
WIRELESS COMMUNICATIONS
Multi-Functional Wireless
Monitoring and Control

Build a WWVB-Style
Signal Transmitter

Customize an Embedded
MCU Environment

The Advanced Encryption
Standard Explained

Directional Light
Sensor Design

CIRCUIT CELLAR

w
w

w
.circuitcellar.com T H E M A G A Z I N E F O R C O M P U T E R A P P L I C A T I O N S

$5.95 U.S. ($6.95 Canada)

#235 February 2010

Various 32-Bit Possibilities, p. 30 • Floating Point for DSP on an FPGA, p. 46 • Forward Error Correction Explained, p. 62

Cover - 235.qxp 12/30/2009 11:32 AM Page 1

Information and Sales | sales@netburner.com
Web | www.netburner.com

Telephone | 1-800-695-6828

NetBurner Serial to Ethernet
Development Kits are available to
customize any aspect of operation

including web pages, data filtering, or
custom network applications. All kits

include platform hardware, ANSI C/C++
compiler, TCP/IP stack, web server, e-

mail protocols, RTOS, flash file system,
Eclipse IDE, debugger, cables and power

supply. The NetBurner Security Suite
option includes SSH v1 & v2 support.

SSH Encrypted
SERIAL TO ETHERNET SOLUTIONS

Instantly network-enable
any serial device

Works out of the box -
no programming is required

Customize to suit any application
with low-cost development kit

256-bit encryption protects data
from unauthorized monitoring

Features:

10/100 Ethernet

TCP/UDP/SSH/SSL modes

DHCP/Static IP Support

Data rates up to 921.6kbps

Web-based configuration

SB700EX
2-port serial-to-Ethernet server

with RS-232 & RS-485/422 support

$129
Qty. 1000

SB70LC
2-port serial-to-Ethernet server

Device P/N: SB70LC-100CR
Kit P/N: NNDK-SB70LC-KIT

Device P/N: SB700-EX-100CR
Kit P/N: NNDK-SB700EX-KIT

$47
Qty. 1000

Need a custom solution?

CB34EX
industrial temperature grade

2-port serial-to-Ethernet server
with RS-232 & RS-485/422 support
and terminal block connector

$149
Qty. 1000

Device P/N: CB34-EX-100IR
Kit P/N: NNDK-CB34EX-KIT

C2.qxp 12/4/2009 2:11 PM Page 1

mailto:sales@netburner.com
http://www.netburner.com

9.qxp 8/7/2008 11:04 AM Page 1

http://www.pcbnet.com

2-3.qxp 11/2/2009 3:52 PM Page 2

http://www.wizwiki.net
http://www.futureElectronics.com

2-3.qxp 11/2/2009 3:52 PM Page 3

http://www.wizwiki.net
http://www.wizwiki.net

FOUNDER/EDITORIAL DIRECTOR
Steve Ciarcia

MANAGING EDITOR
C. J. Abate

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Jeff Bachiochi
Robert Lacoste
George Martin
Ed Nisley

NEW PRODUCTS EDITOR
John Gorsky

PROJECT EDITORS
Gary Bodley
Ken Davidson
David Tweed

ADVERTISING
800.454.3741 • 978.281.7708 • www.circuitcellar.com/advertise

ADVERTISING REPRESENTATIVE
Peter Wostrel
Strategic Media Marketing, Inc.
1187 Washington St., Gloucester, MA 01930 USA
800.454.3741 • 978.281.7708
peter@smmarketing.us • www.smmarketing.us
Fax: 978.281.7706

ADVERTISING COORDINATOR
Valerie Luster
E-mail: val.luster@circuitcellar.com

CONTACTS
SUBSCRIPTIONS

Information: www.circuitcellar.com/subscribe, E-mail: subscribe@circuitcellar.com
Subscribe: 800.269.6301, www.circuitcellar.com/subscribe, Circuit Cellar Subscriptions, P.O. Box 5650,
Hanover, NH 03755-5650
Address Changes/Problems: E-mail: subscribe@circuitcellar.com

GENERAL INFORMATION
860.875.2199, Fax: 860.871.0411, E-mail: info@circuitcellar.com
Editorial Office: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: editor@circuitcellar.com
New Products: New Products, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: newproducts@circuitcellar.com

AUTHORIZED REPRINTS INFORMATION
860.875.2199, E-mail: reprints@circuitcellar.com

AUTHORS
Authors’ e-mail addresses (when available) are included at the end of each article.

CIRCUIT CELLAR®, THE MAGAZINE FOR COMPUTER APPLICATIONS (ISSN 1528-0608) is published monthly by Circuit Cellar
Incorporated, 4 Park Street, Vernon, CT 06066. Periodical rates paid at Vernon, CT and additional offices. One-year (12 issues)
subscription rate USA and possessions $29.95, Canada/Mexico $34.95, all other countries $49.95.Two-year (24 issues) sub-
scription rate USA and possessions $49.95, Canada/Mexico $59.95, all other countries $85. All subscription orders payable in
U.S. funds only via Visa, MasterCard, international postal money order, or check drawn on U.S. bank. Direct subscription orders
and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 5650, Hanover, NH 03755-5650 or call
800.269.6301.

Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 5650, Hanover, NH 03755-5650.

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics or for the
consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and workmanship of read-
er-assembled projects, Circuit Cellar® disclaims any responsibility for the safe and proper function of reader-assembled projects based upon or
from plans, descriptions, or information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational purposes. Circuit Cellar® makes no claims or warrants that readers have a right to
build things based upon these ideas under patent or other relevant intellectual property law in their jurisdiction, or that readers have a right to
construct or operate any of the devices described herein under the relevant patent or other intellectual property law of the reader’s jurisdiction.
The reader assumes any risk of infringement liability for constructing or operating such devices.

Entire contents copyright © 2010 by Circuit Cellar, Incorporated. All rights reserved. Circuit Cellar is a registered trademark of Circuit Cellar, Inc.
Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.

PUBLISHER
Hugo Vanhaecke

MARKETING
Shannon Barraclough

CUSTOMER SERVICE
Debbie Lavoie

CONTROLLER
Jeff Yanco

ART DIRECTOR
KC Prescott

GRAPHIC DESIGNERS
Grace Chen

Carey Penney

STAFF ENGINEER
John Gorsky

Cover photography by Chris Rakoczy—Rakoczy Photography
www.rakoczyphoto.com

PRINTED IN THE UNITED STATES

When I was a child, I read a few of the books in Bantam’s
“Choose Your Own Adventure” series. The point was to
make decisions that would influence the course of the tale.
Decisions were presented in a simple format. Example: To
do X, turn to page 5. To do Y, turn to page 10. As a book’s main
character, I’d drive the story by turning to certain pages and
then reading on. Some choices led to situations in which the
main character was rewarded. Other choices led to negative
scenarios, such as the main character’s death. Thus, each book
had a few possible endings. Hmm. That’s kind of like each
issue of Circuit Cellar (except for the death part).

Let’s say that while reading a project-centric article you
become so interested in a part that you immediately go to the
manufacturer’s website. That’s one adventure. Now imagine
that instead of checking out the part you decide to get more
information by emailing the author. That’s another adventure.
The great thing about Circuit Cellar is that each issue provides
the possibility for dozens of engineering adventures. You’re in
charge.

I urge you to approach this issue in the spirit of choosing
your own adventure. Are you ready? Let’s begin.

Turn to page 16 to learn how to build an RFID-based moni-
toring and control system. Brian Millier describes how he
designed a wireless control system for a liquid nitrogen tank.
To learn how to start an FPGA-based embedded design, jump
to John Clayton’s article on page 24. He covers topics ranging
from custom development environments to HDL coding/syn-
thesis tools. For more FPGA-related content, check out Bruce
Land’s article on page 46.

Skip to page 30 to learn why Tom Cantrell says many
MCU suppliers are “betting” on the ARM Cortex-M3. Are
you with them? On page 38, Ed Nisley presents a “totally fea-
tureless clock” design, which requires you to first build a
WWVB simulator.

Are you fascinated in the Advanced Encryption Standard
(AES) but put off in the complicated math? You aren’t alone.
Go to page 54 for Monte Dalrymple’s useful presentation of the
AES. If you’re confused by the topic of forward error correction
(FEC), refer to Robert Lacoste’s article on the subject (p. 62). It’s
a great introduction to the subject.

Jeff Bachiochi wraps up the articles section of the issue with
the first installment of his “Sun Tracker” article series (p. 68).
This project enables you to tell time with a mixture of old and
new technologies. Sundials, sensors, and MCUs. Now that’s a
bill of materials bound to lead to an amazing design adventure.

As usual, we have a lot of handy information packed in a
single issue. You can’t build all the projects and test all the the-
ories at once, so choose your adventure wisely. There’s no
rush. You can always return to the issue to start a new journey.

Choose Your Own Design Adventure

cj@circuitcellar.com

4 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
–

Iss
ue

 2
35

TASK
MANAGER CIRCUIT CELLAR®

THE MAGAZINE FOR COMPUTER APPLICATIONS

Task_Masthead_235.qxp 1/13/2010 11:58 AM Page 4

http://www.circuitcellar.com/advertise
mailto:peter@smmarketing.us
http://www.smmarketing.us
mailto:val.luster@circuitcellar.com
http://www.rakoczyphoto.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
mailto:info@circuitcellar.com
mailto:editor@circuitcellar.com
mailto:newproducts@circuitcellar.com
mailto:reprints@circuitcellar.com
mailto:cj@circuitcellar.com
http://www.circuitcellar.com

5.qxp 1/11/2010 9:11 AM Page 1

http://www.lemosint.com

66 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

INSIDE ISSUE

TASK MANAGER 4
Choose Your Own Design Adventure

C. J. Abate

NEW PRODUCT NEWS 8
edited by John Gorsky

CROSSWORD 74

INDEX OF ADVERTISERS 79
236 Preview

PRIORITY INTERRUPT 80
Feature Creep
Steve Ciarcia

30 SILICON UPDATE
AA WWiinnnniinngg HHaanndd
Betting on the ARM Cortex-M3
Tom Cantrell

38 ABOVE THE GROUND PLANE
TToottaallllyy FFeeaattuurreelleessss CClloocckk ((PPaarrtt 11))
WWVB Simulator
Ed Nisley

62 THE DARKER SIDE
LLiivviinngg wwiitthh EErrrroorrss
An Introduction to Forward Error Correction
Robert Lacoste

68 FROM THE BENCH
SSuunn TTrraacckkeerr ((PPaarrtt 11))
Create a Directional Light Sensor
Jeff Bachiochi

223355
16 RFID-Based Liquid Control (Part 1)

Working with Off-the-Shelf Components
Brian Millier

24 FPGA Embedded Microcontroller Environment
John Clayton

46 Floating Point for DSP

Bruce Land

54 Advanced Encryption Standard
Understanding AES Without Math
Monte Dalrymple

February 2010 • Wireless Communications

p. 16, RFID Tech

p. 38, Featureless
Clock Design

p. 24, Designing
with an FPGA

BONUS CONTENT
Using USB for Computer
Interfacing Projects

http://www.circuitcellar.com

The New
High-Performance Catalog

Industry’s only full-featured online catalog

•Browse •Search •Check Stock •Buy

Mouser and Mouser Electronics are registered trademarks of Mouser Electronics, Inc. Other products, logos, and company names mentioned herein, may be trademarks of their respective owners.

Introducing the new, enhanced, high-tech online catalog. Allowing you to

browse, search, check stock, buy, and more — An industry rst And only online

catalog to offer all these features without ever having to leave the catalog!.

www.mouser.com (800) 346-6873

WARNING: Designing with Hot, New Products
May Cause A Time-to-Market Advantage.

Try It Now at www.mouser.com

tock •Buyyk

Mouser_CircuitCellar_Jan.indd 1 11/24/09 1:40:11 PM

29.qxp 11/30/2009 12:49 PM Page 1

http://www.mouser.com
http://www.mouser.com

8 CIRCUIT CELLAR® • www.circuitcellar.com

NEW PRODUCT NEWS

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

Edited by John Gorsky

WIRELESS SENSOR NETWORK DEVELOPMENT TOOLSET
The @ANY DESIGN development kit is a new toolset for the

development of 868/915-MHz wireless sensor network
applications in energy management, smart metering,
industrial and building automation, and more. The
easy-to-use toolset includes @ANY900 RF mod-
ules, USB dongles, development tools, and
embedded software, supporting IEEE 802.15.4-
based protocols, including ZigBee PRO and 6LoW-
PAN, as well as proprietary solutions. Combined
with Adaptive Network Solutions’s RF design and
customization services, these tools empower OEMs
and system integrators to take their new products
from concept to market faster and more cost-effectively.

The development kit provides developers with everything
they need to create market-ready wireless systems and applica-
tions, while mastering the intricacies of WSN technology. The kit
features support of third-party applications and convenient reference
drivers, as well as APIs for UART, I2C, ADC, and 1-wire peripherals. The @ANY
DESIGN kit supports the intuitive development environment from Atmel, including an embedded debugging feature using
Atmel JTAG in-circuit debugger.

The @ANY DESIGN development kit consists of an @ANY900 USB dongle with JTAG programming adapter, three fully pro-
grammable @ANY BRICK boards, and a CD-ROM containing documentation and software, including the Smart MAC Suite soft-
ware toolchain and network visualization tool. The development kit can be extended with additional @ANY900 BRICK develop-
ment boards and @ANY900 USB dongles on an as-needed basis.

@ANY DESIGN development kits (Part number @ANY 900 DK) cost approximately $440.

Adaptive Network Solutions GmbH
www.an-solutions.de

COMPACT ANTENNAS WITH SMA CONNECTOR
Antenna Factor’s HW Series half-wave center-fed dipole antennas and quar-

ter-wave monopole antennas are now available with standard SMA connector
terminations. HW Series antennas are ideal for applications requiring a com-

pact, low-cost antenna solution.
These antennas attach using an FCC-

compliant RP-SMA connector or the newly
available standard SMA connector. Alternate
connectors and custom colors are available
for volume OEM orders. The antennas are
available in standard center frequencies of
315, 418, 433, 868, and 916 MHz. The
868 and 916 MHz versions are half-wave
center-fed dipoles, while the 315, 418, and
433 MHz versions are all quarter-wave
monopoles.

The HW Series feature an internal coun-
terpoise, an omnidirectional pattern, out-
standing VSWR, and excellent perform-
ance. The antennas are rugged and dam-
age-resistant.

HW Series antennas cost $4.98 in vol-
ume quantities.

Antenna Factor
www.antennafactor.com

npn235.qxp 1/8/2010 1:09 PM Page 8

http://www.an-solutions.de
http://www.antennafactor.com
http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 9

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

S

NPN

ULTRA LOW-POWER, LOW-PROFILE COOLER USES PULSES OF AIR
The new NtelliJet series of low-profile, low-acoustic coolers uses rapid-fire pulses of turbulent air (produced by an oscillating

diaphragm working between 50 and 200 Hz) to cool heatsinks and surrounding components. The features of the NtelliJet
cooler present an entirely new concept of thermal cooling ability. In addition to ultra-high reliability and low-profile height (max.
15 mm), there is also a total elimination of mechanical wear, dirt, and dust clogging. The new series is also immune to shock
and vibration, and it provides an impressive 100,000 hours of life at 60°C. The NtellJet is ideal for focused thermal require-
ments, when cooling is needed for specific chips or areas of coverage.

The NtelliJet offers a flexible alternative for fans
across a large range of industrial applications and
designs. Designed for directed cooling, the NtelliJet
optimizes heat exchange through the use of turbu-
lent, high-velocity jets. The vortex-dominated flow
enhances small-scale mixing near the heated sur-
faces to yield higher effective heat transfer at low-vol-
ume flow rates compared to conventional air movers.
The NtelliJet flow is created using patented actuator
technology and proprietary fluidic packaging expert-
ise.

The system-wide heat removal takes advantage of
the ejector effect inherent to high-momentum jet
flows. As it operates, the NtelliJet module expels high
momentum pulses of air. Each pulse of air “entrains”
or pulls nearby ambient air behind it in its wake.

Please contact JARO Thermal directly for pricing
information.

JARO Thermal
www.jarothermal.com

npn235.qxp 1/8/2010 1:09 PM Page 9

http://www.jarothermal.com
http://www.circuitcellar.com
http://www.apcircuits.com
http://www.calao-systems.com

10 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

NPN

HIGH-PERFORMANCE 125-KHZ LF WAKEUP RECEIVER
The AS3930 is a single-channel, low-power, low-frequency wakeup receiver that offers the highest sensitivity at the lowest

current consumption for the industry’s best range. The AS3930
supports the widely used 125-kHz band and—through the opti-
mization of power consumption, sensitivity and programmabili-
ty—enables a variety of applications.

The AS3930 has a single receiving channel and an internal RC
oscillator, allowing a very low external component count for maxi-
mum performance versus cost and reduced size. The received
data can be correlated with a pattern that is programmed in the
register preventing false wakeups. Primary target applications are
active RFID, high-value asset tracking, real-time location sys-
tems, operator identification and access control or keyless entry.

The AS3930 wakeup receiver is available in a TSSOP16 or a
QFN (4 × 4) package. It is suitable for operating environments
ranging from –40° to 85°C.

The AS3930 is priced at $2.30 each in 1,000-unit quantities.

austriamicrosystems AG
www.austriamicrosystems.com

DIGITAL PREAMPLIFIER CONTROLLER IC
The THAT5171 is a new digital gain controller IC for low-

noise analog, differential, current-feedback audio preampli-
fiers. When used in conjunction with an appropriate analog
gain block, the 5171 can set gain in 1-dB steps while preserv-
ing low noise and distortion.

The 5171 operates from ±5 V to ±17 V supplies and sup-
ports input signal levels as high as 22
dBu at 5.6 dB gain and ±17 V supplies,
with gain error guaranteed at +/- 0.5 dB,
maximum, at all gain settings. Applica-
tions for the 5171 include digitally con-
trolled instrumentation amplifiers, digi-
tally controlled differential amplifiers,
and a variety of digitally controlled audio
instrumentation.

The 5171 mates with the THAT1570
differential audio preamplifier IC for a
best-in-class solution for digitally con-

ETHERNET DATA RADIO
The SureCross DXER9 Ethernet data radio is an industrial-grade, long-range, 900-MHz radio

used to create point-to-multipoint configurations of wireless Ethernet networks. The DXER9 is
designed for industrial applications and will perform reliably in applications that prove too noisy
or too far for standard Wi-Fi-based systems.

This is a high-gain system that has over 10 times the range of a Wi-Fi network. It offers an
outside line of sight range of 10-plus miles and an indoor range of 1,500-plus feet (easily pene-
trating walls).

Key features include 128-bit AES encryption, sub-block error detection and retransmission,
and automatic scan or manual override for the best of 12 communication channels. It also fea-
tures indicator LEDs for channel selection and signal strength, point-to-multipoint configurations
with up to 16 subscriber units, and up to 12 access points per site to provide a total of 192
points. User configuration is via an internal web-page.

Please contact Banner Engineering for pricing.

Banner Engineering
www.bannerengineering.com

trolled audio preamplifiers. For designers who prefer a more
customized solution, the 5171 may be used to control a
discrete preamplifier. To reduce “zipper noise” in audio appli-
cations, the 5171 includes a differential servo and zero-
crossing detector to minimize DC offsets and glitches during
gain adjustments.

The 5171 is controlled via an
addressable SPI port. Four general-pur-
pose digital outputs can be controlled
via this interface. The SPI bus supports
read-back so that host software can
verify proper operation.

The THAT5171 comes in a 7 mm × 7
mm QFN32 package. It costs $6.70 in
1,000-piece quantities.

THAT Corp.
www.thatcorp.com

npn235.qxp 1/8/2010 1:09 PM Page 10

http://www.bannerengineering.com
http://www.circuitcellar.com
http://www.austriamicrosystems.com
http://www.thatcorp.com

www.circuitcellar.com • CIRCUIT CELLAR® 11

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

NPN

ADVANCED FAMILY OF ZIGBEE MODULES
The ETRX3 series is a third generation of advanced ZigBee

module and the first module family on the market to feature
the EM357 and EM351—the latest ARM Cortex M-3 SoCs from
Ember. ETRX3 series modules have a footprint of just 19 mm
× 25 mm for both standard and PA/LNA versions, which repre-
sents a 40% reduction in size compared to the ETRX2 mod-
ule. They are available with either an on-board antenna or a
Hirose U.FL connector for an external antenna.

A link budget of 105 dB on the standard ETRX3 module
gives excellent performance, and RF power can be further
boosted by the ETRX3-LR, which adds an extra LNA+PA
boosting the link budget to 123 dB. The ETRX3 series mod-
ules integrate a 2.4-GHz, IEEE 802.15.4-compliant transceiv-
er with up to 192 KB of flash memory, 12 KB of RAM, and
many advanced peripherals. To maintain the strict timing
requirements imposed by the ZigBee and IEEE 802.15.4-
2003 standards, the EM357and EM351 integrate a number of MAC functions into the hardware,
handling automatic ACK transmission and reception, automatic back-off delay, clear channel assessment for transmission, and
the automatic filtering of received packets.

ETRX3 series modules work from a 2.1- to 3.6-V supply and active power consumption is reduced by over 20% compared
to the ETRX2. In deep sleep mode, current consumption is reduced to 800 nA and further reduced to 400 nA if the self wake-
up feature is not enabled.

The ETRX3 series is available from Lemos International (Telegesis’s U.S. distributor). Pricing starts at $18 in small quantities.

Lemos International Corp.
www.lemosint.com

npn235.qxp 1/8/2010 1:09 PM Page 11

http://www.lemosint.com
http://www.circuitcellar.com
http://www.jkmicro.com
http://www.linxtechnologies.com

12 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

NPN

LOW-COST WIRED AND WIRELESS NETWORKING MODULES
Rabbit has expanded its MiniCore series of easy-to-use, ultra-compact, low-profile, low-cost networking modules. Available in

pin-compatible wired and Wi-Fi versions, the family now includes the Ethernet RCM5760 and Wi-Fi RCM5650W. The new mod-
ules offer increased memory for data-intensive applications, such as building automation and security applications. The prod-
ucts also allow a customer to wirelessly update firmware from anywhere an Internet connection is available to reduce mainte-
nance costs.

The MiniCore family provides a rich embedded feature set on an ultra-compact mini PCI Express form factor. Its small size
makes it easy for customers to place wired or wireless network connectivity anywhere on a
motherboard. The family includes the pin-compatible and interchangeable wired
RCM5700, Wi-Fi RCM5600W, wired RCM5760, and Wi-Fi RCM5650W.

Rabbit MiniCore products feature 10/100 Base-T Ethernet and secure 802.11
b/g with WPA2 and 802.11i compliance for the highest levels of security. It
also features up to 640-KB SRAM data storage, 1-MB flash memory for
program storage and two MB serial flash for mass storage.
Depending on the version, modules include up to 32 GPIO,
six serial ports, a serial-to-Ethernet bridge, an embed-
ded Web server for greater application control monitor-
ing and wireless remote firmware update function-
ality.

The Ethernet RCM5700 kit costs $99. The Wi-Fi
RCM5600W kit, with one year of free tech sup-
port, is available now for a promotional price of $149.

Rabbit, Inc.
www.rabbit.com

npn235.qxp 1/8/2010 1:09 PM Page 12

http://www.rabbit.com
http://www.circuitcellar.com
http://www.emacinc.com
http://www.gridconnect.com

www.circuitcellar.com • CIRCUIT CELLAR® 13

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

NPN

HIGH-PERFORMANCE, SMALL-FOOTPRINT
DEVELOPMENT BOARD

The Chameleon is the next step in the evolution of the high-perform-
ance, small-footprint, application development board. It is a credit card-
sized computer with two processors, nine processing cores, 1 MB of on-
board flash memory, and 64 KB of EEPROM. It also includes numerous
I/O interfaces that include composite video for NTSC/PAL, VGA, audio out,
PS/2 for keyboards and mice. Additionally, it has a number of digital I/Os
and analog inputs.

The power of the Chameleon is in its dual-processor design. It is avail-
able in two flavors—an AVR 8-bit version and a PIC 16-bit version. The AVR
version uses the Atmel AVR328P processor, while the PIC version uses
the Microchip Technology PIC24 as the main master processor (client)
along with the multicore Propeller chip as the media processor (server).
The AVR/PIC sends commands to the Propeller chip over a high-speed
SPI to command the Propeller to execute various operations all with a
simple API that usually consists of a few lines of code to perform any task.
Thus, the AVR/PIC programming is easy; and with simple APIs, engineers can develop complex and rich media applications.

Both versions are designed to have Arduino I/O header compatibility as much as possible, but the AVR version is additional-
ly 100% software-compatible and the Arduino tool can be used to develop software for the AVR version (as well as AVRStu-
dio). The PIC version works with MPLab as well as a standalone “Arduino-like” tool chain that relies on a bootloader.

A complete BASIC programming language for the Chameleon is available. Code can be written on a PC with a simple editor,
compiled, and downloaded to the Chameleon. The Chameleon also features a “break away” experimentation protoboard built
into the PCB.

The Chameleon costs $59.95 for the AVR version and $69.95 for the PIC version.

Nurve Networks LLC
www.xgamestation.com

npn235.qxp 1/8/2010 1:09 PM Page 13

http://www.xgamestation.com
http://www.circuitcellar.com
http://www.ezpcb.com

14 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

NPN

DEVELOPMENT ENVIRONMENT IN A
SPORTS WATCH

Representing a new era in development, Texas Instruments
has announced the eZ430-Chronos, the world’s first customiz-
able development environment within a sports watch. Taking
the popular line of eZ430 development tools to the next level,
the kit allows developers to easily harness the capabilities of
the CC430 microcontroller. The Chronos is designed to provide
customers with all of the hardware and software needed to
immediately begin development of wireless networking applica-
tions, regardless of programming expertise.

The kit is equipped with sensors for measurement and
motion-based control and can serve as a central hub for nearby
wireless sensors so that users have remote access to real-time

data from devices such as pedome-
ters and heart rate monitors. Sensors
in the kit include an integrated three-
axis accelerometer, an altimeter,
along with temperature and battery
voltage sensors. Also included is a
large 96-segment LCD.

The Chronos includes a USB-RF
access point for wireless set-up and
PC connectivity, as well as multiple
production-ready open-source proj-
ects to foster easy evaluation,
design, and community collaboration.
The kit is available in three different
RF frequency bands—915, 868, and
433 MHz—allowing for worldwide
usage. TI’s SimpliciTI and BM Innova-
tions’s BlueRobin RF protocols enable
developers to easily establish wire-
less links (regardless of their RF
knowledge) right out of the box.

The new eZ430-Chronos costs
$49.

Texas Instruments, Inc.
www.ti.com

ProtoMat® Benchtop PCB Prototyping Machine
What would your day look like tomorrow if you could
cut yourself free from the board house and produce
true, industrial quality PCBs right at your desk?
LPKF’s ProtoMat benchtop prototyping systems are
helping thousands of engineers around the world
take their development time from days and weeks
to minutes and hours. In today’s race to market,
it’s like having a time machine.

www.lpkfusa.com/pcb
1-800-345-LPKF

“You can’t beat an LPKF system
for prototyping. We do up to
three iterations of a design
within a day.”

Leonard Weber
Agilent

npn235.qxp 1/8/2010 1:10 PM Page 14

http://www.circuitcellar.com
http://www.ti.com
http://www.lpkfusa.com/pcb

Challenge yourself against other top embedded engineers around
the world in DesignStellaris 2010, sponsored by Texas Instruments.

Use the Stellaris® LM3S9B96 microcontroller from Texas
Instruments with Keil’s RealView® Microcontroller Development
Kit (RVMDK) and SafeRTOS™ from Wittenstein to create your
design content entry, and see how far your design will take you!

• No purchase necessary to enter.

• $10,000 in cash prizes!

• Entry deadline is June 23, 2010.

• Winners will be announced at the
 Embedded Systems Conference
 Boston 2010.

• Submit your design today!

Stellaris EKK-LM3S9B96 Evaluation Kit free with
your contest entry while supplies last!

The EKK-LM3S9B96 Evaluation Kit includes: an
evaluation board with an 80 MHz LM3S9B96
MCU featuring Ethernet MAC+PHY, CAN, USB
OTG, and SafeRTOS in ROM; a time-limited copy
of the Keil RealView Microcontroller Development
Kit, cables, documentation, and StellarisWare®
software.

For Complete Details, Visit: www.ti.com/designstellaris2010

H
o

w
 f

ar
 w

ill
 y

o
ur

d

es
ig

n
ta

ke
 y

o
u?

http://www.ti.com/designstellaris2010

16 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

hoto 1a—This is the dispenser. The VDrive2 module, which the USB flash drive plugs into, is tucked away
on the left side panel because it is not accessed by the liquid nitrogen customers. b—Almost all of the cir-
cuitry is mounted behind the front panel (on the bottom). The main power supply components are mounted
in the enclosure’s body. The VDrive2 module is visible above the main circuit board. The solenoid valve is on
the right.

a)

b)

2102014_millier.qxp 1/11/2010 9:15 AM Page 16

With this article series, you’ll learn how to build an RFID-based controller for
monitoring dispensed liquid nitrogen from a tank. Operated in a laboratory
setting, the system also bills customers for what they use. This article
details how to get started with some off-the-shelf components and simple
code.

RFID-Based Liquid Control (Part 1)

T

F
EA

TU
RE

ARTICLE
by Brian Millier

he recent commercialization of electronic devices like
radio frequency identification (RFID) tags and USB flash

drives has made it possible to design such things as vending
kiosks and building access controls, which are both affordable
and user-friendly. Furthermore, the availability of inexpensive
modules—which encapsulate the often complex protocols
used by such devices—is a boon to designers who don’t have
the expertise to augment their product’s firmware.

I built a controller that monitors the liquid nitrogen dis-
pensed from a tank and bills customers for what they use (see
Photo 1). The tank is located in the basement of my building
at Dalhousie University in Halifax, Canada. RFID tags costing
less than $1 are issued to each customer. The controller has a
low-cost RFID reader module. After passing the tag near the
controller, the customer interacts with an LCD and keypad to
enter the amount of
liquid needed. The con-
troller maintains a real-
time clock (RTC) cir-
cuit, and it stores the
account number, sales
data, and a time/date
stamp for each transac-
tion. All transaction
records are maintained
internally using
E2PROM.

A USB host port on
the controller is the
aspect of the design
that makes it so user-
friendly. It enables me

to transfer the transactions stored in the controller to a USB
flash drive as standard files. These files are readily imported
into an Excel spreadsheet on a computer in our accounting
office. An alternate scheme would be to link the dispensing
controller to a computer in the accounting office via an Ether-
net connection. But running a dedicated 10BaseT connection
and operating the controller as an Internet node would cost

Working with Off-the-Shelf Components

PPhhoottoo 11aa—This is the dispenser. The VDrive2 module, which the USB flash drive plugs into, is tucked away
on the left side panel because it is not accessed by the liquid nitrogen customers. bb——Almost all of the cir-
cuitry is mounted behind the front panel (on the bottom). The main power supply components are mounted
in the enclosure’s body. The VDrive2 module is visible above the main circuit board. The solenoid valve is on
the right.

