will enjoy playing around here. The resistor 
R1 on my schematic is where the actual 
transmission channel should be inserted. It is 
followed by a basic comparator built around 
two more D registers and an exclusive OR 
gate. Just add an error counter and a clock 
generator and you’ll have a basic BERT. 

TO THE BENCH
OK, now I must confess that I’m lucky 

enough to have two beautiful BER testers in 
my company’s lab, and that’s why I didn’t 
have to build one by myself! For these tests, I 
used an Aeroflex Fastbit FB100A, configurable 
from 100 bps up to 50 Mbps. It is running 

under Windows NT, so you will conclude that 
this is not actually a very recent system, but 
it is working flawlessly. I bought it online for 
about $500, which is probably around 1% of 
its original price tag. It was a nice deal, even 
with the hefty shipping cost.

I wanted to show you some actual bit 
errors, so I switched on this BER tester, 
and connected its transmitter output to its 
receiver input through a 47-Ω resistor. I 

PHOTO 1
This is my experimental setup. The 
BER tester is lying on the table, with 
noise generator and frequency meter 
on the left and the digital oscilloscope 
on the top. 

PHOTO 2 
This is a screenshot of the BER tester's main window. Notice the calculated BER value on the bottom right. 
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then took an Agilent 33521A arbitrary signal 
generator, configured it as a pseudo-Gaussian 
noise source, and added it to the receiver 
input through a DC-coupling capacitor. Lastly, 
I connected my Teledyne LeCroy Waverunner 
610ZI oscilloscope to the signal to show you 
the actual signal waveform. The scope must 
be triggered by the clock signal in order to 
get a stable picture. The full setup is shown in 
Photo 1. Nice, isn’t it ? 

A BER tester has usually plenty of 
configuration options. Photo 2 shows you the 
main instrument display. It is logically split 
into two sections: transmitter and receiver. 
I manually set the transmitter to 10 Mbps 
and the output amplitude to 3.3 V, and 
measured the received signal amplitude on 
the oscilloscope. I got a signal varying from 
500 mV to 1.4 V (which is a 900-mV peak-
to-peak signal with a 0.95-V DC offset), as it 
is heavily dampered by the 47-Ω resistor and 
the impedance of the noise generator. This 
roughly reduced the signal amplitude by half 
but allowed to inject easily some noise for my 
tests. So, I set accordingly the threshold of 
the receiver to 0.95 V, roughly in the middle 
of the signal amplitude. 

My first test was with the noise generator 
set to an amplitude of 160-mV RMS. This noise 
voltage is quite low as compared to the 900-
mV amplitude of the signal so I expected no 
bit errors. I simply clicked on RUN TEST and 
left the test run for a while. Ten minutes and 
a coffee later, the calculated bit error rate was 
displayed by the analyzer: 6.22 × 10–8. That’s 
very low, but not null! In fact the analyzer 
told me that 5,836,012,884 bits were received 
during these 10 min (which is close to the 
expected count with a bit rate of 10 Mbps) and 
363 of them where wrong. That shows you the 
strength of such a test: even errors that would 
be barely noticeable during a functional test 
are quickly highlighted by a BER tester. This 
could help you to quickly compare different 
design choices, and to select the best one.

It is also interesting to see what happens 
in the time domain. Have a look on Figure 5 
and Figure 6. Both are screen copies of the 
oscilloscope, with respectively a noise of 190-
mV RMS and 300-mV RMS. Some explanations 
are needed to understand these plots: I 
configured the Teledyne LeCroy Waverunner 
oscilloscope in a special persistence mode, 
which display different colors depending on 
the recurrence of a signal. The hotter the 
color, the more frequently the signal had this 
voltage value. This is a wonderful tool to feel 
the statistical properties of a moving signal. 
Here you see that the signal is still quite clean 
with 190 mV of noise, it doesn’t come too close 
to the middle of the screen (see Figure 5). In 
such a case telecommunication guys say that 

FIGURE 5 
With a low noise voltage—190-mV RMS in this case—the plot called an eye diagram stays open. The 
histogram confirms that the voltage values for bit “0” and “1” are far enough from each other.
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the eye diagram (which is the name of such 
a plot) is open. Conversely the eye is closed 
when I increase the noise to 300-mV RMS (see 
Figure 6), meaning that the BER must be 
far higher. And the measurement with the 
BER tester confirmed these assumption: 
between these two tests the BER climbed 
from 4.7 × 10–6 to 2.1 × 10–3, which is 500 
times higher! 

Do you want to see another interesting 
feature of a high end digital scope? They 
could calculate and plot for you histograms 
of the signal. Think of such an histogram 
as a projection of the signal’s amplitude 
on the vertical axis. The more the spot 
stays at a given voltage, the higher the 
corresponding histogram value will be. The 
result is also represented in Figure 5 and 
Figure 6 as a superposed yellow chart. As 
expected, the histogram shows more or less 
two Gaussian shapes. These two Gaussian 
shapes correspond to the two stable signal 
levels with the addition of the Gaussian noise. 
When the noise is low (see Figure 5), the two 
Gaussian’s are far from each other, implying 
low BER. Conversely, Figure 6 shows that 
the two distributions are starting to merge, 
which is another way to say that the eye is 
closed and the BER is high. 

Before dismounting the experiment and 
putting back the BER tester on the shelf, I 
measured the BER for different noise levels. 
The resulting plot is shown on Figure 7. This 
is a very typical BER curve. The scale may be 
varying, but you will find the same overall 

shape in plenty of applications ranging from 
wireless receivers to Ethernet transceivers or 
telecommunication systems. 

