
SIGNAL PROCESSING
Tackle Difficult Signal-Processing Problems

IR Signal Control Made Simple

Power Grid Frequency Monitoring

Capacitor ESR Measurement Explained

Digitally Controlled Amp Design

CIRCUIT CELLAR

w
w

w
.circuitcellar.com T H E M A G A Z I N E F O R C O M P U T E R A P P L I C AT I O N S

Cover - 231.qxp 9/2/2009 4:47 PM Page 1

$5.95 U.S. ($6.95 Canada)

#231 October 2009

Innovative Airflow Analysis, p. 60 • ARM Architecture: The Story From “Computer” to “MCU,” p. 66

A Low Cost Solution for

Industrial Serial to Ethernet
with Digital I/O and Analog to Digital Converters

Board Part Number | SBL2e-200IR
Information and Sales | sales@netburner.com

Web | www.netburner.com
Telephone | 1-800-695-6828

A NetBurner Complete Hardware & Software Solution

The all-new
NetBurner SBL2e
I N D U S T R I A L S E R I A L TO E T H E R N E T S O LU T I O N

Hardware Features

Software Features

$19.95
Qty. 1000

C2.qxp 7/8/2009 8:41 AM Page 1

mailto:sales@netburner.com
http://www.netburner.com

1.qxp 9/9/2009 10:54 AM Page 1

http://www.totalphase.com

New Products from:

TMS320C672x Digital
Signal Processor
www.mouser.com/tidsp/a

www.mouser.com
Over A Million Products Online

Experience Mouser’s time-to-market
advantage with no minimums and same-day
shipping of the newest products from more
than 390 leading suppliers.

(800) 346-6873

The Newest Products
 For Your Newest Designs

The ONLY New Catalog Every 90 Days

The Newest
Semiconductors

MC56F8006 / MC56F8002 Digital
Signal Controller
www.mouser.com/freescale/a

CS48540 32-bit DSP
www.mouser.com/
cirruslogic/a

Mouser_CircuitCellar_10-1.indd 1 8/18/09 4:44:36 PM

2.qxp 9/2/2009 4:13 PM Page 1

http://www.mouser.com/tidsp/a
http://www.mouser.com
http://www.mouser.com/cirruslogic/a
http://www.mouser.com/freescale/a

3.qxp 9/2/2009 4:18 PM Page 1

http://www.keil.com/dd
http://www.keil.com/uv4
http://www.keil.com/rtos
http://www.keil.com

FOUNDER/EDITORIAL DIRECTOR
Steve Ciarcia

MANAGING EDITOR
C. J. Abate

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Jeff Bachiochi
Robert Lacoste
George Martin
Ed Nisley

NEW PRODUCTS EDITOR
John Gorsky

PROJECT EDITORS
Gary Bodley
Ken Davidson
David Tweed

ADVERTISING
860.875.2199 • Fax: 860.871.0411 • www.circuitcellar.com/advertise

PUBLISHER
Sean Donnelly
Direct: 860.872.3064, Cell: 860.930.4326, E-mail: sean@circuitcellar.com

ADVERTISING REPRESENTATIVE
Shannon Barraclough
Direct: 860.872.3064, E-mail: shannon@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster
E-mail: val.luster@circuitcellar.com

CONTACTS
SUBSCRIPTIONS

Information: www.circuitcellar.com/subscribe, E-mail: subscribe@circuitcellar.com
Subscribe: 800.269.6301, www.circuitcellar.com/subscribe, Circuit Cellar Subscriptions, P.O. Box 5650,
Hanover, NH 03755-5650
Address Changes/Problems: E-mail: subscribe@circuitcellar.com

GENERAL INFORMATION
860.875.2199, Fax: 860.871.0411, E-mail: info@circuitcellar.com
Editorial Office: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: editor@circuitcellar.com
New Products: New Products, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: newproducts@circuitcellar.com

AUTHORIZED REPRINTS INFORMATION
860.875.2199, E-mail: reprints@circuitcellar.com

AUTHORS
Authors’ e-mail addresses (when available) are included at the end of each article.

CIRCUIT CELLAR®, THE MAGAZINE FOR COMPUTER APPLICATIONS (ISSN 1528-0608) is published monthly by Circuit Cellar
Incorporated, 4 Park Street, Vernon, CT 06066. Periodical rates paid at Vernon, CT and additional offices. One-year (12 issues)
subscription rate USA and possessions $29.95, Canada/Mexico $34.95, all other countries $49.95.Two-year (24 issues) sub-
scription rate USA and possessions $49.95, Canada/Mexico $59.95, all other countries $85. All subscription orders payable in
U.S. funds only via Visa, MasterCard, international postal money order, or check drawn on U.S. bank. Direct subscription orders
and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 5650, Hanover, NH 03755-5650 or call
800.269.6301.

Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 5650, Hanover, NH 03755-5650.

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics or for the
consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and workmanship of read-
er-assembled projects, Circuit Cellar® disclaims any responsibility for the safe and proper function of reader-assembled projects based upon or
from plans, descriptions, or information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational purposes. Circuit Cellar® makes no claims or warrants that readers have a right to
build things based upon these ideas under patent or other relevant intellectual property law in their jurisdiction, or that readers have a right to
construct or operate any of the devices described herein under the relevant patent or other intellectual property law of the reader’s jurisdiction.
The reader assumes any risk of infringement liability for constructing or operating such devices.

Entire contents copyright © 2009 by Circuit Cellar, Incorporated. All rights reserved. Circuit Cellar is a registered trademark of Circuit Cellar, Inc.
Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

MEDIA CONSULTANT
Dan Rodrigues

CUSTOMER SERVICE
Debbie Lavoie

CONTROLLER
Jeff Yanco

ART DIRECTOR
KC Prescott

GRAPHIC DESIGNERS
Grace Chen

Carey Penney

STAFF ENGINEER
John Gorsky

Cover photography by Chris Rakoczy—Rakoczy Photography
www.rakoczyphoto.com

PRINTED IN THE UNITED STATES

Readers and writers know we typically run about one or two
“theme-related” articles per issue. We do this because we have a
wide readership with diverse interests. We try to please as many
people as possible. And we’ve been doing that well since 1988.
What’s always interesting about the Signal Processing issue is that
almost every article we run (as well as many of those considered
for publication) has something to do with signal theory, process-
ing, or control in one way or another. You don’t need a PhD with
a focus on signal processing to be an embedded design engineer.
But you definitely need a good grounding in signal theory to be a
successful one, whether your end goal is a marketable embedded
wireless product or simply a handy design for your workbench.

This Signal Processing issue is true to form. As you’ll see, the
topics of signal processing and control figure prominently in most
of the subjects covered.

In “IR Signal Control,” Naubert Aparicio presents a design for
offsite control of an electrical system (p. 12). He uses the IR sig-
nal controller design to remotely operate his home’s AC system
from his cell phone. You can use the techniques Naubert covers
to customize an IR signal control project of your own.

Frequency monitoring is the topic presented in Arnold Stadlin’s
article, “Frequency Sensing Made Simple” (p. 22). In this article,
he describes a microcontroller-based power frequency monitor
design that can indicate the relative stability of a power grid. The
design measures power grid frequency via a standard electrical
outlet. The acquired data is transferred to a PC, which displays the
information and relays it to a web server for real-time analysis.

As you probably know, many instruments don’t measure
equivalent series resistance (ESR). Enter Ed Nisley. After studying
the design of a classic pure-analog ESR meter, he built an analog
front end for an MCU that measures ESR. In “Capacitor ESR
Measurement,” he covers the project’s design and math (p. 28).

Starting on page 38, George Anderson presents a
dsPIC30F2023-controlled, high-end vacuum tube stereo amplifier
with distortion control, power output, and more. He describes
unique circuitry and specialized processing software.

Turn to page 50 for information about multirate techniques
and cascaded integrator-comb (CIC) filters. Robert Lacoste
explains how you can use these moving average filters to tackle
difficult signal-processing issues. When a FIR filter won’t do the
trick, this might be the perfect solution.

In “Airflow Analysis,” Jeff Bachiochi describes an effective
way to measure airflow in an air duct (p. 60). He explains how he
took apart a small CPU fan, calculated RPMs, and implemented
a circuit to output data to an LCD.

Remember when Acorn Computers introduced its RISC CPU?
Tom Cantrell has been following the story for nearly two
decades. In “Thumbs Up: The ARM Saga Continues,” he brings
you up to speed with a review of the ARM Cortex-M0 core (p. 66).
The story continues.

Signal Significance

cj@circuitcellar.com

4 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

TASK
MANAGER CIRCUIT CELLAR®

THE MAGAZINE FOR COMPUTER APPLICATIONS

http://www.circuitcellar.com/advertise
mailto:sean@circuitcellar.com
mailto:shannon@circuitcellar.com
mailto:val.luster@circuitcellar.com
http://www.rakoczyphoto.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
mailto:info@circuitcellar.com
mailto:editor@circuitcellar.com
mailto:newproducts@circuitcellar.com
mailto:reprints@circuitcellar.com
mailto:cj@circuitcellar.com
http://www.circuitcellar.com

What is
the missing
component?

Industry guru Forrest M. Mims III has created a stumper. Video game
designer Bob Wheels needed an inexpensive, counter-clockwise
rotation detector for a radio-controlled car that could withstand the
busy hands of a teenaged game player and endure lots of punishment.
Can you figure out what's missing? Go to www.Jameco.com/unravel
to see if you are correct and while you are there, sign-up for our
free full color catalog.

Ja eco_CC_ _Oct09 8/ /09 : 5 age
5.qxp 9/2/2009 4:24 PM Page 1

1-800-831-4242

http://www.Jameco.com/unravel

66 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

INSIDE ISSUE

TASK MANAGER 4
Signal Significance

C. J. Abate

NEW PRODUCT NEWS 8
edited by John Gorsky

CROSSWORD 74

INDEX OF ADVERTISERS 79
November Preview

PRIORITY INTERRUPT 80
A Broadening Experience

Steve Ciarcia

28 ABOVE THE GROUND PLANE
CCaappaacciittoorr EESSRR MMeeaassuurreemmeenntt
Ed Nisley

50 THE DARKER SIDE
MMuullttiirraattee TTeecchhnniiqquueess aanndd CCIICC FFiilltteerrss
Robert Lacoste

60 FROM THE BENCH
AAiirrffllooww AAnnaallyyssiiss
Jeff Bachiochi

66 SILICON UPDATE
TThhuummbbss UUpp
The ARM Saga Continues
Tom Cantrell

223311
12 IR Signal Control

Naubert Aparicio

22 INTELLIGENT ENERGY SOLUTIONS
Frequency Sensing Made Simple
Power Grid Frequency Monitor Design
Arnold Stadlin

38 Digitally Controlled Amplifier
Connect Vintage Analog to Modern Digital Tech
George Anderson

October 2009 • Signal Processing

p. 12 Signal Control

p. 38 High-End Amp

p. 22 Frequency
Monitor Design

p. 28 ESR
Measurement

BONUS CONTENT
Buddy Memory Manager

Arduino-based Temperature Display

http://www.circuitcellar.com

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and Everywhere You Are® are registered trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be trademarks of others.

Everywhere You Are®

Performance and power consumption have always been key elements in the development of AVR® microcontrollers. Today’s

increasing use of battery and signal line powered applications makes power consumption criteria more important than ever.

To meet the tough requirements of modern microcontrollers, Atmel® has combined more than ten years of low power research and

development into picoPower technology.

picoPower enables tinyAVR®, megaAVR® and XMEGA™ microcontrollers to achieve the industry’s lowest power consumption. Why be satisfied with

microamps when you can have nanoamps? With Atmel MCUs today’s embedded designers get systems using a mere 650 nA running a real-time

clock (RTC) and only 100 nA in sleep mode. Combined with several other innovative techniques, picoPower microcontrollers help you reduce your

applications power consumption without compromising system performance!

Visit our website to learn how picoPower can help you hammer down the power consumption of your next designs. PLUS, get a chance to apply

for a free AVR design kit!

Hammer Down Your Power Consumption with picoPower™!

http://www.atmel.com/picopower/

THE Performance Choice of Lowest-Power
Microcontrollers

picoPower 2008ad indd 1 8/8/2008 8:35:17 AM

/11/

http://www.atmel.com/picopower/

EMBEDDED MODEM DEVICE SERVER
The World Modem NET is a compact 2400 to 56 K baud

modem with embedded Internet link controller. The unit fea-
tures a transformerless DAA meeting global telephone sys-
tem requirements, no electromechanical components, and
a flexible DSP data pump. The modem is user-configurable
to meet virtually all global telecom requirements and con-
forms to the industry-standard World Modem mechanical
and interface specifications. Because of its built-in features
and flexibility, many applications and OEM products can be
created using the device.

In addition, the modem medi-
ates an Internet link via its embed-
ded controller. This provides an
extended AT command set for a
simple, low-overhead interface to
the Internet. The World Modem
NET also provides interfaces to
SPI, I2C, and general-purpose I/O
signals. The base version includes
support for IP, TCP, UDP, DNS,
HTTP client, and PING. SMTP, FTP,
and other features are available
as options. The embedded con-
troller automatically configures
the modem interface and is con-
trolled by an extension to the AT
command set.

The World Modem NET comes with a transferable FCC Part
68 license, CE, and other certifications. The World Modem
NET requires only 65-mA maximum at either 3.3 or 5 V, and
provides 5 kV of isolation.

The World Modem NET prices start under $43 in 1,000-piece
quantities. RS-232 and USB models are also available upon
request. The World Modem NET is available through Saelig
Company or Copeland Communications.

Copeland Communications, Inc.
www.copelandcommunications.com

8 CIRCUIT CELLAR® • www.circuitcellar.com

NEW PRODUCT NEWS

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

Edited by John Gorsky

FRONT END IC SIMPLIFIES BOARD DESIGN AND REDUCES COST
The UPG2253T6S Front End Integrated Circuit (FEIC) is a highly integrated device that combines a power amplifier, low-pass

filter, and two single-pole, double-throw switches into a single chip. By integrating these components into one die, the FEIC
reduces the component count, saves the total bill of materials cost, simplifies procurement, and decreases the PCB space
required for many new embedded product designs. The FEIC eliminates the need for RF component matching, which greatly
simplifies board design and further reduces component count.

The FEIC is superior to similar products on several fronts.
Its smaller package size enables product designs with tiny
footprints, while its better harmonic suppression eliminates
the need for low-pass filters on most product designs. Few
designs have the FEICs through/PA bypass feature, which
enables the end product to switch to a high-power mode
when greater range is needed, but automatically switches to
a low-power mode when greater battery savings are optimal.
Alternatively, the through/bypass path can be used as the
receive path. Furthermore, the ability to integrate these
functions on a single chip gives size reduction and perform-
ance advantages over companies using multi-chip modules.

The UPG2253T6S FEIC is shipping now. It costs $1.10 in
quantities of 100,000. Evaluation boards are available.

California Eastern Laboratories
www.cel.com

npn231.qxp 9/14/2009 10:18 AM Page 8

http://www.cel.com
http://www.copelandcommunications.com
http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 9

Oc
tob

er
20

09
 –

 Is
su

e 2
31

NPN

S

TWO kV-ISOLATED, QUAD-OUTPUT POWER SoC
The AS1454 is an isolated quad-output digital power SoC that sets a

new integration benchmark for isolated DC-DCs in a wide range of industrial
and other distributed power applications. The AS1454 eliminates the need
for low-speed, bulky optocouplers and integrates the
functionality of up to eight separate ICs used in current
implementations. This leads to a substantial reduction in
design footprint and bill-of-material costs. The AS1454’s
built-in cross-isolation DC-DC timing management and
digital power control delivers 92% DC-DC ef ficiency with
excellent light-load efficiency management for energy-
efficient, green-power applications.

The AS1454 integrates a wide input range (9- to 72-V)
isolated primary converter, a 2-kV isolation barrier, a
high-current-capable buck or boost PWM controller, and
two 2-A buck regulators into a single device. Its wide-
input voltage range allows it to be used in 12 VDC/24
VDC/24 VAC distributed power applications, as well as
48-V distributed power applications and equipment
requiring a 36- to 72-V input v oltage range. It offers
selectable spread-spectrum clocking on all PWM to
reduce power-supply spectral noise by more than 15 dB
to lower the EMI signature of the switch-mode power
supplies and ease system design for EMC compliance.

Device pricing is available upon request.

Akros Silicon, Inc.
www.AkrosSilicon.com

npn231.qxp 9/14/2009 10:18 AM Page 9

http://www.AkrosSilicon.com
http://www.circuitcellar.com
http://www.pcbcore.com
http://www.lemosint.com

10 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

NPN

COMPACT HIGH-PERFORMANCE SBC
The Eagle 50 and 50E are single-board computers (SBCs)

designed for cost-sensitive control applications that require real-
time performance, networking, and extensive support of popular
peripherals. Available in the compact 100 mm × 72 mm
picoITX form factor, they deliver 32-bit performance and fea-
tures at a cost equivalent to legacy 8- and 16-bit con-
trollers. Powered by a TI ARM Cortex-M3 core capable
of 60 MIPS, these SBCs can fulfill demanding require-
ments in monitoring, instrumentation, data acquisi-
tion, process control, factory automation, and many
other applications. Configurations include up to 256-KB
flash memory, 64-KB SRAM, 40 digital I/Os, eight
analog inputs, four analog outputs, RS-232/485, one
microSD card, and a battery-backed RTC. The Eagle
50E also supports 100-Mbps Ethernet, allowing
remote access via web or command line interfaces
for off-site monitoring. An optional USB port can be
used for programming or data transfers.

IAR and GNU programming tools allow develop-
ment of fast and ef ficient applications in C. An exten-
sive collection of code examples is included to get
started quickly. Ports of popular open-source Basic
and LUA development tools are also available to
reduce application development time. Demos of
FreeRTOS and NuttX are included for applications
requiring an RTOS. The Eagle SBCs provide system
designers and integrators with high functionality, a

compact footprint, and a low cost.
In single quantities, the Eagle 50 starts at $44.95 and

the Eagle 50E at $49.95. Custom OEM versions can be
designed for specific requirements.

Micromint USA
www.micromint.com

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fanless x86 1 GHz CPU

256MB DDR2 RAM On Board

128MB Internal Flash Disk

10/100 Base-T Ethernet

Reliable (No CPU Fan or Disk Drive)

Two RS-232 & Three USB 2.0 Ports

On Board Audio

Optional Wireless LAN & Hard Drive

Dimensions: 4.5 x 4.5 x 1.375” (115 x 115 x 35mm)

Compact Flash & Micro SD Slots

Analog SVGA Video

Extended Temperature Range

PS/2 Keyboard & Mouse Port

EMAC Linux 2.6 Kernel & WinCE 6.0

Compact SIB
(Server-In-a-Box)
Starting at $230.00
Quantity 1.

Since 1985
OVER

YEARS OF
SINGLE BOARD

SOLUTIONS

24

Phone: (618) 529-4525 Fax: (618) 457-0110 www.emacinc.com� �

COMPACT EMBEDDED

SERVER

2.6 KERNEL

EQUIPMENT MONITOR AND CONTROL

www.emacinc.com/servers/compact_sib.htm

npn231.qxp 9/9/2009 3:33 PM Page 10

http://www.micromint.com
http://www.circuitcellar.com
http://www.emacinc.com/servers/compact_sib.htm
http://www.linxtechnologies.com
http://www.emacinc.com

M
icrochip D

irect...
2nd line

The NEW MPLAB® ICD 3
The MPLAB ICD 3 In-Circuit Debugger is Microchip’s most cost
effective high-speed debugger for Microchip Flash PIC® Microcontrollers
(MCU) and dsPIC® Digital Signal Controller devices. It debugs and
programs PIC MCUs and dsPIC DSCs with the powerful, yet
easy-to-use graphical user interface of MPLAB Integrated Development
Environment (IDE).

In-Circuit Debugging for PIC MCUs and dsPIC DSCs
Full-speed, real-time emulation
Source debugging, stopwatch, complex breakpoints and
in-circuit programming
MPLAB IDE compatible
Firmware upgrade via MPLAB IDE
Overvoltage and undervoltage protection
High Speed USB 2.0 (480 Mbps)
Target power, up to 100 MA
Internal 1 MB memory buffer for increased download speed

Th
e

M
ic

ro
ch

ip
 n

am
e

an
d

lo
go

, t
he

 M
ic

ro
ch

ip
 lo

go
, M

PL
AB

 a
nd

 P
IC

 a
re

 re
gi

st
er

ed
 tr

ad
em

ar
ks

 o
f M

ic
ro

ch
ip

 Te
ch

no
lo

gy
 In

co
rp

or
at

ed
 in

 th
e

U
.S

.A
. a

nd
 o

th
er

 co
un

tr
ie

s.
PI

Ck
it

is
a

tr
ad

em
ar

k
of

 M
ic

ro
ch

ip
 Te

ch
no

lo
gy

 In
co

rp
or

at
ed

 in
 th

e
U

.S
.A

. a
nd

 o
th

er
 co

un
tr

ie
s.

©
 2

00
9,

 M
ic

ro
ch

ip
 Te

ch
no

lo
gy

 In
co

rp
or

at
ed

. A
ll R

ig
ht

s R
es

er
ve

d.

The Next Generation of
In-Circuit Debugging

MPLAB® ICD 2 RECYCLE
Return your old MPLAB ICD 2 and
receive 25% off the new MPLAB
ICD 3, MPLAB REAL ICE or PICkit™ 3
Debug Express. For more
information on this offer, please
visit:

www.microchip.com/ICD2recycle

S erial
EEPRO

M
s

A
nalog

D
igital Signal

Controllers
M
icrocontrollers

www.microchip.com/ICD3

11.qxp 9/2/2009 4:06 PM Page 1

http://www.microchip.com/ICD2recycle
http://www.microchip.com/ICD3

12 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

Do you want offsite control of your electronic equipment? With this handy IR
signal controller design, you can remotely operate the system of your
choice right from your cell phone. In this project, the inno vative design is
used to control an AC system.

IR Signal Control

I

FE
AT

UR
E

ARTICLE
by Naubert Aparicio

live in Puerto Rico, which is a hot place, as you know .
The temperature averages 82.4°F (30°C) throughout the

year, but it can reach temperatures above 100°F. As a result,
some of us are used to ar tificial climates—that is, air-condi-
tioned environments—which cost money to maintain. Like
many tropical islands, much of Puerto Rico’s electricity is
expensive because it comes from oil-based power plants.
Thus, electricity conservation is
the best way to keep my month-
ly utility bill down. To do so, I
power-up my AC units only when
someone is home. But when I get
home at 6 PM after a long day of
working and sitting in traffic
jams, I don’t like it when walk-
ing through my door feels like
entering an oven.

I used to use timers to control
my AC system, but I eventually
stopped because I wasn’t arriving
at home the same time ever y
day. It was then that I decided to
design a way to control my AC
system remotely. I wanted to be
able to turn on my AC early
enough to cool my house before
arrival. Figuring that I’d typical-
ly use such a design from my
car, I decided to use my cell
phone as the remote control
device.

After a few days of planning, I

came up with my ACcontrol design (see Photo 1). It is a
small stand-alone, Ethernet-enabled device that uses an
infrared (IR) signal for contro lling my AC system remote-
ly. By connecting the device to my fixed Internet connec-
tion, I can continuously monitor a POP e-mail account for a
specific e-mail subject. When it is found, the system sends
an IR signal that enables AC control. I can use virtually any

Photo 1—The ACcontrol features a WIZ810MJ module (top right) and a Microchip T echnology
dsPIC30F4012 (center). A red LED mode indicator and a push button form a simple user interface.
The IR sensor and the IR transmitter are on the lower right.

2910016_Aparicio.qxp 9/10/2009 1:31 PM Page 12

http://www.circuitcellar.com

cell phone to send an e-mail (even with only SMS
through an SMS-to-e-mail gateway). Upon rece ipt, the
system sends a confirmation e-mail so I know the com-
mand was received.

In this article, I’ll describe how I designed the control
system around a WIZnet WIZ810MJ module and a
Microchip Technology dsPIC30F4012 microcontroller.
The W5100 chip embedded in the WIZ810MJ module is
a high-level hardwired TCP/IP implementation that ulti-
mately makes projects like this simple, fast, and afford-
able. I programmed the project in C language with shor t
assembler routines using Microchip Technology’s
MPLAB IDE version 7.52 and the C30 compiler . I ported
the W5100 driver to the Microchip architecture and
adapted the WIZnet DNS routines to use
the SPI. For simplicity, I extracted sever-
al utility routines from WIZnet applica-
tion notes and adapted them to my code.
I used a Microchip MPLAB ICE 2 pro-
grammer/debugger and an external power
supply as my development setup (see
Photo 2).

USER INTERFACE
I purposely tried to make ever ything

associated with this project as simple as
possible. For instance, I didn’t want to
complicate the project with difficult or
costly interfaces. Thus, once the system
is configured, it requires no f urther user
interaction.

I designed a simple set-up proced ure
and incorporated only one button and an
LED indicator. The design has the ability
to learn an infrared command, set the

network configuration (IP, net-
mask, gateway, DNS IP), config-
ure the POP account, set an
access password, erase a forgotten
password, and configure the spe-
cific e-mail subject to trigger the
infrared signal. The network
parameters are set from a local
networked computer through a
dedicated set-up program. Then,
through a telnet interface, the
rest of the configuration can be
adjusted. You can develop a more
elaborate graphical interface set-
up program in the future with
this same design.

SYSTEM SET-UP
Setting up the ACcontrol sys-

tem is simple (see Figure 1). First,
the device is connected to the
network and powered on. Pressing
the button for 5 s activates the IP

set-up mode. In this mode, the system waits for a net-
work-based configuration packet that’s sent by the set-up
program in a nearby networked PC. I developed a Linux
command line program for this project, but it could be
ported easily to any operating system that suppor ts TCP.
The set-up program sends a special UDP broadcast packet
that contains the IP number, netmask, gateway address,
and DNS to be set in the device. When the ACcontrol is
in IP set-up mode and sees a c onfiguration packet that
matches its MAC address, it sets its network parameters
from the packet data. After this, you can telnet to t he
assigned IP and set the rest of the parameters. All the
parameters are saved into the Microchip EEPROM to pre-
serve its values. You can change the telnet password

Photo 2—This is my development setup. I used a Microchip MPLAB ICE 2 to help with the
debugging process. Being able to display the internal variables (e.g., the retrieved IP packets)
through hardware breakpoints was important for accelerating the debugging process.

www.circuitcellar.com • CIRCUIT CELLAR® 13

Oc
tob

er
20

09
 –

 Is
su

e 2
31

Figure 1—The WIZ810MJ module simplified this project. The only other major compo-
nent is a dsPIC30F4012 that handles the higher -level TCP routines and IR logic. The
WIZnet W5100 hardwired TCP/IP integrated circuit handles the lower -end TCP/IP stack.
This resulted in cleaner code and reduced microcontroller har dware requirements.

IR Receiver
module

dsPIC30F4012

10/100-Mbps
Ethernet port

SCS

WIZ810MJ

SCLK

MISO

MOSI

WRESET

IR Transmitter
circuit

Mode push button

Mode LED Indicator

2910016_Aparicio.qxp 9/10/2009 1:31 PM Page 13

http://www.circuitcellar.com

14 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

the IR learning and sending routines,
as well as to implement the code
needed for the DNS, POP3, and
SMTP software components.

from the same telnet session. If you
forget it, you can reset it by pressing
the button for more than 5 s.

The IR command setup to power-
up the AC is also simple. Pressing
the Mode button once puts the
ACcontrol in IR learning mode. The
infrared command is then “learned”
by pointing the original AC remote
control to the IR-receiving sensor
and pushing the Power button on the
remote. The LED indicator remains
on while learning mode is activated.

HARDWARE DESIGN
The WIZnet module simplified the

design. In addition to the WIZ810MJ
module and the dsPIC30F4012
microcontroller, I used a Vishay
Intertechnology TSOP321 38-kHz IR
receiver module and a TSAL7400
high-output IR emitting diode (see
Figure 2). The WIZnet module com-
prises everything needed for the Ether-
net interface, including the RJ-45
socket, the support circuit, and a SPI. I
chose the dsPIC30F4012 for its RAM,
EEPROM, flash memory, and timer
resources. I needed it to implement

The dsPIC software handles the
higher-level TCP protocols, all the
communication with the W5100, the
user interface, and the IR lear n and

Figure 3—The segmented software makes it easy to develop and understand. The initializa-
tion process is straightforward. The rest of the code is an event loop, where an action is
taken after a specific event is detected.

Initialize
microcontroller

ports and timers

Reset and
initialize
WIZnet
W5100

Restore IPs and
other parameters
from EEPROM

Initialize
telnet

interface

Push button
pressed?

Setup
mode

Process
telnet

Check POP3
e-mails

Data in
telnet
port

POP3
Polling?

Start

No
Yes

No

Yes

Yes

No

Figure 2—I used a hardwired TCP/IP hardware module and a SPI. It seems as though the software in the dsPIC30F4012 handles everything.
But in reality, most of the TCP/IP complexity is hidden from the programmer in the W5100 IC located inside the WIZ810MJ module. A single
3.3-V regulated power source rated at 350 mA is enough to power this project.

2910016_Aparicio.qxp 9/10/2009 1:31 PM Page 14

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 15

Oc
tob

er
20

09
 –

 Is
su

e 2
31

send functions. It controls the
WIZ810MJ module through a four-pin
SPI and a fifth pin for a RESET signal.
I manually coded the SPI routines
because the hardware SPI module
shared the pins with the PIC debug-
ging interface. The 38-kHz infrared
module handles the IR code recep-
tion and sends a filtered signal to the
dsPIC30F4012’s CN3 input config-
ured to generate an interrupt when
the logic state changes. Finally, the
dsPIC30F4012 is also connected
through the RE0 pin to an IR LED
through a 2N3904 amplifier. The
RE0 is driven by the dsPIC PWM
module set to generate the required
IR frequency of 38 kHz. The only
other two connections are for the
push button and red LED as the user
interface.

SIMPLE SOFTWARE?
The hardware is simple, but is the

software complex? No. If you’re famil-
iar with the TCP protocols (i.e., the
POP3, DNS and SMTP protocols),
the only complexity that remains is
related to the W5100 interface and
IR-handling routines. Let’s review
each software segment and see how
they work, so that you can form your
own conclusions about this project’s
complexity. I encourage you to
download the source code from the
Circuit Cellar FTP site so you can
follow the subsequent explanations.

Figure 3 depicts the software flow.
You can see the standard hardware
initialization that covers the dsPIC
resources and the W5100 chip. It is
followed by the parameter initializa-
tion in the EEPROMs and the initial-
ization of the telnet interface. The
software then enters in a loop to
look for the push button or data in
the telnet port or data in the POP3
account. Each of these functions is
handled in a separate code segment.
This flow is shown as the main()
routine (see Listing 1).

The first four routines initialize
the system. The init() routine ini-
tializes the dsPIC30F4012 by config-
uring the I/O pins, programming the
PWM module to the output IR fre-
quency, sending and holding the
RESET signal to the WIZnet module,

and programming the systick timer
used for the delay routines. The next
initialization routine is for the IR
system, IR_init(). This initializes
the IR input port interrupt and the
Timer3 module (TMR3) to count
every 8.7-µs resolution used to meas-
ure the IR pulses. When I cover the
IR routines later in this article,
you’ll see that these can easil y cope
with most of the IR p rotocols.

After setting up the IR hardware,
the next thing to do is to prepare the

W5100 hardware TCP/IP chip. This
is done with the reset_w5100 and
sysinit calls. The former just resets
the W5100. It is held in reset by the
init() call, so in this second call it
just frees it after the required hardware
reset delay of more than 10 ms. A
software reset command is then sent
to the chip itself. Then comes the
sysinit call, part of the W5100
driver, which configures the trans-
mit and receive buffer sizes. The
W5100 has four channels, each for

2910016_Aparicio.qxp 9/10/2009 1:31 PM Page 15

http://www.circuitcellar.com
http://www.expresspcb.com

16 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

different TCP/IP connections. Also,
the W5100 has 8 KB of internal
memory. The amount of memory
you assign to each channel depends
on the simultaneously open sockets
or connections in your software,
which will determine the volume of
traffic the system can handle. More
memory assigned to a channel means
that the software may be slower
when attending the connection as
the buffer is bigger and data will not
be lost.

