
DATA ACQUISITION
Very Low-Frequency Datalogger
Design

A Simple Circuit for Energy
Conservation

Sophisticated Embedded App
Development

Battery-Monitoring Circuitry

Design & Then Program
a Stand-Alone Timer

CIRCUIT CELLAR

w
w

w
.circuitcellar.com T H E M A G A Z I N E F O R C O M P U T E R A P P L I C AT I O N S

$5.95 U.S. ($6.95 Canada)

#230 September 2009

Cable Tracer Software, p. 36 • Uncomplicated Embedded Wireless, p. 50 • Partition a Design, Minimize Processing, p. 62

Cover - 230.qxp 8/10/2009 1:13 PM Page 1

A Low Cost Solution for

Industrial Serial to Ethernet
with Digital I/O and Analog to Digital Converters

Board Part Number | SBL2e-200IR
Information and Sales | sales@netburner.com

Web | www.netburner.com
Telephone | 1-800-695-6828

A NetBurner Complete Hardware & Software Solution

The all-new
NetBurner SBL2e
I N D U S T R I A L S E R I A L TO E T H E R N E T S O LU T I O N

Hardware Features

Software Features

$19.95
Qty. 1000

C2.qxp 7/8/2009 8:41 AM Page 1

mailto:sales@netburner.com
http://www.netburner.com

1.qxp 8/5/2009 10:19 AM Page 1

http://www.synapse-wireless.com

What is the missing
component?

Industry guru Forrest M. Mims III has created a stumper. Can you
figure out what's missing? Go to www.Jameco.com/expose to see
if you are correct and while you are there, sign-up for our free full
color catalog. It's packed with components at prices below what
you are used to paying.

Jameco_CC_P1_Sep09 7/22/09 4:18 PM Page 1
2.qxp 8/5/2009 10:13 AM Page 1

http://www.Jameco.com/expose

3.qxp 8/11/2009 11:31 AM Page 1

http://www.lecroy.com

FOUNDER/EDITORIAL DIRECTOR
Steve Ciarcia

MANAGING EDITOR
C. J. Abate

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Jeff Bachiochi
Ingo Cyliax
Robert Lacoste
George Martin
Ed Nisley

NEW PRODUCTS EDITOR
John Gorsky

PROJECT EDITORS
Gary Bodley
Ken Davidson
David Tweed

ADVERTISING
860.875.2199 • Fax: 860.871.0411 • www.circuitcellar.com/advertise

PUBLISHER
Sean Donnelly
Direct: 860.872.3064, Cell: 860.930.4326, E-mail: sean@circuitcellar.com

ADVERTISING REPRESENTATIVE
Shannon Barraclough
Direct: 860.872.3064, E-mail: shannon@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster
E-mail: val.luster@circuitcellar.com

CONTACTS
SUBSCRIPTIONS

Information: www.circuitcellar.com/subscribe, E-mail: subscribe@circuitcellar.com
Subscribe: 800.269.6301, www.circuitcellar.com/subscribe, Circuit Cellar Subscriptions, P.O. Box 5650,
Hanover, NH 03755-5650
Address Changes/Problems: E-mail: subscribe@circuitcellar.com

GENERAL INFORMATION
860.875.2199, Fax: 860.871.0411, E-mail: info@circuitcellar.com
Editorial Office: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: editor@circuitcellar.com
New Products: New Products, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: newproducts@circuitcellar.com

AUTHORIZED REPRINTS INFORMATION
860.875.2199, E-mail: reprints@circuitcellar.com

AUTHORS
Authors’ e-mail addresses (when available) are included at the end of each article.

CIRCUIT CELLAR®, THE MAGAZINE FOR COMPUTER APPLICATIONS (ISSN 1528-0608) is published monthly by Circuit Cellar
Incorporated, 4 Park Street, Vernon, CT 06066. Periodical rates paid at Vernon, CT and additional offices. One-year (12 issues)
subscription rate USA and possessions $23.95, Canada/Mexico $34.95, all other countries $49.95.Two-year (24 issues) sub-
scription rate USA and possessions $43.95, Canada/Mexico $59.95, all other countries $85. All subscription orders payable in
U.S. funds only via Visa, MasterCard, international postal money order, or check drawn on U.S. bank. Direct subscription orders
and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 5650, Hanover, NH 03755-5650 or call
800.269.6301.

Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 5650, Hanover, NH 03755-5650.

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics or for the
consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and workmanship of read-
er-assembled projects, Circuit Cellar® disclaims any responsibility for the safe and proper function of reader-assembled projects based upon or
from plans, descriptions, or information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational purposes. Circuit Cellar® makes no claims or warrants that readers have a right to
build things based upon these ideas under patent or other relevant intellectual property law in their jurisdiction, or that readers have a right to
construct or operate any of the devices described herein under the relevant patent or other intellectual property law of the reader’s jurisdiction.
The reader assumes any risk of infringement liability for constructing or operating such devices.

Entire contents copyright © 2009 by Circuit Cellar, Incorporated. All rights reserved. Circuit Cellar is a registered trademark of Circuit Cellar, Inc.
Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

MEDIA CONSULTANT
Dan Rodrigues

CUSTOMER SERVICE
Debbie Lavoie

CONTROLLER
Jeff Yanco

ART DIRECTOR
KC Prescott

GRAPHIC DESIGNERS
Grace Chen

Carey Penney

STAFF ENGINEER
John Gorsky

Cover photography by Chris Rakoczy—Rakoczy Photography
www.rakoczyphoto.com

PRINTED IN THE UNITED STATES

N o code, no data. It’s just that simple.
Whether you’re gathering timing info, radio emissions data,

or the locations of underground cables, a data acquisition sys-
tem—no matter how well-designed the hardware—is useless
without a well-written program running behind the scenes. This
month we present articles about data acquisition systems that
harness the power of reliable code to manage hardware and
move data from point A to B in a fluid manner.

For instance, starting on page 16, Chuck Baird explains how
he combined his programming and hardware design skills to
develop a standalone timing system. With the right code, you
can use the design as a standalone timer or a timepiece for a
more complicated application.

Want to gather radio emissions data? Turn to page 24 to learn
how Carlo Tauraso built and programmed a very low-frequency
(VLF) datalogger. After describing the design, he details the
firmware development process and presents an interesting real-
world application.

On page 36 begins the second part of Kevin Gorga’s two-part
article series, “Cable Tracer Design.” Here he presents the soft-
ware portion of the design process and then describes the sys-
tem’s controls.

A successful embedded development application is built
upon good code. Last month Dale Wheat familiarized you with
ARM Cortex-M3 microcontrollers. This month he details the
application development process and covers the coding proce-
dures from start to finish (p. 44).

After covering C language in several articles, George Martin
asks an important question (p. 62). What do you do once you
have your embedded processor up and running? George
describes how to compartmentalize your design work and min-
imize processing requirements.

Not every article in this issue is code-centric. For instance, in
“Neural Networker,” Tom Cantrell presents what he calls “a
SNAP-shot” from Synapse Wireless, which now offers a unique
solution that integrates multiple aspects of an embedded wire-
less project on a small piece of silicon (p. 50).

Starting on page 58, Brian Millier describes his “smart”
power bar, which is a compact unit that can turn off several
electronic devices at the same time, thus conserving energy.
The interesting design’s circuitry consists of a basic 60-Hz
power supply, a microcontroller, a relay, and an IR module.

Columnist Jeff Bachiochi ends the issue with a presentation
of how internal protection circuitry for Li-Ion battery cells can
prevent dangerously high temperatures and failure (p. 66). Like
Jeff, you can check a cell’s state of charge, find problems, and
then repair them.

Whether programming, developing hardware, or both, be sure
to share your experiences with us. We’re just an e-mail away.

Develop Code, Acquire Data

cj@circuitcellar.com

4 CIRCUIT CELLAR® • www.circuitcellar.com

Se
pte

mb
er

20
09

 –
 Is

su
e 2

30

TASK
MANAGER CIRCUIT CELLAR®

THE MAGAZINE FOR COMPUTER APPLICATIONS

Task_Masthead_230.qxp 8/10/2009 1:17 PM Page 4

http://www.circuitcellar.com/advertise
mailto:sean@circuitcellar.com
mailto:shannon@circuitcellar.com
mailto:val.luster@circuitcellar.com
http://www.rakoczyphoto.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
mailto:info@circuitcellar.com
mailto:editor@circuitcellar.com
mailto:newproducts@circuitcellar.com
mailto:reprints@circuitcellar.com
mailto:cj@circuitcellar.com
http://www.circuitcellar.com

One Low Price ... $69.99

One Debugger/ Programmer

Microchip’s PICkit 3 Debug Express (part number DV164131) incorporates in-circuit debugging technology to provide an extremely
affordable hardware debugger and programmer for the entire range of Microchip’s Flash Microcontrollers (MCUs) – from the smallest
8-bit PIC10 MCU, through all 16-bit dsPIC® DSCs to the largest 32-bit PIC32 MCU.

PICkit 3 runs under the popular MPLAB IDE, the free graphical integrated development environment software, complete with
programmer’s editor, software simulator and project manager. MPLAB IDE’s GUI promotes advanced debugging with a host of auxiliary
features, such as a segmented LCD Designer, a graphics display designer and a data monitor and control interface. Easily connected to the
PC with a USB interface, PICkit 3 is bundled with a demo board for fast learning and initial design prototyping. The two-wire interface
easily connects to the final designs for application tuning and quick in-circuit programming.

With rich features, free compilers fully integrated with MPLAB IDE and a suite of tutorials, Microchip PICkit 3 Debug Express delivers
substantial value at a remarkably low price.

For All PIC® Microcontrollers

A CD that includes:
– PICkit™ 3 User’s Guide
– A series of 12 lessons on PIC® MCUs

with C source code
– A debugging tutorial
– Microchip’s MPLAB® IDE software
– Free MPLAB C Compiler for all

PIC MCUs and dsPIC DSCs
– CCS compiler for the PIC18F45K20
– HI-TECH C® Compilers PRO for

PIC10/12/16/18/32 running in
Lite Mode

PICkit 3
debugger/
programmer

A 44-pin demo
board with a
PIC18F45K20
microcontroller

Serial
EEPRO

M
s

Analog
D

igital Signal
Controllers

M
icrocontrollers

www.microchip.com/usb

T h
e

M
ic

ro
ch

ip
 n

am
e

an
d

lo
go

, t
he

 M
ic

ro
ch

ip
 lo

go
, H

I-T
EC

H
 C

, M
PL

A
B,

 P
IC

 a
nd

 d
sP

IC
 a

re
 re

gi
st

er
ed

 tr
ad

em
ar

ks
 o

f M
ic

ro
ch

ip
 T

ec
hn

ol
og

y
In

co
rp

or
at

ed
 in

 th
e

U
SA

 a
nd

 in
 o

th
er

 c
ou

nt
rie

s.
PI

Ck
it

is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 M

ic
ro

ch
ip

 T
ec

hn
ol

og
y

In
co

rp
or

at
ed

 in
 th

e
U

SA
 a

nd
 in

 o
th

er
co

un
tr

ie
s.

A
ll

ot
he

r t
ra

de
m

ar
ks

 m
en

tio
ne

d
he

re
in

 a
re

 p
ro

pe
rt

y
of

 th
ei

r r
es

pe
ct

iv
e

co
m

pa
ni

es
. ©

20
09

, M
ic

ro
ch

ip
 Te

ch
no

lo
gy

 In
c.

www.microchip.com/PICkit3

Mi hi ’ PICkit 3 D b E (DV164131)PICkit 3 Debus Express Ad for Circuit Cellar.indd 1 7/20/2009 12:50:42 PM

5.qxp 8/5/2009 10:14 AM Page 1

http://www.microchip.com/usb
http://www.microchip.com/PICkit3

66 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

INSIDE ISSUE

TASK MANAGER 4
Develop Code, Acquire Data

C. J. Abate

NEW PRODUCT NEWS 8
edited by John Gorsky

TEST YOUR EQ 15

CROSSWORD 74

INDEX OF ADVERTISERS 79
October Preview

PRIORITY INTERRUPT 80
The Critter Chronicles: The War Continues

Steve Ciarcia

50 SILICON UPDATE
NNeeuurraall NNeettwwoorrkkeerr
A SNAP-Shot from Synapse Wireless
Tom Cantrell

62 LESSONS FROM THE TRENCHES
EEmmbbeeddddeedd BBrreeaakkuupp
Divide a Design and Minimize Processing
George Martin

66 FROM THE BENCH
SSmmaarrtt CCiirrccuuiittrryy ffoorr BBaatttteerryy MMoonniittoorriinngg
Jeff Bachiochi

223300
16 Timer Development

From Timing Cycles to System Programming
Chuck Baird

24 Very Low-Frequency Datalogger
Carlo Tauraso

36 Cable Tracer Design (Part 2)
Software and System Control
Kevin Gorga

44 Get Started With Embedded Development (Part 2)
Coding from Start to Finish
Dale Wheat

58 Smart Power Bar
Simple Circuitry Enables Energy Conservation
Brian Millier

September 2009 • Data Acquisition

p. 16 Stand-Alone
Timer

p. 24 Log Data

p. 66 Battery
Monitoring

p. 58 Conserve
Energy With IR Tech

BONUS CONTENT
Verification and Simulation of
FPGA Designs

http://www.circuitcellar.com

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and Everywhere You Are® are registered trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be trademarks of others.

Everywhere You Are®

Performance and power consumption have always been key elements in the development of AVR® microcontrollers. Today’s

increasing use of battery and signal line powered applications makes power consumption criteria more important than ever.

To meet the tough requirements of modern microcontrollers, Atmel® has combined more than ten years of low power research and

development into picoPower technology.

picoPower enables tinyAVR®, megaAVR® and XMEGA™ microcontrollers to achieve the industry’s lowest power consumption. Why be satisfied with

microamps when you can have nanoamps? With Atmel MCUs today’s embedded designers get systems using a mere 650 nA running a real-time

clock (RTC) and only 100 nA in sleep mode. Combined with several other innovative techniques, picoPower microcontrollers help you reduce your

applications power consumption without compromising system performance!

Visit our website to learn how picoPower can help you hammer down the power consumption of your next designs. PLUS, get a chance to apply

for a free AVR design kit!

Hammer Down Your Power Consumption with picoPower™!

http://www.atmel.com/picopower/

THE Performance Choice of Lowest-Power
Microcontrollers

picoPower 2008ad indd 1 8/8/2008 8:35:17 AM

/11/

http://www.atmel.com/picopower/

8 CIRCUIT CELLAR® • www.circuitcellar.com

NEW PRODUCT NEWS

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

Edited by John Gorsky

USB AVR PROGRAMMER
The USB AVR Programmer (item #1300) is an extremely compact, low-cost, in-system

programmer (ISP) for Atmel’s AVR microcontrollers. This makes the programmer an attrac-
tive solution for AVR-based controllers such as the Orangutan robot controllers. The pro-
grammer connects to your computer’s USB port and communicates with your programming
software (e.g., AVR Studio or avrdude) through a virtual COM port using the

AVRISPV2/STK500 protocol. The programmer includes a TTL-level serial port (on a sep-
arate COM port) so you can seamlessly switch between programming an AVR and

debugging it through the TTL serial port. The programmer also features a two-
channel, severely limited oscilloscope (SLO-scope) for monitoring signals and

voltage levels. The SLO-scope Client for Windows makes it easy to see
what your circuit is doing in real time.

The USB AVR Programmer costs $19.95.

Pololu Corp.
www.pololu.com

32-Kb SERIAL F-RAM
The FM24CL32 is a serial nonvolatile RAM that offers high-

speed read/write performance, low-voltage operation, and
superior data retention. The FM24CL32 features 32-Kb non-
volatile memory, 2.7- to 3.6-V operation in an eight-pin
SOIC package that uses the two-wire I2C protocol. The
FM24CL32 features fast access, NoDelay writes, virtually
unlimited read/write cycles (1E14), and low-power con-
sumption. The FM24CL32 is a direct
hardware replacement for serial EEP-
ROM used in industrial controls, meter-
ing, medical, military, gaming, and
computing applications, among others.

The FM24CL32 is a serial ferroelec-
tric random access memory organized
as a 4,096 × 8-bit memory array.
Unlike an EEPROM, there are no write
delays when using the FM24CL32, and
the next bus cycle may commence
immediately without the need for data
polling. The device writes at a bus
speed up to 1 MHz and supports legacy
timing at 100 kHz and 400 kHz. The
FM24CL32 provides data retention for
up to 45 years while eliminating the
complexities, overhead, and system-
level reliability problems caused by
EEPROM and other nonvolatile memo-
ries. The FM24CL32 operates over the
industrial temperature range of –40° to

85°C at 2.7 to 3.6 V, with an active current of 70 µA (typical
at 100 kHz) and 12-µA current in standby.

Unit pricing begins at $0.99 in quantities of 10,000.

Ramtron International Corp.
www.ramtron.com

npn230.qxp 8/10/2009 1:36 PM Page 8

http://www.pololu.com
http://www.ramtron.com
http://www.circuitcellar.com

S

www.circuitcellar.com • CIRCUIT CELLAR® 9

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

18-BIT SoC UP TO 1 MSPS FOR HIGH-SPEED DATA ACQUISITION
The ADS8284 and ADS8254 are two new system-on-chip (SoC) solutions that enable customers to easily develop ultra-

high-performance ADC front ends for precision appli-
cations, including high-speed data acquisition, auto-
mated test equipment, and medical imaging. The 18-
bit ADS8284 and 16-bit ADS8254 combine for the
first time TI’s latest generation successive approxi-
mation register ADCs with all the components nec-
essary to optimize design around the ADC, often
the most challenging part of system design.

The devices offer best-in-class AC and DC per-
formance at 1 MSPS. This provides guaranteed per-
formance characterized for the entire input channel
from the multiplexer to the digital output, including
the driving amplifier. They are fully integrated SoCs
and include a four-channel multiplexer, an input
op-amp, a 6 ppm/°C reference, and a reference
buffer to reduce design complexity and cost while
ensuring that real-world applications achieve
datasheet performance levels. They also offer
ultra-low-channel drift to maximize reliability and
repeatability for critical measurements.

The ADS8284 and ADS8254 are available now
in a 64-pin QFN package for $20.50 and
$16.50, respectively, in 1,000-unit quantities.

Texas Instruments
www.ti.com

NPN

TOUCH PANEL COMPUTER WITH PoE
The TPC-43B is a cost-effective computer with a color TFT LCD and touch

panel plus power-over-Ethernet (PoE). Targeted at building automation and fac-
tory HMI applications, this standard, off-the-shelf, ARM-powered, wall-mount
design features a WqVGA (480 × 272) 4.3″, color TFT LCD panel in landscape
format, with 65,000 colors, an adjustable LED backlight, and a touch panel.

The computer is powered by a standard Medallion CPU Module (an SA2410-
650 is included). The ARM9 processor features 32 KB of cache, 64 MB of
SDRAM, and 128 MB of NAND flash, plus a separate NOR flash for reliable
bootloader and software update options. Power via PoE dramatically reduces
installation costs and replaces power cables with a single CAT-5 cable for
both power and Ethernet. The unit can also be powered from 10 to 30 VDC
or 7 to 24 VAC.

The unit offers low-power consumption and passive cooling that enables
fanless operation. To reduce power consumption, software can turn the
backlight on or off and control the brightness. A low-power, RTC with bat-
tery backup is included.

Communication is via a full-speed, USB host port (USB type A connec-
tor), and it supports wireless expansion, such as 802.11 or Bluetooth. Also
included is a 10/100-BaseT Ethernet interface with an RJ-45 connector fea-
turing integrated LED status indicators. An RS-232 serial interface with an
optional DE9 adapter to accelerate software development is also available.
The unit ships with the proven Medallion Linux 2.6 plus drivers preinstalled.

Pricing for units with all options except wireless is $399 in 10-piece quantities. Single units of the
TPC-43B are available as development kits with full software development tools and support. Call for pricing.

Techsol
www.medallionsystem.com

npn230.qxp 8/10/2009 1:36 PM Page 9

http://www.medallionsystem.com
http://www.ti.com
http://www.circuitcellar.com

10 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

NPN

JOYSTICK MODULE BASED ON CONTACTLESS SENSING TECHNOLOGY
The EasyPoint is a new joystick module aimed

at portable communication devices. EasyPoint
consists of a mechanical stack incorporating a
navigation knob with a magnet and the AS5011, a
contactless sensing IC. Its simple construction,
and the contactless-sensing technique imple-
mented by the AS5011, means the module offers
very high mechanical reliability. The EasyPoint joy-
stick modules support true 360° range of move-
ment, encompass a “select” function, and can be
housed in a variety of form factors, with a module
height as low as 1.8 mm.

At the core of the EasyPoint joystick module is
the AS5011, a magnetic encoder IC that monitors
knob displacement relative to its center position
and provides position information via I2C outputs.
The AS5011 offers user-selectable, power-saving
modes and is available in an ultra-thin QFN pack-
age (5 × 5 mm, 0.55 mm high).

EasyPoint joystick module demonstration units
and the AS5011 IC are available for sampling. The
modules come in two mechanical versions, either as a complete module with integrated AS5011 IC or as a mechanical mod-
ule only. The sizes range from 12.5 mm × 12.6 mm to 18.6 mm × 22.6 mm and support 1-mm and 2-mm knob displace-
ment, respectively.

The EasyPoint starts at $2.30 and the AS5011 costs $2.62 each in 1,000-unit quantities.

Austriamicrosystems
www.austriamicrosystems.com

npn230.qxp 8/10/2009 1:36 PM Page 10

http://www.austriamicrosystems.com
http://www.circuitcellar.com
http://www.ezpcb.com

16-BIT OCTAL SPI DAC
The LTC2656 is a 16-bit octal DAC that

offers ±4 LSB INL maximum over tempera-
ture, a factor of three times better than the
nearest octal competitor. The combination of
low 0.1% (max) gain error and low ±2 mV
(max) offset error ensure that the LTC2656
remains accurate near the supply rails and
provides the user with a wider effective out-
put range.

The LTC2656 integrates a precision refer-
ence that achieves 2 ppm/°C typical and
10 ppm/°C maximum temperature coeffi-
cient. Operating from a single 2.7- to 5.5-V
supply, supply current is a low 375 µA per
DAC with the reference activated. Communi-
cation is via a four-wire SPI-compatible inter-
face up to 50 MHz.

The device offers a wide range of options
to meet application-specific requirements.
Designers can choose between 16- or 12-
bit resolution and an internal 1.25- or 2.048-V reference,
which produce a full-scale output voltage of 2.5 or 4.096 V.
Alternatively, an external reference of up to half the supply
voltage can be for rail-to-rail operation. The LTC2656 also
includes a hardware option to power up the DAC outputs at
zero-scale or midscale.

LTC2656 16-bit and 12-bit DACs and demo boards are

www.circuitcellar.com • CIRCUIT CELLAR®

11

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

NPN

now available. Pricing begins at $8.95 each for the 12-bit
options and $17.95 each for the 16-bit options in 1,000-
piece quantities.

Linear Technology Corp.
www.linear.com

npn230.qxp 8/10/2009 1:36 PM Page 11

http://www.linear.com
http://www.circuitcellar.com
http://www.linxtechnologies.com
http://www.frontpanelexpress.com

FOUR-CHANNEL, SIMULTANEOUS-SAMPLING
24-BIT ADC

The MAX11040 four-channel, 24-bit, simultaneous-sampling
ADC was developed to enable unprecedented simplicity in system
design—up to eight MAX11040 devices can be daisy-chained to

provide a sampling capacity of up to 32 channels. The
MAX11040 achieves this high capacity and scalability
with a unique cascadable SPI/QSPI/MICROWIRE interface,
which eliminates the complexity of using individual chip-
select inputs to control each ADC. Because all eight
MAX11040 devices can be accessed using only a single
chip-select input, from the host processor’s point of
view, the control logic remains the same regardless if
there are only four or as many as 32 channels.

The MAX11040 uniquely provides compensation for
phase shifts caused by resistor dividers, transform-
ers, or filters at the analog inputs through a program-
mable delay of 0 to 333 µs. Together with a mini-
mum of 90 dB of SINAD and 91 dB of SFDR, these fea-
tures make the MAX11040 ideal for industrial power-
grid-protection equipment, medical EKG/EEG equipment,
and other applications that require accurate conversions
of simultaneously sampled channels between 0.25 ksps
and 64 ksps. Additionally, overvoltage protection on the
analog inputs protects the MAX11040 from voltages as
large as ±6 V when referenced to the device’s analog
ground, thus simplifying design and reducing cost.

The MAX11040 is available in a lead-free, 38-pin
TSSOP package. Prices start at $13.45 (1,000 up, FOB
USA).

Maxim Integrated Products
www.maxim-ic.com

12 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

NPN

ARM9-BASED TOUCH SCREEN PLATFORM FOR HMI/GUI APPLICATIONS
The ARM-57TSLPC3250 is a new addition to a modular development platform that supports various size touch screen LCD

devices from multiple vendors. The design supports ARM microprocessor and
microcontroller devices in three popular families: the ARM926EJ,
ARM7TDMI-S, and Cortex-M3. The new ARM9-based plat-
form complements the initial product, the ARM-57TS-
LPC2478. The ARM-57TSLPC3250 includes a Toshiba
5.7″ TFT LCD with integrated touchscreen and is based
on the NXP LPC3250 266 MHz ARM926EJ-S microcon-
troller with integrated LCD driver. The “brain” of the sys-
tem is a SOC module called the ARM9DIMM-LPC3250.
This modular 200-pin SODIMM is 2.66″ × 1.89″ and con-
tains the LPC3250 microcontroller, along with 256 MB of
external NAND flash, 32 MB of SDRAM, and support circuits.
The kit includes the Linux operating system with a full com-
plement of software driver support.

The ARM-57TS-LPC3250 development kit costs $480. The
ARM9DIMMLPC3250 costs $99.75. FDI offers cost-effective design
and customization services for customer-specific hardware, soft-
ware, or repackaging applications at volumes as low as 500 units.

Future Designs, Inc.
www.teamfdi.com

npn230.qxp 8/10/2009 1:36 PM Page 12

http://www.maxim-ic.com
http://www.teamfdi.com
http://www.circuitcellar.com

INDUCTIVE TOUCH-SENSING ANALOG FRONT END
The MCP2036 is an analog front end (AFE) for inductive touch-sensing applications. The fully-integrated MCP2036 AFE works

with almost any 8-, 16-, or 32-bit PIC microcontroller or dsPIC digital signal controller, making it even easier and more cost
effective for designers to enhance user interfaces with inductive touch-sensing technology. The inductive-touch AFE includes a
multiplexer, a frequency mixer, an amplifier, a driver, and a voltage reference, which drastically lowers the component count,
design size, and cost. Additionally, the AFE can be easily configured for a variety of applications in the appliance, industrial,
and automotive markets, among others.

Inductive touch sensing’s fundamen-
tal operating principles enable it to
work through a front panel, such as
plastic, stainless steel or aluminum.
The technology also works through
thick gloves and on surfaces where liq-
uids are present. These characteristics
make inductive touch sensing suitable
for applications in the appliance mar-
ket because of the possibility of a
stainless steel front panel, the indus-
trial market because of the technolo-
gy’s robustness, and the automotive
market because of the technology’s
sleek aesthetics and ability to reduce
accidental-touch triggers. The
MCP2036 AFE is available in a 16-pin,
4 mm × 4 mm QFN package, as well
as 14-pin PDIP and SOIC packages.
The device starts at $0.33 each in
10,000-unit quantities.

Microchip Technology, Inc.
www.microchip.com

www.circuitcellar.com • CIRCUIT CELLAR® 13

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

FAMILY OF MINIATURE, PASSIVE OSCILLOSCOPE PROBES
The N2870A Series is a family of miniature, passive oscilloscope probes and accessories with bandwidths from DC to

1.5 GHz. Compact 2.5-mm probe head diameter, low-input capacitance, and various fine-pitch, probe-tip accessories make
the passive probes ideal for probing densely populated IC components or surface-mount devices used in today’s high-speed
digital applications.

The sharp probe tip is spring loaded to help engineers
keep the probe from slipping off the device under test.
Insulating IC caps keep the small probe tip centered on
the IC lead and keep it from shorting adjacent leads.
Optional probe-tip accessories provide specialized capabil-
ities for demanding applications. N2870A Series probes
are available with attenuation ratios of 1:1, 10:1, 20:1,
and 100:1, and probe bandwidths of DC to 35 MHz,
200 MHz, 350 MHz, 500 MHz, and 1.5 GHz. The new
Infiniium 9000 Series oscilloscopes come equipped with
one N2873A 500-MHz, 10:1 passive probe per channel.

The N2870A Series passive probes are available now,
with prices starting at $220.

Agilent Technologies, Inc.
www.agilent.com

NPN

npn230.qxp 8/10/2009 1:37 PM Page 13

http://www.agilent.com
http://www.microchip.com
http://www.circuitcellar.com

14 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

NPN

HIGH-RES MEMS MOTION SENSOR
The ADXL346 digital three-axis iMEMS smart motion sensor is the latest

offering in a new class of small, ultra-lower-power, high-resolution iMEMS
accelerometers for measuring tilt, shock, and acceleration. Designed to oper-
ate at a primary supply voltage down to 1.8 V, this new motion sensor is
capable of high resolution (4 mg/LSB).