WRAPPING UP
OK, that’s the end of our journey in the 

world of BER testers. I know it’s unlikely 
that you’ll ever have a commercial tester at 
your workbench. However, I am also sure 
that you’re projects will occasionally suffer 
from errors in signal transmissions. In some 
cases, knowing what’s going on and how 
to measure a BER can make the difference. 
Just imagine two colleagues working on a 
data transmission problem. One of them is 
trying to find out what’s happening with its 
debugger, scope, and multimeter, while the 
other knows about BER testers and decides 
to rent one for a couple of days. Who do you 
think will solve the problem sooner, get a 
big thanks from the customer, and receive a 
bonus from the manager? 

Don’t get me wrong. I’m not saying that 
oscilloscopes can’t help, especially because eye 
diagrams and advanced scope features are 
invaluable. But knowing about dedicated 
testing equipment and how it can provides 
insights about data transmission can’t hurt! 
Moreover, the increase in bit rates and system 
complexity everywhere is going to make these 
topics hotter than never. Running a fast USB or 
gigabit Ethernet connection without too many 
errors is significantly more difficult than 
connecting a 9,600-bps RS-232 port! As usual, 
I encourage you experiment yourself!  

FIGURE 7 
This plot of BER versus noise level, expressed as a signal-over-noise ratio, is very typical. Take care as the scale of both axes is logarithmic. 
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I always thought of night lights as a 
bit of Christmas all year round. These 

candelabra-based 7.5-W bulbs (C7), which 
are available all year in clear or white colors, 
are used as appliance bulbs. Toward the end 
of the year, the lights are available in retail 
stores in many colors as replacements for 
old strings of holiday lights. These days, 
miniature plug bulbs have taken over and 
provide more twinkle and less heat than the 
larger C7 bulbs. LEDs are quickly replacing 
the miniature incandescent bulbs and many 
feature the ability to change color.

I grew up in a two-story house on a 
quiet street in a once-bustling textile town. 
The second floor had four bedrooms and the 
home’s only bathroom. A short hall connected 
all rooms and the stairway down to the main 
floor. Mom was always nervous that one of 
us would accidentally take a wrong turn in 
the dark on a night trip to the bathroom, 
so she put a night light in the hallway. We 
would always find a colored Christmas bulb 
to screw into the night light whenever the 
bulb burnt out. One night the normal festive 
shadows were replaced by an eerie glow. Was 

this some alien invasion from a distant world? 
Unfortunately, no.

This was my first exposure to the world 
of electroluminescent (EL) materials. EL is the 
nonthermal conversion of electrical energy 
into light energy. Electrons passing through a 
powder phosphor in between two electrodes 
excite the phosphor to emit photons, giving 
off an eerie glow. Product manufacturers 
quickly caught on to this and augmented 
their products with this new solid-state light. 
The term light-emitting capacitor (LEC) was 
coined in the 1960s. While this is a great 
descriptive name, I’ve never heard it used.

BACKLIGHTING
The EL panel’s nondirectional emissions 

make it a natural choice for backlighting. It’s 
been used in watches, pagers, thermostats, 
dashboards, and other products. Because of its 
unique properties (see Table 1), it will continue 
to be used in products for years to come.

If you’ve hiked or camped in the woods 
after dark, you might have come across some 
exposed phosphorus that takes on an eerie 
glow. I’m guessing this is some form of either 

Solid-State Lighting (Part 1)

By Jeff Bachiochi (US)

Electroluminescence (EL) is the 
nonthermal conversion of electrical 
energy into light energy. Jeff explains 
how he set up an eight-channel EL 
controller for programming and 
animating up to eight EL panels.

FROM THE BENCH
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photoluminescence (emission due to exposure 
to light) or chemiluminescence (emission 
due to a chemical reaction). Nature is full of 
luminescence. As a kid I would never allow a 
summer evening to slip by without catching 
fireflies in a jar. Let’s take a closer look at 
how this material is manufactured and can 
be put to use.  

The most common EL devices are known 
as thin-film electroluminescent (TFEL). Most 
TFEL devices comprise six layers: a substrate, 
a conductor, an insulator, a layer of phosphors, 
another insulator, and a second conductor. 
Figure 1 depicts a typical TFEL construction. 
Starting from the outside, the substrate is 
a rigid or flexible material used as a base 
on which the additional layers are applied. 
The substrate can serve as the back or if 
transparent, as a protective front surface. 
Conductive layers form the device’s capacitive 
electrodes exposing the inner phosphorus to 
an alternating high voltage. Obviously, at least 
one conductive layer must be transparent to 
allow the emitted photons a way to escape. At 
least one transparent insulation layer is used 
to prevent the high voltage from arcing and 
shorting out the conducting electrodes. The 
high-voltage field penetrating the innermost 
phosphorus layer provides an energy gain to 
a phosphorus electron. The loss of energy in 
the alternating field then allows a transition 
of an excited phosphorus electron back to a 
lower energy state releasing the difference in 
energy between the two states as a photon.

While EL panels used in backlighting for 
LCDs are typically a single continuous emitter, 
a panel may contain multiple and separately 
controlled areas. Custom EL panels are 
becoming cost effective. While material, AC 
frequency, and voltage can have an effect on 
a panel’s color, you can choose from a number 
of standard colors (see Photo 1).

LINE VOLTAGE
A simple nightlight doesn’t required 

external electrical components beyond the EL 
panel. The 120 VAC delivered by our power 
grid falls within the specs of a typical EL 
panel:

Voltage: 100 to ~220 V (Optimum: 120 V)
Frequency: 50 to 5,000 Hz (optimum:  

  1,500–2,000Hz)

When an EL panel is used beyond the 
reach of an AC outlet, the required AC must 
be produced locally, via a converter. Most 
distributors of EL panels also offer DC-AC 
converters.  Since the AC they produce is 
potentially dangerous (high voltage), most are 
encapsulated to insulate said circuitry from 
the user. These may consist of an AA or AAA 

battery holder, power switch, converter, and 
output connector enclosed in a plastic case 
or simply a potted converter with input and 
output leads. The DC supply voltage required 
can be from 3 to 12 V.