I used three channels, so I config-
ured the W5100 in the only possible
configuration: 1 KB for each transmit
and receive buffer for four channels
(8 KB in total). Thus, packets can’t
exceed the 1 KB size, which is not a
problem for my configuration. In my
software, channel 0 is assigned as an
administration RAW port for IP
address configuration, channel 1 is
shared for the DNS and e-mail proto-
cols, and channel 2 is for the telnet
TCP interface. Channel 3 is reserved
as a UDP socket for broadcasting the
message to other receiving modules
for future expansion.

Once the hardware is ready, the
main code restores the IP parameters
from the EEPROM, sets the fixed
hardware MAC address, and initial-
izes the IP values in the W5100 chip.
It is important to note that the
W5100 chips don’t come with MAC
addresses. You can purchase them
separately at www.ieee.org, as noted
on WIZnet’s FAQ page. I created one

for this demo, but please note that
you need to obtain legal MAC
addresses to be able to commercial-
ize products with these chips. For

the demonstration’s sake, I just had
to be sure that the selected MAC
address didn’t match any other MAC
address in my lab.

Listing 1—After initialization, a simple loop is used to check for three dif ferent events: a
push button press, data in the telnet port, or a POP3 e-mail trigger .

// ----- main program ---/
int main()
{

// initialize microcontroller
init();

// initialize IR system
IR_init();

// reset w5100
reset_w5100();

// initialize w5100
sysinit(0x00, 0x00);

// initialize MAC/IP layer with default values
restore_parameters(); // restore parameters from EEPROM
setSHAR(my_mac); // set MAC address
init_ip(); // init IP values

// initialize telnet port
init_telnet();

// process cycle
systick = 0;
for (;;) {

// check if setup mode is requested
if (PUSH_BUTTON == 1)

setup_mode();

// check if telnet session
if (getSn_SR(SOCKET_TELNET) == SOCK_ESTABLISHED)

process_telnet();

if (email_hostname[0] && systick >= email_freq)
email_process();

}

return 0;
}

Photo 3—The sample Linux set-up utility
receives the following: the broadcast
address of the PC and the MAC address of
the device, the desired IP, the netmask, the
gateway, and the DNS addresses. A UDP
packet is broadcast addressed to port 9000,
and it’s captured by the ACcontrol’s Raw
mode, even if its IP doesn’t belong to the
current network.

2910016_Aparicio.qxp 9/10/2009 1:31 PM Page 16

http://www.ieee.org
http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 17

Oc
tob

er
20

09
 –

 Is
su

e 2
31

The W5100’s IP setup procedure is
very simple, as you can se e in the
init_ip routine. I first set the IP
address by calling the W5100 driver
setSIPR routine. The netmask is
set with the setSUBR call and the
gateway address configuration
requires a call to the setGAR rou-
tine. Each IP address and netm ask is
represented as a 4-byte ar ray. The
DNS address is saved in a local vari-
able in the format required by the
DNS search routines.

Finally, the initialization segment is
completed by a call to the Telnet ini-
tialization routine, init_telnet().
It opens a TCP socket in the
W5100’s preassigned SOCKET_TEL-
NET channel and sets it to lis ten
mode. Please note that these calls
are non-blocking. They just set th e
socket to listen. The actual packet
“listening” is performed in the
process_telnet segment code
where the socket is tested for data. If
you are familiar with the sock et
interface, you will realize that the
WIZnet driver interface is similar to
other operating systems like Unix.
Some differences exist. In the cu r-
rent implementation, the program-
mer has to first check that there is
data in a socket before callin g the
socket read routine (i.e., there is no
select call and the read routines are
non-blocking). This is needed
because you don’t want to stop the
CPU waiting for a packet to ar rive.
You check for data, and if there is no
data just continue to check other
things. This technique is used a lot
in embedded processing and avoids
the need for a multitasking RTOS.

PROCESSING LOOP & SETUP
Refer to the main routine (see

Listing 1). After initialization, the
code is a simple loop th at checks for
a button press, a new connection to
the telnet socket, or a received trig-
ger e-mail. Each event produces a
call to a corresponding routine. A
button press event puts the device in
set-up mode via the setup_mode
routine. A new telnet connection
executes the process_telnet code,
which implements the telnet inter-
face. Finally, if a new e-mail is

detected, the email_process rou-
tine activates the IR signal and sends
you a reply e-mail.

Pressing the Set-Up mode push
button activates the set-up routine.
This makes the ACcontrol listen to
a special UDP packet sent from a PC
program that’s designed to send the
device IP configuration. In Set-Up
mode, you execute a s imple program
to request the IP address, netmask,
default gateway, and DNS IP and
then send it to the network. But how

can the ACcontrol, with no defined IP
configuration, receive an IP packet?

Other devices on the market generally
use DHCP or a fixed IP address for
the initial contact. DHCP was unde-
sirable for this case because it would
be difficult for you or the set-up pro-
gram to know the IP address
required for the rest of the configura-
tion. A fixed IP would force you to
change the PC’s IP to be able to com-
municate with the newly reset
device. Thus, I decided to use another

2910016_Aparicio.qxp 9/10/2009 1:31 PM Page 17

http://www.circuitcellar.com
http://www.lecroy.com

18 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

approach and experiment with the
W5100 chip’s Raw Socket mode.

Set-Up mode opens a socket in
Raw mode. If you are u nfamiliar
with Raw Socket mode, th ink of it as
a “promiscuous” (as it is called in
some circles) Ethernet interface that
captures every packet, even if it isn’t
directed to the device. In this mode, I
checked for a specific UDP packet
sent from the PC with the required IP
configuration. When the ACcontrol
sees it, it takes the infor mation from
the UDP packet body and sets itself
accordingly. The previous IP configu-
ration doesn’t matter because this
method always works (see Photo 3).
The setup_mode routine implements
this as well as the IR lear ning and
password reset functions.

For the IP configuration, there i s a
do-while loop in the code that
checks for a packet ar rival. It checks
that it is an IP packet (0800 hex at the
Ethernet-type field). Then it checks if
it is a UDP packet directed to por t
9000 and if the packet is a special
packet sensed by a magic number in

Listing 2—The IR_send routine just replays the sampled transitions from the IR learn-
ing routine. The ir_array contains the elapsed time between changes of the learned
signal. If a signal must be modulated at 38 kHz for the duration of the transition, the
most significant bit of the word is set to one.

// send the learned IR command
void IR_send(void)
{

uint8 i, logic;
uint16 t;

for (i = 0; i < ir_transitions; ++i) {
t = ir_times[i]; // get time
logic = (t&0x8000)?1:0; // get logic
IRpulse(logic, (t&0x7FFF)); // send pulse

of the corresponding logic
}

// wait lead time
IRpulse(0, 2298);

}

its first data position. If everything is
fine, the configuration is extracted
from the packet, applied to the sys-
tem, and the Set-Up mode is exited.

INFRARED COMMANDS
Most of the IR commands for

remote control consist of a pulse-

modulated 30- to 60-kHz signal.
(Note that 38 kHz is the most com-
mon.) Although different protocols
exist for embedding a command in
the signal, what I wanted was just to
learn a single command—the power
On/Off signal—and then be able to
replay it when needed. The sys tem

email : sales@pcb-pool.com
Toll Free USA : 1 877 390 8541
www.pcb-pool.com

Low Cost - High Quality
PCB Prototypes

no extra cost

“ ” ®

Follow the production of your PCB in

2910016_Aparicio.qxp 9/10/2009 1:31 PM Page 18

mailto:sales@pcb-pool.com
http://www.pcb-pool.com
http://www.circuitcellar.com
http://www.machinepier.com

Connected. Versatile. Cost-effective.

Stellaris LM3S9B90
Ethernet Evaluation Kit
featuring USB, Ethernet
and CAN

$99

Stellaris LM3S3748
Evaluation Kit
featuring USB Host/Device

$109

Stellaris LM3S8962
Evaluation Kit
featuring integrated Ethernet
and CAN

$89

Stellaris LM3S6965
Ethernet Evaluation Kit
demonstrating an embedded
web server out-of-the-box

$69

Stellaris LM3S2965 CAN
Evaluation Kit
demonstrating a CAN network
out-of-the-box

$79

Stellaris LM3S811
Evaluation Kit
featuring basic embedded
control

$49

® Cortex™

® software
Stellaris® Means:

19.qxp 9/10/2009 1:38 PM Page 1

20 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

doesn’t need to understand the data
in the signal (i.e., decoding isn’t
needed), so it’s simple to sample the
signal and record the time lapses
between signal changes. This will
accommodate any protocol.

Replaying the “learned” IR signal
is also easy. Just perform the modu-
lation at the previously recorded
time. As I already mentioned, I used
a 38-kHz IR module that filters th e
signal and converts it to a logic 1,
where a 0 is when modulation is
present and a 1 otherwise. This sig-
nal is connected to the
dsPIC30F4012’s CN3 pin.

IR routines are included at the end
of the ACcontrol.c source code file
available on the Circuit Cellar FTP
site. The IR_capture routine starts
the interrupt at CN3 and resets the
internal counters and variables that
record the signal. The time between
interrupts are saved into the
ir_times variable. IR_stop stops
the recording. Actual sampling and
recording occur at the CN3 state
change interrupt-handler routine
called _CNInterrupt. In each logic
state, the change of the CN3 input
pin is recorded together with the
time from the last interrupt. The sig-
nal recording stops when the array
storage is filled or i f no signal is
received in 20 ms, as set in the
IR_init routine. The fifteenth bit
in each value in the ir_times array
records the state at the capture: one
if there was modulation, zero i f there
wasn’t.

The IR_send routine is much sim-
pler (see Listing 2). An iteration covers
all the words in the ir_times array,
checking the fifteenth bit or the mod-
ulation state and sending an IR signal
for the recorded time. This is for all
the learned transitions, thus replaying
the signal exactly as it was sampled.
The IRpulse function sends the
required 38-kHz signal to the
dsPIC30F4012’s output pin using the
previously configured PWM module.

TELNET INTERFACE
The telnet interface is one of the

most complex components of the
ACcontrol project. Interactivity com-
plicates things. Processing starts

when a connection is received at p ort
9000. The main program calls the
process_telnet routine, which
first checks that the connection is
established and monitors it in case
you or the connection fails during
the telnet session (closing the socket
in that case). When the connection
and password prompt is sent, the tel-
net command IAC WILL ECHO is
also sent, causing the telnet client to
turn off its local echo so that the
password isn’t visible on the screen.

The telnet routine then waits until
the getSn_RX_RSR function returns
notification that data is available at
the receiving buffer. Text processing
filters the telnet protocol control
characters and buffers a complete line
before analyzing it. A finite state
machine performs the interface
actions in order. First, it gets the pass-
word and then asks for the POP
parameters, enabling a subject string
and a new password. Photo 4 shows
the interaction. Using a finite state
machine and moving from state to
state simplified the coding because
the software was not implemented in
an RTOS. You can interrupt the telnet
session at any time. Only the changed
parameters are saved in the EEPROM.

E-MAIL COMMUNICATIONS
The email_process routine is the

main ACcontrol function. The main

code calls it periodically. It just
checks if there is an activation e-
mail from the POP3 account. If th ere
is, it activates the IR signal and
sends a reply e-mail confir ming the
command. To check the POP3
account, it calls the check_email
routine. This routine establishes a
new TCP connection to the POP3
standard port at the server specified
in the telnet configuration session.
Once connected, it logs into the
POP3 account sending the POP3
commands USER and PASS. If the
log-on is successful, the routine
requests the number of e-mails with
the STAT command and then loops
through the e-mails scanning the sub-
jects to check for the activation sub-
string. If a subject contains it, the
scan_email routine sends the DELE
command to delete that single mail
and it signals the calling program that
the IR command must be sent. This is
received by the email_process rou-
tine, which then calls the IR_send
command, turning on or off the air
conditioning equipment. It also calls
the send_email routine to send you
a reply e-mail. This last routine uses
SMTP commands to send a reply
address to the registered address
through the telnet configuration ses-
sion. Like the check_email routine,
it establishes a new TCP connection
to the SMTP port at the registered

Photo 4—Once the device IP is set through the PC set-up program, you can connect via tel-
net to the 9000 port in the device to set the rest of the parameters: the POP3 account, the
username, the password, the e-mail address that will receive the activation reply e-mail, the
SMTP server where e-mails are to be sent, and the subject that will activate the infrared sig-
nal. You can also change the telnet passwor d from the default “password” string.

2910016_Aparicio.qxp 9/10/2009 1:31 PM Page 20

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 21

Oc
tob

er
20

09
 –

 Is
su

e 2
31

ROJECT FILES
To download the code and a list of
useful resources, go to ftp://ftp.
circuitcellar.com/pub/Circuit_
Cellar/2009/231.

ESOURCES
———, “TSOP321: IR Receive
Modules for Remote Control Sys-
tems,” 82229, 2007.

Microchip Technology, Inc.,
“dsPIC30F4011/4012 Data Sheet:
High-Performance 16-bit Digital
Signal Controllers,” DS70135D,
2007.

Naubert Aparicio (naubert.aparicio@usa.
net) is a computer science engineer
with a degree from the Simon Bolivar
University in Venezuela. As the technol-
ogy director for Quantum Business Engi-
neering in Puerto Rico, he manages
design-critical Unix system architec-
tures. In his free time, Naubert enjoys
researching topics such as robotics,
advanced digital design, and embedded
systems.

P

R

WIZnet, “WIZ810MJ Datasheet,” Version 1.0. 2007, www.circuitcellar.com
/Wiznet/WIZ810MJ%20Datasheet_V_1.0.pdf.

OURCES
dsPIC30F4012 DSC
Microchip Technology, Inc. | www.microchip.com

Ethernet WIZ810MJ module
WIZnet, Inc. | www.wiznet.co.kr/en/

TSAL7400 Infrared-emitting diode and TSOP321 modules
Vishay Intertechnology, Inc. | www.vishay.com

S
mail server, authenticates it by send-
ing the HELO command, and sends
the e-mail using the MAIL FROM,
RCPT TO, and DATA commands via
the network connection. This imple-
mentation requires that the SMTP
accepts an anonymous session.

DESIGN SUCCESS
This project took just 20 days, as

you can see in the log included with
the source code posted on Circuit
Cellar FTP site. The WIZnet module
and its W5100 hardwired TCP/IP
chip really simplified the program-
ming process. They provided a high-
level socket interface with raw sock-
et processing to a lower-end micro-
controller.

I now have a working design for
controlling my air conditioner with
my cell phone. Plus, I can say I have
a great networked embedded hard-
ware design project under my belt.
Now it’s your turn to design a simi-
lar project of your own. I

2910016_Aparicio.qxp 9/10/2009 1:31 PM Page 21

mailto:naubert.aparicio@usa.net
mailto:naubert.aparicio@usa.net
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/231
http://www.circuitcellar.com/Wiznet/WIZ810MJ%20Datasheet_V_1.0.pdf
http://www.microchip.com
http://www.wiznet.co.kr/en/
http://www.vishay.com
http://www.circuitcellar.com
http://www.cadsoftusa.com

IEIE22 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

Figure 1). The sensor measures the power grid frequency from
a typical electrical outlet scaled down to less than 12 V b y an
AC/AC transformer (see Photo 2). A PC communicates with
the PHzMonitor via its RS-232 serial por t. Software on the
computer displays the frequency measurements and option-
ally relays the data to a web ser ver for live public viewing.
You can save the data to disk via the PC software or down-
load it from the web ser ver for offline analysis.

FREQUENCY MEASUREMENT
Let’s review how the PHzMonitor measures power grid

frequency. There are five steps in the process.
Step one: Use an AC-to-AC transfor mer to scale the stan-

dard electrical outlet voltage
down to a safe level for your com-
ponents. You need the AC voltage
to be between 9 to 12 VAC.
Step 2: Rectify the AC wave-
form to a half wave using
diodes. Step three: Scale the AC
half waveform to a safe level for
op-amp input using voltage
divider resistors. Step four: Cre-
ate a square waveform from the
half wave using a DC reference
voltage and an op-amp in a rail-
to-rail configuration. The op-
amp outputs the amplified dif-
ference between the AC voltage
and the DC reference voltage as 0
to 5 VDC. Step five: Use a cr ystal
oscillator-driven microcontroller
to measure the periodic cycle

Frequency Sensing Made Simple

INTELLIGENT ENERGY SOLUTIONS

by Arnold Stadlin

This power frequency monitor indicates the
relative stability of a power grid. Built
around a microcontroller, a precision crystal
oscillator, an op-amp, and various passive
components, the design measures power
grid frequency via a standard electrical out-
let. It then sends the data to a PC, displays
the information, and relays it to a web
server for real-time monitoring.

A n indicator of a power grid’s health is its ability
and agility to respond to changes in the supply

and demand of electricity. Measuring the stability of a
power grid’s frequency is an easy method for monitoring its
health. Although there are other measurable grid character-
istics, frequency is ubiquitous across the grid and less
affected by local disturbances than other attributes like
voltage and current.

“PHzMonitor” is a short name I affectionately use to refer
to this project and its frequency sensor (see Photo 1). The
PHzMonitor frequency sensor consists of a Microchip Tech-
nology dsPIC30F3012 microcontroller, a precision crystal
oscillator, an op-amp, and various passive components (see

Photo 1—The PHzMonitor project is a useful, scalable system. Networked sensors along with the Internet enable
you to monitor frequency conditions in a power grid. Y ou can also compare the performance of dif ferent grids.

Power Grid Frequency Monitor Design

2910015_Stadlin.qxp 9/14/2009 10:47 AM Page 22

http://www.circuitcellar.com

IEIE www.circuitcellar.com • CIRCUIT CELLAR® 23

Oc
tob

er
20

09
 –

 Is
su

e 2
31

timespan by counting the number of oscillator cycles
between the leading edges of the square wave.

DESIGN & CONSTRUCTION
I’ll be honest. I jumped into the design and constr uction of

the PHzMonitor sensor before doing my homework! The
sensor design concept is simple: convert alternating cur-
rent to a square wave and then use a microcontroller to
count timer ticks between leading edges of the digital
signal. The concept for measuring the frequency of a
square wave is similar to measuring the motion velocity
of a quadrature encoder signal. The design concept is
heavily biased toward this method because I was
involved in a robotics project at the time.

What makes the PHzMonitor sensor unique is that it
measures frequency at an arbitrary 2.5-VDC reference
voltage level instead of measuring at the zero crossings. I
used a reference voltage for two fundamental reasons.
One, it’s easier (for me, at least) to measure a v oltage reli-
ably than it is to measure no voltage reliably . Two, the
cyclic nature of the power signal being measured enables
me to set a voltage reference between logic level voltages

and amplify
the compara-
tive results
with accept-
able accuracy.

The design
uses a 9-VAC
transformer for
power and sen-
sor input. The
5-VDC power
supply for the
integrated cir-
cuit compo-
nents is tapped
from the AC

power input using a standard full-wave bridge rectifier , a
linear voltage regulator, and an electrolytic capacitor. The
half-wave signal samples are simply the resultant, compli-
mentary, half-wave forms from the rectifier ’s inputs. The
current design uses a dual-channel op-amp. If you really
want to measure frequency at the zero crossings, the com-
plementary half-wave forms can be used for calculating the
zero-crossing point between two reference voltage compar-
isons. Both half-waves are positive, and both use the same
reference voltage, so the zero-crossing time is one-half the
time between the leading edges. Did I not mention that it
is more difficult for me to measure no voltage?

I used a Microchip Technology MCP6292 op-amp in
the sensor. I chose it for two reasons: it is designed to
operate in 0- to 5-V rail-to-rail mode, and it has a high
speed of 10 MHz. The 16- bit dsPIC30F3012 microcon-
troller has a built-in input capture peripheral, which is
ideal for measuring the timespan of a periodic digital sig-
nal. This device has a generous 24 K B of program memo-
ry, 2 KB of RAM, and 1 KB of flash EEPRO M. The
dsPIC30F3012 is available in an 18-pin parallel dual in-
line packaging as well as sur face-mount packaging.

A Fox H5C-2E 12-MHz crystal oscillator drives the
microcontroller. The 12-MHz oscillator frequency was
selected because it can be evenly divided by both 60 Hz
and 50 Hz frequency values. A Maxim Integrated Products
DS275 RS-232 transceiver is used for communications with
a PC. A National Semiconductor LM340T5 (7805) linear
voltage regulator is used to provide the integrated circuit
component power. A Microchip Technology MCP1525 pro-
vides the 2.5-V reference. Other components include resis-
tors, capacitors, silicon diodes, LEDs, and a push button for
reset. The project is assembled on a 2 ″ × 4″ prototype board
packaged in a plastic container.

PROGRAMMING
The PHzMonitor’s dsPIC30F3012 microcontroller is pro-

grammed with the Microchip C30 compiler . The programmed

Photo 2—This oscilloscope screenshot displays
(from top to bottom) the input AC sine wave, the
rectified half wave, and the amplified 5-V square
wave prepared for measurement.

Figure 1—The PHzMonitor project includes a sensor input, microcont roller, computer, and web server com ponents.

AC Power
(Standard electrical outlet)

AC/AC
Transformer

9 VAC

AC/DC
Full-wave

bridge
rectifier

Half-wave
rectified

Voltage
regulator

MCP6292
Op-amp

Input
Capture

12-MHz
Oscillator

PC

25AA1024
EEPROM

Ethernet

dsPIC30F3012

Web
service

Strip
charts

Strip
chartsDatabase

Internet

RS-232

PWR

SPI

CLK

UART

TLL

Activity

Reset

5 VDD

VDD/2

2910015_Stadlin.qxp 9/14/2009 10:47 AM Page 23

http://www.circuitcellar.com

IEIE24 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

computer can record the timestamp when it receives the
data packet with minimal variance in latency between
the actual time the sample is recorded and when the
timestamp is applied to the data. The data is always the
very last sample taken and the data packets are a fi xed
number of bytes transmitted at a fixed data rate.

CYCLE PERIOD & FREQUENCY
The dsPIC30F3012 microcontroller oscillator configura-

tion settings enable you to tune the instr uction timing by
setting a phase-locked loop (PLL) frequency multiplier . The
resulting processor frequency, used by the programmable
timers, can be prescaled to reduce the timer ticks frequen-
cy. To improve the precision of measurement, you need to
select a processor frequency that enables you to measure
frequency comfortably for both 60 and 50 Hz using a 16-bit
unsigned integer value (0 to 65535).

A timer tick’s length is four oscillator cycles. If you use a
PLL multiplier of four to drive the microcontroller at 48 MHz ,
the following two equations provide the timer tick counts
for 60 and 50 measurements using a timer prescale divider
of eight.

The following formula converts the clock tick count to

1
60

12 000 000

8

 s ticks/s
 = 25,000 ticks for a 60

⎛
⎝⎜

⎞
⎠⎟ × , ,

pperiod

 s ticks/s
 = 30,000 ticks fo

1
50

12 000 000

8

⎛
⎝⎜

⎞
⎠⎟ × , ,

rr a 50 period

firmware configures an
input capture timer to
accumulate clock ticks
in a 16-bit register. A
high-priority ISR exe-
cutes when an INPUT
pin detects the leading
edge of the square wave.
This routine copies the
input capture timer’s
register value to a RAM
variable for program loop
processing and clears the
register. A normal priori-
ty ISR receives an RS-
232 command byte and
copies it to a RAM vari-
able for program loop
processing. The main
program loop polls the
RAM for command bytes
recorded by the RS-232
routine. When a com-
mand is found, the main
loop processes the com-
mand’s procedure and
repeats the loop.

The PHzMonitor is
programmed to respond to single byte command con-
stants. There are only three commands. PING transmits
the device’s unique identification number and firmware
version. TRANSMIT sends a data packet containing a
start byte, 16-bit packet identifier, 16-bit last measure-
ment, 16-bit average of the last 10 measurements, and a
stop byte. DIAGNOSTIC transmits a continuous bit-
stream for RS-232 timing measurements.

The computer sends the PING command to verify that
it is connected to the device and to get the device’s
unique identification number. When the computer is
ready to receive data, it sends the TRANSMIT command.
The device responds to the TRANSMIT command by
sending a data packet. The computer software is pro-
grammed to transmit the commands in a separate thread
from receiving and processing the data packets. This
asynchronous flow permits the computer to perform vari-
ous tasks like charting the data and responding to user
input at the same time it is obtaining data from the
device.

The computer’s clock needs to be synchronized with a
National Institute of Standards and Technology Internet
time server (http://tf.nist.gov/service/its.htm). When the
data packet is received, the computer software assigns it
a timestamp before charting the data, saving it to disk, or
relaying it to the webserver. This places the timestamp
close to the data collection time. Using a command-driv-
en protocol improves the communications because the
requests for data can be transmitted by the computer
when it is ready to respond to receiving the data. The

Figure 2—A dsPIC30F3012 sits at the heart of the PHzMonitor design. I used a Fox H5C-2E 12-MHz crystal oscillator to
drive the microcontroller.

2910015_Stadlin.qxp 9/14/2009 10:47 AM Page 24

http://www.circuitcellar.com
http://tf.nist.gov/service/its.htm

Pick a Chip.
Any Chip.

Find a Solution to your next Embedded Challenge.
Do the Research you should, but never had time for.

Embedded Developer’s
intuitive research engine

helps you speed your chip
evaluation time. You don’t have
to know the manufacturer, chip

family or part number--just
select the features you want

and let us do the rest.

We help you research your best option.
Nowhere else can you compare your best
options side-by-side from different
manufacturers. Click on the device you want,
and a product page lets you select
Distributor Buy/Quote options, send RFQs,
download datasheets, and more.
Plus--Hearst stock check gives you
up-to-date inventory on every device.

Once you have the chip that meets
your needs, review and compare

the hardware and software
development tools that support it

from multiple manufacturers, and buy them
on-line through our shopping cart.

Part Number AT91SAM7X MCF5208 LPC2923

Manufacturer

Core Variant ARM7TDMI ColdFire V2 ARM968E-S
Flash 262144 0 262144
RAM 65536 16384 16384
Max. Freq. 55 166 125
Dhrystone MIPS 50 159 156
Timer Bits 16 32 32

Shave days off your schedule with Embedded Developer, the
only site in the world where you’re only clicks away from

finding the chips and tools to get you up and running, quickly.
Try EmbeddedDeveloper.com, or EmbeddedDeveloper.cn in Chinese.

The Sites for Engineers with a Job to Do.

Pick a Chip Ad 7/29/09 10:03 AM Page 1
25.qxp 9/9/2009 5:09 PM Page 1

http://www.embeddeddeveloper.com
http://www.embeddeddeveloper.cn

IEIE26 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

frequency in hertz.

You’re also able to compare power grids with both 60- and
50-Hz nominal frequencies. You can normalize the data to
a percentage deviation from the nominal frequency using
the following calculation.

Using this calculation, you can compare power grid frequen-
cy data. For example, you can compare New Zealand’ s 50 fre-
quency (www.systemoperator.co.nz/power-system-overview)
to the 60 frequency measured in the United States.

ASSEMBLY & TESTING
Working with prototype boards is fun. But getting the pro-

totypes to actually work can be a challenge. When building a
prototype board assembly, it’s good to keep the wiring short,
neat, and color-coded. I like using category 5 solid conductor
cable wire that gives me eight colors to work with. The con-
vention I follow is to use the solid colors for power and volt-
age wires: green for ground, orange for 5 VDC, brown for rec-
tified AC, and blue for the 2.5-V DC reference voltage. I use
the white/color wires for wires carrying signals like RS-232
and LEDs. When trimming leads on resistors, capacitors,
and other components, it is good to cut them to consistent
lengths. Component leads of 0.5″ work well for this project.

The PHzMonitor’s complete circuitry is shown in Figure
2. After the circuit is assembled and double-checked, the
AC transformer is connected and the prototype is ready for
programming and testing.

100% measured frequency nominal frequency
nominal fre

× −[]
qquency

 = deviation %

counted ticks 60
 ticks

 = calculated×
25 000,

The firmware source code
is posted on the Circuit
Cellar FTP site. After the
firmware is programmed,
the PHzMonitor produces a
60-Hz pulse-width-modulat-
ed, 50% duty cycle, square
wave output on pin 10. This
60-Hz signal can be con-
nected to the op-amp input
and used for calibrating the
system if no other known
frequency calibration signal
source is available. Two
LEDs should be active. The
Power LED is on when the
device has power. A large

red/green activity indicator LED is toggled between on and
off with each program loop pass. If the measured frequency
is within ±1% of the programmed nominal frequency, the
red/green activity indicator pulses green. If the frequency is
outside of the ±1% tolerance, the activity indicator pulses
red. The process loop per formance can be measured from
the activity indicator signal pulses using an oscilloscope.

COMPUTER SOFTWARE
After ensuring the device is functional, the next step is to

connect it to the computer ’s RS-232 port and then load and
run the computer software. The computer software for this
project was developed using the Microsoft C# programming
language, the readily available Visual Studio Express 2008,
and .NET Framework development tools. The Microsoft
Visual Studio Express editions are free download versions of
the Visual Studio development tools. The source code for
this project is available on the Circuit Cellar FTP site.

Photo 3 is a screenshot of the computer software with
local sensor measurement frequency. A selected remote fre-
quency is displayed in the top char t. The difference and
rate of change between the two frequencies are plotted in
the lower chart. The bottom of the screen displays a r un-
ning activity log and various operational indicators.

MONITOR VIA THE ’NET
There are currently multiple sources for grid frequency

information. I created a new source! When the frequency
sensor and computer are connected to the Internet, the data
can be relayed to a web server where people from around the
world can view the data live and download it for off-line
analysis. The implementation details for setting up the web
server for this project are beyond the scope of this ar ticle.

Photo 3—Frequencies are dis-
played in the top chart. Freq uency
change and differences are plotted
in the lower chart. The bottom of
the screen displays a running
activity log and various operationa l
indicators.

2910015_Stadlin.qxp 9/14/2009 10:47 AM Page 26

http://www.systemoperator.co.nz/power-system-overview
http://www.circuitcellar.com

IEIE www.circuitcellar.com • CIRCUIT CELLAR® 27

Oc
tob

er
20

09
 –

 Is
su

e 2
31

Arnold Stadlin (ajstadlin@multiaxismotion.com) studies electr ical
engineering technologies at Anne Arundel Community College
in Arnold, MD. His interests include manufacturing and industrial
technologies, energy measurement and instrumentation, elec-
tro-mechanical engineering, robotics, information systems, and
computer programming.

PROJECT FILES
To download the code, go to ftp://ftp.circuitcellar .com/pub/
Circuit_Cellar/2009/231.

RESOURCES
Internet Time, National Institute of Standards and Technol-
ogy, http://tf.nist.gov/service/its.htm.

Microchip Technology, “dsPIC30F2011/2012/3012/3013
Data Sheet: High-Performance, 16-bit Digital Signal Con-
trollers,” DS70139F, 2008.

———, “MCP1525/1541: 2.5V and 4.096V Voltage Refer-
ences,” DS21653A, 2001.

———, “MCP6291/1R/2/3/4/5: 1.0 mA, 10 MHz Rail-to-
Rail Op Amp,” DS21812E, 2007.

Transpower New Zealand, “Total New Zealand Power Sys-
tem,” www.systemoperator.co.nz/power-system-overview.

W. Zorn, Javascript Vector Graphics Library, 2004,
www.walterzorn.com.

However, the source code and database schema are available
in the PHzMon_Web.zip file on the Circuit Cellar FTP site.

The PHzMonitor project server is a standard computer
running Microsoft Windows Server 2008, Internet Informa-
tion Services, and SQL Server 2005. The live chart display
uses a combination of ASP.NET, AJAX, and Javascript. The
live chart is shown in Photo 4. The chart graphics are gener-
ated using Javascript graphics routines developed by Walter
Zorn (www.walterzorn.com). They are available for use with
the GNU’s Not Unix Lesser General Public License.