The device automatically modulates its power consumption in proportion to
its output data rate as well as saves additional power by automatically switching

to a sleep mode during periods of inactivity.
For even more power savings, a standby
mode can also be used.

The ADXL346 has a wide, selectable
bandwidth of 0.1 to 1,600 Hz. Power con-
sumption ranges from less than 150 µA at
1600 Hz bandwidth down to 25 µA under
10 Hz. The device also measures dynamic
acceleration with ±2g/4g/8g/16g user-selec-
table measurement ranges.

Several special sensing functions are also
programmed on-chip along with user-pro-
grammable threshold levels. Activity and
inactivity sensing detect the presence of or
lack of motion or if the acceleration on any
axis exceeds a user-set level. A tap-sensing
function detects single and double taps.
Free-fall sensing detects if the device is
falling. These functions can be mapped to
one of two interrupt output pins. In addition,
the new accelerometer includes I2C and
three- and four-wire SPI digital interfaces.

The ADXL346 costs $3.04 per unit in
1,000-unit quantities.

Analog Devices, Inc.
www.analog.com

COMPACT MODULES SIMPLIFY GPS
The SG and SR Series of GPS modules can be easily

applied to blend high performance, low power and cost
effectiveness into a single, compact, SMD package. The
module’s SiRFstar III low-power chipset minimizes power
consumption and provides exceptional sensitivity, even in
dense foliage and urban canyons. The receivers feature an
on-board LNA and SAW filter, as well as an integrat-
ed antenna (SR Version) or external antenna (SG
Version), which further lowers cost and reduces
complexity. No other RF components are needed
and the module’s standard NMEA data output makes
them easy to integrate, even by engineers without
previous RF or GPS experience.

Also available is the MDEV-GPS Master Develop-
ment System, which contains everything needed to
rapidly evaluate the SG or SR Series GPS modules
and implement them in record time. This all-inclu-
sive Master Development System features a pre-
assembled development board with an on-board
OLED display for standalone testing. The system can
also be attached to a PC via USB and operated using
the supplied software. The software shows satellite
positions, SNR, satellites in use, NMEA data, coordi-
nates, and even the module’s position on Google
Maps! For development, a convenient prototyping
area with breakout headers and regulated power
supply allows for rapid testing and interface.

The RXM-GPS-SG and RXM-GPS-SR modules are priced at
$24.95 and $34.95, respectively, in 200-piece quantities.
MDEV-GPS Master Development Systems are priced at $249
for the SG version and $289 for the SR version.

Linx Technologies
www.linxtechnologies.com

npn230.qxp 8/10/2009 1:37 PM Page 14

http://www.circuitcellar.com
http://www.analog.com
http://www.linxtechnologies.com

www.circuitcellar.com • CIRCUIT CELLAR® 15

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

Te s t Your
Edited by David TweedCIRCUIT CELLAR

What’s your EQ?—The answers are posted at
www.circuitcellar.com/eq/

You may contact the quizmasters at eq@circuitcellar.com

EQ
Problem 1—Given the FIFO data structure defined
below, can you write thread-safe functions to initialize
the FIFO, add an item to it, r emove an item from
it, and find out how many items are in the FIFO? How
many items can you put into this FIFO?

#define FIFO_SIZE 100
typedef struct {

unsigned int head;
unsigned int tail;
int data[FIFO_SIZE];

} FIFO;

void fifo_init (FIFO *f);
unsigned int fifo_count (FIFO *f);
void fifo_add (FIFO *f, int item);
int fifo_remove (FIFO *f);

Problem 2—Suppose you add a “full” flag to the
data structure, as shown below. How many items
can you store in the FIFO now, and what do the
thread-safe access functions look like?

typedef struct {
unsigned int head;
unsigned int tail;
bool full;
int data[FIFO_SIZE];

} FIFO;

Problem 3—To a first approximation, what is the
voltage gain of a common-emitter or common-
base transistor amplifier?

Problem 4—What is the voltage gain of a common-
collector transistor amplifier?

Contributed by David Tweed

eq-230.qxp 8/10/2009 2:04 PM Page 15

http://www.circuitcellar.com/eq/
mailto:eq@circuitcellar.com
http://www.circuitcellar.com
http://www.pcbcore.com
http://www.lemosint.com

16 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

Need a stand-alone timer or a timepiece for a lar ge application? Read on to
learn how to develop the right timer design to suit your needs. It’ s time to
put your hardware and programming skills to good use.

Timer Development

A

F
EA

TU
RE

ARTICLE
by Chuck Baird

s every parent knows, a young child
occasionally needs to take a break from ter-

rorizing the world and sit quietly to settle down. This
serves two purposes: the kid gets a cooling off period
and the parents don’t go to jail for acting on their
impulses. Most experts agree that a timeout should
be presented not as punishment but rather as quiet
time. In fact, many recommend timeout periods of 1
minute per year of a child’s age.

In this article, I’ll describe a simple timeout timer
with a user interface featuring one push button,
eight LEDs, and audio capability for mark-
ing certain events (see Photo 1). If you don’t
need a design for timing timeouts, you can
look at this project in a different way. You
can use this timer design project to experi-
ment with several software techniques and
to work with a versatile yet inexpensive
development system.

OPERATION
The timer design is easy to operate. You

first turn on the power and then press and
release the push button. This initiates a
repeating sequence of slowly lighting one to
eight LEDs. When the number of illuminat-
ed LEDs matches the number desired
“timeout” minutes, you press the button
again. When you release the button, the
timing cycle for the chosen number of min-
utes begins. All eight LEDs then light up.

The rightmost LED flashes, and it will do so faster and
faster until it finally goes out. The process then repeats
using seven LEDs, then six, and so on. When all the
LEDs have turned off, the system plays a tune and the
timeout period is over.

If the time chosen is 1 minute, each LED goes through
its flashing sequence in 7.5 s for a total of 60 s. At the
other extreme, if the time chosen is 8 minutes, each
LED’s flashing sequence is 1 minute long. (In theory, an
errant child will be diverted by watching the changing
rate of flashing LEDs. If you aren’t using the design for

From Timing Cycles to System Programming

Photo 1—Here is the prototype using headers soldered onto the Butterfly. The
LEDs and resistors are mounted on the perf board, with power routed from it
to the Butterfly.

2909017_Baird.qxp 8/10/2009 3:37 PM Page 16

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 17

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

childcare purposes, perhaps your LEDs will be useful for
something else, like interval indication.)

As a reminder to turn off the power, the system beeps
four times every 15 s when the timer is not in use but

left on. Although the design has a low-power Sleep
mode, I assumed that this device might sit unused for
weeks and that zero power consumption would be better
than a Sleep mode. If you press the button during the
timeout period, the MCU resets and the process repeats.

MCU OVERKILL?
I built the timer around an Atmel AVR Butterfly

demonstration and evaluation kit (see Figure 1). You
might think the Butterfly is extreme overkill for this
design, but it works for me. The kit has an 8-MHz
ATmega169 processor, a six-character LCD, a piezo ele-
ment for noise making, a 4-Mb dataflash memory, a joy-
stick, a temperature sensor, 16-KB flash memory, 1-KB
SRAM, and 512 bytes of EEPROM. It also has RS-232
level converters and is shipped with a bootloader
installed that enables its flash memory to be pro-
grammed via a Windows serial port without additional
hardware other than a DE9 connector. The free program-
ming software includes an assembler and a full-featured
C compiler (WinAVR).

With such an array of peripherals, most of the Butter-
fly’s general I/O pins serve dual purposes (or more). One
pin is needed for the push button input, eight pins are
needed for the LEDs, and one pin is needed for the piezo
element mounted on the Butterfly. In addition, I use an
I/O output as an interrupt “heartbeat.” Doing so enables
me to use an oscilloscope to monitor and verify the

Figure 1—This schematic shows the connection of components
external to the Butterfly. The Butterfly’s schematic is available on the
Atmel web site.

2909017_Baird.qxp 8/10/2009 3:38 PM Page 17

http://www.circuitcellar.com
http://www.r4systems.com

18 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

timebase, although this can be omit-
ted. I sacrifice some of the LCD lines
to get these eleven I/O pins, but I’m
not using them for this project so it
isn’t a problem. The lines shared
with the LCD are only driven low or
tristated, so there is no danger of
damaging the LCD.

The Butterfly’s bootloader enables
it to be programmed (read, write, and
verify flash memory) through its
serial port. You can download the
Atmel AVR Studio Windows pro-
gramming software for free. Your PC
will need a serial port or a USB-to-
serial converter. Additional hardware
isn’t needed, so for the purpose of
this article, assume that this is the
programming method used. Howev-
er, the Butterfly can be programmed
in a variety of other ways with a sep-
arate hardware programmer. These
alternate methods usually erase the
bootloader, but both the bootloader
and the application that ships with
the Butterfly are available as hex
files on the Atmel web site and may
be reloaded. The bootloader can’t
modify itself, so it should remain
intact unless you use one of the
other programming methods.

This project involves wiring a DE9
to the Butterfly’s RS-232 pins for use
by the bootloader, connecting LEDs
and resistors to eight of the output
pins, and adding a push button to
ground to another I/O pin. I used
two AA batteries to supply the 3-V
power because the Butterfly’s coin
battery isn’t quite up to this job.
There is a switch on the batteries,
and you may want to add an LED
and resistor for a visual reminder.
We then burn the hex file from this
program into the Butterfly’s flash
memory, typically by using the But-
terfly’s bootloader and AVR Studio.

I used ImageCraft’s C (ICCAVR) to
write the code for this project. Other
C compilers will have slight syntac-
tical differences, but the results are
essentially the same. The ICCAVR
convention that might be of concern
to the casual reader is that char dec-
larations are unsigned.

Besides the free WinAVR GCC port,
the various commercial C compilers
for the Atmel AVRs have free demo

and trial versions for noncommercial
use if you want to modify the source
code. To create your own timer
using the compiled version, the
inexpensive Butterfly and a few
common parts are all you need.

You may want to download the
Butterfly’s documentation and
datasheet for the ATmega169 from
Atmel’s web site. As I mentioned,
you’ll need to download and install
the free AVR Studio software to
communicate with the bootloader,
unless you plan to use other soft-
ware tools.

BOOTLOADER
A few things complicate this proj-

ect. I also have plenty of computing
resources readily available, so I’ll
add to the complication for educa-
tional purposes by presenting inter-
esting coding techniques.

The first consideration is that you
may or may not be running code
that was loaded via the Butterfly’s
bootloader. If the bootloader isn’t
used, the power-on reset jumps
directly to your code. If the boot-
loader is used, the power-on reset
jumps to the bootloader, which then
waits to determine if it should
accept input for burning flash, jump
to the application (your program), or
go to sleep.

The Up and In joystick switches
wake the bootloader out of Sleep
mode, and it jumps to the applica-
tion if it sees the joystick pressed
up. Therefore, you will wire your
push button in parallel with the Up
joystick button. That will cause the
initial button push to make the
bootloader run your code (in case
the bootloader is used). In that case,
pressing the button once will simply
start your program. (It plays a start-
up tune.) A second press starts the
process of selecting the timeout
minutes. If you use a programming
method other than the Butterfly
bootloader, the program (with its
start-up tune) will run immediately
after power-up or reset.

Another issue is that the boot-
loader calibrates the microcon-
troller’s speed when it starts up. The
Butterfly’s ATmega169 runs off its

2909017_Baird.qxp 8/10/2009 3:38 PM Page 18

http://www.circuitcellar.com
http://www.keil.com/dd
http://www.keil.com/rtos
http://www.keil.com

www.circuitcellar.com • CIRCUIT CELLAR® 19

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

internal R/C oscillator, which AVRs
can fine-tune by adjusting a register.
The bootloader tweaks the
ATmega169’s speed in comparison to
the Butterfly’s 32-kHz clock crystal,
thus ensuring its RS-232 communi-
cations timing will be as accurate as
possible. This adjustment won’t be
performed if you bypass the boot-
loader—although it does not matter
for this application because exact
timing isn’t necessary, except for the
bootloader’s serial communications.

The bootloader leaves the
ATmega169 running at 2 MHz,
which you will bump to 8 MHz. It
also leaves a few other little messes
(at least in some versions of the boot-
loader), which you must clean up.

TIMING IS EVERYTHING
You are building a timer, so you

need to have some sort of a timebase
running. You can use one of the
ATmega169’s 8-bit timers to gener-
ate an interrupt once every millisec-
ond and then derive your various
timing needs from that. As I already
mentioned, exact timing isn’t neces-
sary for this application. It doesn’t
matter if a 6-minute timeout actual-
ly lasts 6.12 or 5.94 minutes. Not
that you will be far off, but you

won’t worry about running off an
R/C clock or whether it has been cal-
ibrated. Most of the timing consider-
ations are handled inside the 1-ms
interrupt handler.

One thing you’ll do is multiplex
the LEDs (whether you need to or
not). This will cause them to appear
dimmer, but it will limit the current
drawn. (The main reason for doing it
in this case is to demonstrate one
method of multiplexing outputs.)
The program will view the LEDs as a
single unsigned byte of 8 bits, and if
a bit is set, its corresponding LED
will illuminate. The mechanism
behind the scenes will be a second
mask byte with exactly 2 bits set.
On each interrupt, the mask and the
main byte are ANDed together to
determine the outputs. The mask
bits are then shifted circularly in
preparation for the next interrupt.
Thus, each LED is serviced every
four interrupts.

The interrupt handler also handles
push button debouncing. After a cer-
tain number of interrupts (currently
two), the push button is read and its
single bit value is shifted into an
unsigned byte variable. It takes eight
shifts to “fill” the variable, so
checking that variable (at any given

Photo 2—The components attach to the Butterfly’s pads. They may be either directly soldered
or plugged on using standard 0.1″ headers.

Female
DE9

J40 - RS-232

J400 - Port B J401 - Port D

3
2
5

“Heartbeat” Pushbutton

3 V

220-Ω Eight LEDs with
resistors to VCC

3 V
Gnd

OSD-232+
RS-232/TTL controlled on-screen
composite video character and graphic
overlay in a small 28 pin dip package.

Intuitive Circuits
www.icircuits.com

(248) 588-4400

New!

2909017_Baird.qxp 8/10/2009 3:38 PM Page 19

http://www.icircuits.com
http://www.circuitcellar.com
http://www.designnotes.com
http://www.hobbylab.us
http://www.designnotes.com

20 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

point in time) gives the value of the
last eight reads. With the shift hap-
pening after every two interrupts,
you get a debounce time of 16 ms,
which is probably considerably
longer than necessary. If the variable
equals zero, the push button is not
being pushed and it is debounced. If
the variable is 255 (0xff), the push
button is pushed and debounced. Any
other value means it is in transition.

The programming “gotcha” associ-
ated with the debouncing is that the
push button’s variable must be
declared volatile because its value
changes in the interrupt handler.
This is something the compiler
won’t normally expect, so it needs
to be instructed to reload the vari-
able for each use. Otherwise, the
optimizer’s tough love could kill
you—or at least your code.

The heartbeat output isn’t really a
necessary part of this project, but
sometimes it’s useful to be able to
verify that the interrupts are work-
ing, that the timer setup is correct,
and that the clock rate is right. On
every interrupt, you toggle an out-
put bit, so an oscilloscope should
show a square wave with a half period
of 1 ms.

Finally, note that the interrupt
handler handles sound generation. I’ll
explain this in greater detail in an
upcoming section of this article.

THE MAIN EVENT
An event list is implemented for

general timing needs. An event in this
program consists of a function that
will be executed in the future; it’s
measured from the present time. The

function is called when the time for
the event arrives.

Event times are specified in tenths
of a second. Every 100 interrupts, the
interrupt handler updates the active
events’ pending times, eventually
decrementing them to zero. When
the main task sees an event with
zero time remaining, it removes the
event from the list and executes the
event’s function. For example, when
the program starts, it sets an event
for 1 minute, or 600 time units. If this
event executes, it starts the beeping as
a power-down reminder—sort of the
poor person’s watchdog timer inter-
rupt. In the meantime, other events
are loaded and executed that display
the initial sequence of lights so you
can select a timeout value. When
and if the selection is made, the shut-
down event is cancelled.

The event list is modified by both
the interrupt handler and the main
task, so a locking mechanism is neces-
sary to prevent conflicts. The main
program sets and later clears a variable
to indicate when the event list is
busy. If an interrupt needs to access
the locked list, it sets a flag for itself
and performs the action on the first
interrupt following the unlocking of
the list. Although there are numerous
ways to implement the timing needs
for this project, the event list is versa-
tile, interesting, and effective. It also
simplifies the interrupt handler’s abili-
ty to manage pending tasks.

SOUNDS & IMPLEMENTATION
Finally, there is the matter of sound

generation. As written, the sound rou-
tines can play just about anything,

The ATmega169’s 16-bit timer is used in
one of its PWM modes to generate each
note. Conveniently, its PWM output bit on
the Butterfly is tied to the piezo element.
All you have to do is feed the timer a
PWM frequency count to start each note
at the correct time. The PWM duty cycle
determines the volume (more or less).

”
“

2909017_Baird.qxp 8/10/2009 3:38 PM Page 20

http://www.circuitcellar.com
http://www.pololu.com/ccad

www.circuitcellar.com • CIRCUIT CELLAR® 21

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

although making a few simple sounds
suffices for this project. I implemented
the code in a more complete form to
allow reuse and to demonstrate the
general principles.

The technique is fairly straightfor-
ward. A sound or song is encoded as a
series of notes, each identified by

common notation. The tempo, note
duration, volume, and repeat count
can be included with and within
each song.

The ATmega169’s 16-bit timer is
used in one of its PWM modes to
generate each note. Conveniently,
its PWM output bit on the Butterfly

is tied to the piezo element. All you
have to do is feed the timer a PWM
frequency count to start each note at
the correct time. The PWM duty cycle
determines the volume (more or less).

To generate a sound, the main task
supplies the song definition’s address
and sets a flag. The interrupt handler
does the rest. This involves determin-
ing the next note, starting the PWM
output at the appropriate frequency,
and sustaining the note for its dura-
tion across subsequent interrupts.
After that, it plays the next note,
repeats the song, or shuts down the
sound mechanism as needed. In other
words, once a song starts, it plays to
completion with no further interven-
tion outside the interrupt handler.

My application (written in Image-
Craft C) is split into three source
files and two header files. There are
header and source files for the event
list and header and source files for
the music functions. Everything else
is in the main source file. The
processor-dependent definitions are
in an ICCAVR include file, as are

Photo 3—This is one
possible mounting for
the timer. I used a small
plastic case from
RadioShack. The Power
button is on top. The
Input button is on the
front of case.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fanless x86 1 GHz CPU

256MB DDR2 RAM On Board

128MB Internal Flash Disk

10/100 Base-T Ethernet

Reliable (No CPU Fan or Disk Drive)

Two RS-232 & Three USB 2.0 Ports

On Board Audio

Optional Wireless LAN & Hard Drive

Dimensions: 4.5 x 4.5 x 1.375” (115 x 115 x 35mm)

Compact Flash & Micro SD Slots

Analog SVGA Video

Extended Temperature Range

PS/2 Keyboard & Mouse Port

EMAC Linux 2.6 Kernel & WinCE 6.0

Compact SIB
(Server-In-a-Box)
Starting at $230.00
Quantity 1.

Since 1985
OVER

YEARS OF
SINGLE BOARD

SOLUTIONS

24

Phone: (618) 529-4525 Fax: (618) 457-0110 www.emacinc.com� �

COMPACT EMBEDDED

SERVER

2.6 KERNEL

EQUIPMENT MONITOR AND CONTROL

www.emacinc.com/servers/compact_sib.htm

2909017_Baird.qxp 8/10/2009 3:38 PM Page 21

http://www.emacinc.com/servers/compact_sib.htm
http://www.circuitcellar.com
http://www.elprotronic.com
http://www.emacinc.com

22 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

some macros.
I derived the frequency definitions

for sound generation from the Butter-
fly’s demo application, although all
of this project’s code is original.
Atmel has published the source code
for its demo. If you are interested,
you can learn a lot by studying it.

WIRING THE BUTTERFLY
Photo 1 shows my prototype with

the DE9 wired to a header so it can
be removed after programming. The
red LED shows that the power is on.
Refer to Photo 2 to see the connec-
tions for the Butterfly. You can sol-
der leads directly to the board or you
can use standard 0.1″ headers. The 3-V
supply is switched with an optional
LED and resistor to ground, and the
Butterfly’s coin battery is removed.
The actual port and pin assignments
are shown in the comments listed in
the code. The resistor sizes vary
depending on the LEDs, although
220 Ω is typical.

As for your timer, anything goes.
Photo 3 shows a rectangular plastic

case. The square button at the top is for
power. The round button is the input.

Because my design was originally
intended to be a timeout timer, I

Photo 4—Take a look inside my timer. You may not need a “timeout” timer, but you can use
the basic techniques I cover in this article to make a timer to suit your needs.

 !

2909017_Baird.qxp 8/10/2009 3:38 PM Page 22

http://www.circuitcellar.com
http://www.trincoll.edu/events/robot
http://www.circuitcellar.com/newsletter

www.circuitcellar.com • CIRCUIT CELLAR® 23

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

PROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/
2009/230.

ESOURCES
AVR User forum, www.avrfreaks.net.

Butterfly information and support materials, Smiley Micros, www.smiley
micros.com.

OURCES
AVR Studio IDE and Butterfly development tool
Atmel Corp. | www.atmel.com

ICCAVR C Compiler
Imagecraft Creations, Inc. | www.imagecraft.com

Author’s note: Special thanks to Jennifer Flory for helping with the photos and Carl
Livingston for assisting with the schematic.

Chuck Baird started in programming by learning FORTRAN for a numerical analysis
course in college. Forty-three years later, he still enjoys bit fiddling and problem
solving. Chuck’s current computing interests lie in the embedded world. He has
authored two books about programming Atmel AVRs. You may contact Chuck with a
private message at www.avrfreaks.net. His username is zbaird.

P

R

S

made a case out of the soft plastic lid
on a cartoon cup. The finished result
is shown in Photo 4. The push but-
ton is mounted in the back in a hole
where the cup’s straw once protruded.
The power switch is on the bottom.

In any mounting, make sure the
piezo element’s sounds are audible.
One option is to relocate it from the
back of the Butterfly to a more audi-
ble position; but otherwise, you may
need to creatively locate the Butter-
fly within your case.

TIME TO BUILD
Sure, using a Butterfly for this

application may seem like overkill,
but there are some noticeable advan-
tages to doing so: minimal hardware
construction, no additional program-
ming hardware, free development
tools, and affordability. These bene-
fits certainly make up for any wast-
ed resources. You will find, as I did,
that the Butterfly is an impressive
board with great potential. I hope
you enjoy building your own Butter-
fly-based timer. I

2909017_Baird.qxp 8/10/2009 3:38 PM Page 23

http://www.avrfreaks.net
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/230
http://www.avrfreaks.net
http://www.smileymicros.com
http://www.atmel.com
http://www.imagecraft.com
http://www.circuitcellar.com
http://www.calao-systems.com
http://www.ironwoodelectronics.com

24 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

If you’re interested in radio emissions, you can build a very low-fr equency
(VLF) datalogger at your workbench. This PIC18LF4620-based design
features a 16-bit datalogger, an SD card for data storage, a customizable
hexagonal loop antenna, and circuit-controlled battery power.

Very Low-Frequency Datalogger

T

F
EA

TU
RE

ARTICLE
by Carlo Tauraso

he topic of very low-frequency (VLF) radio emissions
has fascinated me for some time now. In 1989,

NASA launched a project called the Interdisciplinary
National Science Program Incorporating Research and
Education Experience (INSPIRE) with two purposes in
mind: teach students about VLF radio emissions testing and
create working relationships between professional and ama-
teur researchers. After reading about the history and evolu-
tion of the project—which continues to involve thousands of
researchers in the United
States and elsewhere—I
recently designed a
Microchip Technology
PIC18LF4620-based cir-
cuit capable of monitor-
ing ultra-low frequency
(ULF, 0 to 120 Hz) radio
emissions (see Photo 1
and Figure 1). The
design features a 16-bit
datalogger with an SD
card for data storage, a
customizable hexagonal
loop antenna, and cir-
cuit-controlled battery
power.

In this article, I’ll
describe how I designed
and built the system.
Despite being an experi-
mental design, I’m sure
you will find it interesting

and quite easy to implement. For instance, when used in
an urban environment, you can easily analyze manmade
radio emissions. When used in a rural environment, you
can record natural radio emissions.

SCHUMANN RESONANCE
I am interested in one radio emission in particular, the

Schumann resonance, which is an electromagnetic reso-
nance associated with our planet that has become

a)
Photo 1a—This is the complete
low-frequency datalogger
design. b—The PIC18LF4620-
based circuitry enables me to
monitor ULF radio emissions.
c—The design uses four NiMH
batteries for a total voltage of 4.8 V
and a capacity of 2,000 mAh.

b) c)

2909016_tauraso.qxp 8/10/2009 2:40 PM Page 24

http://www.circuitcellar.com

Connected. Versatile. Cost-effective.

Stellaris LM3S9B90
Ethernet Evaluation Kit
featuring USB, Ethernet
and CAN

$99

Stellaris LM3S3748
Evaluation Kit
featuring USB Host/Device

$109

Stellaris LM3S8962
Evaluation Kit
featuring integrated Ethernet
and CAN

$89

Stellaris LM3S6965
Ethernet Evaluation Kit
demonstrating an embedded
web server out-of-the-box

$69

Stellaris LM3S2965 CAN
Evaluation Kit
demonstrating a CAN network
out-of-the-box

$79

Stellaris LM3S811
Evaluation Kit
featuring basic embedded
control

$49

® Cortex™

® software
Stellaris® Means:

25.qxp 8/10/2009 3:31 PM Page 1

http://www.ti.com/stellaris

26 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

increasingly difficult to hear because of the increase in
electromagnetic pollution. In 1952, a German researcher,
Winfried Otto Schumann, claimed that the zone
between the ionosphere and the Earth’s surface works as
a waveguide and it contains a pulsed magnetic field
that’s continuously fed by electrostatic discharge from
lightning. The planet is surrounded by a pulsed magnetic
field whose frequency remains at about 7.8 Hz. There
are also four fundamental harmonic frequencies: 14, 21,
26, and 33 Hz. These low-frequency signals, however,
have been masked by manmade electromagnetic emis-
sions. Electrical devices, engines, and power lines have
“covered” the natural frequencies so much so that you
have to leave populated areas in order to detect them.
This can be difficult.

Nikola Tesla presented the first observations of resonance
phenomena in his fabulous article, “The Transmission of
Electrical Energy With-
out Wires as a Means of
Furthering World
Peace” (Electrical World
and Engineer, January 7,
1905). The alternator
inventor idealized a
world in which energy
could be transmitted
freely—based on these
phenomena—across the
Earth’s surface. More
recently, in the 1960s
the existence of Schu-
mann resonance was
demonstrated thanks to
measurements taken by
two researchers, M.
Balser and C. A. Wagner.

During some Cold War years, they also investigated the
effects of high-altitude nuclear explosions on the iono-
sphere. The relevance of this research has led to a better
understanding of meteorological occurrences, transient
luminous events (TLEs), and global temperature changes.
On the lighter side of things, the topic of Schumann res-
onance also plays a role in a PlayStation video game
called “Serial Experiments Lain,” which involves a
young female character named Lain Iwakura and the
evolution of the Internet called “Wired” that uses global
communication protocols.

DESIGN & CONSTRUCTION
The heart of the circuit is a PIC18LF4620 with a 3.3-V

power supply. This prevents signal-level conversion
between microcontroller and SD card (see Figure 1). The
PIC18LF4620 integrates a 10-bit ADC; but in order to
not excessively restrict the recorded signal, I inserted an
Analog Devices AD7680, which is a 16-bit, low-power, suc-
cessive approximation ADC. The ADC can achieve the
extraordinary sampling speed of 100 ksps with the SPI bus.
Obviously, recording signals in the frequency range between
0 and 120 Hz does not require so much speed. For the Shan-
non theorem, a 256-sps sampling is more than enough.
For communications purposes, I used the PIC18LF4620’s
PORTB and the SHIFTIN/SHIFTOUT PICBASIC instruc-
tions. The only problem was the AD7680’s packaging: it’s
distributed only in SOT-23 or MSOP-8 packages. I chose
the latter because it was easy to find an MSOP-8-to-
eight-pin DIP adapter (www.cimarrontechnology.com).

For monitoring the battery state, I used the 10-bit
ADC integrated in the PIC18LF4620. The battery voltage
is applied to a voltage divider consisting of two resistors
(R5 and R6). Here it’s divided by two and transferred to
the input line RA0. The firmware performs the BATT
sub-procedure to verify that the halved voltage will not
fall below the 2.05-V threshold, below which the four
batteries are unable to ensure the proper writing on the
SD card (see Figure 2). After the system detects a voltage

Figure 1—The circuit is simple. This is the core section. Be careful
when soldering the Analog Devices AD7680 ADC.

Photo 2—I created the circuit on two prototype boards. The core is on the left. The battery voltage regulator is
on the right.