I find most EL converters have a CM rating 
associated with them that is an important 
consideration when choosing one for a project. 
CM stands for square centimeters and is an 
indication of how much EL material it will 
drive. This is easy for EL panels, where the 
size is listed (i.e., 10 cm × 10 cm is 100 CM). 
However, EL material also comes in tape and 
wire. If you are using this material, you can 
figure that 20’ of wire or 40’ of tape is equal 
to approximately 100 CM. Many converters 
must have some minimum load to operate 
without self-destructing. Driving a smaller 

TABLE 1
Depending on the application, EL panels have distinct advantages over other types of backlighting.   

Light

Glass

ITO

Insulator

Phosphor

Insulator

AI

FIGURE 1
TFEL devices utilize a thin phosphor 
film, such as manganese-doped zinc 
sulfide (ZnS:Mn), sandwiched between 
two insulating films, surrounded by 
transparent indium-tin-oxide (ITO) 
and non-transparent conductive 
electrode layers. An alternating 
(pulsed) electrical potential (about 
120–200 V) applied between the two 
conducting electrodes generates 
an electric field that can cause the 
phosphorus electrons to obtain a 
higher energy state and then release 
photons with a loss of field energy.

Advantages Disadvantages

Low wattage
Not practical for general lighting 
of large areas due to low lumen 
output of phosphors

Long life (reduced lumen output 
over time)

Poor lumens per watt

No external circuitry required 
(when plugged directly into AC 
power)

Reduced lumen output over time

Can be manufactured into flat 
flexible panels and other small 
shapes

Flexible flat EL sheets should not 
be flexed

More durable and light weight 
than LCDs or Plasma as display 
backlights.

The lamps require significant AC  
voltage:
60–600 V

Not directional emission, looks 
good at all angles

EL requires a converter when 
used with DC sources (uses higher 
frequency AC power, audible)

EL displays can handle –60°C to 
95°C 
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load will increase light output (as the voltage 
will be on the high side), while driving a larger 
load will decrease light output (as the voltage 
output will decrease with additional load).

ONE IS NEVER ENOUGH
Because you are already familiar with EL 

used as backlighting on some phones, tablets, 
laptops and monitor/TVs you may not be 
intrigued until you see anything other than 
white. There is something about color that 
makes things really pop. Many are dabbling 
in the wearable wave, which is a mating of 
clothing and electronics. It could be adding 
headphones to a hat, medical sensor to a 
shirt, or EL as accents. While this brings back 
visions of Tron, a totally different industry 
has been gearing up to replace “high-priced” 
neon with EL.

Advertising signage has embraced the EL 
idea. While it doesn’t have the intensity of 
neon, it has that same feel. It is inexpensive 
to duplicate as multiple colors and shapes can 
be combined into a single flat panel. Having 
this type of single panel is not cost effective 
for us. However, since the material can be 
easily cut, you can be creative in your use. 
Silk screening or masking with vinyl are other 
approaches that may not even require cutting 
standard-sized panels.

To achieve the animation of separate 
glowing shapes you need to have control 
over these separate areas. For instance, a 
simple three-cell sign might use three single 
panels each masked with the individual words 
“Eat,” “At,” “Joes.” You might want the words 
to illuminate one at a time and then flash 
together. This would require a way of turning 
on and off each EL panel individually. In this 
case, we need three channels of control. Since 
a port has 8 bits, this is a nice number to 
work with. Let’s look at setting up an eight-
channel EL controller that will provide you with 
a simple way of programming the animation 
for up to eight EL panels.

CONTROLLING AC
Many of you have probably used a TRIAC 

to control an AC voltage. While we could use 
mechanical relays to do this, the solid-state 
approach is a bit less expensive and doesn’t 
have the potential contact wear issues that 
relays can experience. Before we had electric 
drills with squeeze speed control, there was 
only one speed, on. I remember buying a 
speed control from RadioShack with a knob 
that let you control the speed of your drill. 
This was a circuit containing a silicon control 
rectifier (SCR), the precursor to the Triac. 
The SCR is an electrically controlled one-way 
switch. The device affects only one polarity of 
the AC waveform. The knob or potentiometer 
along with a fixed capacitor formed an RC 
network that would delay the SCR switch from 
turning on for its polarity once each full cycle. 
This meant that if the SCR was prevented 
from turning on at all that the drill would 
receive only half of the AC voltage waveform 
and run very slow (or not at all). By allowing 
the SCR to turn on at various delays from the 
zero-crossing point, you have full control over 
the other half of the AC waveform and have 
full control over one polarity of the waveform. 
The AC itself provides the repetitive timing 
necessary to control the SCR’s gate.  

The obvious next step was using two 
parallel SCRs (in opposite polarity) to control 
both halves of the AC waveform. This was 
again improved by combining all the circuitry 
necessary into a single three terminal device, 
the TRIAC. While many of today’s tools are DC 
Lithium Ion based, TRIACs are still used in 
devices that run on AC.

The DC-to-AC converter you might use 
for you EL panels can be controlled using 
a TRIAC. I’m talking about a rather high 
voltage here (greater than 100 V), so use 
caution when it comes to exposed circuitry. 
In addition, if you want a microcontroller to 
control this, it should be isolated from the 
high voltage. Use an optical isolator to isolate 
a microcontroller from the high-voltage AC. 
Many configurations are available. I used a 
device that has an LED as the control source 
for an optically coupled switch for an external 
TRIAC. Since the switch is optically coupled 
to an LED, the logic side circuitry remains 
physically disconnected from the high voltage 
(except for optionally grounding one side of 
the AC). The external TRIAC’s gate  is turned 
on whenever the isolated LED is illuminated.