In the PHzMonitor project, the web server collects data
using several different methods. The computer software for
the design transmits the data to the web server using a web
service. A web service is a server-side program module that
presents a standard interface to the Internet. In my web
service, the interface is simply a function call with sensor
identification, password, frequency, and timestamp data as
parameters. The function call returns an “OK” status if the
upload succeeds or error messages if the upload fails .

There are other methods that the web ser ver uses to col-
lect data. One is with a hyper text transport protocol uniform
resource locator with sensor identification, a password, a time-
stamp, and frequency data as parameters. Another is with
small custom gateway applications that scrape the frequency
data published on other web sites. The web ser ver’s time is
automatically included with the data records upon receipt of the
data. If the timestamps supplied with the data are significantly
different from the server-applied timestamps, it means the local
computer’s clock is not synchronized to a time standard and
thus the server timestamps are used for charts and calculations.

INTELLIGENT DESIGN
The PHzMonitor project is a relatively simple, scalable,

inexpensive system. Networked sensors used with the Inter-
net enable you to monitor and study frequency conditions
around the power grid—to better understand the grid’s per-
formance—and around the world to compare performance
between grids.

As we develop more energy resources, they must be

integrated efficiently and cost-effectively into our
existing energy infrastructure—the power grids. Alter-
nating current power generators must be synchro-
nized to a nominal frequency to provide optimal serv-
ice and a reliable electrical energy supply.

When you consume electricity, you place a load on
the power grid. The technology exists to develop intel-
ligent appliances that can measure the grid’s frequency
to monitor the health and stability of its performance.
These appliances could then be configured to respond
appropriately, in a semi-coordinated manner, by sched-
uling and reducing load during critical times to help
maintain grid stability. With strategically located fre-
quency sensors connected to the Internet, network-
connected intelligent appliances could compare local
conditions to wider area grid performance. This would
enable the appliance to make “intelligent” responses
that would result in a more stable power grid . I

Photo 4—You can view the live power grid fr equency-monitoring chart in a web
browser. The chart shows two freq uency disturbances between minutes 5 and 6.

SOURCES
H5C-2E 12-MHz Crystal oscillator
Fox Electronics | www.foxonline.com

DS275 RS-232 Transceiver chip
Maxim Integrated Products | www.maxim-ic.com

dsPIC30F3012, MCP1525, and MCP6292
Microchip Technology, Inc. | www.microchip.com

LM340T5 Linear voltage regulator
National Semiconductor Corp. | www.national.com

2910015_Stadlin.qxp 9/14/2009 10:47 AM Page 27

mailto:ajstadlin@multiaxismotion.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/231
http://tf.nist.gov/service/its.htm
http://www.systemoperator.co.nz/power-system-overview
http://www.walterzorn.com
http://www.walterzorn.com
http://www.foxonline.com
http://www.maxim-ic.com
http://www.microchip.com
http://www.national.com
http://www.circuitcellar.com

28 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

shows a measurable DC resistance, it’s either
charging toward the ohmmeter ’s applied
voltage or its dielectric has become leaky,
perhaps in both the electrical and physical
meanings.

Therefore, I used an AC technique to
measure ESR: put the capacitor in series
with a known resistor, apply a known
square-wave AC signal, measure the voltage
across the resistor, then calculate ESR from
the known quantities.

The resistor’s current is always in phase
with respect to the applied voltage, because
typical resistors have negligible stray capaci-
tance and inductance. That is not tr ue for
capacitors, as the current through a capacitor
has both quadrature and in-phase compo-
nents with respect to the applied voltage,
which arise from its reactance and ESR,
respectively.

A capacitor’s reactance depends on both its
capacitance and the AC signal frequency.

I picked a test frequency of 33 kHz, for
reasons you’ll see later, where a 10-µF capac-
itor has a reactance of about half an ohm.
This circuit is thus most useful for relatively
large electrolytic capacitors with cor respond-
ingly low reactances: precisely the ones most

X =
fCC

1
2π

2910004_nisley.qxp 9/9/2009 5:00 PM Page 28

Most commonly available instruments don’t measure equivalent series
resistance (ESR). Inspired by the design of a classic pure-analog ESR
meter he studied on the Internet, Ed recently built an analog front end
for an MCU that measures ESR. In this article he describes the design
and the math associated with the project.

Capacitor ESR Measurement

A

by Ed Nisley

n ideal capacitor presents pure
capacitive reactance to the circuit

surrounding it. Real-world capacitors add
both inductance and resistance, causing inter-
esting effects that you’ve seen in previous
columns and, perhaps, in your own circuits.
Worse yet, electrolytic capacitors deteriorate
as their electrolyte ages and their equivalent
series resistance increases, causing gradual
circuit failure.

It’s easy enough to measure capacitance and
inductance with the appropriate meter, but
commonly available instruments don’t meas-
ure equivalent series resistance (ESR). I decid-
ed it was time to add an ESR meter to my
electronics workbench and, of course, build-
ing one is the best way to understand the
principles involved.

While it’s entirely possible to build an ana-
log ESR meter, it’s getting harder to find mov-
ing-coil meters and even more difficult to pry
them apart to recalibrate their scales. I built
an analog front end for an Arduino microcon-
troller that measures ESR and displays its
value, with a bit of math in between to cali-
brate the reading.

MEASURING AC RESISTANCE
The equivalent series resistance of a capaci-

tor is an AC parameter that cannot be meas-
ured with a DC ohmmeter. If a capacitor

ABOVE THE GROUND PLANE

http://www.circuitcellar.com

Let your geek shine.
Meet Landon Cox, proud father, SparkFun customer,
and developer of a novel timing system for speed
climbers that is both precise and easier on climbers’
hands. Using laser switches, hand-built enclosures,
and plenty of brutal tests by his speed climber
daughter, Landon debuted his timing system at
the USAC Nationals earlier this year.

Whether you’re searching for a breakout board,
or prototyping a climbing sensor to withstand
high-impact abuse, the tools are out there. Create
a project you’ll love, and let your geek shine too.

©2009 SparkFun Electronics, Inc. All rights reserved. All other trademarks
contained herein are the property of their respective owners.

Get the scoop on Landon’s Speed Climbing System development
at http://www.landoncox.com/ or http://sawdust.see-do.org/. Hey
Chauncey, congratulations in taking second place in the women’s open
category at the ABS Nationals!

Sharing Ingenuity
W W W. S P A R K F U N . C O M

29.qxp 8/29/2009 4:40 PM Page 1

http://www.landoncox.com/
http://sawdust.see-do.org/
http://www.sparkfun.com

30 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

likely to fail with high ESR.
Assuming that the ESR and resistor are considerably

larger than the capacitive reactance, then the components

behave like a simple resistive voltage divider .

Solving for ESR shows that the ESR is inverse-
ly proportional to the voltage across the resistor ,
at least when that voltage is much smaller than
the applied AC voltage.

Two limiting cases pop out immediately: open
circuit and dead short. With the test leads open,
no voltage appears across the resistor and the
voltage ratio is infinite. With the test leads

shorted, the ratio is exactly unity. All capacitors should
be somewhere in between those limits, at least accord-
ing to that simple model, but that need not be exactly

ESR = R V
V

 1 AC

RESISTOR

× −
⎛
⎝⎜

⎞
⎠⎟

V
V

 = R
ESR + R

RESISTOR

AC

Figure 1—The transformer produces a 400-mV PP square-wave voltage that divides across the test capacitor ’s ESR and R16. Capacitors
greater than about 10 µF have a negligible reactance at the 33-kHz test frequency . C10 blocks any residual DC v oltage across the test
capacitor. D3 clamps the amplified signal to 0 V so that the output v oltage is very nearly the total peak-to-peak value.

Photo 1—The Arduino Diecimila attached below this analog
board drives the transformer ’s high-voltage winding with a
pair of 5-V, push-pull signals to produce 400 mV PP on the
low-voltage winding. The signal flow across the boar d gen-
erally follows the schematic, with the Diecimila reading the
peak-detected result through an analog input.

2910004_nisley.qxp 9/9/2009 5:00 PM Page 30

http://www.circuitcellar.com

TechCon
DESIGN TO THE POWER OF THREE

Ener
gy E

ffic
ien

cy

MCU & Tools
Inte

rne
t Ev

ery
wher

e

WWW.ARMTECHCON3.COM
MEDIA SPONSORS:

IS COMING
TO THE

FORMERLY ARM DEVELOPERS’ CONFERENCE:

BROUGHT TO YOU BY:

*A Discount of $200 off Std. Registration

Energy Efficiency

Efficiency
Leveraging energy
efficient SoC strategies
to minimize power
requirements

MCU & Tools

Enabling successful
on-time product
development,
integration, testing
and production

Internet Everywhere

Developing
applications for a
connected world

and visit key industry experts on the exhibition floor for the latest in:

HEARST

29.qxp 8/29/2009 5:19 PM Page 1

http://www.armtechcon3.com

32 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

true in the real world.
Photo 1 shows that the ESR meter

recognizes the open-circuit condition
and displays a useful message. The
short-circuit condition is a bit harder
to distinguish from a ver y low ESR.
The circuitry shown in Figure 1

implements that general outline,
with an Arduino Diecimila micro-
controller connected to the four pin-
header strips.

TEST DRIVE
Because the applied voltage divides

across the capacitor and resistor in
proportion to their resistances, the
resistor should have the same order
of magnitude as the expected ESR. A
“good” capacitor’s ESR will be less
than a few ohms, at most, and is typi -
cally under 1 Ω. A failing capacitor will

Figure 2a—The 10-VPP drive into the transformer ’s high-voltage winding puts 337 mV PP across the 10-Ω load resistor with the probe tips
short-circuited, for a 2.371-V output to the Ar duino. b—A poor-quality, 10-µF capacitor with an ESR of 7.4 Ω produces 1.558 V.

a) b)

2910004_nisley.qxp 9/9/2009 5:00 PM Page 32

http://www.circuitcellar.com
http://www.jkmicro.com
http://www.apcircuits.com

www.circuitcellar.com • CIRCUIT CELLAR® 33

Oc
tob

er
20

09
 –

 Is
su

e 2
31

Figure 3a—A linear fit is almost embarrassingly accurate below 10 Ω, where the ESR meter is most useful. b—A quadratic curve fit to the
range from 10 to 100 Ω gives sufficient accuracy to identify truly bad capacitors.

a) b)

have an ESR ranging from a bit under
10 Ω to essentially an open circuit.

I picked a 10-Ω resistor, which sets
the voltage ratio VAC/VR of 11 for a 1-Ω
ESR. On the other end of the range,
the 100-Ω ESR of a dead capacitor
will show a ratio of 1.1. ESR values
below 1 Ω may be somewhat less
accurate, but those values cor respond
to reasonably good capacitors.

Although it’s easy enough to
measure individual capacitors on the
bench, you’re generally confronted
with a circuit board containing a few
bad capacitors: unsoldering every
one is both labor-intensive and haz-
ardous to the surrounding circuitry.
Measuring ESR by probing the capac-
itor in the circuit, without unsolder-
ing anything, requires an AC voltage
well below the usual semiconductor
junction threshold voltage of about
500 mV.

The ESR and reactance of the
capacitor should be much lower than
the other circuit resistances, so,
with the junctions turned off, the
capacitor is effectively isolated from
the surrounding circuitry. Because
the test voltage is so low, there’s
also no risk of damaging anything
else.

The maximum test current occurs
with the probe tips shor ted together,
which will produce:

That’s a relatively high cur rent, at

50 mA = mV

500
10 Ω

least in terms of ordinary microcon-
troller outputs, and suggests that
driving the capacitor and resistor
directly from digital pins won’t
work, even using a resistive divider
to cut down the voltage applied to
the circuit.

Instead, I used a transfor mer to
step the AC voltage down and the

current up. In fact, this project came
about when I realized that the trans-
former I used for the high-voltage
dosimeter charger power supply (“A
Blast for the Past: High-Voltage DC
Dosimeter Charger,” Circuit Cellar
229, 2009) had both the proper tur ns
ratio for an ESR tester and enough
core volume to support the output

2910004_nisley.qxp 9/9/2009 5:00 PM Page 33

http://www.circuitcellar.com
http://www.usbee.com

34 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

current. All I had to do was drive the
transformer backwards, with the
microcontroller feeding the high-
voltage winding, to get an AC volt-
age in the right range with a low
source impedance.

I derived a Spice model for the
transformer using the data I present-
ed in that column, and then simulat-
ed a simplified version of the
schematic in Figure 1. While I don’ t
have room to discuss that here, you
can fetch the model from the Circuit
Cellar web site and see how it
behaves for various ESR and capaci-
tive loads.

The Atmel ATmega168 on the
Arduino board drives the high-volt-
age winding using a pair of PWM
outputs running in push-pull mode.
The transformer’s 25:1 turns ratio
converts that 10-VPP drive signal into
400 mVPP across the capacitor and
10-Ω resistor, so the surrounding in-
circuit components see only ±200 mV,
well below the threshold voltage of
even those old-school germanium
diodes.

Listing 1—The ATmega168 ADC hardware provides a 10-bit integer value. Finding the
actual AC resistance uses a linear curve fit below 10 Ω and a quadratic fit up to 100 Ω.
An open circuit produces ADC values near 0, which must be remo ved from the calcula-
tion. Low-value capacitors produce ADC readings indicating negative resistance, which
the display code in Listing 2 will flag as invalid.

long int LinNumerator = 64834l;
long int LinOffset = -130l;

float CoeffA = -6.50119e-6;
float CoeffB = 0.0570562;
float CoeffC = -9.16525;

float ScaleADC = 1e5;
float ScaleResistance = 10.0;

int RawSense;
int Resistance;
float FloatRes;
float x;

RawSense = analogRead(PIN_VSENSE);

if (RawSense <= 1) {
Resistance = RESISTANCE_BAD;

}
else {

Resistance = LinNumerator / RawSense + LinOffset;
if (Resistance > RESISTANCE_BREAK) {
x = ScaleADC / RawSense;
FloatRes = x * (CoeffA * x + CoeffB) + CoeffC;
Resistance = ScaleResistance * FloatRes + 0.5;
}
if ((Resistance > RESISTANCE_BAD) || (Resistance == 0)) {
Resistance = RESISTANCE_BAD;
}

}

2910004_nisley.qxp 9/14/2009 2:57 PM Page 34

http://www.circuitcellar.com
http://www.jkmicro.com
http://www.prolificusa.com

www.circuitcellar.com • CIRCUIT CELLAR® 35

Oc
tob

er
20

09
 –

 Is
su

e 2
31

The maximum test current with
shorted probes is therefore just:

I had previously verified that the
transformer core could support
about 60 mA in its low-voltage
winding, so the core remains far
from saturation in this application.

Op-amp U1 amplifies the voltage
across R16 by a factor of 10, increasing
the 400 mVPP signal to about 4 VPP,
and centers it at 2.5 V. C10 isolates
the input from any residual DC
charge on the test capacitor: even
with the external circuit turned off,
dielectric absorption in large elec-
trolytic capacitors can hold several
volts for several days.

Diode D3 clamps the bottom of
the amplified AC waveform to 0 V,
putting the highest voltage at 4 V
and providing a factor-of-two gain
over a simple half-wave rectifier .
Because the op-amps have ver y high
input resistances, R15 draws a tiny
DC current to pull the wavefor m
voltage toward ground.

U2 buffers that signal and D2
stores the peak voltage on C2 for the
Arduino’s ADC input, with R17
ensuring that the capacitor doesn’t
store any voltage when the input

20 mA = mV

200
10 Ω

drops to zero.
Figure 2a shows the voltages with

the probes short-circuited. The
transformer supplies 337 mVPP,
rather than the 400 mV PP predicted
by the turns ratio, due to real-world
factors of winding resistance and
leakage inductance. The waveform

obviously isn’t as square as you’d
expect.

This transformer was originally
intended for a high-voltage power
supply, so it’s overbuilt for this
application. I measured about 28 µH
of leakage inductance while deter-
mining the values for snubber
R12–C12.

The time constant of the second-
ary circuit depends on the induc-
tance and the total resistance. The
secondary winding adds 2 Ω of DC
resistance to the 10-Ω resistor. The
primary winding’s 350 Ω gets scaled
down by the square of the tur ns ratio
to 0.6 Ω, for a total of about 13 Ω,
making the time constant rather
long.

That’s in rough agreement with
what you see in Figure 2a. The lead-
ing and trailing edges of the “square
wave” don’t reach their final values
during the 15-µs half-periods, so the
time constant must be on the order
of 4 µs: about 20 µs and five time
constants to reach 99% of the final
value. That’s why I picked 33 kHz for
the AC signal frequency; a smaller

τ μ μ = =

 = L
R

H s28
13

2 1
Ω

.

Figure 4—Small-value capacitors form a resonant circuit with the transformer ’s leakage
inductance. The snubber damps the oscillation, but the result no longer resembles the
square-wave drive and violates the assumptions built into the ESR meter . Fortunately, these
capacitors generally don’t have ESR problems.

Listing 2—Displaying the resistance requires working around the DMC16117 LCD’ s peculi-
arities, as well as the Ar duino library’s limited floating-point support, while sorting out the
meaning of the resistance value.

lcd.home();
lcd.print("AC Res =");
lcd.setCursor(0,1);

if (Resistance >= RESISTANCE_BAD) {
lcd.print(" Open");

}
else if (Resistance < 0) {

lcd.print("Low cap?");
}
else {

lcd.write(' ');
lcd.print(Resistance / 10,DEC);
if (Resistance <= RESISTANCE_BREAK) {
lcd.write('.');
lcd.print(Resistance % 10,DEC);
}
lcd.write(' ');
lcd.write(CHAR_OMEGA);

}
lcd.print(" ");

2910004_nisley.qxp 9/9/2009 5:01 PM Page 35

http://www.circuitcellar.com

36 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

transformer with lower leakage
inductance would permit a higher
frequency.

Figure 2b shows the voltages f or
an old 10-µF capacitor with a (bad!)
7-Ω ESR. The increased resistance
reduces the secondary circuit time
constant so that the signal much
more closely resembles a square
wave.

The difference between the peak-
to-peak voltage at the output of U1
(middle trace) and the DC voltage
across C13 (lower trace) in Figures 2a
and 2b isn’t a constant. The com-
bined effect of diode nonlinearity in
the clamp and peak-hold circuits is
just one more thing to consider when
you’re building something like this.

You can explore those effects, as
well as the time constant, using the
Spice model.

CURVE FITTING
Much of analog circuit design

depends on the assumptions of linear
component behavior. Unfortunately,
as you’ve seen, real components may
be only approximately linear, so
making accurate measurements can
introduce bewildering complexity. A
dab of digital circuitry and pro-
grammed logic can both improve
accuracy and reduce complexity, at
the cost of introducing all the usual
software problems.

Rather than forcing the measured
values through an idealized equation
relating voltage to ESR, I decided to
calibrate the circuit by simply
recording the ADC readings for vari-
ous known resistances, then fitting a
low-order curve to the results. The
two plots in Figure 3 show how that
worked out.

The ADC produces a 10-bit value
covering the range from 0 to 5 V
(with a 5-V power supply). The recip-
rocal of that value should be roughly
proportional to the ESR. To preserve
an integer result, I divided the ADC
value into 105 to get a number
between 97 and 50,000. I eliminated
ADC values 0 and 1, which cor re-
spond to the open-circuit condition,
to prevent a divide-by-zero problem.

Gnuplot plotted the measured points
and fit curves to the data, producing

coefficients that I hard-coded direct-
ly into the Arduino program’s
source. In a more production-ready
program, you’d want to update the
coefficients without reprogramming
the chip, but that’s in the nature of
fine tuning.

Figure 3a shows the relation
between the actual resistance and
the scaled reciprocal for resistances
below 10 Ω: an almost embarrassing-
ly straight line. The highest ADC
value was around 450 for the probes-
shorted condition, giving a scaled
reciprocal around 200.

Figure 3b shows that the relation
for resistances above 10 Ω isn’t near-
ly as linear, so I had Gnuplot fit a
quadratic curve to those points. The
result is within about an ohm of the
actual resistance, which is close
enough for my purposes and proba-
bly better than the accuracy of my
other resistance meters.

Homework: have Gnuplot fit the
proper reciprocal equation to the
raw ADC values. Compare and con-
trast the results with my equations.

Because the quadratic coefficients
didn’t lend themselves to easy integer
scaling, I simply defined some float
variables, which hauled the Arduino
floating-point package into the pro-
gram. Surprisingly, that added very lit-
tle to the overall size: the entire pro-
gram still occupies only a quar ter of
the available Flash ROM space.

Listing 1 shows the code that con-
verts ADC inputs to resistances. The
Arduino output routines don’t handle
floating-point variables, so I scaled the
Resistance variable to 10 times the
actual resistance: 1 Ω corresponds to
Resistance=10. The linear coeffi-
cients incorporate that value, but it’s
applied separately to the quadratic
result.

The code in Listing 2 displays the
numeric value on the LCD, a process
somewhat complicated by the bizar re
nature of the (obsolete) DMC16117
hardware. This could probably be
cleaned up a bit with some sprintf
trickery, but the overall result would-
n’t be much simpler.

MEASURED RESULTS
The resistance calculated from the

ADC values will be positive for resist-
ances between zero (probes shorted)
and infinity (probes open). The
straight-line fit to the low-resistance
points is negative for ADC readings
below the shorted-probes value,
which shouldn’t happen under nor-
mal circumstances.

Right?
Wrong: the real world intr udes

once again, in the for m of resonance.
The transformer leakage inductance
of about 28 µH for ms a tank circuit
with the external capacitance, the
snubber capacitor, and the winding’s
parasitic capacitance. Knowing the
driving frequency and the tank
inductance, the capacitance is easy
to find.

The snubber prevents any actual
oscillations and lowers the Q, but
external capacitances below 1 µF put
nice peaks on the nominally square
waveform.

Figure 4 shows the waveforms pro-
duced by a per fectly good 220-nF
polyester capacitor. The peak-to-
peak and ADC voltages are higher
than a dead short, so the linear-fit
equation would indicate a negative

2910004_nisley.qxp 9/9/2009 5:01 PM Page 36

A dab of digital circuitry and pro-
grammed logic can both improve
accuracy and reduce complexity,
at the cost of introducing all the
usual software problems.

”“

C =
f L

850 nF =
 10 28 103 2

1
2

1

2 33

2

6

π

π

()

×() ⋅ × −

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 37

Oc
tob

er
20

09
 –

 Is
su

e 2
31

Ed Nisley is an EE and author in Poughkeepsie, NY. Contact him at ed.nisley@ieee.org
with “Circuit Cellar” in the subject to avoid spam filters.

R

P ROJECT FILES
To download schematics, a PCB layout, and Spice simulation, go to ftp://ftp.
circuitcellar.com/pub/Circuit_Cellar/2009/231.

ESOURCE
Pure analog ESR meter, www.ludens.cl/Electron/esr/esr.html.

OURCES
Arduino Diecimila
Arduino | www.arduino.cc/en/Main/ArduinoBoardDiecimila

ATmega168 Microcontroller
Atmel Corp. | www.atmel.com

S

resistance. Obviously, the model has
diverged from reality: no capacitor
has a negative ESR!

Fortunately, low-value capacitors
with solid-film dielectrics generally
don’t have ESR problems. For those
high-value electrolytic capacitors
troubled with bad ESR, this circuitr y
and software give reasonably accu-
rate results.

I found a few ancient aluminum-
can electrolytic capacitors in my
junk box, which I now know are
suited only for the scrap pile. Three
of the four sections in one can were
still within 20% of their nominal
capacitance, but had resistances
ranging from 3.2 to 28 Ω.

Most of my newer sur face-mount
caps have ESRs well under 1 Ω,
although a group of 10- µF, 50-V units
measure around 7 Ω. All of the high-
value ceramic caps are indistinguish-
able from shorted probes: precisely
what you want in a capacitor!

The only remaining challenge is
stuffing the circuit board and LCD
into a case, but that’s just a

machine-shop project.

CONTACT RELEASE
If you must measure capacitors

with extremely low ESRs, substitut-
ing a 1-Ω resistor for R16 will
improve the resolution. However, the
reduced secondary resistance will
require a much lower test voltage or

a higher test current, all with far
more attention to circuit noise levels .

The classic pure-analog ESR meter in
the Resource list inspired my version. I
wanted to discuss the transformer and
math a bit more, so adding a microcon-
troller seemed like a nice fit. You may
prefer the elegance of a moving-coil
meter needle. I

Save Up To 60% On
Electronic Components

Wide Range Including,

• New Ethernet Board

• SD Card

• Memory Cards

• Real Time Clocks

 and Much More

Exciting New Mini-Boards

www.futurlec.com

We are your one-stop shop for Microcontroller Boards,

PCB Manufacture and Electronic Components

•

•

•

•

Powerful New ARM2368 Controller

Just arrived our new range

of Solar Controllers, Gas Sensors

and Wireless Data Link Modules,

all at very competitive prices.

.

ONLY$19.90

ONLY$69.90

Now available our most powerful Embedded Controller Yet!

Includes LPC2368 Microcontroller

- 512kb Flash Memory

SD Card Socket

Ethernet LAN Connection

2 CAN Network Controllers

ONLY$25.90

Save Heaps on Components

2910004_nisley.qxp 9/9/2009 5:01 PM Page 37

mailto:ed.nisley@ieee.org
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/231
http://www.ludens.cl/Electron/esr/esr.html
http://www.arduino.cc/en/Main/ArduinoBoardDiecimila
http://www.atmel.com
http://www.futurlec.com
http://www.circuitcellar.com
http://www.gridconnect.com

38 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

The dsPIC30F2023-controlled MiniTron is a high-end vacuum tube stereo
amplifier with distortion control, power output, and more. The fully functional
amplifier successfully blends its unique circuitry and specialized pr ocessing
software to precisely match the radically different worlds of high-voltage analog
and low-voltage microcontrollers.

Digitally Controlled Amplifier

W

FE
AT

UR
E

ARTICLE
by George Anderson

hen I first became interested in electronics,
vacuum tube technology was the o nly thing

available to the average experimenter. (Junk radios and
TV sets offered a plentiful supply of free parts.) As a
result, I learned to build guitar amps, stereo equipment,
and ham radio equipment with vacuum tu bes. Later, I
learned to use the bipolar transistor, MOSFET, and inte-
grated circuit when they became available. I quickly
embraced the digital revolution and even built a music
synthesizer in the early 1970s using RTL logic ICs. Then,
when the Microchip Technology PIC16C54 appeared, I
created all sorts of cool gizmos and a few commercial
products using that and also newer Microchip devices.

Since those first crude amplifiers constructed from old
TVs in the 1960s, I h ave been interested in audio tech-
nology. I’ve built most of my stereo equipment—ever y-
thing from low-powered headphone amps to k ilowatt-
level monster amps, preamps, guitar amps, and effects.
These used bipolar transistors, MOSFETs, ICs, and, yes,
vacuum tubes. My audio-related tools and par ts—especial-
ly the vacuum tube equipment—are segregated from my
other electronics. I actually have a separate audio-related
workbench that shares only the scope and computer .

Audio electronics technology has evolved a lot in the
past 40 years. We now have class G amplifiers, class H
amplifiers, and even pure digital (cl ass D) amplifiers with
DSPs that process audio in the digital domain and con-
vert it to analog only in the switch-mode output stage.
Modern audio equipment offers power o utput, efficiency,
distortion, and size advantages that weren’t even

dreamed of only a few year s ago. Despite these advan-
tages, there remains a small but growing minority of
audiophiles who believe that vacuum tubes offer better
sound quality despite poorer measured per formance. A
vacuum tube purist will tell you that the audio path
should not contain any silicon and there should not be
any negative feedback used to i mprove linearity. Often,
the preferred design is a simple single-ended class A cir-
cuit. I am not going to choo se sides. My vacuum tube
amplifier designs often use silicon in the signal path and
moderate amounts of feedback.

Vacuum tube audio amplifiers are noto riously ineffi-
cient. A class A single-ended amplifier may operate at a
plate efficiency of 5% or less. G reat advances have
occurred in the field of efficiency improvement in th e
solid-state world. Class G audio amplifiers use multiple
power supply rails and switch between t hem based on
the instantaneous power demand. Class H audio ampli-
fiers use a variable power s upply that tracks the audio
signal giving the output devices enough voltage head-
room to do their jobs, and no more. The voltage acros s
the output devices stays constant regardless of the power
output. This improves efficiency and offers the add ed
benefit of removing certain distortion products. This
technique has been applied to oth er electronic devices,
particularly radio transmitters like cellular phones and
cellular base stations to reduce energy consumption.

Specialized Microchip Technology dsPIC ICs make
modulated supply rails fairly simple, so I recen tly chose
to design a dsPIC-enhanced vacuum tube amplifier . Refer

Connect Vintage Analog to Modern Digital Tech

2910014_anderson - new.qxp 9/9/2009 5:11 PM Page 38

http://www.circuitcellar.com

to Photo 1 to see my first attempt at a digitally con-
trolled amplifier design. I call it “MiniTron.” The hard-
ware is intended to be a development platform to learn
how to connect the vintage analog world to the modern

digital world. I included circuitry for software features
that have not yet been implemented. As you can see in
Figure 1, three main subsystems comprise the design: an
amplifier, a controller, and a power supply. Each resides

on its own PC board.
In this article, I’ll describe

my design in detail. You can
apply the techniques I’ll pres-
ent to countless other appli-
cations. But before I get into
the specifics, let’s focus for a
moment on vacuum tubes.

VACUUM TUBE THEORY
Vacuum tubes work on the

principle of thermionic emis-
sion. Electrons are emitted
from a hot cathode and travel
through a vacuum toward a
positively charged electrode,
the plate. Charged wire struc-
tures between the two elec-
trodes have the ability to reg-
ulate the current flow by
altering the electric field in a
manner somewhat similar to
the gate in a MOSFET. Most
vacuum tubes function like
depletion-mode MOSFETs.

Figure 1—Look at how the controller, vacuum tube amplifier, power supply, and output transformers
are interconnected. The individual blocks on this diagram are in the same relative position as their
respective subsystems in Photo 1.

Output
transformer

Left
output

Control
signals

Bias
voltages

Audio and
monitoring

signals

Right
output

Output
transformer

Power supply

Controller Amplifier

Filament supplies (6.3 V)
12 V

450 V
Modulated power supply voltage

www.circuitcellar.com • CIRCUIT CELLAR® 39

Oc
tob

er
20

09
 –

 Is
su

e 2
31

Photo 1—This is the finished MiniTron amplifier. I removed the Lexan cover for debugging. I took this photo during a debugging session. I
optimized the amplifier ’s performance with a laptop computer.

2910014_anderson - new.qxp 9/9/2009 5:11 PM Page 39

http://www.circuitcellar.com

40 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

The current flow through the device
is large and uncontrolled unless a
negative “bias” voltage is applied to
the control grid. The application of
plate voltage without “negative bias”
voltage results in a large , often
destructive, current flow.

Keep this basic information about
vacuum tubes in mind as you read
the rest of this ar ticle. Now, back to
my project.

POWER SUPPLY
The amplifier’s power supply is a sim-

ple unregulated design (see Figure 2). It
uses conventional rectification and fil-
tering to provide voltage sources for
the design. The filament supplies are
6.3-V AC connected directly to the
tubes. The 10-V supply feeds a 5-V
regulator and a MOSFET driver on the
controller board. The –150-V supply is

connected to the bias generator on the
controller board. The high voltage is
routed directly to the amplifier board
to supply the first two stages and to
the agile buck converter on the con-
troller board.

AMPLIFIER
The amplifier is a class H design

using modulated supply rails. The
audio path is purely vacuum tube (no
feedback paths exist), and the circuitr y
is a single-ended class A design (cur-
rent flows for the entire audio cycle).

Refer to Figure 3. Each vacuum
tube section is represented by a cir-
cle with three elements inside it.
The cathode is the element across
the bottom. It functions like the
source in a MOSFET. The cathode
has a heating element. It is o ften
shown separately from the device

Figure 2—The MiniTron uses a conventional linear power supply built with toroidal transformers
that is housed in a die-cast aluminum box . An SMPS is planned.