2909016_tauraso.qxp 8/10/2009 2:40 PM Page 26

http://www.circuitcellar.com
http://www.cimarrontechnology.com

2-ch 1GSa/s Scopes

Scope/Logger

Color LCD Scopes

RF Generator

16-Ch Logic Analyzer

6 in 1 Scope

Automotive Testing

EMC Spectrum Analyzer Worlds’s Fastest

Pen Scopes

USB Bus Analyzers

Handheld Scopes

Scope + Analyzer August Offer whi le suppl ies last !

Mixed-Signal ScopesLow-Cost Scopes

Te
s
tg

e
a
r

M
is

c

60/100/120MHz AWG

2-ch + trigger standalone USB

bench scope. $325 / $599

20MHz / 60MHz rugged handheld

USB 2-ch scope. $593 / $699

Intuitive full-featured 16-ch 4MB

200MHz sampling memory. $299

200kHz 2-ch 10-bit scope, 2-ch spectrum

analyzer, 16-ch 8MHz logic analyzer,

5-ch sig gen, 8-ch pattern gen. $199

Be
st

Sell
er

10/25MHz USB powered scope-in-a-

probe! Up to 100MS/s. $193 / $308

High-res, extremely low-noise,

portable 6GHz RF generator.

Packet-Master™ - USB 1.1/2.0

analyzers and generators. $699 +

Kits turn your PC into vehicle-

electrics diagnostic tool.

2-ch 1GSa/s (25GSa/s equiv.)

50/100 MHz scope. $595 / $795

2-ch DSO 16-bit DSO, FFT, VM,

logic analyzer, standalone +24 I/O.

60/100/120MHz USB 14-bit ARB

with USB RS-232, LAN/GPIB.

Handheld Palm PC-based

2.7GHz Spectrum Analyzer.

2-ch 12GHz sampling scope for

high-speed electrical signals.

100MHz Scope, + Spectrum/Logic

Analyzer and Signal Generator. $1259+

Embedded controller series: 2 x

CANbus, Ehternet, USB2.0, CF.

CANminiBOX

Above are some of our best-selling, unique, time-saving products - see our website for 100s more:
WiFi/910MHz antennas, wireless boards, LCD display kits, Ethernet/IO, USB/RS232/485, USB-OTG,
instant Ethernet-serial, CAN/LINbus, USB cables/extenders, line testers, logic analyzers, color sensors,
motion controllers, eng. software, wireless boards, SMD adapters, I2C adapters, GPS loggers,
automotive testing, security dongles, video motion detectors, crystals/oscillators, custom switches,
barcode scanners, DSP filters, PLCs, Remote MP3 players, etc. FREE Starbucks card with your $50 order!

Check www.saelig.com often for special offers, bargains, business hints, blog, etc.

NEW
!

RI
GOL

NEW
!

RI
GOL

U N I Q U E P R O D U C T S & S U P P O R T
w w w . s a e l i g . c o m

2-ch 40/100/200MS/s 8-bit scope

range with 5/10/25MHz. $297 +

Serial-Ethernet Cable

Network serial product easily without

a PC using this 28” cable. $89

“Drop-in” solution connects PC to

I2C/SMBUS + 32 I/O lines. $89

USB to I2C

RF Modules

Simultaneouslytransmitcomposite

video and stereo audio signals.

UDP/IP-controlled 24 digital

I/O board 3 x 8-bit TTL ports.

Ethernet - IO

Mini-logger with built-in temp/hum/

pressure/3-axis accel sensors.

Multiparameter Loggers

1/2/4/8/16 x RS232

Add 1-16 COMports via your

PC’s USB Port easily.

RF Testing/EMI Tents

Portable RF test enclosures &

shielding tents with external frame.

Wireless Solutions

Analog input, bluetooth wireless

modules 433/868/915MHz.

SPI Bus Analyzer

Protocol exerciser/analyzer for standard

SPI and non-standard 4-wire and 3-wire

serial protocol interfaces up to 50 Mbps.

Temp/RH Sensors

Novel ambient sensors & modules

accurately measure temp/RH.

Instant Ethernet

No OS needed. TCP/IP offload,

ICs improve system performance.

25MHz 2-ch /16 logic scope

and logic analyzer. $699

PSoC Starter

Get going quickly with PSoC

visual design environment.

.NET Board

Small (2.2” x 2.2”) lowest cost .NET

Micro Framework dev system.

TorqSense

Keyboard Simulator

USB board adds 55 I/O and 5 x

10-bit A/D inputs, 1 x 10-bit analog O/P.

NEW
!

RI
GOL

Compact, economical smart OLED with

graphics drive from USB or RS232.

Easy OLED Display

Be
st

Valu
e

Configurable, patented USB-output

non-contact SAW digital rotary torque

transducers with integral electronics.

Waveform Generator

USB2.0 speed 16-bit digital pattern

or arbitrary waveform generator.

I2C Xpress

Versatile USB 2.0 I2C protocol

exerciser and analyzer.

9p-9p or 25p-25p self-pwrd,

isolated RS232-RS422/485

RS232 to 422/485

CAN-USB

Intelligent CAN connection

from PC’s USB port. $299

Lorlin Switches

Fantastic array of stock and

custom switching devices.

FTDI USB ICs

Popular UART and FIFO chips.

Upgrade Legacy designs to USB.

EMC Spectrum Analyzer

RF & EMF Spectrum Analyzer

1Hz to 7GHz for WiFi, mikes, etc.

USB-Serial

Wireless Data Loggers

U
S

B
iz

i

u
O

L
E

D
-9

6
-G

1

A
W

M
6
X

X
 T

X
/R

X

K
K

 S
y
s
te

m
s

U
S

B
-C

O
M

P
o

K
e
y
s
5
5
T

U
S

B
I2

C
IO

R
T

R
-5

0
W

a
v
e
 X

p
r
e
s
s

U
S

B
1
2
 /

 4
8
0
+

 /
 5

0
0

A
G

P
S

2
2

0
3

/4
/5

P
S

2
1

0
4

/P
S

2
1

0
5

P
D

S
5

0
2

2
S

 /
 P

D
S

6
0

6
2

T

D
S

1
0

0
0

E

H
D

S
1
0
2
2
M

N
 /
 H

D
S

2
0
6
2
M

M
e
p

h
is

to
L

A
D

-1
6
1
2
8
U

S
P

I
X

p
r
e
s
s

E
M

C
 R

F
 &

 E
M

C
 S

p
e
c
tr

u
m

P
S

A
2
7
0
1
T

I2
C

 X
p

r
e
s
s

P
S

3
4
2
3
 /

 K
L

A
R

I-
M

O
D

e
m

P
C

-x
1
3
3

A
P

S
IN

6
0
0
0

M
S

R
1
4
5
S

E
L

-U
S

B
-1

/2
/3

/4

L
D

3
0
0

D
G

3
0
6
1
A

/3
1
0
1
A

/3
1
2
1
A

F
T

2
3
2
R

L

C
A

N
-U

S
B

e
C

O
V

-1
1
0
-P

L
o

r
li

n

W
IZ

1
1
0
S

R
 /

 W
5
1
0
0

E
th

e
r
-I

O
 2

4

R
T

G
0
0
5

E
m

b
e
d

R
F

 /
 A

d
e
u

n
is

A complete CP2102 USB-serial

converter in a DB9 shell. $26

Log and display temp, hum, volt,

event-time or pulse-counting data

Lo
west

Pri
ce

s

Electronic DC Load

Const. current, resistance,

conductance,voltage&powermodes

USB Loggers

Standalone USB temp / hum / volt /

current loop data logger. $49+

Ready-to-go out-of-the-box FPGA/DSP

designs for beginners and experts!

FPGA Systems

Amazing 7 in 1 Scope! $180

CircuitGear CGR-101™ is a unique

new, low-cost PC-based instrument

which provides the features of seven

devices in one USB-powered compact box:

2-ch 10-bit 20MS/sec 2MHz oscilloscope,

2-ch spectrum-analyzer, 3MHz 8-bit

arbi trary-waveform/standard-funct ion

generator with 8 digital I/O lines. It also

functions as a Network Analyzer, a

Noise Generator and a PWM Output

source. What’s more – its’ open-source

software runs with Windows, Linux and

Mac OS’s! Only $180!

C
G

R
-1

0
1

w
w

w
.s

a
e

li
g

.c
o

m

P
o

S
c

o
p

e
 w

it
h

 P
r
o

b
e

s
C

S
3

2
8

R
F

 T
e

s
ti

n
g

 /
 E

M
I

T
e

n
ts

M
e

n
ti

o
n

 o
ff

e
r
#

 S
B

W
R

W
T

3
2

0
P

S
o

C
 S

ta
r
te

r
U

P
S

IC
A

P
 /

 D
L

P
-T

H
1

C
E

-U
S

B

FREE COFFEE

A
T
-7

0
T

D
S

1
0

2
2

C
D

Buy any Rigol scope and get a

FREE ATSC digital TV!

7” TFT LCD ATSC 16:9 Digital TV with NTSC in, A/V O/P, 480

x 234 pixel, 1W stereo audio O/P + jack, inc. DC12V supply.

You must ask for offer# CC8

Call 1-888-772-3544

to get a free Starbucks

Card with your >$50 order!

While supplies last

- not available with

any other offers

Alan Lowne

Saelig CEO

P
S

9
2
0
0

“I really like this scope adapter

- it’s meant for teaching electronic

experiments but it’s ideal for

engineers too.”

27.qxp 7/29/2009 9:38 AM Page 1

http://www.saelig.com
http://www.saelig.com
http://www.saelig.com
http://www.saelig.com
http://www.saelig.com

28 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

All the samples are written in a raw
binary file (VLF-REC.dat). The tran-
sistor Q1 controls the card supply in
order to reset it after a mistake or
disable it for protection during
extraction. When RD3 is low, Q1
conducts and the card is powered.
Otherwise, when RD3 is high, Q1 is
off and the card is disabled. Commu-
nication with the SD card is done
through the PIC18LF4620’s PORTD.

LEDs D1 and D2 indicate the circuit’s

below 2.05 V, the PIC18LF4620
closes the file and disables
the card. As a result, all data
stored to that point is safe.
Pressing switch SW1 for a few
seconds stops the recording
and forces the file to close.
You can use the SW1 to stop
recording at any time or the
PIC18LF4620 can do it auto-
matically when it detects a
low battery. If you use a dif-
ferent battery, you can change
the threshold for
PIC18LF4620 intervention
after the call to the BATT sub-
procedure. The limit for this project
is 637. (Remember that the supply
voltage is 3.3 V.)

I used a 512-MB miniSD to store
the samples. You can, of course,
insert cards of different sizes, but the
important thing is that they’re for-
matted to the FAT16 format. This file
system is useful. When done record-
ing, you can remove the card, insert
it in a PC card drive, and analyze the
data directly through a spectrogram.

state. When the red LED illu-
minates, there’s an error or the
card is in an initialization
phase. The green LED blinks
during recording. The micro-
controller uses a crystal to gen-
erate a 20-MHz clock signal. It
serves as a reference for the
timing signal necessary to keep
the sampling frequency con-
stant. For details, refer to the
Firmware section of this arti-
cle. I built it with a prototype
circuit board (5 cm × 10 cm)
that I enclosed in a black
plastic box (see Photo 2). I

mounted two RCA connectors on its
top side: a red one for battery power
and a white one for the shielded cable
coming from the antenna. The box is
set at the base of the antenna to facili-
tate the transport.

HEXAGON LOOP ANTENNA
Making a sufficiently sensitive

antenna in the ULF is not easy
because of large wavelengths. To
make a dipole, I needed linear

Figure 2—This is the SD card section. The Q1 transistor is
essential for SD card supply control.

`

For Information or Questions, Please Contact:
SoC@SavantCompany.com or (949) 851-1714

www.SavantCompany.com
Die images courtesy of Intel Corporation.

2909016_tauraso.qxp 8/10/2009 2:40 PM Page 28

mailto:SoC@SavantCompany.com
http://www.SavantCompany.com
http://www.circuitcellar.com
http://www.socconference.com

TechCon
DESIGN TO THE POWER OF THREE

Ener
gy E

ffic
ien

cy

MCU & Tools
Inte

rne
t Ev

ery
wher

e

WWW.ARMTECHCON3.COM
MEDIA SPONSORS:

IS COMING
TO THE

FORMERLY ARM DEVELOPERS’ CONFERENCE:

BROUGHT TO YOU BY:

*A Discount of $200 off Std. Registration

Energy Efficiency

Efficiency
Leveraging energy
efficient SoC strategies
to minimize power
requirements

MCU & Tools

Enabling successful
on-time product
development,
integration, testing
and production

Internet Everywhere

Developing
applications for a
connected world

and visit key industry experts on the exhibition floor for the latest in:

HEARST

29.qxp 7/29/2009 9:36 AM Page 1

http://www.armtechcon3.com

lengths over a few kilometers, which
is certainly not easy at home. One
way to resolve the issue is to detect
only the magnetic component of the
waves using an aerial loop. Accord-
ing to Faraday’s law, it produces a
voltage proportional to the signal
frequency:

N is the number of turns. H is the
magnetic field (A/m). A is the area
of the loop (m2). F is the measure-
ment frequency (hertz). For the mag-
netic field, Tesla (T) is often used as
the unit of measurement. The con-
version factor is 1 µT = 0,796 A/m. I
made a hexagonal antenna with a
side of 70 cm. Its structure is less
cumbersome than a square with
equal area (see Photo 3). The form
enables you to easily wrap the cop-
per wire and avoid the stress arising
from the 90° corners that could lead
to failures. I made a hole in the cen-
ter that I used to rotate the antenna
during the winding operation. In this

Ε = 4 10 Ν Α 2 −7π π× × × × ×F H

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

CIRCUIT CELLAR® • www.circuitcellar.com30

Photo 3a—Here you see the hexagonal loop antenna during wrapping. Notice the hole in the center. It’s easy to use for hexagonal rotation.
b—This is the datalogger and antenna working in the field—quite literally! c—Take a closer look at the design at the base of the antenna.

a)

c)

b)

2909016_tauraso.qxp 8/10/2009 2:40 PM Page 30

http://www.circuitcellar.com
http://www.cubloc.com

41.qxp 1/7/2009 3:07 PM Page 1

http://www.icbank.com

32 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

way, it’s possible to wrap a
0.1-mm copper wire to 150
laps with a total length of 630
m in 20 minutes, keeping ten-
sion in the wire without any
break. The hexagon’s area is
1.28 m2 (i.e., 0.7 × 3 × 0.61).
When you choose the anten-
na’s form and size, you have
to be aware of thermal noise.
It is generated by the natural
agitation of electrons in the
conductor, and it is propor-
tional to the loop’s resistance. You
must minimize the resistance to
ensure that noise is less than the
signal; otherwise, it will be covered
by interferences. The generated ther-
mal noise can be calculated quickly
with a simple formula:

R is the loop resistance in ohms.
The noise Q is measured as nV√Hz.
For my antenna, the loop resistance
is equal to 820 Ω, so the noise is
equal to 3.72 nV√Hz. The AD7680
ADC is sensitive, so I didn’t include

Q = 0.13 R×

a preamplifier in order to avoid addi-
tional noise. The loop is connected
directly to the ADC through a short
piece of shielded cable. Of course,
using the aforementioned formula,
you can choose the antenna you
want. The ADC can detect a voltage
between 0 and 3.3 V with a depth of
16 bits; therefore, it can discern low
values without problems. The
important thing is to find a compro-
mise between the loop resistance
(proportional to the number of
turns) and its dimensions. You also
must stabilize it mechanically.

Vibrations from wind or other
events may cause the so-
called microphone effect to
generate vertical lines in
spectrograms. For my hexago-
nal antenna, I added a central
vertical axis that sticks in the
ground. The structure is sta-
bilized with two nylon bolts
that prevent the torsion
movements. I made two
wooden supports to prop up
the antenna.

BATTERY CIRCUIT
The datalogger power section con-

sists of four NiMH batteries with a
total voltage of 4.8 V and a capacity
of 2,000 mAh. I kept it separate from
the heart of the circuit (see Figure 3).
The batteries are connected to a
Microchip Technology MCP1253
chip. It is an inductorless, positive-
regulated charge pump DC/DC con-
verters (see Photo 4). The device
allows the input voltage to be lower
or higher than the output voltage by
automatically switching between

Figure 3—This is the battery voltage regulator. You need only
three capacitors. It can’t get much simpler than this.

2909016_tauraso.qxp 8/10/2009 2:41 PM Page 32

http://www.circuitcellar.com
http://www.jkmicro.com
http://www.apcircuits.com

www.circuitcellar.com • CIRCUIT CELLAR® 33

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

buck and boost operation. In my
design, it generates a regulated 3.3-V
fixed voltage.

For the charge pump, I used a 1-µF
electrolytic capacitor with optimal
results. To filter the input and out-
put, I added two 10-µF capacitors. I
disabled the Shutdown function by
connecting the SHDN pin to VIN.
Again, the chip package is an
MSOP-8, so I used the usual con-
verter for assembly.

To monitor the battery voltage, I
used the 10-bit ADC integrated into
the PIC18LF4620. I have not used
the line PGOOD because its action
threshold is rather low (7% below
the nominal value). The circuit
sinks current only during write
operation, so it could be that the
battery voltage is sufficient for sam-
pling but not for the file closure
involving the firmware stop and the
loss of data stored so far. The
recording system has a current
absorption which stands at around
35 mA. If you use other types of bat-
teries, be careful to calculate the
limit of the PIC18LF4620’s interven-
tion so the battery can provide the
energy required for the file closing.
The autonomy with four NiMH bat-
teries (2,000 mAH) quietly covers 48
hours of continuous recording at

room temperature.

FIRMWARE
I wrote the code—which includes

several interesting procedures—in
PICBASIC. I can reuse it for other
projects, especially those with an SD
card. To speed up the writing process,
I translated the PICBASIC instruc-
tions SHIFTIN/SHIFTOUT into two
assembly sub-procedures: SHIN and
SHOUT. They are also called by three
basic procedures: STARTSD, which
initializes the card; WRITEBEG, which
initiates the writing of a 512-byte
sector beginning at the 32-bit address
specified by variables IND1 and IND0;
and WRITEND, which completes the
write task.

The sampling operation is timed
through the TIMER0 configured
through the register T0CON. The
TIMER0 is used in 16-bit mode with
the clock source CLKO (internal
instruction clock cycle) and a prescaler
set at 1:4. The firmware starts the
TIMER0 count up setting the
TMR1ON bit to one. Then, it reads
repeatedly the increasing 16 bit value
until it reaches the limit according to
the sampling frequency. So, the sam-
pling cycle is not interrupt-driven.

Photo 4—This is the battery voltage regulator circuit. Note the MCP1253’s dimensions with
respect to a single AA rechargeable battery.

2909016_tauraso.qxp 8/10/2009 2:41 PM Page 33

http://www.circuitcellar.com
http://www.usbee.com

34 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

This prevents that interrupt signal
from stopping the writing of each
512-byte sector.

To optimize the SD card storage,
you must know the data structures
used by the FAT16 file system. The
most important information is
stored in the boot sector during the
formatting process. This information
enables you to make the firmware
independent of the card size. By
reading some areas of the boot sector
the firmware can independently cal-
culate pointers to the three funda-
mental data structures in order to
write a file: ROOT SECTOR, FAT
SECTOR, and FIRST DATA SEC-
TOR. In ROOT SECTOR, you save
the file name, its attributes, the first
cluster file, and the file size. In FAT
SECTOR, you save the “FAT
chains,” cluster sequences contain-
ing the recorded values. In FIRST
DATA SECTOR, you save the values
in blocks of 512 bytes. Let’s look at
this calculation.

After card initialization, the
firmware reads the BOOT SECTOR

(the card’s first sector). In particular,
six essential values are read at the
following offsets: 0BH BSET (16 bit),
0DH SCLU (8 bit), 0EH Sres (16 bit),
10h NFAT (8 bit), 11h NROT (16
bit), and 16h NSFAT (16 bit). BSET
is the number of bytes per sector.
SCLU is the number of sectors per
cluster. SRES is the total number of
reserved sectors. NFAT is the number

of file allocation tables (FATs).
NROT is the root directory number
of entries. NSFAT is the number of
sectors per FAT. With these six val-
ues it is possible to calculate the
three pointers: the first FAT sector,
the first ROOT sector, and the first
DATA sector. The pointers in the
SD card are always multiples of 512.
The first FAT sector is calculated

Photo 5—This screenshot shows six hours of recording in an urban environment.

email : sales@pcb-pool.com
Toll Free USA : 1 877 390 8541
www.pcb-pool.com

Low Cost - High Quality
PCB Prototypes

no extra cost

“ ” ®

Follow the production of your PCB in

2909016_tauraso.qxp 8/10/2009 2:41 PM Page 34

mailto:sales@pcb-pool.com
http://www.pcb-pool.com
http://www.circuitcellar.com
http://www.jkmicro.com

www.circuitcellar.com • CIRCUIT CELLAR® 35

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/
2009/230.

OURCES
AD7680 ADC
Analog Devices | www.analog.com

MCP1253 DC/DC Converter and PIC18LF4620 microcontroller
Microchip Technology, Inc. | www.microchip.com

miniSD Card
SanDisk Corp. | www.sandisk.com

SIGVIEW Software
SignalLab | www.sigview.com

Carlo Tauraso (carlo@tauraso.eu) wrote his first assembly code in the 1980s
for the Sinclair Research ZX Spectrum. Today he’s a senior software engineer
who performs firmware development work on network devices and various
kinds of microinterfaces for a range of European companies. Several of Carlo’s
articles and programming courses have been published in Italy, France, and
Spain. In his spare time, Carlo enjoys playing with radio scanners and his
homemade metal detectors.

P

S

simply by multiplying SRES by 512.
The first ROOT sector is calculated
by adding the previous value with
NSFAT × NFAT. Finally, the first
DATA sector is calculated by adding
the last value with (NROT/512) × 32.

To avoid problems with 16-bit
multiplication, I used a simple sub-
procedure called CALCIND. It trans-
lates the 16-bit operation in a pro-
gressive summation of values equal
to 512. This simple code lets you
make much more dynamic the
access to SD cards that can be of any
size. The only care is that they must
have been previously formatted in
FAT16.

With respect to sampling, the
AD7680 provides two modes of com-
munication: a 24 clock cycle mes-
sage and a 20 clock cycle message. I
used the last one. The sampling is
started by bringing the CS line to
low logic level. The first four clock
cycles are leading zeroes so they are
discarded. The next 16 cycles allow
the detection of the sample value bits
from SDATA line at each falling edge
of the SCLK line. After that, the CS
line returns to high logic level. For
more details, refer to the source code
on the Circuit Cellar FTP site.

REAL APPLICATION
I performed several tests in both

urban and natural environments. To
facilitate the data analysis process,
don’t lengthen the recording times.
You can generate useful spectro-
grams with 6, 12, or 24 hours of
sampling. Excessively long record-
ings can hinder data processing and
generate poor results.

You must first position the anten-
na correctly. The best direction is
perpendicular to the North/South or
East/West direction. Next, mechani-
cally stabilize the antenna to avoid
torsion and vertical/horizontal
movements. You can then insert the
SD card that you already formatted
in FAT16. In Windows XP, you can
use the following command line:

FORMAT [SD-volume]: / FS: FAT

Now you can start recording. Simply
put the SW1 switch in the On position.

The red LED will illuminate during
initialization, and then the green
LED will start flashing slowly (once
per second). The red LED illumi-
nates during the card initialization
process or during a writing error.
The firmware performs repeatedly
the AVVIOSD sub-procedure until
the SD Card initialization phase has
completed without significant
errors. The initialization procedure
is repeated in 2-s intervals. You can
restart the system by switching off
SW1 and then turning it on a few
seconds later. Do not worry about
formatting. It’s not necessary until
you close the file.

The firmware considers any writ-
ing error as a serious error, so it saves
all the data recorded until the card is
turned off. The system monitors the
battery voltage. When the voltage
drops below 4.1 V, the system closes
the file and stops the recording. Of
course, you can stop recording at any
time. Just hold the SW2 switch for a
couple of seconds until the two LEDs
are off. At that point, you can
remove the SD card and read the raw
data from the LF-REC.dat binary file

on a PC.
I used SignalLab’s SIGVIEW32

real-time signal analysis software for
this project. It has the complete
range of spectral analysis tools, sta-
tistical functions, and 2-D and 3-D
graphical solutions. It can import
data from raw binary files in 16-bit
unsigned format. Photo 5 is a
screenshot that shows the results of
6-hour recording in an urban envi-
ronment. You can clearly see the
interference from power lines at 50
and 60 Hz.

FUTURE DEVELOPMENTS
The datalogger is a handy design

that should be easy to export and
reuse in other projects, especially
projects that require me to monitor
signals with slow variations. For
instance, I plan to add new antennas
with different sensitivities in the
near future. An interesting project
would be to develop an instrument
for measuring electromagnetic pollu-
tion. In the meantime, I will contin-
ue to use my design to analyze ULF
radio emissions. This is a topic that
never ceases to amaze me. I

2909016_tauraso.qxp 8/10/2009 2:41 PM Page 35

mailto:carlo@tauraso.eu
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/230
http://www.analog.com
http://www.microchip.com
http://www.sandisk.com
http://www.sigview.com
http://www.circuitcellar.com

36 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

In the first part of this series, Kevin pr esented his innovative Cable Tracer
project, which is used to detect underground cables. In this article he covers
the software and explains how to operate the design.

Cable Tracer Design (Part 2)

A

F
EA

TU
RE

ARTICLE
by Kevin Gorga

s you learned in the first part of this article
series, I designed a cable tracer for detecting

underground cables. After the system injects a 125-kHz
signal into an underground cable, a pick-up coil receives
a sample of the field. The field’s strength indicates a
cable’s location and direction.

In this article, I’ll present the software portion of the
design process. I’ll finish up with information about the
system’s controls and a description of its operation.

SOFTWARE
The tracer’s code is simple. The configurable port pins

are selected and locked. This is one of the Microchip

Technology PIC’s nicest features. It enables you to
choose functions and set them on the pins you want.
This eliminates the problem of having two features that
both need the same port pins (thereby forcing you to
choose one or the other). It is also a useful feature for the
PC board layout. You can select the pin that best wires
up on your board. The various registers are then initial-
ized. The Microchip Technology MCP2030 requires a
block of data to initialize its registers along with column
parity on the data. The data is sent out port pins by bit-
banging the port pins for the part’s SPI. The main reason
is because the MCP2030 uses the same pin for SPI DATA
IN programming and as a DATA OUT pin. When Chip

Software and System Control

a) b)

Photo 1a—Take a look at the sender. This is the front panel showing the various adjustment pots, switches, indicators, and the LCD. b—You
can see the top of the circuit board and placement of the various components. All of the power semiconductors are mounted on the large
heatsink in the center. It is oriented so that the fan can blow air along it. You can also see the heatsink on top of the dsPIC in the lower
right corner.

2909015_Gorga.qxp 8/10/2009 2:42 PM Page 36

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 37

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

Select is low, it is the SPI Data input pin. When
Chip Select is high, it is the RFID Data Output
pin. Chip Select has to be high for the MCP2030
to operate. This means it drives that pin and the
micro can’t.

Assigning the MCP2030 to the SPI controller
and sharing it with the VGA—which is often
updated—would be messy. The MCP2030 would
have to be turned off in order to update the
VGA. Instead, the VGA is exclusively connected
to the SPI controller, which is needed to allow
for high-speed updates. The main software loop
gets the current signal strength (RSSI value),
checks the push buttons, adjusts the gain if
needed, and adjusts the audio tone. One of the
timers is used to provide a software audio volt-
age-controlled oscillator. The oscillator’s fre-
quency is varied by the RSSI voltage level to pro-
vide an audio tone like a metal detector.

The sender’s code is a bit more involved. The
sender is more of a switch-mode power supply,
so you must be careful to minimize the code
executed during the regulation time. This appli-
cation doesn’t need a fast transient response
time. This enables the microcontroller to do
more work like outputting data to the LCD and
monitoring the switches and potentiometers.
The PWMs for the Microchip Technology
dsPIC30F2023 are functionally very powerful.
This enables many of the PWM’s time-critical
functions to be performed in hardware (e.g., the
current limit function and fault shutdown).

The code first initializes the various peripher-
als and then reads the Current Limit poten-
tiometer to set the trip current. This is only
done on power-up to keep it out of the main
loop. Originally, I had it in the main loop and
looked for a change in value of the Current
Limit potentiometer to update the value. I had to do it
only at power-up because switching noise was causing it
to appear as though the value was changing all the time.
The Current Limit comparator was set with a maximum
value instead of the potentiometer value for noise rea-
sons. This allowed for a high (2.5-A) short circuit value
to immediately shut down the PWM in hardware. This
value was high enough to prevent a false shutdown from
noise on the current-sense input. The Adjustable Current
shutdown is done by reading the Current Sense with the
ADC and comparing it to the potentiometer value. This
slower process tends to filter out the noise spikes. It may
occasionally hit a noise spike and turn off for an instant,
but it isn’t a problem in this application.

The main code loop checks the various switches and
sensor inputs. It also adjusts the PWM to regulate the
output voltage. The Display update is performed after
many program loop iterations because of the time it takes
to update the display and carry out floating-point conver-
sions. Doing this occasionally enables the processor to

work on maintaining regulation. The beep that sounds
when high voltage is present is triggered by an interrupt-
driven timer for the same reason. The Frequency Adjust
potentiometer sets the Output PWM’s frequency. The
Voltage adjustment potentiometer is compared in soft-
ware against the output voltage and varies the PWM duty
cycle to regulate the output voltage.