The “when” is the important part here. 
That’s because once a TRIAC has been turned 
on by its gate, the TRIAC will stay on even if 
the gate signal is removed until the AC voltage 
reaches zero (which it does twice per cycle). 
If the gate remains on, the TRIAC is turned 
on again until again reaching zero and the 

PHOTO 1 
These are some 10 cm × 10 cm panels 
I purchased from Adafruit.com and 
Sparkfun.com. This picture was taken 
in a darkened room as the lumen 
output is not overwhelming.
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gate drive has been removed. You can choose 
when to turn it on for any half cycle based 
on the zero-crossing. It is best to turn a 
TRIAC on when the current is zero to prevent 
(potential ) instantaneous high currents. To 
assure this is the case, you need either to 
monitor zero crossings and apply a control 
signal only when the voltage is minimum or 
use a isolated device that contains a zero-
crossing detector.

Figure 2 shows the block diagrams of two 
similar isolated devices, the MOC302x and 
MOC303x. When all you want to do is turn 
on or off the device, use an isolator that has 
a zero-crossing detector (ZCD) built-in. This 
allows the device to decide the appropriate 
time to apply the gate drive. When you need 
to perform PWM control of each cycle (for 
dimming purposes), you must use an isolator 
without zero-crossing so that you can force 
the device on during any point in the cycle. 
If a delay of 4 ms (approximately half of each 
60-Hz half cycle) is repeated, the average 
power to the load is reduced to around 50%. 
This only works when you sync the delay to 
each zero-crossings.

PROTOTYPE 1
The first circuit in this project will be 

used to turn eight EL loads on and off. It is 
based on providing an external AC source 
using an available DC-to-AC converter. 
Figure 3 shows eight similar TRIAC circuits 
controlled via a microcontroller using zero-
crossing optoisolated devices for circuit and 
safety protection. In this instance, we have 
no control of the converter’s frequency—that 
is, the AC frequency—so we allow the ZCD to 
handle when in each cycle to apply the gate 
voltage to the external TRIAC.

If I were manufacturing an “Eat at Joe’s” 
sign, I could hard code the timing parameters 
of the animation into the code. There would 
be no reason to ever change these. However, 
for experimental purposes, I want to be able 
to change this on the fly. This means that 
there must be some kind of user interface. 
A simple serial interface handles this nicely. 

I had to define a few commands to define 
parameters. My first thought was to use 
music instrument digital interface (MIDI), 
which was designed as a way to translate 
all aspects necessary to replicate a musical 
score into individual command instructions 
like note, duration, beat, instrument, and 
volume. This is very structured and allows 
multiple instruments to play in one cohesive 
group. This orchestration is much like what 
is necessary to animation objects. That’s 
probably why other control equipment often 
uses formats similar to the MIDI standard. 
There is plenty of available software for 

constructing MIDI commands with an easy-
to-use GUI. The MIDI command can then  be 
interpreted as actions other than choosing 
how long a particular note is sounded for. I’m 
not using this for two reasons: it requires a 
special interface and the data is binary and 
not ASCII. While the interface is not complex 
(it’s essentially serial), there is a learning 
curve associated with MIDI that really isn’t 
necessary here. Also, I want all the commands 
to be ASCII, so they can be typed in using a 
simple terminal program, like RealTerm. 

The protocol I used consists of a string of 
commands that make up a single channel’s 
animation. We only need three commands 
here: Channel, ON, and OFF. Channel is 
represented by the letter C, ON by the letter 
O, and OFF by the letter X. Each of these 
commands has a value associated with it. For 
Channel, we use this to select the channel 
number (1 to 8) for the remaining commands. 
ON and OFF require a time or duration 
represented by a decimal number between 1 
and 255. The time is tenths of a second. So, if 
you want a duration of 1 s, you use the value 
10. This allows each command to indicate a 
duration of up to 25.5 s. If we break down the 
animation of the “Eat at Joe’s” sign into three 
channels, we get:

C1 O5 X5 X5 X5 X10 X10 X10 X10 X10 <CR> 
C2 X5 X5 O5 X5 X10 X10 X10 X10 X10 <CR>   
C3 X5 X5 X5 X5 O10 O10 O10 X10 X10 <CR>

Note the following groups in Channel 3: 
X5, X5, X5 X5, O10, O10, O10, X10, 
and X10. Each group totals 10/10 tenths or 

FIGURE 2 
Here are two optically isolated TRIAC drivers that can be used with an external TRIAC to control the high-
voltage AC required to excite an EL panel. These devices have identical footprints so using an IC socket in a 
circuit allows for some experimenting with either device. Without the zero-crossing detector the device can 
turn on an external TRIAC at any point in each half cycle.  The driver with the ZCD will delay any command 
to turn on until a zero-crossing has occurred enabling an external TRIAC when the voltage is minimum. 
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1 s. I wrote it like this so that it’s easier to 
understand, as all actions are in sync (they 
don’t necessarily have to be). Channel 1 is 
on for 0.5 s and then off for0.5 s, while the 
others channels remain off. Next, Channel 2 is 
on for 0.5 s and then off for 0.5 s, while the 
others channels remain off. Then, Channel 3 
is on for 3 s while the others channels remain 
off. Finally, all channels are off for 2 s. This 
animation would then repeat endlessly.   

The following command strings produce 
the same results, but it is much more difficult 
to relate the actions of one channel to another.