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 1177

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

found a low-cost reader that would work
with inexpensive RFID tags, so I had a
good start to my design. I then investi-
gated the best way to incorporate a USB
flash drive into my design. I settled on a
product from FTDI, which produces var-
ious USB modules, some of which I had
used in earlier projects. I consider the
Vinculum VDrive2 module to be a USB
flash drive coprocessor. It interfaces to a
microcontroller via a serial port and
handles all the complexity of the drive’s
FAT32 file system. Thirty years ago,
when I was building my own PC from
boards and components, I wrote my
own simple floppy disk operating sys-
tem in assembly code. Today, however,
I’d rather leave that chore to the pro-
grammers at FTDI.

DESIGN OVERVIEW
Before examining the details of the

various modules used in the project,
refer back to Figure 1. The RFID reader
is a low-cost module that signals the
presence of a low-frequency RFID tag by
sending the tag’s unique, 10-hex-charac-
ter ID code via a 9,600-bps RS-232 link.
Upon authentication, you interact with

more than using a USB flash drive.
In this article, I’ll describe how I

simplified the design by using an off-
the-shelf RFID reader module and a
Vinculum VDrive2 module, which
handles reading and writing files to a
USB flash drive. All told, the project
consists of an Atmel ATmega32
microcontroller and just five other
peripheral chips (see Figure 1). I wrote
the code in BASCOM BASIC.

AFFORDABLE LAB SOLUTION
In the past, I’d considered Smart

Cards for this application (B. Millier,
“BasicCards 101,” Circuit Cellar 164).
But when I came to this project, I con-
cluded that an ideal solution would
include RFID tags for user validation
and a USB flash drive (64 MB suffices)
for file transfers.

Cost is probably the biggest project
limitation in the Department of Chem-
istry where I work. Therefore, the first
thing I looked into was the cost of the
RFID devices and an associated reader.
The cost of readers varies widely, and it
becomes significant if you are just set-
ting up a small system. Fortunately, I

the controller via a 4 × 20 LCD and a
numeric keypad. The transaction data
and RFID identification code memory is
provided by two Microchip Technology
24AA1025 1,024-Kb I2C flash memory
devices, yielding a total storage capacity
of 256 KB of nonvolatile memory. The
controller opens a solenoid valve for an
interval timed to dispense the desired
volume of liquid nitrogen.

An RTC circuit is needed because the
time and date of each transaction must
be stored with its record. The ATmega
series of microcontrollers does not
include a dedicated RTC module featur-
ing a separate battery back-up power
supply pin. Therefore, I chose the com-
mon Maxim Integrated Products DS1307
I2C RTC chip with a 3-V coin cell for
back-up power. Transferring the data
from the transaction tables stored in the
controller’s I2C flash memory over to a
remotely located PC is accomplished
with a USB flash drive. The flash drive is
interfaced to the microcontroller via the
Vinculum VDrive2 module. This mod-
ule communicates via a full-duplex seri-
al data link. All the firmware needed to
work with the USB flash drive’s FAT32
file structure is handled by the VDrive2.
It does so in response to ASCII com-
mands sent to it via its serial link.
Because the RFID reader and the
VDrive2 modules are never used simul-
taneously, it’s possible to multiplex both
modules to the single serial port present
on the ATmega32 microcontroller using
an ON Semiconductor MC14052 multi-
plexer chip.

You might wonder why I didn’t use
the USB flash drive to handle the con-
troller’s nonvolatile storage needs. Why
bother with the two 24AA1025 1,024-KB
I2C flash memory devices at all? The
main reason is that I wanted a user-
friendly design. I wanted to be able to
merely plug a USB flash drive into the
externally mounted VDrive2 module
(once a month) to download the transac-
tion figures. If the USB flash drive were
to be used to store all the transaction
data (as it was being collected), the drive
would have to be connected all the time.
That would involve mounting it inside
the controller’s cabinet, behind a locked
access door; otherwise, someone could
just steal it.

While the current cost of a 64-MB

FFiigguurree 11——The project is built around an ATmega32. You can see how the RFID reader and
the VDrive2 module interact.

1,024-KB I2C EEPROM
(×2)

DS1307
RTC

3-V Coin cell

74C922

ATmega32

Solenoid
valve

LF RFID Reader

RFID Tag

USB Flash drive

VDrive 2

4052

2:1 Mux

Dev. select

Serial in/out

4 × 20 LCD

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

2102014_millier.qxp 1/13/2010 10:49 AM Page 17

http://www.circuitcellar.com

40-41.qxp 8/5/2009 9:53 AM Page 40

40-41.qxp 8/5/2009 9:53 AM Page 41

http://www.embeddedARM.com

20 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

flash drive is practically negligible, the
transaction data is not! Mounting two
small I2C flash memory devices on the
controller board was more practical
than worrying about a cabinet with a
locked access door. It also helped that
Microchip had sent me some free sam-
ples of the 24AA1025 flash devices.

RFID TAGS & READERS
RFID tags come in various packages,

sizes, and prices. Some readers can cost
thousands of dollars depending on their

intended uses. My cost constraints
meant that I had to find tags or cards
worth less than a $1, as well as a compa-
rably low-cost reader.

In an RFID scheme, the reader gener-
ally consists of a pulsed transmitter/
receiver. The reader’s transmitter pro-
duces enough RF energy at a specific fre-
quency. Thus, when a matching RFID
tag comes into proximity, the tag’s
antenna extracts enough energy from
this RF field to charge a small capacitor
inside it. The stored energy is then used

to power a small microcontroller in the
tag which either sends back a short
burst of RF energy or modulates the
reader’s own transmitted signal by
“shorting out” its own antenna. In
either case, the modulated RF field is
encoded with a pattern that’s unique to
that particular tag. The reader decodes
this ID information and sends it as a
message to an external microcontroller,
usually via a serial data link.

The most common RFID tags—the so-
called low-frequency (LF) tags—operate
at 125 kHz. ISO14443 high-frequency
(HF) cards operate at 13.56 MHz. All
things being equal, the HF tags would
require a much smaller antenna, which
is advantageous if one needs physically
smaller tags. Also, due to the higher car-
rier frequency, the HF tags can transmit
much more information in a given
amount of time, which is beneficial in
some applications.

Therefore, LF tags are often used
when all that is needed is a unique ID
code per tag—frequently a unique 10-
character (hex) code. The HF tags can be
used when you need the ability to store
a larger amount of data in the tag. With
HF tags, the reader is often also able to
write data to the tag as part of the trans-
action that occurs when the tag is near
it.

All that I needed for this project was a
tag with a unique ID code, nothing
more. Furthermore, because the tag
wasn’t going to be embedded inside a
product or worn, it would be easy for
the user to bring it up close to the read-
er, removing the need for a long-range
system.

While searching the Internet, I found
a reasonably priced tag/reader LF sys-
tem distributed by Futurlec. The com-
pany’s EM LF RFID reader module costs
only $33, and it also carries a variety of
tags: plastic “credit cards,” key fobs,
dog collar tags, laundry tags, and so on.
For my purposes, 30-cm plastic key-
chain tags seemed the best choice.
They were only $0.80 each, even in
multi-unit quantities.

I chose the EM card reader because
it’s easy to use and interface. Physical-
ly, it’s built to be mounted like a con-
ventional wall lighting switch (i.e., it
can be mounted to the standard elec-
trical box used for lighting switches).

2102014_millier.qxp 1/11/2010 9:15 AM Page 20

http://www.circuitcellar.com
http://www.expresspcb.com

MobileLife}

Mobile Business

21.qxp 12/30/2009 10:19 AM Page 1

http://www.ctiashow.com

A 12″ eight-conductor cable exits from
the back of the unit. All you need to do
is supply the unit with 9 to 12 VDC,
and monitor the 9,600-bps, RS-232 level
signal on the TxD wire. The reader’s
front panel contains a two-color LED
that illuminates red when the unit is
powered up and flashes green when a
valid RFID tag is nearby. The unit also
has a loud piezo buzzer that beeps when
a matching RFID tag is sensed. These
built-in user feedback features are
handy because you don’t have to write

code or use any I/O port lines for them.
There are also control wires to external-
ly control the buzzer and the LED, but I
didn’t use them.

Whenever a valid RFID tag is near,
the reader sends a message via its TxD
wire in the following format:

STX, ID1,ID2,ID3,ID4,ID5,ID6,ID7,ID8,
ID9,ID10,ETX

Note that STX is ASCII code 02H. ETX
is ASCII code 03 H. IDx is 10 ASCII

characters representing hex values.
Although the datasheet is sparse and

not translated well into English, it
appears that ID1 through ID8 form a
64-bit code, and ID9 and ID10 are the
checksum of the previous 8 bytes. How-
ever, the datasheet also mentions XOR,
which is used for CRC error-checking,
not checksum error calculations. In any
case, I considered all 10 characters as the
ID code.

I bought my reader several months
ago. Futurlec now carries a slightly dif-
ferent model. It costs about the same
and mounts in the same fashion, but it
has fewer interface wires and is black
rather than white. But I suspect that it
operates identically.

VINCULUM VDRIVE2
FTDI spun off a subset of its USB

devices into what it calls the Vinculum
line. Vinculum is Latin for a bond or a
tie, and that is what these devices do:
they tie USB devices together.

You are probably familiar with the
various USB serial and USB parallel
chips/modules which the company also
makes. You’ll find them embedded in
many commercial products, including
many microcontroller evaluation boards
and device programmers, for example.
The USB serial and parallel chips/mod-
ules are USB slaves—that is, they’re
meant to be plugged into a USB host
controller, which is in most cases a
computer of some sort. The main pur-
pose of the USB serial device is to enable
a manufacturer to modernize a design
that includes an RS-232 data link into
one that communicates via USB. Many
newer computers no longer contain seri-
al ports, but have numerous USB ports.

The Vinculum line is different in that
it implements a USB host controller (as
well as other functions). Thus, if you are
using a microcontroller, you can easily
connect a great variety of low-cost, con-
sumer devices (e.g., such as flash drives
and HID class devices) without having
to worry about adding the USB host con-
troller protocol to your firmware.

The Vinculum line starts out with the
VNC1L USB host controller chip. This
contains two USB 2.0 ports, which can be
configured in either Host or Slave mode.
This enables you to connect a USB flash
drive to your microcontroller-based

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

CIRCUIT CELLAR® • www.circuitcellar.com2222

DISCOVER. CONNECT. THRIVE.

DESIGN PRINTED BOARDS
TEST

ELECTRONICS ASSEMBLY

THERE’S NO OTHER SHOW LIKE IT IN
THE WORLD!
Benefit from the industry’s premier technical
conference, half-day courses, Designers Day and
IPC standards meetings. Solve your manufacturing
challenges, visit hundreds of exhibitors and meet
thousands of peers and industry experts in electronics
manufacturing.

Focus on critical areas, such as high speed signal
integrity PCB design, materials compliance, design for
manufacture and embedded technologies.

Pre-register for free exhibit hall admission and take
advantage of free keynotes, posters, forums and
networking events.

CONFERENCE &
EXHIBITION
April 6–8, 2010

MEETINGS &
EDUCATION
April 6–9, 2010

Mandalay Bay Resort
& Convention Center
Las Vegas, Nevada

www.IPCAPEXEXPO.org

Industry Experts

New Suppliers

Opportunities

Solutions

Emerging
Technologies

Network

Equipment
Demonstrations

Solutions

2102014_millier.qxp 1/13/2010 10:45 AM Page 22

http://www.circuitcellar.com
http://www.IPCAPEXEXPO.org

www.circuitcellar.com • CIRCUIT CELLAR® 23

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

PROJECT FILES
To download code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2010/
235.

OURCES
ATmega32 Microcontroller
Atmel Corp. | www.atmel.com

VDRIVE2 Interface module
Future Technology Devices International | www.ftdichip.com

DS1307 Real-time clock
Maxim Integrated Products, Inc. | www.maxim-ic.com

Bascom AVR Basic compiler
MCS Electronics | www.mcselec.com

MC14052 Multiplexer chip
ON Semiconductor | www.onsemi.com

EM RFID Card reader
Shanghai Huayuan Electronic Co.
Futurlec (distributor) | www.futurlec.com

P

S

Brian Millier (brian.millier@dal.ca) is an instrumentation engineer in the Department
of Chemistry at Dalhousie University in Halifax, Canada. He also runs Computer Inter-
face Consultants.

design. It also allows you to connect
your device to a PC to upload or down-
load data or program information.

The VNC1L chip is really a full-
fledged system on a chip because it con-
tains an MCU core, 64 KB of flash mem-
ory, 4 KB of SRAM, dual DMA con-
trollers, a UART, a SPI and a PS2 port,
and a lot of general-purpose I/O. The
chip is delivered unprogrammed, but
FTDI offers several versions of firmware,
which you can download to the device’s
flash memory via its UART port and the
bootloader firmware built into the
device. FTDI provides a PC application
called VPROG that enables you to pro-
gram (and reprogram) the firmware into
the VNC1L chip, using either a USB port
or a legacy COM port (a version of the
program exists for each).

As I write this article, the following
versions of the firmware are available:
disk drives and peripherals (VDAP);
disk and FTDI interface (VDIF); disk
and MP3 player function (VMSC); disk,
PC monitor, and slave port (VDPS); and
communication class device (VCDC).

Purchasing an FTDI VDRIVE2 OEM
module makes sense for a “one-off”

project like mine. For about $13 more
than the cost of the VNC1L chip alone,
you get a small module containing the
VNC1L chip, a USB socket, a traffic
LED, and a cable to connect to its
eight-pin SIP header. This module
comes preloaded with the VDAP
firmware, so you don’t have to do it
yourself using the bootloader.

Although the VNC1L chip operates
on 3.3 V, you must supply the
VDRIVE2 module with 5 V, which is
needed to supply the USB port power.
The VDRIVE2 I/O ports are 5-V logic
tolerant, which means that level trans-
lation devices are not needed to inter-
face with the 5-V ATmega32 MCU in
the project.

So far, I’ve covered the project’s
design and explained my rationale for
selecting the particular technologies. I
also provided important details about
how both the RFID and USB flash drive
host interfaces operate. Next month,
I’ll continue by describing how every-
thing ties together. I’ll include a discus-
sion on navigating the subtleties of the
VDrive2 command set, and I’ll post a
schematic diagram of the project. I

2102014_millier.qxp 1/11/2010 9:16 AM Page 23

mailto:brian.millier@dal.ca
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2010/235
http://www.atmel.com
http://www.ftdichip.com
http://www.maxim-ic.com
http://www.mcselec.com
http://www.onsemi.com
http://www.futurlec.com
http://www.circuitcellar.com
http://www.designnotes.com
http://www.picservo.com
http://www.hobbylab.us

24 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

2101018_Clayton.qxp 1/11/2010 9:19 AM Page 24

If you want to set up a simple custom microcontroller development
environment, this article is for you. As you’ll see, all you need to get
started with FPGA-based embedded design is a PC, some HDL
coding/synthesis tools, and an FPGA board.

FPGA Embedded Microcontroller
Environment

F

F
EA

TU
RE

ARTICLE
by John Clayton

ield programmable arrays (FPGAs) have become
packed with logic gates, and many types also

include features such as embedded block RAMs, hardware
multipliers, and PLLs. Some throw in SERDES, memory
interfaces, or Ethernet MAC functions—all the essential
items needed for putting together really fancy “systems on
a chip.” The FPGA offers these capabilities at an affordable
price point, which adds excitement for the designer and
begs the question: How can you take advantage of all that
capability? Perhaps best of all, with FPGAs, there is no real
penalty for trying out a design. If it’s faulty, you can easily
modify it. In this sense, the FPGA becomes like a quick-
turnaround personal foundry, a veritable playground for
experimentation and innovation. In this article, I’ll share
some advice on setting up a simple custom microcontroller
development environment. Along the way, I’ll also present
some ideas for an “easygoing” approach to design and
development.

THE INGREDIENTS
All you need to get started with embedded design using

FPGAs is a PC, some HDL coding/synthesis tools, and a
suitable FPGA board to download to. Several suppliers
have parts that are suitable for developing a small custom
microcontroller environment. Obviously, the larger FPGAs
will allow instantiating more logic (Multicore anyone?) and
hardwired multipliers will often aid in the pursuit of high-
er execution speeds. The board design I used is also given
out free, and there’s a user’s manual describing the board.
One word of warning though: There’s no schematic. It’s
basically an FPGA breakout board, with the download

cable built right in.
In this article, I’ll first describe the rationale behind my

slightly unusual approach to FPGA design. Then I’ll
explain how I built up a system of building blocks that
eventually became the trusted foundation on which I built
and refined an embedded Microchip Technology PIC16F84-
compatible embedded microcontroller. The complete code
for the design is provided in Verilog, and you can use many
of the same blocks to build your own designs. (The code is
posted on the Circuit Cellar FTP site.) If VHDL is the pre-
ferred language, I’ll leave the translation as an exercise for
you. I use both languages, and because VHDL is “strongly
typed,” I believe that Verilog is more appropriate for the
“easygoing” experimenter. If translation is to be performed
from one language to the other, I recommend doing it the
old-fashioned way—by hand. I don’t currently know of any
really good, automated, free tools for the purpose.

DESIGNERS COME FIRST
One principle that I think is self-evident—but which is

quite often sacrificed in industry for the sake of cost reduc-
tion or basic economy—is this: The designer/developer is a
respectable person, and some effort should be expended to
make life easier for that person. Now, back in the good old
times (Like the late 1970s?), there were these simple moni-
tor programs that developers used on SBCs. They were
extremely low-level programs like Motorola’s MIKBUG or
the firmware for Steve Ciarcia’s Z-80 Applications Proces-
sor (ZAP). These monitor programs filled a very important
function by providing the ability to reset, read, modify,
write, and single-step or begin code execution at a given

http://www.circuitcellar.com

debugging environ-
ment built around a
homemade IP core
called “rs232_syscon”
(see Photo 1). It works
through a serial port,
with no software need-
ed, and it allows you
to enter and read back
parallel data from reg-
isters and memory, as
well as initiate a Reset
command. With user-
defined register fields
for “go,” “single_step,”
and for setting hard-
ware breakpoints,
there is really no limit

to what the digital or DSP designer
can define, debug, and use with such a
system. Although it is tedious to
hand-enter large amounts of data
through the “hyperterm”-driven inter-
face, scripts can be easily run from the
PC that help alleviate the drudgery.

After all, if it’s no fun, why pursue
it as a hobby or otherwise?

SIMULATION OR NOT?
With the rs232_syscon core, and

some ready-made parameterized and
configurable register blocks up the
designer’s sleeve, a “Module Under
Test” can be run through its paces
using the actual target FPGA instead
of a simulator. Figure 1 shows the
concept I used. I will not deny that
simulations work like a charm. But I
will say that it takes time to put
together a really good simulation test
bench. It takes more time to carefully
run and analyze the simulation both
pre- and post-synthesis. And in the
end, there may well be some sort of
real-world gotchas that just weren’t
covered by the simulation. For exam-
ple, will a frequency-doubling PLL

www.circuitcellar.com • CIRCUIT CELLAR® 25

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

point. Now, within an FPGA, you can
create state machines that provide
many of these basic functions in hard-
ware, without making any demands
on the target processor at all. As you
may have guessed, the “monitor hard-
ware” will have a super-short learning
curve, which is really not a bad deal.
Once it has met its purpose, it can be
cut out of the design completely, if
desired.

IP CORES
This article focuses on producing

complex FPGA designs from basic
building blocks that were written from
scratch. This presents a paradox of
sorts. How do I effectively share what
I’ve already built up, while at the same
time encourage the sort of deep learn-
ing that comes from building a set of
code modules from scratch? In essence,
what I’ve decided is that most design-
ers want to build a particular new func-
tion, and would rather not have to
“reinvent the wheel” for all the sur-
rounding support logic needed to exer-
cise the experimental new module.

Enter the firmware-based design and

correctly lock? Very few simulations
will give good satisfaction on this type
of question. Personally, I want to
know about those real-world gotchas
as early as possible, so I’m suggesting
you get the code compiled and the bit-
stream loaded into the FPGA and start
debugging ASAP.

DEVELOPMENT MODULES
As I previously stated, there are two

major components which work togeth-
er in this firmware-based development
environment: the rs232_syscon, which
is the “system controller,” and the
register blocks, which form the bound-
ary between the development environ-
ment and the new logic or IP core
under test.

Describing the rs232_syscon module
is easy because its purpose is to pro-
vide the world’s simplest command
line. There are three commands: read,
write, and initialize. The syntax is
parameterized, so it scales according
to the way the module is instantiated
(see Table 1).

The UART function is designed
with simplicity in mind—a simple
TX, RX, and GND interface, without
double buffering or flow control of any
kind. I trust I haven’t offended anyone
by also conveniently leaving out the
parity bit and fixing the UART trans-
fer size at 8 bits. After all, its just for
simple debugging.

I am particularly proud of the auto-
matic data rate generator inside this
module because it synchronizes to
whatever data rate it sees from the
host terminal—even nonstandard
speeds. It does this by checking the
received intervals of each character,
filtering out and rejecting the charac-
ters that do not match what it is look-
ing for, which happens to be an
“enter” character (technically, the car-

riage return, 0x0D). If the
relative sizes of the intervals
within the received candi-
date character match those
of an enter character (which
are known a priori), the mod-
ule decides that the candi-
date character must be an
“enter” character, so it sets
its divider to the count
derived from measuring the

Figure 1—A “module under test” can be run through its paces
using the actual target FPGA instead of a simulator. This is the
concept I used.

FPGA

PC
Serial

Tristate bus

reg_8 reg_8 reg_8

Developing module
or function under test

RS232_syscon

Table 1—The unit is parameterized, so that the width of the data bus determines the width of the dd
field. Likewise, the address bus can be scaled to any width. Even the quantity field can be enlarged if
desired. Output formatting for reads is automatic.

RS232_syscon Syntax All parameters are in hexadecimal.

Command Parameter 1 Parameter 2 Parameter 3 Comments
r aaaa qq Read starting from address aaaa, quantity qq items

w aaaa dd qq Write starting at address aaaa, data dd, quantity qq times

I Initialize, issues a reset pulse

2101018_Clayton.qxp 1/11/2010 9:19 AM Page 25

http://www.circuitcellar.com

26 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

intervals, and implements the new
baud rate automatically. If the target
system uses a programmable system
clock generator, the user can adjust
system clock frequencies under regis-
ter control, and the board’s UART still
easily adjusts to the new baud rates
“on the fly.” This is excellent for the
human user, who can see a prompt
after simply pressing Enter a time or
two. Now that I think of it, wouldn’t
it be a fun feature to add an automatic
TX/RX swapping function for those
times when the lines end up connect-
ed backwards? It might save some
head scratching. But I digress.

The other part of the support envi-
ronment is the register block. For the
most “easygoing” environment, I’ve
chosen to embrace the use of internal
tristate gates. Some have preached
against the use of internal tristates,
citing inherent difficulties in formal
verification methods, test coverage,
and lack of ability to completely avoid
glitches or bus contention. The debug-
ging environment described here uses
them for one simple reason: they can
make life easier. With internal tris-
tates, I can run a single bidirectional
data bus out to register blocks, and
they all get an address and respond to
commands quite well. They’re easily
scalable in number. When you think
about it, without the tristate bus, each
new block of registers would require a
separate new input on a data read
multiplexer, which can become cum-
bersome as it doesn’t change its num-
ber of ports quite so easily as this tris-
tate bus. Most systems need several
registers to control a given function,
so why not group them together? I put
them into sets of eight. If I want
another set of eight registers, I just
“plop” down another instance of the
“reg_8pack” module. (I suppose there
could have been a register six-pack,
which sounds nice, but of course,
being greedy for more registers, in the
end I yielded to the fact that eight is a
power of two.) The register block gets
three address lines, the data bus,
read/write line and a decoded “register
block select” line. From continual use
and tweaking, many features have
been added to the basic register block.
For example, the current register

block is fully parameterized as to data
bus width, individual register widths
(1 bit minimum), default contents of
the registers at reset, and whether
each register is R/W or read only.
There is even a provision for setting or
clearing the register bits under control
of the logic within the fabric of the
FPGA. This can come in quite handy
when single-stepping a microcon-
troller or implementing a hardware
breakpoint.

BREAKING THE MOLD
So, now that I’ve established some

useful building blocks for a basic
development environment, what
about this fabled microcontroller
design I’ve been dreaming of? I’ll
describe something I figured out
while implementing the “risc16f84”
instruction execution engine. I’m giv-
ing it that funny name this time to
highlight the fact it’s not a fully fea-
tured PIC16F84 microcontroller. Its
design has been modified so that it’s
missing some things which are in the
standard PIC16F84 microcontroller,
and it’s got some extra growth as
well. When working to approximate
the performance of an existing proces-
sor design, you can choose which

level of compatibility is preserved.
One, choose a design that is com-

pletely bit-accurate and cycle-accurate
in every way. It’s a lot of work, and
less fun in my opinion.

Two, choose a design that’s the
same as the first, but throw out JTAG
debugging. After all, you can load code
in different ways.

Three, choose a design similar to
the first two, but also throw out cycle
accuracy. You really just want it to
function correctly. After all, what are
a few cycles between friends?

Four, choose a design that’s instruc-
tion set-compatible, but not code-
library-compatible. In other words,
eliminate the package-constrained
ports and begin to set up I/O for the
microcontroller the way you really
want it. After all, it’s inside an FPGA
now so you needn’t be limited to ports
A, B, and C. Add a few new ports into
the memory map. Obviously, this
choice may require custom SW coding
or modifying existing code libraries
somewhat.

Five, you have control of the CPU
instruction superset. Consider adding
new instructions.

And six, add tightly coupled hard-
ware accelerators to take workload off
of the processor. After all, you can
completely halt and restart the proces-
sor on a cycle-by-cycle basis if desired.

This list should inspire some cre-
ative ideas and help you “think out-
side the box.” As you’ll see, I chose to
work at level four from the aforemen-
tioned list. Also, you can pipeline the
design, or not, to whatever level you
choose.

DEBUGGING ENVIRONMENT
Initially, I was stumped when my

UART wasn’t responding properly. So,
I borrowed a logic analyzer and saw
what was happening. As luck would
have it, the problem wasn’t immedi-
ately obvious. So, I recompiled the
code, this time adding a “debug port,”
which would show the shift register
contents and finite state machine
state. This quickly led to the “ah-ha”
moment, and the problems were fixed
in the code.

Hopefully, with the building block
provided in this article, you will not be

Photo 1—This is an example of a screenshot
of rs232_syscon in action, set up for 16-bit
address with 8-bit data and quantity fields. If
the quantity is omitted, the previous value
is used.

2101018_Clayton.qxp 1/11/2010 9:19 AM Page 26

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 27

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

constrained to work at such a low
level as this. But I can’t guarantee it,
and you may need a logic analyzer, or
even (gasp) a simulation or two.

Once the design environment is
working, many problems can be
attacked by looking at register con-
tents and reasoning about what the
unit under test/development is actually
doing. I was able to develop several dif-
ferent cores by using the rs232_syscon
core, and these are all posted at
www.opencores.org. Some of the older
projects will have earlier versions of
the support environment which don’t
include some of the features now
present.

LCD PANEL
One of the fun dreams I realized

with my completed RISC PIC16F84
core was to hook it up to an old VGA
resolution LCD flat panel from a lap-
top. I purchased a broken laptop on
the Internet that would only put up
error codes on the screen. This was
what I wanted because I knew I could
use the FPGA to scope out the signals
present at the LCD interface. I made
sure it was an older, parallel direct drive
type of display, not one of the newer
high-speed serial LVDS types—although
now that I think of it, some FPGAs will
support LVDS. But there I go digressing
again. My FPGA breakout board did
not contain external RAM. Rather
than add some, I decided to use the
internal block RAMs as a rudimentary
display buffer. Because of the limited
amount of memory, I ended up with
“fat” 5 × 5 pixel color blocks in a 128
× 96 array, supporting eight colors.

I was able to write a colored-rectan-
gle “screen saver” program for the
RISC PIC16F84 processor in C and
load it via the rs232_syscon module.
Then I began speed-testing the proces-
sor core. I enjoyed watching the screen
updates vary in speed as I adjusted the
clock, all the while keeping an eye on
my interrupt-serviced LED display
which would change at a constant rate
because I had a fixed-frequency inter-
rupt request generator set up.

A fun variation on the full-size LCD
panel project is to grab an old cell
phone and use the FPGA to explore
the interface to its little display.

Sometimes cell phone displays can be
purchased with datasheets as well.

WILL ANY BOARD DO?
The FPGA board used for the coding

described in this article was home-
made, and the design files for that board
are provided freely to anyone who wish-
es to use or modify it. One day I heard
my spouse very clearly utter the non-
sense word “Pondooker” and I thought
it was a cute name for the board, plus
it fit into a neat five-letter, conso-
nants-only naming scheme: PNDKR.
As I mentioned earlier, PNDKR is
really a simple board—more of an
“FPGA breakout board,” than any-
thing else. Other than RS-232-level
translators, the board just has a bunch
of I/O headers. So I would say that any
FPGA board with a suitable number of
available I/O pins can work. One can
even go onto an online auction and
purchase an FPGA board pulled from
some product. A board schematic is
not always required. As long as you
can configure the FPGA device, pro-
vide it power, reset and clock, and
obtain access to an appropriate num-
ber of I/O pins, those are the main
requirements.

One factor which militates in favor
of finding a commercially produced
board instead of making one is the
growing number of FPGAs that are
housed in fine-pitch BGA packages.
These can be difficult to work with
by hand. Unless the BGA balls are
brought out to headers or vias, the
FPGA cannot easily be “probed” on
an oscilloscope or logic analyzer. Nev-
ertheless, one company, Schmart-
Board, provides a 400-pin board that
purportedly allows hand soldering at a
1.0-mm pitch for those who wish to
try their hand.

AUDIO OVER ETHERNET
During the 2007 WIZnet iEthernet

Design Contest, I was tantalized by
the possibility of interfacing an FPGA
board with WIZnet’s WIZ810MJ board
for easy Ethernet connectivity. I
found that the embedded RISC
PIC16F84 microcontroller interfaced
with the WIZnet IC quite easily. The
connections were provided by an IDC
cable (see Photo 2). You can review

2101018_Clayton.qxp 1/11/2010 9:19 AM Page 27

http://www.opencores.org
http://www.circuitcellar.com
http://www.pololu.com

This should be a useful modification if
you want to use the interface for load-
ing processor code or large volumes of
data to the target system. The number
of command lines needed can be
reduced by more than an order of mag-
nitude.

While it is difficult for an FPGA to
compete directly with ASICs on funda-
mental clock speed, power per MIPS,
analog capability, or low cost in vol-
ume of millions of units, I like to think
they get closer than anything else can
at fairly low cost. And besides, I proba-
bly won’t be selling millions of units
any time soon. But I should be having
fun along the way. I

28 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/
2010/235.

ESOURCE
PNDKR User’s manual and files, www.opencores.org.

