
INTERNET & CONNECTIVITY
Internet-Based Weather Data
Acquisition

A Compact Webcam Design
From Start to Finish

Ethernet-Controlled HERMS

Text Library for Real-Time
Translation

I2C Master Bus Controller

CIRCUIT CELLAR

w
w

w
.circuitcellar.com T H E M A G A Z I N E F O R C O M P U T E R A P P L I C AT I O N S

$5.95 U.S. ($6.95 Canada)

#228 July 2009

Battery-in-a-Chip Technology p. 62 • Up & Running With C Language p. 70

Cover - 228.qxp 6/10/2009 8:42 AM Page 1

C2.qxp 1/29/2009 10:42 AM Page 1

http://www.netburner.com

1.qxp 4/3/2009 10:20 AM Page 1

http://www.pcbnet.com

25.qxp 4/27/2009 8:36 PM Page 1

http://microchipdirect.com
http://www.htsoft.com/ocg

Let your geek shine.
Meet Vanessa Carpenter and Diesel Møbius,
SparkFun customers and developers of the
Critical Corset. Using a Polar heart rate monitor,
an Arduino, and a cleverly hidden air pump
system, Vanessa and Diesel designed a corset
that explores the rules of attraction. As the user’s
heart rate increases, the corset gently tightens,
creating a more confident posture.

Whether you need a heart rate monitor or just a
handful of LEDs, the tools are out there. Create
a project you’ll love, and let your geek shine too.

©2009 SparkFun Electronics, Inc. All rights reserved.

For more info on Vanessa and Diesel’s project visit www.illutron.dk.

Sharing Ingenuity
W W W. S P A R K F U N . C O M

SFE-0015-PrintAd05-CircuitCellar.indd 1 5/19/09 4:49 PM

3.qxp 6/2/2009 1:42 PM Page 1

http://www.illutron.dk
http://www.sparkfun.com

FOUNDER/EDITORIAL DIRECTOR
Steve Ciarcia

MANAGING EDITOR
C. J. Abate

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Jeff Bachiochi
Ingo Cyliax
Robert Lacoste
George Martin
Ed Nisley

NEW PRODUCTS EDITOR
John Gorsky

PROJECT EDITORS
Gary Bodley
Ken Davidson
David Tweed

ADVERTISING
860.875.2199 • Fax: 860.871.0411 • www.circuitcellar.com/advertise

PUBLISHER
Sean Donnelly
Direct: 860.872.3064, Cell: 860.930.4326, E-mail: sean@circuitcellar.com

ADVERTISING REPRESENTATIVE
Shannon Barraclough
Direct: 860.872.3064, E-mail: shannon@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster
E-mail: val.luster@circuitcellar.com

CONTACTS
SUBSCRIPTIONS

Information: www.circuitcellar.com/subscribe, E-mail: subscribe@circuitcellar.com
Subscribe: 800.269.6301, www.circuitcellar.com/subscribe, Circuit Cellar Subscriptions, P.O. Box 5650,
Hanover, NH 03755-5650
Address Changes/Problems: E-mail: subscribe@circuitcellar.com

GENERAL INFORMATION
860.875.2199, Fax: 860.871.0411, E-mail: info@circuitcellar.com
Editorial Office: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: editor@circuitcellar.com
New Products: New Products, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: newproducts@circuitcellar.com

AUTHORIZED REPRINTS INFORMATION
860.875.2199, E-mail: reprints@circuitcellar.com

AUTHORS
Authors’ e-mail addresses (when available) are included at the end of each article.

CIRCUIT CELLAR®, THE MAGAZINE FOR COMPUTER APPLICATIONS (ISSN 1528-0608) is published monthly by Circuit Cellar
Incorporated, 4 Park Street, Vernon, CT 06066. Periodical rates paid at Vernon, CT and additional offices. One-year (12 issues)
subscription rate USA and possessions $23.95, Canada/Mexico $34.95, all other countries $49.95.Two-year (24 issues) sub-
scription rate USA and possessions $43.95, Canada/Mexico $59.95, all other countries $85. All subscription orders payable in
U.S. funds only via Visa, MasterCard, international postal money order, or check drawn on U.S. bank. Direct subscription orders
and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 5650, Hanover, NH 03755-5650 or call
800.269.6301.

Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 5650, Hanover, NH 03755-5650.

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics or for the
consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and workmanship of read-
er-assembled projects, Circuit Cellar® disclaims any responsibility for the safe and proper function of reader-assembled projects based upon or
from plans, descriptions, or information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational purposes. Circuit Cellar® makes no claims or warrants that readers have a right to
build things based upon these ideas under patent or other relevant intellectual property law in their jurisdiction, or that readers have a right to
construct or operate any of the devices described herein under the relevant patent or other intellectual property law of the reader’s jurisdiction.
The reader assumes any risk of infringement liability for constructing or operating such devices.

Entire contents copyright © 2009 by Circuit Cellar, Incorporated. All rights reserved. Circuit Cellar is a registered trademark of Circuit Cellar, Inc.
Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

MEDIA CONSULTANT
Dan Rodrigues

CUSTOMER SERVICE
Debbie Lavoie

CONTROLLER
Jeff Yanco

ART DIRECTOR
KC Prescott

GRAPHIC DESIGNERS
Grace Chen

Carey Penney

STAFF ENGINEER
John Gorsky

Cover photography by Chris Rakoczy—Rakoczy Photography
www.rakoczyphoto.com

PRINTED IN THE UNITED STATES

With each passing year, we receive more and more arti-
cle submissions about projects in which Internet and
Ethernet technologies figure prominently. Why is that?

Perhaps all you designers out there are constantly hard at
work trying to develop the next big thing in ’Net-connected
technology. There’s a lot of money to be made designing inno-
vative ’Net-related hardware and software. Or maybe you’re
just so connected that the majority of your designs are linked
to the ’Net out of sheer necessity?

The answer is that it’s probably a bit of both.
We begin this issue with three examples of such projects.

Perhaps one of theses articles will provide you with just the
right info to start your next exciting ’Net-connected design.

On page 16, Steven Nickels presents his Internet Weather
Display design. Many people have weather stations, but this
one is unique in that it doesn’t require external sensors. The
design gathers weather data and alerts from the Internet and
displays it on a color monitor.

Turn to page 26 to learn how Minas Kalarakis combined
his interest in embedded design, cameras, and the Internet to
build his own webcam. The compact design pans the camera
horizontally and vertically, and it can change its IP and gate-
way address to match a network. An Ethernet module trans-
mits the packets over the Internet.

We’ve run articles about HERMS projects in the past, and
Kirt Weakman took notes. In “iMash,” he describes how he
updated his own Ethernet-controlled heat exchange recirculat-
ing mash system (p. 38). This project required Kirt to imple-
ment skills ranging from metal-bending and welding to work-
ing with embedded Linux and VB.NET code.

In previous Circuit Cellar articles, Enoch Hwang covered the
topics of ALU chip design and VGA monitor control. In this
issue he tackles a new topic: implementing an I2C master bus
controller using an FPGA. Turn to page 46 to learn how to build
the controller using VHDL or Verilog code.

If you’re thinking about adding text-to-speech capability to a
project, check out “Embedded Speak” on page 56. Jeff Bachiochi
explains how to build a design’s vocabulary by developing a text
library for real-time translation.

In “LiOn King,” Tom Cantrell presents an exciting new devel-
opment in “Green” technology: a battery-in-a-chip (p. 62). This
is truly an advance in embedded energy harvesting.

George Martin wraps up the issue with some useful informa-
tion about C language (p. 70). This time around he explains how
to get a C program up and running on an embedded system.

All of this exciting new content should keep you busy well
into August! Let me know how it goes.

’Net Tech and You

cj@circuitcellar.com

4 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

20
09

 –
 Is

su
e 2

28

TASK
MANAGER CIRCUIT CELLAR®

THE MAGAZINE FOR COMPUTER APPLICATIONS

Note: Some background graphics on this issue’s cover were made
available courtesy of the U.S. National Oceanic and Atmospheric
Administration (NOAA, www.noaa.gov).