C1 O5 X65 <CR>

C2 X10 O5 X55 <CR>  
C3 X20 O30 X20 <CR>  

When commands are entered, execution 
of the present animation stops. Command 
strings entered are saved into EEPROM and 
remain with the application until changed. 
Animation begins using any commands stored 
in EEPROM upon the next reset.  The present 
commands are sent out the serial port before 
execution begins.  This will allow the user to 
check what is presently programmed into 
the device.  Only Channels entered will be 
changed.  Previously stored commands for 
other Channels will remain unless they are 
deliberately removed using a empty string.

C4 <CR>

TIMING IS EVERYTHING
As described earlier the animation timing 

is based on tenths of a second. Therefore, we 
need to initialize a timer to give a interrupt 
every 0.1 s. Based on an internal clock 
speed of 8 MHz, the execution speed of each 
instruction will be 2 MHz (8 MHz/4), or 500 ns. 

FIGURE 3 
This is the basic control circuitry for eight EL panels connected to an external DC-AC converter. EL animation, or the programmed on/off sequences of each channel, is handled 
using three commands via a serial terminal. Programmed sequences are saved to EEPROM.

circuitcellar.com/ccmaterials

RESOURCES
Edison Tech Center, “Electroluminescent Lamps,” 
2013, www.edisontechcenter.org/electrolumi-
nescent.html.

What-When-How.com, “Organic Photovoltaic 
Cells (OPVCs),” http://what-when-how.com/elec-
tronic-properties-of-materials/applications-op-
tical-properties-of-materials-part-7/.

www.edisontechcenter.org/electroluminescent.html
http://what-when-how.com/electronic-properties-of-materials/applications-optical-properties-of-materials-part-7
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This is also the clock input for Timer 2, Timer 
4, and Timer 6. Each timer has a prescaler, an 
8-bit auto-reload counter, and a post-scaler. 
The prescaler can slow the clock by a factor of 
1, 4, 8, or 64. A prescale value of 64 will slow 
the (500 ns) clock down to 32 µs. If we divide 
this into the time we want (100,000 µs), we 
get 3,125, which is too big for 8-bit register, 
so we need reduce this further by the post-
scaler. Setting the post-scaler to divide by 
16 will bring the count down to 195.3125. By 
initializing the PR4 register to 195, the 8-bit 
count down register is automatically loaded 
with that value each time it reaches zero. So, 
we have a clock slowed to 32 µs, counting 
from 195 to 0 (32 µs × 195 counts = 6,240 
µs), divide by a post-scale of 16 (6,240 µs × 
16 = 0.099840 µs). In reality, the actually 
interrupt time will be off by 160 µs, which 
is approximately 0.16%. This is due to the 
fractional part of a 32-µs count times the 
post-scaled divisor (32 µs × 0.3125 × 16 = 
160 µs).

With a time base of 0.1 s, I can make 
decisions on potential channel changes every 
interrupt. Refer to Figure 4 to see what 
must happen every 100 ms. At power-up, the 
EEPROM content is sent out the serial port 
as record of which channel parameters are 
executing. Each channel is initialized with the 
first command and duration read from the 
EEPROM. With this done, the interrupts are 
enabled, and when Timer 4 overflows, we get 
an interrupt. Actually, there is no reason we 
can’t just poll for the Timer 4 overflow in the 
main loop; however, I use the interrupt to set 
a “Check for Changes” flag and also produce 
a debug pulse on an unused output pin. The 
main loop does nothing until a character 
is received or a Timer 4 interrupt sets the 
“Check for Changes” flag.

It is important that we can complete any 
necessary execution in less time than it takes 
Timer 4 to overflow again. Therefore, I set a 
second unused output bit when the routine 
begins and clear it when finished. With 
these two outputs, I can see when Timer 4 
interrupts occur and how long the “Check for 
Changes” routine takes in the main loop. It’s a 
good idea to determine the routine time. You 
can physically count the number of program 
steps required for the longest path through 
the routine, or you can use the stopwatch 
function in the simulator to record the time. 

Extensive use of the indirect registers 
allows the same routines to be used as the 
code cycles through all eight channels. In 
reality, you don’t need to turn on any channel 
that is already on (or vice versa). However, 
it takes longer to check for the state of an 
output then it does to just set or clear it again. 
This is done for all channels each interrupt. 

In addition we need to reduce the duration 
count each interrupt. When that duration 
reaches zero, an EEFLAG flag is set to indicate 
that a new command is required. When a new 
command read is equal to 0x0D, the command 
pointer for that channel is reset, allowing the 
string to repeat. When a channel reads 0x0D, 
the command pointer is also checked to see 
if there are any commands. If there are no 
actual commands for the channel, a fake OFF 
command with a duration of 255 is created 
to prevent anything from happening on that 
channel’s output. Any time you program 
multiple channels to be on at the same time, 
the brightness will be some what less since 
all channels are all sharing the same AC 
source.       

ANIMATE
At times I wish I had a more artistic flair. 

Coming up with flashy (no pun intended) 
artwork is just not one of my talents. However, 
with the basics under my belt, I can experiment 
using EL to illuminate and animate. Next 
month, I’ll continue this discussion with a bit 
more information and a few more circuits you 
might find interesting. 

FIGURE 4 
Here’s a flow chart of the 
“Check for Changes” routine 
that is executed each time 
an interrupt occurs from 
the Timer 4 overflow (100 
ms). The present channel 
command determines the 
channel’s new output state 
until the command’s duration 
value (number of 100-ms 
ticks) has been decremented 
to zero. Once the state of all 
channel outputs has been set, 
if any command’s duration has 
reached zero, a new command 
is fetched for that channel from 
the EEPROM.    
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 1  CC VAULT
CC Vault is a pocket-sized USB 

that comes fully loaded with ev-
ery issue of Circuit Cellar maga-
zine! This comprehensive archive 
provides an unparalleled amount 
of embedded hardware and soft-
ware design tips, schematics, and 
source code. CC Vault contains 
all the trade secrets you need to 
become a better, more educated 
electronics engineer!