All the variables are global in my code. This is not effi-
cient use of memory, but it makes debugging much easi-
er. By doing this, you can “mouse over” any variable in
main or a procedure and see its value.

As you can see in Photo 1, the Sender was constructed
in an old case that had many of the pieces I needed (e.g.,
a fan, transformer, and power plug). Almost any case will
do. I used a plastic case, but a metal case would have bet-
ter shielding. I used just a perf board, but a good 2-oz cop-
per PC board would make noise issues much easier to
deal with. When the voltage level is turned up, noise can
start to cause big problems. I had to do some software fil-
tering to get rid of occasional A/D spike values. The

Photo 2—This is the wiring side of the Sender board. The power section is on
the bottom. The low-level analog portion is on the top. The common point
ground is in the center. The small PC board is the current sensor. Note the
three twisted wires for the current sensor power, ground, and sensor output.

2909015_Gorga.qxp 8/10/2009 2:42 PM Page 37

http://www.circuitcellar.com

38 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

PWM’s Current Limit and Fault Current comparator fea-
tures worked well at low-voltage levels, but the noise
generated at higher voltages was a problem. I needed to
disable this feature and do it in software with the A/D
input. If I had time to do a ground-planed PC board, this
would not have been a problem.

I added filter capacitors on the potentiometers. When
the potentiometers were near the low-resistance end (at
either end), the noise was shunted directly to ground or
through a decoupling capacitor on the 5-V bus. But as the
resistance was turned up in the center of the range, it
became a problem. In general, any higher-impedance
input will have a problem and will require a 0.1-µF
bypass capacitor to reduce the noise spikes. I had noise-
related false indications from the Signal On/Off switch,
neon optoisolators, potentiometers, and current sensor
before the capacitors were added. The Hall effect current
sensor required special care. I put it on a small PC board
for my prototype. Power and ground for the sensor were
twisted together with the sensor output and routed back
to the microcontroller. This is the small PC board in the
center in Photo 2. The cable was routed away from the
FET switches and related components to try to reduce
switching noise pick-up. The power and ground points
were at the microcontroller board.

Careful common point grounding is also a must. In the
schematic shown in Part 1 of this series, I indicated
three different ground regions that should come together
at only one point. The covers over the back of the poten-
tiometers should be soldered to the ground end. The FET
bypass capacitors (C13 and C27) should be wired directly
across the FETs.

Looking at signals in a high-noise environment can be
challenging. If you place the scope tip to ground at the
point of the ground clip and see something on it, the
ground clip is picking it up. The small ground wire on
the end of the scope probe can pick up a significant
amount of noise. The arrangement in Photo 3 works
well. You should remove the plastic scope probe end and
wrap some bare wire around it to provide a ground point
right next to the probe tip. Remove the coil from the tip
and twist it together (a small amount) to make the coil
tight enough to hold itself and make good contact with
the grounding barrel. Use pliers on the small end of the
coil to pull it back on the barrel. Any noise you see is
real. Of course, this assumes you have a nearby ground

point to which you can touch the ground side of the tip.
The neon bulb optoisolators are made in black heat-

shrink tubing. The neon bulb and the CdS photocell are
placed next to each other with the center of the bulb par-
allel with the photocell. This gets the maximum amount
of neon light to the photocell. Placing the end tip of the
bulb point at the cell doesn’t get enough light to the pho-
tocell. Cover the combination with black heatshrink tub-
ing and leave extra on the end to fold over. After it
shrinks, you can fold over the end and hold it there until
it hardens. It is big and ugly, but works well. The CdS I
used had about 150-kΩ dark and 3-kΩ light resistance.
The neon bulb is an NE2.

I used a SchmartBoard TQFP adapter to fan out the
dsPIC. I used SMT decoupling capacitors across the pads
on the adapter. I also mounted the crystal there to keep
leads short. All of the power parts are mounted to one
side of the heatsink for noise and safety reasons. The
low-level components are grouped together on the other
side. The power FETs and voltage regulators are mounted
on a heatsink with thermal washers in the fan’s air flow.
The thermal washers also insulate the devices, and
should be used to insulate all devices, even those with
tabs that are grounded to reduce coupled noise. I also
found that not grounding the heatsink itself reduced the
noise in the grounds. In most cases, when the sender is
just driving an open cable, the unit runs cool. I used a
PC-style power connector with a built-in filter and fuse. I
find that the removable PC power cord makes storing
projects much neater.

The receiver is much less critical. It is housed in a
plastic project box. Plastic boxes are easy to work with.
A Unibit can easily cut through it and you don’t need an
entire set of drill bits. I also used perf board and a
SchmartBoard adapter with the crystal and decoupling
mounted on it.

The Search Coil needs to be on edge and not flat with
the ground like a metal detector. At first, I thought about
mounting it on the end of a wooden dowel and attaching
the other end of the dowel to the Tracer box, but I found
that holding it my hand made it easier to rotate to find
the curves of underground cables. The downside of this
technique is a sore back from bending down to the
ground to follow the cable. If most cable runs that you
are looking for are straight, the wooden dowel approach
is the way to go.

CONTROLS
The frequency potentiometer is used to set the sender’s

output frequency to the resonant frequency of the search
coil on the tracer. This can be done by adjusting the fre-
quency for a peak on the tracer meter at about 125 kHz.
The signal-level potentiometer is for adjusting the
sender’s output signal level to compensate for various
search depths. The Current Limit potentiometer is for
adjusting the sender power supply’s overcurrent trip
point.

The Hi/Low Range switch selects the 0- to 60-V or the

Photo 3—This is the scope probe. The small ground clip on the end
of the scope probe will help reduce the ground lead “antenna effect”
picking up magnetic field-coupled noise and other radiated signals.

2909015_Gorga.qxp 8/10/2009 2:42 PM Page 38

http://www.circuitcellar.com

www.mouser.com
Over A Million Products Online

The Newest
Embedded Tools

Evaluation and Development
Kits
www.mouser.com/linx/a

Experience Mouser’s time-to-market
advantage with no minimums and same-day
shipping of the newest products from more
than 390 leading suppliers.

(800) 346-6873

The Newest Products
 For Your Newest Designs

The ONLY New Catalog Every 90 Days

MPLAB PICkit 3 Debug Express
www.mouser.com/
PICkit3debugexpress

New Products from:

Solar Energy Harvesting Development Tool:
eZ430-RF2500-SEH
www.mouser.com/ti_ez430_rf2500_seh/

KEYBOARDEK Evaluation Kit
www.mouser.com/silabs/a

Mouser_CircuitCellar_9-1.indd 1 7/22/09 8:32:59 AM

39.qxp 7/29/2009 8:57 AM Page 1

http://www.mouser.com
http://www.mouser.com/PICkit3debugexpress
http://www.mouser.com/linx/a
http://www.mouser.com/ti_ez430_rf2500_seh/
http://www.mouser.com/silabs/a

40-41.qxp 8/5/2009 9:53 AM Page 40

40-41.qxp 8/5/2009 9:53 AM Page 41

http://www.embeddedarm.com

63.qxp 1/7/2009 3:20 PM Page 1

http://www.icbank.com

www.circuitcellar.com • CIRCUIT CELLAR® 43

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

if line voltage is present and the HV
Present neon lamp is on. The beeper
will also pulse if high voltage is pres-
ent. Remove the line voltage if this
happens or proceed with extreme cau-
tion. The Line Plug test box also indi-
cates with the neon lamps if there is
line voltage present on any of the
wires. The High/Low Range switch
selects the 60- or 120-V power source.
In most applications, the 60-V source
is more than enough and you should
start with it. Turn on the Signal
switch and adjust the signal level for
an indication on the tracer meter.
This is usually around 10 to 20 V.
Adjust the level for the minimum
amount that still gives a reading on
the tracer meter at gain 7 (maxi-
mum). If the gain meter on the tracer
starts to drop, cut back the generator
level. If the generator level rises
above 50 V, the High Range LED
turns on and the beeper sounds.

I’ve used the tracer to locate a
buried cable (about 2′ to 3′ deep) with
about a 20-V signal level. I was able to
trace my underground gas line with
about 50 V. The gas line is plastic, but
it’s buried with a single-conductor

0- to 120-V range on the sender. This
is used for depth adjustment along
with the signal-level potentiometer.
The Signal On/Off switch allows for
the Output signal to be turned off.
This is useful when connecting to a
wire to see if high voltage is present.
The HV Present neon bulb indicates
high voltage on the cable. The Hi
Range LED indicates the signal gen-
erator level is about 50 V and cau-
tion should be used. The LCD nor-
mally displays the operating frequen-
cy, signal level, and current. It also
posts various other messages for
shutdown conditions.

OPERATION
I don’t recommend using the

sender on a cable with a load. The
high-voltage, 125-kHz signal could
damage some devices like X10 con-
trols. Most of today’s electronic
devices (e.g., PCs, VCRs, TVs, and
CCFL lights) use switching power
supplies. They have built-in filters to
try to prevent their switching noise
from going out on the line. These fil-
ters also try to absorb the 125-kHz
signal. Now you know why your X10
devices don’t work. Some outlet
strips also have filters that absorb
the 125 kHz.

The first thing to do is set the
operating frequency. With either a
signal generator or the sender, set the
output frequency for 125 kHz. Place
the search coil near the signal lead
and increase the signal source’s out-
put level until a meter reading is
obtained. Adjust the frequency for a
peak on the meter.

When you power on the sender, it
has a display to set the current limit.
This display stays active until a few
seconds after the last change of the
Current Limit potentiometer. I nor-
mally set the current limit for just
less than 2 A. The normal current
drain is only a few hundred mil-
liamps. Note that 2 A prevents noise
from causing false trips, but it will
still protect from short circuits.

After the Current Limit display
times out, the normal operational
display shows the Frequency, Signal
Level, and Current. With the Signal
switch on Off, the display indicates

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/
2009/230.

ESOURCE
Microchip Technology, Inc., “MCP2030 Bidirectional Communication
Demo Kit User’s Guide,” DS51637A, 2006.

OURCES
ACS712-05 Current sensor
Allegro MicroSystems, Inc. | www.allegromicro.com

IR2101 FET Driver
International Rectifier | www.irf.com

MCP2030 RFID Receiver, MCP6S21 VGA, PIC24FJ64GA004 microcontroller,
MCP1700 LDO, dsPIC30F2023, and MCP602 op-amp
Microchip Technology, Inc. | www.microchip.com

Kevin Gorga (kgorga@stny.rr.com) has an MSEE and has been a design engineer
with IBM in Endicott, NY, for the past 32 years. His technical interests include
embedded system design, power systems, and motor controls.

P

R

S

12-gauge solid wire so that the gas
company can find it. This gas line is
probably around 4′ to 5′ deep. Tracing
wires in walls requires only 5 to 10 V.

PROJECT SOURCE
Old CRT monitors and PC power

supplies are excellent sources for
many useful power supply-related
parts. They have a wealth of expen-
sive analog power components. I
used them as my sources for this
project’s FETs, heatsinks, fan,
degaussing coil, PC power cord fil-
tered jack, high-voltage capacitor,
and electrolytic capacitors. I caution
you to test the ESR of the electrolyt-
ic capacitors. A monitor’s or power
supply’s high heat can dry out a
capacitor and raise its ESR to an
unusable level. If you don’t have an
ESR meter, stay clear of any yel-
lowed or old-looking electrolytics.

Now it’s your turn to build a cable
tracer. Hopefully you have easy
access to all the essential compo-
nents. If you learn anything new
while designing your own system, be
sure to share your findings with the
rest of us! I

2909015_Gorga.qxp 8/10/2009 2:42 PM Page 43

mailto:kgorga@stny.rr.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/230
http://www.allegromicro.com
http://www.irf.com
http://www.microchip.com
http://www.circuitcellar.com

44 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

Now that you’re familiar with ARM Cortex-M3 microcontrollers, it’s time to
take a close look at the application development pr ocess. This article covers
the coding process from start to finish.

Get Started With Embedded Development (Part 2)

I

F
EA

TU
RE

ARTICLE
by Dale Wheat

n the first article in this series, I introduced you
to the STmicroelectronics STM32 ARM Cortex-

M3 microcontroller. In doing so, I described some
affordable development hardware and software.
Now it’s time to focus on application development
using the new Raisonance CircleOS framework. As
you’ll see, you can leverage the power of
the peripherals and extra hardware on the
STM32 Primers to create some exciting
new designs. Let’s wrap up the “bare metal”
example program, show those LEDs who’s
boss, and then move on to more sophisti-
cated application development using the
new CircleOS application environment.

PROJECT CODE
Now that you have some source code,

you need to add it to the project. Select the
“Project/Add Item...” menu item and select
“Blink.c” from the list. This adds the
source code to the project. Be sure to save
your work periodically.

Since we’ve left the Raisonance reserva-
tion, we have to cobble up our own linker
script. This tells the linker where to put the
different sections of the program within the
STM32 chip’s memory map. For the original
Primer, the linker script looks like the code
in Listing 1.

Listing 2 is the linker script for the

Primer2 with its correspondingly larger memory sizes.
The linker script defines the two memory spaces in the
chip: the nonvolatile flash memory for holding the pro-
gram and the SRAM for stack and variables. Each has its
starting address and length specified.

The C compiler separates most programs into three

Coding from Start to Finish

Listing 1—This linker script is for the original Primer, Primer.ld

MEMORY {
flash (rx) : ORIGIN = 0x08000000, LENGTH = 128k
ram (rwx) : ORIGIN = 0x20000000, LENGTH = 20k

}

SECTIONS {
vector : { *(vector*) } > flash
.text : { *(.text*) } > flash

Listing 2—This linker script is for the Primer2, Primer2.ld

MEMORY {
flash (rx) : ORIGIN = 0x08000000, LENGTH = 512k
ram (rwx) : ORIGIN = 0x20000000, LENGTH = 64k

}

SECTIONS {
vector : { *(vector*) } > flash
.text : { *(.text*) } > flash

}

2909014_wheat newer use.qxp 8/10/2009 2:43 PM Page 44

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 45

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

distinct sections: program code, initialized data, and
uninitialized data. These sections are historically
referred to as “.text,” “.data,” and “.bss.” We create a
new section called “vector” to hold the minimum vec-
tor table for the Cortex-M3. We declare the section
using the __attribute__ ((section("vector")))
syntax, which is specific to the GNU GCC compiler.
This defines a set of four addresses that the Cortex-M3
needs to wake up in the morning. The first entry is the
initial value for the stack pointer. This is set to the end
of physical SRAM on the chip. The next entry is the
reset vector. Since we don’t need any special code to be
executed before starting our main() function, we use
the address of the main() function itself here. The next
two entries are supposed to be for exception handling,
but in this overly simplistic example we just repeated
the address of the main() function, so no matter what
happens, main() executes. This would be replaced, of
course, by actual exception handlers in a real application.

By specifying the section order in the SECTIONS area
of the linker script, we are able to dictate to the linker
the exact placement of the various sections of our pro-
gram within the final binary image that we will down-
load into the chip. The Cortex-M3 is the first ARM
architecture where it is possible to write an entire appli-
cation in C. Previous architectures required assembly
language programming for start-up, exception, and inter-
rupt handlers.

Before we can compile this project and load it into the
Primer, we have to make a few tweaks to the Blink proj-
ect. These are easily browsed and edited in the “Project
Options” pane of the IDE, which is initially located in
the lower-left corner of the screen (see Photo 1).

Change the “Optimization level” from “-O1” to “No
optimization.” This forces the compiler to emit executable

code that looks a lot like your original code, which helps
when debugging. You wouldn’t think that the compiler
would be able to cut much fat from our exceedingly
skinny example, but you would be wrong. You’re
encouraged to play with the different optimization levels
and see what cleverness ensues; but for the purpose of
this exercise, turn off the optimizations for now.

Under “More compiler options” add “-ffreestanding”
(that’s with two lowercase Fs). This tells the compiler
that our code stands alone and neither requires the pres-
ence of an operating system nor returns to the operating
system upon completion. This is typical for embedded
systems that code to the “bare metal.” It also enables us
to declare the main() function as not returning a mean-
ingful value (Return to whom?), which would otherwise
trigger a warning message that the return type is not
“int,” as it was for our fathers and their fathers before
them.

Below the “LD linker” section, change “Remove
unused sections” from “Yes” to “No.” I’m not really
sure what it bases this decision on, as it considers all of
our hand-crafted sections to be unused and our output
file ends up being completely empty. Not good.

In the “Startup” section, change “Use Default Start-
up” to “No” and clear the entry for “Startup File.” We
don’t need no stinkin’ start-up files.

Furthermore, change “Use Default Script File” to
“No” as we wrote our own. Right below that, click on
the Browse button (it has an “...” ellipsis on it) on the
right side of the text box and navigate to the Primer.ld
or Primer2.ld files. In reality, either one would work for
our trivial example.

In the “Libraries” section, just say “No” to all the
offered libraries. Our program has no need of them and

Photo 1—The Raisonance Ride7 IDE is in editing mode. As you can
see, you have access to quite a lot of information in the default
view, including the project outline, individual project options, multi-
ple source code windows in a tabbed interface, and extensive, online
help documentation. You can also customize the view to your liking
by selecting, rearranging, and resizing the various panes.

Photo 2—The Raisonance Ride7 IDE in debug mode. You have a
wide array of debugging tools available here, including the ability to
single step through the code, see the actual machine language
instructions, examine memory locations and peripheral registers, as
well as change them in real time. As in the editing mode, the selection
and arrangement of the individual panes in the window can be cus-
tomized to your liking.

2909014_wheat newer use.qxp 8/10/2009 2:43 PM Page 45

http://www.circuitcellar.com

46 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

immediately adjacent to the “Bat-
tery Charged” green LED indicator
on the Primer2.

Click again and the green LED is
extinguished and the red LED is illu-
minated. Click again to get to the
end of the while() loop, which cor-
responds to a “branch” instruction
that takes us back to the top of the
endless loop. Click until the novelty
wears off.

When you have exhausted the pos-
sibilities of this fine bit of firmware
craft, select the “Debug/Terminate”
menu item, click the “Terminate
debugging” toolbar icon (blue square)
or press Ctrl+Shift+D. This ends the
debugging session and returns you to
the code-editing mode.

As promised, I will detail the small
changes that are required to run our
example program on an original
Primer instead of the Primer2. First,
by looking at the schematic diagram
of the Primer, we see that the two
user-programmable LEDs are connect-
ed to Port B, pins PB8 and PB9. This
means that we have to enable the

they do not need to be linked into
our executable image. Be sure to
save your work so far. “Save early,
save often,” I always say.

OK, all the clicking, tweaking, and
poking at our project is done. It is
properly configured and ready to be
built. Select “Project/Make” or press
F9 and the project will be built.
Hopefully, you’ll see “Build succeed-
ed” in the Build Log at the bottom of
the screen. If not, scroll back up in
the Build Log and look for any col-
ored lines of text describing the
compiler’s complaint.

Now that the program has been
compiled, linked, and converted into
a downloadable format, select the
“Debug/Start” menu item, click the
“Start Debugging” toolbar icon (blue
arrow), or press Ctrl+D. This writes
our tiny program into the STM32’s
nonvolatile flash memory, assuming
your Primer is plugged in to the USB
DEBUG port and powered on. As
before, the system switches over to
Debug mode and waits in a state of
readiness (see Photo 2).

The cursor should be lined up at
the beginning of the main() func-
tion. There is an option to have the
debugger start at the reset vector
itself, which would be helpful for
debugging any code that might need
to be executed before main() takes
control, but in our case there is none.

Let’s single-step through our pro-
gram. Select the “Debug/Step Into”
menu item, click the “Step Into” tool-
bar icon or press F7. The cursor moves
to the first of our two initialization
statements. Now take a look at the
“Disassembly View [Blink]” in the
pane at the bottom of the screen. This
shows a representation of the actual
machine language codes that are about
to be executed by the processor. Click
“Step Into” again and this code is exe-
cuted and the cursor advances to the
next initialization statement. Nothing
to see yet, move along.

Click “Step Into” again and we’ve
reached the inside of the endless
while() loop. Now take a look at
your Primer as you click on “Step
Into” again. The green LED lights up.
This might be a little hard to see as
the user-programmable green LED is

clock for Port B (IOBEN instead of
IOEEN in the RCC_APB2ENR regis-
ter). We also need to write our magic
number 0x00000033 to GPIOB_CRH
instead of GPOIE_CLR to configure
Port B I/O lines 8 and 9 as outputs. It
would also be appropriate to use the
address of the GPIOB_ODR (General-
purpose input and output Port B/Out-
put data register) instead of the address
of GPIOE_ODR when writing the ones
and zeros that toggle the LEDs.

Finally, we need to change the
value of the initial stack pointer as
described in the vector table from
0x00010000 to 0x00005000 so that it
starts at the end of the 20-KB SRAM
of the STM32F103RBT6 instead of the
64-KB SRAM of the STM32F103VET6
of the Primer2. Other than that, the
programs are identical.

BEYOND THE BASICS
Now that we have a working

skeleton of a program, it’s time to
take inventory of what we have
available to us at this point. Obvi-
ously, we have the technology to

Listing 3—This is a simple exit strategy for a CircleOS application, embedded within the
Application_Handler() function.

if (BUTTON_GetState () == BUTTON_PUSHED) {
BUTTON_WaitForRelease ();
BUTTON_SetMode (BUTTON_ONOFF_FORMAIN);
return MENU_Quit ();

}

Listing 4—The program needs some global variables.

const u16 white_dot[16] = {
RGB_WHITE, RGB_WHITE, RGB_WHITE, RGB_WHITE,
RGB_WHITE, RGB_WHITE, RGB_WHITE, RGB_WHITE,
RGB_WHITE, RGB_WHITE, RGB_WHITE, RGB_WHITE,
RGB_WHITE, RGB_WHITE, RGB_WHITE, RGB_WHITE

};

const u16 green_dot[16] = {
RGB_WHITE, RGB_GREEN, RGB_GREEN, RGB_WHITE,
RGB_GREEN, RGB_GREEN, RGB_GREEN, RGB_GREEN,
RGB_GREEN, RGB_GREEN, RGB_GREEN, RGB_GREEN,
RGB_WHITE, RGB_GREEN, RGB_GREEN, RGB_WHITE

};

const u16 red_dot[16] = {
RGB_WHITE, RGB_RED, RGB_RED, RGB_WHITE,
RGB_RED, RGB_RED, RGB_RED, RGB_RED,
RGB_RED, RGB_RED, RGB_RED, RGB_RED,
RGB_WHITE, RGB_RED, RGB_RED, RGB_WHITE

};

2909014_wheat newer use.qxp 8/10/2009 2:43 PM Page 46

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 47

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

2909014_wheat newer use.qxp 8/10/2009 2:43 PM Page 47

blink a couple of LEDs. By looking
at the schematic, we can find other
trivial circuits to manipulate, such
as the LCD backlight. Remember,
each GPIO port must be enabled
before trying to access its associated
registers, or an exception will be
thrown by the hardware. This is a
protection mechanism that prevents
runaway code from wreaking havoc.
Also, you must configure each I/O
line for its proper operational mode.
You will need to review the
datasheet for the STM32 part in
question to find out more about the
specific capabilities of each I/O line.
As you can see from our example, it
will probably end up being just a
couple of lines of executable code,
with some optional #define state-
ments if you want your code to
make sense a few months from now.

CircleOS
If you like the challenge of writing

all your own peripheral drivers from
scratch, you have all the tools you
need at this point. Get busy! If you
would rather focus on application
software and leverage a set of already-
written routines to access Primer
peripherals, such as the color LCD,
MEMS accelerometer, push button, or
buzzer, then allow me to introduce you
to the world of CircleOS programming.

The CircleOS was developed
specifically for the Primer to show-
case its unique capabilities and help
STM32 designers get a quick start on
their application development. This
open-source software project was
launched by Raisonance in August
2007 to support user development of

Primer applications. It provides a
simple mechanism for allowing mul-
tiple applications to be loaded simul-
taneously within the flash memory
of the unit and selected via a menu.
This makes it much easier to carry
around a selection of applications
with you when you’re away from
your development machine.

The CircleOS is evolving at a
rapid pace. I got a sneak preview of
the 3.4 beta version that was the
first to differentiate automatically

between the Primer and Primer2.
Get a copy of the latest CircleOS
sources from www.stm32circle.com.
I would like to show you how easy
it is to write your own CircleOS
applications using the project tem-
plates provided with the Primer.

YOUR FIRST CircleOS APP
Start the Ride7 integrated develop-

ment environment and select
“File/New.../Project.” As in our previ-
ous exercises, select the target proces-
sor using the tree view, but this time
look at the top of the list and select
either “STM32_Primer1_CircleOS” or
“STM32_Primer2_CircleOS,” think
of a clever name (I used “Primer2
Test”) and a memorable location to
save your project files, and then click
the “Finish” button. This creates a
complete CircleOS project definition
and loads up all the pieces you need
to create a CircleOS application,
including a skeleton application file
called “Application.c.”

If you compile and download the
skeleton project as created, you will get

The first part of the supplied initialization
stub performs a check of the required
revision level and either proceeds with
program execution or displays a mes-
sage to the user on the LCD and halts.
Any additional one-time initialization that
your application requires would then be
executed.

”
“

http://www.stm32circle.com
http://www.sealevel.com

48 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

a clean installation of the CircleOS on
your Primer with a single applica-
tion available, called “My App.” It
doesn’t do much at the moment. In
fact, there is no way to exit the pro-
gram gracefully, short of holding
down the button momentarily to
power-off the unit. This is a little
more civilized than our bare metal
example. Before we add some razzle-
dazzle to the program, let’s review
the structure of a CircleOS applica-
tion a little bit and see which way
we want to go with it.

CircleOS is basically very simple in
structure. To create a CircleOS applica-
tion, you need to write an initialization
routine named Application_Ini() and
a handler routine called Application_
Handler(). Stubs for both of these
routines were automatically generated
when you created your CircleOS
application and both contain
“TODO:” comments to remind you
where the necessary code goes.

The initialization function is called
once when the application is selected
from the menu. You can indicate in
your code what the minimum revi-
sion of the CircleOS is required for
proper operation, in case you want to
use the latest and greatest bells and
whistles. One of the design goals of
the CircleOS was to maintain back-
ward compatibility with previous ver-
sions so that existing applications
would not need to be modified or
even recompiled to work with new
releases of the CircleOS.

The first part of the supplied ini-
tialization stub performs a check of
the required revision level and either
proceeds with program execution or
displays a message to the user on the
LCD and halts. Any additional one-
time initialization that your applica-
tion requires would then be executed.

The “application handler” routine
then gets called repeatedly by the
CircleOS. This allows the CircleOS
to continue to react in real time to
the peripherals such as the MEMS
accelerometer and push button. The
use of a state machine is indicated
for anything but the most trivial of
examples. Upon entry into the appli-
cation handler, a state variable (or
variables) would be checked to see

where the application is in relation
to its expected set of behaviors. Each
state should be clearly defined in
terms of what events lead to its exe-
cution, what is to be accomplished
within that state, and whether or
not it should remain in the same
state or advance to another state. In
any case, the program should exe-
cute quickly and then return to Cir-
cleOS with either the MENU_CON-
TINUE value or the MENU_LEAVE
value to terminate the application

and return to the CircleOS menu.
Add the lines in Listing 3 to the

Application_Handler() function.
Remember that the CircleOS repeat-
edly calls the application handler
function. Do not set up any infinite
loops or time-consuming processes
such as waiting for user input.
Check to see if something has
changed, react to it, and then exit,
leaving a note for future generations
(i.e., update the state variable).

According to the code sample

Listing 5—This is code for the application handler function.

if (BUTTON_GetState () == BUTTON_PUSHED) {
BUTTON_WaitForRelease ();
BUTTON_SetMode (BUTTON_ONOFF_FORMAIN);
return MENU_Quit ();

}

prescaler++;
if (prescaler > 10) {

switch (leds) {

case 0: // both LEDs off
LED_Set (LED_GREEN, LED_OFF);

DRAW_SetImage (white_dot, 96, 32, 4, 4);
LED_Set (LED_RED, LED_OFF);
DRAW_SetImage (white_dot, 80, 16, 4, 4);
break;

case 1: // green LED on
LED_Set (LED_GREEN, LED_ON);
DRAW_SetImage (green_dot, 96, 32, 4, 4);
LED_Set (LED_RED, LED_OFF);
DRAW_SetImage (white_dot, 80, 16, 4, 4);
break;

case 2: // red LED on
LED_Set (LED_GREEN, LED_OFF);
DRAW_SetImage (white_dot, 96, 32, 4, 4);
LED_Set (LED_RED, LED_ON);
DRAW_SetImage (red_dot, 80, 16, 4, 4);
break;

case 3: // both LEDs on
LED_Set (LED_GREEN, LED_ON);
DRAW_SetImage (green_dot, 96, 32, 4, 4);
LED_Set (LED_RED, LED_ON);
DRAW_SetImage (red_dot, 80, 16, 4, 4);
break;

default: // ??? unknown/unexpected state
break;

}

leds++; // move to next state
leds %= 4; // constrain values 0-3

prescaler = 0; // reset prescaler
}

2909014_wheat newer use.qxp 8/10/2009 2:43 PM Page 48

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 49

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

given, the button status is checked.
If the button is being pushed, the
application terminates by calling the
MENU_Quit() function, which returns
the MENU_LEAVE value to the Cir-
cleOS, informing it that the applica-
tion is finished. If the button is not
being pressed, the application simply
returns the value MENU_CONTINUE
and exits, resulting in the CircleOS
taking control again, performing any
sort of duties that it needs to take
care of and then executing the appli-
cation handler again. Again note
that the application handler gets in,
gets out, and gets done, all quickly.
This is the basis of CircleOS applica-
tion development.