Task_Masthead_228.qxp 6/12/2009 8:46 AM Page 4

http://www.circuitcellar.com/advertise
mailto:sean@circuitcellar.com
mailto:shannon@circuitcellar.com
mailto:val.luster@circuitcellar.com
http://www.rakoczyphoto.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
mailto:info@circuitcellar.com
mailto:editor@circuitcellar.com
mailto:newproducts@circuitcellar.com
mailto:reprints@circuitcellar.com
mailto:cj@circuitcellar.com
http://www.noaa.gov
http://www.circuitcellar.com

www.mouser.com
Over A Million Products Online

The Newest
Interconnects

Mini SAS / SATA4x External Cable Assembly
www.mouser.com/FCI_Cable_Assembly

DisplayPort™ Connectors
www.mouser.com/
amphenolcommercial/a

Experience Mouser’s time-to-market
advantage with no minimums and same-day
shipping of the newest products from more
than 390 leading suppliers.

(800) 346-6873

The Newest Products
 For Your Newest Designs

The ONLY New Catalog Every 90 Days

HDMI Cable Assemblies
www.mouser.com/molex/a

SFP+ Cable Assembly
www.mouser.com/TycoAmp_sfpcable

HIROSE ELECTRIC CO., LTD.

SMT Coaxial Connector:
U.FL Series
www.mouser.com/
hiroseconnector/a

Micro USB
Industrial Ethernet
Hard Metric
Fiber Optic
MicroTCA
HDMI
SFP
Mini SAS
SATA
QSFP
SFP+
Displayport

New Products from:

Variosub Push-Pull Ethernet
and Power Connectors
www.mouser.com/phoenix_
pushpullconnectors/

Mouser_CircuitCellar_7-1.indd 1 5/15/09 3:54:44 PM

5.qxp 5/27/2009 4:52 PM Page 1

http://www.mouser.com/FCI_Cable_Assembly
http://www.mouser.com
http://www.mouser.com/amphenolcommercial/a
http://www.mouser.com/molex/a
http://www.mouser.com/TycoAmp_sfpcable
http://www.mouser.com/hiroseconnector/a
http://www.mouser.com/phoenix_pushpullconnectors/

6 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

20
09

 –
 Is

su
e 2

28

INSIDE ISSUE

TASK MANAGER 4
’Net Tech and You

C. J. Abate

NEW PRODUCT NEWS 8
edited by John Gorsky

TEST YOUR EQ 15
CROSSWORD 74

INDEX OF ADVERTISERS 79
August Preview

PRIORITY INTERRUPT 80
The Critter Chronicles

Steve Ciarcia

56 FROM THE BENCH
Embedded Speak
A Text Library for Allophone Translation
Jeff Bachiochi

62 SILICON UPDATE
LiOn King
A Look at “Battery-in-a-Chip” Technology
Tom Cantrell

70 LESSONS FROM THE TRENCHES
C Start-Up
Get a CProgram Up and Running
George Martin

228
16 Internet Weather DIsplay

Steven Nickels

26 Web Camera Design
Minas Kalarakis

38 iMash
An Ethernet-Controlled HERMS
Kirt Weakman

46 Master Control
Implement an I2C Master Bus Controller in an FPGA
Enoch Hwang

July 2009 • Internet &Connectivity

p. 26 Webcam
Design

p. 16 Gather ’Net-Based
Weather Info

p. 38 Homebrewed
HERMS

BONUS CONTENT
NimbleSig III— A New and Improved
DDS RF Generator

Sound Synthesis Made Simple—

A Multi-MIPS Music Box

TOC_228-DP.qxp 6/19/2009 10:51 AM Page 6

http://www.circuitcellar.com

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and Everywhere You Are® are registered trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be trademarks of others.

Everywhere You Are®

Performance and power consumption have always been key elements in the development of AVR® microcontrollers. Today’s

increasing use of battery and signal line powered applications makes power consumption criteria more important than ever.

To meet the tough requirements of modern microcontrollers, Atmel® has combined more than ten years of low power research and

development into picoPower technology.

picoPower enables tinyAVR®, megaAVR® and XMEGA™ microcontrollers to achieve the industry’s lowest power consumption. Why be satisfied with

microamps when you can have nanoamps? With Atmel MCUs today’s embedded designers get systems using a mere 650 nA running a real-time

clock (RTC) and only 100 nA in sleep mode. Combined with several other innovative techniques, picoPower microcontrollers help you reduce your

applications power consumption without compromising system performance!