OSD-232+
RS-232/TTL controlled on-screen
composite video character and graphic
overlay in a small 28 pin dip package.

Intuitive Circuits
www.icircuits.com

(248) 588-4400

New!

2910014_anderson - new.qxp 9/14/2009 11:35 AM Page 40

http://www.circuitcellar.com
http://www.icircuits.com
http://www.designnotes.com
http://www.hobbylab.us

www.circuitcellar.com • CIRCUIT CELLAR® 41

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

Figure 3—The amplifier is a
class H design with modulated
supply rails. The audio path is
purely vacuum tube, no feed-
back paths exist, and the cir-
cuitry is a single-ended class
A design (current flows for
the entire audio cycle). There
are three gain stages.

2910014_anderson - new.qxp 9/9/2009 5:11 PM Page 41

http://www.circuitcellar.com
http://www.ezpcb.com

42 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

itself in a manner like the power and
ground pins on digital logic ICs. It is
connected across a power supply for
“heater power” or “filament power.”
The grid is the middle element repre-
sented as a series of dashes (usually
three or four), functioning like the
gate in a MOSFET. The plate is the
upper element corresponding to the
drain in a MOSFET. There are only
electron tubes (N channel devices).
There are no positron tubes (P chan-
nel devices). Many tubes have two or
more sections in a common glass
envelope. They are shown as individ-
ual tubes on the schematic in a man-
ner similar to a quad NAND gate.
Sometimes the sections are identical
(the output tubes in this design);
sometimes they are not (the input
and driver sections). It isn’t always
possible to determine this from the

schematic alone.
There are three gain stages. The

first two are conventional, using the
two sections of a dual vacuum tube
triode. Both stages are common cath-
ode (like common emitter) voltage
amplifiers. The first stage uses an
LED in series with the tube’s cath-
ode. It functions as a low-voltage
(1.8-V) Zener diode, fixing the bias of
the stage. The second stage uses a
constant current source (CCS) IC as
the plate load. Both of these “mod-
ern tricks” serve to lower the distor-
tion of the amplifier. These two
stages provide all of the voltage gain.
The third stage is rather unique. It is a
cathode follower that functions in a
manner similar to a MOSFET source
follower. It provides no voltage gain (a
small loss), but it provides a large cur-
rent gain. Cathode follower output

Figure 4—These are the individual controller elements.

MOSFET Driver
TC4427

Floating
driver

TC4427

5-V
Regulator

ICD2
Connector

Expansion
connector

EEPROM
25LC256I Temperature

sensor
MCP9700

SPI Bus

MCP4922
DAC

MCP6S26

dsPIC30F2023

Power control output

LPF

MCP6022

MCP6022

PGA MUX

MCP6022

Level shifter

Bias amplifier (6×)

dsPIC A/D Inputs

Right channel audio input

Left channel audio input

Bias output

Six bias control
outputs to

amplifier PCB

Two agile
power supply
voltages to

amplifier PCB

Analog
inputs from

amplifier PCB

–150 V

2910014_anderson - new.qxp 9/9/2009 5:11 PM Page 42

http://www.circuitcellar.com
http://www.wizwiki.net

www.circuitcellar.com • CIRCUIT CELLAR® 43

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

stages are rare in audio amplifiers
because of the extreme drive voltage
requirements. The tube is a dual tri-
ode with identical sections. Both sec-
tions are wired in parallel, except for
the provision to adjust the bias inde-
pendently for each section. These are
both adjusted by the controller. A
cathode follower typically has a high
PSRR so that the power supply can
vary without affecting the output, as
long as there is sufficient headroom
for the signal being processed. It is
desirable to operate the third stage
with a constant voltage across it, hav-
ing the tube’s current varied by the
signal. Since the cathode of the tube is
the output and the plate is the voltage
supply pin, the plate voltage must be
varied in step with the signal voltage.
This is the function of the agile
switch-mode power supply (SMPS)
converter.

The amplifier has two identical
channels. Each channel has three bias
voltage inputs to control the tube
parameters. There are current-sense

resistors in series with the output
transformers and a resistive tap from
the driver tube. These are used to
measure the tube’s plate voltage and
sample the audio for the agile SMPS.
There is also a temperature sensor
mounted in the area of highest heat
found on the first prototype PCB.
These signals are routed via a ribbon
cable to the controller PC board.

THE CONTROLLER
Figure 4 is a simple depiction of the

controller. Figure 5 through Figure 8
detail the aspects of the controller ’s
circuitry: floating buck converters, the
analog I/O, the bias generator, and the
connections to the microprocessor.

There are three dsPIC ICs from the
Microchip Technology “30F” family
that are designed for use in intelligent
switch-mode power supplies. I used
the dsPIC30F2023, as you can see in
Figure 8. The unique SMPS resources
in these ICs do most of the hard stuff
usually required for an SMPS design.
This leaves ample processing power

available for other activities and
opens the door for all sorts of new
digital implementations of power
control circuitry that was previously
an analog-only domain. In fact, I
have the amplifier running with no
code at all in the ma in loop of the
software. The interrupt service rou-
tine can run the ADC and the SMPS
by itself. The simple software i s
based on an example on Micro chip’s
web site, although they probably
never intended for such an applica-
tion. This project design has the
hardware capabilities for full closed-
loop converter operation; however,
closed-loop operation has not been
tested. Closed-loop operation should
not have any advantages in this
application.

In addition to the agile SMPS, the
hardware is designed to allow devel-
opment of advanced control features
of the vacuum tube amplifier . This
platform is currently being used to
develop algorithms and software for
use in future digitally controlled

Figure 5—The floating buck converters allow a low-voltage output from the dsPIC to control a floating high-voltage supply. There is one for
each stereo channel. It can’t get much simpler than this.

2910014_anderson - new.qxp 9/9/2009 5:11 PM Page 43

http://www.circuitcellar.com

44 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

vacuum tube amplifier products.

AGILE SMPS CONVERTER
The controller’s main function is

the agile SMPS. It is the project’s
“enabling technology” and reason for
its existence. The agile SMPS is used
to vary the supply voltage on the
output tube in track with the audio
signal, thereby keeping the voltage
across the output tube constant. The
plate voltage relative to the cathode
stays at a low value (100 V i n this
design). The absolute plate voltage is
constantly moving with the audio
signal, swinging from 420 to –250 V
(actual measured values). The plate
voltage in a conventional design would
need to be fixed at 420 V to afford the
same headroom and power output
capabilities. From this it can be seen
that the power dissipated in the out-
put tube is reduced by a factor of

about four. The power dissipation is
usually the limiting factor in a vacu-
um tube amplifier, so these tech-
niques can be used to increase the
power output for a given amplifier
size and cost.

Audio is tapped from the second
stage in the tube ampl ifier and rout-
ed to an op-amp for easy gain and off-
set adjustments in the early develop-
ment cycle. These can be don e in
software, so the op-amp will likely
be eliminated in later designs. The
op-amp gain and level shifters are
shown in Figure 4 and located in the
center of the analog I/O schematic
(see Figure 6). The DC offset poten-
tiometer controls the DC output
voltage from the agile converter,
which sets the tube voltage. The op-
amps feed an A/D pair on the
dsPIC30F2023 chip. The ADCs are
triggered by the PWM module, and

an interrupt service routine simply
takes the A/D values and transfers
them to the PWM modules duty
cycle registers. Math such as scaling
or offset can be added here.

Two PWM outputs control two
unique floating MOSFET driver cir-
cuits that are each capable of driving
a high-side MOSFET switch operat-
ing at any voltage from 2,500 to
–2,500 V. You can see this in Figure 4
and the floating buck conver ter
schematic (see Figure 5).

I determined early in the design
cycle that the converter’s output volt-
age could be “pulled” below ground
potential by the large reactive load
presented by the output transformer
and loudspeaker in the vacuum tube
amplifier circuit. The source of the
switch FET operates in the range of
500 to –400 V. A typical high-side
driver IC, such as an International

Figure 6—This is the analog I/O. IC12 is used to multiplex one A/D input for several voltage readings. IC19 provides buffered audio. IC18 is a
switch for enabling the high voltage.

2910014_anderson - new.qxp 9/9/2009 5:11 PM Page 44

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 45

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

Rectifier IR2213, will fail catastroph-
ically when its output goes negative.
I devised the floating driver circuit
for this situation.

An isolated DC-to-DC converter
module is used to generate a floating
12-V supply. It has a 3,000-V isolation
rating. This floating 12-V supply pow-
ers a Microchip Technology TC4427A
low-side MOSFET driver IC. The
ground-referenced PWM signal from

the dsPIC30F2023 is applied to the
input side of an Avago magnetic iso-
lator IC, which has separate input
and output circuits and carries a
2,500-V isolation rating. The input
side is powered from the main 5-V
supply. The output side is powered by
a 7805-type regulator off of the floating
12-V supply. The 12-V supply floats at
the source potential of the switch
FET. The low internal capacitance of

the magnetic isolator and
the DC-DC converter
enables the floating supply
to experience 1,000-V
swings at a 1-MHz rate
without issue. This enables
a common low-side MOS-
FET driver to drive an N-
channel MOSFET in a high-
side switch application. The
agile SMPS output is ground
referenced in this applica-
tion, but it does not need to
be. The driver can operate
in a totally floating ar range-
ment if the circuit design
dictates it.

The rest of the SMPS con-
verter is textbook buck con-
verter stuff, but the require-
ments are a bit unique. The
output voltage must operate
over a wide range. Operation
into the usual resistive test
load differs from the opera-
tion in the amplifier due to
the aforementioned reactive
load. The inductor value
(L3) was determined empiri-
cally. The output capacitor
(C13) was also determined
through iterative testing, as
was the output filter net-
work (L2, C18, C14). The
filter must allow the con-
verter to be modulated at an
audio rate. This modulation
should be flat up to 20 kH z
with minimal phase shift.
The filter should attenuate
the switch frequency by at
least 35 dB to avoid inter-
modulation effects in the
amplifier. There is a resis-
tive voltage divider at each
output. This is routed to an
on chip A/D input pair to

enable closed-loop operation if
desired.

AMP SUPERVISION & CONTROL
There is ample processing power

available for amplifier monitoring
and control. There is hardware
designed into this amplifier for the
development of supervisory and con-
trol features. A MOSFET and driver
circuit is included to contro l the

Figure 7—There are six identical bias generators. These are negative voltage supplies under DAC
control. The current drain from each supply is only a few microamps.

2910014_anderson - new.qxp 9/9/2009 5:11 PM Page 45

http://www.circuitcellar.com

46 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

high-voltage supply. It can be used to
enable or disable the HV, or ramp it
up slowly using PWM if desired. This
feature has not been tested or con-
nected yet. This is shown in Figure 4
and in the lower-left por tion of the
analog I/O schematic (see Figure 6).

Tubes require a negative bias volt-
age to control the cur rent flow. The
negative bias voltages are derived
from the –150 VSOURCE in the bias gen-
erator circuit shown in Figure 4 and
in the bias generator schematic (see
Figure 7). Each bias voltage i s con-
trolled from a D/A output, which is
level-shifted from 0 to 5 V to 0 to
–150 V using an op-amp and a MO S-
FET. In the current software, the bias
voltages are hard coded to a predeter-
mined value.

The unused A/D inputs monitor
several operating voltages in the
amplifier. Any input that may be
subjected to high voltages is protect-
ed with Zener diodes and c apacitors.

Sufficient series resistance is included
to limit rise times. The microproces-
sor does not have enough A/D inputs
to monitor all of the desired signals.
A Microchip Technology MCP6S26
PGA/multiplexer is used to switch
between the infrequently scanned
inputs under SPI control. The total
power supply current signal, the
SMPS temperature, and the tracking
converter output voltage signals are
routed to the four on-chip compara-
tors. Any of these can be used to gen-
erate an interrupt that may be used
to shut down the system if potential-
ly damaging conditions exist. These
monitoring functions are shown in
Figure 4 and in the analog I/O
schematic (see Figure 6).

An EEPROM is included for stor-
ing start-up parameters, data logging,
and keeping track of operating points
over time (see Figure 8). An expan-
sion connector is provided for con-
necting additional hardware. It is

expected that this will be used for a
keypad/display module.

SOURCE CODE
I outlined a serious feature set for

the amplifier design. It requires a
major software development effort
supported by several experiments to
develop the algorithms needed for a
full-featured amplifier. This effort is
underway.

The code I’ll present here is for a
fully functioning amplifier. I have
been listening to it for a few weeks
and I have made basic per formance
measurements. All of the bias voltages
were determined experimentally and
hard coded as initial conditions for the
appropriate variables. The gain and
DC offset values for the SMPS are set
via the trim potentiometers. The
amplifier works very well and meets
my original goals: it demonstrates
enhanced performance over a conven-
tional design, it provides a platfor m

Figure 8—The circuitry includes a dsPIC30F2023, EEPROM, voltage regulator, and temperature sensor. A jack for the ICD2 is included for
program development and testing.

2910014_anderson - new.qxp 9/9/2009 5:11 PM Page 46

http://www.circuitcellar.com

41.qxp 1/7/2009 3:07 PM Page 1

http://www.icbank.com

48 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

for feature development, and i t
enables hardware improvement.

Note that the main loop for the
code is completely empty at this time.
Once set up, the SMPS and ADC mod-
ules that are critical for the amplifier ’s
function are interrupt-driven. There is
ample room for feature development
as long as the per formance of the ISR
is not impacted.

PC BOARDS
I designed two unique PC boards

for this project. I will design a third
for the SMPS to replace the current
linear power supply. The linear supply
is built on perf board, so it doesn’t use
a true PC board.

The density of the amplifier PC
board is very low, there are few
through holes, and the trace size is
large. The PC board is wel l within
the capabilities of home fabrication,
so I made one myself.

The controller PC board has two
main sections (which I laid out inde-
pendently). The high-voltage section
(the right side of board) operates with
voltages approaching 500 V. The HV
section is kept completely isolated
from the logic section. It h as a
“moat” of ground around it, and all
connections into this section are
made with leaded resistors, except
ground. A mixture of leaded and sur-
face-mount components is used in
the HV section. In many cases, sur-
face-mount components do not have
the required voltage or current rat-
ings. The logic section of the PC
board is pretty conventional. Sur face-
mount components are used in most
cases. This board is beyond the capa-
bilities of home fabrication, so I sent
it to a quick-turn PC board house.

CHASSIS/CABINET
This project is intended to be a

development platform, but I also
intend to bring it to listening sessions
and possibly an audio show or two. I
needed a functional chassis to sup-
port the circuitry and protect onlook-
ers from the deadly voltage, but still
allow easy access to the electronics for
development purposes. I also must be
able to replace or upgrade the compo-
nents or PC boards as required. Plus, I

can “show off” all of the unique cir-
cuitry, not hide it under a chassis.

I mounted all of the components
on top of a piece of aluminum dia-
mond plate that slides into a groove
in a wood box. The rear panel of the
box is removable to allow chassis
plate removal. I cut another groove
for a piece of clear Lexan 1.5 ″ above
the chassis plate. This allows the PC
boards to remain covered yet visible. I
can remove the Lexan for experiments.

PERFORMANCE TESTING
As I write this article, the amplifi-

er project has been operational for
about a month. I haven’t had the
time to tweak the design or develop
any new software. I made some
quick measurements, but detailed
testing must wait for now.

Maximum power output at 5% dis-
tortion is 38.3 W. The power at 1% dis-
tortion is 24.6 W. Distortion at 10 W is
0.33%. In contrast, similar measure-
ments on a conventional amplifier
(one of my designs) of similar s ize
and weight generated different
results. Maximum power output at
5% distortion is 9 W. The power at
1% distortion is 4.7 W. Distortion at
1 W is 0.78%. Clearly, these techniques
allow for more undistorted power
output and far lower distortion at the
power levels found in most listening.

Does this project meet my original
design goals? Yes, and it does so in a
big way.

I wanted a development p latform
for writing code. I got it. I was
expecting to double the power out-
put of a conventional amplifier of
equal size. I found much more. This
technology can be applied conserva-
tively to generate triple the power
output. I have not made any efficien-
cy measurements yet, but it looks
like similar sized gains have
occurred. The distortion levels have
dropped to levels not usually seen in
vacuum tube amplifiers, especially in
the 0 to 2 W range, where most lis-
tening takes place. Many vacuum
tube proponents claim that it is this
distortion that gives a vacuum tube
amplifier its special “tube sound.”
I’ve listened to this amplifier for a
total of about 10 hours, and I can say

2910014_anderson - new.qxp 9/9/2009 5:11 PM Page 48

http://www.circuitcellar.com
http://www.pololu.com/ccad

www.circuitcellar.com • CIRCUIT CELLAR® 49

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar .com/pub/Circuit_Cellar/
2009/231.

OURCES
dsPIC30F2023 DSC, MCP6S26 PGA/multiplexer, and TC4427A MOSFET
driver IC
Microchip Technology, Inc. | www.microchip.com

P

S

that the “tube sound” is still in there!
At first, you might think this design

is not cost-effective because the cost
adder for the agile SMPS/controller is
about $150. But when you step back
and realize that it can be used to
double or triple an ampl ifier’s power
output and figure out what it would
take to double the power output by tra-
ditional means, you realize that adding
the controller is an overall cost savings.

This project is a h igh-end stereo
amplifier. Most people have some sor t
of music reproduction or home theater
equipment. Few people have (or even
want) high-end equipment due to its
high cost. This project is one step in
direction of reducing the cost of
high-end equipment. You can apply
this technology to solid-state ampli-
fiers and vacuum tube amplifiers for
the musical instrument market.

WHAT’S NEXT?
My amplifier is back on the work-

bench. I’m using this project to devel-
op the software for many of the fea-
tures I outlined earlier in this ar ticle.

George Anderson (tech@tubelab.com) worked at Motorola for 36 years as an RF
engineer focused on cell phones and two-way radios. He holds a BS in computer
engineering from Nova Southeastern University (graduated at age 40) and an MSEE
from Florida Atlantic University (graduated at age 46). George’s technical interests
range from ham radio to various microprocessor-related technologies.

There will be the inevitable hard-
ware upgrades as well because
Microchip has released a second gen-
eration of dsPIC processors made
specifically for SMPSs. There are
also some new ICs from Analog
Devices that reduce the floating
MOSFET driver to a single chip.

I plan to continue taking this
design down the road toward possible

production. I will likely do this in
stages, with the SMPS to replace the
analog power supply coming first. I
may also develop a vacuum tube gui-
tar amplifier using the same technol-
ogy. These techniques can go a long
way to improve the reliability of vac-
uum tube guitar amplifiers while
enabling all sorts of new and unique
distortion profiles. I

2910014_anderson - new.qxp 9/9/2009 5:11 PM Page 49

mailto:tech@tubelab.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/231
http://www.microchip.com
http://www.circuitcellar.com
http://www.newnespress.com

50 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

Cascaded integrator-comb (CIC) filters are specific forms of moving average
filters that enable you to tackle dif ficult signal-processing problems. With
these filters and some helpful multirate signal-pr ocessing techniques, you
have another option when a FIR filter doesn’t fit the bill.

Multirate Techniques and CIC Filters

W

by Robert Lacoste

elcome back to The Darker Side.
Faithful readers will remember

my column on finite-impulse response (FIR)
filters a couple of years ago titled “No Fear
with FIR” (Circuit Cellar 207, 2007). In a nut-
shell, FIR filters enable you to implement a
digital filter with virtually any response
curve in a DSP, FPGA, or even microcon-
troller—but they do so at the expense of a sig-
nificant number of arithmetic operations. For
example, to implement a 32-tap FIR filter, you
need to compute 32 multiplications and 31
additions per sample, which translates into a
lot of MIPS if your application requires a high
sampling rate.

A reader contacted me not so long after my
Circuit Cellar 207 article appeared in print.
He wanted to use a high-end DSP to filter a
signal sampled at 16 Msps, and he was having
some trouble implementing the required FIR
filter. Basically, his input signal was a nearly
5-MHz sine wave, and he needed to analyze the
signal’s small perturbations around 5 MHz—say,
from 4.95 to 5.05 MHz. I’m sure you could
find plenty of situations like this in applica-
tions ranging from digital radio receivers to
ultrasonic systems. The signal was 5 MHz, so
the choice of a 16-Msps s ampling frequency
made sense. As you know, in order to avoid
any nasty aliasing, the minimal sampling fre-
quency should be at least twice the highest fre-
quency present in the signal. So, in this instance,

THE DARKER SIDE

2 × 5 MHz was 10 Msps. Using 16 Msps allowed
the reader to implement a reasonable antialiasing
low-pass filter with a low attenuation at 5 MHz
and a high attenuation at 10 MHz (i.e., 20/2).
Then he needed to implement a digital filter
to isolate the frequencies of interest from
background noise, meaning a band-pass filter
centered at 5 MHz with a 100 kHz or so band-
pass. Using a FIR filter would require at least
a 256-tap filter to get this resolution (see my
previous article), and this translates into 256
× 2 operations executed 16 million times per
second, giving an 8,192 MIPS requirement. I
wasn’t surprised that the reader was having
some difficulties with DSP.

What does this mean? Simply that the
direct use of a FIR filter isn’t a good idea for a
case like this! In this article, I’ll show you
how to deal with such problems. You can use
multirate signal-processing techniques and
the companion filters of choice: cascaded inte-
grator-comb (CIC) filters.

MULTIRATE?
Real-life signals are full of information.

However, only a small part of this informa-
tion is usually useful, and life is far easier if
you succeed in reducing this flow down to the
information you actually need in order to
process it efficiently. This is exactly the job
for a good assistant who reads the daily news-
papers for you and drops a review on your

2910005_Lacoste.qxp 9/9/2009 5:43 PM Page 50

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 51

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

desk. By the way, you should have a
book on information theory on your
shelf (e.g., content from Claude E.
Shannon or others).

Let’s look at the previous example.
The 16-Msps sampling rate is di ctat-
ed by the signal’s 5-MHz frequency,
but the actual interesting informa-
tion is only included in a 100-kHz-
wide channel. Thus, the application
was throwing away 98% of th e infor-
mation. For instance, if the target is
to simply send the decoded signal to
a DAC, a 200-ksps sampling rate on
the output side will be enough to
transmit a 100-kHz-wide signal. So it
is fundamentally useless to calculate
a filtered value 16 million times per
second because only 2% of
the calculated information
will be used on the output.
How do you optimize such a
situation? Through multirate,
of course. (Just to be com-
plete, you could use another
approach, under-sampling, to
achieve roughly the same
results. But I won’t cover that
approach in this article.)

The initial signal has a high
bit rate but a low propor tion
of useful information. Multi-
rate processing is an algorith-
mic technique with which
you reduce (step by step) a
signal’s sampling rate while

keeping required information. This
means it increases the density of
information in a step-by-step fashion
(see Figure 1a). The trick is to move
(as far as possible) the algorithmic
complexity down to lower sampling
rates, thus reducing the overall pro-
cessing requirement. Basically, the
idea is to start with a high bit rate
signal, apply simple algorithms,
reduce the bit rate, apply slightly
more complex algorithms, and so on,
as long as required. Conversely, you
can use the same techniques to
increase (step by step) the data rate
of a signal with a reduction of i nfor-
mation density (see Figure 1b).

The aforementioned example from

my reader is definitely a
good candidate for mul-
tirate processing. So,
let’s use it as our main
example here.

DIGITAL MIXING
Let’s start with a 5-MHz

signal sampled at 16 Msps.
You need to reduce it in
the processor before exe-
cuting the computing-
extensive analysis algo-
rithms. Usually, the first
step is to bring the por-
tion of interest lower in
frequency but still with
the 16-Msps sampling
rate. In an analog radio
receiver, such a fre-
quency translation is
done using a heterodyne

mixer, a technique Reginald Fes-
senden experimented with as ear ly as
1900. In the analog heterodyne stage,
the input signal is multiplied by a
sine local oscillator. A digital mixer
is nothing more than the compu ter-
ized implementation of the same
principle (see Figure 2). Let’s see how
such a mixer works. Do y ou remem-
ber your trigonometric formulas?

So, if you multiply each sample of a 5-
MHz signal with, say, a 4.95-MHz syn-
thesized local oscillator, you will get a
difference signal—which is 5 MHz –

cos a cos b = cos a b + cos a + b() ⋅ () −() ()1
2

1
2

Figure 2—A digital mixer is nothing more than the digital equivalent of the old heterodyne system.
Multiplying a signal with a locally generated carrier allows it to shift its frequency, but this adds an
image frequency that must usually be filtered out.

50 kHz + 9.95 MHz

DDS

5 MHz

4.95 MHz 4.95 MHz 9.95 MHz50 kHz

4.95 MHz

5 MHz

ADC

Figure 1a—Multirate processing is a technique that gradually moves a high sampling rate signal down to
more manageable speeds, while increasing the density of useful information. b—The same approach can
be used in the other direction, usually to build transmitters.

Multirate processing, from a high to low bit rate (receivers)

Input signal
Very high throughput

Low information density

Output signal
Low throughput

Only the necessary information

Complex
processing,

less optimized
low rate

More complex
processing,

well optimized
medium rate

Simple
processing,

very optimized
high rate

Lower throughput
Higher information density

Lower throughput
Higher information density

Multirate processing, from a low to high bit rate (transmitters)

Input signal
Low throughput

Only the necessary information

Output signal
Very high throughput

Low information density

Simple
processing,

very optimized
high bit rate

Less complex
processing,

more optimized
medium bit rate

Complex
processing,

low optimization,
and low bit rate

Higher throughput
lower information density

Higher throughput
Lower information density

a)

b)

2910005_Lacoste.qxp 9/9/2009 5:43 PM Page 51

http://www.circuitcellar.com

52 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

4.95 MHz =50 kHz (named the intermediate frequency, or
IF)—and a sum signal a t 5 MHz + 9.95 MHz = 9.9 5 MHz
(the image frequency):

Note that as this relationship is linear, the spectrum of
the signal is maintained. For example, if the original sig-
nal included frequency components at 5 a nd 5.001 MHz,
the down-converted signal will have components at 5 0
and 51 kHz, respectively.

In practice, such a 4.95-MHz “oscillator” can be imple-
mented as a software-based DDS oscillator , which will just
require one addition and one sine table look-up per sample.
(For more information on this topic, refer to my 2008 ar ti-
cle, “Direct Digital Synthesis 101,” in Circuit Cellar 217.)
You will then have to calculate only one multiplication at
each signal sample to per form the mixing, so the process

cos 2 5,000,000t cos 2 4,950,000t =

 cos 2 50

π π

π

×() ⋅ ×()
×1

2
,,000t + cos 2 9,950,000t() ×()1

2
π

will use only a small number of CPU cycles.
I must highlight a difficulty. This simple digital mixing

scheme works only if you’re sure that your input signal
has frequency components close to 5 MHz (more exactly,
from 4.95 to 5.05 MHz). For instance, imagine you have a
strong input signal of 4.90 MHz. The translated output
would have a component at –50 kHz (i.e., 4.90 – 4.95).
But, as cos(–x) = cos(x), it will be added to the translated
5-MHz input signal and result in a mess. In such a case,
you’d need to filter the input signal prior to the ADC (to
increase the intermediate frequency), or you’d have to
use a more sophisticated technique like IQ mixing. I plan
to present this in a future article, so stay tuned. For the
moment, I will focus on a simple mixing.

DECIMATION
You started with a 5-MHz, ±50-kHz signal and sampled

it at 16 Msps with a fast ADC. You then multiplied it
with a signal generated by a digital 4.95-MHz local oscil-
lator. This translated the 5-MHz input signal down to a
signal at about 50 kHz (more exactly, from 0 to 100 kHz).
But you still have two issues to address. One, you have
an image signal at 9.95 MHz, which inevitably will be
added to your signal of interest. Two, the sampling rate is
still 16 Msps.

Reducing the sampling rate is known as decimation,
which is a simple process. Do you want to reduce the
sampling rate from 16 Msps to 200 ksps? Since
16,000/200 is 80, keep just one sample each 80 samples
and throw away the other 79! This is completely legiti-
mate, but only if you’re sure the signal can be represent-
ed reliably with a 200-ksps sampling rate, which means
it shouldn’t have a frequency component above 100 kHz.
And this is why you have a problem with the 9.95-MHz
image signal. If you just decimate the mixed signal, the
output will be useless because both images will be
merged together. You need first to filter out the image by
implementing a low-pass digital filter.

Are you back to the original problem associated with
implementing a digital filter at 16 Msps? No. The two sig-
nals have much different frequencies, so you can use a cr ude
digital filter that will be feasible on the computational side.

MOVING AVERAGES & CIC FILTERS
You’ve probably observed that averaging enables you to

remove “noise” in a dataset. In other words, an average—or
more specifically, a “moving average” (also called a “r un-
ning average”)—is a simple way to implement a low-pass
filter. Just take N consecutive samples of the signal, calcu-
late their average (or their sum, which is the same number
multiplied by N), and use the result as the filter ’s output.
Figure 3a is an example with N = 4.

A moving average doesn’t require anything other than
additions, so you can use such a filter for this problem.
With a proper choice for N, a moving average filter will
enable you to filter out the 9.95-MHz image and keep only
the 50-kHz signal. Then a decimation step will be legiti-
mate. Of course, it would be useless to calculate all the

Figure 3a—A moving average filter is not very effective in terms of
calculation, even coupled with a decimation, and even if only the
required averages are calculated (b). For example, here the sum X2

+ X3 is calculated twice. The CIC algorithm (c) is simply a more
optimized algorithm to calculate exactly the same values.

Moving average filter (N = 4)

Input

Output

etc...

x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7

x8 x9 x10

Moving average filter (N = 4), then decimated by D=2

Input

Output y0 y2 y4 y6

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Moving average filter (N = 4), then decimated by D = 2, the CIC way.

Input

Comb

Output

Integrate

Decimate

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

i0 i1 i2 i3 i4 i5 i6 i7 i8

i1 i3 i5 i7 i9

y0 y2 y4 y6

i9 i10

a)

b)

c)

2910005_Lacoste.qxp 9/9/2009 5:43 PM Page 52

http://www.circuitcellar.com

computational side. The idea is sim-
ple. Rather than calculate the sum of
the samples x101 to x110, why not cal-
culate the sum of the samples x 0 to
x110 and subtract the sum of the sam-
ples x0 to x100? The result would be
exactly the same. This may seem
silly because you wouldn’t calculate
it that way by hand, but it’ s a good
idea for a computer. As you can see

in Figure 3c, the optimized algorithm
is a three-step process.

First, calculate the sum of all the
previous samples. This is easy. Just
add each new sample to a n accumu-
lator. This operation is mathemati-
cally an integral. Then you can per-
form the decimation: do nothing
except at each Dth sample, for which
an output value must be cal culated.
And then you can calculate this out-
put value as the d ifference between
the current accumulator and one of
its previous values—more exactly,
the previous one if N = D and the
one before if N = 2D. In signal pro-
cessing, the addition or subtraction
of two values shifted in time is
called a comb. Now you kn ow why
the overall filter is called a “cascaded
integrator-comb filter.”

CIC FILTER
You can efficiently implement a CIC

only if the size N of the averaging win-
dow is a multiple of the decimation
factor D. If N = 4D, then the filter’s
comb section will need to implement a
four-word first-in/first-out buffer to
store the accumulator’s last four val-
ues. That’s why CIC filters are usually
implemented with N = D—the same
averaging factor as the decimation

www.circuitcellar.com • CIRCUIT CELLAR® 53

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

moving averages before decimation.
For example, if you want to decimate
by a factor of two, you just need to
calculate one average every two sam-
ples (see Figure 3b). However, note
that the algorithm in Figure 3b isn’ t
very efficient because you calculate
the same operation several times. For
example, the first output value is x 0 +
x1 + x2 + x3 and the second
output value is x2 + x3 + x4 +
x5. You’ve calculated two
times the addition x2 + x3.
The situation will be worse if
the average is calculated on a
larger number of points,
which is usually the case. So,
if you needed to use an aver-
age of N = 256 points with a
decimation factor of D = 8,
you would calculate 32 times
each addition. There should
be a more efficient way,
right? Yes, at least if you
restrict the size N of the aver-
age to be a multiple of the
decimation factor D. That
isn’t a big concession.