Item #: CCVAULT  

 2  CC 2014 CD
2014 was an exciting year for 

electronics engineers! The continued 
success of open-source solutions, 
Internet of Things (IoT) revolutions, 
and green-energy consciousness has 
changed the face of embedded design 
indefinitely. In Circuit Cellar’s 2014 
archive CD, you can find all of these hot 
topics and gain insight into how experts, 
as well as your peers, are putting the 
newest technologies to the test. You’ll 
have access to all articles, schematics, 
and source code published from January 
to December 2014.

Item #: CD-018-CC2014

1

3

2

A Guide to Powerful Programming 
for Embedded Systems

Circuit Cellar, Inc. 
www.circuitcellar.com

Assembly Language
Essentials
A Guide to Powerful Programming for Embedded Systems

You must be a well-rounded professional to excel in the ever-evolving, rapidly developing
embedded design and programming industry. Simply put, when it comes to electronics 
design and programming, the more topics you can master, the more you’ll flourish at your
workplace and at your personal workbench. This shouldn’t be a surprise, as the line 
between the skills of a hardware engineer and software engineer is blurring. The former
should have a good grasp of programming in order to build efficient systems. The latter
should understand the details of the design (whether it’s a physical or virtual application)
for which he or she is writing code. Thus, to be successful, a modern professional 
electronics engineer must have a solid grasp of both hardware design and programming. 

Assembly Language Essentials is a matter-of-fact guide to Assembly that will introduce you
to the most fundamental programming language of a processor. Unlike other resources
about Assembly that focus exclusively on specific processors and platforms, this book uses
the architecture of a fictional processor with its own hardware and instruction set. This 
enables you to consider the importance of Assembly language without having to deal with
predetermined hardware or architectural restrictions.

You’ll immediately find this thorough introduction to Assembly to be a valuable resource,
whether you know nothing about the language or you have used it before. The only 
prerequisite is that you have a working knowledge of at least one higher-level programming
language, such as C or Java.

Assembly Language Essentials is an indispensible resource for electronics engineering 
professionals, academics, and advanced students looking to enhance their programming
skills. The book provides the following, and more:

• An introduction to Assembly language and its functionality
• Significant definitions associated with Assembly language, as well as essential 

terminology pertaining to higher-level programming languages and computer 
architecture  

• Important algorithms that may be built into high-level languages, but must be done
the “hard way” in Assembly language — multiplication, division, and polynomial 
evaluation  

• A presentation of Interrupt Service Routines with examples
• A free, downloadable Assembler program for experimenting with Assembly

Assembly
Language
Essentials

Larry Cicchinelli
Assem

bly Language Essentials
Larry Cicchinelli

Assembly Language Essentials cover4_Opmaak 1  23-2-11  14:32  Pagina 1

4

 

Further information and ordering: www.cc-webshop.com
CONTACT US: Circuit Cellar, Inc. | Phone: 860.289.0800 | E-mail: custservice@circuitcellar.com 

 3  ADUC841 MICROCONTROLLER DESIGN MANUAL
This book presents a comprehensive guide to designing and programming with 

the Analog Devices ADuC841 microcontroller and other microcontrollers in the 8051 
family. It includes a set of introductory labs that detail how to use these microcon-
trollers’ most standard features, and includes a set of more advanced labs, many of 
which make use of features available only on the ADuC841 microcontroller. 

The more advanced labs include several projects that introduce you to ADCs, 
DACs, and their applications. Other projects demonstrate some of the many ways 
you can use a microcontroller to solve practical problems. The Keil μVision4 IDE is 
introduced early on, and it is used throughout the book. This book is perfect for a 
university classroom setting or for independent study. 

Author: Shlomo Engelberg
Item #: CC-BK-9780963013347

 4  ASSEMBLY LANGUAGE 
ESSENTIALS

Looking to brush up your program-
ming skills? Get back to to the basics 
with this matter-of-fact guide to As-
sembly language. Perfect for advanc-
ing students and academics, this book 
introduces you to a processor’s most 
fundamental programming language. 
It includes essential terminology per-
taining to higher-level programming, 
important algorithms that can be built 
into high-level language, a free down-
loadable Assembler program, and 
much more. 

Author: Larry Cicchinelli

http://www.circuitcellar.com
http://www.cc-webshop.com
mailto:custservice@circuitcellar.com
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Circuit Cellar feature articles are contributed by professional  

engineers, academics, and students from around the globe.  

Each month, the editorial staff reviews dozens of article  

proposals and submissions. Only the best make it into the  

pages of this internationally respected magazine.

Get published. Get noticed. Get paid.

Do you have what it takes? 

Email: editor@circuitcellar.com   

Contact C. J. Abate, Editor-in-Chief,  today to discuss the  
embedded design projects and programming  
applications you’ve been working  
on and your article could be  
featured in an upcoming issue  
or online at circuitcellar.com. 

TEST YOUR EQ 
Contributed by David Tweed

What’s your EQ? The answers are posted at www.circuitcellar.com/ 
category/test-your-eq/. You can contact the quizmasters at 
eq@circuitcellar.com.