Visit our website to learn how picoPower can help you hammer down the power consumption of your next designs. PLUS, get a chance to apply

for a free AVR design kit!

Hammer Down Your Power Consumption with picoPower™!

http://www.atmel.com/picopower/

THE Performance Choice of Lowest-Power
Microcontrollers

picoPower 2008ad indd 1 8/8/2008 8:35:17 AM

/11/

http://www.atmel.com/picopower/

8 CIRCUIT CELLAR® • www.circuitcellar.com

NEW PRODUCT NEWS

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

Edited by John Gorsky

PROGRAMMABLE MEMS SHOCK AND VIBRATION SENSORS
The ADIS16240 is a fully integrated digital shock detection and capture system that combines iMEMS technology with an

embedded signal-processing solution. It enables designers to cost-effectively convert critical motion data into valuable system
information in low-power applications, such as condition-monitoring, impact detection, security sensing, and tamper detection.
The device’s low-power, triple-axis shock and impact sensor
and recorder includes an integrated on-chip programmable
event-capture buffer, which monitors for user-programmed
shock thresholds and holds the pre- and post-event data,
time stamp, temperature, and voltage.

Programming features and data access are controlled
from a standard SPI port, making the ADIS16240 compati-
ble with many existing systems. Once implemented in the
system, the device operates autonomously, capturing multi-
ple events for later analysis or providing real-time indication
of excessive shock environments.

The ADIS16240 consumes less than 1 mA in continuous
sampling mode, making it ideal for use in portable or bat-
tery-powered security devices, remote safety monitors, or
products that monitor the condition of goods or shipments.
With a usable bandwidth of up to 1.6 kHz, the ADIS16240 is
significantly more capable of capturing critical shock events
than previously available solutions.

One-thousand-piece pricing is $26.58.

Analog Devices, Inc.
www.analog.com

HALL ENCODER IN THE SUBMICRON RESOLUTION RANGE
The AS5311 is the first Hall effect sensor-based linear magnetic encoder to offer

sub-micron resolution. This integrated linear Hall encoder can be used as an alterna-
tive to optical encoders. For linear motion sensing, a multi-pole magnetic strip is

used. For rotary motion sensing, the magnetic
strip is replaced by a multi-pole magnetic ring.
An incremental output with a resolution of 10
bits per pole pair and a traveling speed up to
650 mm per second is available. Using, for
example, a multi-pole magnetic ring with a diam-
eter of 41.7 mm, a resolution of 16 bits
(65.536 steps per revolution) can be achieved.
In conjunction with a 2-mm pole-pair magnetic
strip, the AS5311 provides a 1.95-µm resolution
signal at its incremental output and a 488-nm
resolution signal at its serial output.

The encoder can be operated with either
3.3- or 5-V supply voltage and is available in a
20-lead TSSOP package. It is specified for an
ambient temperature range from –40° to
125°C.

The AS5311 costs $5.23 in 1,000-piece
quantities.

austriamicrosystems AG
www.austriamicrosystems.com

npn228.qxp 6/10/2009 9:06 AM Page 8

http://www.analog.com
http://www.austriamicrosystems.com
http://www.circuitcellar.com

S

www.circuitcellar.com • CIRCUIT CELLAR® 9

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

CLEAR OBJECT SENSORS
The WORLD-BEAM QS30 Clear Object Sensor provides

reliable clear object detection to solve challenging appli-
cations. The Clear Object Sensor utilizes an advanced
optical design to allow the sensor to see translucent
materials, ensuring the dependable detection of clear tar-
gets including PET bottles and glass containers. Addition-
ally, the optical design prevents the sensor from being
tricked by specular reflections, allowing the sensor to
detect optically engineered surfaces such as mirrors,
LCD glass with polarizing films, and semiconductor
wafers.

The Clear Object Sensor is easily configurable using
either the push button on the sensor or via a remote
input line. The user can select from one of three
switching thresholds—light, medium or dark, depend-
ing on the target’s transparency level—to optimize
detection and maximize sensing stability. The sensor
also features an automatic compensation algorithm,
which adapts the switching threshold to the sensor’s
environment in real time. Small changes due to dust
or contamination on the sensor and reflector or small
changes caused by ambient temperature shifts are fil-
tered out by the microcontroller. These features ensure
long and trouble-free sensor operation.