OURCES
PIC16F84 Microcontroller
Microchip Technology, Inc. | www.microchip.com

XC2S200E Spartan-IIE FPGA
Xilinx, Inc. | www.xilinx.com

John Clayton (morianton@gmail.com) holds a BSEE from Brigham Young University
and an MSEE degree from The University of Texas, Austin. After working for 12 years
as a DSP programmer and board designer, he is now a principal design engineer at
Orbital Sciences Corporation in Chandler, AZ. John’s technical interests include
embedded design, FPGAs, embedded programming, and CNC machining.

P

R

easily. The input is mostly identical.
The only modification is the addition
of a simulation delay value per com-
mand line for sim_syscon. The VHDL
source code for this module and exam-
ple I/O text files have been included
with the other (Verilog) source files
posted on the Circuit Cellar FTP site.
A recent translation of rs232_syscon
into VHDL is now available. If anyone
translates “sim_syscon” into Verilog,
I’d be pleased to receive a copy.

Also note that in sim_syscon the “w”
command (write) has been renamed as
“f” (fill) so that the write command
can be revamped to handle multiple
data items on a single command line.

S

my flexible audio transmission over
Ethernet (FATE) project at www.circuit
cellar.com/Wiznet/winners/001103.html.
The design sets up a simple dedicated
wired Ethernet network. You can then
use the network to coordinate the dis-
tribution of high-quality audio signals
throughout a building and the area
around it.

AFFORDABLE FUN
I currently write VHDL code for var-

ious aerospace-related FPGA applica-
tions. As you can imagine, the test
requirements for these applications are
rigorous. If you will pardon the pun, the
exclusive use of hardware testing in
lieu of simulation for aerospace circuit
development and debug “will not fly.”
Therefore, I was pleased to embark on
a course of writing test benches and
using simulations to create and debug
new designs. This effort has resulted in
the realization that within a test
bench, a simulation can support a sys-
tem controller that generates the same
bus cycles as the hardware-based
“rs232_syscon” module—effectively
using text input and output files to
deliver commands to the system under
test—and record the responses from the
system. This approach has the advan-
tage that a particular set of “syscon”
commands can be used (with very lit-
tle modification) during both the sim-
ulation and hardware checkout phases
of design and test.

I have not gone to the trouble to
make the output identical between
the two modules, but it could be done

Photo 2a—This is the FPGA breakout board. There is a ribbon cable connection to the WIZnet board. The USB is only for power. The interface
to rs232_syscon is via a nine-pin D-shell connector. b—This view from the back shows the Xilinx FPGA configuration PROM and an on-board
parallel cable implementation.

a) b)

2101018_Clayton.qxp 1/11/2010 9:19 AM Page 28

mailto:morianton@gmail.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2010/235
http://www.opencores.org
http://www.microchip.com
http://www.xilinx.com
http://www.circuitcellar.com

2-ch 1GSa/s Scopes

Scope/Logger

Color LCD Scopes

RF Generator

16-Ch Logic Analyzer

XP Emb Touchpanel

Automotive Testing

EMC Spectrum Analyzer Worlds’s Fastest

Pen Scopes

USB Bus Analyzers

Handheld Scopes

Scope + Analyzer

Mixed-Signal ScopesLow-Cost Scopes

60/100/120MHz AWG

2-ch + trigger standalone USB

bench scope. $315 / $499

20MHz / 60MHz rugged handheld

USB 2-ch scope. $593 / $699

Intuitive full-featured 16-ch 4MB

200MHz sampling memory. $279

Touch-input 10.2” LCD 12V-powered

Windows PC. LX800/512MB/4GB/

Ethernet/3xUSB/SD.

Be
st

Sell
er

10/25MHz USB powered scope-in-a-

probe! Up to 100MS/s. $193 / $280

High-res, extremely low-noise,

portable 6GHz RF generator.

Packet-Master™ - USB 1.1/2.0

analyzers and generators. $699 +

Kits turn your PC into vehicle-

electrics diagnostic tool.

2-ch 1GSa/s (25GSa/s equiv.)

50/100 MHz scope. $595 / $795

2-ch DSO 16-bit DSO, FFT, VM,

logic analyzer, standalone +24 I/O.

60/100/120MHz USB 14-bit ARB

with USB RS-232, LAN/GPIB.

Handheld Palm PC-based

2.7GHz Spectrum Analyzer.

12/16 input 1kS/s 10/12-bit

PC-connected voltage logger.

2-ch 12GHz sampling scope for

high-speed electrical signals.

100MHz Scope, + Spectrum/Logic

Analyzer and Signal Generator. $1259+

Embedded controller series: 2 x

CANbus, Ehternet, USB2.0, CF.

CANminiBOX

Above are some of our best-selling, unique, time-saving products - see our website for 100s more:
WiFi/910MHz antennas, wireless boards, LCD display kits, Ethernet/IO, USB/RS232/485, USB-OTG,
instant Ethernet-serial, CAN/LINbus, USB cables/extenders, line testers, logic analyzers, color sensors,
motion controllers, eng. software, wireless boards, SMD adapters, I2C adapters, GPS loggers,
automotive testing, security dongles, video motion detectors, crystals/oscillators, custom switches,
barcode scanners, DSP filters, PLCs, Remote MP3 players, etc. FREE Starbucks card with your $50 order!

Check www.saelig.com often for special offers, bargains, business hints, blog, etc.

NEW
!

RI
GOL

NEW
!

RI
GOL

U N I Q U E P R O D U C T S & S U P P O R T
w w w . s a e l i g . c o m

2-ch 40/100/200MS/s 8-bit scope

range with 5/10/25MHz. $246 +

Serial-Ethernet Cable

Network serial product easily without

a PC using this 28” cable. $89

“Drop-in” solution connects PC to

I2C/SMBUS + 32 I/O lines. $89

USB to I2C

RF Modules

Simultaneouslytransmitcomposite

video and stereo audio signals.

UDP/IP-controlled 24 digital

I/O board 3 x 8-bit TTL ports.

Ethernet - IO

Mini-logger with built-in temp/hum/

pressure/3-axis accel sensors.

Multiparameter Loggers

1/2/4/8/16 x RS232

Add 1-16 COMports via your

PC’s USB Port easily.

RF Testing/EMI Tents

Portable RF test enclosures &

shielding tents with external frame.

Wireless Solutions

Analog input, bluetooth wireless

modules 433/868/915MHz.

SPI Bus Analyzer

Protocol exerciser/analyzer for standard

SPI and non-standard 4-wire and 3-wire

serial protocol interfaces up to 50 Mbps.

Temp/RH Sensors

Novel ambient sensors & modules

accurately measure temp/RH.

Instant Ethernet

No OS needed. TCP/IP offload,

ICs improve system performance.

25MHz 2-ch /16 logic scope

and logic analyzer. $1195

Sound Module

14-pin module plays back pre-

stored audio files from microSD card

.NET Board

Small (2.2” x 2.2”) lowest cost .NET

Micro Framework dev system.

TorqSense

Keyboard Simulator

USB board adds 55 I/O and 5 x

10-bit A/D inputs, 1 x 10-bit analog O/P.

NEW
!

RI
GOL

Compact, economical smart OLED with

graphics drive from USB or RS232.

Easy OLED Display

Be
st

Valu
e

NEW
!

Configurable, patented USB-output

non-contact SAW digital rotary torque

transducers with integral electronics.

Waveform Generator

USB2.0 speed 16-bit digital pattern

or arbitrary waveform generator.

I2C Xpress

Versatile USB 2.0 I2C protocol

exerciser and analyzer.

9p-9p or 25p-25p self-pwrd,

isolated RS232-RS422/485

RS232 to 422/485

CAN-USB

Intelligent CAN connection

from PC’s USB port. $299

Lorlin Switches

Fantastic array of stock and

custom switching devices.

FTDI USB ICs

Popular UART and FIFO chips.

Upgrade Legacy designs to USB.

EMC Spectrum Analyzer

RF & EMF Spectrum Analyzer

1Hz to 7GHz for WiFi, mikes, etc.

USB-Serial

Wireless Data Loggers

U
S

B
iz

i

u
O

L
E

D
-9

6
-G

1

A
W

M
6
X

X
 T

X
/R

X

K
K

 S
y
s
te

m
s

U
S

B
-C

O
M

P
o

K
e
y
s
5
5
T

U
S

B
I2

C
IO

R
T

R
-5

0
W

a
v
e
 X

p
r
e
s
s

U
S

B
1
2
 /

 4
8
0
+

 /
 5

0
0

A
G

P
S

2
2

0
3

/4
/5

P
S

2
1

0
4

/P
S

2
1

0
5

P
D

S
5

0
2

2
S

 /
 P

D
S

6
0

6
2

T

D
S

1
0

0
0

E

H
D

S
1
0
2
2
M

N
 /
 H

D
S

2
0
6
2
M

M
e
p

h
is

to
L

A
D

-1
6
1
2
8
U

S
P

I
X

p
r
e
s
s

E
M

C
 R

F
 &

 E
M

C
 S

p
e
c
tr

u
m

microCAM

Compact compressed-serial output

camera module for any host system.

u
C

A
M

-2
3
2
 /
 u

C
A

M
-T

T
L

P
S

A
2
7
0
1
T

I2
C

 X
p

r
e
s
s

P
S

3
4
2
3
 /

 K
L

A
R

I-
M

O
D

e
m

P
C

-x
1
3
3

A
P

S
IN

6
0
0
0

M
S

R
1
4
5
S

E
L

-U
S

B
-1

/2
/3

/4

L
D

3
0
0

D
G

3
0
6
1
A

/3
1
0
1
A

/3
1
2
1
A

F
T

2
3
2
R

L

C
A

N
-U

S
B

e
C

O
V

-1
1
0
-P

L
o

r
li

n

W
IZ

1
1
0
S

R
 /

 W
5
1
0
0

E
th

e
r
-I

O
 2

4

R
T

G
0
0
5

E
m

b
e
d

R
F

 /
 A

d
e
u

n
is

A complete CP2102 USB-serial

converter in a DB9 shell. $26

Log and display temp, hum, volt,

event-time or pulse-counting data

Lo
west

Pri
ce

s

Electronic DC Load

Const. current, resistance,

conductance, voltage & power modes

USB Loggers

Standalone USB temp / hum / volt /

current loop data logger. $49+

Ready-to-go out-of-the-box FPGA/DSP

designs for beginners and experts!

FPGA Systems

Amazing 7 in 1 Scope! $180

CircuitGear CGR-101™ is a unique

new, low-cost PC-based instrument

which provides the features of seven

devices in one USB-powered compact box:

2-ch 10-bit 20MS/sec 2MHz oscilloscope,

2-ch spectrum-analyzer, 3MHz 8-bit

arbi trary-waveform/standard-funct ion

generator with 8 digital I/O lines. It also

functions as a Network Analyzer, a

Noise Generator and a PWM Output

source. What’s more – its’ open-source

software runs with Windows, Linux and

Mac OS’s! Only $180!

C
G

R
-1

0
1

w
w

w
.s

a
e

li
g

.c
o

m

C
U

P
C

-8
0

C
S

3
2

8

R
F

 T
e

s
ti

n
g

 /
 E

M
I

T
e

n
ts

R
W

T
3

2
0

S
O

M
O

-1
4

D
U

P
S

IC
A

P
 /

 D
L

P
-T

H
1

C
E

-U
S

B

D
S

1
0

5
2

D

Alan Lowne

Saelig CEO

P
S

9
2
0
0

“I really like this scope adapter

- it’s meant for teaching electronic

experiments but it’s ideal for

engineers too.”

M
e

n
ti

o
n

 o
ff

e
r
#

 S
B

W

FREE COFFEE

Call 1-888-772-3544

to get a free Starbucks

Card with your >$50 order!

While supplies last

- not available with

any other offers

Multichannel DAQ

P
L

1
0
1
2
 /
 P

L
1
2
1
6

29.qxp 12/30/2009 10:21 AM Page 1

http://www.saelig.com
http://www.saelig.com
http://www.saelig.com
http://www.saelig.com
http://www.saelig.com
http://www.saelig.com
http://www.saelig.com
http://www.saelig.com

30 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

L ongtime readers know I’ve been a
stalwart defender of 8-bit MCUs. I can’t

count how many times over the years some
pundit has read their eulogies. Of course, all the
while our little friends continue to ship billions
of units a year, and they will for many years to
come to fill a backlog of evermore global
demand. But at the same time, there’s no doubt
that 32-bit MCUs are hitting their stride.

And when it comes to 32-bit MCUs, nobody

Thirty-two-bit flash MCUs are the hottest game in town. The stakes are high, but so
is the opportunity presented by billions of sockets to fill. Top MCU suppliers are
placing their bets on ARM Cortex-M3 and putting their chips—of the silicon var iety,
naturally—on the table.

A Winning Hand

by Tom Cantrell

SILICON UPDATE

holds a better hand than ARM. They’ve lever-
aged an “open” business model and the know-
how of heavyweight chip partners to finesse
their way through architectural hoops that
might have tripped up a lesser contender.

I’ll admit I had some doubts about the transi-
tion from the historic ARM7/9/11 lineup to the
new Cortex regime. But in the case of their
microcontroller offering, Cortex-M3, those
doubts have been erased as major MCU suppliers

Betting on the ARM Cortex-M3

Figure 1—The letterhead may be different (it now says TI instead of Luminary), but the Stellaris family continues to
grow. The most recent addition is the ’9000 line of “Tempest Class” MCUs to be followed by both higher- and lower-
end parts.

2006 2007 2008 2009 2010 2011

Sandstorm
• 64-KB Flash
 memory
• 8-KB SRAM
• Motion control
• 1-MSPS ADC

Fury class
• 256-KB Flash
 memory
• 64-KB SRAM
• Motion control
• ETH MAC+PHY
• CAN 2.0
• Ethernet+CAN

Blizzard class
• Small form factor
• Low pin count
• Expanded serial
 connectivity

Whiteout class
• Small form factor
• Low pin count

DustDevil class
• 128-KB Flash
 memory
• 64-KB SRAM
• Motion control
 enhancements
• USB 2.0 O/H/D
• 32-Channel DMA

Tempest class
• Higher performance
• Low power
• ETH+CAN+USB OTG
• External bus capability
• I2S
• Precision oscillator

Firestorm class
• Advanced analog
• 512-KB Flash
 memory

Brainstorm class
• Advanced analog
• 1,024-KB Flash memory

2102003-cantrell.qxp 1/11/2010 9:29 AM Page 30

http://www.circuitcellar.com

What is

the missing

component?

Industry guru Forrest M. Mims III has created yet another stumper.

The Ultra Simple Sensors Company assigned its engineering staff to

design a circuit that would trigger an LED when a few millimeters

of water is present in a basement or boat. What is the water sensor

behind the puzzle piece? Go to www.Jameco.com/teaser5 to see if

you are correct and while you are there, sign-up for our free full

color catalog.

1-800-831-4242 | www.Jameco.com

Jameco_CC_P5_Jan10 12/8/09 2:54 PM Page 1
31.qxp 12/30/2009 10:23 AM Page 1

http://www.Jameco.com/teaser5

32 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

fence sitters went ahead and signed up
as well. Luminary did such a good job
that Texas Instruments (TI) recently

have hopped on the bandwagon one by
one.

There’s no better way to reinforce
the point than to take a look at new
Cortex-M3 MCUs from a premier
global supply chain, a who’s who of
six (count ’em) major players.

LIGHTING THE WAY
There’s a good chance I wouldn’t be

writing this article, at least not yet, if
it wasn’t for Luminary Micro. Recall
that when ARM first announced the
move to Cortex M3, the news was met
with some ambivalence by their exist-
ing MCU partners. Outfits like NXP
Semiconductors and Atmel had already
invested heavily in ARM7-based flash
MCU lineups which were selling just
fine.

With all the major players waiting for
the other guy to blink first, Luminary
stepped into the breach to break the
deadlock. They were able to successful-
ly establish a catalog of ’M3 parts and
plenty of marketing momentum and
credibility to go with. Facing an upstart
’M3 contender gaining traction, the

bought them as the most expeditious
way to get their own piece of the ’M3
action.

Photo 1—The new Tempest Class MCUs are the first Stellaris MCUs to offer a high-speed
external bus interface. To show off the new feature, they offer an evaluation kit add-on that
tightly couples the MCU with a video capture/processing subsystem comprising an FPGA and
CCD camera.

2102003-cantrell.qxp 1/11/2010 9:29 AM Page 32

http://www.circuitcellar.com
http://www.jkmicro.com
http://www.designcon.com/2010

opportunity for 32-bit flash memory
MCUs.

The LPC1300 is a little socket rock-
et, cramming ’M3 horsepower into tiny
33- and 44-pin packages. Sure the gas
tank is small (up to 32-KB flash mem-
ory and 8-KB RAM), but the ’1300 is
really quick stoplight-to-stoplight
with 70 MHz on tap, and it burns just

200 µA/MHz along the way. Despite its
small size, the chip has a decent com-
plement of I/O and glue logic (i.e., like
you’d typically find on 8-bit MCU in a
similar package), and it even includes a
full-speed USB device interface.

At the other end of the spectrum is
the LPC1700. It’s one of those amazing
“kitchen sink” microcontrollers that

With the TI brand, manufacturing
capability, and balance sheet backing
their hand, it’s onward and upward for
the Stellaris roadmap (see Figure 1)
with the recent release of dozens of
new parts. At the high-end, the new
9000 series (aka “Tempest Class”)
with 256-KB flash memory and 64-KB
SRAM covers home (USB 2.0 full-
speed), factory (CAN 2.0), and office
(10/100 Ethernet MAC and PHY) apps
with one chip that does it all. The
9000 series parts also include software
in ROM that goes beyond the typical
bootloader to include things like
peripheral, USB, and graphics drivers. I
don’t have the details yet, but this is
an interesting feature worthy of further
exploration. The 9000 series also has a
high-speed external bus interface with
a 150 MBps “machine-to-machine”
mode that seems ideal for high-speed
chip-to-chip connections, such as with
another processor or an FPGA (see
Photo 1).

At the other end of the lineup, recall-
ing the buzz Luminary generated with
their $1 price breakthrough, entry-level
parts (e.g., the LM3S1Z16 with 16 KB
of flash and 6 KB of SRAM) now have a
tiny (7 × 7 mm) 44-pin QFN package
option joining the original’s LQFP.

IN THE BEGINNING
These days, ARM sings the praises of

the mass-market MCU. But it wasn’t
always so. Between their “computer”
heritage and infatuation with cell
phones, I wondered for a long time if
they would ever “get it.”

Now they do, thanks largely to the
pioneering efforts of NXP (then Philips
Semiconductors) and Atmel. In the
early part of the decade, these outfits
pioneered the concept of putting an
ARM “computer” to work in “con-
troller” sockets (T. Cantrell, “In ARM’s
Way,” Circuit Cellar 158, 2003). It’s no
surprise that NXP and Atmel are still
the driving forces today, with catalogs
chock full of practical ARM7 and
ARM9 workhorses from $1 to $10 and
tens to hundreds of MIPS. And now
they’re rolling out ’M3s.

NXP offers two distinct ’M3-based
product lines, the LPC1300 and
LPC1700. The range between the two
is testimony to the vast application

www.circuitcellar.com • CIRCUIT CELLAR® 33

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

Photo 2—The first NXP ’M3 MCU, the
LPC1768, makes its debut in the
ARM mbed module, which combines
easy-to-use hardware and unique
“cloud-computing” web-based tools.

2102003-cantrell.qxp 1/11/2010 9:29 AM Page 33

http://www.circuitcellar.com
http://www.USBee.com

34 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

for virtually any application. There’s a 10/100 Ethernet
MAC, CAN, USB 2.0 (full-speed host/device), UART, SPI,
I2C, PWM, RTC, ADC, DAC, and the list goes on. It’s

like the Humvee of
MCUs, except it gets
good mileage and does-
n’t cost a lot. Check out
the latest “mbed” mod-
ule from ARM starring
an LPC1768 in Photo 2.
It’s just $99, which is all
the more a bargain since
the web-based tools are
free. Refer to my June
2009 article, “Easy
(E)mbed,” for more
information (Circuit
Cellar 227).

Atmel’s first ’M3 offer-
ing, the SAM3U, is super-
sized as well with up to
256-KB flash memory and
56-KB SRAM plus even
more pins (up to 144) to
play with, notably includ-
ing high-speed USB 2.0
(480 Mbps). Photo 3 is

has everything and then some: more megahertz (up to
100), more memory (up to 512-KB flash memory, 64-KB
RAM), more pins (80 to 100), and more than enough I/O

Photo 3—“Kitchen-sink” MCUs like the Atmel SAM3U have so many I/O features that it takes a lot of evalua-
tion board to support a single chip.

email : sales@pcb-pool.com
Toll Free USA : 1 877 390 8541
www.pcb-pool.com

Low Cost - High Quality
PCB Prototypes

no extra cost

“ ” ®

Follow the production of your PCB in

2102003-cantrell.qxp 1/11/2010 9:29 AM Page 34

mailto:sales@pcb-pool.com
http://www.pcb-pool.com
http://www.circuitcellar.com
http://www.circuitcellar.com/newsletter/

www.circuitcellar.com • CIRCUIT CELLAR® 35

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

the picture that’s worth the thousand
words it would take to describe all
the on-chip goodies. When it comes
to performance, clock rate is usually
all anyone talks about, and the ’3U is
no slouch running at up to 96 MHz.
But when dealing with so much I/O,
the ability to move data around
quickly with minimal CPU overhead
(e.g., driver software and stalls due to
bus contention) is just as important.
Featuring a five-layer bus matrix,
dual peripheral bus, distributed RAM
buffers, and 22-channel DMAC, the
’3U keeps the traffic moving even at
the peak of rush hour.

Proving the ’3U is no fluke, Atmel
has just announced their second line
of ’M3 parts, the SAM3S. I haven’t
seen the datasheet yet, but according
to the press release, the ’3S has some
interesting features: on-die termina-
tion resistors, low-speed (not just
active and sleep) power optimization,
PIO DMA, memory ECC and back-
ground CRC, encrypted external bus,
and enhanced peripherals.

In the marketing pitches, migrat-
ing from ARM7 to ’M3 is treated as
an easy pushbutton affair. But actual-
ly, there are under-the-hood differ-
ences with things like interrupts,
power management, and I/O drivers.
To ease the migration, both NXP and
Atmel offer ’M3 parts that are pin-
and I/O-register-compatible with

not the first chip to combine an MCU
and a radio. But where earlier devices
might have used an 8-bit MCU or a
multi-die system-in-package, the ’32W
integrates the ’M3 MCU and radio on
the same die. Without dissecting the
rationale for single-die, multiple die in
a single chip, and multi-chip solutions
(a nontrivial discussion), let’s just say
that if you want a 32-bit MCU and
radio on a single piece of silicon, the

their existing ARM7-based MCUs.

MORE BITS, LESS WIRES
Although a bit late to the game,

STMicroelectronics is upping the ante
in with a full line card of M3-based
MCUs befitting their status as a major
global player in the IC business. Right
now I’m playing with their new
STM32W, an ’M3 that claims fame
with a built-in IEEE 802.15.4 radio. It’s

Photo 4—You’ve heard of “Smart Dust” wireless sensor networks, right? Well, now it’s
“Smarter Dust” thanks to the STM32W, which combines a 32-bit ’M3 flash MCU and IEEE
802.15.4 radio on the same die.

Figure 2—Field-oriented motor control calls for significant computation. The Toshiba TMPM370 includes a dedicated “Vector Engine” that han-
dles the major tasks in hardware including vector to three-phase conversion, sensorless (i.e., back EMF) speed sensing, and proportional-
integral (PI) control.

PI Control loop
on ld and lq

Convert to
[ld, lq] input

Shunt
readings
from ADC

Input
processing

Current/voltage
detection (ADC)

Output
control

Trigger
generation

Pl Control

Pl Control

SIN
φ
ω COS

Vq

Vd

VB

VA

VDC

DUTYB

DUTYC

SECTOR

DUTYA

Id ref

Iq ref

VDC

ld
lq

lq
ld

lA
lB

lU
lV
lW

Current control

SIN/COS Computation

Convert to
three-phase output

Duty cycle outputs
to PMD Unit

FOC
Algorithm
generates
set points
for [Id, Iq]

Phase
angle and
frequency
from FOC
algonithm

[Id, lq] back
to FOC

algorithm

Phase
interpolation

Coordinate
conversion
[d, q] AB

Sin,
cos

Phase
conversion

2 3

Coordinate
conversion
[d, q] AB

Three-phase
PWM Output

settings (PMD)

Sync trigger
settings (PMD)

Phase
conversion

2 3

2102003-cantrell.qxp 1/11/2010 9:29 AM Page 35

http://www.circuitcellar.com

36 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

latter intends to replace your quiver of IR remote controls
(e.g., TV, DVD, etc.) with radio versions (i.e., no more
“point-and-shoot,” just “shoot”). However, RF4CE does
have capabilities (e.g., acknowledged transactions) that
could take it beyond couch-potato applications. Maybe it
has a role to play as kind of a “ZigBee-Lite,” with ZigBee
PRO having moved onto bigger, and ostensibly better,
things.

At $200, the STM32W Starter Kit is a decent deal because
it comes with a full-fledged IAR J-Link emulator/program-
mer and three radios to play with (see Photo 4). To fully
exercise advanced “mesh-networking” capabilities, an
Extension Kit delivers four extra radio boards for $180.
Keeping track of all the packets hopping hither and yon
isn’t easy, so the starter kit also comes with a basic version
of the Daintree Sensor Network Analyzer (SNA) wireless
network packet sniffer/analyzer software (see Photo 5). One
nice feature is that SNA supports the ever growing list of
popular protocols including the aforementioned Zigbee
PRO, RF4CE, and 6LowPAN.

DIAL M3 FOR MOTORS
I’ve got to admit when the subject is ’M3 flash MCUs,

Toshiba isn’t the first name that comes to my mind. Last I
recall, they were doing chips based on the MIPS architec-
ture, high-end computery ones at that. Nevertheless, it
would be a mistake to ignore a global giant that claims to
be Japan’s largest semiconductor manufacturer and ranked
#3 in the world.

Electric motors are a huge market, and fancy motor
drives with sophisticated algorithms are all the rage.
Toshiba takes on the challenge with the TMPM370.
What sets this otherwise conventional (80-MHz, 256-KB
flash, 10-KB SRAM) ’M3 MCU apart is a dedicated Vector
Motor Control subsystem that does the heavy lifting

’32W is a noteworthy option.
The chip is as much about the radio as the ’M3 MCU

itself. The latter is rather conventional with a typical mix of
peripherals, and according to the specs the core tops out at
24 MHz, which is somewhat less than typical for an ’M3.
Indeed, a likely scenario has the core running at just 12
MHz to reduce power because that’s the minimum clock
rate required by the radio.

I’m no RF expert, but features like “two-point direct syn-
thesizer modulation” and a “low-IF superheterodyne
receiver” apparently do the trick when it comes to deliver-
ing a robust link budget (100-dBm sensitivity, up to 7-dBm
output power). Better yet, the radio hardware, working
together with the built-in DMAC, handles many MAC
layer functions that would otherwise burden the MCU,
such as packet filtering, acknowledgement and timing,
CRC generation/checking, link quality/receive signal
strength, and so on. AES acceleration hardware and a true
(i.e., thermal noise) random number generator facilitate
secure applications. The radio even gets its own debug sup-
port with a dedicated packet trace interface that nonintru-
sively monitors traffic between the MAC and baseband.

On the software side, STMicroelectronics does their best
to keep up with ZigBee feature creep, particularly with
recent moves towards IP interoperability (6LowPAN) and a
shotgun marriage with consumer electronics (RF4CE). The

Photo 6—The history of silicon has been all about performance. But
now, by virtue (“green” designs and longer battery life) or necessity
(thermal overload), low-power is where it’s at. Energy Micro is lead-
ing the way with 32-bit ’M3 MCUs that are so cool (i.e., low-power)
that they could be hot (sellers).

Photo 5—The STM32W Starter Kit includes an evaluation version of
the Daintree Sensor Network Analyzer (SNA). It uses one of the
three radios in the Starter Kit as a “sniffer” to capture and decode
traffic between the other two.

2102003-cantrell.qxp 1/11/2010 9:29 AM Page 36

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 37

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

R

Tom Cantrell has been working on chip, board, and systems design and marketing for
several years. You may reach him by e-mail at tom.cantrell@circuitcellar.com.

ESOURCE
T. Cantrell, “Is ARM the ’51 of Tomorrow?,” Presentation, ARM Develop-
ers’ Conference, October 4, 2006.

OURCES
mbed Microcontroller rapid prototyping tools
ARM | www.arm.com

SAM3U Cortex-M3 flash MCU
Atmel Corp. | www.atmel.com

Sensor Network Analyzer (SNA)
Daintree Networks | www.daintree.com

EFM32G Cortex-M23 flash MCU
Energy Micro | www.energymicro.com

LPC1300 and LPC1700 Cortex-M3 flash MCU
NXP Semiconductors | www.nxp.com

STM32W Cortex-M3 flash MCU with IEEE 802.15.4 radio
ST Microelectronics | www.st.com

Stellaris 9000-series Cortex-M3 flash MCU
Texas Instruments | www.ti.com/stellaris-prhome

TMPM 360 and TMPM 370 Cortex-M3 flash MCU
Toshiba America Electronic Components

(vector to three-phase conversion,
PWM, automatic task sequencing) for
field-oriented motor control algo-
rithms (see Figure 2). As a result, the
’370 is said to consume less than half
the ’M3 cycles of a software-only
implementation, freeing application
software to focus on higher-level
control and extra features (e.g., con-
trolling a second motor).

By contrast, the TMPM360 is
notable for what it doesn’t include.
Targeting the bluest of blue-collar
apps, there’s no Ethernet, USB, CAN,
radio, etc. But what the ’360 lacks in
fancy I/O, it makes up for by dou-
bling-down with the basics. Versions
are available with up to 2-MB flash
and 128-KB SRAM, a natural for spiff-
ing up yesterday’s boring LCDs with
some memory-intensive eye candy.
When it comes to standard I/O, the
’360 goes all in, calling a designers
bluff with a big stack of peripherals
including up to 12 UARTs, five I2C
ports, 16 timers, and 16-input 10-bit
ADC.

LEAN, MEAN, & GREEN
The ’M3 bandwagon is big enough

for young and old alike. Say “hello” to
newborn Energy Micro (see Photo 6).
As the company name implies, they
aspire to be the Energizer Bunny of
’M3 flash MCUs by taking a hard
look at every electron that dares to
make a move.

Now it’s not as though other chip
companies don’t get the picture that
“green is the new black.” Every mod-
ern MCU takes advantage of lower
voltages, sleep modes, clock gating,
and so on. But by virtue of their sin-
gle-minded focus and attention to
detail, Energy Micro does stretch the
concept (not to mention battery life)
further.

Batteries deliver power, but store
energy (i.e. power over time) and
that’s what matters. Thus, a “lower-
power” MCU isn’t always better if it
takes a lot longer to do the work at
hand. The idea is to sleep a lot, then
wake up and get work done fast so
you can sleep even more. But the
devil is in the details and all sleep
modes aren’t created equal. Some are
quick and easy to wake up from,

S

while others are more like a coma,
little more than “The Big Sleep”
mode (i.e. an ON/OFF switch). To
that end the Energy Micro MCUs fea-
ture four different sleep modes that
allow designers to fine tune the trade-
off between power consumption and
responsiveness.