PROBLEM 1
 The capacitance of the plates drops with increasing 
distance, so the voltage between them rises, because the 
charge doesn’t change and the voltage is equal to the charge 
divided by the capacitance. At first, while the plate spacing 
is still small relative to their diameter, The capacitance is 
proportional to the inverse of the spacing, so the voltage rises 
linearly with the spacing. However, as the spacing becomes 
larger, the capacitance drops more slowly and the voltage 
rises at a lower rate as well.
 While the plate spacing is small, the electric field is 
almost entirely directly between the two plates, with only 
minor “fringing” effects at the edges. Since the voltage rise 
is proportional to the distance in this regime, the electric 
field (e.g., in volts per meter) remains essentially constant. 
However, once the plate spacing becomes comparable to the 
diameter of the plates, and fringing effects begin to dominate, 
the field begins to spread out and weaken. Ultimately, at 
very large distances, at which the plates themselves can be 
considered points, the voltage is essentially constant, and the 
field strength directly between them becomes proportional to 
the inverse of the distance.

PROBLEM 2
 There is an attractive force between the plates of a capacitor 
created by the electric field. Physically moving the plates apart 
requires doing work against this force, and this work becomes 
the additional potential energy that is stored in the capacitor.

PROBLEM 3
 Dielectric materials are made of atoms, and the 
atoms contain both positive and negative charges. 
Although neither the positive nor the negative charges 
are free to move about in the material (which is what 
makes it an insulator), they can be shifted to varying 
degress with respect to each other. An electric field 
causes this shift, and the shift in turn creates an 
opposing field that partially cancels the original field. 
Part of the field’s energy is absorbed by the dielectric.
In a capacitor, the energy absorbed by the dielectric 
reduces the field between the plates, and therefore 
reduces the voltage that is created by a given amount 
of charge. Since capacitance is defined to be the charge 
divided by the voltage, this means that the capacitance 
is higher with the dielectric than without it.

PROBLEM 4
 With certain dielectrics, most notably quartz and 
certain ceramics, the displacement of charge also causes 
a significant mechanical strain (physical movement) 
of the crystal lattice. This effect works two ways—a 
physical strain also causes a shift in electric charges, 
creating an electric field. This effect can be exploited in 
a number of ways, including transducers for vibration 
and sound (mics and speakers), as well as devices that 
have a strong mechanical resonance (e.g., crystals) that 
can be used to create oscillators and filters.

mailto:editor@circuitcellar.com
mailto:eq@circuitcellar.com
www.circuitcellar.com/category/test-your-eq
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2. A connection or conductor that a number of circuits share
5. Comprises a cathode, plate, and control grid
6. The tendency for electrons at high frequencies to travel along the 

surface of a conductor [two words]
7. Big Blue
9. Pa
10. Tube that protects a bundle of wires
15. 6.0221415 × 1023 atoms/mole
17. A capacitor
18. M
19. Measures the damping of resonator modes

CROSSWORD 
The answers will be available at circuitcellar.com/crossword.

FEBRUARY 2015

1

2 3 4 5

6 7 8

9 10

11

12 13 14

15 16 17

18

19

EclipseCrossword.com

DOWN

1. Figure-8
3. Self-sustaining generation of a continuous electrical 

signal
4. Cathode bias [two words]
8. In this code, common in telecommunications, each 

bit of data is represented by at least one voltage level 
transition.

11. WW
12. Straight line that touches a circuit a single point
13. Hot signal connector
14. Containing iron
16. R = V/I [two words]
17. 0.01 bar

www.circuitcellar.com/crossword
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TRIANGLE

OEM Prices as low as $119 
for full-feature Nano-10 PLC

tel : 1 877 TRI-PLCS
web : www.triplc.com/cci.htm

Programmable Logic Controllers

Join The

TRi

Powerful & Easy Ladder
+BASIC Programming
Ethernet integrated
MODBUS TCP/IP
DI/Os & AI/Os integrated

$20 for 5PCBs 
2 layer,4x4inch, FR4(RoHS),0.063”,1oz, 

2LPI,Green,1SK,Lead free HASL  

Standard PCB: Promotion code:  

CC14061 

PCB & PCBA 
Small to Mass QTY

INSTANT QUOTE AT: 

www.myropcb.com
OR CALL: 

1-888-PCB-MYRO
sales@ccsinfo.com
262-522-6500 x 35
PIC® MCU is a registered trademark of Microchip Technology Inc.

www.ccsinfo.com/CC215
Start Programming now!

RFID Development Kit

RFID ASAP!
Develop RFID with a PIC®

Exercises, Tutorials & Boards 
Create RFID Systems Today!

Starting at

C Compilers available 
for all PIC® MCU Devices

$90

www.maxbotix.com 

UCXL-MaxSonar®-WR™ 
- Great for design engineers 
- Multiple mounting options 
- Light weight industrial sensor 
- Incredible noise immunity 
- Smallest IP67 sensor in size 
- 1cm resolution 
- Automatic calibration 
- Ideal for outdoor UAV use 

Phone: 218-454-0766        Email: sales@maxbotix.com 

- 4-20mA output 
- High noise tolerance 
- IP67 rated 
- 1.6 mm resolution 
- Multi-Sensor operation 
- Calibrated beam pattern 
- 8Hz read rate 
- End user solution 
- Ideal for industrial use 

4-20HR-MaxSonar®-WR™ 

- Calibrated beam pattern 

HUMANDATA

All series same pin assignmentAll series same pin assignment

Stamp size FPGA/CPLD Module
PLCC68 Series

ALTERA SeriesRoHS compliant

XILINX Series RoHS compliant

See all our products, A/D D/A conversion board, 
board with FTDI USB chip and accessories at : www.hdl.co.jp/CC

from JAPAN 

FPGA(Spartan-6, Spartan-3AN)
Oscillator, Configuration Device

FPGA(Cyclone V, Cyclone III,
MAX V, MAX II, ...)
Oscillator, Configuration Device,
FRAM, ...