Let’s add a little more code to this
example before moving on, both to
make the program more usable and
also to give you a taste of the other
library functions available. Let’s add
a short instructional message to the
screen in the application initialization
function:

DRAW_DisplayString (8, 60,
"Press the Button", 16);

This is program initialization code
within the Application_Ini()
function. The function call writes a
message on the LCD using the
default colors. The first two parame-
ters are the X and Y coordinates on
the screen, in the first quadrant of
the Cartesian plane, followed by the
text and then the length of the text
in characters. This draws the mes-
sage in the center of the screen.

Now let’s look at a slightly more
complex example that uses a simple
state machine to keep up with what’s
going on. Create a new CircleOS proj-
ect for your particular Primer flavor,
then add this single line of code to the
Application_Ini() function:

DRAW_DisplayString (16, 60,
"The LEDs blink", 14);

This is the Application_Ini()
function for the CircleOS version of
the LED blink example program.

Also add the following global vari-
ables just before the Application_
Handler() function (see Listing 4).

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/
2009/230.

OURCES
CircleOS
Raisonance
www.raisonance.com | www.stm32circle.com

STM32 Microcontrollers
STMicroelectronics | www.st.com

Dale Wheat (dale@dalewheat.com) is a full-time freelance writer working primarily
with embedded systems and shiny things that blink or beep. Dale is married and
the father of two adult children. He lives near Dallas, where he enjoys mowing
two acres of grass in the summer and not mowing it in the winter. Find out what
he’s been up to at his personal web site www.dalewheat.com.

P

S

Next add code to the Application_
Handler() function (see Listing 5).
Notice some “static” variables
defined at the top of the application
handler code. These are preserved
between calls to the function and
are used to store the program state
(LEDs) and a prescaler value.

Next comes the same exit mecha-
nism used in the previous example.
This works great as long as you
don’t need to use the button for any-
thing else in your application. I have
also used input from the MEMS
accelerometer to exit the application
when the unit was turned upside
down, reminiscent of the Etch-A-
Sketch I had as, ahem, a small boy.
OK, I still have it.

Within the body of the application
handler, the prescaler value is incre-
mented. Once it exceeds a preset
value, the current value of the state
variable is used to determine what
action to take. This illustrates both
the direct LED control functions as
well as some of the bitmapped
graphic functions that are available
in CircleOS.

The function winds down with
some housekeeping. The state vari-
able is incremented but constrained
to meaningful values within this
application. The function returns
the value MENU_CONTINUE to let
CircleOS know that it wishes to
continue executing. Again, let me

emphasize that the code executes
straight through with no looping or
blocking and then returns to the
operating system as quickly as possi-
ble. Take the opportunity to change
“Application_Name” from “My
App” to “Blink” or something equal-
ly clever, bearing in mind the eight-
character size limit.

This should give you a good idea
of what is involved with writing a
proper CircleOS application. Raiso-
nance has a habit of promoting cod-
ing competitions with large cash
prizes so it might behoove you to
take a peek at the past winners and
see if you think your next great idea
could impress the judges.

BEYOND THE PRIMERS
Once you’ve exhausted the poten-

tial of the STM32 Primers as devel-
opment platforms, it’s time for you
to move on to the big guns, the
STM32 evaluation boards from
STMicroelectronics. Currently, there
are two varieties, the STM3210B-
EVAL and STM3210E-EVAL. Both
offer more flexibility, peripherals,
and, most importantly, connectors
than the fun-loving Primers. These
are the “gold standards” for STM32
development and fundamentally
remove any excuse you might have
for not inventing the next great
gizmo that will change the world for
the better. Get busy! I

2909014_wheat newer use.qxp 8/10/2009 2:43 PM Page 49

mailto:dale@dalewheat.com
http://www.dalewheat.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/230
http://www.raisonance.com
http://www.stm32circle.com
http://www.st.com
http://www.circuitcellar.com

50 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

No doubt wireless gadgets (I call ’em
“wadgets”) are all the rage. Once

again, we can thank Mr. Moore and the Sili-
con Wizards for delivering radio chips that
slash cost and power consumption.

Indeed, maybe we’re suffering from too
much of a good thing. Recently, an on-line
music store had a sale and I was thinking
about picking up a guitar. But there were so
many different models, finishes, and options
that I got tired of window(s)-shopping and
didn’t buy anything.

Contemplate, if you dare, the ever-growing
list of radios (e.g., Wi-Fi, Bluetooth, 802.15.4,
and proprietary) and protocols (e.g., TCP/IP,
ZigBee, 6LowPAN, and proprietary) that
designers have to choose from. Grand con-
cepts like “Internet of Things” and “Smart
Dust” belie the complexity of the silicon and
software under the hood.

Consider the saga of ZigBee. Its genesis
nearly a decade ago was the concept of a sim-
ple, low-cost, low-power wireless network for
embedded devices. Now, after nearly a decade
of feature creep, the capabilities have grown
quite a bit, but so has the complexity. The lat-
est ZigBee Pro spec is 600 pages long, and that
doesn’t even include extras like the various
“Profiles” (e.g., Metering, Home Automation,
RF remotes, etc.), not to mention the docu-
mentation for the chips, modules, and boards
that populate a particular ZigBee wadget.

When it comes to embedded wireless, the good news is that there are plenty
of alternatives to choose from. The bad news is that too many complicated
options can lead to paralysis by analysis. This month Tom looks at a solution
that puts all the answers—including the radio, protocol, and tools—on a little
bit of silicon.

Neural Networker
A SNAP-Shot from Synapse Wireless

by Tom Cantrell

SILICON UPDATE

Don’t get me wrong. I’m not a ZigBee basher
by any means. ZigBee is not only too big to
fail, but already rolling out in real-world
applications (notably metering) today. It’s just
that there never will be, nor does there need
to be, a single radio and protocol standard.
Presuming a modicum of decorum, there’s no
reason a variety of wireless solutions can’t
coexist. That’s the beauty of radios compared
to wired connections. We can all get along.

The good news is that all the choices and
competition means there’s something for
everyone. The only problem is wading

Figure 1—By exploiting a virtual machine architec-
ture, Synapse is able to fit everything, including the
SNAP network stack and your application, into a low-
cost 8-bit MCU.

User applications
(uploaded over the air)

SNAPpy
Virtual

machine

IEEE 802.15.4
Packet I/F

Hardware abstraction layer (HAL)

SNAP
RPC

SNAP
Data

SNAP
Mesh

24 KB

40 KB

Digital I/O, A/D,
Timers, etc.

2909003-cantrell.qxp 8/10/2009 2:44 PM Page 50

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 51

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

At Circuit Cellar, as Steve Ciarcia
has said, our favorite programming
language is solder (i.e., hardware).
Nevertheless, we all know every
piece of silicon needs some (and
inevitably some more) software to go
with it.

Over the years, I’ve dabbled with
many programming languages, but
never Python. It’s a relatively “new”
language—first released some 20
years ago—that just now seems to be
hitting its stride. Python is com-
pletely open source and supported on
virtually every platform. (Now you
know what to do with that Com-
modore Amiga in your closet.) You
can find out everything you could
possibly want to know about Python
over at www.python.org.

I’m pretty agnostic when it comes
to programming languages, having
concluded it’s possible to hack
unreadable code in any of them.
Some languages (you know who you
are!) just encourage reckless behav-
ior more than others. Maybe the
“high” (somebody was) point was
APL, with its literally “all-Greek-to-
me” character set.

Having gotten my feet wet with
some of the Synapse Python “SNAP-
py Scripts,” let me point out some of
the language features that stand out.

through all the options to find it.

SNAP TO IT
In the human brain, the synapse

plays a critical role interconnecting
the neuron processing elements. At
this year’s Embedded System Confer-
ence in San Jose, I discovered a com-
pany, aptly named Synapse Wireless,
that hopes to do the same for sili-
con. Their secret sauce is software
comprising the Synapse Network
Appliance Protocol (aka “SNAP”)
and a unique “SNAPpy” program-
ming environment.

Whimsical branding aside, there’s
some significant technology behind
the scenes. And behind the scenes is
where Synapse says it should stay.
Their clearly stated mission is to
keep it simple, and they do it pretty
well. I found answers to a lot of
questions and plenty of information
to get started in Synapse’s “SNAP
Reference Manual” at just 127 pages.

SNAP manages to pack sophisti-
cated “instant-on, self-forming, and
self-healing” mesh networking into a
small package. Going beyond just
the network itself, SNAP also comes
with a Python-based application
development environment and “Por-
tal,” a PC/Mac/Linux-based network
GUI.

The syntax is pretty conventional
with the usual operators and control
flow. In some respects it reminds me
of, dare I say, BASIC. Heck, you can
even type in:

print ‘hello world’

Also like BASIC, variables
(Boolean, string, and 32-bit integers)
don’t need to be defined prior to use,
and names are case sensitive, so
watch out for typos. It can be hard to
track down a misspelled variable
name since there’s no error message.
I noticed there are no arrays per se,
but it looks like string functions
(e.g., CHR and STR) could be used to
mimic a numeric array with a string.

One rather unique aspect of the
language is that indentation—being
used to define block structure—mat-
ters. This makes perfect sense con-
ceptually because well-written code
should use indentation for readabili-
ty as a matter of course. In practice,
it’s also a feature that will cause
some head scratching until you get
used to it.

The biggest difference from other
languages is the overall program
structure. Rather than a sequential
procedure (a la main in C), a SNAP-
py script comprises a collection of
functions that are “event-driven.”
Events include things like startup
(i.e., power-up or software reboot),
pin state change, 100-ms timer, data
received on STDIN (e.g., UART), etc.
Also notable, and most useful from a
wireless-networking perspective, is
built-in messaging with the “Remote
Procedure Call” (RPC).

Although the Synapse SNAPpy
subset of Python is somewhat down-
sized from full-feature computer
implementations, it does seem capa-
ble in its own right. There are even
some blue-collar additions for
embedded apps with functions for
parallel I/O, serial I/O (UART, I2C,
etc.), flash memory access, Sleep
mode, and more. For the adventur-
ous, PEEK and POKE statements pro-
vide direct access to the hardware.

As far as I’m concerned, the main
feature isn’t the language itself, but
rather its interpreter-like virtual

Photo 1—The Synapse EK2500 Evaluation Kit comes with three nodes, all based on their RF
Engine radio module. Note the external antenna with transmit amp option on the “bridge”
board, which also offers a USB connection. Just remember that with a SNAP network any
node can act as a “bridge.”

2909003-cantrell.qxp 8/10/2009 2:44 PM Page 51

http://www.python.org
http://www.circuitcellar.com

52 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

channel, 10-bit ADC. One of the RF
Engines in the kit comes with an
external antenna (the others use
PCB trace antennae) and an optional
transmit power amplifier said to
boost outdoor (i.e., line-of-sight)
range to 3 miles.

The RF Engine gets decent gas
mileage, running off a single 2.7- to
3.4-V supply, consuming 65 mA on
average with the radio on and 20 mA
with it off. When sizing your power
supply, do note peak current (i.e.,
transmitting with the external power
amp option) can surge to 110 mA. At
the other extreme, in the deepest of

machine implementation. Yes, exe-
cution speed is less than it is for a
conventional compiled language, but
there are some key benefits. Most
notably, thanks to a small SNAPpy
virtual machine and efficient tok-
enized code, the footprint is so tiny
that everything (i.e., SNAP network
stack, SNAPpy VM, and a meaning-
ful application program) fits into a
low-cost, 8-bit MCU (see Figure 1).

To be sure, there are some com-
promises, notably the limited MCU
RAM available for data. Avoid the
temptation to get overly verbose
with string variables. Besides the
fact that they quickly consume
RAM, string functions such as con-
catenation and substring extraction
(called “slicing” in Python-speak)
must share limited-size buffers,
which impose some constraints on
your code. For instance:

String1 = “Use” + “it”
String2 = “or” + “lose it”

Once the second instruction exe-
cutes, both String1 and String2
will equal “or lose it.”

PORTAL POWER
Synapse was nice enough to send

me an EK2500 evaluation kit, which
comes with three nodes (see Photo 1).
The heart of each is the Synapse RF
Engine radio module (see Figure 2) fea-
turing a pair of Freescale chips (8-bit
MCU and 2.4-GHz 802.15.4 radio)
under the hood. The module offers
your application access to a decent
mix of the MCU’s I/O capability, 19
pins in total, including parallel and
serial I/O, a timer, and an eight-

Sleep modes, the module draws a
mere 2.5 µA.

As you can see in the photo, the
larger boards have I/O add-ons,
including LEDs (seven-segment and
discrete), switches, a relay, an
optosensor, a buzzer, and the like.
One of the boards, the so-called
“bridge” (the one with the transmit
amp and external antennae) has a
USB interface that both powers the
board and makes the connection
between a PC (or Mac or Linux) and
the SNAP network.

It’s worth noting that there’s nothing
special (other than the convenience of

Photo 2—“Portal” is the one-stop-software that handles every aspect of your wireless
design, including network management, connecting with PC services (via Portal scripts), and
developing your own “SNAPpy” applications.

Figure 2—The Synapse RF Engine is a complete solution that’s easy to use, certified, and ready to be deployed. It’s also a bargain with prices
starting at just $24.

User
I/O

SPI

Clkout

Balun

RF
Switch

Power
amplifier

Band-pass
filter

Antenna
Low-
noise

amplifier
Balun

Freescale
S08GT
Family

microcontroller

ISM 2.4 GHz

ISM 2.4 GHz

ISM 2.4 GHz

Freescale
MC1319x
802.15.4

transceiver

Crystal

2909003-cantrell.qxp 8/10/2009 2:44 PM Page 52

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 53

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

the USB interface) about a
SNAP “bridge.” The SNAP
network is completely
peer-to-peer, and any node
that can connect directly
to the PC (e.g., via RS-232
port) can act as a “bridge.”
There are no “coordina-
tors,” “hubs,” or other spe-
cialized controllers, nor
the risk they pose of a sin-
gle loco chip bringing the
entire network down.

“Portal” is the one-stop-
shop that gives you com-
mand and control of all
aspects of your wireless
application. I tried to craft
a screenshot showing
many of the features in
Photo 2, so let’s take a
closer look.

Starting at the top left
you see the “Node Views,”
which shows this network
comprises the three nodes
that come in the kit. Actu-
ally, if you count Portal
running on the PC, there
are four nodes, but more
on that in a moment.
Underneath the “Node
Views” is the “Event Log”
that keeps track of what’s
going on with the protocol
and monitors message traf-
fic. On the bottom left,
there’s a Portal (i.e., Python)
“Command Line” window
that’s handy for trying things (e.g.,
here reminding myself how the “%”
modulo operator works).

Clicking on a node, in this case
“LED_DarkDetector,” brings up the
“Node Info” window on the top
right showing a node’s particulars,
including the name of the script it is
running with a list of every function
together with built-ins and those
defined by your application.

A very cool feature for testing and
debugging is that you can simply click
on a function name to run it. This
demo has one of the nodes that is
equipped with a photosensor acting as
a 0 to 100% light-level detector. Here
I’ve clicked on the setThreshold
function and a pop-up window is

Indeed, noting the tiny code
size, just a couple of thou-
sand bytes, you can see a lit-
tle flash will go a long way.

That brings us to the final
window, the one showing
“5” on the bottom left. I
mentioned earlier that the
PC itself, via the bridge,
becomes a fourth node in
this network. What’s hap-
pening here is that the
McastCounter script—
running on the bridge (but
it could be on any node)—
is monitoring a push but-
ton and incrementing a
counter. Each time the
button is pushed, the new
count is “multicast”
across the network. In
turn, the Portal itself (i.e.,
PC) can run a script—in
this case, one that grabs
the new count and dis-
plays it in a window on
your PC screen.

The Portal script uses full
computer-grade Python giv-
ing any node, even the sim-
plest one, the ability to
access a full range of PC
services. Besides doing stuff
on the screen as shown
here, a Portal script could,
for example, fire off an e-
mail or update a PC file if a
remote sensor signals an
alarm condition. Portal

scripting is made even more versatile
with a script-scheduling capability.
For instance, you could have a Portal
script that polls the network on a reg-
ular schedule (every minute, hour,
day, etc.) and sends a summary report
in an e-mail.

CASTING CALLS
To be sure, the SNAPpy language

has its share of eccentricities and the
implementation on an 8-bit MCU is
a bit constrained. Script execution
speed is a modest 11.4K “instruc-
tions per second” according to the
Synapse documentation. Synapse
quotes 1.9 kHz as the maximum GPIO
pin toggle rate, and 5 kHz for sampling
the ADC, and that’s optimistic (i.e., no

asking for the newThreshold argu-
ment, which I’m entering as 66. Sure
you could edit the script to add a
setThreshold(66) statement and
re-flash, but it’s a nice convenience
for testing and experimenting to be
able to tweak things with a button
click.

Just clicking on the node’s image
name (i.e., LED_DarkDetector) opens
the script for editing. It’s a simple mat-
ter to make a change, recompile, and
upload the new version over the air.
And it’s fast, dare I say snappy, with
a complete blow-and-go cycle taking
just a few seconds. Admittedly,
these are small demo programs,
maybe 50 lines or so, but that’s
enough to do something useful.

Figure 3—Using the ZIC2410 module from CEL, I was able to put
SNAP interoperability claims to the test, which it passed with flying
colors.

AVREG

LPF RF PLL

DAC

TX DMA

CLKGEN RCOSC3V

Timer 0/1

UART 0/1

Four-channel
ADC

POR 3 V

POR 1.5 V

DVREG

SPI

WDT

22/24 GPIOs

Encrypt AES Engine Dencrypt

RX DMA

ST

MAC TXFIFO
(256 Bytes)

VTXFIFO
(128 Bytes)

Boot ROM
(1 KB)

Voice
encoder

I2SRX
(I2S, PCM IF)

MAC RXFIFO
(256 Bytes)

I2STX
(I2S, PCM IF)

Voice
decoder

Data memory
(4 KB)

Flash
controller

Timer2
PWM2

Timer3
PWM3

Random num
generator

Quad
decoder

Battery
monitor

Temperature
sensor

Data memory
(4 KB)

VRXFIFO
(128 Bytes)

Sleep
control

PA
Drive

LPF

LNA

ADCPower control

Modem

Embedded flash memory (96 KB, 3 BANK)

Embedded 8051 compatible MCU

2909003-cantrell.qxp 8/10/2009 2:44 PM Page 53

http://www.circuitcellar.com

54 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

handshake process (i.e., the requesting node could execute):

rpc(‘’\x00\x14\x94’,‘callback’,’display_is_upd
ated’,‘display2digits’,newValue)

So far, we’re talking about communication between
two individual nodes. As mentioned earlier, SNAP net-
works also support “multicasting” (i.e., the ability for a
node to send an RPC to many other nodes with a single
SNAPpy mcastRpc statement). It’s like the rpc state-
ment in that it specifies the remote function name and
arguments. But in addition, there are “group” and
“time_to_live” parameters that specify which subset of
nodes will see the RPC. SNAP networks are logically
divided into 16 possible groups, and an individual node
can direct an RPC to one or more of them, as well as be
a member of more than one group. Group number 1 is
used for “broadcasting” an RPC to every node on the
network, regardless of its group affiliation, only limited
by the “time_to_live,” parameter, which specifies the
allowed hop count. So, for example, the following would
display newValue on the LEDs of every node within two
hops of the requestor:

mcastRpc (1,2,‘display2digits’,newValue)

The documentation doesn’t say much about the
time_to_live parameter. I presume it’s meant as kind
of a network-wide jabber control, or maybe it’s meant to
serve as a range limiter should two SNAP networks hap-
pen to overlap. In any case, if the actual routing informa-
tion is available, I couldn’t find it in Portal or the docu-
mentation. All the demo examples just use 2 for the
time_to_live parameter, which is fine for playing
around on a lab bench where multihopping isn’t necessary

allowance for additional processing of the data). Minimum
network latency is on the order of 5 ms, plus at least 20 ms
for each extra hop. And as I mentioned earlier, the limited
MCU RAM can crimp your style if you’re not careful.

Nevertheless, as far as I’m concerned, any complaints
you might have with the SNAPpy language itself are more
than offset by the effectiveness and ease-of-use of the Por-
tal development environment. Presuming SNAPpy can do
what you want, it’s a really easy way to do it.

Putting aside language ideology, it’s the “Remote Proce-
dure Call” (aka “RPC”) capability of SNAPpy that is the
fundamental basis for wireless networking applications, so
let’s turn our attention there.

Just like a regular procedure call, an RPC specifies a
function name and arguments. The only difference is the
“remote” part of the equation, namely the network address
of the node where that function resides and will be execut-
ed. So the following statement will invoke the
display2digits function with the argument newValue
on the node at address 00.14.94:

rpc (‘’\x00\x14\x94’,‘display2digits’,newValue)

A SNAP node address is the least significant 3 bytes of
its MAC address, so I guess a network could conceivably
encompass 16 million nodes (don’t try this at home). It’s all
well and good for a script running on one node to ask
another node to do something. But how do you know the
requested function was actually performed, or for that mat-
ter whether the request even got through? According to the
documentation, the SNAP protocol will retry sending the
message up to eight times before giving up, but apparently
doesn’t report failures back to the sender. To be safe, the
node being requested to perform a function should report
back a completion status. To do that, it needs to know the
node address of the requestor, which SNAPpy makes avail-
able with the rpcSourceAddr function. So continuing the
above example, at the end of the display2digits func-
tion on node 00.14.94 (i.e., after the LEDs are updated with
newValue), the following line closes the loop by calling the
display_is_updated function on whichever node initiat-
ed the display2digits RPC:

rpc (rpcSourceAddr(),’display_is_updated’)

There’s a “callback” capability that streamlines the

Photo 3—Another benefit of a virtual machine approach is that it’s
easy to support multiple hardware platforms. Synapse and CEL
nodes happily coexist on the SNAP network even though the hard-
ware under the hood is completely different.

Photo 4—Interoperability in action. The fact SNAP can, and is, being
ported to multiple vendors’ hardware gives it an advantage over
“sole source” solutions.

2909003-cantrell.qxp 8/10/2009 2:44 PM Page 54

http://www.circuitcellar.com

PCB West is the premier
conference and exhibition

for the PCB supply chain,
including engineers, designers,

fabricators, assemblers
and managers

•
•

 •

•

•
• • •

• Over 30 Professional Development and Technical Conferences courses

• Technical presentations on critical topics, including:

� RF design

� Component integrity

� Libraries

� HDI

• Two-day exhibition featuring the industry’s leading vendors

• Expanded free technical sessions on Tuesday and Wednesday

• Networking opportunities with coffee breaks, a complimentary lunch on the show floor

on Tuesday and Wednesday, and an Opening Night Reception on Tuesday evening

PCB West returns for its 18th year to the Silicon Valley
with more reasons than ever to attend:

� Design basics

� Via reliability

� Routing

30.qxp 7/1/2009 5:58 PM Page 1

http://www.pcbwest.com

56 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

and presumably never happens.
Although keeping track of who’s

saying what to whom can be a little
confusing, the RPC scheme can pull
off some interesting tricks. For
example, the LED_DarkDetector
function doesn’t just display the
light level on another node’s LEDs.
It also beeps a buzzer on the third
node when a programmable thresh-
old is crossed. The cool thing is that
the node with the light sensor doesn’t
know the address of the node with
the buzzer, but rather it finds it

using a findBuzzer multicast RPC.
When the node with the buzzer (and
hosting the findBuzzer function)
sees the broadcast request, it uses
the rpcSourceAddr function to
ascertain which node it came from.
Knowing who’s asking, the buzzer
node replies with a buzzerAt RPC
to send back its own address. Now
the node requesting buzzer service
can use the address it “found” at
runtime to communicate directly
(i.e., unicast) with the buzzer.

It’s an interesting model, kind of

an embedded version of “cloud com-
puting,” that has the intelligence of
the system comprising the entire
collection of functions distributed
across the network.

THE MORE THE MERRIER
A proprietary protocol like SNAP

raises the specter of getting locked
into a sole source for hardware. Not
so with SNAP. Sure, Synapse will be
glad to sell you some of their RF
Engines to go with, but interestingly
(and, I’d say, wisely), they’re more
than willing to get SNAP up and
running on other vendors’ hardware.
Indeed, since it’s relatively easy to
port the SNAPpy virtual machine
and hardware abstraction layer,
Synapse will even help you get it
running on your own hardware if
that makes sense.

In my in-basket, I’ve got a full-
blown ZigBee evaluation kit from
CEL (California Eastern Labs) that’s
based on their own MCU+802.15.4
radio SoC. Their ZIC2410 radio
module (see Figure 3) is similar in
appearance and capabilities to the
Synapse RF Engine, although it is
completely different under the hood
(e.g., CEL uses an 8051-type MCU
versus the Synapse Freescale MCU).
In addition to serving as the plat-
form for their ZigDee solution, CEL
also has SNAP up and running on
their gear.

Time to run a little interoperabili-
ty test and, ta-da, everything worked
as advertised. Portal instantly recog-
nized the CEL board and added it to
the network (see Photo 3). I was
even able to unplug the Synapse
board from the PC and plug in the
CEL board and it was able to take
over the “bridge” role. It was easy to
use built-in functions to bring the
CEL boards specific I/O capabilities,
such as the LCD, into the application
mix (see Photo 4).

RANGE ROVER
To be sure, in the short time I

spent with the Synapse gear, I wasn’t
able to probe the limits in terms of
script complexity, node/hop count,
radio range, adaptive routing, and so
on. It wouldn’t surprise me at all if

2909003-cantrell.qxp 8/10/2009 2:44 PM Page 56

http://www.circuitcellar.com
http://www.expresspcb.com

some glitches emerged under stress
testing. But that caveat is true for
every wireless lashup. The real point
is that within the short time spent, I
was fully able to grasp the scope of
SNAP and get pretty far along the
learning curve.

That’s something that can’t be said
for most of the wadgets I’ve come
across, which seem to struggle under
the combined weight of protocol com-
plexity, network management hassles,
and bloaty software tools. Yes, drill
down through the menus of Portal
and you’ll find some complicated
underpinnings (see Photo 5), but
Synapse doesn’t rub your nose in it.

The bottom line is that I’m
impressed. Synapse deserves credit
for thinking outside the box and
delivering a unique solution that
integrates every aspect of an embed-
ded wireless project. All the better
their willingness to promulgate
SNAP onto other suppliers’ hard-
ware, a potential win-win-win for
everyone involved (i.e., Synapse,
other radio suppliers, and users). I

www.circuitcellar.com • CIRCUIT CELLAR® 57

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

Tom Cantrell has been working on chip,
board, and systems design and market-
ing for several years. You may reach
him by e-mail at tom.cantrell@circuit
cellar.com.

ESOURCE
Synapse Wireless, Inc., “SNAP Reference Manual,” 600-0007B,
http://forums.synapsewireless.com/upload/SNAP%20Reference%20Manual.
pdf.

OURCES
ZIC2410 Radio module and ZigBee development kit
California Eastern Laboratories | www.cel.com

EK2500 Evaluation kit, SNAP Wireless network, and RF Engine radio module
Synapse Wireless, Inc. | www.synapse-wireless.com

R

Photo 5—Sure there’s complexity to be
found if you dig deep enough. But Synapse
handles it the right way (i.e., it’s there if you
need it, but not a bother if you don’t).

S

Electrical engineers agree: with a Protomat S-Series
prototyping machine at your side, you’ll arrive at the
best solutions, fast. These highly accurate benchtop
PCB milling machines eliminate bread-boarding and
allow you to create real, repeatable test circuits—
including plated vias—in minutes, not days.

• Declare your independence from board houses

• Affordable, entry-level price tag

• The best milling speed, resolution, and accuracy
in the industry

• Single-sided, double-sided, and multilayered
machining without hazardous chemicals

• Optional vacuum table and autosearch camera
for layer alignment

For complete details visit:
www.lpkfusa.com

or call:
1-800-345-LPKF

ProtoMat® S-Series
PCB Milling Machines

2909003-cantrell.qxp 8/10/2009 2:44 PM Page 57

http://www.cel.com
http://www.synapse-wireless.com
http://www.lpkfusa.com
http://www.circuitcellar.com

58
CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

In-home energy conservation is just a project away. Power bars are used to
turn off several electronic devices at the same time. Brian r ecently designed
his own to meet his needs. The compact design consists of a conventional
60-Hz power supply, an MCU, a relay, and an IR module.

Smart Power Bar

H

by Brian Millier

ave you heard the song “Little Green
Apples,” which Bobby Russell wrote in

1968? I was a teenager back then, so I remember
the song well—although I can’t recall whether it
was Roger Miller’s or O.C. Smith’s version that
first drew my attention. Today, I have some “lit-
tle green” things of my own: design projects.
Recently, I’ve been working on “green” projects
that all concern energy conservation in some way.
I’ve always been a big fan of energy conservation,
even before it became trendy. Why? It’s a great
way to save money, and I’m a big fan of that!