Energy Micro hoards energy that
other MCUs may leave on the table
with a “Peripheral Reflex System”
that handles a measure of I/O
autonomously without having to
wake the processor. They also pay
attention to reducing the power con-
sumed by the peripherals themselves.
For instance, the ADC can perform
12-bit conversions at up to 1 MHz,
consuming 200 µA. But if you don’t
need the performance, you can cut
back the resolution and sample rate to
slash power consumption to, for exam-
ple, just 500 nA for a 6-bit at 1-kHz
application. There’s also a “Low Energy
UART” that runs off the 32-kHz RTC
clock. The low frequency limits the

bitrate, but the UART can keep up
with a 9,600-bps connection while
consuming a mere 100 nA.

YOUR DEAL
I gave a conference presentation a

few years back titled “Is ARM the ’51
of Tomorrow?” My conclusion was yes
and no. Yes, in the sense that the
“openness” of the architecture and a
bandwagon of suppliers is a boon for
business. No in the sense that, unlike
the ’51, the ’M3 benefits from having
an “owner” (i.e., ARM, Inc.) to keep
the bandwagon rolling.

In my conclusion, I predicted that
ARM wouldn’t eliminate the competi-
tion, witnessing the fact the ’51 didn’t
either. But I also said, “ARM can cap-
ture the largest share of a market that’s
going to grow quickly and last a really
long time!” I’ll stand by that today.

One thing is for sure, whatever
application game your playing, six
(’M3 flash MCU suppliers) of a kind
sure seems like a winning hand. I

2102003-cantrell.qxp 1/11/2010 9:29 AM Page 37

mailto:tom.cantrell@circuitcellar.com
http://www.arm.com
http://www.atmel.com
http://www.daintree.net
http://www.energymicro.com
http://www.nxp.com
http://www.st.com
http://www.ti.com/stellaris-prhome
http://www.circuitcellar.com

38 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

Ed began constructing a Totally Featureless Clock for a friend by first
building a WWVB simulator. That’s mostly a simple matter of softwar e.
But there’s also the analog chain: a crystal oscillator , a steep filter built
around a MAX274, and a feeble power amp driving a bar antenna.

Totally Featureless Clock (Part 1)

WWVB Simulator

A

by Ed Nisley

friend recently asked me to build a
wall clock for her kitchen. Although

you can buy a clock at any big-box retailer,
her single highest priority requirement elimi-
nated an off-the-shelf solution: the clock
should never, ever, display an incorrect time.

She had several other challenging design
specs: no blinking or flashing, no seconds or
date display, no alarm or snooze function, and
huge blue LED digits. Basically, she wanted a
clock with an utterly simple user interface:
just the time, all the time.

Constructing her Totally Featureless Clock
turned out to be an interesting project. The dig-
ital circuitry and firmware consist mostly of
counters, but (as
always) the analog
circuits presented
some challenges.

Because this was
an entirely indoor
application, I decid-
ed the clock should
set its time auto-
matically using a
WWVB radio receiv-
er. That meant I
had to build a very
low power trans-
mitter sending a
WWVB-style time-
code signal, allow-
ing me to check out
the clock logic with
known test data
and without the

ABOVE THE GROUND PLANE

vagaries of RF propagation.
In this column, I’ll describe the WWVB

simulator shown in Photo 1. In my next col-
umn, I will cover the other end of the project,
where RF once again becomes bits.

TIME CODING
Radio station WWVB, operated by the

National Institute of Standards and Technolo-
gy (NIST), continuously transmits a time and
frequency reference signal on a 60-kHz carri-
er. Nearly all other radio services use fre-
quencies denominated in megahertz, but
WWVB lies in the Low Frequency (LF) band.
It’s a radio service with circuitry that uses

Figure 1—The 12-MHz crystal oscillator and divider chain produce a 60-kHz square wave.
The 20-dB attenuator reduces the amplitude to ensure that the MAX274 filter shown in
Figure 2 has enough headroom to operate properly.

2102004_nisley.qxp 1/11/2010 9:31 AM Page 38

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 39

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

ordinary audio techniques.
Unlike the computer-generated

voice announcements on the more-
familiar WWV and WWVH stations,
the time information is also peculiar:
WWVB sends pure machine-readable
data in BCD format at one bit per
second.

Yes, that’s 1 baud!
Steven Nickels described his

WWVB-based Time Server in Circuit
Cellar 220 and gave an excellent
description of the WWVB time code
format, so I won’t cover that same
material. Keep in mind that he lives 50
miles from the 50-kW WWVB trans-
mitter and I live half a continent away
in the Hudson Valley, so we have
entirely different attitudes toward RF
reception and data reliability.

For our purposes here, it’s enough
to know that the time code frame
repeats each minute, with pulse-
width modulated (PWM) frame mark-
ers and data bits. The RF signal uses
amplitude modulation: the carrier
power drops 10 dB at the start of each
second (at the On-Time Mark) and
returns to full power at the end of the
PWM pulse.

The pulses have three durations:
800 ms frame markers, 500 ms bina-
ry-1 bits, and 200 ms binary-0 bits.
The low carrier frequency and slow
pulse timing requirements certainly

variety of rules and
regulations, not to
mention possessing
a license authoriz-
ing the broadcasts.
The technical speci-
fications may well
present the smallest
part of the overall
challenge.

My “transmitter”
required just
enough power to
get from one end of
my electronics
workbench to the
other, akin to the
old amateur radio
technique of trans-
mitting into a
dummy load to test
an adjacent receiver
using the signal

leaking through the coaxial cable
shield. Indeed, the WWVB carrier has
a 5-km wavelength that makes any
desktop-scale “antenna” essentially
equivalent to a dummy load.

Photo 1—This board simulates the NIST WWVB time-signal transmitter. The analog circuitry generates and AM-mod-
ulates a 60-kHz sine wave, while the Arduino board plugged underneath provides data bits at the proper times. The
circuitry surrounding the MAX274 filter in the right-front corner is sensitive to stray capacitance: no ground plane
allowed!

simplified this part of the project.

CARRIER GENERATION
Operating an actual radio transmit-

ter requires conformance with a wide

2102004_nisley.qxp 1/11/2010 9:31 AM Page 39

http://www.circuitcellar.com
http://www.poscope.com

B
o

o
ks Learn by doing

C Programming
for Embedded Microcontrollers
If you would like to learn the C Programming

language to program microcontrollers, then

this book is for you. No programming expe-

rience is necessary! You’ll start learning to

program from the very first chapter with

simple programs and slowly build from

there. Initially, you program on the PC only,

so no need for de dicated hardware. This

book uses only free or open source software

and sample programs and exercises can be

downloaded from the Internet.

324 pages • ISBN 978-0-905705-80-4 • $52.50

Learn more about C# programming and .NET

C# 2008 and .NET
programming
This book is aimed at Engineers and Scientists

who want to learn about the .NET environ-

ment and C# programming or who have an

interest in interfacing hardware to a PC. The

book covers the Visual Studio 2008 develop-

ment environment, the .NET framework and

C# programming language from data types

and program flow to more advanced concepts

including object oriented programming.

240 pages • ISBN 978-0-905705-81-1• $47.60

Circuit design and programming in C# and Visual Basic

Complete practical measurement systems using a PC
This is a highly-practical guide for Hobbyists, Engineers and Scientists wishing to build

measurement and control systems to be used in conjunction with a local or even remote Per-

sonal Computer. The book covers both hardware and software aspects of designing typical

embedded systems based on personal computers running the Windows operating system.

It’s use of modern techniques in detailed, numerous examples has been designed to show

clearly how straightforward it can be to create the interfaces between digital and analog

electronics, programming and Web-design. Hardware developers will discover how use

of latest high-level language constructs overcomes the need for specialist programming

skills. Software developers will appreciate how a better understanding of circuits will en-

able them to optimize related programs, including drivers. There is no need to buy spe-

cial equipment or expensive software tools in order to create embedded projects covered

in this book.

292 pages • ISBN 978-0-905705-79-8• $46.00

Prices and item descriptions subject to change. E. & O.E

The world of electronics
at your fingertips!

This book and more

are available at

www.elektor.com/books

Elektor Shop
BOARDS, BOOKS, DVDs AND MORE AT WWW.ELEKTOR.COM/SHOP

Microsoft
approved!

40-41.qxp 12/30/2009 10:57 AM Page 1

http://www.elektor.com/books
http://www.elektor.com/shop

K
its &

 M
o

d
u

les

Elektor US
4 Park Street
Vernon CT 06066
USA
Phone: 860-875-2199
Fax: 860-871-0411
E-mail: sales@elektor.com

C
D

/D
V

D
-R

O
M

s

110 issues, more than 2,100 articles

DVD Elektor 1990
through 1999
This DVD-ROM contains the full range of

1990-1999 volumes (all 110 issues) of Elek-

tor Electronics magazine (PDF). The more

than 2,100 separate articles have been clas-

sified chronologically by their dates of publi-

cation (month/year), but are also listed

alphabetically by topic. A comprehensive in-

dex enables you to search the entire DVD.

The DVD also contains (free of charge) the

entire ‘The Elektor Datasheet Collection

1…5’ CD-ROM series, with the original full

datasheets of semiconductors, memory ICs,

microcontrollers, and more.

ISBN 978-0-905705-76-7 • $111.30

More than 100 Elektor articles included

DVD LED Toolbox
This DVD-ROM contains carefully-sorted

comprehensive technical documentation

about and around LEDs. For standard mo dels,

and for a selection of LED modules, this Tool-

box gathers together data sheets from all the

manufacturers, ap pli cation notes, design

guides, white papers and so on. It offers sev-

eral hundred dri vers for powering and con-

trolling LEDs in different configurations,

along with ready-to-use modules (power

supply units, DMX controllers, dimmers,

etc.). In addition to optical systems, light de-

tectors, hardware, etc., this DVD also ad-

dresses the main shortcoming of power LEDs:

heating.

ISBN 978-90-5381-245-7 • $46.00

Elektor’s Components Database

CD ECD 5
The program package consists of eight data-

banks covering ICs, germanium and silicon

transistors, FETs, diodes, thyristors, triacs and

optocouplers. A further eleven applications

cover the calculation of, for example, LED se-

ries droppers, zener diode series resistors,

voltage regulators and AMVs. A colour band

decoder is included for determining resistor

and inductor values. ECD 5 gives instant ac-

cess to data on more than 69,000 compo-

nents. All databank applications are fully

interactive, allowing the user to add, edit and

complete component data. This CD-ROM is a

must-have for all electro nics enthusiasts.

ISBN 978-90-5381-159-7 • $40.20

OBD2 Analyser NG
The compact OBD2 Analyzer in the June 2007

issue was an enormous success — not surpris-

ing for an affordable handheld onboard diag-

nostics device with automatic protocol

recognition and error codes explained in

plain language. Now enhanced with a graph-

ical display, Cortex M3 processor and an

Open Source user interface, the next genera-

tion of Elektor’s standalone analyser sets new

standards fora DIY OBD2 project. The OBD2

Analyser NG is self-contained and can plug

into any OBD diagnostic port.

Kit of parts including DXM Module, PCB SMD-

prefitted, case, mounting materials and cable

Art.# 090451-71 • $135.50

Software Defined Radio
SD radio receivers use a bare minimum of

hardware, relying instead on their software

capabilities. The Elektor SDR project (by Burk-

hard Kainka) demonstrates what’s achieva-

ble, in this case a multi-purpose receiver

covering all bands from 150 kHz to 30 MHz.

It’s been optimised for receiving DRM and

AM broadcasts but is also suitable for listen-

ing in to the world of amateur transmissions.

The designer’s aim for this project was to cre-

ate a recei ver displaying high linearity and

phase accuracy. Development was focussed

on the characteristics that were most impor-

tant for a top-notch DRM receiver and the

end result is a receiver with remarkable inter-

ference rejection characteristics!

Art. # 070039-91 • $139.60

Elektor is more

than just your favorite

electronics magazine.

It’s your one-stop shop

for Elektor Books,

CDs, DVDs,

Kits & Modules

and much more!

www.elektor.com/shop

More than 69,000

components!

Hot product!

Bestseller!

40-41.qxp 12/30/2009 10:57 AM Page 2

mailto:sales@elektor.com
http://www.elektor.com/shop

42 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

I planned to use an
Arduino Duemilanove
board to generate the
time code, so my first
thought was to divide its
16-MHz clock to 60 kHz
using the chip’s internal
hardware. Alas, 60 kHz
is not an integral frac-
tion of 16 MHz: the
exact ratio is 266-2/3.

Dividing 16 MHz by
267, the closest integer,
introduces a 0.125% fre-
quency error that, under
ordinary circumstances,
probably wouldn’t mat-
ter. After all, 59.925 kHz
is pretty close to 60 kHz,
right?

However, the C-Max
WWVB receiver I
planned to use in the
clock has a a resonant bar antenna
and series crystal filter to extract the
60 kHz carrier. A single-crystal filter
might have a Q around 105, where Q
is the ratio of center frequency to

bandwidth, which implies a band-
width of about 0.6 Hz. A much
broader crystal filter with Q = 104

would have a bandwidth of 6 Hz.
The receiver board specifications

don’t give its overall bandwidth, but
the chip documentation lists a nomi-
nal 10-Hz bandwidth. Because the
transmitter frequency is fixed (WWVB
defines 60 kHz!), that bandwidth
accommodates the crystal filter’s tol-
erances. Therefore, you cannot assume
a passband centered at 60.000 kHz.

A 59.925-kHz carrier could well lie
in the filter’s stopband where the
attenuation should exceed 50 dB.
Simply turning up the transmitter
power might punch through the fil-
ter’s attenuation, but getting the car-
rier on the right frequency seemed to
be a better solution.

My parts heap included a bag of 12-
MHz microprocessor clock crystals, with
a frequency of exactly 200 × 60 kHz. The
Pierce topology logic-gate oscillator in
Figure 1 produces a 12-MHz clock
signal to drive the 74HC40103 count-
er, which divides it down to 120 kHz.
The 74HC109 flipflop then produces a
precise 60-kHz square wave.

Unfortunately, the crystals lack
documentation and I lack the ability
to measure their parameters. The
correct values of C1 and C2 depend
on the properties of both the crystal
and the logic gate, so the 27 pF I used
is simply a guesstimate.

An uncompensated crystal oscillator
should have an accuracy around 100
parts per million, which means the

Figure 2—The MAX274 implements an 8th order Butterworth low-pass filter that converts a square wave into
a nearly perfect sine wave. The output attenuator reduces the amplitude in preparation for the modulator’s
gain.

2102004_nisley.qxp 1/11/2010 9:31 AM Page 42

http://www.circuitcellar.com
http://www.cubloc.com

www.circuitcellar.com • CIRCUIT CELLAR® 43

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

divided-down carrier frequency should
be within 6 Hz of 60 kHz. The receiv-
er’s (assumed) 10-Hz bandwidth could
be entirely on the other side of 60 kHz
from the oscillator’s crystal, but it’s
reasonable to assume that the crystal
frequency will be either within the
passband or very high up on a skirt.

However, my HP 8591 spectrum
analyzer reports the actual oscillator
frequency as 12.00664 MHz, about
600 ppm high. Working through the
instrument’s accuracy specifications
shows that the measurement error is
2 kHz, so the oscillator really is run-
ning high. My HP 54602 oscilloscope
reports 11.99 to 12.01 MHz, while a
hand-held frequency counter weighed
in at 12.0066. Your results will cer-
tainly differ!

I have no confidence that the receiv-
er’s crystal filter has any better accuracy
than that, its bandwidth is just 10 Hz, or
the stopband attenuation is 50 dB
with steep skirts. As it turns out, the
WWVB receiver has no trouble with a
60.030-kHz carrier, so perhaps all of
this fussing was for naught.

The oscillator and divider circuitry
occupies the middle-left area of the
circuit board shown in Photo 1, with
the crystal flat on the board. I soldered
its case to the ground plane to provide
both mechanical stability and some
RF shielding, although the latter is
likely superfluous in this application.

Because a square wave has very
high harmonic content; however, it’s

not the sort of signal you want to feed
directly into a transmitter. Even for my
very low-power transmitter, I wanted a
sine-wave carrier with reasonably
low harmonics.

It’s time for some filtering!

CARRIER PURIFICATION
RF filters generally resemble small

sculptures: helical copper-wound
inductors surrounded by lumpy capac-
itors. Because the 60-kHz WWVB car-
rier frequency would require relatively
large inductors and capacitors, I used a
MAX274 active filter chip. You could
achieve much the same result with a
design using separate op-amps.

The MAX274 is what’s called a
“mature” chip, to the extent that its
design-support software was written
for ’386-class PCs and VGA displays. I
wasn’t too surprised to find that the
Linux dosemu virtual machine han-
dles it perfectly, producing a very nice
graphical display.

Figure 2 shows an 8th order Butter-
worth 60-kHz low-pass filter. I set the
cutoff gain to 0 dB, rather than the
usual –3 dB, simply because the input
signal was a square wave with essen-
tially no DC content.

The filter circuitry occupies the
lower-right corner of the board in
Photo 1. The datasheet cautions against
a ground plane under the resistors,
because stray capacitance can seriously
affect the filter characteristics.

I operated the MAX274 from a single

5-V supply with a simulated ground
at VCC/2 = 2.5 V, which requires care-
ful attention to keep the peak signal
amplitude under about 2 V. Resistors
R3 and R4 in Figure 1 attenuate the
5-V square wave input by 20 dB to
500 mV, with C6 centering the aver-
age value at VCC/2.

Resistors R7 and R8 at the output of
the filter provide another 20 dB of
attenuation in preparation for the out-
put modulator’s gain. There’s no
capacitor in that attenuator because
the modulator’s input is AC-coupled.

The MAX274 design software can
tweak the resistors required for each
stage to match standard 1% or 0.1%
values. Lacking a complete E96 or
E192 stockpile, I soldered pairs of
resistors in series and stacked others
in parallel to get the right values. For-
tunately, that’s easy to do with SMD
resistors on a one-off board.

Figure 3a shows the square wave
spectrum, as seen at the output of the
modulator with a jumper around the fil-
ter. The third harmonic should be 1/3
of the carrier amplitude, about 9.5 dB
down, and the split marker shows it’s
actually just over 10 dB down.

Figure 3b shows the output after the
filter, again routed through the modu-
lator: the third harmonic is now down
to –44 dB. The filter does a better job
than presented here, because the mod-
ulator introduces some harmonic dis-
tortion, but the output is certainly
clean enough for my purposes.

a) b)

Figure 3a—The 60-kHz square-wave output of IC1A shows the expected harmonic content. b—The filter reduces the third harmonic by more
than 35 dB, considerably cleaning up the output. The modulator contributes some additional harmonic distortion.

2102004_nisley.qxp 1/11/2010 9:31 AM Page 43

http://www.circuitcellar.com

44 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

default 26-dB gain. A low bit turns the
relay on and boosts the gain 10 dB.
The resulting 36-dB gain corresponds
to a voltage ratio of 63.

Recall that the flipflop output was a
5-VPP square wave, attenuated 20 dB
into the filter. The filter has 0-dB gain
at 60 kHz and the output was attenu-
ated another 20 dB. The LM386 then
applies either +26 or +36 dB for an
overall gain of –14 or –4 dB at the
amplifier output.

The highest output, 4 dB below 5 VPP,
is 3.2 VPP, which I chose because the
LM386 can drive that level into a 4-Ω
load. A 3.2-VPP sine wave is 1.1 VRMS, giv-
ing an output power just over 300 mW.
The –10-dB output, 14 dB below 5 VPP,
is 1 VPP, 350 mVRMS, and 30 mW.
Tweak trimpot R15 so the high-gain

With a good-looking
carrier in hand, it’s time
to combine it with some
PWM data.

DATA MODULATION
The NIST WWVB

transmitter locks the data
bits to the carrier wave-
form, but by the time the
signal passes through
their antenna and travels
halfway across the conti-
nent, that relationship is
largely irrelevant. The C-
Max WWVB receiver
specifies a ±35-ms pulse width toler-
ance, roughly 2100 carrier cycles, so
precise PWM timing wasn’t really an
issue even for my local signal.

Because the PWM pulses are all mul-
tiples of 100 ms, I routed the 60-kHz
carrier to the Atmel ATmega168’s T1
input; I used the inverted output of
IC1A, rather than the non-inverted
signal undergoing analog filtering.
Timer1 then divides the frequency by
6000 to produce an interrupt every
100 ms, whereupon an interrupt han-
dler generates the PWM output by tog-
gling an output bit.

The Arduino run-time routines
occasionally disable interrupts around
critical sections of the code, which
introduces several microseconds of jit-
ter on the leading and trailing edges of
each PWM pulse. Compared with the
vagaries of RF propagation and the
receiver’s internal jitter, those delays
simply don’t matter.

The carrier power drops by 10 dB (a
voltage ratio of 3.2) during the PWM
pulse, so the modulator must produce
only two output levels: full power and
–10 dB. I used a venerable LM386 as a
modulator and power driver, although
it normally serves as a low-power
audio amplifier capable of driving a few
hundred milliwatts into a 4-Ω load.
The schematic in Figure 4 shows that I
powered it from the raw 9-V supply to
isolate it from the usual hash on the
digital logic supply and provide more
headroom for the output signal.

The ATmega168 output bit drives
K1, a MOSFET relay, to vary the
amplifier gain. When the bit is high,
the relay is off and the LM386 has its

level is 10 dB above the
low level.

Figure 5 shows the modu-
lator output at the end of a
PWM pulse. The MOSFET
relay introduces 100 µs of
delay from the digital input,
plus a few carrier cycles
while the LM386 settles at
the new level.

OUTPUT DRIVE
A transmitter is only as

good as its antenna, but all
the antenna choices are bad
for LF operation in a con-

fined space. Fortunately, this transmit-
ter has a key advantage: it’s very close
to the receiver. I’ll go into more detail
in the next column, but a few tips
should get you started.

I’m using a ferrite bar antenna to
bridge the workbench gap. It’s tuned
to resonance with a parallel capacitor
installed as C15 on the circuit board.
Pick the capacitor value by measuring
the transmitter’s antenna coil induc-
tance, then plugging that value into
this formula.

A tank (parallel LC) circuit has a high
impedance at its resonant frequency, so
you can measure the antenna current
using R17 as a sampling resistor.

C
LCOIL

15 1

2 60
2 =

 103π ⋅ ×()

Figure 5—The modulator output runs 10 dB below full power during the PWM pulse that ends
when the output bit goes low.

Figure 4—The LM386 low-power audio amplifier has ample bandwidth
for a 60-kHz signal. The optical relay switches in an RC network to
boost the gain by 10 dB and duplicate the WWVB AM modulation levels.

2102004_nisley.qxp 1/11/2010 9:31 AM Page 44

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 45

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

Ed Nisley is an EE and author in Poughkeepsie, NY. Contact him at ed.nisley@ieee.org
with “Circuit Cellar” in the subject to avoid spam filters.

R

PROJECT FILES
To download schematics, a PCB layout, and Arduino programs, go to
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2010/235.

ESOURCES
R. Cerda, “Pierce-Gate Oscillator Crystal Load Calculation,” Crystek Crys-
tals Corp, 2004, www.crystekcrystals.com/crystal/appnotes/PierceGate
LoadCap.pdf.

Lownoise Productions, Parody of WWV Time Station Programming,
www.lownoiserecords.com/wwv_the_tick.html.

S. Nickels, “Time Server Design: Synchronize with the WWVB Time Code
Signal,” Circuit Cellar 220, 2008.

J. Walker, Calendar Converter and Information, Fourmilab, www.fourmilab.
ch/documents/calendar/.

WWVB Transmitter and Data Format Specs, NIST, http://tf.nist.gov/stations/
wwvb.htm.

OURCES
Arduino Duemilanove Microcontroller board
www.arduino.cc/en/Main/ArduinoBoardDuemilanove

CMMR-6P-60 WWVB Receiver (Digi-Key Part No. 561-1014-ND)
C-Max | www.c-max-time.com
Digi-Key Corp. (distributor) | www.digikey.com

S

then turn on your test equipment to
find the culprit.

CONTACT RELEASE
The source code for this column

sets up the Arduino microcontroller as
a WWVB simulator, but without
much of a user interface. The DIP
switches at the top of Photo 1 set vari-
ous debugging modes and the program
dumps the current time and interest-
ing events over the USB serial link.

The row of empty holes on the cir-
cuit board to the right of the power
supply can connect to an ordinary
44780-based LCD panel. The program
doesn’t use that hardware.

The schematics shown here do not
include the Arduino interface and
power supply. You can download the
complete schematics and PCB layout
from the Circuit Cellar FTP site.

In short: use the source! I

You also can couple the output sig-
nal directly to the receiver’s ferrite
bar antenna by wrapping a few turns
of wire around the bar. In this case,
R17 provides the LM386’s minimum
allowed load resistance and dissipates
essentially all the output power.

In either case, the receiver will
almost certainly overload and misbe-
have unless you dramatically increase
R17 to reduce the power output.
There’s no algorithmic way to predict
the correct value of R17, so start high
and decrease the resistance until your
receiver just barely works. That will
also ensure you’re not forcing bogus
time codes into your neighbor’s
receiver.

Remember that LCD monitors,
oscilloscopes, and other common
gadgets may produce enough EMI at
or near 60 kHz to swamp the receiv-
er. Try to get good reception at night,

OSD-232+
RS-232/TTL controlled on-screen
composite video character and graphic
overlay in a small 28 pin dip package.

Intuitive Circuits
www.icircuits.com

(248) 588-4400

New!

2102004_nisley.qxp 1/11/2010 9:31 AM Page 45

mailto:ed.nisley@ieee.org
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2010/235
http://www.crystekcrystals.com/crystal/appnotes/PierceGateLoadCap.pdf
http://www.lownoiserecords.com/wwv_the_tick.html
http://www.fourmilab.ch/documents/calendar/
http://tf.nist.gov/stations/wwvb.htm
http://www.arduino.cc/en/Main/ArduinoBoardDuemilanove
http://www.c-max-time.com
http://www.digikey.com
http://www.icircuits.com
http://www.circuitcellar.com
http://www.xgamestation.com
http://www.lvr.com

46 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

For DSP and other fine-grained parallel operations, you need to pick a
floating-point representation and implement five basic operations. The 18-bit
floating point described here allows up to 70 floating-point multipliers and
around 150 floating-point adders to be placed on an FPGA.

Floating Point for DSP

I

F
EA

TU
RE

ARTICLE
by Bruce Land

teach a course at Cornell University in which students
learn how to use Verilog and FPGAs to build processors

and custom hardware. The goal is to build interesting
devices such as robots, games, and lab instruments. What
distinguishes the projects from general microcontroller proj-
ects is the high parallel throughput possible using parallel
hardware on the FPGA. There is a definite need for a light-
weight, floating-point format in this class. Floating-point
arithmetic is very handy for designing filters and other
image- and sound-related computations. You can concen-
trate on the algorithm at hand without worrying about
fixed-point scaling or overflow. Numerical dynamic range is
hugely increased, although algorithm accuracy is always an
issue. Also, numerical tools such as Matlab or Octave pro-
duce filter design results in floating format, so the conver-
sion of the design results to hardware is easier.

There are several dozen formats for floating-point numbers
ranging from the high-accuracy 32-bit IEEE-754 standard to
lowly 8-bit formats used in speech and video compression and
for lecture examples.[1] So why would I want to invent anoth-
er format? There are several reasons. The basic reason follows
from a quote from physicist Richard Feynman: “What I can-
not create, I do not understand.” Building floating-point
hardware from scratch helps my understanding and teach-
ing. Also, I was able to fit the algo-
rithms more closely to the architecture
of the Altera Corp. Cyclone II FPGAs
we use at Cornell to teach the course
titled Advanced Microcontroller
Design (ECE5760). The close fit to the
architecture makes it possible to
instantiate up to 70 floating-point
multipliers on the Cyclone II, which
ships with the Altera/Terasic educa-
tional DE2 prototype board. When we
use the full IEEE floating-point multi-
plier from Altera, we can fit only three
multipliers on the FPGA we use.

Finally, narrow floating-point formats have been shown to
be quite useful for DSP applications where IEEE-754 is
overkill.[2,3,4,5]

To implement a floating-point system, you need to pick a
floating-point representation and execute five basic opera-
tions necessary to use floating point for DSP and other fine-
grained parallel operations. You need to be able to add, mul-
tiply, and negate—and because audio and video codecs
require fixed-point integers, you need to convert integer-to-
float and float-to-integer.

IMPLEMENT FLOATING POINT
I decided to use 18-bit numbers because 18 bits is a native

width for Altera’s M4K memory blocks and can be read or
written in one clock cycle. Of those 18 bits, nine are used for
the mantissa, one for the sign and eight for the exponent. This
format gives a numerical range of about ±1038. Any number
smaller than about 10–38 underflows to zero. The resolution of
the mantissa is only about 0.002, but this relatively low reso-
lution is high enough for a range of DSP applications. Also, a
9-bit mantissa allowed me to use just one hardware multiplier.
The mantissa is an unsigned fraction with the radix point just
to the left of the top digit, so the maximum fraction is 1 – 2–9. I
made the decision not to support denormalized fractions, so

the minimum fraction is 0.5, with just
the high-order bit of the mantissa set. If
the number underflows, then the man-
tissa is set to zero. The sign bit is zero if
the number is positive. The exponent is
represented in 8-bit, offset binary, form.
For example, 20 is represented as 0h80,
22 as 0h82, and 2–1 as 0h7f. The Verilog
representation for the 18-bit format is
{sign,exp[7:0],mantissa[8:0]}. I
did not implement the special numerical
values available in IEEE-754 (NANs,
infinities, denorms), so no bit patterns
were allocated for these values. A few

Figure 1—These are decimal values and
their floating format equivalents.

0 0h80 0h100

sign exp mantissa

0.5

value

1 0h80 0h100 –0.5

0 0h82 0h100 2.0

0 0h84 0h140 10.0

0 0h7d 0h199 0.1

2102016_Land.qxp 1/11/2010 9:39 AM Page 46

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 47

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

examples of decimal values and their
floating format equivalents are shown
in Figure 1.

Of the five operations that need to
be implemented, negation is very easy.
You just complement the sign bit. The
other operations are more involved and
are best understood as outlines. The
first is multiplication.

MULTIPLICATION
If either input number has a mantissa

high-order bit of zero, then that input is
zero and the product is zero. This fol-
lows from the disallowing denorms.

If the sums of the input exponents are
less than 128, then the exponent will
underflow and the product is zero. This
follows because the sum of exponents
includes the 128 offset twice and there-
fore 128 must be subtracted from the
input exponent sum.

If both inputs are nonzero and the
exponents don’t underflow, then the
product of the mantissas will be in
the range from just less than one
down to 0.25. If the simple product
(mantissa1)×(mantissa2) has the
high order-bit set (result ≥ 0.5), then
the top 9 bits of the product are the
output mantissa and the output expo-
nent is exp1+exp2-128. Otherwise,
the second bit of the product will be set
(since the product of the mantissas
must be greater than or equal to 0.25),
and the output mantissa is the top 9
bits of the product shifted left 1 bit. The
output exponent is exp1+exp2-129 to
account for the left shift of the mantis-
sa. And finally, the sign of the product
is (sign1)xor(sign2).