Designed for 68-pin PLCC socket
Very small size (25.3 x 25.3 [mm])
50 I/Os (External clock inputs available)
3.3V single power supply operation

All PLCC68 Series are in stock@Amazon!!All PLCC68 Series are in stock@Amazon!!

the directory of
PRODUCTS & SERVICES

For current rates, deadlines, and more information contact Peter Wostrel at 978.281.7708 or circuitcellar@smmarketing.us.

IDEA BOX

http://www.triplc.com/cci.htm
http://www.myropcb.com
mailto:sales@maxbotix.com
http://www.maxbotix.com
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mailto:sales@ccsinfo.com
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David Lynch owns DLA Systems 
(www.dlasys.net). He is a software 
consultant and an architect, with 
projects ranging from automated 
warehouses to embedded OS 
ports. When he is not working with 
computers, he is busy attempting 
to automate his house and coerce 
his two children away from 
screens and into the outdoors to 
help build their home.

By David Lynch

My first computer was a Cosmac Elf. My 
first “Desktop” was a $6,500 HeathKit 

H8. An Arduino today costs $3 and has more 
of nearly everything—except cost and size—
and even my kids can program it. I became 
an embedded software developer without 
knowing it. When that H8 needed bigger 
floppy disks, a hard disk, or a network, you 
wrote the drivers yourself—in assembler if 
you were lucky and machine code if your were 
not.  

Embedded software today is on the cusp 
of a revolution. The cost of hardware capable 
of running Linux continues to decline. Rasp-
berry Pi (RPi) can be purchased for $25. A 
Beagle Bone Black (BBB) costs $45. An incre-
asing number of designers are building pro-
ducts such as Cubi, GumStik, and Olinuxino 
and seeking to replicate the achievements of 
the RPi and BBB, which are modeled on the 
LEGO-like success of Arduino.

These are not “embedded Linux systems.” 
They are full-blown desktops—less periphe-
rals—that are more powerful than what I ow-
ned less than a decade ago. This is a big deal. 
Hardware is inexpensive, and designs like the 
BBB and RPi are becoming easily modifiable  
commodities that can be completed quickly. 
On the other hand, software is expensive and 

slow. Time to market is critical. Target mar-
kets are increasingly small, with runs of a 
few thousand units for a specific product and 
purpose. Consumers are used to computers 
in everything. They expect computers and as-
sume they will communicate with their smart 
phones, tablets, and laptops. Each year, con-
sumers expect more.

There are not enough bare metal software 
developers to hope to meet the demand, and 
that will not improve. Worse, we can’t move 
from concept to product with custom software 
quickly enough to meet market demands. A 
gigabyte of RAM adds $5 to the cost of  a pro-
duct. The cost of an eight-week delay to value 
engineer software to work in a few megabytes 
of RAM instead, on a product that may only 

ship 5,000 units per year, could make the pro-
duct unviable.

Products have to be inexpensive, high-qua-
lity, and fast. They have to be on the shelves 
yesterday and tomorrow they will be gone. 
The bare metal embedded model can’t deli-
ver that, and there are only so many software 
developers out there with the skills needed to 
breathe life into completely new hardware.

That is where the joy in embedded deve-
lopment is for me—getting completely new 
hardware to load its first program. Once I get 
that first LED to blink everything is downhill 
from there. But increasingly, my work invol-
ves Linux systems integration for embedded 
systems: getting an embedded Linux system 
to boot faster, integrating MySQL, and re-
commending an embedded Linux distribution 
such as Ubuntu or Debian to a client. When 
I am lucky, I get to set up a GPIO or write a 
driver—but frequently these tasks are done by 
the OEM. Today’s embedded ARMs have eve-
rything, including the kitchen sink integrated 
(probably two).

Modern embedded products are being 
produced with client server architectures by 
developers writing in Ruby, PHP, Java, or Py-
thon using Apache web servers and MySQL 
databases and an assortment of web clients 

communicating over an 
alphabet soup of pro-
tocols to devices they 
know nothing about. 
Often, the application 
developers are working 
and testing on Linux or 
even Windows desktops. 
The time and skills nee-
ded to value engineer 
the software to accom-
modate small savings 
in hardware costs do 

not exist. When clients ask for an embedded 
software consultant, they are more likely after 
an embedded IT expert, rather than someone 
who writes device drives, or develops BSPs.

There will still be a need for those with the 
skills to write a TCP/IP stack that uses 256 
bytes of RAM on an 8-bit processor, but that 
growing market will still be a shrinking por-
tion of the even faster growing embedded de-
vice market.

The future of embedded technology is more 
of everything. We’ll require larger and more 
powerful systems, such as embedded devices 
running full Linux distributions like Ubuntu 
(even if they are in systems as simple as a pet 
treadmill) because it’s the easiest, most affor-
dable solution with a fast time to market.

The Future of Embedded Linux

Once I get that first LED to blink everything is downhill from there. 

But increasingly, my work involves Linux systems integration for 

embedded systems: getting an embedded Linux system to boot 

faster, integrating MySQL, and recommending an embedded Linux 

distribution such as Ubuntu or Debian to a client. 

http://www.dlasys.net


Each month, you’re challenged to find an error in a 
schematic or in code that’s presented on the challenge 

webpage. Locate the error for a chance to win prizes and 
recognition in Circuit Cellar magazine! 

Prizes such as a NetBurner MOD54415 LC Development kit or 
a Circuit Cellar subscription will be announced each month.

MONTHLY

ENGINEERING CHALLENGE

Sponsored by NetBurner

Participate: circuitcellar.com/engineering-challenge-netburner
Launch: 1st of each month

Deadline: 20th of each month
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