This brings you to the so-
called CIC filter (see Figure 3c).
The most basic form of a CIC
filter—a one-stage CIC (i.e.,
CIC1)—gives the same result
as a moving average filter , but
it is far more efficient on the

Figure 4—Here is the frequency response of a CIC1 filter with an averaging window of eight samples
and a decimation factor of eight, both with linear scale (left) and logarithmic scale (right). Mathe-
matically speaking, this is a sin(x)/x shape, with a main low-pass lobe but high residual side lobes,
up to –13 dB for the first one.

Moving average filter D = 8 (linear scale)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1.0
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Moving average filter D = 8 (decibels)

0

5

10

15

20

25
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Listing 1—This Scilab code calculates and plots the frequency response of a CIC1 filter
with N = D = 8. It is simply done by calculating the FFT of an eight-point rectangular
pulse.

// Simulation length
LENGTH=1024;

// Width of the window (in samples)
D=8;

// Generate the filter impulse response (rectangular, length D)
imp=zeros(1:LENGTH);
imp(1:D)=1/D;

// Calculate its frequency response through FFT
freqresponse=abs(fft(imp));

// Plot it, in linear and log scale !
subplot(1,2,1);
plot2d((1:LENGTH/2)/LENGTH,freqresponse(1:$/2));
xtitle('Moving average filter - D=8 (linear scale)');
subplot(1,2,2);
db=20*log10(freqresponse+1e-200);
plot2d((1:LENGTH/2)/LENGTH,db(1:$/2),rect=[0,-25,0.5,0]);
xtitle('Moving average filter - D=8 (dB)');

2910005_Lacoste.qxp 9/9/2009 5:43 PM Page 53

http://www.circuitcellar.com

54 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

factor, which enables you to avoid
any FIFO buffer—or N = 2D or 3D,
but not more. For simplicity, I’ll focus
on the simpler case of N = D.

What is the frequency-
domain characteristic of
such a one-stage CIC fil-
ter, meaning its attenua-
tion at a given frequen-
cy? The same as the
characteristic of a mov-
ing average filter
because they are just
two implementations of
the same filter. But
what is it? You have
three ways to find it:
intuitively, via a simula-
tion, or mathematically.

Let’s start with the
math. Do you remember
my article on FIR fil-
ters? A moving average
filter is in fact nothing
more than a special FIR
filter with all coeffi-
cients set to one. Yep.
So you will remember
that its frequency
response is the Fourier
transform of a rectangu-

Scilab script to plot the fre-
quency response of a D =
N = 8 CIC f ilter. The code
is straightforward. I’m sure
you will understand it,
even if you don’t have
experience with Scilab or
Mathlab (see Listing 1).
Download Scilab on your
PC, run this script, and
you will get the plot
shown in Figure 4.

Let’s move on to the
topic of intuitive analysis.
There is a first lobe with a
low-pass shape as planned.
The gain is lower and
lower when the frequency
increases up to a point
where it is null. For D = 8,
this point is at a frequency
F = 1/8 = 0,125 times the
sampling rate. Think
twice. This is normal. If
the input signal has such a
frequency, one of its peri-
ods will be exactly as l ong

as the averaging window, so the aver-
age will be null. However, as the fre-
quency continues to increase, the filter
response rises again, with a second lobe

lar window, which is a common func-
tion in signal processing named
sinc(x) and equal to sin(x)/x. Do you
want to see its shape? I wrote a short

Figure 5—Combining several identical CIC stages reduces the side lobes, at the cost of a slightly higher
processing expense. This is a comparison of CIC1 (top), CIC2 (middle), and CIC3 (bottom).

CIC Filter D = 8 1 stage (linear scale)
1.0
0.9
0.8
1.7
0.6
0.5
1.4
0.3
0.2
0.1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

CIC Filter D = 8 2 stages (linear scale)
1.0
0.9
0.8
1.7
0.6
0.5
1.4
0.3
0.2
0.1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

CIC Filter D = 8 3 stages (linear scale)
1.0
0.9
0.8
1.7
0.6
0.5
1.4
0.3
0.2
0.1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

CIC Filter D = 8 3 stages (decibels)
0

10
20
30
40
50
60
70
80

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

CIC Filter D = 8 2 stages (decibels)
0

10
20
30
40
50
60
70
80

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

CIC Filter D = 8 1 stage (decibels)
0

10
20
30
40
50
60
70
80

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

CIC1 Filter, decimating

Integrator

High bit rate Low bit rate

Decimator Comb

CIC2 Filter, decimating

IntegratorIntegrator

High bit rate Low bit rate

Decimator Comb Comb

CIC2 Filter, interpolating

CombComb

Low bit rate High bit rate

Interpolator Integrator Integrator

a)

b)

c)

Figure 6a—A CIC1 filter is nothing
more than an integrator, a decima-
tor, and a comb, which is a simple
subtraction. b—A CIC2 filter can be
built efficiently by grouping the two
integrators and the two combs
together. c—A CIC filter can be
used to increase the bit rate just by
exchanging the integrator and
comb sections and replacing the
decimator by an interpolator.

2910005_Lacoste.qxp 9/9/2009 5:43 PM Page 54

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 55

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

And, of course, nothing
prevents you from build-
ing CIC3, CIC4, or more
complex filters. Just be
sure the accumulators are
wide enough, because the
numbers can get big.

You can also use CIC fil-
ters in the other direction
to increase a sampling rate.
You just have to inverse the
operations: comb first,
interpolate, and then inte-
grate (see Figure 6c). An
interpolator in this context
is nothing more than a
latch, copying several times
the same value on the out-
put. You can check it. With
such a CIC filter imple-
mented, you will get a lin-
ear interpolation between
each input sample.

The pass-band of a CIC filter is all but flat. The attenua-
tion is 0 dB only at DC. It then increases steadily up to 3
dB regularly, not abruptly, as you would expect with a good
low-pass filter. This is the price to pay for efficiency . How-
ever, nothing prevents you from cor recting this behavior
with computations. A usual implementation is to add (after
decimation) a FIR filter with a response cur ve precisely cal-
culated to compensate for the behavior of the CIC filter in

that has a minimum attenuation of 13 dB. This patter n
repeats, with nulls at frequencies that are multiples of
the first one. This is the characteristic of a moving aver-
age filter. Maximal attenuation occurs each time the
input signal’s period is a sub-multiple of the averaging
duration.

Such a filter may be enough for your application, but
what can you do if the attenuation is not as steep as you
want? One solution is to increase the
size of the averaging, either by
increasing the decimation factor D or
by implementing a FIFO with N = 2D
or 3D. But this is not always possible
because it would alter the band-
width. Another solution is to cascade
several identical filters: their attenu-
ation will be added, thus decreasing
the importance of the side lobes (see
Figure 5).

In practice, there is an efficient way
to cascade several CIC filter stages (see
Figure 6). For example, let’s say you
want to cascade two CIC filters with
the same parameters N and D just to
double the attenuation in the stop
band. You then have the following
steps: integrate, decimate and comb,
and then integrate, decimate, and
comb. These operations are linear, so
you’ll get the same result even if you
shuffle them around. An efficient
order is the following: integrate, inte-
grate, decimate, comb, comb. This is
the usual implementation of two-
stage CIC2 filters (see Figure 6b).

Figure 7—This is the architecture for the example I implemented on a PIC24FJ64GA002 microcontroller.
From left to right, you see a digital mixer and a CIC2 low-pass filter. This design digitizes a 7-kHz signal
and zooms out its frequencies from 6,950 to 7,050 Hz.

Decimated rate, 1.56 kspsADC Rate, 25 ksps

6.95 kHz
to 7.05 kHz

0 Hz
to 100 Hz

DDS

CIC2

DAC

7.05 kHz

/16

7.05 kHz f 7.05 kHz f 7.05 kHz f

ADC

Photo 1—The Labcenter Electronics VSM simulates both the hardware and the embedded
firmware. On my desk you can see Microchip’s MPLAB IDE on the left and Labcenter’s VSM
on the right, with the virtual scope in action.

2910005_Lacoste.qxp 9/9/2009 5:43 PM Page 55

http://www.circuitcellar.com

40-41.qxp 8/5/2009 9:53 AM Page 40

40-41.qxp 8/5/2009 9:53 AM Page 41

http://www.embeddedarm.com

58 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

presentations, right? In high-speed
systems like software-defined radios,
CIC and multirate techniques are
usually implemented either in high-
end FPGAs or DSPs. There are also
some generic digital receiver chips
like Analog Devices’s AD6640 that
implement what I’ve covered in this
article: a digital oscillator and mixer,
a high-speed 65-Msps CIC filter , and

a correcting FIR filter. The only dif-
ference is that it includes a complex
mixer and two filter chains in order
to be used for dig ital modulation sys-
tems. I’ll provide more information
in a future article.

CIC and multirate techniques can
simplify low-cost microcontroller-based
designs too. Let’s look at an example.
Suppose you need to design a Doppler
sound velocity measurement system.
Let’s assume that you have a loud-
speaker that sends a 7-kHz audio signal
in the air and that close to it is a micro-
phone to grab the sound bounced back
by small moving objects. You want to
know the relative speed of the moving
objects. You can determine this by ana-
lyzing the received sound’s Doppler
shift: any object coming closer to the
microphone will generate a frequency
slightly higher than 7 kHz. Reciprocal-
ly, any object moving away will gen-
erate a sound frequency below 7 kHz.
The frequency shift is simply 7 kHz
times the ratio between the object’s
speed and the sound’s speed in air,
which is about 340 m/s. Fo r exam-
ple, if the object’s speed is 1 m/s, the
shift will be 20.5 Hz (i.e., 7 kHz ×
1/340). So, if you analyze the micro-
phone signal’s frequency spectrum from
7 kHz – 50 Hz = 6,950 Hz to 7 kHz +
50 kHz = 7,050 Hz, you will detect
and measure the speed of any object in
a 2-m/s window backward or for ward.

Analyzing the signal directly
results in poor resolution, so you
need to “zoom” on the frequency
window prior to detailed analysis

its pass-band, a filter usually named
invsinc (inverse sin(x)/x). The good
news is that such a cor recting FIR fil-
ter will be on the low bit-rate side and
thus far easier to implement.

FIRMWARE IMPLEMENTATION
Like all Circuit Cellar readers, I

know that you prefer actual imple-
mentations rather than theoretical

Photo 2a—The digital mixer’s output shows (as expected) a 50-Hz signal along with some high-frequency noise, which is nothing other
than the 14-kHz image frequency. b—When the CIC filter is in action, the virtual scope shows a clean 50-Hz sine wave.

a) b)

2910005_Lacoste.qxp 9/9/2009 5:43 PM Page 58

http://www.circuitcellar.com
http://www.cubloc.com

beauty of a tool like VSM is that it
enables you to simulate the design’s
analog portion like any Spice-based
software (here the 7-kHz oscillator

and the output DAC) and the fir mware
executed inside the PIC24FJ64GA002.
The result is close to what you see in
Photo 2. Thus, I am more than confi-
dent that this design would work
without a hitch, even if I didn’t build
it with a soldering iron.

HANDY TECHNIQUES
Here we are. In summary, CIC fil-

ters are actually simple moving aver-
age filters with a twist. The filters
enable you to break down difficult
signal-processing problems and
reduce the requirements on comput-
ing architecture, especially when
combined with software-based DDS
and frequency mixers. So, any time
you think that the useful informa-
tion is far smaller than the actual
sampling rate, multirate techniques
can help. And now these techniques
are no longer on the darker side for
you. You have one more tool in your
pocket! I

www.circuitcellar.com • CIRCUIT CELLAR® 59

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar .com/pub/Circuit_Cellar/
2009/231.

ESOURCES
Altera Corp., “Understanding CIC Compensation Filters,” Ver. 1.0, Appli-
cation Note 455, 2007, www.altera.com/literature/an/an455.pdf.

R. Lyons, “Understanding Cascaded Integrator-Comb Filters,” Embedded.com,
2005.

M. P. Donadio, “CIC Filter Introduction,” http://users.snip.net/~donadio/cic .
pdf.

OURCES
AD6620 Signal processor
Analog Devices, Inc. | www.analog.com

Proteus VSM mixed-signal simulator
Labcenter Electronics | www.labcenter-electronics.com

PIC24FJ64GA002 Microcontroller
Microchip Technology, Inc. | www.microchip.com

S

P

Robert Lacoste lives near Paris, France. He has 20 years of experience working
on embedded systems, analog designs, and wireless telecommunications. He
has won prizes in more than 15 international design contests. In 2003, Robert
started a consulting company, ALCIOM, to share his passion for innovative
mixed-signal designs. You can reach him at rlacoste@alciom.com. Don’t forget
to write “Darker Side” in the subject line to bypass his spam filters.

with an FFT (or something similar).
This seems like a good application for
multirate processing, right? Of course,
this is exactly the same problem as
the one I covered in the first part of
this article. I moved the operating fre-
quency from 5 MHz down to 7 kHz
in order to use a low-speed processor
and to illustrate the concept on a
simple design.

Figure 7 shows the corresponding
design. The input signal (6,950 to
7,050 Hz) is first digitized at 25 ksps
with an ADC and mixed with a
7.050-kHz digital synthesized oscilla-
tor. This translates the signal of interest
in low frequencies (0 to 100 Hz), but
unfortunately with an image frequen-
cy close to 14 kHz. Then a CIC2 fil-
ters out the image frequency and
reduces the sampling rate by a factor
of 16, down to 1.562 kHz, which is
enough for a 100-Hz bandwidth.

With such a frequency range, a low-
cost, 16-bit processor like a Microchip
Technology’s PIC24FJ64GA002 is
enough. Figure 8 shows you the cor-
responding schematic, which is more
than simple. I coded the correspon-
ding firmware in C language. It is
less than two pages long, so don’t
hesitate to take a look at it on the
Circuit Cellar FTP site. I haven’t
actually built this project, but thanks
to Labcenter Electronics’s VSM
mixed-signal simulator, I tested it on
my PC. Have a look at Photo 1. The

R

Figure 8—The input signal is sent directly to a PIC24FJ64GA002 ADC input. The firmware
reads a BCD switch connector to RA0..3 in order to select which data to send out on
RB0...7: ADC value, DDS value, mixed value, or filtered output. Then a crude 6-bit R2R
DAC converts it in analog form. Lastly, a virtual scope displays it. Pin RB15 is just used to
signal when the interrupt routine is active.

2910005_Lacoste.qxp 9/9/2009 5:43 PM Page 59

mailto:rlacoste@alciom.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/231
http://www.altera.com/literature/an/an455.pdf
http://users.snip.net/~donadio/cic.pdf
http://www.analog.com
http://www.labcenter-electronics.com
http://www.microchip.com
http://www.circuitcellar.com

60 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

Do you need a way to measure airflow in an air duct? Try deconstructing a
small CPU fan, calculating the RPMs, and putting together a circuit to output
data to an LCD. Airflow analysis made simple.

Airflow Analysis

I

by Jeff Bachiochi

n an effort to improve my home’s ability to
sustain a comfortable temperature as effi-

ciently as possible, I upped the insulation, added
double-pane windows, and sealed all the potential
cracks. Whether I want it cooler or war mer than
the outside temperature depends on the climate
(and the time of year). By reducing the transfer of
heat through my home’s walls, I reduce the ener-
gy necessary to warm it up or cool it down. In
doing so, I am also saving money.

Along with my new cozy environment, I
eliminated, or at least reduced, the exchange of
air with the outside. This prevents evils like
high pollen counts from infiltrating my home,
but it also keeps in unwanted par ticulate mat-
ter like radon gas, mold spores, or even the
common cold virus. The U.S. Environmental
Protection Agency (EPA) has put together a
comprehensive set of indoor air quality (IAQ)
specifications recommended for new construc-
tions. The “EPA Indoor airPLUS” label identi-
fies qualified homes that have been verified to
meet these specifications. There are three basic
strategies for improving air quality: eliminate or
control the sources of pollution, increase venti-
lation, and install air-cleaning devices. Usually,
the most effective way to improve indoor air
quality is to eliminate individual sources of pol-
lution or reduce their emissions. Some sources,
like those that contain asbestos, can be sealed
or enclosed. In an enclosed area, second-hand
smoke continues to affect all, so I don’t allow
smoking indoors. I try to stunt the growth of

FROM THE BENCH

some sources of biologicals, such as mold and
mildew, by keeping the relative humidity level
to 50% or less in my home. Paints, var nishes,
and wax all contain organic solvents, as do
many cleaning, disinfecting, cosmetic, degreas-
ing, and hobby products, so I store them out-
side whenever possible.

I eliminated air exchanges to increase energy
savings, so improving ventilation when weath-
er permits (the air temperature differential is
minimal) is as simple as opening a few win-
dows around the house. Exhaust fans in the
bathroom or attic can aid this process if there is
no natural breeze outside to move the air
through the house. Remember, exhaust fans
will do no good if there is no way for air to get
into your home. While ventilation can exhaust
those pollutants pent up inside your home, you
may be trading one pollutant for another when
you bring in “fresh” air, especially on days with
high pollen counts.

Lastly, if I can’t eliminate the source or
exhaust it, I can attempt to clean it from the
air. Air cleaners may be built into a home’ s
HVAC system or operate as a por table stand-
alone unit. The effectiveness of an air cleaner
depends on how well it collects pollutants from
indoor air and how much air it draws through
the cleaning or filtering element. A ver y effi-
cient collector with a low air-circulation rate
will not be effective, nor will a cleaner with a
high air-circulation rate but a less efficient col-
lector. The long-term performance of any air

of

Art

a

2910002-bachiochi.qxp 9/10/2009 12:56 PM Page 60

http://www.circuitcellar.com

cleaner depends on whether or not
you maintain it in accordance with
the manufacturer’s specifications.

SIZE MATTERS
First off, let’s get an idea of what

particle sizes we’re dealing with when
we’re talking about pollutants (see
Table 1). To be an effective air cleaner ,
the filter must be able to trap pollu-
tants. It does this by preventing them
from passing through its physical
structure. A membrane filter acts as a
sieve to catch particles larger than the
openings between the fibrous strands
that make up the filter screen or mat.
Particles smaller than the sieve’s
openings may get trapped by other
means, such as interception, inertial
impact, or diffusion. A high-efficiency
particulate absorbing (HEPA) filter can
theoretically remove 99.97% of dust,
pollen, mold, bacteria, and any air-
borne particles with a size of 0.3 µm
at 3 cubic feet per minute (CFM). The
American Society of Heating, Refriger-
ating, and Air-Conditioning Engineers
(ASHRAE) uses a minimum efficiency
report value (MERV) rating of 1 to 16 to
designate filter effectiveness. Table 2
shows how this rating relates to the
particle size and the filter ’s ability to
remove it.

When you inhale, particulate matter
less than 100 µm can enter your body
through your nose and mouth. Your
nose does a pretty good job of filtering
those particles greater than 10 µm.
Smaller particles move into the lungs
where they can interfere with the
exchange of oxygen. Any particulate
matter less than 5 µm is considered
hazardous.

The ASHRAE recommends a venti-
lation rate of 0.35 air changes per hour
(ACH) for new homes, and some new
homes are built to even tighter specifi-
cations. Particular care is taken in
such homes to prevent the build-up of
high levels of indoor air pollutants.
What is ACH and how does this relate
to clean air?

ACHOO
Say you live in a 10 ′ × 10′ room

with 8′ ceilings. This room has 100 ft2

of floor space and 800 ft 3 of volume.
With no openings (doors, windows, or

vents), the 800 cubic feet of air in
the room could move around the
room; but over the period of 1 hour,
no air would be exchanged with
any on the outside, and thus the
room would have 0 ACH. On a
breezy day, if you opened a 1-ft 2

window at one end of the room,
you might get a bit of air tr ying to
enter. If air is forced into the
room through the window, pres-
sure would build within the room
because the walls don’t flex. The
air has no way to escape except
back out the window. Circulation
ceases when the air pressure tr y-
ing to exit equals the force of the
fresh air trying to enter. While the
air exchange is not quite zero, you
might as well close the window.

Things can change dramatically
when you open a second window
at the opposite end of the room.
Pressure building within the room
from air entering at one side now
has an escape route. It is clear to
see that the velocity of the breeze
entering the window will deter-
mine how quickly the air moves
through the room. If you measure
this velocity, you can determine
how much air is moving through
the window. Let’s say you deter-
mined that the stiff breeze was
moving at a rate of 1 ′ per second.
The window opening is 1 ft 2, so
the breeze is moving 1 ft 3 of air
into the room each second. One
cubic foot per second is 60 cubic
feet per minute, or 60 CFM. In 14
minutes, that breeze can com-
pletely exchange all the air in the
room (i.e., 60 CFM × 14 minutes =
840 ft3). In 1 hour, the air could be
changed four times (60 minutes
per hour/14 minutes per air
change = 4 ACH). This is approxi-
mately 11 times more than the
ASHRAE recommendations for
new home construction.

You won’t be depending on
Mother Nature to provide your
home with adequate ventilation
year round. If you have both heat-
ing and cooling in your home, there’s
a good chance you have a Heating,
Ventilation, and Air Conditioning
(HVAC) system. An HVAC system

www.circuitcellar.com • CIRCUIT CELLAR® 61

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

provides climate control throughout
living and working spaces. Ducts or
channels carry conditioned air from
the heating and cooling unit to each

Table 1—This list gives you a good sense of the
size of many common items, including those we
consider pollutants.

Particle Particle size
(microns)

One inch 25,400

Dot (.) 615

Eye of a needle 1230

Glass wool 1000

Spanish moss pollen 150 – 750

Beach Sand 100 – 10,000

Mist 70 – 350

Pollens 10 – 1,000

Cayenne pepper 15 – 1,000

Textile fibers 10 – 1,000

Fiberglass insulation 1 – 1,000

Human hair 40 – 300

Dust mites 100 – 300

Saw dust 30 – 600

Mold spores 10 – 30

Starches 3 – 100

Red blood cells 5 – 10

Mold 3 – 12

Spider web 2 – 3

Spores 3 – 40

Combustion–related carbon compounds
from motor vehicles, wood burning,
open burning, industrial processes

Up to 2.5

Fly ash 1 – 1,000

Talcum dust 0.5 – 50

Asbestos 0.7 – 90

Auto and car emission 1 – 150

Copier toner 0.5 – 15

Liquid droplets 0.5 – 5

Insecticide dust 0.5 – 10

Anthrax 1 – 5

Yeast cells 1 – 50

Carbon black dust 0.2 – 10

Atmospheric dust 0.001 – 40

Smoldering or flaming cooking oil 0.03 – 0.9

Corn starch 0.1 – 0.8

Sea salt 0.035 – 0.5

Bacteria 0.3 – 60

Bromine 0.1 – 0.7

Lead 0.1 – 0.7

Radioactive fallout 0.1 – 10

Tobacco smoke 0.01 – 4

Viruses 0.005 – 0.3

Typical atmospheric dust 0.001 – 30

Sugars 0.0008 – 0.005

Pesticides and herbicides 0.001

Carbon dioxide 0.00065

Oxygen 0.0005

2910002-bachiochi.qxp 9/10/2009 12:56 PM Page 61

http://www.circuitcellar.com

good practice to add a (inexpensive)
prefilter to prevent large par ticles from
clogging up a HEPA filter. As you can
see in Figure 2, HEPA filters can intro-
duce rather large pressure drops to an
HVAC system due to the small open-
ings in the filter material. A HEPA

62 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

room and back again. From the previ-
ous example, it is clear that the size of
a window opening (or duct in this
case) will affect the CFM potential for
any room. Remember: you used air
velocity and the size of the opening to
determine CFM, and then CFM and
room volume to determine ACH.

PUSH VS. SHOVE
An HVAC system uses a motor and

fan to circulate air through the ducts
to each room and back through retur n
ducts again. The size of the motor
determines how much air can be
moved. Figure 1 shows the relation-
ship between the amount of air that
can be moved and the pressure at
which it can move the air . You can
think of the pressure as the push
required to overcome any obstacle pre-
venting air movement (e.g., duct size
or an air filter). Like Mother Nature,
the motor/fan will only be able to pro-
vide airflow if the pressure remains
below the unit’s designed limit. Note
that HVAC pressures are measured in
inches of water.

Providing air quality in the HVAC
system requires the use of filters to
remove contaminates from the air.
Since HEPA filters are expensive, it is

filter attempts to reduce the required
pressure by adding more square feet of
surface area (deep corrugation pockets)
to the oncoming airflow.

While initial system design may pro-
vide adequate CFM to ensure a mini-
mum number of ACH, contaminants

Table 2—Filters are rated according to their ability to trap particles down to 0.3 µm. MERV values of 1 to 4 can handle particles greater than
10 µm, while higher values must be used to trap smaller particles with greater efficiencies.

Minimum efficiency reporting values (MERV)
ASHRAE Standard 52.2

Group no. MERV Rating E1
Average Particle Size Effi-
ciency (PSE)
0.3 – 1.0 Microns

E2
Average particle size efficiency
(PSE)
1.0 – 3.0 Microns

E3
Average particle
size efficiency (PSE)
3.0 – 10.0 Microns

Average Arrestance
(ASHRAE 52.1)

Minimum final
resistance
(in. W.G.)

1 MERV 1 – – Less than 20% Less than 65% 0.3 m

MERV 2 – – Less than 20% 65 – 69.9% 0.3 m

MERV 3 – – Less than 20% 70 – 74.9% 0.3 m

MERV 4 – – Less than 20% 75% or greater 0.3 m

2 MERV 5 – – 20% – 34.9% – 0.6 m

MERV 6 – – 35% – 49.9% – 0.6 m

MERV 7 – – 50% – 69.9% – 0.6 m

MERV 8 – – 70% – 84.9% – 0.6 m

3 MERV 9 – Less than 50% 85% or greater – 1.0 m

MERV 10 – 50% – 64.9% 85% or greater – 1.0 m

MERV 11 – 65% – 79.9% 85% or greater – 1.0 m

MERV 12 – 80% – 89.9% 90% or greater – 1.0 m

4 MERV 13 Less than 75% 90% or greater 90% or greater – 1.4 m

MERV 14 75% – 84.9% 90% or greater 90% or greater – 1.4 m

MERV 15 85% – 94.9% 90% or greater 90% or greater – 1.4 m

MERV 16 95% or greater 95% or greater 95% or greater – 1.4 m

Figure 1—A system loses its ability to move air as its path is impeded. Ducts, filters, and
louvers cause a rise in pressure measured in inches of water. This pressure slows down the
motor/fan’s effectiveness reducing the CFM.

0.70

0.60

0.50

0.40

0.30

0.20

0.10
0 100 200 300 400 500 600 700 800

Maximum

Minimum

Airflow rate (CFM)

S
ta

tic
 p

re
ss

u
re

 (
In

ch
e

s
W

.G
.)

2910002-bachiochi.qxp 9/10/2009 12:56 PM Page 62

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 63

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

key areas, you could paint a picture of
the HVAC system’s performance.
There are three basic techniques for
how this might be accomplished:
hotwire, pressure, and mechanically.

begin to restrict airflow as filters pick
up particulate matter. While this can
actually increase the efficiency of the
filters, it raises the system pressure
and the CFM of air that the motors
can produce goes down. Over time,
the system works harder and may fail
in providing the required ACH. If this
is unmonitored, you have a problem
that continues to get worse. To some,
this can give rise to health issues.

DAYLIGHT SAVINGS TIME
Daylight savings time continues to

be controversial. But required time
changes remind us to take mainte-
nance measures like changing the bat-
teries in a smoke detector. We can all
use this as a spring board to getting to
all of those other chores that require a
periodic look see, like cleaning the
gutters or changing the filters. If you
are like me, you clean the gutters after
you notice them overflowing during a
storm. I’d prefer to know when a filter
needs replacing, rather than arbitrarily
changing it.

Recently, I was asked to develop a

way of measuring airflow within an
air duct. From a measured velocity,
the volume (CFM) of air can be calcu-
lated for the duct size. If these meas-
urements were taken in a number of

Figure 2—HEPA fil-
ters cause large
pressure drops
because the air must
work to find its way
through the filter
material. One way to
reduce a HEPA filter’s
pressure is to
choose one with a
deeper corrugation,
which increases its
surface area.

1.2

1.1

1.0

0.9

0.8

100 200 300 400 500 600 700 800 900 1000

2-1/2"

7-1/2"

5"

Air flow rate (CFM)

S
ta

tic
 p

re
ss

u
re

 (
In

ch
e

s
W

.G
.)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

`

For Information or Questions, Please Contact:
SoC@SavantCompany.com or (949) 851-1714

www.SavantCompany.com
Die images courtesy of Intel Corporation.

2910002-bachiochi.qxp 9/10/2009 12:56 PM Page 63

mailto:SoC@SavantCompany.com
http://www.SavantCompany.com
http://www.circuitcellar.com
http://www.socconference.com

64 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

multi-pole yoke. When the fan is
unpowered, the magnetized rotor is
attracted to a laminated metal yoke.
This magnetic bond takes a bit of
force to overcome and as such won’ t
allow the rotor to turn freely in low
airflow. The yoke must be removed.
So the search begins for a fan that
allows the easy disassembly and
removal of the yoke and coil assembly.

After purchasing a number of fans
and dissecting them, I was having no
luck. Either I couldn’t get the rotor off
or the yoke laminations were molded
into the frame. Finally, I was able to
get inside a COOLTRON fan and
extract the innards. Although it

seemed as though the blades rotated
freely, it still had too much friction in
the sleeve bearing and wasn’t as sensi-
tive as I needed. Then I found a small
CPU fan I had pulled off a junk board.
It had ball bearings and came apar t
easily (see Photo 1a). With the guts
out, it spun with the smallest puff of
air. Now I had to find a Hall effect
switch to use as an RPM counter .

TACHOMETER OUTPUT
I didn’t have to look far. In fact, the

drive electronics for the yoke coils in
this CPU fan are based on a Hall effect
device. That meant a free tachometer
output from the fan’s leftover circuitry
(see Photo 1b). How much better can
it get? I connected 5 V to the 12-V fan
leads and probed the Hall outputs. It has
two clean 5-V toggles (the second 180°
off from the first) that flip twice per rev-
olution. It looks like the yokes were
originally driven directly by the Hall
effect device’s outputs (see Photo 1c).

Next, I had to figure out how the
fan’s RPMs relate to velocity. The
datasheet lists that this fan r uns at
4,200 RPMs. I needed a quick circuit
that could output some text on an
LCD. Having recently finished a few
projects with LCDs, I prototyped the

The hotwire method monitors the cur-
rent flowing through a heated ele-
ment. The faster air flows across the
exposed element, the more heat is
drawn off the element. The cor respon-
ding rise in current—which is neces-
sary to keep the element at a specific
temperature—is directly proportional
to velocity. The pressure method uses
the difference in pressure between the
directional (total) and nondirectional
(static) components of the flow to
compute dynamic pressure. The
dynamic pressure is measured in inch-
es of water that can be conver ted
directly to velocity. The mechanical
method uses a flap or vane that is
physically pushed by the air. The
amount of movement is directly relat-
ed to the velocity of the air pushing
on it.

If a fan is used to produce air flow,
why not use a fan to measure it? Many
of today’s DC fans use a plastic blade
molded around a magnetic rotor ring,
which rotates freely on sleeve or ball
bearings. The internal stator is made
up of coils wound around a stationar y

Photo 2—The LCD displays RPS and velocity. RPS is the Hall effect count/2 (two counts/
revolution). The velocity is calculated from a calibration value and the RPS.