ADDITION
Addition is actually a little more

complicated than multiplication. If
both inputs are zero, the sum is zero.
Then determine which input is bigger,
which is smaller (absolute value) by
first comparing the exponents, and
then the mantissas if necessary.

Next, determine the difference in the
exponents and shift the smaller input
mantissa right by the difference. If the
exponent difference is greater than eight,
then just output the bigger input. The
smaller number does not contribute sig-
nificant bits. If the signs of the inputs
are the same, add the bigger and (shifted)

Listing 1—This is code for the floating multiplier.

//
// floating point multiply
// -- sign bit -- 8-bit exponent -- 9-bit mantissa
// NO denorms, no flags, no NAN, no infinity, no rounding!
//
// f1 = {s1, e1, m1), f2 = {s2, e2, m2)
// If either is zero (zero MSB of mantissa) then output is zero
// If e1+e2<129 the result is zero (underflow)
///
module fpmult (fout, f1, f2);

input [17:0] f1, f2 ; //the two floating inputs
output [17:0] fout ; // the floating product

wire [17:0] fout ;
reg sout ; // the output sign
reg [8:0] mout ; // the output mantissa
reg [8:0] eout ; // the output exponent extended to 9-bits for overflow

wire s1, s2; // the two input signs
wire [8:0] m1, m2 ; // the two input mantissas
wire [8:0] e1, e2, sum_e1_e2 ; // extend to 9 bits to avoid overflow
wire [17:0] mult_out ; // raw multiplier output

// parse f1
assign s1 = f1[17]; // sign
assign e1 = {1'b0, f1[16:9]}; // exponent extended one bit
assign m1 = f1[8:0] ; // mantissa
// parse f2
assign s2 = f2[17];
assign e2 = {1'b0, f2[16:9]};
assign m2 = f2[8:0] ;

// first step in mult is to add extended exponents
assign sum_e1_e2 = e1 + e2 ;

// build output
// raw integer multiply
unsigned_mult mm(mult_out, m1, m2);

// assemble output bits
assign fout = {sout, eout[7:0], mout} ;

always @(*)
begin

// if either is denormed or exponents are too small
// the the output is zero
if ((m1[8]==1'd0) || (m2[8]==1'd0) || (sum_e1_e2 < 9'h82))
begin

mout = 0;
eout = 0;
sout = 0; // output sign

end
else // both inputs are nonzero and no exponent underflow
begin

sout = s1 ^ s2 ; // output sign
if (mult_out[17]==1)
begin //MSB of product==1 normalized: result >=0.5

eout = sum_e1_e2 - 9'h80;
mout = mult_out[17:9] ;

end
else //MSB of product==0 result <0.5, so shift left
begin

eout = sum_e1_e2 - 9'h81;
mout = mult_out[16:8] ;

end
end // nonzero mult logic

end // always @(*)
endmodule

2102016_Land.qxp 1/11/2010 9:39 AM Page 47

http://www.circuitcellar.com

48 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

smaller mantissas. The result must be
0.5 < sum < 2.0. If the result is greater
than one, shift the mantissa sum right
one bit and increment the bigger input
exponent, to become the output expo-
nent. The sign is the sign of either
input. If the signs of the inputs are dif-
ferent, subtract the bigger and (shifted)
smaller mantissas so that the result is
always positive. The result must be 0.0
< difference < 0.5. Shift the mantissa left
until the high bit is set, while decre-
menting the bigger exponent once per
shift, to become the output exponent.
The sign is the sign of the bigger input.

CONVERSION
It turns out that converting from

integer to float is fairly simple. I
assumed 10-bit, 2’s complement, inte-
gers since the mantissa is only 9 bits,
but the process generalizes to more
bits.

Save the sign bit of the input and
take the absolute value of the input.
Shift the input left until the high order
bit is set and count the number of
shifts required. This forms the floating
mantissa. Next, form the floating expo-
nent by subtracting the number of
shifts from step 2 from the constant

137 or (0h89–(#of shifts)). Assemble the
float from the sign, mantissa, and
exponent.

Converting back to integer is similar-
ly simple, but no overflow is detected,
so scale carefully. If the float exponent is
less than 0h81, then the output is zero
because the input is less than one. Oth-
erwise, shift the floating mantissa to the
right by (0h89–(floating exponent)) to
form the absolute value of the output

integer. Form the 2’s complement
signed integer.

I coded the above outlines into Ver-
ilog for conversion to hardware on the
FPGA. I wanted to see how fast I could
make purely combinatorial floating
point execute, so there is no pipelining
or clocking of the arithmetic modules.
Remember that every statement in Ver-
ilog represents the signal on a wire or
bus, and therefore every statement can
change value simultaneously!

The code for the floating multiplier is
shown in Listing 1. The low-level,
unsigned, integer multiply of the man-
tissas is performed by a small module
which gives the Altera Quartus II soft-
ware a hint that a hardware multiplier
should be used. The 9-bit × 9-bit multiply
yields 18 bits, of which nine are selected
for output in the asynchronous always
@(*) statement. All of the modules are
available on both the Circuit Cellar
FTP and the ECE5760 course website.
The Quartus II design software converted
this multiplier code to about 60 logic ele-
ments plus one hardware multiplier on
the Cyclone II FPGA (out of 33,000 logic
elements and 70 multipliers), while the
adder takes about 220 logic elements.
The timing analyzer suggests that the
purely combinatorial multiplier should be
able to run at 50 MHz and the adder at
30 MHz, and in fact run fine at 27 MHz.

DSP APP & TESTING
To test the floating-point modules, I

wrote a DSP application to filter an
Figure 2—Computed and observed filter response. The line is the exact response. The
points are the observed floating-point filter response on the FPGA.

Listing 2—Verilog describing a fourth-order filter generated by a Matlab/Octave script.

//Filter: cutoff=0.100000
//Filter: cutoff=0.200000
IIR4sos filter4(

.audio_out (filter4_out),

.audio_in (audio_inR),

.b11 (18'h10300),

.b12 (18'h10500),

.b13 (18'h10300),

.a12 (18'h1037A),

.a13 (18'h30185),

.b21 (18'h10300),

.b22 (18'h30500),

.b23 (18'h10300),

.a22 (18'h103BC),

.a23 (18'h301B0),

.gain(18'hF749),

.state_clk(AUD_CTRL_CLK),

.lr_clk(AUD_DACLRCK),

.reset(reset)
) ; //end filter

2102016_Land.qxp 1/11/2010 9:39 AM Page 48

http://www.circuitcellar.com

41.qxp 1/7/2009 3:07 PM Page 1

http://www.icbank.com

63.qxp 1/7/2009 3:20 PM Page 1

http://www.icbank.com

www.circuitcellar.com • CIRCUIT CELLAR® 51

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

Listing 3—Verilog description of a second-order IIR filter.

///
/// Second order IIR filter ///////////////////////////////////////
///
module IIR2sos_18bit_fp (audio_out, audio_in,

b11, b12, b13,
a12, a13,
gain,
state_clk, lr_clk, reset) ;

// The filter is a "Direct Form II Transposed"
// but is factored into two second order filters and a gain //
// a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
// - a(2)*y(n-1) - ... - a(na+1)*y(n-na)
//
// If a(1) is not equal to 1, FILTER normalizes the filter coefficients by a(1).
//
// one audio sample, 16 bit, 2's complement output wire signed [15:0] audio_out ;
// one audio sample, 16 bit, 2's complement input wire signed [15:0] audio_in ;

// filter coefficients
input wire [17:0] b11, b12, b13, a12, a13, gain ; input wire state_clk, lr_clk, reset ;

/// filter vars //
wire [17:0] f_mac_new, f_coeff_x_value ; reg [17:0] f_coeff, f_mac_old, f_value ;

// input to filters
reg [17:0] x1_n ;
// input history x(n-1), x(n-2)
reg [17:0] x1_n1, x1_n2 ;

// output history: y_n is the new filter output, BUT it is
// immediately stored in f1_y_n1 for the next loop through
// the filter state machine reg [17:0] f1_y_n1, f1_y_n2 ;

// i/o conversion
// int output of FP calc
wire [9:0] audio_out_int ;
reg [17:0] audio_out_FP ;
wire [17:0] audio_in_FP ;
int2fp f_input(audio_in_FP, audio_in[15:6], 0) ; fp2int f_output(audio_out_int, audio_out_FP, 0) ; assign audio_out =
{audio_out_int, 6'h0} ;

// MAC operation
fpmult f_c_x_v (f_coeff_x_value, f_coeff, f_value); fpadd f_mac_add (f_mac_new, f_mac_old, f_coeff_x_value) ;

// state variable
reg [3:0] state ;
//oneshot gen to sync to audio clock
reg last_clk ;
///

//Run the filter state machine FAST so that it completes in one
//audio cycle always @ (posedge state_clk) begin

if (reset)
begin

state <= 4'd15 ; //turn off the state machine
end

else begin
case (state)

1:
begin

// set up b11*x(n)
f_mac_old <= 18'd0 ;
f_coeff <= b11 ;
f_value <= audio_in_FP ;
//register input
x1_n <= audio_in_FP ;
// next state
state <= 4'd2;

end

2:
begin

// set up b12*x(n-1)
f_mac_old <= f_mac_new ;
f_coeff <= b12 ;
f_value <= x1_n1 ;
// next state (Continued on p. 52)

2102016_Land.qxp 1/11/2010 9:39 AM Page 51

http://www.circuitcellar.com

52 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

Listing 3—Continued from p. 51.

state <= 4'd3;
end

3:
begin

// set up b13*x(n-2)
f_mac_old <= f_mac_new ;
f_coeff <= b13 ;
f_value <= x1_n2 ;
// next state
state <= 4'd4;

end

4:
begin

// set up a12*y(n-1)
f_mac_old <= f_mac_new ;
f_coeff <= a12 ;
f_value <= f1_y_n1 ;
// next state
state <= 4'd5;

end

5:
begin

// set up a13*y(n-2)
f_mac_old <= f_mac_new ;
f_coeff <= a13 ;
f_value <= f1_y_n2 ;
// next state
state <= 4'd6;

end

6:
begin

// get the output of the first SOS
// and put it in the LAST output var
// for the next pass thru the state machine
f1_y_n1 <= f_mac_new ;
// apply the final gain mult
f_value <= f_mac_new ;
f_coeff <= gain ;
// update output history
f1_y_n2 <= f1_y_n1 ;
// update input history
x1_n1 <= x1_n ;
x1_n2 <= x1_n1 ;
//next state
state <= 4'd8;

end

8:
begin

audio_out_FP <= f_coeff_x_value ;
//next state
state <= 4'd15;

end

15:
begin

// wait for the audio clock and one-shot it
if (lr_clk && last_clk==1)
begin

state <= 4'd1 ;
last_clk <= 1'h0 ;

end
// reset the one-shot memory
else if (~lr_clk && last_clk==0)
begin

last_clk <= 1'h1 ;
end

end

default:
begin

// default state is end state
state <= 4'd15 ;

end
endcase

end
end
endmodule

===

incoming audio signal through a two-,
four-, or six-pole infinite impulse
response filter. I figured that the
actual audio input, plus the dynamics
of the filters themselves, would pro-
duce a large range of different floats.
When the output of the filters had
the correct frequency response and
were free of artifacts, I could be rea-
sonably sure that the modules were
working correctly. At first, I tried to
match the frequency response of the
three filter types using a naïve
“Direct Form II Transposed” form
similar to the Matlab filter function.
It worked for the second-order filters,
but failed for the higher-order filters
because the 9-bit mantissa did not
carry enough precision to represent
the filter coefficients.

The solution was to factor the fil-
ters into second-order sections (SOSs).
SOSs typically have coefficients
which require lower accuracy, but
more dynamic range, perfect for this
floating point. Once rewritten as
SOSs, the filter cutoff frequencies and
phase shifts were close to the calcu-
lated values, implying that the float-
ing point was working. Figure 2 shows
a 4th order Butterworth response com-
puted by Matlab in blue and the actu-
al response of the FPGA implemented
filter in red. The red points follow the
exact solution fairly well, but diverge
a little at low frequency.

It became tedious to use Matlab to
generate the filter coefficients, con-
vert the coefficients into custom
floating format, and then write the
Verilog. So I wrote a Matlab script to
convert the filter specification to Ver-
ilog, given the order of the filter, the
filter type (Butterworth, etc.), and the
cutoff frequencies. The script uses a
Matlab signal-processing toolbox
function (tf2sos) to convert the fil-
ter to SOSs. The Matlab script output
for a fourth-order filter is shown in
Listing 2 as Verilog source. The As
and Bs and gain are the SOS filter
constants (see Listing 2).

The IIr4sos module is a state
machine running at about 27 MHz
that sequentially performs all the
floating-point filter operations in less
than 2 µs, which is easily fast enough
to keep up with a 48-kHz audio sample

2102016_Land.qxp 1/11/2010 9:39 AM Page 52

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 53

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

Bruce Land (bruce.land@cornell.edu) is a Senior Lecturer in Electronics and Com-
puter Engineering at Cornell University (www.nbb.cornell.edu/neurobio/land/). This
year he’s teaching three courses: one covering microcontrollers as components in
electronic designs, one dealing with designing FPGA circuits for embedded applica-
tions, and one covering electronic bio-instrumentation. Bruce also runs the Energy
Conservation and Control Project (www.ece.cornell.edu/aca-meng-energy.cfm) in
the Cornell School of ECE.

rate. The code is summarized as fol-
lows: One, convert the 16-bit integer
audio codec input to floating point.
Two, wait for the next 48-kHz audio
clock edge to start the state machine.
Three, compute the first floating-
point SOS as:

where x(n) is the input at time n and,
y1(n) is the output at time n. Four,
update the filter state for the next
time step. Five, compute the second
floating-point SOS as:

Six, update the filter state for the next
time step. Seven, multiply y2(n) by the
gain input to form the filter output.
Eight, convert the filter output back to
16-bit fixed point for the audio output
codec.

In the code file “Fourth order IIR fil-
ter.pdf” posted on the Circuit Cellar
FTP site, the floating-point, multiply-
and-accumulate (MAC) operation
sequentially takes its inputs from two
registers—f_coeff and f_value—and
places the result in f_mac_new. Most
of the state machine consists of five
MAC operations for each of the two
SOSs. State 15 stops the execution of
the filter until the next audio sample
becomes available. States 1 to 5 com-
pute the MAC operations for SOS one.
State 5 updates the history registers for
SOS one and couples SOS 1 to SOS 2.
States 8 to 12 compute the MAC opera-
tions for SOS two. State 13 updates the
history registers for SOS 2 and couples
SOS 2 to the output register. Listing 3
is a two-pole version of the code.

18-BIT FLOATING POINT
The 18-bit floating point described

here allows up to 70 floating-point
multipliers and around 150 floating-
point adders to be placed on the
33,000-logic element Cyclone II FPGA,
which is standard on the the Altera
DE2 educational development board.
At a 30-MHz clock rate, this would
allow around 6 billion floating-point
operations per second, which is enough
for serious audio processing and even
some video processing.

y n2() × () × −() ×
() −

 = b21 y1 n + b22 y1 n 1 + b23
 y1 n 2 aa22 y2 n 1 a23 y2 n 2× −() − × −()−

y n1() × () × −() ×

() −

 = b11 x n + b12 x n 1 + b13

 x n 2 a12 y1 n 1 a13 y1 n 2× −() − × −()−

PROJECT FILES
To download the file “Fourth order IIR filter.pdf”, go to ftp://ftp.circuitcellar.
com/pub/Circuit_Cellar/2010/235.

EFERENCES
[1] R. Munafo, “Survey of Floating-Point Formats,” www.mrob.com/pub/
math/floatformats.html.

[2] F. Fang, et al., “Floating-Point Bit-Width Optimization for Low-Power
Signal Processing Applications,” Carnegie Mellon University, 2002.

[3] ———, “Lightweight Floating-Point Arithmetic: Case Study of Inverse
Discrete Cosine Transform,” EURASIP J. Sig. Proc., Special Issue on
Applied Implementation of DSP and Communication Systems, 2002.

[4] J. Ying Fai Tong, et al., “Reducing Power by Optimizing the Necessary
Precision/Range of Floating-Point Arithmetic,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Volume 8, Issue 3, 2000.

[5] E. J. Ehliar, et al., “Using Low Precision Floating Point Numbers to
Reduce Memory Cost for MP3 Decoding,” IEEE 6th Workshop on Multime-
dia Signal Processing, Linkoping University, Sweden, 2004, www.da.isy.liu.
se/pubs/eilert/eilert-mmsp2004.pdf.

ESOURCES
Altera University Program (Quartus II download and information on hard-
ware), Altera Corp., www.altera.com/education/univ/unv-index.html.

ECE5760 Floating point page, http://instruct1.cit.cornell.edu/courses/ece
576/FloatingPoint/index.html.

ECE5760 Main page, Cornell University, http://instruct1.cit.cornell.edu/
courses/ece576/.

A. Penmetcha and S. Pryor, Graphics Processing Unit, ECE5760, Cornell
University, http://instruct1.cit.cornell.edu/courses/ece576/FinalProjects/
f2008/ap328_sjp45/website/introduction.htm.

VHDL-2008 Support Library, EDA Industry Working Groups, www.eda.org/fphdl/.

OURCE
Cyclone II FPGA and Quartus II software
Altera Corp. | www.altera.com

P

R

S

R

One 2009 student project used the
floating-point routines to implement a
polygon-rendering pipeline on the
FPGA (Penmetcha and Pryor). The

pipeline worked—another good test for
the floating-point routines—although
9-bit resolution on the mantissa was a
little low for good z-buffering. I

2102016_Land.qxp 1/11/2010 9:39 AM Page 53

mailto:bruce.land@cornell.edu
http://www.nbb.cornell.edu/neurobio/land/
http://www.ece.cornell.edu/aca-meng-energy.cfm
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2010/235
http://www.mrob.com/pub/math/floatformats.html
http://www.da.isy.liu.se/pubs/eilert/eilert-mmsp2004.pdf
http://www.altera.com/education/univ/unv-index.html
http://instruct1.cit.cornell.edu/courses/ece576/FloatingPoint/index.html
http://instruct1.cit.cornell.edu/courses/ece576/
http://instruct1.cit.cornell.edu/courses/ece576/FinalProjects/
http://www.eda.org/fphdl/
http://www.altera.com
http://www.circuitcellar.com

54 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

Does the Advanced Encryption Standard (AES) confuse you? Try taking the
complicated math out of the picture and approaching it from a hardware
point of view. This will make the encryption/decryption pr ocess a little clearer
and help you ensure your data is protected.

Advanced Encryption Standard

I

F
EA

TU
RE

ARTICLE
by Monte Dalrymple

’d always been curious about how data encryption and
decryption worked, but the math involved had put me

off until recently. While I was designing a CPU, I was asked
to add instructions to speed up encryption and decryption
using the Advanced Encryption Standard (AES), which is the
current United States government’s approved encryption
standard. This meant digging into the standard and figuring
out how it actually works.

In this article, I’ll show you how AES really works from a
hardware standpoint and hopefully spare you the complicat-
ed and confusing math that the standard uses to specify the
algorithm. Instead of terms like “affine transformations” and
“Galois Fields,” I’ll describe the algorithm using the Verilog
hardware description language and some pseudo-code for the
high-level stuff.

While there is just one AES algorithm, there are three dif-
ferent “flavors” (the word used in the standard) that depend
on the cipher key’s length. For this description, I’ll use the
most common version, which is AES-128. It uses a cipher
key that is 128 bits long.

HIGH-LEVEL VIEW
The AES algorithm is a type of symmetric block cipher.

This means the algorithm uses the same key for encrypting
and decrypting (the symmetric part) and operates on blocks
of data of a particular size, transforming a fixed-size block of
data (known as the plaintext) into an identical size block of
encrypted data (called the ciphertext) and vice versa. The
block size for AES is 128 bits, which conveniently fits into
four 32-bit registers, as shown in Figure 1.

The AES algorithm applies a handful of fairly simple oper-
ations to these data bits in a series of “rounds” (a fancy way
of saying iterations). For AES-128, there are 10 of these
rounds, nine of which are identical. The output of each

round is used as the input to the next round, and the output
of the final round is the encrypted data. Decryption reverses
this process, step by step, to transform the encrypted data
back to its original form.

During each round, the intermediate data is combined
with a round key, which is an expanded version of the origi-
nal 128-bit cipher key. I’ll cover the algorithm to generate
these round keys later in this article. Using a different key for
each round makes the encryption significantly stronger,
because it’s almost the same as using a much longer cipher key.

Using an expanded key generated from the smaller cipher
key has two other advantages. One, a smaller cipher key is
easier to communicate and keep track of. Two, the key
expansion process can compensate for what would otherwise
be weak keys. Think of the case where someone inadvertent-
ly picked a key of all zeros.

Before I dig into the details of the algorithm, let me point
out the most important fact to remember when dealing with
encryption: the original data cannot be destroyed. So, no
matter what the algorithm does to those original 128 bits of
data—by shuffling the order of the bits, or combining them
amongst themselves in convoluted ways, or combining them
with bits of a key—the original data bits are all still there.

Understanding AES Without Math

Figure 1—The 128-bit data block is contained in four 32-bit regis-
ters. In this implementation all 128 bits are operated on in parallel,
simplifying the storage requirements and increasing performance.

w_reg 31:24 23:16 15:8 7:0

x_reg 63:56 55:48 47:40 39:32

y_reg 95:88 87:80 79:72 71:64

z_reg 127:120 119:112 111:104 103:96

2102015_Dalrymple.qxp 1/11/2010 9:50 AM Page 54

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 55

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

Listing 1—This is the ALU that performs all of the AES operations for the data. Some of these operations are also used for the key
expansion.

/***/
/* w register next input */
/***/
always @ (aluop_reg or w_reg or x_reg or y_reg or z_reg or key_reg) begin

casex (aluop_reg)
`AOP_SBOX: w_reg_nxt = {sbox(w_reg[31:24]), sbox(w_reg[23:16]),

sbox(w_reg[15:8]), sbox(w_reg[7:0])};
`AOP_ISBOX: w_reg_nxt = {ibox(w_reg[31:24]), ibox(w_reg[23:16]),

ibox(w_reg[15:8]), ibox(w_reg[7:0])};
`AOP_SHROW: w_reg_nxt = {z_reg[31:24], y_reg[23:16], x_reg[15:8], w_reg[7:0]};
`AOP_ISHROW: w_reg_nxt = {x_reg[31:24], y_reg[23:16], z_reg[15:8], w_reg[7:0]};
`AOP_MXCOL: w_reg_nxt = mixcol(w_reg);
`AOP_IMXCOL: w_reg_nxt = invmixcol(w_reg);
`AOP_ADDKEY: w_reg_nxt = w_reg ^ key_reg[31:0];
default: w_reg_nxt = w_reg;
endcase

end

/***/
/* x register next input */
/***/
always @ (aluop_reg or w_reg or x_reg or y_reg or z_reg or key_reg) begin

casex (aluop_reg)
`AOP_SBOX: x_reg_nxt = {sbox(x_reg[31:24]), sbox(x_reg[23:16]),

sbox(x_reg[15:8]), sbox(x_reg[7:0])};
`AOP_ISBOX: x_reg_nxt = {ibox(x_reg[31:24]), ibox(x_reg[23:16]),

ibox(x_reg[15:8]), ibox(x_reg[7:0])};
`AOP_SHROW: x_reg_nxt = {w_reg[31:24], z_reg[23:16], y_reg[15:8], x_reg[7:0]};
`AOP_ISHROW: x_reg_nxt = {y_reg[31:24], z_reg[23:16], w_reg[15:8], x_reg[7:0]};
`AOP_MXCOL: x_reg_nxt = mixcol(x_reg);
`AOP_IMXCOL: x_reg_nxt = invmixcol(x_reg);
`AOP_ADDKEY: x_reg_nxt = x_reg ^ key_reg[63:32];
default: x_reg_nxt = x_reg;
endcase

end

/***/
/* y register next input */
/***/
always @ (aluop_reg or w_reg or x_reg or y_reg or z_reg or key_reg) begin

casex (aluop_reg)
`AOP_SBOX: y_reg_nxt = {sbox(y_reg[31:24]), sbox(y_reg[23:16]),

sbox(y_reg[15:8]), sbox(y_reg[7:0])};
`AOP_ISBOX: y_reg_nxt = {ibox(y_reg[31:24]), ibox(y_reg[23:16]),

ibox(y_reg[15:8]), ibox(y_reg[7:0])};
`AOP_SHROW: y_reg_nxt = {x_reg[31:24], w_reg[23:16], z_reg[15:8], y_reg[7:0]};
`AOP_ISHROW: y_reg_nxt = {z_reg[31:24], w_reg[23:16], x_reg[15:8], y_reg[7:0]};
`AOP_MXCOL: y_reg_nxt = mixcol(y_reg);
`AOP_IMXCOL: y_reg_nxt = invmixcol(y_reg);
`AOP_ADDKEY: y_reg_nxt = y_reg ^ key_reg[95:64];
default: y_reg_nxt = y_reg;
endcase

end

/***/
/* z register next input */
/***/
always @ (aluop_reg or w_reg or x_reg or y_reg or z_reg or key_reg) begin

casex (aluop_reg)
`AOP_SBOX: z_reg_nxt = {sbox(z_reg[31:24]), sbox(z_reg[23:16]),

sbox(z_reg[15:8]), sbox(z_reg[7:0])};
`AOP_ISBOX: z_reg_nxt = {ibox(z_reg[31:24]), ibox(z_reg[23:16]),

ibox(z_reg[15:8]), ibox(z_reg[7:0])};
`AOP_SHROW: z_reg_nxt = {y_reg[31:24], x_reg[23:16], w_reg[15:8], z_reg[7:0]};
`AOP_ISHROW: z_reg_nxt = {w_reg[31:24], x_reg[23:16], y_reg[15:8], z_reg[7:0]};
`AOP_MXCOL: z_reg_nxt = mixcol(z_reg);
`AOP_IMXCOL: z_reg_nxt = invmixcol(z_reg);
`AOP_ADDKEY: z_reg_nxt = z_reg ^ key_reg[127:96];
default: z_reg_nxt = z_reg;
endcase

end

In a practical sense, what this means
is that the only kind of operations
available for encryption are inversion
and Exclusive-OR (XOR). This fact

makes the basic operations used in the
AES algorithm much easier to imple-
ment, but more difficult to understand,
because you have to remember that

terms like “add” and “multiply” in the
AES standard don’t have the usual
meanings. For example, “adding” two
or more bytes together is just an XOR

2102015_Dalrymple.qxp 1/11/2010 9:50 AM Page 55

http://www.circuitcellar.com

56 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

of the bytes, without the normal carry
between bits. And remember that XOR-
ing a bit with itself always results in a
zero, which serves to remove that bit
from contributing to the result. This
fact is important because this is what
allows the decryption operations to be
as simple as those used for the original
encryption. With this background infor-
mation in mind, let’s go over the basic
operations used for encryption.

FOUR BASIC OPERATIONS
For what follows, assume that the

data to be encrypted is held in the four
32-bit registers in Figure 1, and that
each operation is applied to all four
registers in parallel. Also assume the
entire 128-bit round key is available in
another register. This is very close to
what I ended up with in my CPU
design. (It’s actually the Rabbit 6000.)

This design uses one clock cycle per
operation, attempting to balance the
amount of logic required against time.
Different trade-offs are certainly possi-
ble. At one extreme, it is possible to
perform the entire encryption or
decryption process in one clock cycle,
with each round implemented as a
few of layers of logic. The other
extreme is operating on one byte at a
time, minimizing the logic, but requir-
ing significantly more time. For exam-
ple, this would be the case when imple-
menting the algorithm on an 8-bit
microprocessor in software. My intent
here is to provide a useful starting
point, even if your implementation
will be in software.

Listing 1 shows how the 128 bits of
data in the four registers are modified
by each operation. Let’s start by looking
at each operation in the listing individ-
ually, and then I’ll put everything
together later for the full AES algorithm.

The first operation is a byte-wise
substitution that the AES standard
calls SubBytes, or S-Box. In this opera-
tion each individual byte is replaced by
another byte, using the table look-up
in Listing 2. Remember that data can-
not be destroyed, so each input byte
maps one-to-one to a different output
byte. (This is an affine transformation.)

The standard provides the mathe-
matical basis for this transformation,
but admits that expressing it in terms

Listing 2—The byte substitution is most easily specified using a look-up table. This could
be implemented as a small ROM, but a logic synthesis tool will minimize the logic into
something quite small.

/**/
/* aes sbox */
/**/

function [7:0] sbox;
input [7:0] byte;
reg [127:0] msb_sbox;
begin

case (byte[7:4])
4'b0000: msb_sbox = 128'h637c777bf26b6fc53001672bfed7ab76;
4'b0001: msb_sbox = 128'hca82c97dfa5947f0add4a2af9ca472c0;
4'b0010: msb_sbox = 128'hb7fd9326363ff7cc34a5e5f171d83115;
4'b0011: msb_sbox = 128'h04c723c31896059a071280e2eb27b275;
4'b0100: msb_sbox = 128'h09832c1a1b6e5aa0523bd6b329e32f84;
4'b0101: msb_sbox = 128'h53d100ed20fcb15b6acbbe394a4c58cf;
4'b0110: msb_sbox = 128'hd0efaafb434d338545f9027f503c9fa8;
4'b0111: msb_sbox = 128'h51a3408f929d38f5bcb6da2110fff3d2;
4'b1000: msb_sbox = 128'hcd0c13ec5f974417c4a77e3d645d1973;
4'b1001: msb_sbox = 128'h60814fdc222a908846eeb814de5e0bdb;
4'b1010: msb_sbox = 128'he0323a0a4906245cc2d3ac629195e479;
4'b1011: msb_sbox = 128'he7c8376d8dd54ea96c56f4ea657aae08;
4'b1100: msb_sbox = 128'hba78252e1ca6b4c6e8dd741f4bbd8b8a;
4'b1101: msb_sbox = 128'h703eb5664803f60e613557b986c11d9e;
4'b1110: msb_sbox = 128'he1f8981169d98e949b1e87e9ce5528df;
4'b1111: msb_sbox = 128'h8ca1890dbfe6426841992d0fb054bb16;
endcase

case (byte[3:0])
4'b0000: sbox = msb_sbox[127:120];
4'b0001: sbox = msb_sbox[119:112];
4'b0010: sbox = msb_sbox[111:104];
4'b0011: sbox = msb_sbox[103:96];
4'b0100: sbox = msb_sbox[95:88];
4'b0101: sbox = msb_sbox[87:80];
4'b0110: sbox = msb_sbox[79:72];
4'b0111: sbox = msb_sbox[71:64];
4'b1000: sbox = msb_sbox[63:56];
4'b1001: sbox = msb_sbox[55:48];
4'b1010: sbox = msb_sbox[47:40];
4'b1011: sbox = msb_sbox[39:32];
4'b1100: sbox = msb_sbox[31:24];
4'b1101: sbox = msb_sbox[23:16];
4'b1110: sbox = msb_sbox[15:8];
default: sbox = msb_sbox[7:0];
endcase

end
endfunction

Listing 3—The inverse of the byte substitution is specified in exactly the same way and
requires about the same amount of logic.