In this article, I’ll present one of my most
recent energy-conserving designs: a “smart”
power bar (see Photo 1). This project proves that
simple Atmel ATtiny45-based circuitry can be a
real energy saver.

ENERGY CONSERVATION
In Nova Scotia, Canada, where I live,

the government and utilities have just
recently become interested in promot-
ing alternative energy. Historically, we
mined coal in the province and burned
it to generate fairly cheap electricity,
but current government initiatives are
aimed at promoting large wind farm
installations and convincing the electric
utility (a monopoly) to pay a premium
for such energy. In my area, if a private
homeowner wants to install a modest

grid-tied wind turbine or solar panel array, he must be pre-
pared for a long pay-back period because there is little avail-
able in the way of tax incentives and the like. I can’t say I dis-
agree completely with that premise. There is certainly some-
thing to be said for the efficiencies gained when wind turbines
are built on a utility scale, and I also wonder how difficult it
will be for the average homeowner to maintain wind tur-
bines and solar arrays after they start to show their ages.

With the aforementioned concepts in mind, I’ve always
kept an eye out for ways to reduce the amount of electrici-
ty I use at home. The big change I made about seven years
ago was to install electrical energy storage units to replace
our in-ceiling electric radiant heating. These units draw all
of their electricity needs over-night (and during weekends
and holidays) and store all the heat in bricks inside the
unit. A small fan in the unit then slowly distributes the
heat throughout the day. It’s all microprocessor-controlled,

Simple Circuitry Enables Energy Conservation

Photo 1—The smart power bar unit is perched on top of a home theater speaker
next to my TV. A commercial multi-outlet power bar plugs into the switched
power cord, which exits from the back of the unit.

F
EA

TU
RE

ARTICLE

2909019_Millier.qxp 8/10/2009 2:45 PM Page 58

http://www.circuitcellar.com

efficient, and comfortable. I pay only 50% of the standard
electricity rate for this off-peak power. The control system
also runs our hot-water heater, clothes washer, dishwasher,
and so on by activating them at night and on weekends.
While we are not saving any overall energy with this sys-
tem, we draw about 75% of our electricity during the off-
peak hours, which the power utility appreciates and as a
result gives us half-price power as a reward.

I am also interested in “phantom power.” This is elec-
tricity drawn by consumer appliances and entertainment
units when they are ostensibly turned off. This is some-
thing that has been getting out of hand in recent years as
more and more product manufacturers have done away
with a “real” power switch and instead have begun incor-
porating circuitry that remains in a Standby mode when
turned off. (Thus, it’s able to respond to either an IR
remote control or the signal from the tiny momentary con-
tact switch now used for the “power switch.”)

A number of electronic devices in the modern home are
designed to remain running all of the time. For instance, I
don’t want to go down to my basement every time I need
to turn on and off my cable modem and wireless router. In
addition, I don’t think I could do without Caller ID to
screen out telemarketers, so my phone is powered all the
time via a wall wart. And then there’s the personal video
recorder that automatically records all of our TV shows. It
needs to remain running, at least in Standby mode, at all
times. I think my wife would leave home if I were to
remove it for the sake of energy conservation.

There are, however, some areas where phantom power
can be minimized. My home office computer setup is quite
substantial, with a powerful desktop computer running
dual 20″ LCD monitors, a black-and-white laser printer,
and a color Inkjet printer. With everything turned off, this
setup still draws about 16 W, which would cost about
$14.85 per year at $0.106 per kilowatt-hour (local pricing).
Therefore, I connect the entire system through a power bar.
I turn off the power bar whenever I am not using my com-
puter. In addition to saving electricity, this scheme also
minimizes the threat of damage to the electronics, which
often happens as a result of power surges that occur during
storms and other power outages.

Like many people, I have a substantial home entertain-
ment system. It consists of a satellite receiver/PVR, a
widescreen CRT-type TV, a powerful home theater 5:1 sur-
round sound receiver, a powered subwoofer, DVD player, and
an old VCR. Factoring out the satellite receiver/PVR—which
must remain powered all of the time—leaves five units that I
can turn off to save power. I initially did this using a con-
ventional power bar, but that was somewhat inconvenient
and unsightly because it required the power bar to be
accessible. Thus, I had an entire rat’s nest of power cables
to plain view. Such a setup was unacceptable. So, after a bit
of thought, I came up with the smart power bar solution.

SMART SOLUTION
My idea for a smart power bar arose from the observation

that IR remote controls can control most home entertainment

devices. I asked myself: Why not let the presence of IR
remote control codes be the trigger that turns on the smart
power bar? This would mean that I would push my normal
start-up button—but do so twice. The first tap would turn
on the system’s power via the power bar. By tapping the
button again 1 s later, I would activate the device I want to
turn on.

In each individual home entertainment device, the on-
board microcontroller’s program logic decodes only the spe-
cific IR codes that refer to a particular unit. Many compa-
nies make home-entertainment products, and most of
them use either their own proprietary IR coding schemes
or some variation on a few standard protocols. You’ve seen
universal IR remotes—which are readily available for about
$15—and it would seem like a reasonable assumption that
there can’t be that many different IR codes in use. You’re
wrong if you assume this. The only reason such universal
IR remotes are so common is that companies like Zilog
have exhaustively compiled the IR codes from the bulk of
the products available and sell application-specific micro-
controllers with large amounts of ROM, which contain the
bulk of these codes. As a result, universal IR remote manu-
facturers customize generic microcontrollers and use them
in products (or they buy the IR code library from companies
like Zilog).

Given the diversity of IR codes, how does the smart
power bar actually work? To begin with, I start with the
premise that I don’t really care what particular IR code I
am receiving. The presence of any IR code is evidence in
itself that I am trying to use at least one of the devices
powered by the smart power bar. Because I don’t care about
the actual code, my main concern is that there is a repeat-
ed pattern of IR being received. The reason to look for a
pattern—instead of merely the presence of IR—is that sun-
light and normal room lighting contains IR. Even in the
absence of a real signal from an IR remote, the IR receiver
still produces spurious signals.

There are many encoding schemes used by different
types of IR remotes. But while testing the remotes I use, I
found in general that the codes were made up of pulses that
were either all the same width or there were two or three
discrete widths. Often the pattern would start with a start
or sync pulse of a certain length, followed by a datastream
using two different pulse widths to represent the ones and
zeros in the code. Sometimes only one width was used for
the datastream, with the time between pulses representing
the bit values of the code. In any case, when capturing the
IR codes for a short period of time and analyzing the distri-
bution of pulse widths, I found that certain pulse widths
generally show up regularly.

To handle this scenario, the microcontroller interprets
the incoming IR datastream. Timer1 triggers an interrupt
that sets a flag every 0.26 s. During this time, the IR
receiver module’s signal output is constantly monitored for
any transitions. The time between the start and end of
each IR pulse is measured, and up to 20 such time intervals
are stored in a RAM array. If the 0.26-s interval passes
without 20 pulses being detected, then basically nothing

www.circuitcellar.com • CIRCUIT CELLAR® 59

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

2909019_Millier.qxp 8/10/2009 2:45 PM Page 59

http://www.circuitcellar.com

60 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

happens and the process restarts. However,
once 20 pulses are detected, we enter a
nested loop structure in which we compare
each pulse width to that of all the other
pulses. I use a timer with a 32-µs timing
interval to measure the IR pulses. This res-
olution is small enough to differentiate the
different pulse widths without being so
finicky as to notice the slight width varia-
tions that occur naturally. Experimentally, I
found that this algorithm worked well if I
set a criterion of finding five or more equal
width pulses amongst the 20 collected
within the 0.26-s interval.

Once this criterion is met, the smart
power bar activates the relay that supplies
power to the attached devices. At the same
time, it starts a 2-h countdown timer. As
long as I occasionally hit any of the remote
control buttons (e.g., the channel select or
volume buttons), the microcontroller recog-
nizes these codes—in the same way it did
the initial one—and it reinitializes the
countdown timer back to the 2-h point. (It
also activates the relay. But because the
relay is already activated at this point,
nothing changes in that respect.) However,
2 h after the reception of the last IR code,
the smart power bar turns off the relay,
thus powering down everything. I started
with a 1-h countdown interval, but my
entire system shut down occasionally
while I was watching long movies (during
which times the remote remains
untouched). That’s why I upped the timer
to 2 h.

I neglected to mention an important
detail of IR remote control operation. To
greatly improve the reliability of IR remote
control code transmission, the IR light is
not modulated directly by the data pulses.
Instead, the IR light beam is modulated at a
fixed ultrasonic rate (36 to 56 kHz depend-
ing on the model). The carrier frequency is
pulsed on and off with the proper pattern
required by the IR code. Built into the IR
receiver is a demodulator (detector) fol-
lowed by a band-pass filter, which filters
out IR signals that are not modulated at the
proper rate. This filtering drastically
reduces the IR remote receiver’s suscepti-
bility to random light variations. IR receiv-
er modules are sold in various models, with
each model being specified for a certain car-
rier frequency. The band-pass filters in
these receivers are reasonably broad. I
chose a model based on a carrier frequency
of 38 kHz that can respond to the different

Listing 1—This is the entire BASIC code for the smart power bar.

' Smart Power Bar
' C 2008 Brian Millier
$regfile = "ATtiny45.dat"
$crystal = 8000000
Dim Secondflag As Boolean
Dim Hourcount As Integer
Dim Transition(50) As Byte
Dim X1 As Byte
Dim X2 As Byte
Dim Index As Byte
Dim I As Byte
Dim J As Byte
Dim K As Byte
Dim Maxcount As Byte
Dim Count As Byte
Dim Temp As Byte
Const True = 1
Const False = 0
Config Pinb.0 = Output 'Relay drive - positive logic
' Use Timer 0 for IR transition timing
Tccr0a = 0
Tccr0b = &B00000100 ' use 8 mhz clock /256 = 32 us clock
' period use timer 1 for the 0.26 second clock interrupt
Tccr1 = &B00001110 ' Use 8 Mhz clock / 8192 (0.262 second timer overflow)
Timsk = &B00000100 ' enable Timer 1 overflow interrupt
Reset Portb.0
On Timer1 Tickisr:
Enable Interrupts
Wait 1
Secondflag = False
Hourcount = 0
Do

St:
Secondflag = False
For Index = 1 To 20

Do
Temp = Pinb
Temp = Temp And 8
If Secondflag = True Then Exit Do
If Temp = 0 Then

X1 = Timer0
If Index = 1 Then Secondflag = False
Exit Do

End If
Loop
If Secondflag = True Then Goto St:
Do

Temp = Pinb
Temp = Temp And 8
If Secondflag = True Then Exit Do
If Temp = 8 Then

X2 = Timer0
Exit Do

End If
Loop
X2 = X2 - X1
Shift X2 , Right , 1 ' ignore bobble in LSB of time
Transition(index) = X2
Next
Maxcount = 0
For I = 1 To 19

Count = 0
K = I + 1
For J = K To 20

X1 = Transition(i)
X2 = Transition(j)
If X1 = X2 Then

Incr Count
End If

If Count > Maxcount Then
Maxcount = Count

End If
Next

Next
If Maxcount > 5 Then

Set Portb.0
Hourcount = 0

End If
Loop
Tickisr:

Secondflag = True
Incr Hourcount
If Hourcount > 28000 Then ' 2 hour delay

Reset Portb.0
Hourcount = 0

End If
Return

2909019_Millier.qxp 8/10/2009 2:45 PM Page 60

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 61

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

IR remotes that I have. I don’t believe the higher 56 kHz
remotes are too common. But if your main remote uses
that frequency, you might have to substitute an IR receiver
that’s based on that higher carrier frequency. Also, the par-
ticular IR receiver module I used presents a high output
signal in the absence of a modulated IR signal—and drops
low during the incoming IR carrier pulses. The microcon-
troller firmware is tailored to this active-low receiver sig-
nal. If you substitute a module with a different output
sense, the firmware must be modified at two places (see
Listing 1).

CIRCUITRY
The circuit is simple (see Figure 1). I used a Panasonic

PNA4602 IR receiver, but availability of specific IR
receivers changes quickly so you can use a different one if
you want. However, most modules are open collector, so
don’t forget to include R1, the pull-up resistor.

For this application, I could’ve used the smallest avail-
able microcontroller. I routinely use Atmel microcon-
trollers, and its ATtiny family includes several members
that fit the bill. The less powerful members of the family
don’t include SRAM—just the 32-byte register bank pres-
ent in all AVR chips. I prefer to program using the BAS-
COM-AVR Basic compiler, which really needs SRAM to do
anything meaningful. Therefore, I seldom use the less-
capable members of the ATtiny family. So, I chose an
ATtiny45-20PU with 4 KB of program flash memory and
256 bytes of SRAM—which was more than twice what I
needed. An ATtiny25—containing half the RAM and flash
memory—would have worked just as well, but it is only
$0.50 cheaper and I don’t bother to stock it.

I run the ATtiny45 at 8 MHz, using its internal RC clock.
This eliminates the need for a crystal. At this speed, it
draws about 5 mA, which could be reduced a bit with the
selection of a lower clock frequency. However, there is little

to be gained by lowering the
MCU power consumption
below the 5 mA unless you
also incorporate a power sup-
ply with extremely low qui-
escent power consumption.

Power supply design
depends a lot on your ulti-
mate design goals. If you’re
manufacturing thousands of
low-power devices and going
for Energy Star efficiency,
there’s no doubt that the best
bet is to use a high-frequency
switching design. If you’re
building a prototype, there is
something to be said for
doing it the way that I did.

As you can see, I used a
Tamura SB2812-1210 60-Hz
power transformer along with
a full-wave rectifier/capaci-

tor. I used a low-dropout National Semiconductor LM1086CT-
5.0 three-terminal regulator (which I had on hand), but the
inexpensive MC33275 would have been a better choice. Using
the latter regulator would have resulted in a total power sup-
ply cost of about $4.50, which is much less than any switching
power supply I could have built. When the power bar is sup-
plying power to its connected devices, relay K1 is ener-
gized and the unit draws about 1 W. But the unit draws
only 0.5 W most of the time. This is much less than the total
standby power drawn by all the home entertainment devices
that I have plugged into it, giving the overall power saving.

The only other component is an NPN transistor to boost
the ATtiny’s port drive current up to the 100 mA needed to
run the relay. The relay I used has 5-A contacts that are
sufficient to handle the connected devices, but it might be
too light when running a large plasma TV and using a
home stereo receiver at high volumes. I

Figure 1—The circuit couldn’t get much simpler than this: a conventional 60-Hz power supply, an
ATtiny45 MCU, a relay, and an IR module.

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com
/pub/Circuit_Cellar/2009/230.

OURCES
ATtiny45 Microcontroller
Atmel Corp. | www.atmel.com

LM1086CT Regulator
National Semiconductor Corp. | www.national.com

SB2812 Power transformer
Tamura Corp. | www.tamuracorp.com

S

P

Brian Millier (brian.millier@dal.ca) is an instrumentation engi-
neer in the Chemistry department at Dalhousie University in
Halifax, Canada. He also runs Computer Interface Consultants.

2909019_Millier.qxp 8/10/2009 2:45 PM Page 61

mailto:brian.millier@dal.ca
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/230
http://www.atmel.com
http://www.national.com
http://www.tamuracorp.com
http://www.circuitcellar.com

62 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

Once you have your embedded processor up and running, what’s next?
Your design’s success will have a lot to do with how you answer that
question. George puts you on the right path with tips about partitioning
your design work and minimizing processing requirements.

Embedded Breakup
Divide a Design and Minimize Processing

I

by George Martin

n my July 2009 article titled “C Start-Up,” I
presented how an embedded processor

running C starts up (Circuit Cellar 228, 2009).
This time I’ll cover what to do after it is up
and running.

EMBEDDED IN REAL TIME
If we are writing a payroll program or an

inventory program to run on a PC, we can
read the input data and commands, process
the data, and produce the outputs. The pro-
gram’s success will be based on correctness,
memory and disk usage, and ease of use. Cor-
rectness will always be first, ease of use will
probably be second, and run time will be
third. We could perform the calculations in
almost any order as long as the correct results
were produced. We could speed up run time if
more memory and disk space are available.

Now let’s consider an embedded program
that has an additional requirement of real-
time operation. To help you understand this
presentation, let’s keep it simple and define
real-time operation in terms of the time it
takes for the system to respond to an input.
This must be fast enough to meet certain
requirements. Different embedded systems
have different real-time requirements. A con-
troller for a machine tool needs to move the
tool in a path that meets certain accuracy

LESSONS FROM THE TRENCHES

requirements. Because the tool is moving in
many axes at the same time, small motion
steps must be coordinated to maintain posi-
tional accuracy. It would do no good to have
the x-axis calculation completed twice as fast
as the y-axis calculations. A more basic
example: when you press a button, a light
should come on. And any noticeable delay
between a button press and illumination is unac-
ceptable. Let’s call this the “operator response
time,” and let’s give a number of no greater that
100 ms. You might argue that 100 ms is notice-
able, but let’s use 100 ms for this discussion.

PARTITIONING WORK
This real-time requirement is what makes

an embedded system different from a payroll
system. We need to manage all the system’s
resources in real time. Said differently, we
just can’t give a large amount of processing to
one component of the system and wait
around until it’s completed. We will lose our
“real-timeliness.” How do we partition our
work? Let’s look at several examples.

In keeping with the button input operation,
we need to debounce all the push button
inputs. And that’s typically done by reading
the inputs periodically. If enough of the read-
ings indicate a button is pressed, the program
will also consider it pressed. This is typically

2909013 martin.qxp 8/10/2009 2:46 PM Page 62

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 63

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

accomplished using the microproces-
sor’s timer interrupts. Interrupt rou-
tines can be set up so that the
processor stops what it’s doing each
time an interrupt occurs and then
enters the interrupt routine. When
that routine is completed, the
processor continues where it left off.
Check the online documentation and
review the manuals for the device
you’re using.

TIMERS
Let’s set up a timer interrupt so

that it interrupts every 10 ms. In the
interrupt routine associated with the
timer, let’s have a counter for each
push button. Then, if the button is
pressed, we’ll increment the counter.
If the button is not pressed, we’ll
decrement the counter. We’re doing
just the minimum inside the inter-
rupt routine to keep it running as
fast as possible.

Outside the interrupt routine, in
our main operating loop, we’ll look
at the counters and see if they’ve
increased beyond a limit. That limit
number multiplied by the 10-ms
interrupt rate represents our
debounce time. Depending on the
types of switches you use, you can
change the debounce time to suit
your application. If the counter has
passed the limit, we need to reset its
value to that limit so that it does
not continue to increase and then
set the switch’s state as closed. If the
counter is decremented below zero,
we need to reset the counter to zero
and set the switch’s state as opened.
Outside the interrupt routine, we
will manipulate these counters and

look at just a simple RS-232 serial
interface as an example. Say that the
host computer is a PC that’s sending
commands. If those commands are
received correctly, they are to be
acted upon and a response is sent
back. Let’s look at how I would
divide up this problem.

As serial characters are received,
an interrupt is generated. This is as
straightforward as the timer inter-
rupts. The serial interrupt code reads
the new character and checks for
errors. If reception errors aren’t
detected, the character is stored in a
buffer. If possible, I try to design the
protocol so that there is a unique
start character and end character for
each command. In the code as it was
presented, we looked for commands
in a brute-force manner. Let’s think
about how to make this more
resource-friendly so we save CPU
time.

Received characters are saved in a
buffer. When an end character is
received, a new variable named
UINT16 InLineCnt is incremented.
I’ve found that when an error is
detected, a simple-as-possible
approach is best. Just set the
received character to 0xFF and con-
tinue. When the characters are
processed, the 0xFF can be detected
and the entire line will be thrown
out. Some systems have an
ACK/NAK response that alerts the
host that all is well or a problem is
detected.

In the main operating loop, we
keep looking to process a new line of
data. The call to DebugProcessCmd()
returns the status. If the status is a
one, a new line is received. There
are several techniques for saving
CPU time while looking for this
new line. One method is to keep two
variables, UINT16 InLineCnt and
UINT16 OutLineCnt. The
InLineCnt keeps count of lines
received while the OutLineCnt vari-
able keeps track of lines processed. If
each line ends in, say, a carriage
return character, then in the interrupt
routine, the InLineCnt is increment-
ed when a <CR> is received.

The DebugProcessCommand()
routine checks the two counters for

set the switch’s state (open/closed).
After that, we can then take the
action that the switch status would
require.

Look at what we just did. We are
managing our system’s CPU (time)
resources. In this example, we’re
managing interrupt-processing time
and program loop time. We divide
the problem into the timing compo-
nent and the processing component.
The timing component (the inter-
rupt routine) is used to perform the
debouncing. The processing compo-
nent (the switch counter manage-
ment, switch state control, and
actions) is accomplished in code
running in the main loop. We divid-
ed the components of the solution to
the problem and put them in areas
of code that work to meet the real-
time requirements.

You need to divide each of your
system’s requirements in this man-
ner. Some requirements might have
only an interrupt portion, while oth-
ers might have only a main loop por-
tion. Most will have a portion in
each. As you’ll see, that can get
rather involved.

SERIAL
Let’s consider a serial interface.

Look at the files for my July 2007
article, “From ‘Hello World’ to Big
Iron,” (Circuit Cellar 204). In that
project, I included fairly simple seri-
al interface code. Let’s explore that
code once again and make it more
resource-friendly (ftp://ftp.circuitcellar.
com/pub/Circuit_Cellar/2007/204/).

Most modern embedded CPUs
have several serial interfaces. Let’s

Listing 1—Add this to the start of the DebugProcessCmd() routine.

INT16 DebugProcessCmd(void) {

if (InLineCnt == OutLineCnt) { // And new line to process?
return(0); // No. Nothing to process

}
// Yes we have at least one line of data to process.

}

Add this to the start of the DebugProcessCmd() routine

2909013 martin.qxp 8/10/2009 2:46 PM Page 63

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/204/
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2007/204/
http://www.circuitcellar.com

64 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

lines received as (see Listing 1).
When they differ, it means there is a
new line of data received. After that
line is processed, the OutLineCnt is
incremented. If we try to do this
with one variable, there’s a chance
that the interrupt and the processing
routine can get out of synch and cor-
rupt the variable. By using separate
variables and each part of the code
changing only its variable, we avoid
any possible data corruption. Also,
as we’re processing a line of data,
another line of data can be received
without confusion. The actual pro-
cessing of the received line of code
depends on your system. I’ve worked
on systems with over 1,000 unique
commands. The system I’m current-
ly working on has only one com-
mand line.

Look at the time the CPU has to
expend with and without this new
concept of counting lines. Without
the counters, the code must test
what’s received to determine a line
is received. With just a simple com-
pare added to each serial interrupt,
these counters can eliminate all that
testing and overhead.

EXTRA CREDIT
Now, for extra credit. When it’s

determined that we have a new line
of data, we can process it immedi-
ately or flag that we have it and
process it at a later time.

I generally process it immediately,
but let’s say that you are running a
time-critical operation. Think about
how you would set up to process the
line at a less critical time.

Also, some commands are short
and sweet and don’t have a lot of
overhead. But you could receive a
command that says list all the key
parameters out the serial port. And if
the list is long, you can take several
seconds to assemble the message and
send it out the serial port. How
would we break up this task and be
less of a CPU hog? Hint: read on
about state machines.

STATE MACHINES
Let’s investigate a simpler

resource-management problem.
Assume we need to keep a running

checksum on all the variables in
memory. This checksum will be
used to determine if something has
changed and the variables need to be
written into a more permanent type
of memory. The process of calculat-
ing a checksum (or a CRC) takes too
long just to do it all at once.

I’d first break up the checksum
calculation into smaller steps. Per-
haps calculating the checksum of
the next 16 variable locations will be
fast enough. In Listing 2, I broke up

that calculating of the checksum on
all the variables into calculating the
checksum on 16 of the variables at a
time. If 16 is not the right size, it
can be changed. In addition, your
variables won’t be all the same size.
So, you might use a pointer to an 8-
or 16-bit object and increment that
pointer as you go through the loop.

The point here is a technique for
breaking a big operation into smaller
operations and then performing
these smaller operations repeatedly

Listing 2—This is a state machine that breaks up a lengthy task.

INT16 CalcState; // State variable
#define CCS_INIT 1
#define CCS_RUN 2
#define CCS_DONE 3
INT16 i;

void CalcChkSum(void) {
INT16 j;

switch CalcState {
case default: {

CalcState = CCS_INIT;
} break;

case CCS_INIT: {
i = 0; // start with first variable
ChkSum = 0; // Init the CheckSum
CalcState = CCS_RUN;

} break;

case CCS_RUN: {
for (j = 0; j < 16; j++) {

CheckSum = CheckSum + var[i+j];
if (i+j) > LastVariable) {
CalcState = CCS_DONE;
Break;

}
i = i + 16;

} break;

case CCS_DONE: {
// Do whatever you need to here
CalcState = CCS_INIT; // start this all over again

} break;
} // end of switch CalcState {

} // end of void CalcChkSum(void)

Listing 3—This simple code sets and clears test point 1.

void SetTP1(void) {
P4 = P4 | 0x01; // Set bit 0 to a 1

}
void ClrTP1(void) {

P4 = P4 & ~(0x01); // Set bit 0 to a 0
}

2909013 martin.qxp 8/10/2009 2:46 PM Page 64

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 65

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

four test points and you have rou-
tines to Set, Clear, and Toggle each
of the test points. Also, let’s say that
all four test points are on the same
processor port (Port 4, just to give it
a name). The code to set and clear
test point 1 would look like Listing 3.

Now think about the assembly
language that is generated for these
lines of C code. The content of Port
4 will be loaded into a register, the
contents of the register will be
changed with the AND or OR opera-
tion. The result will then be saved
in Port 4. This one C language state-
ment probably translates into three
assembly language statements. And
test points 2, 3, and 4 will have
much the same code.

What if we want to work with test
point 1 inside the interrupt? What if
we want to work with test point 2

until the work is completed. Do you
have a task that is too big to do all
at once? Here’s a way to chop it up.
If we have a real-time operating sys-
tem (RTOS), it would hand out CPU
time to each running task. Using an
RTOS is another method to divide
up tasks, but it’s a lot more compli-
cated and expensive.

Another key point is that we use a
state machine in a manner that you
don’t usually see discussed. It’s per-
fectly fine to use state machines in
this manner.

INTERRUPTS
Interrupts are indeed a very power-

ful concept in the embedded world.
It’s tempting to overuse them. Let
me give you an example.

Suppose we have an interrupt that
comes in with the line frequency.
That’s 60 times per second for the
United States and 50 times per sec-
ond for European countries. It’s
tempting to do more work in the
interrupt routine than should be
done. For example, if the display
needed to be updated, I’ve seen code
that does this inside the line-fre-
quency interrupt routine. The prob-
lem comes with the code that is
changing the values of the displayed
digits or characters. You now have
two routines using the same vari-
ables and that’s a recipe for a big
problem.

A simple example: If you have test
points that the software can manipu-
late and you do this both inside and
outside an interrupt routine, prob-
lems usually occur. Say you have

George Martin (gmm50@att.net) began his career in the aerospace industry in
1969. After five years at a real job, he set out on his own and co-founded a
design and manufacturing firm (www.embedded-designer.com). His designs
typically include servo-motion control, graphical input and output, data acquisi-
tion, and remote control systems. George is a charter member of the Ciarcia
Design Works Team. He is currently working on a mobile communications sys-
tem that announces highway info. He is also a nationally ranked revolver shooter.

ROJECT FILES
To download code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/
230.

ESOURCE
Microprocessor Interrupt Routines, Wikibooks, http://en.wikibooks.org/wiki
/Microprocessor_Design/Interrupts.

P

R

2909013 martin.qxp 8/10/2009 2:46 PM Page 65

George Martin (gmm50@att.net) began his career in the aerospace industry in
1969. After five years at a real job, he set out on his own and co-founded a
design and manufacturing firm (www.embedded-designer.com). His designs
typically include servo-motion control, graphical input and output, data acquisi-
tion, and remote control systems. George is a charter member of the Ciarcia
Design Works Team. He is currently working on a mobile communications sys-
tem that announces highway info. He is also a nationally ranked revolver shooter.

ROJECT FILES
To download code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/
230.

ESOURCE
Microprocessor Interrupt Routines, Wikibooks, http://en.wikibooks.org/wiki
/Microprocessor_Design/Interrupts.

PP

RR

Look at the time the CPU has to
expend with and without this new
concept of counting lines. Without the
counters, the code must test what’s
received to determine a line is
received. With just a simple compare
added to each serial interrupt, these
counters can eliminate all that testing
and overhead.

”
“

outside the interrupt? Sometimes
we’ll be running the assembly code
outside the interrupt that works
with test point 2. We will load a
copy of Port 4 into a register and
then receive an interrupt. That
interrupt routine will change Port 4’s
value.

When we return from the inter-
rupt, the data in our register no
longer matches what is in Port 4
since the interrupt routine just
changed the contents of Port 4.
These two routines are competing
for one resource (Port 4) and will
overwrite each others’ work.

It’s best to never share resources
between interrupt and non-interrupt
routines. Set flags, markers, or use
other techniques to keep from cor-
rupting each others’ data. I’ve seen
too much work done inside the
interrupt routine, and this leads to
difficult problems to find and fix.