Photo 1a—Once you remove the fan blade,
you can take out the stator yoke and coils.
Note the ring magnet on the inside of the fan
impeller. b—With the stator yoke and coils
removed, you can see the Hall effect device,
which was used to alternately power the
coils. Now it becomes the pulse output used
as a tachometer. c—To reduce turbulence, I
constructed a shroud over the fan’s frame.
This allows a smooth transition between a
square opening and round hole.

a)

b) c)

2910002-bachiochi.qxp 9/10/2009 12:56 PM Page 64

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 65

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

idea pretty quickly. The plan was to
count revolutions as an inter rupt.
With a timer set to over flow every
second, I found I could grab the count
or revolutions per second (RPS), clear
the count, and print the results while
continuing to count revolutions for the
next conversion. Counting revolutions
is the most critical item so it is han-
dled by an interrupt and can take over
when necessary. Working with a 1-s
time frame makes everything easy.
Since I would be working in seconds, I
needed to convert the 4,200 RPMs into
RPS—that’s 70 RPS (i.e., 4,200 RPM/60 s).

RPS VS. VELOCITY
The LCD reported the RPS count

accumulated over the previous second
as “xxxxx=RPS” (see Photo 2). Now I
needed to find the relationship
between the air velocity that flows
through and pushes on the fan blades
and the RPS produced. To do so, I
grabbed my car keys and drove to a
vacant parking lot where I could take
some readings.

First, I charted RPS based on a
steady-state MPH. Then, I repeated
the testing charting MPH based on
RPS. I knew that if the data for both
tests was comparable, I was in the ball-
park. I found that at the rated RPS (70)
my speed measured 18 MPH, and 1 MPH
was 5,280′/hour, or approximately
1.5′/s. Therefore, I could calculate the
air velocity equal to 1.5 ′/s for each MPH.
(At 18 MPH, that’s 27′/s!) This meant
that each revolution was equal to 27 ′/s
per 70 RPS, or 0.386 ′. Thus, the meas-
ured air speed was RPS × 0.386 ′.

I calculated the air velocity by mul-
tiplying the RPS count by a factor I
obtained from the calibration testing.
To keep away from floating-point, I
scaled the fraction by 1,000. The sec-
ond line of the display presents the
result as “Velocity=xx.xxx.”

CFM
A CFM calculation is based on the

velocity and the cross sectional area of
the duct. Let’s say that the air you’re
measuring takes 1 s to travel 1 ′ (1′/s).
The air duct measures 1′ × 1′, for an area

1 RPS = 0.386 ft/s
V × 1,000 = RPS 386 ft/s×

of 1 ft2. Air moving 1′/s through this air
duct has a volume or rate of 1 ft 3/s, or
60 CFM. Based on a 1 ft 2 duct, CFM is
equal to: velocity × 60. I use this duct
size to display CFMs as “CFM=xxxx.x
(1sqft).” I assume (somewhat incor-
rectly) the air speed being measured
by the fan is the average air speed
through any duct. The air through a
duct actually flows slower near the
duct’s walls than in the center of the
duct. Turbulence is introduced by any
attempt to change the air flow’s direc-
tion. This might be from a tur n in the
duct or an object (like my fan) placed
within it. For the best results, tr y to
measure at a point at least a few duct
diameters from any turn. If you will
be measuring at the duct’s outlet, you
can easily take multiple readings
around the opening and average them.

In the previous case, 60 CFM was
based on a velocity of 1 ′/s and cross-
sectional area of 1 ft 2. To relate this to
your duct size, simply measure its
area in inches, either L × W or πR2.
For a 5″ × 10″ duct, that’s 50 in2. (It’s
about the same for a 8 ″ round duct.)
Then find the ratio of your duct by
dividing its area by 144 to see how it
relates to a 1 ft 2 duct (50/144 = 0.34).
Now calculate your CFM by multiply-
ing the measured CFM by your ratio. If
the fan is measuring a CFM as 60 and
your duct’s ratio is 0.34, your duct’s
CFM rating is 20.4 CFM (i.e., 60 CFM
× 0.34).

To relate this number to your

Jeff Bachiochi (pronounced BAH-key-AH-key) has been writing for Circuit Cellar since 1988.
His background includes product design and manufacturing. You can reach him at
jeff.bachiochi@imaginethatnow.com or at www.imaginethatnow.com.

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar .com/pub/Circuit_Cellar/
2009/231.

ESOURCES
Pure Air Systems, “103 - Filtration Fundamentals,” www .pureairsystems.
com/Pure-Air-University-103-Filtrat1.html

The Engineering Toolbox, “Particle Sizes,” www.engineeringtoolbox.com.

U.S. EPA/Office of Air and Radiation, “The Inside Story: A Guide to Indoor
Air Quality,” 2009, www.epa.gov/iaq/pubs/insidest.html.

R

P

room’s size, go back to the total vol-
ume of the room. Remember the 10 ′ ×
10′ room with 8′ ceilings? With a CFM
of 20.4, it will take 800 ft 3/20.4 CFM,
or approximately 39 minutes, to com-
plete an air change. This is roughly
0.66 changes per hour. Of course, this
is based on a heating or cooling cycle
of 100%. To conserve the most
money, I’m talking about having a low
“on-time” percentage. If you are
achieving a 10% on-time, then 0.66
changes per hour becomes 0.066
changes per hour. This is below the
minimum ACH level recommended
by the EPA. Many HVAC systems can
run air circulation without adding or
removing heat. Although this will
increase the ACH, it also increases
energy consumption.

PORTABLE ACH
The poor souls who happen to be

overly sensitive to pollutants—even
if only during certain times of the
year—may find relief by installing
portable air cleaners. These give local-
ized comfort to a room by supple-
menting an HVAC system with addi-
tional (HEPA-filtered) air changes
without running the HVAC continu-
ously. If you purchase one of these
systems, you may want to periodically
verify that the unit is still giving you
the manufacturer’s rated CFM by
doing a velocity measurement on the
unit’s output vent! When the CFM is
down, change that filter. I

2910002-bachiochi.qxp 9/10/2009 12:56 PM Page 65

mailto:jeff.bachiochi@imaginethatnow.com
http://www.imaginethatnow.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/231
http://www.pureairsystems.com/Pure-Air-University-103-Filtrat1.html
http://www.engineeringtoolbox.com
http://www.epa.gov/iaq/pubs/insidest.html
http://www.circuitcellar.com

66 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

“Quick Reference Card,” and it’s a wonder to
behold. At six 8.5″ × 11″ pages, it’s more like a
full “deck” than a “card.” You want to build a
Cray-in-drag? No problem, thanks to the
“Unsigned Sum of Absolute Differences and
Accumulate” instruction. Want to do double-
duty as a DSP? The “Multiply Unsigned Double
Accumulate Long” instruction is just the tick-
et. There are instructions for bit fields, sema-
phores, cache preload, coprocessors, memory
barriers, compiler hints, and more.

Don’t get me wrong. I’m as much a fan of the
big super-duper chips with all the fancy archi-
tectural trinkets as anyone. But it just seems
that along the way the Silicon wizards forgot
that simplicity can be a vir tue in its own right,
even though it is no longer the only option.

After many architectural revisions and
embellishments over the years, today’s high-end
ARM chips bear little resemblance to the lean
and mean originals. A top-of-the-line Cor tex-A8
accommodates three instruction sets: native
ARM with 32-bit opcodes, the 16-bit opcode
Thumb subset, and now the variable length
Thumb-2 codes. It’s plenty advanced, but
there’s nothing “reduced” about this RISC with
its expanded repertoire of complex features for
signal processing, vector math, graphics, securi-
ty, Java, multithreading, multiprocessing, and
on and on.

At the other end of the spectr um, ARM7-
based parts, and now Cortex-M3 flash MCUs,
are quite capable and popular. But even these

2910003-cantrell.qxp 9/10/2009 12:59 PM Page 66

B ritannia may no longer rule the waves,
but UK-based ARM marches on as a

superpower in the MCU biz. With heavyweight
allies (e.g., Texas Instruments, NXP Semicon-
ductors, Atmel, and many more) projecting
power across the globe, the sun never sets on
the ARM empire.

I’ve enjoyed seeing the saga of the little
Acorn Computers RISC machine as it has
matured into a mighty oak towering over the
32-bit MCU market. Has it really been more
than 20 years? Time flies when you’re having
fun!

And the party isn’t over yet. This month,
let’s take a look at the latest chapter in the
ARM saga, some big news about a small chip.

LESS IS MOORE
“When we decided to do a microprocessor on

our own, I made two great decisions. I gave
them two things National, Intel, and Motorola
had never given their design teams: the first
was no money, the second was no people. The
only way they could do it was to keep it really
simple.” That’s the story of the birth of the
ARM1 processor in the mid-1980s according
Dr. Hermann Hauser, one of ARM’s original
founders.[1] Back then, computer chips were
simple because they had to be. But the years
since have seen an explosion of complexity as
Moore’s law has inexorably driven the cost of
silicon towards zero.

Right now I’m looking at the ARM programmer

It’s been more than two decades since Acorn Computers introduced its RISC
CPU. The saga continues with the latest chapter in the ARM story, the ARM
Cortex-M0 core.

Thumbs Up
The ARM Saga Continues

by Tom Cantrell

SILICON UPDATE

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 67

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

The difference is more about the sig-
nificant performance, power, and price
advantages that come with LPC1100
optimized hard-core implementation.

SOCKET ROCKET
Put a 150-HP engine in a car and

you’ve got a yawn-inspiring econo-
box. Put a 150-HP engine in a motor-
cycle and you’ve got an aptly named
“crotch rocket” that will burn rubber
and get 50 MPG while doing it.

That’s the analogy that comes to
mind as I ponder NXP’s new LPC1100
lineup. With a small package (33-pin
QFN, 48-pin LQFP), a moderately
sized memory (up to 128-KB flash

are arguably fatter than they need to
be when it comes to the bluest of
blue-collar apps. More power to them
(literally).

Enter the ARM Cortex-M0 core,
championed by NXP as the basis for
their new LPC1100 flash MCU line-
up. It may be the newest ARM chip
on the block, but it’s simpler than
anything else in NXP’s—or anyone
else’s, for that matter—catalog of
ARM chips.

Actually, ’M0 isn’t “new” in the
strictest sense. It’s the same basic
instruction set architecture as the
Cortex-M1 soft core I wrote about in
2008 (“Icy Hot,” Circuit Cellar 217).

memory, 16-KB RAM), and a middle-
of-the-road mix of peripherals (PIO,
SIO, PWM, ADC, etc.), it could be
mistaken for a typical 8-/16-bit MCU
(see Figure 1). But when you twist the
LPC1100’s throttle, you’ll discover
there are plenty of MIPS on tap cour-
tesy of a 32-bit Cortex-M0 core cou-
pled to an optimized flash inter face.

One way to describe the ’M0 core is
to trace its lineage through the histori-
cal meanderings of the ARM architec-
ture. But instead of a blow-by-blow
account, I’ll just sum up ’M0 as “16-bit
Thumb instructions plus a few sys-
tem-oriented Thumb-2 instructions”
(see Figure 2). ’M0 is so simple you
really don’t need a history lesson to
figure it out.

Lest there be any confusion about
the “16-bit” aspect of ’M0, make no
mistake: it’s a real 32-bit processor.
The “16-bit” attribute simply refers to
the fact most ’M0 instructions fit in
just 2 bytes. But the ’M0 program-
mer’s model, ALU, and internal regis-
ters, busses, and memory are all a full
32 bits wide. As they say, there’s no
substitute for cubic inches.

The “16-bit” story is usually cast as
one of “code density” (i.e., shor ter
opcodes = shorter programs = less
flash = less cash). There’s a lot to that.
After all, even though memory is ever
cheaper, it still doesn’t cost zero dol-
lars and it doesn’t consume zero
power.

But there’s also a “performance”
story that goes like this. In typical
applications, general-purpose proces-
sors are usually instruction-fetch

Figure 1—The ARM Cortex-M0 core heads back to the future with a design that recalls the
simplicity of the original “Acorn RISC machine.”

SWD
Interface

Serial interfaces

I2C

ARM Cortex-M0

Memory subsystem

SPI ADC

Flash
memory SRAM ROM

UART

GPIO

Bit/timing interfaces

Analog subsystem

Analog
comparators

Timers
0/1/2/3/4

Test/debug
interface

POR

BOD

Main regulator

PMU Reset

System
power

DLL

Main osc

IRC

Watchdog

CGU System
clock

Figure 2—With just 56 instruc-
tions, the ’M0 instruction set is
truly reduced compared to the
verbosity of today’s “complex”
RISCs. Most ’M0 opcodes are
just 16 bits long, which both
reduces the amount of flash
required and helps bypass the
flash bottleneck.

Thumb-2
System, OS

REVSH

TST

STM

ORR

LDRSH

EOR

BIC

ADC

SXTB

BKPT

STR

POP

LSL

LDM

ADD

SXTH

BLX

STRB

PUSH

LSR

LDR

BL

ADR

UXTB

CPS

STRH

ROR

MOV

LDRB

BX

AND

UXTH

REV

SUB

RSB

MUL

LDRH

CMN

ASR

MSR

MRS

ISB

DSB

DMB

WFI

SEV

NOP

YIELD

WFE

REV16

SVC

SBC

MVN

LDRSB

CMP

B

Thumb
User assembly code, compiler generated

2910003-cantrell.qxp 9/10/2009 12:59 PM Page 67

http://www.circuitcellar.com

68

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

wasteful (silicon, power) and slow.
There are other less obvious sources

of “jitter” to watch out for . Things
like MMUs and branch prediction
bring along their own caching behav-
ior. Bus interfaces can be too smar t
for their own good, with f eatures like
burst mode, merging, and reordering,
making bus timing a your-guess-is-as-
good-as-mine proposition. There may
even be cases where instruction tim-
ing is variable, such as an “earl y-out”
math instruction where the execution
time varies depending on the val ue of
the arguments. Don’t even get me
started on out-of-order execution and
speculation.

By contrast, the LPC1100 features a
blessedly simple and predictable tim-
ing model. ALU operations (including
32-bit multiply) take just one cycle.

Loads and stores require two cycles because the ’M0 (like
ARM7) uses a shared bus for instr uctions and data.
Branches take three cycles. Period.

The ’M0 takes advantage of a built-in “Nested V ectored
Interrupt Controller” (NVIC), the same one earlier inte-
grated in the ’M3. High-priority inter rupt response time is
16 clocks, which seems a bit leisurely until you remem-
ber the NVIC automatically handles register stacking and
unstacking so that interrupt service routines can be writ-
ten completely in C (i.e., without an assembly language
dispatcher or wrapper).

bound. It’s all the worse for a single-chip MCU where slow
flash memory holds the processor back. Shor ter 16-bit
opcodes sent two at a time over the inter nal 32-bit bus help
the LPC1100 bypass the dreaded “flash bottleneck,”
which allows the ’M0 core to reach its full potential, said
to be 0.9 DMIPS/MHz. (For what that’s worth, refer to the
“Dhrystone RIP?” sidebar.) That’s better performance than
an ARM7 running Thumb instructions (0.74 DMIPS/MHz).
Better yet, the ’M0 does it with less silicon, since an ARM7
has to carry around the baggage of the full ARM instr uc-
tion set even if it’s mainly running Thumb code.

Put it all together and you’ve got an LPC1100
that’s fast, nimble, and gets great mileage too
(see Figure 3). Yeah, it’s not what you’d choose
for hauling a bloat-load of software, but there
are plenty of bigger chips for that. If you need a
simple and inexpensive way to get from stop-
light to stoplight really quickly, hop on!

TIMING CHAIN
Features that well serve “computers” may

not be useful when a 32-bit architecture is
drafted for duty in embedded applications.
Indeed, they can even make matters worse.

The classic example is cache. It w orks great
in your PC, but is just a headache in real-time
interrupt-driven apps. The statistical nature of
cache behavior introduces timing uncertain-
ty—“jitter,” if you will—that can be a real
headache. If you’re not careful, a heavily
interrupt-driven app can turn into a cache-
thrashing thrill ride with more fills and spi lls
than useful processing. Sure, there are usuall y
ways to get around cache “issues”—for exam-
ple, by pre-initializing and locking the cache.
Yes, you can coerce a cache into acting like a
RAM, just one that happens to be really

Figure 3—At 150 µA/MHz, the LPC1100 delivers on the promise of 32-bit performance with
8/16-bit power consumption. Whether by reducing execution time or running at a relatively
slower clock rate, the LPC1100’s 32-bit processing capability can reduce the total energy
spent completing a given task.

6

5

4

3

2

1

0

12 16 20 24 28 32 36

Frequency (MHz)

C
u

rr
e

n
t

(m
A

)

Photo 1—With their LPC1100 MCU, NXP is first out of the starting gate with the
new ARM Cortex-M0 core. Think 32-bit performance and headroom with 8/16-bit
price and power consumption.

2910003-cantrell.qxp 9/10/2009 12:59 PM Page 68

www.circuitcellar.com • CIRCUIT CELLAR® 69

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

Another ’M3 feature carried forward (or is it backward?)
is a power-management unit with three low-power modes
supported with a plethora of dynamically programmable
clocking options, including on-chip 1% trimmed 12-MHz
RC oscillator and a PLL (see Figure 4). A Wakeup
Interrupt Controller (WIC) enables quick wake-up
from deep sleep using a vari ety of sources (i.e., not
just RESET). The LPC1100 will r un off anything
between 1.8 and 3.6 V an d there’s a four-stage
brownout detector to keep a close eye on the
power supply.

CHIPS OF FUTURE PASSED
Usually, I don’t write-up chips until they—and the

documentation, tools, etc. that go with them—a re
on the shelves. But as I write this column, very lit-
tle information is publicly available. NXP will
only say the plan is to ramp production by “the
beginning of 2010.” So why am I making an excep-
tion by writing up a chip with little more than
press releases and couple of presentations to go on?

Even though the official introduction is months
away, I’ve got a chip (see Photo 1), board, and tools
up and running right now. It turns out NXP already
has preproduction silicon and a board for testing and
doing their homework (e.g., tool integration), and
they sent me a kit, albeit a work in process.

Let’s see. Here’s a board and a JTAG dongle (Keil
ULINK2) and some files an apps engineer from NXP
e-mailed to me. There’s the JTAG header on the

board, and I guess the PC plugs into this USB connector.
Easy enough, but what about tools?

I surfed over to Keil.com and crossed my fingers as I
did a search for “cortex m0.” I let out a sigh of relief
when I discovered the latest version of their Microcon-
troller Development Kit (MDK) had been upgraded with
’M0 support, and you can download a 32-KB, code-limit-
ed evaluation version for free.

The new release of the MDK comes with an optional
“MicroLib” C library optimized to produce tight code for
embedded applications. Here’s another example (à la the
“Dhrystone RIP?” sidebar) of how the librar y routines, not
just the compiler, can make a big difference (see Figure 5).
MicroLib streamlines code by tossing features (e.g., C++ sup-
port), detuning others (e.g., options for less-than-full STDIO
support), and trading off some speed for smaller code .

Also new is something called “CMSIS,” which stands
for Cortex Microcontroller Software Interface Standard.
CMSIS recognizes the fact that “CPU compatibility” is
only half the battle when it comes to migrating applica-
tions between MCUs that may have the same CPU, but
completely different ways of handling low-level I/O (e.g.,
peripheral registers) and system functions (e.g., “systick”
timer). CMSIS provides standard definitions and a level
of hardware abstraction that boosts compatibility and
software reuse to minimize reinventing the wheel.

With the MDK installed, I fired up ever ything and looked
for smoke. Given the newness of it all, I frankly had my
doubts. But to my surprise, the lash-up immediately
showed signs of life. I was at least expecting some of the
typical installation issues like “drivers” for the JTAG pod.
But it turns out the ULINK2 uses a USB human inter face

Photo 2—It is no surprise that Keil, having been acquired by ARM,
already has Cortex-M0 support in their MDK-ARM package. Other
third-party suppliers should be on-board soon, because adding ’M0
support to their existing ARM tools will be easy given the common
“Thumb” roots. Speaking of “Thumb,” notice the preponderance of
16-bit opcodes in the program shown here.

Photo 3—In the old days, chip performance was all that mattered, but now
“green” designs and longer battery life are taking center stage. With NXP’s
Cortex-M0-based LPC1100 MCU, you can have it all: more MIPS and less
milliamps.

2910003-cantrell.qxp 9/10/2009 12:59 PM Page 69

http://www.circuitcellar.com

70 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

device (HID) profile that’s already
built into Windows (a trend I’ve
noticed with other embedded USB
gadgets).

Better yet, right off the bat, I was
able to compile, download, and debug
a simple “blinky” (blinking LED)

needs to be a jumper between the I/O
pin and LED on the board because the
LEDs aren’t hardwired to anything.
That’s actually a useful approach for
experimenting because you can con-
nect the LEDs to any signal of interest
as kind of a poor man’s logic probe.

application, kind of the embedded
equivalent of “Hello World” (see
Photo 2). The program seemed to be
running as I could set breakpoints,
single-step, and so on. But there was
just one problem: the LED on the
board wasn’t blinking. Turns out there

DHRYSTONE RIP?
I don’t subscribe to the old saw, “Benchmarks lie.” I

think benchmarks tell the truth, although no doubt as
the benchmarker happens to see it. Where folks stand
on the validity of a benchmark depends on where they
sit in the result list.

There are plenty of fancy benchmark suites that do a
good job measuring big-ticket system and application
performance. But when it comes to a simple metric for
comparing blue-collar MCUs, the venerable Dhr ystone
benchmark (created by author Reinhold P. Weicker in
1984) has filled the gap.

Like all benchmarks, Dhrystone has “issues”—such
as compiler and library “advances” (some might say,
“cheating”)—that, for example, optimize away semanti-
cally superfluous code. For instance, let’s say you hack
your own quickie “synthetic” benchmark like the fol-
lowing, fully expecting to run 1,000 iterations of a loop,
each with an add, multiply, and store (i.e., many thou-
sands of instructions in total):

FOR I = 1 TO 1000
A(I) = I*(I+1)

NEXT I

So now I tell you I’ve got a processor that can r un
your benchmark in zero cycles! Snake oil? Not at all.
Just a compiler smart enough to realize it can do all the
work ahead of time, tur ning the benchmark “program”
into a big data statement:

A: DATA 2, 6, 12…

The computation is done at compile time, and all the
“stores” are performed when the “program” is loaded
into RAM. The result (i.e., 1,000 calculated values
stored in array A) is exactly the same as r unning the
loop, but there is no “r untime.”

It’s questionable whether overly clever optimizations
are applicable to real-world apps. Note: It’ s easy to
make your quickie benchmark actually r un the loop.
Just add an input statement at the front end à la:

INPUT J
FOR I = J TO 1000
A(I) = I*(I+1)

NEXT I

The compiler doesn’t know what number you’re going
to type in when prompted for J at r untime, so it can’t
calculate the array values at compile time.

Beyond the compiler itself, embedded software pros
will tell you, “It’s the library, stupid.” The compiler
relies on the library routines to handle much of the
dirty work and heavy lifting. The good news is that the
library can be tweaked and fine-tuned to best fit a par-
ticular application. The bad news is that it can also be
tweaked to optimize a benchmark score.

Measuring the cleverness of a compiler and optimized
library may be useful, but does it accurately reflect the
hardware’s capabilities in day-to-day applications?
Other Dhrystone issues include a legacy spanning mul-
tiple versions of the benchmark over the years and a
lack of standardization in the way results are presented.

EEMBC (www.eembc.org) is an outfit well regarded for
their higher-level benchmark suites targeting real-world
applications, such as telecom, automotive, and infotain-
ment. Now they’re introducing CoreMark, which, as
the name implies, is intended as a simple measure of a
processor core’s basic performance capability.

The CoreMark benchmark consists of a mix of rou-
tines designed to succinctly mimic the behavior of typi-
cal programs, including list-processing (pointers), state
machine (conditional branches), matrix ops (math), and
CRC—the latter is also used to self-validate the r un-
time results. CoreMark is easy to por t to any MCU
with the addition of a few lines of hardware-specific
timing code, and it will fit in 16 KB or so, making it
suitable even for 8-bit MCUs. The benchmark is specif-
ically hardened against unrealistic compiler optimiza-
tions and doesn’t make any library calls in the timing
loop.

Although new and improved in a technical sense,
CoreMark does recognize the aspects of Dhr ystone that
have stood it well. The CoreMark code is freely avail-
able and everybody is welcome and encouraged to give
it a whirl. While EEMBC will cer tify CoreMark results
for their paying members, they encourage nonmembers
to post results too, so vir tually every chip is fair game.
Yes, there’s nothing preventing some misguided advo-
cate from going overboard (i.e., lying through their
teeth), but I suspect peer pressure and the ease of repli-
cating (or not) results will quickly root out and banish
the worst offenders. Check it out at www .coremark.org.

2910003-cantrell.qxp 9/10/2009 12:59 PM Page 70

http://www.circuitcellar.com
http://www.eembc.org
http://www.coremark.org

www.circuitcellar.com • CIRCUIT CELLAR® 71

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

running programs in the MCU’s RAM.
But then I received a hot-off-the-press
flash driver, which worked without a
hitch once installed in the MDK.

I fully expect wrinkles of a preproduc-
tion nature will be ironed out by the
time LPC1100 chips hit the street. For
now, I will say that the things the MDK
could do were done very well. The soft-
ware is fast, responsive, and stable
without feeling temperamental like
other high-end toolchains I’ve tried.
There’s clearly a lot of advanced func-
tionality on tap, but as one who just
dabbles in software, I appreciated not
being forced to deal with it needlessly.
Even the user interface, window-laden

it may be, seemed easier
to navigate and less fussy
than others I’ve tried.

With time running out
before deadline, I at least
wanted to hang a meter
on the chip to reality-
check the low-power
claims. I discovered what
seems to be an interesting
phenomenon—namely,
that power consumption
was significantly lower
(about 25% less), running
the test program in RAM
instead of flash. Only a
final datasheet will tell,

Anyway, I surely felt impressed (and
lucky) to get this far this easily with
the bleeding-edge setup. Nevertheless,
it soon became apparent there were
still some rough edges. For example,
for many MCUs, the MDK has the
ability to simulate I/O devices, but as
you might expect nothing yet for the
NXP LPC1100. The basic breakpoint
and watch-point features worked, as
did the ability to modify memor y
locations without stopping the CPU.
But more advanced debug features like
profiling and the MDK software “logic
analyzer” weren’t happening. At first,
the MDK didn’t know how to program
the LPC1100 flash, so I was limited to

Figure 5—The latest version of the Keil MDK toolchain
comes with an optional “MicroLib” C library optimized to
reduce code size.

0 KB

5 KB

10 KB

15 KB

20 KB

25 KB

Code size

Cortex-M3Thumb modeARM Mode

Standard library

MicroLib

Figure 4—Clock generators play a pivotal role in power management. The LPC1100 reflects
that trend with a combination of programmable and selectable clock sources that allow
dynamic fine-tuning of the trade-off between performance and power consumption.

osc_clk

sysclk
irc_osc

IRC

WD
Oscillator

Watchdog
pclk

System clock
select

(CLKSRCSEL)
Main PLL

setting
(PLLO...)

CPU PLL
select

(PLLOCON)

CPU
Clock
divider

Peripheral
clock

divider

CPU Clock divider setting
(CCLKCFG)

SYS PLL/
DLL

Watchdog
clock select

(WDCLKSEL)

cclk

pclk1

pclk2

pclk4

pclk8

wd_clk

2910003-cantrell.qxp 9/10/2009 12:59 PM Page 71

http://www.circuitcellar.com
http://www.xgamestation.com
http://www.picservo.com
http://www.lvr.com

72 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

EFERENCE
[1] D. Manners, “How ARM1 Got Built By Steve Furber,” Electronicsweekly.
com, 2007.

OURCES
ARM Microcontroller development kit (MDK-ARM)
Keil | www.keil.com/arm/mdk.asp

LPC1100 Cortex-M0 MCU
NXP Semiconductors | www.standardics.nxp.com/products/lpc1000/lpc11xx/

R

S

but putting high duty-cycle code in
RAM would appear to be an ef fective
power reduction technique.

Running flat out at 48 MHz from
RAM current consumption was just
8.5 mA (see Photo 3). That’s decently
close to the 150 µA/MHz claim (i.e.,
8.5 mA/48 MHz is 177 µA/MHz)
when you consider power consumed
by non-core extras (memory, I/O,
clock generator, etc.). Anyway,
absent a production chip, a final
datasheet, and proper test software,
there’s no need to quibble over the
as-yet-non-existent fine print. For
now, it’s safe to say the LPC1100
squeezes high-revving, 32-bit per-
formance from just a few milliamps.

MORE BITS, LESS FILLING
With the Cortex-M0, the evolution

of the ARM architecture from “com-
puter” to “MCU” is now complete.
Admittedly, the journey was rather
roundabout; but in this case, the des-
tination is the reward. With chips
like the LPC1100 designed by folks
who “get it” when it comes to

embedded apps, the much-hyped
premise that 32-bit chips can truly
compete for 8/16-bit MCU sockets
has come true.

That’s not to say 32-bit MCUs will
“replace” smaller chips across the
board anytime soon. The li ttle chips
have legions of followers (e.g., NXP
still sells a heck of a lot of ’ 51s) and
they can still get the job done. But

with ’M0 and the LPC1100, we see
the first ARM MCU that can truly
compete with 8/16-bit parts on every
level without compromise, while at
the same time offer an upgrade path
to Cortex-M3 and beyond.

So hang on to your h ats because
we’re headed back to the future. Or
is it forward to the past? Either way,
it’ll be a fun and exciting ride. I

Tom Cantrell has been working on chip, board, and systems design and marketing
for several years. You may reach him by e-mail at tom.cantrell@circuitcellar.com.

2910003-cantrell.qxp 9/10/2009 1:00 PM Page 72

mailto:tom.cantrell@circuitcellar.com
http://www.keil.com/arm/mdk.asp
http://www.standardics.nxp.com/products/lpc1000/lpc11xx/
http://www.circuitcellar.com
http://www.circuitcellar.com/archives

63.qxp 1/7/2009 3:20 PM Page 1

http://www.icbank.com

74 CIRCUIT CELLAR® • www.circuitcellar.com

Oc
tob

er
20

09
 –

 Is
su

e 2
31

1 2 3

4

5 6

7

8

9

13

14 15 16

17

18

10 11 12

CROSSWORD

The answers are available at
www.circuitcellar.com/crossword.

Down
1. Rx
3. The “+” in 5 + 6 = 11
4. Recommended Standard
6. V.5 [two words]
7. Low-power
8. Floating-point operations per second
9. The “5” and “6” in 5 + 6 = 11
11. Return to zero
12. Transmission equation
14. Operation code
16. What type of potentiometer is a D-Pot?

Across
2. Cat
5. sup, as in sup1,2,3 = 3
8. !
10. Reference voltage
13. Symbol ⊂
15. Antenna invented in 1926 in Japan [two names]
17. SiO2 [two words]
18. X

crossword2.qxp 9/10/2009 1:22 PM Page 78

http://www.circuitcellar.com
http://www.circuitcellar.com/crossword

www.circuitcellar.com • CIRCUIT CELLAR® 75

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

THE DIRECTORY OF
PRODUCTS AND SERVICES

AD FORMAT: Advertisers must furnish digital submission sheet and digital files that meet the specifications on the digital submission sheet. ALL TEXT AND OTHER
ELEMENTS MUST FIT WITHIN A 2 " x 3" FORMAT. Call for current rate and deadline information. E-mail adcopy@cir cuitcellar.com with your file and digital submission
or send it to IDEA BOX, Ciruit Cellar, 4 Park Street, Vernon, CT 06066. For more information call Shannon Barraclough at (860) 875-2199.

The Vendor Directory at www.circuitcellar.com/vendor/
is your guide to a variety of engineering pr oducts and services.

IDEA
BOX

ib-231.qxp 9/10/2009 2:09 PM Page 75

mailto:adcopy@circuitcellar.com
http://www.circuitcellar.com/vendor/
http://www.circuitcellar.com
http://www.tri-plc.com/cci.htm
http://www.ironwoodelectronics.com
http://www.melabs.com
http://www.melabs.com

Are you interested in writing for Circuit Cellar? Consider a submission to Circuit Cellar’s bonus section in the Digital Plus venue. As you see
from this statement of availability, the bonus section of Digital Plus is available to all Circuit Cellar readers. Authors are choosing to be published
in our bonus section for a variety of reasons. These reasons include but are not limited to:

• Articles of various lengths can be published in the digital venue
• Follow-up articles are published in the bonus section without concern for the impact on the current issue’s theme
• Articles may include audio or video enhancements
• Speed to publication. Space restrictions in the print magazine can delay publication. There are fewer restrictions on the digital side.