/***/
/* aes inverse sbox */
/***/

function [7:0] ibox;
input [7:0] byte;
reg [127:0] msb_ibox;
begin

case (byte[7:4])
4'b0000: msb_ibox = 128'h52096ad53036a538bf40a39e81f3d7fb;
4'b0001: msb_ibox = 128'h7ce339829b2fff87348e4344c4dee9cb;
4'b0010: msb_ibox = 128'h547b9432a6c2233dee4c950b42fac34e;
4'b0011: msb_ibox = 128'h082ea16628d924b2765ba2496d8bd125;
4'b0100: msb_ibox = 128'h72f8f66486689816d4a45ccc5d65b692;
4'b0101: msb_ibox = 128'h6c704850fdedb9da5e154657a78d9d84;
4'b0110: msb_ibox = 128'h90d8ab008cbcd30af7e45805b8b34506;
4'b0111: msb_ibox = 128'hd02c1e8fca3f0f02c1afbd0301138a6b;
4'b1000: msb_ibox = 128'h3a9111414f67dcea97f2cfcef0b4e673;
4'b1001: msb_ibox = 128'h96ac7422e7ad3585e2f937e81c75df6e;
4'b1010: msb_ibox = 128'h47f11a711d29c5896fb7620eaa18be1b;
4'b1011: msb_ibox = 128'hfc563e4bc6d279209adbc0fe78cd5af4;
4'b1100: msb_ibox = 128'h1fdda8338807c731b11210592780ec5f;
4'b1101: msb_ibox = 128'h60517fa919b54a0d2de57a9f93c99cef;
4'b1110: msb_ibox = 128'ha0e03b4dae2af5b0c8ebbb3c83539961;

(continued on p. 57)

2102015_Dalrymple.qxp 1/11/2010 9:50 AM Page 56

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 57

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

of understandable logical operations is
not feasible. This is why a table look-
up is used. The object here is to scram-
ble the individual bytes before per-
forming any other operation. One rea-
son why this step is necessary is
because ASCII text effectively uses
only 7 bits, which would otherwise
mean that 1 bit of every byte would be

known, significantly weakening the
strength of the encryption.

The inverse of this operation is
called the Inverse S-Box, and it’s
shown in Listing 3. As an example, an
input byte of 0x00 is mapped to 0x63
by the sbox function. If you look up
0x63 in the ibox function, you'll see
that the result is 0x00. So it is for each

different input byte.
The next operation is called

ShiftRows in the standard, which is
confusing because it seems to be oper-
ating on columns of bytes in Figure 1.
This is because the examples in the
standard rotate the data in the figure
by 90° counterclockwise compared to
what you see here. Keep this in mind if
you try to compare this implementa-
tion with the standard.
ShiftRow leaves the least-signifi-

cant bytes in each register unchanged,
but rotates the other bytes between the
four registers by one, two, or three
positions. The intent here seems to be
to scramble 16- or 32-bit values.

This operation can be cumbersome
to implement in software or in hard-
ware when the parallel operation on
all four registers is not possible. This
is one reason that I chose this particu-
lar implementation. Anything else
would require keeping temporary
copies of the registers while doing the
scrambling.

The inverse of ShiftRow is identi-
cal, except that the rotations occur in

Listing 3—Continued from p. 56

4'b1111: msb_ibox = 128'h172b047eba77d626e169146355210c7d;
endcase

case (byte[3:0])
4'b0000: ibox = msb_ibox[127:120];
4'b0001: ibox = msb_ibox[119:112];
4'b0010: ibox = msb_ibox[111:104];
4'b0011: ibox = msb_ibox[103:96];
4'b0100: ibox = msb_ibox[95:88];
4'b0101: ibox = msb_ibox[87:80];
4'b0110: ibox = msb_ibox[79:72];
4'b0111: ibox = msb_ibox[71:64];
4'b1000: ibox = msb_ibox[63:56];
4'b1001: ibox = msb_ibox[55:48];
4'b1010: ibox = msb_ibox[47:40];
4'b1011: ibox = msb_ibox[39:32];
4'b1100: ibox = msb_ibox[31:24];
4'b1101: ibox = msb_ibox[23:16];
4'b1110: ibox = msb_ibox[15:8];
default: ibox = msb_ibox[7:0];
endcase

end
endfunction

High Resolution Spectrum Analysis

www.cleverscope.com

Spectrum Graph zoom:

High ResolutionHigh ResolutionHigh ResolutionHigh Resolution
Spectrum AnalysisSpectrum AnalysisSpectrum AnalysisSpectrum Analysis
Capture a 50Mhz bandwidth with
50 Hz resolution. Zoom on any
point. Using the 14 bit ADC, you
get a -85 dB noise floor over the
whole bandwidth. Use the
hardware moving average filter to
further improve this.

ExampleExampleExampleExample:
Capture 1.000 and 1.001 MHz
mixed signals. Display the
signals. Intermod is -80 dB!

In the USA call:

100 MHz MSO 8M Samples 14 bit

+ Two mixed signal triggers
+ Protocol decoding
+ Spectrum analysis
+ Symbolic maths
+ Custom units
+ Copy & paste
+ Signal generator
+ USB or Ethernet
+ 4 or 8M samples storage
+ 100 MHz sampling
+ Dual 10, 12 or 14 bit ADC
+ Ext Trigger, 8 Digital Inputs
+ 1 MSa/sec charting

Check out High Resolution
Spectrum Analysis on the
Examples page at
www.cleverscope.com

2102015_Dalrymple.qxp 1/11/2010 9:50 AM Page 57

http://www.cleverscope.com
http://www.cleverscope.com
http://www.circuitcellar.com

Pick a Chip.
Any Chip.

Find a Solution to your next Embedded Challenge.
Do the Research you should, but never had time for.

Embedded Developer’s
intuitive research engine

helps you speed your chip
evaluation time. You don’t have
to know the manufacturer, chip

family or part number--just
select the features you want

and let us do the rest.

We help you research your best option.
Nowhere else can you compare your best
options side-by-side from different
manufacturers. Click on the device you want,
and a product page lets you select
Distributor Buy/Quote options, send RFQs,
download datasheets, and more.
Plus--Hearst stock check gives you
up-to-date inventory on every device.

Once you have the chip that meets
your needs, review and compare

the hardware and software
development tools that support it

from multiple manufacturers, and buy them
on-line through our shopping cart.

Part Number AT91SAM7X MCF5208 LPC2923

Manufacturer

Core Variant ARM7TDMI ColdFire V2 ARM968E-S
Flash 262144 0 262144
RAM 65536 16384 16384
Max. Freq. 55 166 125
Dhrystone MIPS 50 159 156
Timer Bits 16 32 32

Shave days off your schedule with Embedded Developer, the
only site in the world where you’re only clicks away from

finding the chips and tools to get you up and running, quickly.
Try EmbeddedDeveloper.com, or EmbeddedDeveloper.cn in Chinese.

The Sites for Engineers with a Job to Do.

Pick a Chip Ad 7/29/09 10:03 AM Page 1
25.qxp 9/9/2009 5:09 PM Page 1

http://www.embeddeddeveloper.com
http://www.embeddeddeveloper.cn

www.circuitcellar.com • CIRCUIT CELLAR® 5599

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

the opposite direction. These two oper-
ations are the only ones that are simple
enough (except for the key addition) to
specify directly in Listing 1 without
resorting to functions.

The third operation is called Mix-
Columns in the standard, and it is the
most difficult to comprehend. It operates
on individual registers in this implemen-
tation, which are columns in the stan-
dard. MixColumn replaces each byte in a
register with a unique combination of all
4 bytes of the register. The replacement
values are made unique by two of the
operations shown in Listing 4, called
mul_02 and mul_03.

If you’re interested, this is how multi-
plication is defined for the math used in
the AES standard. Multiplying a byte by
two is the basic operation from which
all of the other transformations are cre-
ated. Multiplying by two involves a
rotate left, plus the conditional inver-
sion of three of the resultant bits, as
shown in the mul_02 function.

All of the other multiply operations
shown in Listing 4 can be built up from
this basic definition along with addi-
tion, but for our purposes they are just
byte-scrambling functions. These trans-
formations could be specified in table
form like the sbox and ibox functions,
but I find this XOR version easier to
understand. The exact combinations of
transformations used for each byte are
shown in Listing 5. Like ShiftRow,
this operation can be extremely cum-
bersome to implement in software,
because both scrambled versions of
each byte in a 32-bit word are needed to
create the new 32-bit word. Even so,
AES is much easier to implement than
the previous Data Encryption Standard
(DES) because at least the operations
here are byte-aligned.

The inverse of MixColumn is identi-
cal, except that the scrambling func-
tions are different and now there are
four of them. Although it’s hard to
believe from looking at the two opera-
tions, they really are the inverse of each
other. I won’t try to prove it here, but if
you write out the equations and keep
track of the individual bits, it works
out. I know because I went through the
equations to prove it to myself.

The final basic operation is the addi-
tion of the round key to the data. This

LLiissttiinngg 44——These basic functions are used in the MixColumn operation. Each operates on
one byte, mixing the bits of a byte in unique ways.

/**/
/* aes functions for mixcolumn and inverse */
/**/
function [7:0] mul_02;

input [7:0] byte;
begin

mul_02 = { byte[6],
byte[5],
byte[4],
(byte[3] ^ byte[7]),
(byte[2] ^ byte[7]),
byte[1],
(byte[0] ^ byte[7]),
byte[7]};

end
endfunction

function [7:0] mul_03;
input [7:0] byte;
begin

mul_03 = {(byte[6] ^ byte[7]),
(byte[5] ^ byte[6]),
(byte[4] ^ byte[5]),
(byte[3] ^ byte[7] ^ byte[4]),
(byte[2] ^ byte[7] ^ byte[3]),
(byte[1] ^ byte[2]),
(byte[0] ^ byte[7] ^ byte[1]),
(byte[7] ^ byte[0])};

end
endfunction

function [7:0] mul_09;
input [7:0] byte;
begin

mul_09 = {(byte[4] ^ byte[7]),
(byte[3] ^ byte[7] ^ byte[6]),
(byte[2] ^ byte[7] ^ byte[6] ^ byte[5]),
(byte[1] ^ byte[6] ^ byte[5] ^ byte[4]),
(byte[0] ^ byte[7] ^ byte[5] ^ byte[3]),
(byte[7] ^ byte[6] ^ byte[2]),
(byte[6] ^ byte[5] ^ byte[1]),
(byte[5] ^ byte[0])};

end
endfunction

function [7:0] mul_0b;
input [7:0] byte;
begin

mul_0b = {(byte[4] ^ byte[6] ^ byte[7]),
(byte[3] ^ byte[7] ^ byte[5] ^ byte[6]),
(byte[2] ^ byte[7] ^ byte[6] ^ byte[4] ^ byte[5]),
(byte[1] ^ byte[6] ^ byte[5] ^ byte[3] ^ byte[7] ^ byte[4]),
(byte[0] ^ byte[5] ^ byte[2] ^ byte[3]),
(byte[7] ^ byte[6] ^ byte[1] ^ byte[2]),
(byte[6] ^ byte[5] ^ byte[0] ^ byte[7] ^ byte[1]),
(byte[5] ^ byte[7] ^ byte[0])};

end
endfunction

function [7:0] mul_0d;
input [7:0] byte;
begin

mul_0d = {(byte[4] ^ byte[5] ^ byte[7]),
(byte[3] ^ byte[7] ^ byte[4] ^ byte[6]),
(byte[2] ^ byte[6] ^ byte[3] ^ byte[5]),
(byte[1] ^ byte[5] ^ byte[2] ^ byte[7] ^ byte[4]),
(byte[0] ^ byte[7] ^ byte[5] ^ byte[1] ^ byte[6] ^ byte[3]),
(byte[6] ^ byte[0] ^ byte[2]),
(byte[5] ^ byte[7] ^ byte[1]),
(byte[5] ^ byte[6] ^ byte[0])};

end
endfunction

function [7:0] mul_0e;
input [7:0] byte;
begin

mul_0e = {(byte[4] ^ byte[5] ^ byte[6]),
(byte[3] ^ byte[7] ^ byte[4] ^ byte[5]),
(byte[2] ^ byte[6] ^ byte[3] ^ byte[4]),
(byte[1] ^ byte[5] ^ byte[2] ^ byte[3]),
(byte[0] ^ byte[5] ^ byte[1] ^ byte[6] ^ byte[2]),
(byte[6] ^ byte[0] ^ byte[1]),
(byte[5] ^ byte[0]),
(byte[5] ^ byte[6] ^ byte[7])};

end
endfunction

2102015_dalrymple.qxp 1/14/2010 11:11 AM Page 59

http://www.circuitcellar.com

60 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

is just an exclusive-OR across all
128 bits. I show it operating in paral-
lel here, but in my CPU implementa-
tion, software is responsible for doing
this 32 bits at a time because the
round key is in external memory.

THE FULL SEQUENCE
As I mentioned previously, the full

algorithm for encryption (and decryp-
tion) consists of 10 rounds, nine of
which are identical. Listing 6 shows
the sequences for both encryption and
decryption in pseudo-code format. If
you want to think of it from a hard-
ware standpoint, each operation corre-
sponds to one clock cycle, for a total of
40 clocks for either encryption or
decryption in this example.

For encryption, the very first opera-
tion is the addition of the first round
key, which is actually the original
cipher key. This is followed by nine
iterations of the three basic operations
plus round key addition, followed by a
truncated final round.

If you unroll the loop in the encryp-
tion algorithm and reverse the order of
the operations, you can then find the
buried reverse loop and shorten the
decryption algorithm to that shown in
Listing 6. The Verilog module posted
on the Circuit Cellar FTP site imple-
ments the algorithm in exactly this
way. A state machine cycles through
40 states just like the pseudocode. This

state machine runs forward in the case
of encryption and backwards in the
case of decryption.

One of the primary design goals for
the AES algorithm was that it be easy
to implement in software on an 8-bit
machine. This was because the prede-
cessor to AES was fiendishly difficult
to implement on such a machine. The
DES algorithm used odd length bit
shifts and operations that were not
byte-aligned. In this regard, AES suc-
ceeded admirably.

EXPANDING THE KEY
Compared to the encryption and

decryption operations, key expansion
seems much more complicated. This is
okay though, because the key expan-
sion really only needs to be done once
for a given cipher key.

The key expansion algorithm takes
the original 128-bit key and expands it
into a total of 1,408 bits. It uses the
sbox operation from the encryption
algorithm, but only on a 32-bit word. In
fact, all of the operations required for
key expansion operate on 32-bit words,
generating one new word at a time.
This algorithm seems to have been opti-
mized for a software implementation. It
is shown in Listing 7, again in
pseudocode. As I mentioned, the first
round key is just the original cipher key.
This is the starting value for the loop
that generates the next 10 round keys.

The first operation in the loop rotates
a 32-bit quantity right by eight bit posi-
tions. Many 32-bit machines support
this operation, as it is useful for parsing
text strings. This is followed by applying

Listing 6—The full algorithms for encryp-
tion and decryption are simple. The basic
operations are applied repeatedly, using a
different round key for each round.

begin encrypt

AddKey(0)

for (i=1, i<10, i++) begin
SubByte
ShiftRow
MixColumn
AddKey(i)
end

SubByte
ShiftRow
AddKey(10)

end encrypt

begin decrypt

AddKey(10)

for (i=9, i>0, i--) begin
InvShiftRow
InvSubByte
AddKey(i)
InvMixColumn
end

InvShiftRow
InvSubByte
AddKey(0)

end decrypt

Listing 5—The MixColumn operation combines different versions of all 4 bytes into each resultant byte. The inverse operation really does
reverse the process.

/***/
/* aes mixcolumn */
/***/

function [31:0] mixcol;
input [31:0] inp;
begin

mixcol = {(mul_03(inp[7:0]) ^ inp[15:8] ^ inp[23:16] ^ mul_02(inp[31:24])),
(inp[7:0] ^ inp[15:8] ^ mul_02(inp[23:16]) ^ mul_03(inp[31:24])),
(inp[7:0] ^ mul_02(inp[15:8]) ^ mul_03(inp[23:16]) ^ inp[31:24]),
(mul_02(inp[7:0]) ^ mul_03(inp[15:8]) ^ inp[23:16] ^ inp[31:24])};

end
endfunction

/***/
/* aes inverse mixcolumn */
/***/

function [31:0] invmixcol;
input [31:0] inp;
begin

invmixcol = {(mul_0b(inp[7:0]) ^ mul_0d(inp[15:8]) ^ mul_09(inp[23:16]) ^ mul_0e(inp[31:24])),
(mul_0d(inp[7:0]) ^ mul_09(inp[15:8]) ^ mul_0e(inp[23:16]) ^ mul_0b(inp[31:24])),
(mul_09(inp[7:0]) ^ mul_0e(inp[15:8]) ^ mul_0b(inp[23:16]) ^ mul_0d(inp[31:24])),
(mul_0e(inp[7:0]) ^ mul_0b(inp[15:8]) ^ mul_0d(inp[23:16]) ^ mul_09(inp[31:24]))};

end
endfunction

2102015_Dalrymple.qxp 1/11/2010 9:50 AM Page 60

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 61

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

the sbox function to each of the 4 bytes.
Then one or more bits are inverted,
using the constants shown in Listing 8.
The final step adds a word from the
previous iteration, creating the least-
significant word of the new round key.
The remaining three words of the new
round key start with this word, succes-
sively adding words from the previous
iteration to create the full round key.

You’ll notice that each cipher key is
expanded to a specific set of round
keys. I haven’t gone through the details,
but I presume the round keys are even-
ly distributed over all possible values. I
suspect that this is the reason for the
inclusion of the byte shift and inversion
of different bits for each round.

Like the encryption/decryption Ver-
ilog module, the key expansion module
does one step per clock cycle, requiring
40 clocks to generate the full set of

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/
2010/235.

ESOURCE
NIST, “Announcing the Advanced Encryption Standard,” Federal Information
Processing Standards Publication 197, 2001, www.csrc.nist.gov/publications/
fips/fips197/fips-197.pdf.

P

R

Monte Dalrymple (monted@systemyde.com) has been designing integrated cir-
cuits for over 30 years. He holds a BSEE and an MSEE from the University of
California at Berkeley and has 15 patents. Monte designed all five generations
of Rabbit microprocessors. Not limited to things digital, he holds both amateur
and commercial radio licenses.Listing 8—The key expansion toggles

one or more bits during each round. This
seems to have been included to prevent
cyclic patterns from appearing in the
round key.

roundCon(0) = 0x00000001
roundCon(1) = 0x00000002
roundCon(2) = 0x00000004
roundCon(3) = 0x00000008
roundCon(4) = 0x00000010
roundCon(5) = 0x00000020
roundCon(6) = 0x00000040
roundCon(7) = 0x00000080
roundCon(8) = 0x0000001b
roundCon(9) = 0x00000036

round keys. You’ll notice that with this
implementation the key generation and
encrypt operations could be done in
parallel, eliminating the need for regis-
ters to hold the full set of round keys.
This won’t work for decryption
though, because the round keys are
needed in the reverse order. That’s why
the key generation module stores the
entire set of round keys.

A LITTLE HISTORY
In 2002, the United States govern-

ment officially adopted AES. The pre-
vious standard, DES, used a much
smaller key (56 bits), which became
too small to resist cracking. In addi-
tion, because elements of the DES

algorithm were classified, there was
suspicion that there might be a
“backdoor” in the algorithm that
would enable the government to
crack private messages.

The AES algorithm is completely
public, with no known backdoors and
no weaknesses beyond those inherent
in a symmetric-key cipher. As a result
AES has been widely adopted.

Whenever you communicate over
the Internet using the secure socket
layer (SSL), it’s usually AES that’s pro-
tecting your data. Likewise, when you
communicate over an encrypted Wi-Fi
link, you’re using AES. And it’s the
only security specified for 802.15.4
(ZigBee) wireless networks.

Communications isn’t the only use
for AES either. It’s commonly used to
protect data in hard disks, flash drives,
smart cards, and even video and audio
content. In fact, some hard disk-scrub-
bing algorithms use AES-generated
data patterns to write pseudo-random
data to empty space on the disk to
wipe out “deleted” information.

PROTECT YOUR DATA
For all of its power, the AES algo-

rithm is fairly easy to understand once
the individual operations are clear.
However, the AES specifies the opera-
tions with mathematical rigor, which
obscures what is going on during the
encryption/decryption process. Hope-
fully, I’ve made the encryption/decryp-
tion process a little clearer, and now
you can be confident that your data
really is protected. I

Listing 7—The key expansion algorithm operates on 32-bit words. It seems to have been
optimized for a software implementation.

begin keyexpand

work(0) = Key[31:0]
work(1) = Key[63:32]
work(2) = Key[95:64]
work(3) = Key[127:96]
RoundKey(0) = {work(3), work(2), work(1), work(0)}

for (i=1, i<11, i++) begin
temp = work(4*i-1)
temp = {temp[23:0], temp[31:24]}
temp = sbox(temp)
temp = temp ^ roundCon(i)
temp = temp ^ work(4*i-4)
work(4*i) = temp
temp = temp ^ work(4*i-3)
work(4*i+1) = temp
temp = temp ^ work(4*i-2)
work(4*i+2) = temp
temp = temp ^ work(4*i-1)
work(4*i+3) = temp
RoundKey(i) = {work(4*i+3), work(4*i+2), work(4*i+1), work(4*i)}
end

end keyexpand

2102015_Dalrymple.qxp 1/11/2010 9:50 AM Page 61

mailto:monted@systemyde.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2010/235
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.circuitcellar.com

62 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

Forward error correction (FEC) algorithms are commonly used in disk encoding,
RAM chips, GSM mobile phones, and more. But what is FEC? This article int roduces
the topic of FEC, and Hamming FEC encoding and decoding in particular. With this
information, you’ll be knowledgeable enough to use FEC algorithms in a future
project.

Living with Errors

W

by Robert Lacoste

elcome back to The Darker Side.
As humans, we are really lucky: our

brains are quite powerful. Aren’t you convinced?
You can make sense of a sentence even if words
and letters are missing or incorrect. For example,
I’m sure you can decipher this sentence despite
its various errors:

I amm shure yu underztand htis sentince despiite
itts varius erors.

Similarly, you can understand a speech even if
it’s given in a noisy environment. The reason?
Simply that our language has an intrinsic high
level of redundancy, and our brains are pro-
grammed to use this redundancy and recover
erroneous messages.

In a similar way, digital data transmissions,
and especially wireless links, wouldn’t be usable
without error-correction mechanisms. Unfortu-
nately, noise and interference add errors to most

THE DARKER SIDE

communications. There are two usual methods
for avoiding errors—or, more exactly, for living
with errors. The first method is to add an error-
detection system (i.e., a checksum). The receiving
device can then check if the message is error-free.
If it isn’t, it can ask the sender for a retransmis-
sion. This is a good solution, but it may not be
usable if there are a lot of errors through the
transmission channel. For example, let’s say your
messages are 50 bytes long (400 bits). If you get
an average of one wrong bit for each 100 bits,
then the probability of receiving a message cor-
rectly will be low, even with hundreds of retrans-
missions. The other difficulty is that this retrans-
mission method can’t be used if the transmission
is unidirectional. Why? The receiver would have
no way to request that the transmitter resend the
message.

The second solution is forward error correc-
tion (FEC). The idea is to add redundant data to
the transmitted message so the receiver can

Figure 1—The reference transmission system that I used included an NRZ signal generator, added Gaussian noise, and a simple
comparator receiver.

+ 1 V

– 1 V

+

–Gaussian noise
1 VRMS

Error counter

An Introduction to Forward Error Correction

2102005_lacoste.qxp 1/11/2010 10:11 AM Page 62

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 63

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

identify and correct transmission
errors. So, the concept is that the
receiver can work autonomously and
obtain error-free messages, at least if
the number of errors stays reasonably
low, without any retransmission. Of
course, both methods—retransmissions
and FEC—can be used jointly for even
better performance.

You will not be surprised that FEC
algorithms are used everywhere, from
a CD’s encoding (which uses the so-
called Reed-Solomon FEC algorithm),
to server-class RAM chips, and also
from GSM mobile phones to satellite
communications. In this article, I’ll
describe the most basic FEC system,
Hamming codes. I’ll also present some

ideas about the most powerful codes
to date.

BIT ERROR RATE & AWGN
Let’s consider a very basic example

(see Figure 1). Suppose you have a mes-
sage encoded as a nonreturn to zero
(NRZ) bit stream. NRZ is a complicated
way to say that the successive bits are
simply transmitted serially with two
voltage levels—here they’re supposed to
be –1 V for zeros and 1 V for ones. Add
to this signal a random noise voltage
with variable amplitude defined by its
round mean square voltage. You could
then try to recover the data bits with a
voltage comparator set at a 0 V threshold
and sample the line voltage at a given
point (e.g., at the middle of the bit dura-
tion). You should receive the same bit
stream as long as the noise is low.

A note about the random noise gener-
ator: The usual model used for such sim-
ulations of real-life noise is the so-called
additive white Gaussian noise model
(AWGN). The probability that the noise
voltage is equal to a given voltage fol-
lows a Gaussian curve around zero (see
Figure 2). Throw a die 100 times, sum
the results, repeat the test 100 times,
plot the histogram of the sums, and you
will get a Gaussian curve. So this is a
reasonable model of noise. With a
Gaussian model, the noise voltage can
be extremely high, but the probability
that it exceeds a given threshold
becomes lower and lower when the
threshold increases. It follows the “erfc”
function (see Figure 2). For example,
with a 1-VRMS noise, the probability that
the noise exceeds 1 V or –1 V is calculat-
ed as: erfc(1) = 15.7%. The probability
that it will exceed 3 V is: erfc(3) =
0.002%. That’s low, but not null.

What happens when you increase the
noise voltage? As long as it stays low,
the noise spreads the bit voltage
around its nominal value, but the prob-
ability to cross the comparator thresh-
old is low, so few bits are erroneous
(see Figure 3). However, when the noise
voltage increases, this probability
increases, following the erfc function.
More exactly, it’s half because the
threshold is only crossed on one side of
the Gaussian curve. For example, if the
noise voltage is 1 VRMS, the bit error rate
is expected to be 7.8% (i.e., 15.7%/2).

Figure 3—These histograms show you the effect of noise on the received voltage with a low (top) to
high (bottom) level of noise. Bit errors appear when both curves overlap.

Figure 2—A Gaussian curve is a natural model for noise, thanks to its statistical properties. The proba-
bility that the noise is above a certain threshold x is noted erfc(x).

0.40

0.35

0.30

0.25

0.20

0.10

0.05

0.00

0.15 erfc(x)

−4 −3 −2 −1 0 1 2 3 4X

2102005_lacoste.qxp 1/11/2010 10:11 AM Page 63

http://www.circuitcellar.com

fundamental to the FEC dis-
cussion. It says that if you
have a transmission channel
with a bandwidth B (in hertz),
and a given signal-over-noise
ratio S/N, then the maximum
error-free bit rate you can
dream of is calculated as: C =
B × log2(1 + S/N). Even if you
have a powerful error-correc-
tion algorithm or ultra-
sophisticated modulation sys-
tem, you’ll never be able to
transmit more data without
errors through this transmis-
sion channel.

For example, if you are
developing a wireless system
with a 100-kHz-wide RF

channel, and if you have a signal 10
times more powerful than noise, then
the theoretical maximum error-free data
throughput will be 100K × log2 (1 + 10) =
345 kbps. This would jump to 665 kbps
with a SNR of 100 (meaning 20 dB), but
it will be reduced to 13.7 kbps if the sig-
nal is 10 times lower than noise (–10 dB).
Your goal, as an engineer, will be to find
a way to come as close as possible to
this limit, but if the requirements are
higher you can safely tell your manager:
“No way!”

HAMMING CODE
As you can imagine, there are plenty

of FEC algorithms. They are split into
two categories. Linear block codes work
on a fixed-length block of data. Convolu-
tional codes manage a continuous
stream of bits.

Let’s start with linear block codes.
The most basic approach to FEC is repe-
tition. Suppose that you have a 3-byte
message to send. You could simply send
it several times and recover the error-
free message either with a checksum
added to each message or with majority

64 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

I coded a small SciLab simulation of
this system. (The code is available on
the Circuit Cellar FTP site.) The good
news is that the simulation follows the
theory. Figure 4 shows a comparison of
the theoretical bit error rate with vary-
ing noise level and the results of my
simulation for 200,000 bits transmitted.
Quite nice, isn’t it?

Just take care because the horizontal
scale isn’t noise voltage. It’s a value
called “Eb/No,” which is defined as the
energy per bit-to-noise power spectral
density ratio. It’s basically the signal-to-
noise ratio (SNR)—in terms of power,
not voltage—normalized for 1 bit trans-
mitted. In the current example, as you
are using NRZ modulation, 1 bit is
transmitted for each hertz of bandwidth.
Thus, Eb/No and SNR are identical, but I
prefer to use the unit in the literature for
more complex examples. So, Eb/No =
0 db means noise power equals signal
power (the same RMS voltage). Eb/No =
6 dB means noise power 6 dB lower than
the signal (four times lower as 106/10 =
3.98), so the RMS voltage is two times
lower than the signal voltage, as a volt-
age is proportional to the square root of
the power. Remember: U = √(P × R).

THE NYQUIST LIMIT
Let’s cover a bit more theory before

experimenting with FEC codes. Claude
Shannon (1916–2001) is probably the
father of information theory. One of
his well-known results, published
shortly after World War II, is the Shan-
non-Hartley theorem. This theorem is

vote. This method—even if it isn’t very
efficient—can be enough for simple sys-
tems, but linear block codes are better.
Although there are a zillion other linear
block codes (Golay, BCH, Reed-
Solomon, and so on), I’ll focus on the
simplest—Hamming codes—so you can
see how such an FEC code actually
works. Such codes are easy to implement
in hardware, and they’re used in error-
correcting memories (ECC), for example.

Figure 5 shows how a Hamming FEC
code is generated on the transmitter
side. The encoded message length
must be one less than a power of two
(i.e., 7 bits, 15 bits, 31 bits, etc.). I used
7 bits for simplicity. Firstly, number
each bit position with its binary repre-
sentation (001, 010, 011, etc). Each bit
with a binary position containing only
one “1” must be reserved as an FEC bit.
All the other bits can be used to trans-
mit data. Here the bits in position 001,
010, and 100 will be FEC bits, and the
four other bits will be data bits. This
Hamming code is then called Hamming
(7,4) as 4 data bits are transmitted in a
7-bit block. To calculate the value of a
given FEC bit (e.g., the one at position
010), just calculate the parity of all data
bits, which have a “1” in their address
at the same position (e.g., 111, 110, and
011). The three error correction bits are
called the Hamming syndrome. Then
just transmit the 7-bit message.

The beauty of this mechanism is on
the reception side (see Figure 6). In this
instance, the message is 1011 and the
calculated syndrome is 001, so the trans-
mitted message is 1010101. Let’s sup-
pose that the third bit was received in
error and you get 1000101. Then calcu-
late the syndrome of the actual received
packet, with the same algorithm as in
the transmitter. You will find 100, as
shown. Calculate a bit-per-bit exclusive-
OR of this calculated syndrome 100

Figure 4—This is the theoretical bit error rate for an NRZ trans-
mission as a function of the signal-to-noise ratio (plain line),
as compared to the result of my simulation with 200,000 bit
samples. Quite close.