SPREAD THE WORK
So, we just covered some basic

concepts of how to break up the
work in an embedded design and
minimize the processing require-
ments in order to meet the real-time
requirements. This is just the tip of
the iceberg, and the discussion con-
tinues right into the topic of real-
time operating systems.

Let me know if there is any aspect of
C programming for embedded systems
that I could cover in a future column. I

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/230
http://en.wikibooks.org/wiki/Microprocessor_Design/Interrupts

66 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

Well-designed internal protection circuitry is needed in Li-Ion battery cells to
prevent dangerously high temperatures and failure. In this article, Jeff explains
how such smart circuitry works. He covers how to check a cell’s state of
charge, find problems, and fix them.

Smart Circuitry for Battery Monitoring

H

by Jeff Bachiochi

elp! My laptop is on fire! I recall a
comedy sketch I saw years ago on

Saturday Night Live called “Happy Fun Ball.”
It was an advertisement for a child’s toy that
had every conceivable negative side effect
from warts to hair loss. The funny (or sad)
thing is that like many of the pharmaceutical
advertisements we see today, the side effects
often seem to outweigh the relief they claim
to provide. So what gives with a battery tech-
nology responsible for arson?

Come on, get real. We’re asking for lighter,
longer-lasting (higher-power) batteries capable
of running our portables longer on a charge.
We got it. Along with this super power comes
the possibility of using it for evil, even if by
accident. Some early laptops had a design
flaw that caused a short circuit to the lithi-
um-ion battery pack. Without internal protec-
tion circuitry to prevent high temperatures
from occurring, Li-Ion cells can fail. Thermal
runaway is responsible for most high-visibili-
ty failures (as you can see in some YouTube
videos). All Li-Ion battery packs now contain
smart circuitry to open up the current path
should temperatures exceed predetermined
limits.

Thermal runaway occurs once a cell
exceeds the unstable temperature of approxi-
mately 150°F (cobalt chemistries).[1] How the
temperature ever reaches this level is the key.
This can come from the lack of internal pro-
tection circuitry, the failure of such circuitry,

FROM THE BENCH

or manufacturing defects. Should internal
protection circuitry fail undetected, request-
ing high current levels will generate a rise in
temperature that could lead to thermal run-
away. Although battery manufacturers strive
to minimize the presence of metallic particles
in their manufacturing process, complex
assembly techniques make the elimination of
all metallic dust nearly impossible and can
lead to internal shorts that (if sufficient) can
elevate temperatures again and lead to thermal
runaway. When thermal runaway occurs in a
cell, other cells in the battery pack (those in
close proximity) will be affected by the local-
ized heat source.

A Li-Ion battery fire is considered a Class
D (combustible metal) fire and must be dealt
with accordingly. A fire extinguisher with a
Class D rating will use dry powder agents
and work by smothering and heat absorption.
(Refer to the figure on the Circuit Cellar FTP
site.)

BATTERY CHEMISTRY
Li-Ion batteries shouldn’t be confused with

lithium batteries, which are disposable (pri-
mary) batteries that use lithium metal or
lithium compounds. Not only are lithium-ion
batteries rechargeable, they also have one of
the best energy-to-weight ratios, no memory
effect, and a slow loss of charge when not in
use.

The lithium-ion battery has a three-layer,

2909002-bachiochi - new.qxp 8/10/2009 2:46 PM Page 66

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 67

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

coiled structure within its case much
like a capacitor (see Figure 1). These
three layers typically comprise a posi-
tive electrode plate of lithium cobalt
oxide (as its chief active ingredient), a
negative electrode plate of a specialty
carbon (as its chief active ingredient),
and a separator (insulating) layer. The
battery is equipped with a variety of
measures to ensure safety, along with
a pressure release valve that releases
gas if the internal pressure exceeds a
specific value (high internal tempera-
ture), thereby preventing the battery
from rupturing.

A cathode of lithium cobalt oxide
provides a crystalline structure that
easily gives up lithium ions during a
charging cycle. Lithium ions pass
easily through the separator, which
contains a nonaqueous solution of a

For the most part,
manufacturers are
avoiding problems by
preventing Li-Ion cells
from being purchased
unless they are pack-
aged in modules that
contain smart circuitry
to monitor their activi-
ty. This allows charg-
ing and recharging to
be handled in a safe
and efficient way.

SAFETY ISSUES
There are safety

issues associated
specifically with lithi-
um ion. Many are obvi-
ous. Extremely low
temperature will slow
chemical reactions
impeding nominal out-
put. Elevated tempera-
tures run the risk of
damaging the elec-
trolyte and producing
increased internal gas
pressure. Ambient tem-
peratures during dis-
charge should be –20°
to 60°C. Each cell is
vented to avoid uncon-
trolled bursting, so
module packs must not
be sealed units in order
to allow for controlled

release if damaged. While the largest
cause of damage (both physical and
operational) to a cell is heat, physical
damage can be catastrophic and must
be reduced by properly protecting
each cell in the module’s design.

We want everything: high current
on demand, high energy density by
mass and weight, quick recharging,
and a long operational lifespan. As
the capacity of batteries increases, it
is important to keep in mind its
potential to release this energy. Gaso-
line is an extremely hazardous energy
source, yet we respect it and use it
carefully. Figure 2 shows the energy
density for selected items.[2] Items
toward the right hold higher energy
densities per kilogram (kg, weight).
Items toward the top hold higher
energy density per liter (volume).

g

lithium salt to prevent electrolysis
of the electrolyte. The carbon materi-
al used in the anode also has a crys-
talline structure that can accept lithi-
um ions during a charging cycle. A
charging potential that moves ions to
the anode creates an abundance of
electrons there (negatively charged)
compared to the cathode that has
given up the ions (positively charged).

Lithium-ion technology continues
to improve by altering the chemical
makeup of the electrodes. Through
continual research, you can expect
an increase in the cycle life, the
capacity, and the safety of lithium-
ion-style batteries. With improve-
ments, we might find a change in
cell potential and charging require-
ments. How can the public be
expected to keep track of all this?

Figure 1—A lithium-ion cell is built much like a capacitor. Electrodes are separated by an insulator that allows
lithium ions to pass through. While the most common shape is cylindrical, rectangular shapes pack a higher
density into the allotted space.

Exhaust gas hole

Pressure release valve

Positive terminal lead

Separators

Positive electrode

Negative terminal lead

Negative electrode

Positive terminal

PTC Element

Gasket

Insulation plate

Insulation plate

Case

2909002-bachiochi - new.qxp 8/10/2009 2:46 PM Page 67

http://www.circuitcellar.com

Note that two FETs in series are used
for added protection.

Although it isn’t a safety issue, the
smart circuit also can prevent the
module from being sucked dry. By
preventing the output voltage from
dropping below a minimum voltage
(approximately 3 V per cell), the
module remains within its recom-
mended charge-discharge parameters
providing optimum life. The smart
circuitry will also stay alive with a
minimum of current draw to keep

68 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

While Li-Ion batteries aren’t chal-
lenging gasoline at this point by
weight or volume, and today’s
hybrids prefer nickel metal hydride,
most future plug-ins will use Li-Ion.

At approximately 3.6 V, the Lithi-
um-Ion battery has a typical output
voltage of more than two times that
of alkaline batteries. Note that this
does not easily substitute well in
today’s electronic equipment the
way NiCd batteries have. To prevent
a user from misusing Li-Ion batter-
ies, either by discharging the cells
too far or too fast, manufacturers
require individual cells to be com-
bined into modules that include
some safety circuitry.

SMART CIRCUITRY
Safety is a priority with Lithium-

Ion manufacturers. Each module con-
tains circuitry to monitor the electri-
cal charge of individual cells as well
as their temperatures. Figure 3 shows
a typical multiple-cell module. In
some cases, the battery pack makes
internal data, like temperature, avail-
able to external circuitry. But for the
most part, the internal smart circuit-
ry handles everything. Excess current
draw (possibly from a short circuit)
can be handled by opening up the
current path via an internal FET.

protecting the module. On the charg-
ing side of the operation, the circuit
will prevent damage to the module
from overcharging. Once the module
has reached a maximum charge volt-
age of approximately 4.3 V per cell,
the smart circuit can again open the
circuit.

A thermistor is often used to keep
the module within temperature
specs. This is a safety issue that is
monitored closely during charging
and discharging to prevent any
chance of cell bursting. Over temper-
ature may be due to the environment
(ambient temperatures), charging-dis-
charging (internal temperatures), or
combination of both.

LONG LIVE LI-ION
The possibility of a cell mismatch

within a module increases as the
number of cells and load currents
increase. Cell balancing can be
employed to counteract cell mis-
matches. There are two kinds of mis-
match in a module: state-of-charge
(SOC) and capacity/energy (C/E) mis-
match. Although the SOC mismatch
is more common, both contribute to
limit the capacity (milliamp-hours)
of a module to the capacity of the
weakest cell.

It is important to recognize that
the cell mismatch results more from
limitations in process control and
inspection than from variations

Figure 2—This graph shows how various elements compare in energy density based on
weight (horizontal) versus volume (vertical). The ultimate material would be both light in
weight and small in volume.

Figure 3—Today’s Li-Ion battery packs have special safety circuitry that prevents high current
and temperature runaway.

Battery pack

Thermistor

Temperature fuse Control SW Control SW

Control IC

Safety circuits

+

T

_

2909002-bachiochi - new.qxp 8/10/2009 2:46 PM Page 68

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 69

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

Li-Ion technology. The high percent-
age of battery-to-total-vehicle cost
makes these next-generation battery
decisions make or break. So you
won’t be surprised in knowing that
auto manufacturers are watching how
battery manufacturer’s products are
operating in non-automotive applica-
tions. Some form of Li-Ion batteries
is presently running in laptops, cell
phones, portable DVD players, and
power tools. Most of today’s products
require charging and discharging cur-
rents approximately 1 to 2 A. You

inherent in the Li-Ion chemistry. The
use of cell balancing can improve the
performance of series-connected Li-Ion
cells by addressing both SOC and C/E
issues. A SOC mismatch can be reme-
died by balancing the cell during an
initial conditioning period and subse-
quently during only the charge phase.
C/E mismatch remedies are more dif-
ficult to implement, harder to meas-
ure, and require balancing during both
charge and discharge periods.

Cell balancing is defined as the
application of differential currents to
individual cells (or combinations of
cells) in a series string. Normally, of
course, cells in a series string receive
identical currents. A battery pack
requires additional components and
circuitry to achieve cell balancing.
However, the use of a fully integrated
analog front end for cell balancing
reduces the required external compo-
nents to just balancing resistors. This
type of solution eliminates the need
for discrete capacitors, diodes, and
most other resistors to achieve balance.

Battery pack cells are balanced
when all the cells in the battery pack
meet two conditions. One, if all cells
have the same capacity, they are bal-
anced when they have the same
SOC. In this case, the open circuit
voltage (OCV) is a good measure of
the SOC. If, in an out-of-balance
pack, all cells can be differentially
charged to full capacity (balanced),
they will subsequently cycle normal-
ly without any additional adjust-
ments. This is mostly a one-shot fix.
Two, if the cells have different capac-
ities, they are also considered bal-
anced when the SOC is the same.
But, since SOC is a relative measure,
the absolute amount of capacity for
each cell is different. To keep the
cells with different capacities at the
same SOC, cell balancing must pro-
vide differential amounts of current to
cells in the series string during both
charge and discharge on every cycle.

As you can imagine, proper balanc-
ing depends on one’s ability to monitor
the state of each individual cell. Linear
Technology is one of the many compa-
nies with a complete line of charging
and monitoring devices for a number
of different battery chemistries. A

new family of multicell, high-volt-
age, battery-stack monitors includes
12-bit ADCs, precision voltage refer-
ences, high-voltage input multiplex-
ers, and a serial interface. Because
the applications include electric and
hybrid vehicles that can typically
have battery stacks over 100 V, these
devices can be stacked to monitor
every cell.

LTC6802
It’s no wonder hybrid and PEV

manufacturers are using caution with

2909002-bachiochi - new.qxp 8/10/2009 2:47 PM Page 69

http://www.circuitcellar.com
http://www.cadsoftusa.com

70 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

can expect vehicle currents to exceed
this by a factor of 100, so the Li-Ion
battery management system (BMS)
will become even more important.

Good BMS designs will be a bal-
ance of performance, economics, and
safety. Their requirements will
include wide temperature fluctua-
tions and electrically noisy environ-
ments. High common-mode voltages
present tough challenges to analog
electronics. Each cell needs to be
measured differentially for an accu-
rate SOC. The Linear Technology
LTC6802 can measure and monitor a
string of 12 Li-Ion cells (see Figure 4).
A 13-to-2 multiplexer can connect
any cell to a 12-bit delta-sigma ADC.
Five groups of registers hold 6 bytes

of RD/WR configuration data, 18 bytes
of RD-only conversion data, 3 bytes of
RD-only flag data, 5 bytes of RD-
only temperature data, and a byte of
RD-only packet error codes.

It is assumed that all cells in a
serial chain will have the same
capacity. In a perfect world, each of
these would charge and discharge
together, remaining in an identical
SOC. However, slight imbalances
due to manufacturing variables,
aging, or differing SOCs when first
assembled into modules can grow
with each charge/discharge cycle.
The module’s potential is the sum of
each OCV. The cells with less capac-
ity will become fully charged first.
They will then be overcharged while

Figure 4—The Linear Technology LTC6802 contains all of the components to monitor and
bypass current of up to 12 cells in series. Multiple devices can be daisy-chained to handle
battery modules with longer chains of cells.

Regulator

Control

MUX Δ∑ A/D Converter

Results
register

and
communications

Watchdog
timer

Reference

5

6

C12

S12

C11

S3

C2

C1

S1

NC

S2

10 kΩ

12

SCKO

SDOI

CSBO

CSBI

SDO

SDI

SCKI

VMODE

GPIO2

GPIO1

MMB

TOS

WDTB

V+

VREG

VTEMP1 VTEMP2
VREF

Die
temp

External
temp

7

24

25

26

27

28

29

30

31 32 33

4

34

37

3

2

1

44

43

42

41

40

39

38

36

35

10 kΩ

10 kΩ

10 kΩ

10 kΩ

2909002-bachiochi - new.qxp 8/10/2009 2:47 PM Page 70

http://www.circuitcellar.com
http://www.lvr.com
http://www.picservo.com
http://www.xgamestation.com

www.circuitcellar.com • CIRCUIT CELLAR® 71

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

the higher-capacity cells
are still trying to get full.
In fact, these may never
get to a full charge
because the module’s SOC
(sum of all the cells OCVs)
has reached the maximum
limit. Not only are cells
within the module being
damaged, but the total
capacity drops faster than
normal because it can
only be as good as the
least cell. In a serially con-
nected stack, all cells
receive the same charging
current, so those cells
with an imbalance will
not be able to recover
without outside assis-
tance. This problem
increases as the number of
cells in a module’s string
increases.

Today, creating a bal-
ance in the cells of a mod-
ule is most often handled
during charging. This is

Photo 1—I monitored the five cells in this Ryobi 18-V Li-Ion battery pack with Linear’s evaluation board for
the LTC6802-1. This arrangement allowed me to balance the cells in this module and improve the poor
performance I was getting from it.

2909002-bachiochi - new.qxp 8/10/2009 2:47 PM Page 71

http://www.circuitcellar.com
http://www.gridconnect.com
http://www.machinepier.com

72 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

accomplished by routing current
around those cells that have reached
optimum SOC allowing those with a
lesser charge to continue gaining
charge without exceeding the mod-
ules maximum voltage. Referring
back to Figure 4, you can see a FET-
controlled 10-kΩ resistor load that
can be enabled across each cell. This
is only approximately 36 μA and not
enough to create any significant cell-
balancing currents, but it can be
used as a driver for an external FET
and load. Or you can place a smaller
external resistor across the 10 kΩ
and use the internal FET. The catch
here is that you must pick your com-
ponents so that you are not creating
a condition of dissipating too much
heat internally (within the device or
the module).

Firmware used to monitor each
cell’s SOC can determine which
cells get bypassed, juggling the load
so that the internal FET’s dissipation
won’t raise the LTC6802’s tempera-
ture above the prescribed limit.
Using a higher load reduces the cur-
rent (and heat) and allows multiple
cells to be bypassed at the same
time. A module that requires a high
degree of cell balancing may take a
few charge/discharge cycles for prop-
er balancing to take place.

SPI
The SPI used to monitor the

LTC6802-1’s registers can be daisy-
chained to multiple devices. This has
special importance when multiple
devices are used to monitor stacks
larger than 12 cells. The second

Photo 2—The application that supports Lin-
ear’s Evaluation Board enabled me to check
each cell’s SOC (a), find a problem with cell 2
(b), and temporarily apply loads to discharge
other cells to the same OCV. c—This allowed
the charger to bring all cells to a full SOC.

a)

b)

c)

2909002-bachiochi - new.qxp 8/10/2009 2:47 PM Page 72

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 73

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

Jeff Bachiochi (pronounced BAH-key-AH-key) has been writing for Circuit Cellar since 1988.
His background includes product design and manufacturing. You can reach him at
jeff.bachiochi@imaginethatnow.com or at www.imaginethatnow.com.

PROJECT FILES
To view an additional figure, go to ftp://ftp.circuitcellar.com/pub/Circuit_
Cellar/2009/230.

ESOURCES
[1] I. Buchmann, “Lithium-Ion Safety Concerns,” Cadex Electronics,
www.batteryuniversity.com/partone-5B.htm.

[2] Energy density, Wikipedia, http://en.wikipedia.org/wiki/Energy_density.

OURCES
LTC6802-1 Battery stack monitor
Linear Technology | www.linear.com

18-V Lithium battery pack
Ryobi Power Tools | www.ryobitools.com

R

P

has returned the battery pack to
optimum performance.

TROUBLE IN PARADISE
I’m not getting warm fuzzies

about my first experience with the
Li-Ion technology in tools. There is
nothing on the outside that tells me
if everything inside is working cor-
rectly. Without digging into this, I
would never have known there was
a cell balance problem. This might
be a fluke, but it has me questioning
if we’re ready to unleash the power
of Li-Ion.

Our future is being built on lithi-
um cell technology. Laptop fires
have taught us that we must be cau-
tious in working with any high-
energy density material. Most peo-
ple understand the potential of gaso-
line and treat it with respect. Smart
modules may provide us with a safe
way of dealing with the power of
lithium, but it looks like we might
have a way to go to make them fool-
proof.

Should a Li-Ion battery be able to
withstand being pierced by a nail
without exploding? It sounds to me
like trying to make gasoline that
will not burn if a lit match is acci-
dentally dropped into the tank. I

S

device is referenced to the top of the
thirteenth cell, so it will have a dif-
ferent supply potential. Ordinarily,
this potential creates a problem (no
common ground) and the communi-
cations between devices must be iso-
lated in some way. The LTC6802-1
uses high-side/low-side ports that
allow daisy-chained devices separat-
ed by diodes to communicate using
current levels rather than voltage
levels.

When using stacked devices a
command byte is clocked to all
devices in parallel. When data needs
to be passed, the devices are inter-
nally connected as a cascading shift
register. Data bytes following a write
command are sent to the device at
the top of the stack first ending with
the data for the device at the bottom
of the stack. After a read command,
data comes from the device at the
bottom of the stack first with the
data from the device at the top of
the stack last.

Linear Technology has an evalua-
tion board pair that can be used to
evaluate the LTC6802-1 right on
your PC. Photo 1 shows the demo
DC1331C and 590B connected to my
Ryobi 18-V lithium battery pack. I
picked up a new portable drill
expressly to investigate the lithium
battery packs. The first thing I did
was void the warranty by opening
the high-capacity pack and tacking
on some wires to the each cell so I
could monitor each externally. What
I found surprised the heck out of me.

BATTERY MONITOR MINI GUI
This battery pack internally moni-

tors the SOC and turns off the cur-
rent when the SOC falls below the
minimum limit. So, I charged up the
pack, plugged it into the drill, and
ran it to the point of battery pack
shutdown. Photo 2a shows what I
found when I looked at the Ryobi
battery pack using the Linear Tech-
nology battery monitor application.
This application gives you complete
control over the LTC6802-1. All but
cell 2 had equal SOCs. Cell 2 was far
below the others by more than 1 V!
This meant the other cells had to be
overcharged to compensate for cell 2’s

lower voltage.
I expected to find some kind of

cell balancing when the pack was
recharged. To my dismay, I find that
this was not the case. Photo 2b
shows the new charged state results.
While the voltage of cell 2 has come
up a higher percentage than the
other cells, you would expect this
since this cell is not operating in the
horizontal region of a cell’s dis-
charge curve (4 to 3.5 V), but in the
vertical region (less than 3.5 V). This
pack needs to be cell balanced and
gave me a good excuse to check out
the features of Linear Technology’s
application a little more intimately.
As you can see in Photo 2b, I’ve
issued a command to the LTC6802
to apply loads to all the cells except
cell 2. The evaluation board used
external FETs and 150-Ω resistors as
a load for each cell. The cells are
discharged slowly. I shut off each
load as it approached cell 2’s volt-
age. When all the cells were at the
same potential, I plugged the battery
pack back into the charger. The
charge cycle was able to do its job
on all the cells, and the results were
far more promising (see Photo 2c).
Cell 2 now has a SOC that’s compa-
rable to the other four. Cell balancing

2909002-bachiochi - new.qxp 8/10/2009 2:47 PM Page 73

mailto:jeff.bachiochi@imaginethatnow.com
http://www.imaginethatnow.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/230
http://www.batteryuniversity.com/partone-5B.htm
http://en.wikipedia.org/wiki/Energy_density
http://www.linear.com
http://www.ryobitools.com
http://www.circuitcellar.com

74 CIRCUIT CELLAR® • www.circuitcellar.com

Se
pte

mb
er

20
09

 –
 Is

su
e 2

30

1 2

3 4

5 6

7 8

9

10

11 12

13

14 15

16

17

18

19

20

CROSSWORD

The answers are available at
www.circuitcellar.com/crossword.

Down
1. Sa = b, b = a
2. Write data to a disk
3. Preset access; the opposite of random
4. Middle tonal range
6. IrDA is a standard for data transmission via what light?
7. The home of Station X, the main site of the UK’s WWII

decryption efforts
8. Charge holder
9. Protects a system from voltage surges
13. 3.463 candelas per square meter
15. Execute
19. No user configuration

Across
5. x = x
10. Oe
11. The “B” in BEDO DRAM
12. // Initialize the LED output subsystem
14. The “Curt” (1902–1988) behind the Curta
16. 10100

17. “High-k” stands for “high ______ constant”
18. RPC (three words); Protocol for requesting

services
20. Single-user PC

crossword2.qxp 8/10/2009 2:48 PM Page 78

http://www.circuitcellar.com
http://www.circuitcellar.com/crossword

www.circuitcellar.com • CIRCUIT CELLAR® 75

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

THE DIRECTORY OF
PRODUCTS AND SERVICES

AD FORMAT: Advertisers must furnish digital submission sheet and digital files that meet the specifications on the digital submission sh eet. ALL TEXT AND OTHER
ELEMENTS MUST FIT WITHIN A 2 " x 3" FORMAT. Call for current rate and deadline information. E-mail adcopy@cir cuitcellar.com with your file and digital submission
or send it to IDEA BOX, Cir cuit Cellar , 4 Park Street, V ernon, CT 06066. For more information call Shannon Barraclough at (860) 875-2199.

The Vendor Directory at www.circuitcellar.com/vendor/
is your guide to a variety of engineering pr oducts and services.

IDEA
BOX

UUSSBB
Add USB to your next

project—it’s easier than you
might think!

USB-FIFO up to 8 mbps

USB-UART up to 3 mbps

USB/Microcontroller boards

pre-programmed with firmware

2.4GHz ZigBee™ & 802.15.4
RFID Reader/Writer

Absolutely NO driver software

development required!

www.dlpdesign.com

ib-230.qxp 8/10/2009 4:19 PM Page 75

mailto:adcopy@circuitcellar.com
http://www.circuitcellar.com/vendor/
http://www.dlpdesign.com
http://www.circuitcellar.com
http://www.tracesystemsinc.com
http://www.allelectronics.com
http://www.pulsar-inc.com
http://www.jkmicro.com

76 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

���

�������������	

��������	��
����

���� ���	���� � ��� ��
���������
�����	������
�������

ib-230.qxp 8/10/2009 4:19 PM Page 76

http://www.circuitcellar.com
http://www.taltech.com
http://www.i2cchip.com
http://www.flexipanel.com
http://www.hexwax.com
http://www.prolificusa.com
http://www.ccsinfo.com/ccap
http://www.nkcelectronics.com
http://www.tri-plc.com/cci.htm
http://www.captroncorp.com
http://www.picofab.net

www.circuitcellar.com • CIRCUIT CELLAR® 77

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

Low cost Temperature Data
Acquisition and Control
Low cost Temperature Data
Acquisition and Control

3.0 x 4.0", 50 μA standby,

200 mA, 6-24V DC

C/C++ programmable,

Ready to use firmware

100+ Temperature IC-Sensors with

0.5°C accuracy

Thermocouple with 24-bit ADC,

12-bit ADC

CompactFlash with FAT file system support

Solenoid drivers, LCD, RS232, ZigBee wireless

10/100-baseT Ethernet or USB

Aluminum box with screw terminals

 Inside great products. Behind great ideas.

phyCORE® System on Modules:

ARM11: i.MX35, i.MX31

ARM9: i.MX27, LPC3250, LPC3180

Cortex M3: STM32F103

ARM7: LPC2294

XScale: PXA270

x86: Z510, Z520, Z530 (Atom®)

Blackfin: ADSP-BF537

Coldfire: MCF5485

PowerPC: MPC5554, MPC5567,

MPC5200B, MPC565, MPC555

phyCORE® Rapid Development Kits include SOM,

Carrier Board, LCD (kit specific), schematics,

software, free BSP for applicable kits and a start-up

guarantee. The Carrier Board serves as a target

reference design, allowing the SOM to easily port

to the user’s target hardware.

phyCORE-LPC3250

www.phytec.com |800.278.9913| www.phycore.com

ib-230.qxp 8/10/2009 4:20 PM Page 77

http://www.phytec.com
http://www.phycore.com
http://www.circuitcellar.com
http://www.reachtech.com
http://www.stx104.com
http://www.can232.com
http://www.canusb.com
http://www.earthlcd.com
http://www.mcc-us.com
http://www.tern.com
http://www.scidyne.com

78 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

Starting at $125!

Program in
Assembler, BASIC, C, and Forth

www.TechnologicalArts.com

Adapt9S12XDP512
Modular Prototyping System

* Robotics and Mechatronics
* Electronic Fuel Injection
* Freescale 9S12XDP512

* RTOS-capable

Evaluate * Educate * Embed

�
�
�
�
�
�
�
�
�

To
o

ls
 f

o
r

E
m

b
ed

d
ed

 D
ev

el
o

p
m

en
t

ARM7
ARM9
CORTEX-M3

� C/C++*

� Code Wizards
� Debugging**
� Simulation
� Support

www.crossware.com
360-812-2397

Embedded C++*

Advanced software
tools since 1984

A quality tool suite for ARM
microcontrollers

®

®

Including Jaguar interface**

�������	
������
���
���� ����

����� ��������

www.copelandcommunications.com

Low Cost 56K V.92 MNP4 Modems, Dialup Device
Servers, Ethernet and WiFi—all in one form factor!

��300 – 56K baud V.92
��V.42 - V.42bis - MNP4
��Global Compliance—

5KV
��FCC, CE and TBR21 approvals
��AT command set
��SocketModem™ compatible
��Low Power—35mA
��Small Footprint

1.045” x 2.54”

��Wireless Modules—
902-928MHz - 33Kb

��Auto Error Detection
& Flow Control

��Modules are H/W & S/W
compatible

��Custom antennas
��USB 2.0 Modules—Adapt

legacy RS-232 DB9 to USB
��WiFi, Ethernet available soon!

Low Cost Embedded OEM
Modems & Device Servers

ib-230.qxp 8/10/2009 4:20 PM Page 78

http://www.TechnologicalArts.com
http://www.crossware.com
http://www.copelandcommunications.com
http://www.circuitcellar.com
http://www.medallionsystem.com
http://www.aagelectronica.com
http://www.mentala.com
http://www.melabs.com
http://www.melabs.com

78 AAG Electronica, LLC

32 AP Circuits

29 ARM techcon3 Conference

75 All Electronics Corp.

77 Apex Embedded Systems

7 Atmel

33 CWAV

69 CadSoft Computer, Inc.

23 Calao Systems

76 CapTron Corp.

30 Comfile Technology, Inc.

78 Copeland Communications

78 Crossware Products, Inc.

76 Custom Computer Services, Inc.

75 DLP Design

19 DesignNotes

21 EMAC, Inc.

77 Earth Computer Technologies

21 Elprotronic

The Index of Advertisers with links to their web sites is

located at www.circuitcellar.com under the current issue.

Page

56 ExpressPCB

10 ezPCB

76 FlexiPanel Ltd.

11 Front Panel Express LLC

71 Grid Connect, Inc.

19 HobbyLab, LLC

76 I2CChip

31. 42 ICbank Inc.

19 Intuitive Circuits LLC

23 Ironwood Electronics

32, 34 JKmicrosystems, Inc.