Whether you want to submit an article for print publication or for publication in the bonus section of Digital Plus, please write to
editor@circuitcellar.com to present your ideas.

76 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

7 in 1 Scope !

1-888-7SAELIG

info@saelig.com

www.saelig.com

CircuitGear CGR-101™ is a unique new, low-cost

PC-based instrument which provides the features of

seven devices in one USB-powered compact box:

2-ch 10-bit 20MSa/sec 2MHz oscilloscope, 2-ch

spectrum-analyzer, 3MHz 8-bit arbitrary-waveform/

standard-function generator with 8 digital I/O lines.

It also functions as a Network Analyzer, a Noise

Generator and a PWM Output source. What’s

more – its open-source software runs with

Windows, Linux and Mac OS’s! Only $180

ATTENTION

Issue #227: Time-Triggered Systems (Part 3)
Tackle Data Acquisition
Michael Smith & Lizie Dunling-Smith

Autonomous Vehicle Design (Video example supplement only)
Embedded Systems, Sensor Technology, and Motor Control
Chris Britney, Paul Green, Andy Heath, Stephen Lau, Kylee
Lathrop

Issue #228: NimbleSig III
A New and Improved DDS RF Generator
Thomas Alldread

Sound Synthesis Made Simple (Full article plus video example)
A Multi-MIPS Music Box
Peter McCollum

Issue #229: USB I/O Expansion
Brian Millier

Issue #230: Verification and Simulation of FPGA Designs
Sharad Sinha

PRINT MAGAZINE READERS - BONUS CONTENT NOW AVAILABLE
The following Circuit Cellar bonus content is now available for you to read online or in a downloadable PDF.
Just visit Circuit Cellar ’s home page and click on the link to All Bonus Content.

ib-231.qxp 9/10/2009 2:09 PM Page 76

mailto:info@saelig.com
http://www.saelig.com
mailto:editor@circuitcellar.com
http://www.circuitcellar.com
http://www.ccsinfo.com/Design
http://www.flexipanel.com
http://www.hexwax.com

www.circuitcellar.com • CIRCUIT CELLAR® 77

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

Low cost Temperature Data
Acquisition and Control
Low cost Temperature Data
Acquisition and Control

3.0 x 4.0", 50 μA standby,

200 mA, 6-24V DC

C/C++ programmable,

Ready to use firmware

100+ Temperature IC-Sensors with

0.5°C accuracy

Thermocouple with 24-bit ADC,

12-bit ADC

CompactFlash with FAT file system support

Solenoid drivers, LCD, RS232, ZigBee wireless

10/100-baseT Ethernet or USB

Aluminum box with screw terminals

 Inside great products. Behind great ideas.

phyCORE® System on Modules:

ARM11: i.MX35, i.MX31

ARM9: i.MX27, LPC3250, LPC3180

Cortex M3: STM32F103

ARM7: LPC2294

XScale: PXA270

x86: Z510, Z520, Z530 (Atom®)

Blackfin: ADSP-BF537

Coldfire: MCF5485

PowerPC: MPC5554, MPC5567,

MPC5200B, MPC565, MPC555

phyCORE® Rapid Development Kits include SOM,

Carrier Board, LCD (kit specific), schematics,

software, free BSP for applicable kits and a start-up

guarantee. The Carrier Board serves as a target

reference design, allowing the SOM to easily port

to the user’s target hardware.

phyCORE-LPC3250

www.phytec.com |800.278.9913| www.phycore.com

ib-231.qxp 9/14/2009 11:12 AM Page 77

http://www.phytec.com
http://www.phycore.com
http://www.circuitcellar.com
http://www.reachtech.com
http://www.stx104.com
http://www.can232.com
http://www.canusb.com
http://www.earthlcd.com
http://www.mcc-us.com
http://www.tern.com
http://www.avocetsystems.com

78 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

Starting at $125!

Program in
Assembler, BASIC, C, and Forth

www.TechnologicalArts.com

Adapt9S12XDP512
Modular Prototyping System

* Robotics and Mechatronics
* Electronic Fuel Injection
* Freescale 9S12XDP512

* RTOS-capable

Evaluate * Educate * Embed

���

�������������	

��������	��
����

���� ���	���� � ��� ��
���������
�����	������
�������

ib-231.qxp 9/10/2009 2:09 PM Page 78

http://www.TechnologicalArts.com
http://www.circuitcellar.com
http://www.allelectronics.com
http://www.pulsar-inc.com
http://www.medallionsystem.com
http://www.jkmicro.com
http://www.aagelectronica.com
http://www.tracesystemsinc.com
http://www.i2cchip.com

78 AAG Electronica, LLC

32 AP Circuits

31 ARM techcon3 Conference

78 All Electronics Corp.

77 Apex Embedded Systems

7 Atmel

77 Avocet Systems, Inc.

33 CWAV

21 CadSoft Computer, Inc.

58 Comfile Technology, Inc.

76 Custom Computer Services, Inc.

40 DesignNotes

10 EMAC, Inc.

77 Earth Computer Technologies

49 Elsevier

25 Embedded Developer

The Index of Advertisers with links to their web sites is

located at www.circuitcellar.com under the current issue.

Page

15 ExpressPCB

41 ezPCB

76 FlexiPanel Ltd.

37 Futurlec

37 Grid Connect, Inc.

40 HobbyLab, LLC

78 I2CChip

47, 73 ICbank Inc.

40 Intuitive Circuits LLC

75 Ironwood Electronics

32, 34 JKmicrosystems, Inc.

78 JKmicrosystems, Inc.

5 Jameco

71 Jeffrey Kerr, LLC

3 Keil Software

71 Lakeview Research

77 Lawicel AB

17 LeCroy

9 Lemos International Co. Inc.

10 Linx Technologies

77 MCC (Micro Computer Control)

18 MachinePIER

11 Microchip Technology, Inc.

75 microEngineering Labs, Inc.

2 Mouser Electronics

C2 NetBurner

71 Nurve Networks LLC

9 PCBCore

18 PCB-Pool

C4 Parallax, Inc.

77 Phytec America LLC

48 Pololu Corp.

Page Page Page

34 ProlificUSA

78 Pulsar, Inc.

C3 Rabbit, A Digi International Brand

77 Reach Technology, Inc.

63 SoC Conference

76 Saelig Co.

29 Spark Fun Electronics

78 Technical Solutions, Inc.

56, 57 Technologic Systems

78 Technological Arts

77 Tern, Inc.

19 Texas Instruments

1 Total Phase, Inc.

78 Trace Systems, Inc.

75 Triangle Research Int’l, Inc.

42 WIZnet

Precision By Encoder: A Precision Linear Encoder Display

Energize a Circuit: An Innovative Switched-Mode Power Supply Design

How to Repurpose a Development Platform

Inexpensive Vehicle Locator: Create an Embedded Linux-Based Controller

LESSONS FROM THE TRENCHES Passing Parameters: The Basics of Passing

Parameters and Design Partitioning

FROM THE BENCH Managed Devices and SNMP: A Simple Network Management

Protocol

SILICON UPDATE Power Pitcher: Wireless Power on a Microelectronic Scale

www.circuitcellar.com • CIRCUIT CELLAR®

INDEX OF
ADVERTISERS

PREVIEWof November Issue 232

Theme: Analog Techniques
December Issue 233

Deadlines
Space Close: Oct. 13

Material Close: Oct. 20

Theme
Programmable Logic

Bonus Distribution
SoC Conference

ATTENTION ADVERTISERS

Call Shannon Barraclough
now to reserve your space!

860.875.2199
e-mail: shannon@circuitcellar.com

79

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

79-advertiser's index.qxp 9/14/2009 11:14 AM Page 79

http://www.circuitcellar.com
http://www.circuitcellar.com
mailto:shannon@circuitcellar.com

80 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

PRIORITY

OK, I’ll admit that my technical interests seem schizophrenic at times, but I contend that all engineers have their quirks.
I just get to play more of mine out in public so I seem quirkier . I have a cell phone, but I don’ t want voicemail or too many
“smarts” (yet). I want a computer-controlled house, but I don’ t want an invasive intelligent media system anymore. (Been
there, done that.) I want Internet connectivity everywhere, but I don’t want social networking. (Call me old-fashioned.) I want
the whole world to be wireless, but I still string copper wires for every new home-control signal. (Call me insecure.) ;-)

Regardless of the fact that I prefer bulletproof hardwired connections on my fixed-location home control system (HCS),
virtually all mobile-computing applications these days are wireless. Like the ubiquitous dial-up modem of the past, all lap-
tops come with built-in W i-Fi that makes reading e-mail and local news at the breakfast table the new cultural nor m.
Extending mobility to include constant social network connection, spor ts score updates, and casual browsing away from
home territory just involves linking to cheap Wi-Fi hotspots or a private mobile broadband network.

I got mobile broadband two years ago as a defensive measure (smart phones typically use a mobile voice/data plan, where-
as I’m talking about a mobile Inter net connection). W e have a timeshare condo in Newpor t, Rhode Island, and like most
tourist traps, it can be rip-off city, especially when it comes to Wi-Fi. Don’t get me wrong, the condo, the city , and virtually
every place in the town has W i-Fi—at $10 or more per day! The only free W i-Fi in town was at Panera Bread, where the
Wi-Fi was free but occupying the table imposed a different obligation. In protest, I drove over to the Sprint store in Newpor t
and signed up for mobile broadband. Here’s what I’ve learned during the last two years.

Not every mobile connection is broadband. If it isn’ t 3G (third generation), then it really isn’ t “broadband.” The three
major U.S. networks—Verizon, AT&T, and Sprint—are all 3G and their two-year subscription cost is the same. Beware of the
advertising hype when anyone star ts talking about coverage and download speeds. Depending on the position of the moon,
what you had for lunch, the number of iron train bridges in the area, and other stupid stuff like that, any one of the mobile
providers can appear to have the highest speed during a particular test. For 3G, they all seem to be approximately equal under
optimum conditions. Of course, out there in the real world, results may var y; but in the end, download speed is simply a
function of how close you are to a cell tower.

For the most part, about 1 Mbps is what you can expect in a good signal area. I remember signing on and getting 3.2 Mbps
one time, but on average I see 1 Mbps in highly populated areas. The far ther you are from the cell tower, the worse it gets—
and I’ve experienced connection speeds of less than 100 kbps at times. If you need wide-area mobility along with high data
rates all the time, you may be out of luck with current technology and coverage maps.

Mobile Internet for your embedded application or laptop sounds like a solution made in heaven, but rest assured there is
always a “gotcha” that reinjects fire and brimstone into the equation. Unlike smar t phones, mobile Internet plans currently
limit the amount of data downloaded to 5 GB/month before they star t adding charges. (I checked my plan and it seems to
still say “unlimited download,” for whatever that’ s worth.) This may seem like a lot of data until you star t using your lap-
top like it’s still tied to your landline ISP . For example, while e-mails are typically 3 KB, the average webpage is 150 KB, a
downloaded song is 4 to 8 MB, and a non-HD one-hour movie is about 800 MB. Going over the 5 GB limit can be hazardous
to your wallet.

Depending on the provider, the overcharge can range from barely reasonable to absolutely absurd. Sprint charges $0.05 per
megabyte over the 5 GB limit. One gigabyte of extra data will cost you $51.20 over the $60/month regular cost. Based on
their current pricing, the same additional gigabyte on V erizon would cost $256 and on A T&T it would be an unbelievable
$503.31. Watching Hulu during the morning train commute can get very expensive very fast!

Finally, to add insult to injury, all providers seem to have fine print saying they can reduce broadband speed if they think
you are using too much bandwidth (especially for us unlimited download guys) or for cer tain kinds of data transactions (i.e.,
VoIP). Heaven forbid you aren’t paying them another $30 to $50 a month for regular cell phone service and try sneaking your
phone calls through their towers using Skype. My guess is that video streaming is also on their poison list someplace too.

So, this isn’t a rant or a testimonial for any particular ISP. It’s merely a statement that mobile broadband is something I
have, and it has been useful to some extent. I suppose there will be a day when I can no longer watch Hulu while the wife
is shopping, or when I can’t leave the HCS webcams streaming data for hours, but I’ll remember that it was fun while it last-
ed. The irony is that you sign up for all these services based on claims of unlimited benefits, and then after you do, the serv-
ices get rationed. I guess that it was too much to hope that devious tactics like these were limited to gover nment.

A Broadening Experience

steve.ciarcia@circuitcellar.com

by Steve Ciarcia, Founder and Editorial Director

INTERRUPT

steve_edit_231.qxp 9/14/2009 11:16 AM Page 96

mailto:steve.ciarcia@circuitcellar.com
http://www.circuitcellar.com

Sweet!
Introducing the MiniCore™

Series of Networking Modules

1.888.411.7228
rabbitwirelesskits.com

2900 Spafford Street, Davis, CA 95618

Smaller than a sugar packet, the Rabbit® MiniCore series of

easy-to-use, ultra-compact, and low-cost networking modules

come in several pin-compatible flavors. Optimized for real-time

control, communications and networking applications such

as energy management and intelligent building automation,

MiniCore will surely add sweetness to your design.

MiniCore Module
Development Kits

$99 Limited
time offer.

Buy now at: rabbitwirelesskits.com

From

Wi-Fi and
Ethernet
Versions

Wireless and wired interfaces

Ultra-compact form factor

Low-profile for design flexibility

Priced for volume applications

C3.qxp 8/5/2009 10:18 AM Page 1

http://www.rabbitwirelesskits.com
http://www.rabbitwirelesskits.com

C4.qxp 8/29/2009 4:49 PM Page 1

www.parallax.com
http://www.parallax.com

www.circuitcellar.com • CIRCUIT CELLAR® 11

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

 C
IR

C
U

IT
C

E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

When memory matters but you don’t have the proper support for dynamic
memory management, you may find the Buddy Memory principle to be the
perfect solution. This article covers a useful memory management library
based on the Buddy Memory principle. With a thorough understanding of the
principle, you’ll be able to put the library to good use.

Buddy Memory Manager

M

B
O

N
U

S

ARTICLE
by Sitti Amarittapark

ost of the firmware development toolsets for
microcontrollers provide little or no support

for dynamic memory management. The memory buffers
must be statically defined when the firmware is written,
which makes it difficult to write firmware that can change
the memory usage based on the workload.

In this article, I’ll describe a C language implementation
of a stand-alone dynamic memory-management library
based on the Buddy Memory principle. The library can
manage memory space of any size as long as the memory
space can be linearly addressable in C language. After I
describe the concept of the Buddy Memory and the library
implementation, I’ll present an example of how to adapt
the library to a specific processor architecture.

DYNAMIC MEMORY MANAGEMENT
A dynamic memory-management library is the keeper of a

contiguous piece of memory space (heap) for the rest of the
system. The application code can request (allocate) a piece
of memory from the library for temporary usage. The library
guarantees not to give out the same piece to anyone until
the piece is returned back to the library (freed). The number
and size of memory pieces that are allocated from the heap
can change over time and may appear in any sequence. The
library’s task is to efficiently manage the heap so that it can
maximize the usage of the heap.

DIVIDE BY HALF
Imagine taking a block of 16 bytes from a 256-byte

block located at address 0. One way to do it is to divide
the 256-byte block by half, but the new two blocks of
128 bytes still would be too big. So, you repeat the step

by taking one of the two identical blocks and keep dividing it
by half again and again until you get a pair of 16-byte
blocks, from which one of the blocks can be taken. Figure 1
shows the steps involved.

POOL OF BLOCKS
After a 16-byte block request is taken away, the heap is

left with blocks between 16 to 128 bytes. These blocks
form a pool of free blocks from which subsequent memory
allocation will come. From the example in Figure 1, sup-
pose two more 16-byte blocks are needed. The first can
be taken from an existing 16-byte block in the pool. The
other can come from a 32-byte block when the block is
divided by half. Refer to Figure 2 for the steps to take

THE MAGAZINE FOR COMPUTER APPLICATIONS

FFiigguurree 11——Taking a 16-byte block from a 256-byte space

128

256

128

128 128 128

64 64 64

32 32

64

32
16

16

22 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

 C
IR

C
U

IT
C

E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

two more blocks from the pool.
The previous two examples

demonstrate a memory allocation
method: Look for a block of the
exact size you need. If one doesn’t
exist, continue looking for a bigger
one. When one is found, divide the
block by half until reaching the
needed size. The unneeded blocks
are kept in the pool of free blocks.

MERGE BLOCKS
When a block is freed, the library

puts it back into the memory pool so
that it will be reused in a subsequent
allocation. There is, however, an
additional step to do. Imagine that
16 blocks of 16 bytes are allocated
from a heap of 256 bytes. After all 16
blocks are freed, if nothing else is
done, the heap will become a pool of 16-byte blocks. This
makes it impossible to allocate a block of 64 bytes, even if
there is enough space in the heap.

The additional step is to reverse the process done dur-
ing allocation. In the example shown in Figure 1, only one
16-byte block is allocated from the space of 256 bytes.
Freeing the block is done by merging the 16-byte block to
the adjacent block of identical size in the pool to produce a
32-byte block. This 32-byte block, in turn, is merged with
an adjacent 32-byte block to produce a 64-byte block. This
process continues until you get back the original 256-byte
block. Basically, two adjacent and equal-size free blocks
that were previously apart during allocation are merged
into a larger block (see Figure 3).

BUDDY MEMORY SYSTEM
Not all pairs of adjacent and equal-size blocks of memory

should be merged. The pair must also come from the same
block, which was divided during a previous allocation. From

the example shown in Figure 2, sup-
pose that one more block of 16 bytes
is allocated (see Figure 4). A total of
four 16-byte blocks (at addresses 0,
16, 32, and 48) are allocated from a
256-byte space. The block at address
16 is freed first, but there is no free
block around it, so it is left in the
pool of free blocks. Next, the block
at address 32 is also freed. This
block is adjacent to the previous
block, which is of equal size and is
also free. However, the two can’t be
merged because they were not divid-
ed from the same block (see Figure 2).
As a result, both blocks will have to
be kept independently in the pool
until the one at address 0 or 48 is
freed. The one at address 0 can
merge with the one at address 16.

Likewise, the one at address 32 can merge with the one at
address 48. The blocks at addresses 0 and 16 are a buddy
pair and so is the one at addresses 32 and 48.

The buddy memory system is based on a symmetrical
operation of dividing large blocks down by half during
allocation and merging pairs of small blocks to form big-
ger blocks during free. This means memory blocks of all
sizes, except the smallest one, must be divisible by two.
This makes the integral power of two to be the obvious
choice for block sizes.

To this point, I’ve explained the general principles of
the buddy memory system. Now I’ll focus on specific
techniques for implementing the buddy memory concept
in an embedded system.

DATA STRUCTURE
The library’s internal data structure consists of an

array of pointers and a heap. Each pointer in the array is
dedicated to a particular memory block size in the heap.

FFiigguurree 22——Taking additional two blocks from the
256-byte space

128

64

16

16

16

16

128

64

16

16

32

128

64

16

16

First block
allocated

Second block
allocated

Before

32

FFiigguurree 33—Merging blocks together

128

256

128

128 128

6464

32

64

32

128

64

32

16

16

Previously allocated block

FFiigguurree 44——Merging buddy blocks together

128

64

16

16

16

16

128

64

16

16

16

16

128

64

128

256

Address

64

48

32

16

0

16

16

16

16

Freed

Freed

Freed

Merged

128

64

32

16

16

www.circuitcellar.com • CIRCUIT CELLAR® 33

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

 C
IR

C
U

IT
C

E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

A pointer in this array points to a free block in the heap,
which, in turn, contains another pointer pointing to
another free block. The pointer in the free block resides
in the first few bytes (header) of the block. This forms a
one-way linked list of free blocks for a particular block
size. The linked list terminates with a null pointer (value
= 0) at the last free block. The blocks in the linked list
are sorted by address in ascending sort order. This data
structure provides the library a direct access to all free
blocks of all sizes from the pointer array.

To cover all the block sizes, the number of pointers is
equal to N + 1, where 2N is the size of the heap. For
example, a system with a 256-byte heap needs pointers
for block sizes 1, 2, 4, . . . 256, or (20) – (28). The total
number of pointers in the array is 8 + 1 = 9 (see Figure 5).

BLOCK HEADER
A block contains a multiple-byte header at the begin-

ning of the block. The header’s con-
tent and size depend on the block’s
status. As I’ve already stated, a free
block’s header contains an address
pointer linking to the next free
block. In this case, the header is as
large as the size of a pointer. If a
block is allocated, the header contains
a number that indicates the size of the
block in a power of two. A 32-byte
block’s header contains number 5,
because 25 equals 32, for instance. I
refer to this kind of number as shift
because programmatically shifting 1
to the left by this number produces
the block size. For example, 1 << 5
produces 32.

The header size, when it contains a
pointer, depends on the system’s
address space. A pointer for a 16-bit

address space occupies 2 bytes, while one for a 32-bit
address space requires 4-byte space. To contain a shift,
one byte would be enough. After all, 2 << 0xFF is a large
number. However, the size of the header should be an
even number so that the address next to the header will
be an even address.

Because a block has to be able to contain a header, the
header size of a free block limits how small a block can
be. Between two statuses of a block, the header for a free
block, containing a pointer, will be equal or bigger than
one with a shift. Therefore, the size of a pointer limits
how small a block the system may have.

ALIGNMENT & CALCULATION
In order to free a block, the library needs to know the

address of the block’s buddy (see Table 1). The buddy’s
address is calculated by exclusive-OR the block size to
the address of the block.

Since exclusive-OR is symmetrical, you can calculate one
buddy address from another address regardless of which
one of the buddy addresses you start from. For example,
an exclusive-OR block size of 16 (0x10 hexadecimal) to
address 32 (0x20 hexadecimal) produces address 48 (0x30),
while exclusive-OR 0x10 to 0x30 also produces 0x20.

ACTUAL BLOCK SIZE
During allocation, the requested block size, plus the

size of a block header, is rounded up to the nearest bina-
ry number. This is the size that will be allocated from
the pool. After a block is identified, the library writes the
block size into the header at the starting address of the
block; it then offsets the block address by the size vari-

able before returning the result
address. For example, if the library
receives a call to allocate 22 bytes.
The library adds the size of header
(say, 2 bytes) to 22. So, the block has
to be 24 bytes or larger. After round-
ed up, 24 become 32. When the
library allocates a 32-byte block at
0x80, the library puts the header
information into address 0x80 and
returns the address 0x82 back to the
caller. When the library frees the
block at address 0x82, it reads the
actual size from the block header at
the address 0x80. Based on this num-
ber the library puts this block back
into the free list. The actual size of
header depends on the application
(see Figure 6).

By embedding the size into the

FFiigguurree 55—A linked list of free blocks in a 256-byte heap

Pointer
array

Shift
(index)

0

0

heap + 128

heap + 256

heap + 240

heap + 224

heap + 192

heap + 128

heap + 96

heap + 64

heap + 48

heap + 32

heap + 0

Allocated

0

0

0

Allocated

heap + 192

Allocated

heap + 224

heap + 64

Block size

heap + 0

heap + 32

0

0

0

0

8

7

6

5

4

3

2

1

0

N
ex

t
3

2
 b

yt
e

s
N

ex
t

3
2

 b
yt

e
s

N
ex

t
1

6
 b

yt
e

s

16

16

32

64

32

16

16

32

32

FFiigguurree 66——An allocated block

Padding
space

Allocated
space

Header
Allocated address

Block start

Shift vale = 5; 25 = 32

Bytes

8

22

2

32

TTaabbllee 11——Buddy block address calculation

Block size Block address Buddy block address (exclusive-OR result)
0x10 0x20 0x30

0x10 0x30 0x20

44 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

 C
IR

C
U

IT
C

E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

block itself, the allocated block is always bigger than what
the application asks for (see Figure 6). If the requested size is
an integral power of two, the actual space for the block will
be twice as big as the requested size.

MEMORY LAYOUT
The buddy memory system shares the system RAM

with other purposes. In a typical embedded system with-
out virtual address space, the system RAM is divided
between static variables (static) and stack (dynamic).
Refer to Figure 7a. The static variables include the static
constants and static variables that the compiler decides
to place into RAM, including the global variables and
non-constant static variables defined in functions.

In most computer architectures, the stack space grows
from a high to a low address, so the stack space is
arranged to start from the highest RAM address at sys-
tem reset and grows dynamically down to the lower
RAM address. The compiler places static variables at
low addresses and grows toward high
addresses. These two kinds of memory
usage spaces are placed at the opposite
end of the RAM space to minimize the
possibility that the stack grows over
the static variables (see Figure 7a).

The obvious location for the heap is
between the statically defined memory
and the stack space (see Figure 7b).
The buddy memory is implemented as
a library with some static variables of
its own. When the library is linked
with the rest of the application, the
library’s variables must be the last set
of variables to be linked so that its
static variables locate at the highest
address of all static variables in the
system (see Figure 7c). The remaining
RAM space between the library’s static
variables to the end of the RAM
address space is devoted to the dynam-
ic use of the system, which includes

the heap and stack. The heap space occupies the lower
address compared to stack space, but there is no implicit
boundary between them. You must specify the size of
the heap (and stack space). During run time, the heap
space must not be violated. An overgrown stack will
override the heap’s information and corrupt the heap.

HEAP INITIALIZATION
Before the memory manager can start allocating

blocks, the heap and its internal variables must be ini-
tialized. The heap space begins just above the last static
variable defined in the system and ends at the location
defined by the user. As a result, adding or removing stat-
ic variables may change the heap’s starting address and
size. The buddy memory, however, requires that the
block size must be an integral power of two and located
at the address that is divisible with its size. This makes
it necessary to initialize the heap to fit into the available
space.

Let’s consider a system with addressable RAM in the
0x0000–0x0FFF range. Of the total 4-KB space, the static
variables take up the first 1.25 KB (0x500) and the stack
takes the high address of 0.25 KB (0x100). This leaves
2.5 KB (0x0A00) in the middle at the 0x0500–0x0EFF
address range that can be used for the heap (see Figure 8a).
The heap size is not a 2N number. The biggest 2N sized
block aligned to the address in the available space is a 1-KB
block between 0x0800–0x0BFF. However, simply using
only this block for heap means that the spaces at
0x0500–0x07FF and 0x0C00–0x0EFF are wasted.

The solution is to format the available space into
blocks, each with size 2N and aligned to the address.
Starting from the heap beginning address, the library
computes the biggest block in the heap that fits the size-
address restriction and puts it into the memory pool.
This process repeats on the remaining space until the

FFiigguurree 77——Memory layout

G
ro

w
 d

o
w

n

Stack

Static
variables

a) Typical layout

G
ro

w
 d

o
w

n

Stack

Static
variables

Heap Heap

G
ro

w
 d

o
w

n

Static
variables

c) Layout detail

L
o

w
 t
o

 h
ig

h
 a

d
d

re
ss

End

RAM Address range

Begin

Heap_end

Heap_start

Library
static

variables

b) Layout with heap

FFiigguurree 88—Initializing a heap

0×0FFF
0×0F00
0×0EFF

0×0DFF

0×0C00
0×0BFF

0×0800
0×07FF

0×0600
0×05FF
0×0500
0×04FF0×04FF

0×0000

0×0E00

Stack

0×100 bytes

0×200 bytes

0×400 bytes

0×200 bytes

0×100 bytes
2×256 byte blocks

2×512 byte blocks

1×1024 bytes block

Static
variables

b) Initialized heap

0×0FFF
0×0F00
0×0EFF

0×0500

0×0000

Stack

Free space

Static
variables

a) Uninitialized heap

Heap

www.circuitcellar.com • CIRCUIT CELLAR® 55

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

 C
IR

C
U

IT
C

E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

entire heap space is divided and
added into the memory pool.
Applying the method to the heap at
0x0500–0x0EFF yields the result as
shown in Figure 8b.

SOURCE CODE
The interface to the buddy mem-

ory library consists of three public
functions to initialize the heap,
allocate memory, and free memory.
The heap must be initialized once
before the library can be used. Let’s
look at the important parts of the
three functions.

The MB_INIT function qualifies
the heap address range and initial-
izes the heap. The function takes
two inputs: heap_start and
heap_end. If the two values are not
identical, both the heap_start
and heap_end are absolute address-
es. If the two numbers are identi-
cal, heap_start will be replaced
by the gGlobal.startpoint
address, which is defined when the
library is linked (see Listing 1).
This variable is the last static vari-
able. heap_end must be the
address just 1 byte above the last
byte of the heap. These two input
values are passed down to
_MB_init_qualify_request,
which validates and converts the
two numbers into the absolute
starting and ending addresses.
Padding space is added to align the
start address to the smallest block
size. The address range result from
this routine is passed down to the
last step in _MB_init_global.
_MB_init_global partitions the

heap’s address range into binary
size blocks. The function identifies
the largest binary block that aligns
to the starting address of the heap.
This biggest block is added into the
list (for the size) of free block. The
process repeats until the remaining
space is partitioned (see Listing 2).

ALLOCATION
Allocating a piece of memory

from heap is done in three steps.
First, translate the requested block
size to the shift number. You begin
by adding the space for the header
to the requested size. Then

LLiissttiinngg 11——The heap’s data types

// Definition of free list linked list
typedef struct _MB_free_list_s {

struct _MB_free_list_s* next;
} _MB_free_list_t;

// Definition of the library's global variable
typedef struct {

ptr_t heap_start;// Actual heap start address
ptr_t heap_end; // Actual heap end address

// Pointer array
// (free lists entry points)

_MB_free_list_t free_list[MAX_BLOCK_SHIFT + 1];
mem_size_t startpoint;// First byte of heap space

} _MB_global_t;

LLiissttiinngg 22—The _MB_init_global function

1 static void
2 _MB_init_global(mem_size_t heap_start, mem_size_t heap_end)
3 {
4 mem_size_t heap_space;
5 mem_size_t block_size = 0;
6 shift_t shift_highest = MAX_BLOCK_SHIFT;
7 shift_t shift;
8
9 // Erase the free list
10 memset((ptr_t)&gGlobal, 0, sizeof(gGlobal));
11
12 // Partition the total heap space into free blocks
13 // - Started with the total heap size and . . .
14 // - Continue as long as the heap space is big enough
15 // - At the end of each loop, reduce the heap space by
16 // the size of the previous free block taken away.
17 for (heap_space = heap_end - heap_start;
18 heap_space >= MIN_BLOCK_SIZE;
19 heap_space -= block_size) {
20
21 // Reduce the comparison to the biggest shift size
22 // possible for the remaining heap space
23 for (;
24 SHIFT_TO_SIZE(shift_highest) > heap_space;
25 --shift_highest) {
26 // empty
27 }
28
29 // Find the correct shift for this address or return
30 for (shift = shift_highest;
31 (MASK_OF(shift) & heap_start) != 0;
32 --shift) {
33 if (shift < MIN_BLOCK_SHIFT) {
34 // We get here because the remaining heap
35 // size is big enough for a block, but
36 // the address isn't fit into smallest
37 // shift
38 return;
39 }
40 }
41
42 // Put the block into the free list
43 _MB_add_to_free_list((ptr_t)heap_start, shift);
44 // Move the remaining heap_space up
45 block_size = SHIFT_TO_SIZE(shift);
46 heap_start += block_size;
47 }
48 }

66 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

 C
IR

C
U

IT
C

E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

_MB_size_to_shift rounds the
number up to the nearest shift
number. The size can’t be too big
(return NULL at line 14).

Next, a freed block is retrieved
from a free list. Look for a free list
starting from the exact size and going
up until a free list is found (lines
22–27). If you find one, trim the
block down to the requested size by
breaking the block into halves and
putting the higher address back into
a free list (lines 45–49). Lastly, at line
53–59, the routine puts the shift
number into the header, adjusts the
block address, and returns the block
to the caller (see Listing 3).