Figure 5—A Hamming encoder uses bits at positions 001, 010, and 100 as FEC bits. Each FEC bit is
calculated as a parity of all data bits at a position that has the same bit set.

Bit 4 Bit 3 Bit 2 c4 Bit 1 c2 c1

111 110 101 100 011 010 001

Ʃ

Ʃ

Ʃ

Input data

2102005_lacoste.qxp 1/11/2010 10:11 AM Page 64

http://www.circuitcellar.com

Unfortunately, Figure 7a is our start-
ing point with these added bits. Then
the positive effect of the FEC code
must be taken into account. It will
improve the bit error rate as long as the
number of errors is reasonably low. The
result is provided in Figure 7b. What is

www.circuitcellar.com • CIRCUIT CELLAR® 65

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

happening? For high error
rates, the FEC code can’t
really help because there are
too many errors. Thus, the
BER is even higher than
without any FEC code
because of the higher bit
rate. At a certain point, the
advantages begin to out-
weigh the disadvantages,
and the FEC code provides an
improvement in terms of
BER. With sufficiently low
error rates, the effect of the
FEC code provides asymptoti-
cally a constant gain in deci-
bels, which can be easily cal-
culated as R(t + 1). R is the
code’s expansion rate. Here
it’s 4/7. t is the number of bit
errors that can be corrected.

Here it’s 1. So, the theoretical improve-
ment is 4/7 × (1 + 1) = 8/7 = 1.14, which
translates into 10log10(1.14) = 0.58 dB.
That’s quite low, but close to the simu-
lation, isn’t it?

How do you get improved perform-
ance? Use more sophisticated FEC

with the received syndrome
001. This gives 100 XOR 001
= 101. And 101 is the binary
position of the bit that was in
error. Just invert this bit and
you get back the error-free
message. Bingo! As these
operations are all basic binary
XOR and addressing, I am
sure that you’ll be able to
design a Hamming FEC
encoder or decoder in hard-
ware (even using TTL gates)
or code it in your preferred
microcontroller.

I encourage you to check
this algorithm with other
errors, even with an error in
an FEC bit. You’ll find that
such an FEC can correct any
single-bit error in a 7-bit
packet but no more. In case of double-
bit error, the FEC usually adds another
error when trying to correct it. This is
usually not an issue because the mes-
sage is unrecoverable, but another pro-
tection can be added with an extra over-
all parity bit, giving the so-called SECD-
ED algorithm. If the FEC syndrome is
wrong and the parity bit is wrong, there
is probably a single-bit error and it
should be corrected. However, if the
syndrome is wrong but the parity is cor-
rect (or the opposite), there is probably a
multiple-bit error and you’d better
throw away the packet.

Do you want a simulation of the
Hamming (7,4) effect on the bit error
rate of a transmission? I did it for you
with SciLab. The source code is posted
on the Circuit Cellar FTP site. The
result is given in Figure 7. First, let’s be
honest. The FEC code adds 3 bits to
each 4 data bits, so the number of
transmitted bits is increased by a ratio
of 7/4 = 1.75. You could spend more
time to send our data, but usually this
is not acceptable. So you need to
increase the bit rate. For example, for a
wireless system, you need to increase
the channel width by the same
amount, and this will inevitably
increase the noise power by a factor
1.75. So, before taking into account the
positive effects of the FEC code on the
bit error rate, you must shift the curve
by 1.75 on the right, which is equiva-
lent to 10log10(1.75) = 2.4 dB.

Figure 6—This diagram illustrates Hamming FEC encoding and decoding.
Here the input data set is 1011 and is transmitted with three additional FEC
bits. Even if one bit was inverted during the transmission, the Hamming
decoder was able to reconstruct the message.

1 0 1 1

111 110 101 100 011 010 001

Input : 1011

1 0 01 1 0 1

1 0 01 1 0 1

1 0 0

1

0 1 0

1 0 1

1

0 0

Syndrome calcuation

Transmission, with errors

New syndrome calculation

XOR of received and recalculated syndromes

Invert the faulty bit

No more errors!
111 110 101 100 011 010 001

www.keil.com 1-800-348-8051

Leading Embedded
 Development Tools...

Easy to use, from concept to final product
MDK-ARM is an Integrated Development Environment for
ARM and Cortex™-M microcontrollers
RL-ARM is a Library Collection designed to solve real-time

 and communication challenges
ULINKpro is a high-speed Debug and Trace unit for detailed

 analysis of software quality

2102005_lacoste.qxp 1/11/2010 10:11 AM Page 65

http://www.keil.com
http://www.circuitcellar.com

higher number of FEC bits is possible.
For instance, the FEC code used for the
Cassini probe to Saturn had a rate of
1/6 (1 bit of data and 5 bits of FEC
code), which is enough to drastically
increase the signal’s redundancy and to
cope with unfavorable link budgets.

The difficult aspect of convolutive
codes is at the receiver end. The decod-
ing process is usually made by the use
of the Viterbi algorithm. This algorithm
basically finds the most likely sequence
in a chain of hidden states (the original
bit stream in this case). Developed by
Andrew Viterbi in 1967, the idea is to
search intelligently through all possible
paths of the input bits to find the one
most likely to provide the received
datastream, even in the presence of ran-
dom errors. For more information about
the Viterbi algorithm, refer to the arti-
cles cited in Resources section of this
article. Charan Langton’s tutorial titled
“Coding and Decoding with
Convolutional Codes” is
particularly useful.

I didn’t code a convolu-
tional coder in SciLab, but I
grabbed one from the
SciLab website (thanks to
its author, Antoine Blais,
for the contribution) and
integrated it into my simu-
lation code. Well, as I
expected, the computations
were far too extensive, so I
had to reduce the number
of simulated bits from
200,000 to 20,000. I went to
sleep after clicking on the
Run button. It was a good

66 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

code. For example, if you replace the
(7,4) Hamming code by a (15,11)
code—meaning 11 bits of data and 4 bits
of error code—the theoretical asymp-
totic gain jumps to 1.46 (i.e., 11/15 ×
(1 + 1)), or 1.6 dB. Figure 8 shows the
corresponding simulation.

CONVOLUTIONAL CODERS
Hamming codes are only the begin-

ning. More optimized forward-error cor-
rection systems use sophisticated linear
block coders, convolutional coders, or
both. Convolutional coders are quite
complex, but I’ll highlight a few impor-
tant points.

Refer to Figure 9. On the transmitter
side, the idea is to calculate a derived
bitstream from the input using an algo-
rithm close to a binary finite impulse
response filter. (Remember my Circuit
Cellar 207 about FIR filters?) Only the
last k bits of the input are used to
determine a given bit of the FEC code.
This value k is the code’s constraint
length. The FEC bits are then inter-
leaved with the input data bits and sent
through the link. The simplest solution
is to have one FEC bit for each input
bit, which creates a convolutional coder
rate of 1/2.

For example, the Voyager space
mission used a convolutional code
with k = 7 and a rate of 1/2, but other
rates are also possible. A rate of 2/3 is
possible (2 bits of data, 1 bit of FEC) to
reduce the overhead. It’s usually
achieved with the “punctured codes”
technique: simply throw away some
FEC bits if the channel isn’t too bad.

Conversely, for noisy channels, a far

Figure 8—Switching to longer codes—Hamming (15,11) in this
instance—provides a significantly better improvement, up to
1.6 dB.

idea because the resulting
plot appeared around 4
hours later (see Figure 10).
The result was impres-
sive. There was no single
bit in error for SNR
ratios above 6 dB during
the simulation time. The
asymptotic gain was
probably around 3 to 5
dB, but it couldn’t be
deducted without a far
longer simulation or a
mathematical analysis.

The Viterbi algorithm
can also implement an
important improvement.

Here the decoding was made using the
received bitstream, data bits, and FEC
bits. But in a real radio receiver, there is
additional information: the “strength”
of each bit. For example, some bits can
be received more weakly than the oth-
ers, and these bits will have a higher
probability to be erroneous. The Viterbi
algorithm can use this information to
improve its performance statistically.
This is the family of “soft-decision
decoders.”

The list of convolutional FEC codes
didn’t stop with the basic Viterbi algo-
rithm. The latest and greatest are proba-
bly “turbo codes,” which were invented
in the early 1990s by two French
researchers—Claude Berrou and Alain
Glavieux—from the ENST-Bretagne
engineering school and France Telecom.
The invention, which won the IEEE
Richard W. Hamming Medal in 2003,
performs within 1 dB of Shannon’s

Figure 7a—The use of a Hamming (7,4) code requires more bits to increase the bit rate, which degrades the BER when the
FEC decoder is not switched on. b—With FEC in action, the BER is significantly reduced. But there is an improvement over
the non-coded version only when the signal-to-noise ratio is high enough. The gain is around 0.5 dB for low error rates.

a) b)

2102005_lacoste.qxp 1/11/2010 10:11 AM Page 66

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 67

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

limit, thanks to the use of
composite codes. Turbo codes
are used in all recent space
projects but also in the 3GPP
UMTS and WIMAX wireless
standards. Who is next?

FEC EXPERIMENTATION
All error-correction codes

provide a BER over Eb/No

curve more or less close to
those shown in this article.
For a high noise level (i.e., for low signal over noise
ratios), the code can’t help and it can even degrade the
reception due to the higher number of bits to be transmit-
ted. However, when the bit-error rate is lower (i.e., for
better signal over noise ratios), the FEC code provides an
equivalent gain in terms of SNR of 0.5 to several decibels
depending on the code’s complexity. These are not small
gains. For example, a 3-dB gain in a radio-frequency link’s
budget will increase the open field maximum distance by
40%—not too bad without any significant hardware
changes!

Concatenated FEC codes are usually used to achieve
even more impressive results. The idea is to use a convo-
lutional code for the main error correction and then add
an outer error correction code (usually a strong linear
block code) to correct the remaining errors. For example,
the aforementioned Voyager space mission used a 1/2 rate
convolutional code followed by a Reed-Solomon 1023 bit
code in order to get a BER of 10–6 with signal-to-noise
ratios as low as 2.5 dB. Newer codes, like turbo codes, can
achieve the same impressive BER with an even higher
level of noise up to a signal-to-noise ratio of 0 dB or
lower, which means more noise than signal.

Some code can be difficult to implement and computer-
intensive. Other code can be quite simple and can drasti-
cally improve your system’s performance or reliability. I
hope that these techniques are no longer on the darker
side for you. Experiment FEC in your next project! I

Figure 10—Here is the simulation of a basic convolutional code with a short
(k = 5) length and a ratio of 1/2. Impressive, isn’t it?

Figure 9—This diagram shows the main building blocks of a convolutional coder and decoder. The idea is to send
the input datastream and also a derived stream that take into account the data’s “history.”

Errors

FIFO Interleaver Transmission
medium

Convolutive
coder

Input
bit stream

Output
bit streamMaximum likehood

decoder
(Viterbi algorithm)

Robert Lacoste lives near Paris, France. He has 20 years of expe-
rience working on embedded systems, analog designs, and wire-
less telecommunications. He has won prizes in more than 15
international design contests. In 2003, Robert started a consult-
ing company, ALCIOM, to share his passion for innovative mixed-
signal designs. You can reach him at rlacoste@alciom.com. Don’t
forget to write “Darker Side” in the subject line to bypass his
spam filters.

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/
pub/Circuit_Cellar/2010/235.

ESOURCES
C. Berrou, A. Glaviuex, and P. Thitimajshima, “Near
Shannon Limit Error-Correction Coding and Decoding:
Turbo-Codes,” ENST-Bretagne, 1993, www-elec.enst-
bretagne.fr/equipe/berrou/Near%20Shannon%20Limit
%20Error.pdf.

A. Blais, SciLab Convolutive Code Library, SciLab,
www.SciLab.org/contrib/index_contrib.php?page=
displayContribution&fileID=257.

C. Langton, “Coding and Decoding with Convolution-
al Codes,” 1999, http://complextoreal.com/chapters/
convo.pdf.

C. E. Shannon, “Communications in the Presence of
Noise,” Reprinted, IEEE, 1998, www.stanford.edu/class
/ee104/shannonpaper.pdf.

J. Pearce, “What’s All This Eb/NNo Stuff, Anyway?,”
Spread Spectrum Scene Online, 2000, www.sss-mag.
com/ebn0.html.

R. Yates, “A Coding Theory Tutorial,” Digital Signal
Labs, 2009, www.digitalsignallabs.com/tutorial.pdf.

J. H. Yuen and Q. D.Vo, “In search of a 2-dB coding
gain” TDA Progress Report 42-83, NASA, 1985,
http://tmo.jpl.nasa.gov/progress_report/42-83/83C.PDF.

OURCE
SciLab | www.SciLab.org

S

P

R

2102005_lacoste.qxp 1/11/2010 10:11 AM Page 67

mailto:rlacoste@alciom.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2010/235
http://www.SciLab.org/contrib/index_contrib.php?page=displayContribution&fileID=257
http://complextoreal.com/chapters/convo.pdf
http://www.stanford.edu/class/ee104/shannonpaper.pdf
http://www.sss-mag.com/ebn0.html
http://www.digitalsignallabs.com/tutorial.pdf
http://tmo.jpl.nasa.gov/progress_report/42-83/83C.PDF
http://www.SciLab.org
http://www.circuitcellar.com

68 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

You can check your watch, cell phone, or the Internet for the time. But if you
want a more interesting time-keeping device, try building a “sun tracker.”
That’s right. You can tell the time with the sun and a directional light sensor.
The sun’s readily available; you just need to build an efficient system around
an MCU and light sensors.

Create a Directional Light Sensor

O

by Jeff Bachiochi

ne of the greatest advantages to
working from home is the freedom to

take a break at any time and actually get outside
during daylight hours. And I can’t think of a better
place to view Mother Nature in all her grandeur
than New England, where I live.

There is something special about experiencing a
new season every three months. Last spring, on a
Boy Scouts of America (BSA) camp out, the sched-
ule included an afternoon of orienteering, which
included map and compass work. Understanding
how to use a compass is an important skill, but
being able to orient yourself without one can be
just as important. You can use the sun by day and
the North Star by night (at least in the Northern
Hemisphere). The “shadow stick” method uses
the movement of a shadow over time to draw a
line from the west toward the east. If you have a
watch, or at least know the time, you can use the
“analog time compass” method. While you need
to see the sun to use both methods, it’s always
comforting to know that you can figure out
“which way is up” (or north) if necessary.

Research shows that the ancient Egyptians first
used shadow clocks to divide the day into time
periods. However, cloudy days provided the impe-
tus to find other ways of keeping time. Although
the first sign of using dripping water as a clock
was found in a pharaoh’s tomb, the Chinese took
the use of water to new level with an astronomi-
cal/astrological clock. Not much changed until
sometime around the 14th century when the
weight-driven clock became regulated with a
verge-and-foliot escapement. Springs then replaced
weights, and later crystals replaced springs. And

FROM THE BENCH

now today, many clocks don’t have gears or hands.
We live in the digital world. Still, there is some-
thing divine in the simplicity of the sundial.
While many sundials use a shadow to point to the
present hour’s digit, one of my favorites uses a
ring of numbers that are projected onto the dial’s
face (see Photo 1).

This month, I’ll present a project that enables
you to use the sun to tell time. While I could tune
into NIST radio station WWV or connect to the
Internet (accurate to standards that far exceed
my needs), I choose to use the sun. After all it’s

Sun Tracker (Part 1)

Photo 1—This sundial uses a shadow mask to display
the actual hour glyph on the central area located
beneath the ring. As the sun moves, the hour’s glyphs
move across the face of the dial.

2102002-bachiochi.qxp 1/11/2010 10:12 AM Page 68

http://www.circuitcellar.com

not where you’re going in life, but how
you get there. That’s what makes life
interesting.

The project consists of a directional
light sensor that uses a shadow cast by
the sun to determine its relative position.
A microcontroller monitors the sensor’s
output and determines which way the
sensor must be moved to remain facing
the sun. By tracking the sun’s movements
over time, it calculates the time of day
and sets its RTC. The time is displayed on a multiplexed LCD.
Accomplishing this requires light sensors, positioning mechan-
ics, DIY PCB production, driving LCD segments, and just a bit
of astrophysics.

SUN SENSOR
Let’s begin with how to create a directional light sensor.

Quadrant sensors can combine four sensors on a single die.
These are typically used for position-sensing a laser beam,
and they can be expensive. These sensors require a beam size
smaller than the diameter of the sensing array. Using the
principal of the pinhole camera, you can get the sun’s beam
down to a few millimeters in diameter, but I like using shad-
ows to allow for much wider off-axis detection while still
providing fine on-axis differential positioning.

I chose a device that has a spectral response close to the
human eye and a wide input range. The Intersil ISL29102 is a
low-cost, light-to-voltage silicon optical sensor that combines
a photodiode array, a nonlinear current amplifier, and a
micro-power op-amp on a single monolithic IC. The sensor
package is about the size of a grain of rice and therefore
requires patience to mount, but it provides the basis for an
inexpensive tracking module. It has a flexible voltage supply
requirement of from 1.8 to 3.3 V, which yields a nonlinear
output over an input luminance range from 0.3 to 10,000 lux.
Table 1 includes a few examples of typical luminance levels.

The ISL29102 has one control input. The REXT input
selects a scaling constant that lets you adjust the sensitivity
of the device. High values boost low lux levels when used in
lower light environments, while lower values prevent high-
brightness environments from pre-saturating the output.

LIGHT SENSOR MODULE
When experimenting with SMT components, it can get

expensive to have prototypes made for each revision of a
design, not to mention the turnaround time to get proto-
types remade. It is extremely helpful to be able to make
your own PCBs quickly. I don’t use this approach for every
prototype, only small SMT boards, because it’s nearly
impossible to prototype a circuit using these parts without
a PCB. This project requires four ISL29102s placed quad-
rant-style around a small baffle, which acts to shade sen-
sors when not pointed directly at a light source (the sun).
This small PCB becomes the project’s sensor module and
is mounted on an X/Y servo assembly.

When pointed directly at a light source, each sensor
should output an equal value related to the source’s

intensity. By measuring the output lev-
els from each sensor, you can deter-
mine if a sensor becomes shaded (when
the sensor or source moves off axis).
The shaded sensor (or sensors) helps
determine the direction in which the
module must be moved to correct this
alignment error. The microcontroller
adjusts the X/Y servo assembly to keep
the module pointed directly at the sun.
The microcontroller also logs the servo

assembly’s X/Y coordinates to provide data to determine
the time of day.

DRAW PICTURES
I use Cadsoft’s Eagle program to draw my schematics and

lay out my PCBs. Most discrete parts are found in the sup-
ported libraries. (The Download section at
www.cadsoftusa.com has a library folder for sharing user-
designed parts libraries.) To produce a sensor module PCB, I
began by creating a schematic drawing of the circuit. The
resistors, capacitors, and pin header used in Figure 1 are
already in the standard libraries, but I needed to add the
ISL29102 to my private library. This required three steps.

First, you create a picture of the part—including all of the
labeled connections to the device—that’s used on the
schematic drawing. Second, you create a PCB layout format,
containing either through-hole pads or SMT pads. These are
drawn to scale using the dimensional information supplied
on a part’s datasheet. (Many parts come in different standard
package styles. Your new part may already have a PCB layout
format that you can borrow from another part.) The last step
involves matching your schematic picture’s connections to
the actual PCB layout pins for all of the part’s package styles.
This enables the connections you make on a schematic draw-
ing (“nets”) to be transformed into connections required
between the actual parts on the PCB.

LAYOUT
When the schematic drawing is completed, Eagle has

enough information to help create a PCB layout. The layout
application begins with a standard-sized PCB outline and parts
pulled from your schematic. At this point, you see all the parts

www.circuitcellar.com • CIRCUIT CELLAR® 69

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

Figure 1—A PCB begins with the schematic of all the parts that will be
mounted on the board. Here four Intersil ISL29102 light sensors and
associated components are combined to create a sensor module.

Table 1—This chart compares light levels
with the circumstances producing them.

Luminance Example
1 lux Full moon overhead
100 lux Very dark overcast day
400 lux Sunrise or sunset
1,000 lux Overcast day
10,000 lux Full daylight
100,000 lux Direct sunlight

2102002-bachiochi.qxp 1/11/2010 10:12 AM Page 69

http://www.cadsoftusa.com
http://www.circuitcellar.com

70 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

from your schematic drawing with their
pins/pads interconnected. The connec-
tions are elastic—that is, they stretch as
you move the part. It’s a good idea to
resize the standard PCB outline before
you start positioning parts. Add any
notches, holes, or radii you may require
to the PCB.

This simple circuit has four sets of
components. I required the sensor in each
set to be located as close as possible to a
central point. So, these were placed at 90°
with respect to one another: top, left, bot-
tom, and right. Because the sensors are
SMT parts and all connections to the sen-
sor are on the same side of the PCB, using
through-hole parts for the resistors and
capacitors means having to add fewer unsupported vias. One
of the things you can’t do on a homemade PCB (without nasty
chemicals and high currents) is grow plated through holes. So,
every time a trace on one side of the PCB needs to connect to
one on the other side through a drilled via, you must solder a
wire to both sides.

The best way to do this is to place a short stretch of trace on
either side of the PCB. You must run a piece of wire along the
top trace, down through the hole, along the bottom trace of
the board, and finally solder it to the traces on both sides. In
the layout process, this can mean some special planning to
make sure that you not only leave enough trace next to each
feed through hole (via), but also beef up the trace width to and
from the hole. You may also want to increase the via size to
match components. Drilling tiny holes by hand becomes
somewhat easier by using a Dremel tool and drill press frame.
Miss-registration between layers (top and bottom) may make it
impossible to work with hole sizes smaller than 0.030″ (#68 or
#69 drill).

Early PCBs were single-sided. Through-hole component con-
nections were made on only one side and required a lot of
room for the circuit traces. The copper traces on a PCB elimi-
nated the time-consuming job of hand-soldering wires to phys-
ically connect components, as was done in the past. (Can you
say, “vacuum tube”?) The ability to plate the inside of through
holes with copper opened the door to double-sided PCBs—and
eventually multi-layer (more than two) PCBs. For us do-it-
yourselfers, double-sided PCBs are about as complex as we can
get, and we must put up with having to solder a wire in each
via. (There are some systems that use tiny rivets that you
swage into each hole. But this process seems to be more hassle
than it’s worth.)

The PCB layout package lets you choose the number of lay-
ers you want to use in your project. This will be a double-sided
PCB, so interconnecting traces can be placed on the top and
bottom layers. I’ve located the SMT sensors on one side of the
PCB and the through-hole parts on the opposite side. Now
each elastic connection between component pins/pads can be
replaced with a fixed trace along the various PCB layers. I like
to use as wide a trace as possible, especially for power and
ground, so I usually begin with those nets. Although I have

traces (and spaces, trace-to-trace spacing)
on this project as small as 10 mils (thou-
sandths of an inch), I had no problem
with these disappearing during the etch-
ing process.

With the PCB layout process complete,
the application can produce the necessary
Gerber plot files that any board house
would use to reproduce this project.
Instead of sending these on to be manu-
factured, you can use the files to begin
the DIY PCB process.

THE FAB
The last time I explained this process

was in a 1992 article titled “Approach-
ing PCB Nirvana” (Circuit Cellar 28).

The process has changed slightly with improved results, but
it is still based on masking off areas on a copper-covered
laminate, which, when exposed to acid, prevents the acid
from etching any copper that has been masked. The mask
begins as a Gerber file imported to the PentaLogix View-
Mate, a free Gerber file viewer that enables multiple layers
to be imported and displayed. When producing a double-
layer PCB, two layers are imported, the top and bottom.
These are displayed one on top of the other. You must select
one layer and move it to the side so there is about a 2″ space
between them. (If the PCB is any larger than about 4″ × 7″,
you have to print each layer as a separate sheet because both
layers won’t fit on a single 8.5″ × 11″ sheet.)

The advantage to printing both layers together on the
same sheet has to do with registration. Because the mask
will actually be retransferred to the PCB laminate after it is
printed on paper, you must first mirror-image the masks
before printing. Print the display to a laser printer with a 1:1
ratio. The key here is the toner in the laser printer. (An
Inkjet won’t do.) The printing process will place the mir-
rored top and bottom layer on a sheet of paper. This page
will be used as a holder for a piece of transfer medium (toner
transfer system, TTS).

As you can see in Photo 2, I used less than a full 8.5″ × 11″
sheet of TTS. The TTS is like a sheet of decal material.
(You’ve decorated plastic models, right?) The laser printer
transfers its toner (melted plastic) to the TTS just as if it were
paper. The difference is that the TTS releases the mask when
soaked in water (see Photo 3). However, before putting the
TTS in water, you must transfer the mask (remelt it) onto the
PCB laminate. I put both layers of the mask on the same
sheet of TTS, so I can fold it in half with the toner on the
inside. This eliminates having to match the two images in
the rotational direction. I still slightly adjust the crease to
bring the two images in registration with one another in the
X and Y directions. To do this, I hold the TTS up to a bright
light source (e.g., a flashlight or sunlight), preferably some-
thing that does not give off heat (otherwise, the two images
would remelt and stick together). You must move the images
using the free ends of the folded TTS until the two images are
registered—that is, the via’s pads on one layer line up exactly

Photo 2—If you first print out a 1:1 copy
of the PCB masks, you can save TTS
material by taping a small piece directly
over the masks and passing the sheet
back through the printer to get the mask
printed directly on the TTS.

2102002-bachiochi.qxp 1/11/2010 10:12 AM Page 70

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 71

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

a sponge gave me better control of the
etching process. I was able to apply acid
to particular areas that were taking
longer to etch.

When I could see clearly through the
PCB (see Photo 4) and all evidence of
haziness (thin copper coating) had been
etched away, I washed off any remaining
acid on the PCB with clean water and
then removed the toner mask with ace-
tone (some nail polish remover). The
PCB was now ready for trimming,
drilling, and adding components. (When
you do this, don’t forget to safely dispose
of or store the remaining acid.)

ADDING PARTS
After drilling the vias and component

holes, I meticulously applied the small-
est amount of solder paste to the 24
SMT pads of each light sensor. I placed
the PCB on a piece of aluminum to bet-
ter control heat dissipation and then into
a toaster oven until the ooze melted and
coated the copper pads with flux and sol-
der. With a magnifier and my thinnest
solder tip, I ensured that none of the
pads had solder bridges and that the sol-
der levels on each pads were appropriate.
After the SMT light sensors were care-
fully aligned atop the now coated SMT
pads, it was back into the oven for a
reflow. If you watch carefully through
the oven’s glass door, you can actually
see the point at which the solder melts
and the sensors free float into their final
positions due to surface tensions.

Once the PCB had cooled, it was on to
the hand-soldering operation. First, I
added wires to the unsupported vias—
the holes that would not contain a com-
ponent lead but must have a solder con-
nection between the top and bottom
sides of the PCB. Wire-wrap wire was
just right for this job. I stripped off the
insulation and stuck the bare end
through the bottom side of the via and
out the top. I bent the wire over on the
top side, soldered it along the trace, and
clipped off the excess. I then repeated
the bend and solder process with the
opposite end of the wire on other side

All unsupported vias should be done
before adding through-hole components,
because the components sometimes
cover up vias, making them much hard-
er to solder once obstructed. When
through-hole components are added,

with the via’s pads on the other layer.
Once you have perfect alignment, adjust
the crease and tape the free ends of the
TTS with a piece of transparent tape to
prevent the layers from shifting. You
now have a little pouch of TTS with a
crease on one end and the opposite ends
taped together. Cut a small piece of PCB
laminate, at least 0.5″ bigger than the
artwork. Smoothed any roughness along
the edges with a fine file, clean the sur-
face of any oils, and polish the copper
surface with a nonmetallic scrubby
(green pad). Now insert the laminate
into the folder TTS. Make sure it is cen-
tered on the mask on the inside. I’ve
used a clothes iron to reheat the TTS
and transfer the toner mask to the PCB
laminate. This time, I tried a plastic
laminator. Using the laminator lets the
process occur under more controlled
conditions. I did find that I really had to
let the laminator get hot before the
toner would transfer properly. The
Ready light might indicate a tempera-
ture that’s fine for laminating ID cards,
but I found it needed a good 15 minutes
until it was hot enough to remelt the
mask. Also, after putting the TTS pouch
through the laminator a couple of times,
I found placing it in water right away
(quickly reducing the temperature)
helped the toner to “lock” onto the cop-
per. After only a few seconds of soaking
in water, the TTS carrier floated free of
the PCB laminate. The toner was now
sticking to the copper.

In the past, the PCB was ready to be
etched in acid, but now there is an addi-
tional step. It seems that the toner can
actually be quite porous and invite the
acid to etch areas within the mask, cre-
ating pinholes or even hairline cracking.
The new step seals the toner surface
with a new material that prevents this
from happening. The toner reactive foil
(TRF) completely encapsulates the toner
by bonding to its surface without bond-
ing to the copper laminate. A piece of
TRF is wrapped around the PCB lami-
nate covering the toner masks on both
sides. Once again, it is passed through
the laminator. Note that this can also be
done using an iron on one side at a time.
This time, let the PCB cool completely
before peeling off the TRF film gently
back upon itself. The TRF comes in a
number of colors and this process can be

used to apply a silkscreen to the PCB
after etching or to decorate a front panel
with nomenclature.

Etching off the exposed copper from
the PCB’s laminate surfaces is not an
environment-friendly process. I pur-
chased a bag of ferric chloride powder
from a nearby RadioShack some time
ago. Most component suppliers now
offer this only in liquid form. This acid
is the same chemical PCB houses use to
etch their boards. It’s considered a haz-
ardous material both before and after
use. Please be careful if you use this.
(When FeCl3 has been reduced to FeCl2,
it refuses to eat up any more copper, so
keep track of the surface area that you
etch and dispose of properly. If neces-
sary, this can be neutralized with lime
or soda ash. Call your local town hall for
information on the proper disposal of
any hazardous material.)

The ferric chloride liquid is used
directly on a PCB to etch off the exposed
copper. PCB manufacturers heat the acid
in tanks and dip the PCB into the acid to
etch the copper surface. Agitation of
some kind is used to keep fresh acid in
contact with the copper surfaces. To do
this at home, I used a Tupperware bowl
with just a few ounces of acid in the bot-
tom. While donning rubber gloves for
protection, I held the corner of the PCB
within the bowl. With my free hand I
used a small sponge (about the size of a
domino) to gently wipe the PCB surface
with the acid. I continued to coat the
copper with fresh acid from the bowl by
wiping away the oxidizing copper from
both sides of the laminate surfaces.
Eventually, I began to start seeing
through areas where all the copper had
been removed. Doing this by hand with

Photo 3—Once the TTS mask has been
reheated and has bonded to the copper lam-
inate, the TTS is easily removed by soaking
it in water.

2102002-bachiochi.qxp 1/11/2010 10:12 AM Page 71

http://www.circuitcellar.com

72 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

ESOURCES
Microchip Technology, “PIC16F193X/LF193X Data Sheet: 28/40/44-Pin
Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt
XLP Technology,” DS41364C, 2009.