75 JKmicrosystems, Inc.

2 Jameco

70 Jeffrey Kerr, LLC

18 Keil Software

57 LPKF Laser & Electronics, N. America

70 Lakeview Research

77 Lawicel AB

3 Lecroy

15 Lemos International Co. Inc.

11 Linx Technologies

77 MCC (Micro Computer Control)

71 MachinePIER

78 Mental Automation, Inc.

5 Microchip Technology, Inc.

78 microEngineering Labs, Inc.

39 Mouser Electronics

76 NKC Electronics

C2 NetBurner

70 Nurve Networks LLC

15 PCBCore

55 PCB West Design Conf.

34 PCB-Pool

C4 Parallax, Inc.

77 Phytec America LLC

76 Picofab Inc.

20 Pololu Corp.

76 ProlificUSA

Page Page Page

75 Pulsar, Inc.

17 R4 Systems Inc.

C3 Rabbit, A Digi International Brand

77 Reach Technology, Inc.

28 SoC Conference

27 Saelig Co.

77 Scidyne

47 Sealevel Systems

1 Synapse Wireless

76 TAL Technologies

78 Technical Solutions, Inc.

40, 41 Technologic Systems

78 Technological Arts

77 Tern, Inc.

25 Texas Instruments

75 Trace Systems, Inc.

76 Triangle Research Int’l, Inc.

22 Trinity College Fire-Fighting Robot Contest

INTELLIGENT ENERGY SOLUTIONS Frequency Sensing Made Simple: Power Grid

Frequency Monitor Design

IR Signal Control

Digitally Controlled Amplifier

THE DARKER SIDE Multirate Techniques and CIC Filters

ABOVE THE GROUND PLANE Capacitor ESR Measurement

FROM THE BENCH Air Flow Analysis

SILICON UPDATE Thumbs Up: The ARM Saga Continues

www.circuitcellar.com • CIRCUIT CELLAR®

INDEX OF
ADVERTISERS

PREVIEWof October Issue 231

Theme: Signal Processing
November Issue 232

Deadlines
Space Close: Sept. 10

Material Close: Sept. 18

Theme

Analog Techniques

ATTENTION ADVERTISERS

Call Shannon Barraclough
now to reserve your space!

860.875.2199
e-mail: shannon@circuitcellar.com

79

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

79-advertiser's index.qxp 8/10/2009 3:13 PM Page 79

http://www.circuitcellar.com
http://www.circuitcellar.com
mailto:shannon@circuitcellar.com

80 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0

PRIORITY

Ordinarily, I wouldn’t dwell on a nontechnical subject this long, but apparently I hit a nerve with readers when I first
described my problems with moles (Circuit Cellar 228). It seems strange that discussing mole eradication in an engineering
magazine should elicit the most reader feedback in a dozen years, but here we are again.

When I left you last time, I was experimenting with buried vibrators as the latest technical solution to the problem. Years
ago, I had tried the commercial battery-operated vibrators with no success, but I wondered if it was merely an issue of the mag-
nitude of the vibration and not the technique. This time I buried powerful 12-VDC motors with off-center shaft-mounted
weights. The resulting vibration was so powerful, in fact, that it was virtually impossible to hold one of these motors in your
hand. Even with the motors enclosed in plastic pipe and buried, I could feel the periodic low frequency rumble as I walked
around the house. And the results?

I am very unhappy to report that it was an utter and absolute failure! Apparently, constructing rotating shaft vibrators with
this much amplitude doesn’t work. They just can’t take the duty cycle (range 5% to 10%) without self-destructing. I didn’t dig
them all up, but the ones I did showed either bearing or commutating brush failure (either seized up or opened the electrical cir-
cuit) and all were dead in about three weeks. That much mechanical vibration must either necessitate a minuscule duty cycle
or some super-duper bearings and robust mechanics. So much for that idea.

Now the moles have even started digging tunnels between the edge of the garage and the blacktop driveway. The good news
is that this very irritating dig site afforded a perfect place to retest the method suggested by commercial exterminators and a few
readers—castor oil. For this test, I bought a quart of MoleMax (a castor oil solution usually connected to a hose and enough to
treat 10,000 square feet) and poured the entire bottle along the 20′ strip of soil between the concrete and blacktop where the
mole keeps digging. About a week after soaking in the concentrated application of castor oil, the mole was back! Next …

My next strategy was: “If you can’t beat ‘em, crush ‘em.” Seriously, the biggest aggravation about moles is the ugly raised
tunnels across the flat mulch. I had already determined that lots of vibration (from my big tractor) kept them away for a day or
two, but the big agricultural tread tires tear up the yard more than the moles. Since the experiment with the buried motor vibra-
tors was a dismal failure, the only way to still get substantial vibration was to drive around in a smaller tractor (with turf tires
and a 625-lb water-filled lawn roller) that flattens all the mole hills too. While the jury is out on its ultimate success, there is a
great deal of satisfaction in squashing the little suckers as I even out their dirty work.

One of the more popular eradication methods suggested by readers and frequently mentioned on the Internet is probably what
I’ll try next—pumping carbon monoxide into the tunnels. Typical methods involve attaching a hose to a motor vehicle exhaust,
but there is no way I can get my pickup truck out in the back yard without doing more cosmetic damage than I’m trying to pre-
vent. Disregarding chain saws and handheld gas-powered devices, the most portable exhaust generator I have appears to be either
my two-cycle, 3-HP (30-lb) snow blower or my four-cycle, 10-HP (very very heavy) snow blower. I’ll try simple and light first.
And, yes, I know that this two-cycle engine is very inefficient for producing CO. Given the back pressure added by a hose, the
exhaust is probably mostly unburned hydrocarbons, but I trust all that crap is just as un-breathable as CO.

Finally, the one method that might guarantee absolute success is something I don’t dare try. Many readers proclaimed suc-
cess using techniques involving stuffing road flares, smoke bombs, or gasoline down the holes and lighting them. The best com-
mercial solution like that appears to be a $2,000 Rodenator (www.rodenator.com). It works by injecting a mixture of oxygen and
propane into the tunnel system and literally exploding the entire tunnel network. (Make sure you watch the Cadyshack video
on their site.) ;-)

Certainly, I’ve been known to spend thousands in pursuit of some obsessions, but this is a safety issue. Most Rodenator cus-
tomers use the device on farms, lawns, or just dirt. The common denominator is good old “nonflammable” dirt. I’ve got 20-plus
years of compacted “very flammable” bark mulch. My fear is that an underground oxy/propane explosion will either start the
mulch equivalent of an underground coal mine fire or create a giant blown up cloud of fine bark dust particles that ignites like
a grain silo explosion. Basically, while incinerating the entire yard down to the water table might be a viable solution, the neigh-
bors would certainly frown on it.

So, I’m not quite back at square one yet, but options are becoming limited. Certainly, the uniqueness of having all that mulch
makes abatement equally unique. I may yet have to resort to one reader’s bizarre solution: put a 5-kW generator in a wagon
along with a few salvaged Klystron tubes (from microwave ovens) aimed down at the tunnels and just cook a little old-fashioned
road kill dinner. Sounds grizzly, but in desperate times …

For more mole war pics, check out www.circuitcellar.com/Newsletter/0709.html.

The Critter Chronicles: The War Continues

steve.ciarcia@circuitcellar.com

by Steve Ciarcia, Founder and Editorial Director

INTERRUPT

steve_edit_230.qxp 8/12/2009 4:46 PM Page 96

http://www.rodenator.com
http://www.circuitcellar.com/Newsletter/0709.html
mailto:steve.ciarcia@circuitcellar.com
http://www.circuitcellar.com

Sweet!
Introducing the MiniCore™

Series of Networking Modules

1.888.411.7228
rabbitwirelesskits.com

2900 Spafford Street, Davis, CA 95618

Smaller than a sugar packet, the Rabbit® MiniCore series of

easy-to-use, ultra-compact, and low-cost networking modules

come in several pin-compatible flavors. Optimized for real-time

control, communications and networking applications such

as energy management and intelligent building automation,

MiniCore will surely add sweetness to your design.

MiniCore Module
Development Kits

$99 Limited
time offer.

Buy now at: rabbitwirelesskits.com

From

Wi-Fi and
Ethernet
Versions

Wireless and wired interfaces

Ultra-compact form factor

Low-profile for design flexibility

Priced for volume applications

C3.qxp 8/5/2009 10:18 AM Page 1

http://www.rabbitwirelesskits.com
http://www.rabbitwirelesskits.com

c4.qxp 8/5/2009 10:16 AM Page 1

http://www.parallax.com/education
http://www.parallax.com

www.circuitcellar.com • CIRCUIT CELLAR®

11

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

Working with and testing FPGA designs requires you to develop, execute, and
maintain a proper verification plan. Sharad covers simulation and verification
from an engineer’s perspective. He explains bug/defect tracking, revision control,
and test documentation.

Verification and Simulation of
FPGA Designs

Y

B
O

N
U

S

ARTICLE
by Sharad Sinha

ou’re reading Circuit Cellar, so I assume you’ve
worked with FPGAs at some point. If you’ve

designed and tested FPGA-based projects, you’re aware of
the various processes that you must follow to develop, exe-
cute, and maintain a proper verification plan. Any verifica-
tion plan will always include a functional and timing sim-
ulation of the FPGA design to achieve a finished design.
However, at the same time, it is possible that there is
another important goal to be achieved during simulation.
This is to print appropriate messages on the console so you
can obtain correct information. This kind of situation gen-
erally arises when design companies have to provide a
client with the entire simulation and verification setup.
Sometimes a client will request this. Other times the
design house may prefer to have the simulation and test
setup delivered—in addition to the FPGA image or the
source files—to ensure that it does not run into problems if
the client decides to test the source code. Another advan-
tage is that it helps the person running the simulation and
test. He doesn’t have to review and sift through the simula-
tion waveforms, which is a time-consuming and tiring task
that’s particularly difficult to do with large designs.

Figure 1 shows a typical setup for a design under test
(DUT). The Driver module sends test vectors as input to
the DUT. The Monitor module verifies the signal pattern
coming out of DUT against the expected pattern. The Dri-
ver and Monitor modules are the two important portions of
what is generally referred to as the test bench (TB). The
complete setup is generally referred to as TB TOP, which
includes the instantiated DUT. This entire setup works in

a simulator environment, as shown by the gray box. Print-
ing appropriate test success/failure messages is handled in
the Monitor module.

To perform verification, designers and verification engi-
neers generally opt for a script-based environment. A prop-
erly developed verification script makes design verification
easy and structured, so let’s review the basic objectives of a
verification plan. One, test the functionality of the DUT to
ensure that it functions as intended. Two, find the func-
tional and timing-related bugs. Three, make the bugs visi-
ble to the verification engineer, designer, and the project
manager. And four, help the designer initiate a design
change by showing the connection between the bug and
functionality.

How do you test functionality to catch the function- and
timing-related bugs? This is where functional and timing
simulations come into play.

FUNCTIONAL SIMULATION
You can test the functionality of the DUT with no infor-

mation about the timing of signals in the actual target

THE MAGAZINE FOR COMPUTER APPLICATIONS

FFiigguurree 11——This is a typical setup for a functional and timing simulation
of a DUT.

Driver DUT Monitor

Simulator

http://www.circuitcellar.com

22 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

FPGA. Basically, a given input pattern to the DUT must
give an output pattern expected for that input pattern.
The routing and delay information related to the target
device are not used in this simulation.

The register transfer level (RTL) description of the
DUT is used in this simulation to check for RTL integri-
ty. The driver sends different sets of signals as input to
the DUT, and the monitor compares the DUT output
with the expected output. What are these different sets of
signals? Let’s consider an example. Say the DUT is a
logic design that’s supposed to take Ethernet packets as
input, strip all headers and control information, and send
out only the payload on different FPGA ports, as per the
packet type, to other modules connected to the FPGA
(see Figure 2). This is the DUT’s primary function. As
you can see, this is basically the routing of different
kinds of packets to different ports.

The Driver module in the test bench is then supposed
to send different kinds of Ethernet packets as input to
the DUT. These Ethernet packets will form distinct test
cases. The IEEE 802.3 standard defines the structure of an
Ethernet frame (see Table 1). There are 27 different val-
ues for the Ethertype field. Let’s say that these 27 fields
are allotted to the four ports, with ports 1, 2, and 3 get-
ting seven fields and port 4 getting six fields. For the
functional simulation, there should be a minimum of 27
test cases to ensure that the proper packets are routed to
the proper ports. It is assumed that all other field con-
tent, except the payload, remains the same.

The Driver module in the test bench generates these
packets and sends them to the DUT. It becomes very
easy to conduct these 27 test cases if there are 27 text
files, one for each test case, and the driver reads the file
corresponding to the test case selected by the user and
then sends its contents to DUT. The driver is also
responsible for providing clock and reset signals to the
DUT.

The Monitor module easily determines which payload
was meant for which port. Hence, it can easily determine
if the correct payload arrived on the correct port. This is
because the payload information is present in the text
files. Both the driver and the monitor can read these files
and extract the needed information.

TIMING SIMULATION
The simulation setup remains the same as that in a

functional simulation—except instead of using the RTL
model of the DUT, the DUT model generated by the syn-
thesis tool is used. Examples of synthesis tools are
Altera’s Quartus II and Xilinx’s ISE. During the synthesis
process, there will generally be an option to generate the

post place and route model of the design. This model is
generated after the placement of logic in the FPGA
resources and the synthesis tool interconnects (routes)
the resources. This model is a .vo or .vhd file in the
Quartus II. It is a .v or .vhd file in the Xilinx ISE. This
depends on whether the RTL top module is written in Ver-
ilog or VHDL. A standard delay format (SDF) file—exten-
sion .sdo in the Quartus and .sdf in the Xilinx ISE—will be
generated too. The SDF file has information on the static
delay characteristics associated with the mapping of logic
into FPGA resources (cells, LUTs, routing, etc.) for the
target FPGA. The simulator uses the SDF file to perform
timing simulation for the design.

The verification staff may decide to go for only the
functional simulation post-place and route. In that case,
one has to comment the reference to the SDF file in the
.vo or .vhd model file. If this is not done, it may not make
any difference if the simulator is instructed—through GUI
preference or command line switch—to not use the SDF
file, and the simulator will still use the SDF file. This is
basically a result of how the model is generated by the
synthesis tool and how it references to the SDF file.
Tools require either manual commenting at the end or
they will give an option to disable back annotation dur-
ing model generation. For the .vo model (say, dut.vo gen-
erated by the Quartus II), the reference to the SDF file is
the following statement in the .vo file:

initial $sdf_annotate("dut_v.sdo");

It is also important to account for the timing models
generated by the synthesis tool. For instance, the Quar-
tus II can generate two different types of timing models:
fast corner and slow corner. The former timing model is
a best-case analysis of the design. Best-case analysis

FFiigguurree 22——This is a DUT which receives Ethernet packets and sends
them out on different ports based on the information in the Ethertype
field of the packet.

Port 1

Port 2

Port 3

Port 4

Packets egress

Packets egress

Ethernet packets
Packets egress

Packets egress

DUT

TTaabbllee 11——The structure of Ethernet Frame/Packet. MAC address stands for Media Access Control address, which is an address assigned to a
device which can communicate via Ethernet protocol. CRC 32 is the 32-bit Cyclic Redundancy Check field.

Preamble Start of frame Delimiter MAC Destination address MAC Source address Ethertype/length Payload CRC 32
Seven octets
of 10101010

One octet of 10101011 Six octets Six octets Two octets 46-1500
Octets

Four
octets

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR®

33

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

means the fastest device (in the particular FPGA family)
at high voltage and low temperature. Slow corner, or
worst-case analysis, refers to the slowest device (in the
particular FPGA family) at low voltage and high tempera-
ture. For instance, for a commercial-grade device, if the
standard VCCINT is 1.2 V, then the fastest device at 1.15 V
and 0°C is considered for fast corner (best) analysis. The
slowest device at 1.25 V and 85°C is considered for slow
corner (slow) analysis.

It is quite possible that timing closure may not be
achieved with the slow corner model while it is achieved
with the fast corner model. This should not be a concern,
as long as it is known that the design is not meant for
application under the worst-case conditions, or it is
understood that the PCB—which has the FPGA—may
itself fail under those conditions of process, voltage, and
temperature (PVT).

The reason for the two timing models is that the internal
timing characteristics of the same device may vary at dif-
ferent conditions. For instance, the output-register-to-out-
put-pad delay may change at different temperatures. It may
be, say, 0.4 ns, under worst-case conditions (low voltage
and high temperature), while it may be 0.1 ns under best-
case conditions (high voltage and low temperature).

When performing timing simulation, it is also impor-
tant to ensure that the simulator does not optimize the
netlist generated by the synthesis tool. If this happens, it
can lead to unexpected problems in simulation. To
ensure that the simulator does not do this optimization,
you can use a -novopt switch with the vsim command
in ModelSim.

VERIFICATION LANGUAGES
A DUT’s RTL description is usually presented in either

Verilog or VHDL. Simple to moderately complex test
benches can be written in either language. In fact, you
can find test benches generated in either Verilog or
VHDL when you use IP cores provided by FPGA vendors
like Altera and Xilinx along with their synthesis tools.
However, these languages are primarily meant to describe
hardware. For a complex design, hardware verification
languages (HVLs) ease the task of writing a TB. HVLs
provide features like a high level of data structures,
object orientation with inheritance, and temporal asser-
tions. This makes writing a TB easier for complex verifi-
cation tasks.

There are also some prominent commercial verification
language solutions like e from Verisity and OpenVera
from Synopsys. System Verilog from Accelera is another
language that’s being widely adopted for the verification
of designs.

Using HVLs requires simulation tools that support
them. At this time, EDA tools that support HVLs are
expensive, which means many small design houses can’t
afford them. Moreover, FPGA designs are generally used
because of the lesser time to market and lower overall
development costs compared to ASIC designs. Hence,
design houses generally use a lot of discretion when

investing in such tools. There is no doubt that processes
like ASIC verification on FPGAs or the use of FPGAs in
safety-critical and failsafe applications will definitely
benefit from the use of HVLs. This is because their usage
has demonstrated reduction in verification time for com-
plex projects, as well as far better verification results
compared to the usage of HDLs.

EFFECTIVE SCRIPTING
Effective scripting eases the workload for a verification

engineer. You can automate most verification-related
tasks with a properly written script. A well-written script
is a simple and easy “user interface” for the verification
engineer to carry out the tasks involved in verification. A
single script file should be able to perform tasks in the
following order: compile the source code and TB files;
load the design; prompt you to select the type of simula-
tion (functional, post-route functional, post-route tim-
ing); prompt you for the test case to be executed based on
the type of simulation (if needed); and print messages
related to the test cases in the simulator transcript win-
dow. The messages can be related to the passing or fail-
ure of the test case or any other descriptive and useful
information related to the test case. An example of the
descriptive information is the amount of time remaining
to fill instantiated RAM in the design.

To compile the source code and load the design, the
script file executes the simulator commands like those
available in ModelSim. To print messages, it will set cer-
tain global variables to certain values (as you write the
TB code you have the freedom to select the variables and
their values), which will then be used by the Monitor
and Driver modules to print messages on the transcript
window. At the same time, the Monitor may open some
other file to write information to it. If you take the afore-
mentioned example of the preliminary router DUT, this
information can be the payload, the port on which the
payload was received, and whether it was received at the
correct port, indicating the success or failure of the test
case. Since the Driver supplies data to be written to the
RAM in the DUT, the module can print messages in the
transcript window related to the time remaining to fill
the RAM completely. This kind of information is helpful
when it takes a lot of time to execute a test case. Simu-
lating a deep RAM fill becomes easier with these mes-
sages because you can be sure the simulation is progress-
ing and not hanging.

Let’s take the example of the script.do text file, which is
written in Tool Command Language (Tcl) and is meant for
the ModelSim simulator. It prompts you with three
options. Based on the option you select, it executes the cor-
responding vlog (for compilation) and vsim (for simula-
tion) ModelSim commands. Note that “work” is the name
of the library needed by ModelSim for simulation.

Paths to all the RTL code, TB code, and any library code
are indicated in the files.txt file. Note that logprint.do is
another Tcl file that can have commands for making a log
directory and storing the prints of the transcript window in

http://www.circuitcellar.com

44 CIRCUIT CELLAR® • www.circuitcellar.com

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

another file name. In the example logprint.do file, simu-
lation_print is a Tcl procedure which when called by
its name prints simulation start time and makes a log
directory named “simlog.” Directory “simlog” contains
another directory which takes its name from the Tcl vari-
able directoryName and stores the transcript window
prints in another text file which takes its name from the
Tcl variable fileName. Note that the variables direc-
toryName and fileName take values based on time and
hence one can refer to these files based on the time of
simulation if multiple simulations are run. The verifica-
tion engineer can add switches to these commands as per
the need.

LANGUAGE OPTIONS
The more prominent scripting languages are Tcl, Perl,

and Python. Tcl is widely used because it is supported by
almost all EDA tools like the vendor-provided synthesis
tools ModelSim, NCSim, and so on. An advantage associ-
ated with learning Tcl is that it helps in automating
processes in the simulator environment.

Perl is a good language for performing many tasks
related to project management. Perl programs cannot be
executed from inside a simulator or synthesis tool. The
same is the case with Python. However, these languages
can be used outside the simulator environment to auto-
mate various tasks related to project management.

BUG TRACKING & REVISION CONTROL
It is important to report bugs so a design engineer may

learn about it and make the necessary changes. There are
various tools for this purpose (e.g., Mantis and IBM
Rational ClearQuest). The different stakeholders in the
verification plan (i.e., the verification engineer, the
design engineer, and the manager) can be given access to
all the information related to the bugs. This provides vis-
ibility to bugs and helps in their quick and easier track-
ing and resolution.

During the simulation and verification stage, it is
important to maintain a proper timeline of source and TB
code updates. Whenever source codes (DUT) are verified
and bugs are reported (e.g., in Mantis) and resolved, it is
important to move the updated source code into a data-
base. This will help the verification team access the lat-
est code for verification. At the same time, you can also
add TB code and scripts to that database so users can
always access the latest code. In this way, you can con-
trol revisions and ensure that staffers can access project-
specific areas of the database (even if staffers are working
from different locations).

A database is an
important part of
a revision control
tool like Concur-
rent Versioning
System (CVS),
which is open
source, and IBM’s

Rational ClearCase. Bug tracking and revision control
tools are included in large software packages (e.g., Ratio-
nal ClearQuest) that are aimed at large development
organizations. Stand-alone revision control and bug
tracking tools are available as well.

TEST DOCUMENTATION
Proper test documentation is necessary to finish a proj-

ect. Not only does it provide information about the suc-
cess and failure of tests, it also helps present the relevant
information to a client. This helps if the client wants to
run the test cases and check for simulation success. This
is in general a requirement in cases where the client and
the design house are in different locations. It is also use-
ful when the design is divided into various large sub-
modules and each sub-module is executed by a different
team. Complex ASIC prototyping on FPGAs is a good
candidate for the proper flow of test information between
the different sub-module teams.

An interesting situation arises when a design engineer
also works as a verification engineer. Design engineers
perform individual module level testing. Most of the
time, this is achieved by forcing signals and looking at
the waveforms. This is because the individual logic mod-
ules are generally small and it’s quicker to test them this
way. If the design engineer is assigned the task of integra-
tion verification where all the modules are integrated
and the aforementioned simulation environment set up,
he may still look only for the top-level port signals for
success. He may forget to check whether the appropriate
messages are coming in the transcript window. General-
ly, a client will not devote too much time to simulation,
even if it decides to simulate. To make things easier, it is
important to print relevant messages in the simulator’s
transcript window or to a file. Hence, while preparing the
test document, it is important to indicate the ways in
which success and failure are recorded. You can use the
format shown in Figure 3.

It should be noted that waveform-based verification is
not necessary, but transcript messages are imperative.
This is one way of presenting the information. The
emphasis should be on proper information flow between
the stakeholders.

The issues and techniques I described in this article are
useful for all kinds of design houses, large or small. You
can also use tools like ModelSim Questa that can provide
an integrated platform for running test cases, maintain-
ing proper databases, and so on. However, even with such
tools, a certain amount of scripting is still needed. I dealt
with verification flow and its management. In a future

FFiigguurree 33——A format to record test case numbers, test case descriptions, the pass/fail status of test case, presence
or absence of any associated transcript message, and whether any associated waveform was verified or not.

Test case no. Test case description Pass/Fail Transcript message (Yes/No) Waveform checked (Yes/No)

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR®

55

S
ep

te
m
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
0
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/
pub/Circuit_Cellar/2009/230.

ESOURCES
Defect tracking tools, http://testingfaqs.org/t-track.html.

Tck information, Tcl Developer Xchange, www.tcl.tk.

RR

PP

Sharad Sinha (sharad_sinha@ieee.org) holds a BTech in elec-
tronics and communication engineering from Cochin University
of Science and Technology in Kerala, India. He worked as a
design engineer at Processor Systems India and is now a PhD
candidate at The Center for High Performance Embedded Sys-
tems at the Nanyang Technological University in Singapore.
Sharad’s technical interests include embedded systems,
reconfigurable computing, FPGA/board design, and engineering
project planning/management.

article, I may cover verification techniques like lint
tools, assertion-based verification (ABV), formal verifica-
tion, model checking, and verification methodologies like
OVM and VMM. To maintain correspondence, lint tools
are used before functional simulation. ABV is useful dur-
ing functional simulation. Formal verification is used
after synthesis and post place and route. OVM and VMM
are basically verification management standards related
to the primary task of setting up a proper verification
environment. They can be considered as a superstructure
built upon the verification flow. Again, the usage of all
these tools depends on the complexity of the FPGA
designs. The flow I described in this article is required
irrespective of the complexity. I

mailto:sharad_sinha@ieee.org
http://www.circuitcellar.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/230
http://testingfaqs.org/t-track.html
http://www.tcl.tk

Trinity College Fire Fighting Home Robot Contest
April 10-11, 2010

www.trincoll.edu/events/robot

Mission: To inspire inventors of all ages and skill levels while advancing the fields of engineering

and robotics.

The Contest: The Trinity College Fire Fighting Home Robot Contest (TCFFHRC) revolves

around a simple task: extinguishing a candle flame in the fastest time. Robots are judged on their

ability to navigate a floor maze representing a house, find a lit candle and extinguish its flame.

Competing robots are truly autonomous—no joysticks in this competition! Fire-fighting robot

designs are limited only by the rules of the competition and the imagination of contestants. The

contest encourages the application of science and technology in an atmosphere of creativity,

teamwork, and friendly competition.

Since 2008, Versa Valve, Inc has challenged robot teams to use its product line in the development

of the robot’s extinguishing method. Robots in all divisions are eligible to participate.

In 2009, a supplemental challenge sponsored by the Connecticut Council on Developmental

Disabilities was introduced. In the RoboWaiter contest, specially-designed robots navigate a model

kitchen, work to find a plate of food in the refrigerator and return it to the user.

Unique International Event: The TCFFHRC is a low-cost alternative to other robot

competitions, ensuring that it is open and accessible to everyone. Many engineering programs in the

United States and across the globe have modeled Trinity’s fire-fighting robot theme and adapted it

into their curricula. Since 1999, the Israel Ministry of Education has used fire-fighting robotics as

the focus of graduation projects in their country’s best high schools.

Participation: The contest welcomes 120 robots, and their more than 400 designers. Teams from

across the US have participated, including large institutions such as the Massachusetts Institute of

Technology, Yale University and Oklahoma State University, as well as many smaller schools such

as Tufts University and Wellesley College. The contest has global appeal, welcoming international

students from Denmark, United Arab Emirates, Singapore, India, South Korea, Portugal, Indonesia

and Argentina. An average of 10 teams from both Israel and China has participated annually for

nearly 10 years.

Contest Challenges: The contest has five skill divisions—junior, high school, senior, walking

and expert. The new assistive robot division encourages design of autonomous robots to help

persons with disabilities. Through the Spirit of an Inventor Prize, judges specifically recognize the

entry that shows the greatest ingenuity and creativity regardless of how the robot places in the

competition.

Symposium and Olympiad: The Symposium features well-known speakers from the field of

robotics in an informal setting that encourages easy interaction. Drawn from government, academia,

and the private sector, the speakers address the practical, theoretical, and philosophical issues that

involve current robotic trends. The Robotics Olympiad is the first competitive theoretical exam held

in conjunction with a leading robot contest and covers four fields central to autonomous robot

design: mechanics, electronics, software, and sensors.

Publicity: The contest has enjoyed world-wide coverage in such media outlets as The New York

Times, The London Times, Scientific American, The Chronicle of Higher Education, Electronic

Design, Circuit Cellar, Popular Mechanics, Forbes.com, Robot Magazine and Byte, just to name a

few. The contest has been featured on TV and radio, both locally and nationally.

Contact Information: David J. Ahlgren, Karl W. Hallden Professor of Engineering, Director

and Host, dahlgren@trincoll.edu. For sponsorship opportunities: Amy Brough, Director of

Institutional Support at Amy.Brough@trincoll.edu or (860) 297-5315.

One of the nation’s

leading liberal arts

colleges, Trinity

College offers an

ABET-accredited

engineering

program.

http://www.trincoll.edu/events/robot
mailto:dahlgren@trincoll.edu

	230-DigitalPlus.pdf
	Trinity 2010 Fact Sheet