The MB_Free function frees a mem-
ory block (see Listing 4). The block’s
address is validated (lines 7–13)
against the known valid heap’s
address range. If the block address is
valid, the actual block’s address is
recovered (line 16) before the block is
added back into the pool.

ADD TO THE POOL
The _MB_add_to_free_list

function adds a block back into the
memory pool. The inner for loop
(lines 15–25) locates the buddy of
the block. Each time in the loop
has four possible outcomes. If the
buddy is found, the loop terminates
and moves on to the next state-
ment (line 30). If the block address
is bigger than the current one in
the list, keep on looking (line 24).
The list is sorted in ascending
order. If the block address is small-
er than the current one or reaches
the end of the list (lines 16–23), the
function inserts the block into the
list and the function ends.

In lines 30–31, the buddy is
removed from the list and com-
bined with the block so that the
block size is doubled. This new
block is passed to another iteration
of the for loop at lines 6–32. If the
shift size is larger than the maxi-
mum limit, the function returns an
error (see Listing 5).

EXAMPLE
In order to use the library in an actual application,

customization procedures are required to change defini-
tions for the library, change the object file’s link order,

and add a library initialization to the application source
code. Now I’ll describe some hardware, walk you
through the customization process, and present the
resulting memory layout and statistics.

LLiissttiinngg 33—The MB_Alloc function

1 void *
2 MB_Alloc(mem_size_t req_size) {
3 ptr_t mem = NULL;
4 shift_t req_shift;
5 shift_t shift;
6
7 // 1. Translate requested size to shift
8 // 1.1 Include the space for the size variable
9 req_size += sizeof(shift_t);
10 // 1.2. Size to shift (power of 2 value)
11 req_shift = _MB_size_to_shift(req_size);
12 if (req_shift == 0) {
13 // too big
14 return NULL;
15 }
16
17 // 2 Get a free block of the size
18 // 2.1 Find a non-empty free list containing
19 // the smallest free block that can fit this
20 // req_size. This free block could be bigger
21 // than the req_size.
22 for (shift = req_shift;
23 (shift <= MAX_BLOCK_SHIFT)
24 && (gGlobal.free_list[shift].next == NULL);
25 ++shift) {
26 // empty
27 }
28 if (shift > MAX_BLOCK_SHIFT) {
29 // Run out of memory for this req_size
30 return NULL;
31 }
32
33 // 2.2. Remove the block from the free list
34 {
35 _MB_free_list_t* addr =
36 gGlobal.free_list[shift].next;
37 gGlobal.free_list[shift].next = addr->next;
38
39 mem = (ptr_t)addr;
40 }
41
42 // 2.3 If the block is bigger than the req_size,
43 // reduce it down to the req_size. The extra
44 // space goes back into the pool.
45 for (--shift; shift >= req_shift; --shift) {
46 // Put the excess capacity back into the free list
47 ptr_t buddy = (ptr_t)BUDDY_OF(mem, shift);
48 _MB_add_to_free_list(buddy, shift);
49 }
50
51 // 3 Add the size information into the block and
52 // adjust the return pointer.
53 {
54 // Prefix the shift number into the memory block
55 shift_t* addr = (shift_t*)mem;
56 *addr = req_shift;
57 addr += 1;
58 mem = (ptr_t)addr;
59 }
60
61 return mem;
62 }

www.circuitcellar.com • CIRCUIT CELLAR® 77

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

 C
IR

C
U

IT
C

E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

Consider an NXP Semiconductors LPC2138 ARM-7
with flash memory at 0-0x7FFFF and RAM at
0x40000000–0x40007FFF. The development toolset is
Keil µVision3. The toolset assigns the stack space to a
low address range; therefore, the heap space can span

from the last static variable to the end of the
RAM space. The RAM space layout looks like
what you see in Table 2.

PROCESSOR-SPECIFIC DEFINITIONS
The library source code is organized into

four files: MB.c, MB.h, MB_prv.h, and
MB_processor.h. MB.c contains the code.
MB.h is the header file that must be included
in the target application source files.
MB_prv.h is a private header file for the
library itself. MB_processor.h is the translator
file and the only one that needs to be cus-
tomized for each of the processor architec-
tures. The other three files are used with no
change. MB_processor.h defines variables and
data types that must be changed for each
processor. Let’s review.
MIN_BLOCK_SHIFT is the size of the small-

est block in the system expressed in a power
of two. This size must be larger than or equal to the size
of a pointer variable in the system. For a system with
16-bit address space, a pointer will occupy 2 bytes so
this number will be defined as 1.
MAX_BLOCK_SHIFT is the size of the biggest block in

LLiissttiinngg 44—The MB_Free function

1 int
2 MB_Free(void *mem)
3 {
4 shift_t* addr;
5
6 // Sanity check
7 if (mem < gGlobal.heap_start) {
8 return MA_E_ADDR;
9 }
10 if ((gGlobal.heap_end != 0)
11 && (gGlobal.heap_end <= mem)) {
12 return MA_E_ADDR;
13 }
14
15 // Remove prefix to get to the real block address
16 addr = (shift_t*)mem - 1;
17
18 _MB_add_to_free_list((ptr_t)addr, *addr);
19 return 0;
20 }

LLiissttiinngg 55——The _MB_add_to_free_list function

1 static int
2 _MB_add_to_free_list(ptr_t mem, shift_t shift)
3 {
4 _MB_free_list_t* addr = (_MB_free_list_t*)mem;
5
6 for (; shift <= MAX_BLOCK_SHIFT; ++shift) {
7 _MB_free_list_t* prv = &gGlobal.free_list[shift];
8 _MB_free_list_t* cur = prv->next;
9 _MB_free_list_t* buddy = (_MB_free_list_t*)BUDDY_OF(addr, shift);

10 // Look for the buddy in a list. There are four possible outcomes:
11 // 1) A buddy is found
12 // 2) The block (addr) is larger than cur
13 // 3) The block (addr) is between prv and cur
14 // 4) Reach the end of list (cur == NULL)
15 for (; cur != buddy; prv = cur, cur = cur->next) {
16 if (addr < cur || cur == NULL) {
17 // (3) and (4)
18 // - Put the block into the list
19 // - Done
20 prv->next = addr;
21 addr->next = cur;
22 return 0;
23 }
24 // (2) continue to the next loop
25 }
26 // (1) Found a buddy:
27 // - Remove the buddy from the current list
28 // - Combine the two buddies to create a bigger block
29 // - Repeat the seach again in the next list of larger block size
30 prv->next = cur->next;
31 addr = MIN(buddy, addr);
32 }
33 // Error, the block is larger than the maximum size
34 return MA_E_TOO_BIG;
35 }

88 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

 C
IR

C
U

IT
C

E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

the system expressed in a power of two. This number
depends on the available RAM address space.

Consider MAX_FREE_SHIFT. The free function doesn’t
combine a freed block with its buddy if a block shift is
equal to or larger than this number. This number is used
for performance-optimization purposes.
FAST_SHIFT indicates that the processor supports

native instructions to shift a number by an arbitrary
number of bits. This function block is usually called a
barrel shifter. If this definition is defined, the shift value
is converted to the actual block size by a shift operation.
If not, a look-up table is used for the conversion instead.
shift_t is a data type for the header that’s embedded

in the block after the block is allocated (see Figure 6).
Although the library uses only 1 byte in the header, a
larger header size may be required. If the header is too
small, the block’s start address won’t be aligned with the
size of the variable that will be stored in the block. A
problem with an unaligned pointer will not be detected
while compiling the code. The example project chooses a
4-byte header to make sure that a pointer can be stored
in an allocated block.

The following definitions are guarded by the #ifdef
LPC213x statement and added to MB_processor.h. The
processor name is then defined in the project/make file.
This makes it possible to put the definitions for other
processors into the same file so the library can be used
anywhere (see Listing 6).

To enable the compiler to use the definitions guarded
by _LPC213x_, the symbol _LPC213x_ must be defined.
In some toolsets, this processor name is automatically
defined, but this toolset doesn’t have one. So we need to
add the _LPC213x_ definition to the toolset, which
resides in the Define section in the Preprocessor Symbols
pane under the C tab of the target option window (see
Photo 1a).

In addition to the aforementioned modification in
MB_processor.h, if you want the linker to automatically
put the heap into the right location, you need to cus-
tomize the linker as
well. For most of the
compiler/linker
toolsets, this means
that the (static) data
section of the library
must be the last one to
be linked.

To change the link
order for Keil µVision3,
you have to add a linker

directive ?DT0?MB (LAST) into
the toolset. You do so in the User
Segments field located under the
LA Locate tab in the target option
window (see Photo 1b).

LIBRARY INITIALIZATION
After the aforementioned

changes to the project file, you can add the library source
files to the project, add a statement to initialize the
library, and build. The initialization call looks like this:

MB_Init(0x40008000, 0x40008000);

The start and end addresses are identical and is just one
byte over the last RAM address. This means that the
heap space is between gGlobal.startpoint and
0x40007FFF (end of RAM).

The linker links the library’s variables after all the
other modules’ variables. Therefore, the linker places
gGlobal.startpoint—the last variable of the library—
above all the other variables. Notice that the heap space
spans up to the end of RAM because the stack is located
at a low address.

BUILD RESULT
The debugger shows that the linker places the heap

starting address gGlobal.startpoint at 0x40000800.
The initialization routine partitions the heap as shown in
Table 3.

In addition to the debugger, most of the toolsets can
generate a link map that shows how the code modules
are linked together. For a Keil µVision3 project, you can
add checkmarks to generate the link map and associated
details at an input pane labeled Linker Listing under the
Listing tab in the target option window (see Photo 1c).
When we build the project again, the toolset will gener-
ate a map file containing link result. Listing 7 is a snip-
pet of code from the sample project’s map file.

CODE
Notice that the first module in the code section (flash) is

STARTUPCODE located at address 0. The data section
(RAM) begins with STACK at the address 0x40000000 and
ends with variables of the MB module. The linker reports
that the library’s data section takes up 0x50 (80) bytes,
which is the space for gGlobal. However, the heap starts

TTaabbllee 22—RAM space layout for the LPC2138

Address Usage
0x40007FFF RAM End

Heap (starting from gGlobal.startpoint)
Statically defined variables (including gGlobal but not gGlobal.startpoint)
Stack spaces for various CPU modes

0x40000000 RAM Start

LLiissttiinngg 66——Customized parameters

#ifdef _LPC213x_
#define MIN_BLOCK_SHIFT 2 // Min block size is 4 bytes
#define MAX_BLOCK_SHIFT 16 // Max block size is 64 KB
#define MAX_FREE_SHIFT 16 // Max shift when freed
#define FAST_SHIFT // This processor has a barrel shifter
typedef mem_size_t shift_t; // Define the size of block header
#endif

www.circuitcellar.com • CIRCUIT CELLAR® 99BBOONNUUSS

at the address of gGlobal.heap_start (a 4-byte variable).
Therefore, the data header for the library is 76 bytes.

The library code consumes 668 bytes of the ARM
Thumb instruction set while the data takes 76 bytes.
Refer to Table 4 for more details.

MEASUREMENT METHOD
While the actual execution times to allocate and free

memory blocks are not constant, you can follow certain
guidelines to estimate and tune up the execution times.
The execution time is measured by running a test code
that allocates and frees memory blocks in a loop and uses
an oscilloscope to capture the execution time. Each time
in the loop, the code repeats the allocation and free in
the pattern that we want to measure. To meas-
ure the execution time with an oscilloscope,
you toggle output pins in the loop to generate
a signal pattern that represents execution time
at different points in the loop. The test code
looks like what you see in Table 5.

The test project runs on an LPC2138 running
the ARM Thumb instruction set at 60 MHz.
The code is compiled using the “6: Common
tail merging” option and optimized for execu-
tion speed. All the interrupts are disabled to
ensure the accuracy of the measurements. For

comparison purposes, I measured the execution time on
an empty for loop using the code in Listing 8. We found
that it takes the processor 10.5 and 101 µs to run 100 and
1,000 loops (value of count), respectively.

CODE PATH
The time it takes to allocate a block depends on the

block’s size and the current status of the heap. In general,
memory allocation consists of five steps: one, a fixed
overhead; two, calculating the block’s shift value; three,
locating a free block; four, taking a block from a free list;
and five, reducing the block down to the required size.
Steps one and four always take the same amount of time.
At step two, the execution time directly depends on the
block’s size. The execution times for steps three and five
depend on the difference between the required block size
and the size of the first available free block. If the
required block size is immediately available, the search
for a free block (going up the y-axis) and reducing block
size (going down the y-axis) will be eliminated. If only a
free block at the maximum shift is available for use, the
execution time will be the highest (see Figure 9).

The time it takes to free a block also depends on the
heap’s condition. It begins with a fixed overhead and it
then searches for the buddy block in the appropriate free
list. If a buddy block is found, the two blocks are merged
together and the resulting block is moved to the next

PPhhoottoo 11aa—Define a processor name. bb——Control a link order. cc——Listing
control.

cc))

TTaabbllee 33——RAM space layout for the LPC2138 after initialization

Address Usage
0x40007FFF RAM End

From To Size Shift Function

0x40004000 0x40007FFF 16 KB 14 Heap’s blocks

0x40002000 0x40003FFF 8 KB 13

0x40001000 0x40001FFF 4 KB 12

0x40000800 0x40000FFF 2 KB 11

0x40000000 0x400007FF Stack and statically
defined variables

0x40000000 RAM start

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

 C
IR

C
U

IT
C

E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

aa)) bb))

1100 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

 C
IR

C
U

IT
C

E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

larger free list. Steps 2 and step 3 are repeated until the
required buddy can’t be found (see Figure 9).

Notice that the execution time for memory allocation
depends on the time it spends on the y-axis. When freeing
a block, the code spends time on both the x- and y-axes.

SYMMETRICAL
To study the library’s performance, let’s begin with a

study of execution times in a controlled condition. You
can compare the execution time to allocate and free
small blocks from large and small free blocks in the
heap. Maximize the size difference between the small
and large blocks as much as you can. In my test, choose
8 bytes for the size of small blocks. The large block’s
size, however, depends on the system.

By observing heap space layout after the library is ini-
tialized using the default method (see Table 3), I found that
the biggest block size in the heap is 16 KB. So, the large
block in the study is 16 KB. The last step is to change an
MB_Init argument so that the heap starts at the address of
the 16-KB block. After the heap is initialized, the heap

will contain just a single 16-KB block.
Refer to Table 5. You allocate two of 8-byte blocks con-

secutively (A then B), and then free both of them in
reverse order (B then A) in a measuring loop. By doing so,
there is no change to the heap between allocation and
free of block B. It is also true for block A. Any change
introduced by allocation for block B will be reversed
when block B is freed. By keeping the heap status sym-
metrical, you can compare the execution times between
allocating and freeing the same block (see Table 6).

It takes much longer to allocate block A than it does
for block B. The difference comes from the time spent in
steps three and five (see Figure 9) when block A is allo-
cated. When allocating block B, the heap already has a
free block of the exact size. Thus, steps three and five are
skipped. On the opposite side, freeing the block B is very
short. The free function just puts block B back into an
empty free list. Searching and merging blocks isn’t
required. Freeing block A, on the other hand, triggers
search and merges all the way from 23 to 214.

For the same block size, allocation takes longer than
freeing when a small block is allocated from and freed
back to a large block (28.60 versus 13.20 µs). The alloca-
tion takes longer because the code has to travel up and
then down the array of free lists, while the free code only
travels up the free lists. Although it takes longer to allo-
cate than freeing a block in the aforementioned compari-
son, the allocation time doesn’t change so much with the
heap’s usage pattern. The aforementioned allocation time
for block A and B are the maximum and minimum exe-
cution times for allocation in this system. Likewise, the
execution time for freeing block B is the shortest freeTTaabbllee 44—Code space

Function name From address To address Size (decimal)
MB_Init 0x00003504 0x00003547 0x00000044 (68)

MB_Alloc 0x00003548 0x000035CB 0x00000084 (132)

MB_Free 0x000035CC 0x00003613 0x00000048 (72)

_MB_size_to_shift 0x00003614 0x00003633 0x00000020 (32)

_MB_add_to_free_list 0x00003634 0x000036CF 0x0000009C (156)

_MB_init_qualify_request 0x000036D0 0x0000372B 0x0000005C (92)

_MB_init_global 0x0000372C 0x0000379F 0x00000074 (116)

LLiissttiinngg 77—Map file output

MEMORY MAP OF MODULE: .\obj\OLED_display (STARTUP)

START STOP LENGTH ALIGN RELOC MEMORY CLASS SEGMENT NAME
==
00000000H 0000010FH 00000110H 4 AT.. CODE STARTUPCODE
00000110H 0000013BH 0000002CH 4 UNIT CONST ?CON?Application
0000013CH 0000017DH 00000042H 4 UNIT CONST ?CON?App_Main

Data Section

40000000H 4000048FH 00000490H 4 UNIT DATA STACK
40000490H 4000060FH 00000180H 4 UNIT DATA ?DT0?App_Main
40000610H 40000635H 00000026H 4 UNIT DATA ?DT0?Command
40000636H 40000637H 00000002H --- --- **GAP**
40000638H 400006D5H 0000009EH 4 UNIT DATA ?DT0?Serial
400006D6H 400006D7H 00000002H --- --- **GAP**
400006D8H 4000071EH 00000047H 4 UNIT DATA ?DT0?OLED_display
4000071FH 4000071FH 00000001H --- --- **GAP**
40000720H 40000723H 00000004H 4 UNIT DATA ?DT0?Shell
40000724H 4000077DH 0000005AH 4 UNIT DATA ?DT0?SSP
4000077EH 4000077FH 00000002H --- --- **GAP**
40000780H 400007A5H 00000026H 4 UNIT DATA ?DT0?tSysEvent
400007A6H 400007A7H 00000002H --- --- **GAP**
400007A8H 400007B3H 0000000CH 4 UNIT DATA ?DT0?TimerUnit

400007B4H 40000803H 00000050H 4 UNIT DATA ?DT0?MB

www.circuitcellar.com • CIRCUIT CELLAR® 1111

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

 C
IR

C
U

IT
C

E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

code path (before optimization) of the system. Unfortu-
nately, you cannot draw any conclusion yet about the
maximum execution time to free a block.

ASYMMETRICAL
I covered the free operations that spend fairly short

amounts of time searching for a buddy (in a relatively
short y-axis). Now let’s cover the effect of the x-axis on
the execution time. When an application allocates a
large number of blocks of a given size and then frees
some of them in an irregular pattern so that the blocks
can’t merge, the free list can grow to be really large (hav-
ing a long x-axis). The time to search for a buddy block
increases proportionally with the length of the x-axis. To
study the impact of this asymmetrical usage pattern,
allocate 1,000 blocks of the same size and then free
every other one of them (e.g., the 1st, 3rd, 5th, … 999th, in
that order). By freeing every other block, none of the
freed blocks will have a buddy. Therefore, the number of
blocks in the free list keeps on growing. In addition, the
address of every new freed block is always higher than
all of the blocks in the list at that time, so the new freed
block is always added to the end of the list. The net
result is a very high execution time. As you can see in
Table 7, the longest time to free a block in this experiment

reaches 210 µs, as opposed to the shortest time of 3.48
µs (see Table 6).

As part of the same experiment, the other 500 blocks
are freed after the first set in the order from 2nd, 4th, …
1000th. The result is also shown in the last column in
Table 7.

The above experiment demonstrates an extreme condi-
tion that could happen. Although the chance for this
condition to occur in an actual application is very slim,
you should should be aware of the possibility and its
impact. Now I’ll cover a way to limit the variation in
execution time.

OPTIMIZATION
I’ve covered the two main factors that can change the

execution time. The first is the distance on the y-axis
between the size of block being allocated and the nearest
free block in the heap. The second is the distance on the
x-axis between the first block in the free list and the
insertion point or buddy block in a free list. The key to
improve performance is to control the distances in both
the y- and x-axes.

The x distance can be reduced by simply limiting the
size of the block that will be merged. For instance, if you
limit the block size that will be merged in the experiment
to 23, or an 8-byte block, the free code path of block A and
B will be equal or almost equal because there is no merge.

Another change is also in the free code path. You can
add another condition so that at a certain block size
there won’t be an attempt to search for a buddy at all. A
free block will be added in the front of the free list. This
effectively reduces the code part on the x-axis. From a

certain block size up, the execution time
for the code path in the x-axis becomes a
constant. The net effect of applying the
two aforementioned changes together is
quite interesting. Table 8 shows the result
of setting the limit (for both kinds) to a
block size of 8 bytes or larger.

The change is done in function
_MB_add_to_free_list (see Listing 9, a
modification of Listing 5). The function
takes an additional argument
shift_limit, which limits the value of
shift in line 6. The code works the same
way as long as shift is less than
shift_limit. When shift is equal to or
greater than shift_limit, the code at line
33 takes over. The value of shift_limit
is MAX_BLOCK_SHIFT for almost all of the

LLiissttiinngg 88—Sample delay loop

{
int i;
for (i = count; i > 0; --i) {
}

}

TTaabbllee 55——Symmetrical case-measuring loop

Initialize the heap so that the heap has only blocks of 2Y

Loop step

Set I/O pins J and K to 1

Run a fix delay loop

Set I/O pins J and K to 0

1 Allocate a 2X block A, where X < Y

Set IO pin J to 1

2 Allocate a 2X block B

Set IO pin J to 0

3 Free a memory block B

Set IO pin J to 1

4 Free a memory block A

FFiigguurree 99——Symmetrical allocation and free

Return

1

1

2

3

5

3

Return

Free

MIN_BLOCK_SHIFT

2 Find a buddy

4 Get a block

Allocate

R
e

d
u

ce
 b

lo
ck

 s
iz

e

S
iz

e
 t

o
 s

h
ift

F
in

d
 a

 b
lo

ck

MAX_BLOCK_SHIFT
Pointer
array

Overhead

Overhead M
e

rg
e

 +
 lo

o
k

a
t

n
ex

t
fr

e
e

 li
st

X Direction (free blocks)

Y
 D

ir
e

ct
io

n
 (

sh
ift

)

cases. The exception is in the free code path, when the
value of shift_limit is MAX_FREE_SHIFT (see Listing 9).

This method comes with a cost. When a block that is
equal to or larger than the limit is freed, the library makes
no attempt to merge. Over time, the library may not be
able to provide a free block that is larger than the limit
because all the blocks in the heap are fragmented. Basical-
ly, with the optimization, the library doesn’t exactly use
the buddy memory principle.

APPLICATION
After setting up the library, you can follow a few simple

guidelines to ensure that the library works reasonably well
with your application. One, run the application and call
library initialization, and use the debugger to find the heap
layout. Observe the location of the biggest block. Two,
change the library call to create a heap with just one large
block. Three, decide on the smallest block size that will be
used in the system and set MIN_BLOCK_SHIFT accordingly.
Remember to include the size of the block header when
calculating the block size.
Four, decide on the biggest
block size that will be used
in the system and set
MAX_FREE_SHIFT accord-
ingly. Five, run a symmet-
rical test to identify the
range of execution times
for allocation and free code
paths. You will get the
maximum and minimum
execution times for alloca-
tion as well as the mini-
mum execution time for
free. Six, set
MAX_FREE_SHIFT to
MAX_BLOCK_SHIFT, run the
symmetrical test again, and
observe the maximum time
to free. The previous two

steps should provide you reasonable performance bound-
aries. Seven, MAX_FREE_SHIFT in step four should be
used in the actual system.

CHANGE THE APPLICATION
In addition to optimizing the library,

you can also optimize the application
code to reduce the execution time even
more by pre-allocating blocks or by
avoiding freeing blocks. The first

method is applicable
when the application
code can predict future
actions and allocate
memory blocks for the
future actions before
the blocks are actually
needed. Basically, the

memory allocations are done during a wait instead of a
time-sensitive section of the application.

Another method involves not freeing any memory block
at all and handling the situation the same way as you do
when the library runs out of memory. When the memory
runs out, an allocation call will fail and the function
returns NULL. The application must prepare for this situa-
tion by checking the return value and acting appropriately.
A normal response would be to free some or all of the
blocks. However, freeing all the blocks at once may be
faster and easier. To use this method, the code sections
that use dynamic memory must be separated from the rest
of the application. When memory runs out, you can simply
reset the code section and reinitialize the library while the
rest of the system can simply keep on working.

THINK FIRST, THEN PROCEED
The buddy memory library may not be applicable to

your application. As a tool, the library can efficiently
solve the problem of not having enough memory. Its

1122 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

 C
IR

C
U

IT
C

E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

TTaabbllee 66—Symmetrical case-measuring result

Execution time (µs) to allocate and free an 8-byte block from heap with one 16 KB
Allocate Block A Allocate Block B Free Block B Free Block A

28.6 2.92 3.48 13.2

TTaabbllee 77——Asymmetrical case-measuring result

Execution time (µs) to allocate and free an 8-byte block in a heap with 2- to 16-KB blocks
Average of allocating Average of freeing 500 Free the last (999th block) Average of freeing 500

1000 blocks odd numbered blocks even numbered blocks

4.76 119.2 210 4.76

TTaabbllee 88——A repeat experiment for the asymmetrical case with a maximum merge of an 8-byte block

Execution time (µs) to allocate and free an 8-byte block in a heap with 2- to 16-KB blocks

Average of allocating of 1000 blocks Average of freeing 500 odd numbered blocks Average of freeing 500 even numbered blocks

2.44 2.48 2.48

LLiissttiinngg 99—The modified _MB_add_to_free_list function

1 static int
2 _MB_add_to_free_list(ptr_t mem, shift_t shift, shift_t shift_limit)
3 {
4 _MB_free_list_t* addr = (_MB_free_list_t*)mem;
5
6 for (; shift < shift_limit; ++shift) {

. . . unchanged . . .

32 }
33 if (shift <= MAX_BLOCK_SHIFT) {
34 _MB_free_list_t* prv = &gGlobal.free_list[shift];
35 _MB_free_list_t* cur = prv->next;
36 prv->next = addr;
37 addr->next = cur;
38 return 0;
39 }
40 // Error, the block is larger than the maximum size
41 return MA_E_TOO_BIG;
42 }

principle of using a 2N block size keeps the code simple
and helps reduce the chance of memory fragmentation. It
is one of the best methods used in large systems like PCs
and servers. However, it will increase the cost of your
project, raise the execution time, amplify the code’s com-
plexity, and, potentially, introduce another class of soft-
ware defects. So, use the library only when it is appropri-
ate to do so, and be sure to use statically defined vari-
ables whenever possible. In general, the dynamic memo-
ry is most useful when it is used to share memory
between the tasks that run at different times. The tasks
don’t last very long and don’t run very often. The
requirements for memory blocks that are small, fixed in
size, and used often are best served by statically defined
variables.

Another disadvantage of using the library is that the
total effective amount of RAM available through the
library is smaller than what it seems. A portion of the
RAM is spent on the block headers. Another portion is
spent in the padding space within blocks to keep block
sizes in 2N numbers. For this reason, avoid allocating a
block in 2N size. When doing so, the library will need to
add more space for the block header and the effective
block size will double.

The software defects related to the memory library are
difficult to debug. Thus, note the following.

The library is not interrupt-safe. The library is not
designed for a multithreaded environment. Memory allo-
cation and free change the library’s internal data struc-
ture. Changing the library’s internal data structure from
multiple threads simultaneously will create inconsisten-
cy in the internal data and lead to a heap corruption. Do
not call the library from an interrupt service routine.

Access (write) within the block. A block allocated from
the heap must be strictly used within its boundary. A
write access outside the block is prohibited. Writing
beyond the block’s boundary could corrupt the internal
data embedded in the heap and result in a heap corruption.

Free only once. A memory block can be freed only
once after it is allocated. After it is freed, it must not be
used or freed again. Freeing a block more than once could
corrupt the heap.

The memory library may not be useful to everyone or
every application. If you need it, be sure to take the time
to understand how the library works and use it wisely. I

www.circuitcellar.com • CIRCUIT CELLAR® 1133

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

 C
IR

C
U

IT
C

E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

POJECT FILES
To download the code and a list of useful resources, go
to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/
2009/231.

ESOURCE
A. Tenenbaum, Y. Langsam, and M. Augenstein,
“Storage Management,” Data Structures Using C,
Prentice-Hall International, Englewood Cliffs, N.J.,
1990.

RR

Sitti Amarittapark (sittiama@yahoo.com) earned a degree
in electrical engineering at the Prince of Songkla University
in Thailand. Since 1995, he has been developing software
for desktops, handheld devices, and server systems. Cur-
rently, Sitti is working on disk-management software at Data
Domain in Santa Clara, California. His personal interests
include interprocess communication, electronics projects,
and photography.

Author’s note: I’d like to acknowledge Mitch Haile for reviewing
the document and Chunqi Han for the heap initialization
technique.

PP

1144 CIRCUIT CELLAR® • www.circuitcellar.com

O
ct
ob

er
 2

0
0
9
 –

 I
ss
ue

 2
31

 C
IR

C
U

IT
C

E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

Arduino-Based Temperature Display

A

P
RO

JE
CT

CORNER
by Mahesh Venkitachalam

fter recently discovering the Arduino microcon-
troller platform, I built a microcontroller-based

temperature display (see Photo 1). Arduino provides a
high-level programming language and an easy-to-use
development environment, the combination of which
allows a newcomer to get a project up and running easily.

My goals for this project were to understand how to
process analog input and display it using a microcontroller.
For the analog part, I chose a temperature sensor. For the
display, I used a pair of common cathode seven-segment
LED displays.

DESIGN
For the temperature input, I used a National Semicon-

ductor LM35 IC, which is a calibrated sensor that out-
puts a voltage of 10 mV per 1°C. This analog voltage is
fed into one of the microcontroller’s analog pins. The
analog values read in the 0–1023 range are then scaled to
get the temperature value in Celsius. The values are
averaged over 10 readings to avoid fluctuating values in
the display and rounded off to the nearest two-digit
number.

A seven-segment LED display has seven LEDs (leaving
the decimal point aside) to address, and a pair of these
requires 14 lines to address it. Although theoretically
this can be done by 14 separate digital outputs from a

microcontroller, this would be cumbersome to code and
you would run out of digital outputs! A better way is to
use a shift register, a device that takes a serial input of
bits and converts that into a parallel output of individual
bits. I used a pair of 74HC595 8-bit shift registers for this
purpose, and they are chained together to address the 2
displays. To display a particular digit on the segment, a
bit pattern is sent to the display by the shift register that
lights only the relevant LEDs. The Arduino platform pro-
vides a shiftOut() method, which helps to conveniently
“shift out” the 2 × 8 bits required to display the 2 digit of
temperature.

This simple temperature display project is a great
introduction to the world of microcontrollers, analog
sensors, shift registers, and LED displays. You can
replace the LM35 IC with an LM34 for a Fahrenheit-
based temperature output. I

THE MAGAZINE FOR COMPUTER APPLICATIONS

PPhhoottoo 11——This is the Arduino-based temperature display.

ESOURCES
E. J. Mastascusa, “Temperature Sensor - The LM35,”
Bucknell University, www.facstaff.bucknell.edu/mastascu
/elessonshtml/Sensors/TempLM35.html.

C. Maw and T. Igoe, “Serial to Parallel Shifting-Out
with a 74HC595,” November 2006, www.arduino.cc/en
/Tutorial/ShiftOut.

OURCES
Arduino board | http://arduino.cc

LM35 Precision Centigrade temperature sensor
National Semiconductor Corp. | www.national.com

SS

RR

Author’s note: The code and additional project-related details are
available at: http://electro-nut.blogspot.com/2009/07/arduino-
based-temperature-display.html.

Mahesh Venkitachalam is a software engineer living in India with his
wife and son. As a child, he enjoyed tinkering with electronic cir-
cuits. Today, he has a strong interest in microcontrollers. You can
view his electronics projects at http://electro-nut.blogspot.com/.

	231.pdf
	Bonus_Amarittapark
	Bonus_Venkitachalam