Sundial info, Thunderstruck Observatory, http://thunderstruckobservatory.
com/sundials/index.html.

Survival Topics, “Using Shadows to Determine Direction,” www.survival
topics.com/survival/using-shadows-to-determine-direction/.

———, “Using Time as a Compass,” www.survivaltopics.com/survival/using
-time-as-a-compass/.

OURCES
Eagle Schematic, layout, and autorouting software
CadSoft Computer | www.cadsoftusa.com

ISL29102 Converter
Intersil Americas, Inc. | www.intersil.com

ViewMate Gerber viewer
PentaLogix | www.pentalogix.com

PCB “Fab-In-A-Box” Kit
Pulsar Professional FX | www.pulsarprofx.com

S

R

Jeff Bachiochi (pronounced BAH-key-AH-key) has been writing for Circuit Cellar since 1988.
His background includes product design and manufacturing. You can reach him at
jeff.bachiochi@imaginethatnow.com or at www.imaginethatnow.com.

remember to solder each lead to both
sides of the PCB. Soldering both sides
not only completes electrical connec-
tions, but also adds to the component’s
stability.

The connector can be soldered to
only one side of the PCB. It should be
treated as such in the layout process by
making all connections to it on the side
of the PCB to which it will be soldered.
If you forget to do this, treat it like an
unsupported via—that is, use a small
piece of wire-wrap wire through the
connector’s hole and soldered along the
trace on the side opposite that of where
the connector will be soldered. Leave
the wire sticking through the hole, and
insert the connector so that the wire
and connector pin go through the hole
together. After all of connector pins are
soldered, you can clean off the flux
residue on the board. You might need
to use a solvent unless you’ve been
using water-soluble flux.

SENSOR MODULE MOVEMENT
With each of the four sensors config-

ured to give approximately 2 V in nor-
mal sunlight, you need a way to produce
a shadow that falls in the center of all
sensors when the sun is at 90° to both
perpendicular planes of the sensor sur-
faces. A small baffle centered between
the sensors will cast a shadow on one or
more sensors as the module is moved off
axis. If the shadow falls on a sensor, it
will output less voltage. The control pro-
gram will attempt to keep all sensors at
their peak output by moving the sensor
module about its present position.

The sensor module is located on a
motorized X-Y platform. One motor will
move the sensor module up and down
(from horizon to directly overhead), and
a second motor will move it left and
right (rotating along the horizon). The
sensor module’s changing output can
simplify movement calculations if its
sensors are aligned with the X-Y axis of
movement. With this approach, any
change in the two sensors along the
movement axis affects only that axis.
Two sensors on an axis are required for
samples to give real-time differential
position changes along that axis.

The motors used to pan and tilt are
actually servomotors. The pan servomo-
tor is externally geared to rotate the sen-
sor module 360°. The tilt servomotor
directly drives the sensor module’s tilt
from horizon to horizon through the
maximum azimuth. Servomotors are
position-oriented devices. The control
signal you provide identifies where
within its total range of movement you
want it to be. The servo then drives the
motor to move toward that point and
keep it there.

The servo control signal is PWM with
a minimum repetition rate of 20 ms.
The “on” portion of the signal must
vary from 1.25 ms (minimum position)
to 1.75 ms (maximum position). The
total movement range therefore requires
a total control range of the difference
between the minimum and maximum
(500 µs). If the maximum movement is
360° and you want to control the move-
ment in tenths of a degree, you will
need to control the PWM’s resolution to
3,600 (i.e., 360 × 10) parts within this
small part of the total PWM time.

Suppose you can use a 2.048-ms PWM
period. Using the maximum 10-bit reso-
lution on the PWM, that would give you
a 2-µs resolution over the 2.048-ms
range. If a servo requires a signal
between 1.250 and 1.750 ms, a 500-µs
range—which means each bit of con-
trol—will move the servo 500 µs/2 µs,
or 1/250th of its total range. If that range
is 360°, then each bit moves the servo
360°/250 = 1.44°, which is the angle
through which the sun moves in 6 min-
utes. Hmm. That’s something to think
about for next month. I

Photo 4—After gently rubbing ferric chloride
over the copper laminate with a small sponge,
the unmasked copper areas are eventually dis-
solved by the acid wash. You can see traces
on the reverse side of this etched PCB show-
ing through the fiberglass board.

2102002-bachiochi.qxp 1/11/2010 10:12 AM Page 72

mailto:jeff.bachiochi@imaginethatnow.com
http://www.imaginethatnow.com
http://thunderstruckobservatory.com/sundials/index.html
http://www.survivaltopics.com/survival/using-shadows-to-determine-direction/
http://www.survivaltopics.com/survival/using-time-as-a-compass/
http://www.cadsoftusa.com
http://www.intersil.com
http://www.pentalogix.com
http://www.pulsarprofx.com
http://www.circuitcellar.com

73.qxp 1/11/2010 12:10 PM Page 1

http://www.elektor.com/cc

74 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
–

Iss
ue

 2
35

1

2 4

5

6 7

8 9 10 11

12

13 14

15

16 17

18

19

20

3

CROSSWORD

The answers are available at
www.circuitcellar.com/crossword.

Down
1. Shorten
2. PCB’s legend [Hint: white and yellow]
4. Classic jump
7. 1,000,000 bits
9. PC off
10. Protective pipe for wiring
11. Operation time [two words]
12. Conductance; S
14. Component list
15. Compare to a standard
17. PbS

Across
3. Curie temperature
5. Smaller than a notebook
6. Frank Wanlass, 1967 patent
8. 299.792458 V
10. x3

13. Fab
16. PGDN [two words]
18. Combines signals
19. Mainboard
20. 250

crossword2.qxp 1/11/2010 1:33 PM Page 78

http://www.circuitcellar.com
http://www.circuitcellar.com/crossword

www.circuitcellar.com • CIRCUIT CELLAR® 7755

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

THE DIRECTORY OF
PRODUCTS AND SERVICES

AD FORMAT: Advertisers must furnish digital files that meet our specifications (www.circuitcellar.com/advertise). ALL TEXT AND OTHER ELEMENTS MUST
FIT WITHIN A 2" x 3" FORMAT. E-mail adcopy@circuitcellar.com with your file or send it to IDEA BOX, Circuit Cellar, PO Box 180, Vernon, CT 06066.

For current rates, deadlines, and more information contact Peter Wostrel at 800.454.3741, 978.281.7708 or peter@smmarketing.us.

The Vendor Directory at www.circuitcellar.com/vendor/
is your guide to a variety of engineering products and services.

IDEA
BOX

www.TechnologicalArts.com

Adapt9S12
Modular Prototyping System

For education & development:
* Assembler, BASIC, C, or Forth
* Supports 9S12A,B,C,D,E,N,X

* Robotics, Mechatronics,
& Automotive Apps

Evaluate * Educate * Embed

 Features:
Automatic text scroll and crawl
’TTL-232’ and SPI control ports

Any size for custom fonts
Vector and bitmap graphics

 tel: 510-790-1255 fax: 510-790-0925

� Low cost 2.5”x4”
C-programmable
computer

� 16-bit HCS12 processor clocked at 40 MHz
� 8 PWM, 8 counter/timer, and 8 digital I/O
� 16 10-bit A/D inputs
� Dual RS232/485 ports, SPI and I2C ports
� 512K on-chip Flash, 512K RAM with

Flash backup
� Plug-in I/O expansion, including Ethernet,

Wi-Fi, GPS, 24-bit data acquisition, UART,
USB, Compact Flash card, relays, and more ...

PDQ BoardTM - A Fast I/O-Rich
Single Board Computer

$159/100s

ib-235.qxp 1/14/2010 9:26 AM Page 75

http://www.circuitcellar.com/vendor/
http://www.TechnologicalArts.com
http://www.circuitcellar.com
http://www.aagelectronica.com
http://www.decadenet.com
http://www.ironwoodelectronics.com
http://www.flexipanel.com
http://www.mosaic-industries.com
http://www.hexwax.com

7766 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

��� � ���	
� ����� � � 	

��� � �� 	 �� ��� ��

���� �� �������

 ��!�"#�

�������$ ��%�&%�

� ���%�'�(�!)%"�� �#!)��� ��%&"��

	 *"�#
�&� *�
���
�
��
%�����#��+

ib-235.qxp 1/14/2010 10:02 AM Page 76

http://www.circuitcellar.com
http://www.canusb.com
http://www.jkmicro.com
mailto:peter@smmarketing.us
http://www.melabs.com
http://www.stx104.com
http://www.circuitcellar.com/network

www.circuitcellar.com • CIRCUIT CELLAR® 77

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

 Inside great products. Behind great ideas.

phyCORE® System on Modules:

ARM11: i.MX35, i.MX31

ARM9: i.MX27, LPC3250, LPC3180

Cortex M3: STM32F103

ARM7: LPC2294

XScale: PXA270

x86: Z510, Z520, Z530 (Atom®)

Blackfin: ADSP-BF537

Coldfire: MCF5485

PowerPC: MPC5554, MPC5567,

MPC5200B, MPC565, MPC555

phyCORE® Rapid Development Kits include SOM,

Carrier Board, LCD (kit specific), schematics,

software, free BSP for applicable kits and a start-up

guarantee. The Carrier Board serves as a target

reference design, allowing the SOM to easily port

to the user’s target hardware.

phyCORE-LPC3250

www.phytec.com |800.278.9913| www.phycore.com

XL- MaxSonar
Ultrasonic Ranging is EZ

XL-MaxSonar Products
•High acoustic power Low cost
•Low power, 3V-5.5V, (< 4mA avg.)
•1 cm resolution Serial, pulse
width, & analog voltage outputs
•Real-time auto calibration with
noise rejection No dead zone•

•

•

XL-MaxSonar-WR (IP67)
•Industrial packaging
•Weather resistant
•Standard ¾” fitting
•Quality narrow beam

www.maxbotix.com

XL-MaxSonar-EZ
•Choice of beam patterns
•Tiny size (<1 cubic inch)
•Light weight (<6 grams)

ib-235.qxp 1/11/2010 1:09 PM Page 77

http://www.phytec.com
http://www.phycore.com
http://www.maxbotix.com
http://www.circuitcellar.com
http://www.keterex.com
http://www.reachtech.com
http://www.imagecraft.com
http://www.mcc-us.com
http://www.tern.com
http://www.earthlcd.com

7788 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

���

�������������	

��������	��
����

���� ���	���� � ��� ��
��������������	������
�������

ib-235.qxp 1/14/2010 10:05 AM Page 78

http://www.circuitcellar.com
http://www.circuitcellar.com/products/collegeprogram
http://www.tri-plc.com/cci.htm
http://www.jkmicro.com
http://www.allelectronics.com
http://www.i2cchip.com
http://www.traceSystemsInc.com
http://www.ccsinfo.com/ZIG

75 AAG Electronica, LLC

9 AP Circuits

78 All Electronics Corp.

76 Apex Embedded Systems

21 CTIA Wireless 2010 Event

33 CWAV

9 Calao Systems

57 Cleverscope

42 Comfile Technology, Inc.

78 Custom Computer Services, Inc.

75 Decade Engineering

32 DesignCon

23 DesignNotes

C3 Digi International

12 EMAC, Inc.

77 Earth Computer Technologies

The Index of Advertisers with links to their web sites is

located at www.circuitcellar.com under the current issue.

Page

40, 41 Elektor

73 Elektor

58 Embedded Developer

20 ExpressPCB

13 ezPCB

75 FlexiPanel Ltd.

12 Grid Connect, Inc.

23 HobbyLab, LLC

78 I2CChip

49, 50 ICbank, Inc.

22 IPC APEX Expo

77 Imagecraft Creations, Inc.

1 Imagineering, Inc.

45 Intuitive Circuits LLC

75 Ironwood Electronics

11, 32 JKmicrosystems, Inc.

76, 78 JKmicrosystems, Inc.

31 Jameco

23 Jeffrey Kerr, LLC

65 Keil Software

77 Keterex, Inc.

14 LPKF Laser & Electronics

45 Lakeview Research

76 Lawicel AB

5 Lemos International Co. Inc.

11 Linx Technologies, Inc.

77 MCC (Micro Computer Control)

77 Maxbotix, Inc.

76 microEngineering Labs, Inc.

75 Mosaic Industries, Inc.

7 Mouser Electronics

C2 NetBurner

Page Page Page

45 Nurve Networks LLC

34 PCB-Pool

C4 Parallax, Inc.

77 Phytec America LLC

39 PoLabs

27 Pololu Corp.

77 Reach Technology, Inc.

29 Saelig Company

18, 19 Technologic Systems

75 Technological Arts

77 Tern, Inc.

15 Texas Instruments

78 Trace Systems, Inc.

78 Triangle Research Int’l, Inc.

2, 3 WIZnet

Serial Network Hub (Part 1): Network Topology and Design Planning

Design and Program a Microbot

A Sensor System for Robotics Applications

Calibrated Decibel Meter Design

RFID-Based Liquid Control (Part 2): Monitoring System Implementation

LESSONS FROM THE TRENCHES Putting C Language to the Test (Part 1): A Sudoku

Puzzle-Solving Program

FROM THE BENCH Sun Tracker (Part 2): Start Tracking

SILICON UPDATE Tales from the Crypto: A Look at Embedded Design Security

www.circuitcellar.com • CIRCUIT CELLAR®

INDEX OF
ADVERTISERS

PREVIEWof March Issue 236

Theme: Robotics
April Issue, 237

Deadlines
Space Close: Feb. 12

Material Close: Feb. 22

Theme
Embedded Programming

Bonus Distribution
Embedded Systems Conference

West; PCB East

ATTENTION ADVERTISERS

Call Peter Wostrel
now to reserve your space!

800.454.3741 or 978.281.7708
e-mail: peter@smmarketing.us

7799

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

79-advertiser's index.qxp 1/14/2010 11:12 AM Page 79

http://www.circuitcellar.com
http://www.circuitcellar.com
mailto:peter@smmarketing.us

80 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5

PRIORITY

A marketing guy’s worse nightmare is when the engineering team designing his latest product won’t stop redesigning the prod-
uct and just get on with making it. Perhaps it's genetic; I don't know. But, all the engineers I've ever known will keep adding func-
tions and features on any product they are creating right up until the last second before it goes to production or management
demands a stop to it simply to stay on schedule and budget.

I’m not complaining. I'm just pointing out an all too observable trait. ;-) As an engineer who is just as guilty of this as the rest of
you, I simply offer the old Mount Everest defense. A climber is asked: "Why would you climb it?" He answers: "Because it's there,
silly." When one of us is asked why we can't stop tweaking the designs we're working on, we answer: "Because we're engineers,
silly."

And, while I readily admit guilt by association, it doesn't make me any less sensitive to the frustration of personally having to deal
with "over-tech" along with proper feature enhancement. Many of you might already know I'm a car junkie and that I've had a vari-
ety of them over the years. (I just ordered a diesel to try that, too.) I suppose I shouldn't complain, but since 2001 I've had a cou-
ple BMWs in which I’ve felt like I've been driving computers, not cars. They are still a blast to drive, but I'm not sure whether I feel
more or less secure knowing that it's a bunch of processors and programmers responsible for "apparently" making me such an
excellent driver. It used to be that I'd have to take an entrance ramp with reasonable caution. But now, with computerized active roll
stabilization, dynamic stability control, brake-fade compensation, and dynamic traction control, it might as well be a lap at the Indy
500 because I could drive up the ramp just like that and get away with it. My hat is off to the designers responsible for all this
increased functionality and safety—and yes, I'll keep my overconfidence in check.

At the same time, I think BMW pushed the "computerized features" envelope totally off the deep end with their initial version of
iDrive—BMW's version of an all-in-one rotate-tilt-push control button for all entertainment, climate, user settings, and communica-
tions functions. Don't get me wrong, unlike the trade press who I think was simply too low-tech to learn anything that electronically
sophisticated, I readily use and appreciate its functions. My criticism is that BMW did too much innovation in a single model-year
change without fully determining whether the majority of drivers (in the U.S. at least) really wanted all their control functions con-
centrated in a single knob. I couldn't help but laugh to myself when I thought that there must've been an iDrive design meeting back
in Germany before its release where the one guy in charge finally slammed his riding crop on the desk and yelled, "They veel learn
to use it!" ;-) The irony in making the latest 2010 iDrive acceptable to the trade press is that all the redesigns since 2001 have basi-
cally been retrogrades—adding many of the buttons and independent controls back on the dash that were once all incorporated in
the single iDrive control. In my opinion, BMW simply got carried with the "we can do it" mentality and forgot the customers.

I guess the lesson is that unless your business is pure technology, implementing new technology simply for the sake of imple-
menting it is a risky strategy. While it's true that new gadgets and software have made our lives much more efficient and have given
us the ability to do things we never thought possible, replacing the tried-and-true dual-slide toaster controls (temperature and dura-
tion) with a keypad, LCD, and 10-page user manual is ludicrous. (I believe there are a few like this actually on the market.) In my
opinion, subverting simplicity with bloated and overly complicated technology is ridiculous. Technology and process are interdepen-
dent and need to be kept in balance. The most productive and economically successful product designs are those that suit the busi-
ness purpose without radically bending the design process or adding an unnecessary inflated feature set simply to experiment with
new technology. The best designers are the ones who don't forget to add a little bit of old-fashion human judgment and common
sense to the final product.

After all that introduction, you might expect that this is the point where I detail the 10-point plan for solving the feature creep men-
ace, but frankly I'd be a hypocrite if I attempted to do that. I can certainly point out the problems of over exuberant product design,
but my job at Circuit Cellar is to entertain all technological ideas—even the crazy ones. I have the luxury of thinking "what if" with-
out the constraints of time, budget, or rationale, and I don't have to make a real product at the end of the process. Some might call
that a virtual design world with no responsibilities. Around here we simply call it a magazine.

Feature Creep

steve.ciarcia@circuitcellar.com

by Steve Ciarcia, Founder and Editorial Director

INTERRUPT

steve_edit_235.qxp 1/11/2010 1:30 PM Page 96

mailto:steve.ciarcia@circuitcellar.com
http://www.circuitcellar.com

C3.qxp 12/11/2009 9:34 AM Page 1

http://www.digi.com/gogreen
http://www.digi.com/gogreen

C4.qxp 12/30/2009 11:24 AM Page 1

http://www.parallax.com

www.circuitcellar.com • CIRCUIT CELLAR® 11

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

Are you ready to use the power of USB technology for computer control? You
can convert a Microchip Technology PIC18F4550 and a few other parts into a
plug-and-play control device in parallel or serial mode. This project will simplify
your next computer control application. It’s time to revive your favorite printer
port control projects!

Using USB for Computer
Interfacing Projects

C

B
O

N
U

S

ARTICLE
by Michael Chan

omputer interfacing used to be pretty straightfor-
ward when using the parallel/serial port. I

wrote several articles about projects—such as LCDs,
home automation, and robotics control—that used the
computer printer port. In fact, the majority of PC inter-
facing in the past relied mainly on either serial or paral-
lel ports for simplicity and ease of control. And then the
universal series bus (USB) came along. The USB brings
uniformity to computer communications and now domi-
nates PC peripheral design and support functions. It is
just a matter of time before parallel/serial ports will be
phased out entirely. But it would be a shame to give up
the ease and fun of parallel/series control alto-
gether.

In this article, I’ll demonstrate a simple way
to convert a USB port into a parallel port (see
Photo 1). Now you can revive all your favorite
printer port control projects! As a bonus, I’ll
describe a method for changing a USB port into
a serial port.

INTERFACING
The fact that USB interfaces are plug-and-

play wins popularity among end users. You can
plug in or disconnect a USB device any time, so
it’s user-friendly. Unfortunately, for developers,
implementing USB into devices is quite the
opposite.

Unlike the conventional serial/parallel com-
munication modes, USB protocols are compli-
cated. In addition to the requirement of writing
a host control program, you have to develop the
device’s embedded firmware and also a device

driver for the operating system. The device’s firmware
ensures data packet transfer between the device and host
in the USB protocol format. On the other hand, the

THE MAGAZINE FOR COMPUTER APPLICATIONS

Y

Y

Y
Port# = 1?

N

N

N

Port# = 2?

Initialization:
- pass device infos to host;
- establish device as HID;
- define input/output forms.

Fireware
logic

Move
control# to

PORTD

Move
control# to

PORTB

Move
PORTA

to control#

Service
interrupt

from host?

Read 3 bytes
from host:
Report# = 0;
Port#;
Control#

Return 3 bytes
from host:
Report# = 0;
Port#;
Control#

FFiigguurree 11—Here you see the firmware logic for the PIC18F4550 used in the USB-
Parallel Port Converter.

PPhhoottoo 11—This is a
prototype converter I
built for computer
control projects.

http://www.circuitcellar.com

22 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

device driver creates a dataflow framework for the
device to communicate with the host system. This is
enough to stop many designers from using the USB in
their projects.

MCUs
The point of this article is to explain how to convert a

USB device with the least amount of hardware into a
parallel port controller. But I’ll also try to make the
complexity of firmware and driver writing transparent.

On the hardware side, Microchip Technology program-
mable USB-dedicated microcontrollers open the door to
versatile USB control applications. The Microchip Tech-
nology PIC18F2550/18F4550 single-chip processor emu-
lates a USB interface, provides more than 20 I/O pins,
and surprisingly requires only a handful of support com-
ponents.

On the software side, you don’t have to start from
scratch with firmware development. There are adaptable
standard firmware sets for ready-to-use processors. It is
just a matter of modifying these sets to suit particular
applications. A convenient way to avoid having to write
your own USB device driver is to use a human interface
device (HID) class. In Windows, there is a comprehensive
library of HIDs that define sets of structured I/O configura-
tions. Keyboards, computer mice, and audio/video instru-
ments are just some of the examples supported by the
HID class. Microchip also offers HIDComm ActiveX as a
simple communicating channel in a control program
between its microcontrollers and host. Incredibly,
Microchip even provides a free MPLAB package to sea-
soned designers for programming, simulating, and diag-
nosis purposes.

FIRMWARE
The majority of USB-handling routines in the project

firmware comes from Microchip libraries. The only two
parts to be considered in the printer port converter
firmware are the control-
ling main and the HID dec-
larations. The essential por-
tions are listed as Listing 1
and Listing 2.

The main program prin-
cipally defines port D, port
B, and port A of the
processor to replace the
three ports in a conven-
tional printer port. It then
transfers 3 bytes of data
between the host and the
processor buffers. The
direction of data flow
depends on the code in the
second byte. The I/O con-
trol information is in the
third byte.

Figure 1 shows the main

LLiissttiinngg 11—This is the essential routine in the firmware main pro-
gram which tells the processor of the Converter how to decode
the three incoming control bytes.

void main(void)
{ int i, j;

int len;
byte theDelay;
byte bdata;
char buffer[3];
char *mybuffer = buffer;
PORTD = 0;
TRISD = 0;
bdata = 0;
len = 3;

// declare PORTB as inputs
TRISB = 255;
ctrlCount._word = 0;
InitializeSystem();
while(1)

{
USBTasks(); // USB Tasks

// receive 3 bytes from host routine
bdata = HIDRxReport(mybuffer,len);

// emulate only if data were received
if (bdata>0)
{

// emulate print port routine
switch(buffer[1]) {

// port code 888 output PORTD
case 1:

PORTD=buffer[2];
break;

//port code 889 input status in PORTB
case 2:

buffer[2] = PORTB;
if (!mHIDTxIsBusy())

{ HIDTxReport(buffer,len); }
break;

//port code 890 output PORTA
case 3:

PORTA=buffer[2];
break;

} // end if
} //end case

}//end while

LLiissttiinngg 22—This portion of the firmware defines the structure of the HID class of the Converter. In
essence, the host computer will recognize the Converter device as an I/O device.

// The number of bytes in this structure is hard coded in device.h
rom struct{byte report[HID_RPT01_SIZE];}hid_rpt01={

0x05, 0x01, /* Usage Page */
0x09, 0x05, /* Usage */
0xA1, 0x00, /* Collection */
0x09, 0x30, /* Usage (X) */
0x09, 0x31, /* Usage (Y) */
0x15, 0x00, /* Logical Minimum */
0x26, 0xFF, 0x00, /* Logical Maximum */
0x75, 0x08, /* Report Size */
0x95, 0x03, /* Report Count */
0x81, 0x02, /* Input */
0x09, 0x33, /* Usage (Rx) */
0x75, 0x08, /* Report Size (8) */
0x95, 0x03, /* Report Count (5) */
0x91, 0x02, /* Output */
0xC0}; /* End Collection */

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 33

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

firmware logic for my USB interface. Most HID classes
deal with either input devices (e.g., keyboards and mice)
or output devices (e.g., audio/video instrument), whereas
a typical parallel port involves both inputs and outputs.
Therefore, in my converter, the HID routine must be
modified (see Listing 2).

CONVERTER CIRCUIT
As you can see in Figure 2, the converter module does

not require many electronic parts. Indeed, the circuit is

so simple that you can test the circuit on protoboard, as
I did.

The circuit is externally powered and regulated to 5 V
through a voltage regulator. The 20-MHz crystal pro-
vides clocking signals to the processor. With the help of
the microprocessor, communications are then initiated
between the host via the USB port and the controlled
device via the simulated printer port DB25 terminals.
Resistance between the processor terminals and the
DB25 jumpers are not critical. A few hundred ohms

would be enough to avoid a
short circuit.

Figure 3 depicts the functional
compatibility of the USB parallel
interface and the conventional
printer port in parallel port
applications. I posted both the
printer port control program and
the USB control program per-
forming the same function to
illustrate how easy it is to
migrate from one to the other.
Both programs control LEDs and
monitor input states of switches.
Generally, depending on the LPT
number (N), N and N + 2 are
output ports and N + 1 is the
input port in printer port control
applications. Similarly, I define 1
and 3 in the USB case to be the
output ports (port D and port B
in the PIC18F4550) and 2 the
input port (portA). The data after
the port identification number
are the control bytes representing

FFiigguurree 22—This is the schematic circuit diagram for the USB-Parallel Port Converter.

FFiigguurree 33—Michael:Figure 3: This pictorial diagram illustrates two alternate schemes for a host
computer to communicate with a parallel port control device, via either the printer or the USB
port.

USB
Interface

Printer
cable

PC

Parallel
control
circuit

http://www.circuitcellar.com

44 CIRCUIT CELLAR® • www.circuitcellar.com

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

LED/Switch states.
A word of caution: it is

important to remember that
some of the printer port bits
are inverted. Therefore, take
care of them accordingly in
the control byte value.
Listing 3 shows the control
programs.

Let’s review the proce-
dures for using the USB-
LPT interface for the test
circuit. First, install Visu-
al Basic and HIDComm
Active Control on the PC.
Two, download the
attached firmware to a
PIC18F4550 and construct
the interface circuit.
Three, attach the device

to the host and make sure that the PC recognizes it. (It
will show up in the Hardware manager under the HID
category as “USB-LPT Converter.”) In the VB environ-
ment, place a copy of the HIDComm on the form (see
Photo 2). Define the USB-LPT interface to be the device
the HIDComm communicates with by choosing
Microchip to be the Match Manufacturer condition. One
ActiveX control can communicate with only one device
at a time. Fourth, write and run the sample program.
And finally, under normal operating conditions, the out-
put indicating LEDs and input switches should corre-
spond correctly to the data byte.

SERIAL CONTROL
For the serial port lovers, I also included a Microchip

project that converts a USB port into a virtual serial port. I
adapted the serial converter circuit from the original USB
development board so that it can work as a standalone
module (see Figure 4). When the converter module is
plugged into the USB port, the computer recognizes the
unit as an additional serial port as indicated in the Win-
dows hardware manager.

The firmware in the microprocessor handles everything.
End users don’t have to know a thing about USB communi-
cations. All you have to do is to make sure that the applica-
tion program is addressing the correct COMM port number!

GET CONTROL
In this article, I outlined a simple method for harness-

ing the power of USB technology for computer control
applications. Once loaded with the provided firmware, a
Microchip Technology PIC18F4550 with a handful of
electronic components can be readily converted into a
plug-and-play control device in Parallel or Serial mode.
My objective was to take away the technical—if not mys-
terious—firmware/driver details associated with USB
peripheral development. You can now continue working
with ease on computer port control applications. I

LLiissttiinngg 33aa—Both the Converter Control Program and a typical
Parallel Port Control Program ((bb)) are listed for easy comparison.

Rem USB-Parallel Converter (Chan)
Private Sub Command1_Click()
Dim data, pd, cd As Byte
Dim pn As Integer
HIDComm1.Connect
ParallelControl.Show
pd = CByte(Text1.Text)
cd = CByte(Text2.Text)
pn = pd
If pn < 1 Or pn > 3 Then pn = 1
Call CallPort(pn, cd)
HIDComm1.Uninit
End Sub

Private Sub CallPort(pn As Integer, da As Byte)
Dim Buffer() As Byte
Dim BufferSize As Long
ReDim Buffer(8)
Dim rd As Byte
BufferSize = 3
Buffer(0) = 0
Buffer(1) = pn
Buffer(2) = da
If pn = 1 Then
HIDComm1.WriteTo Buffer, BufferSize
End If
If pn = 2 Then
HIDComm1.WriteTo Buffer, BufferSize
Buffer = HIDComm1.ReadFrom(BufferSize)
End If
If pn = 3 Then
HIDComm1.WriteTo Buffer, BufferSize
End If
End Sub

Rem Printer Port Control (Chan)
Private Sub Command1_Click()
Dim pd, cd As Byte
Dim pn As Integer
Parallel.Show
pd = CByte(Text1.Text)
cd = CByte(Text2.Text)
pn = pd
If pn < 1 Or pn > 3 Then pn = 1
Call CallPort(pn, cd)
End Sub

Private Sub CallPort(pn As Integer, da As Byte)
If pn = 1 Then
VbOut 888,da
End If
If pn = 2 Then
da = VbInp(889)
End If
If pn = 3 Then
VbOut 890,da
End If
End Sub

aa))

bb))

PPhhoottoo 22aa——This screen shot
shows the status of the Convert-
er in Windows Device Manager.
bb——This is an example of the
input/output VB form in the Con-
verter control program.

aa))

bb))

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 55

Fe
br

ua
ry

 2
01

0
 –

 I
ss
ue

 2
3
5
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

Michael Chan (keensd@hotmail.com) graduated in 1980 with an MSEE. He teaches Mathematics and Computer Technology/Robotics
at Albert Campbell Collegiate Institute in Toronto. Michael’s interests include developing electronic projects, computer interfaces,
games, and programming. Descriptions of his recent work are available at www.keendesigns.webs.com.

EFERENCES
S. Allman, “The HID Class,” EDN, 2002.

J. Axelson, USB Complete, Lakeview Research, 2005.

D. Lichtel, “Implementing a USB equipment Interface Using the Microchip PIC16C745,” QEX, May/June 2004.

OURCES
HIDComm ActiveX and PIC18F4550 Microcontroller
Microchip Technology, Inc. | www.microchip.com

RR

SS

FFiigguurree 44—This is the USB serial converter circuit.

mailto:keensd@hotmail.com
http://www.keendesigns.webs.com
http://www.circuitcellar.com
http://www.microchip.com