The QS30 Clear Object Sensor offers a range of 100 mm
to 2 m, with a fast 0.5-ms response rate, and it includes
an easy-to-read bar graph display for easy configuration
and status monitoring during operation. It also provides
three selectable thresholds based on the type of target

NPN

TOUCH SCREEN PLATFORM FOR HMI/GUI APPLICATIONS
A series of modular development platforms that supports touch screen LCD devices of

various sizes from multiple vendors is now available. The design supports ARM microproces-
sor and microcontroller devices in three popular families: ARM926EJ, ARM7TDMI-S,
and Cortex-M3. The initial product, the ARM-57TS-LPC2478, includes a Toshi-
ba 5.7″ TFT LCD with integrated touch screen and is based on the NXP
LPC2478 ARM7 microcontroller with integrated LCD driver. The “brain” of the
system is a SoC module called the ARM7DIMM-LPC2478. This modular 200-pin
SODIMM is 2.66″ × 1.89″ and contains the LPC2478 microcontroller, along
with 8 MB of external SDRAM and support circuits. The kit includes the uEZ
Rapid Development Environment running the FreeRTOS Operating System, and
the IDE is the Rowley CrossWorks compiler.

The ARM-57TS-LPC2478 development kit costs $425. The
ARM7DIMMLPC2478 costs $74.50. An ARM9-based touch screen kit running
Linux and a SoC module for the NXP LPC3250 costs $480. Kits for the NXP
LPC1778 Cortex-M3 will be released later in the year.

Future Designs, Inc.
www.teamfdi.com

being detected and a visible red emit-
ter beam for simple alignment. Bright LED indicators show
power and output status, and the unit operates off of 10-
to 30-VDC supplies.

The sensor costs $179.

Banner Engineering Corp.
www.bannerengineering.com

npn228.qxp 6/10/2009 9:06 AM Page 9

http://www.teamfdi.com
http://www.bannerengineering.com
http://www.circuitcellar.com

10 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

SMART MOTION SENSOR ENABLES
PRECISE HAND MOVEMENT CONTROL

The MMA7660FC is a highly advanced, low-power sensor
based on proven micro-electromechanical system (MEMS)
technology specifically engineered for handheld portable
electronic devices. The three-axis accelerometer enhances
user interfaces for mobile phones, small appliances, and
gaming by allowing the user to tap, shake, or orient the
device for specified commands. The device also includes
smart power management features to help extend battery
life.

The MMA7660FC accelerometer is designed to achieve up
to five times longer battery life than current solutions on the
market when continuously operating to determine motion.
Configurable power-saving modes and a power-select capa-
bility help designers achieve optimal current consumption
by choosing one of eight sample rates. System-level power
is reduced through a configurable auto wake-up/sleep fea-
ture achieved without intervention or polling by the host
processor. The MMA7660FC accelerometer provides conver-
sion to digital values at a user-configurable output data rate,
offering proportional savings in supply current and power.

The MMA7660FC sensor is available now for a suggested
resale price starting at $1.39 in 10,000-piece quantities. To
help shorten development cycles, the RD3803MMA7660FC
kit includes the evaluation board, plus the daughterboard
and PC application. Corresponding device collateral is also
available. The kit is available at a suggested resale price of

MICROS WITH INTEGRATED CONSTANT HIGH-CURRENT DRIVERS
The µPD78F8025 is a new 8-bit, all-flash, general-purpose microcontroller with integrated constant high-current drivers and

32 KB of flash memory. The new device is suitable in applications such as home electric cookers, battery chargers, and LED
lighting. Based on the µPD78F8024 MCU, the µPD78F8025 has expanded memory to meet increasing software requirements.

The microcontroller features integration of an all-flash MCU and constant current driver in a single chip for smaller board
space and fewer off-chip components. It also includes an ADC and I2C and UART interfaces, offering precise sensing and

flexible communication interface. Additionally, it fea-
tures built-in current drivers with protection circuits
for efficient and highly reliable drive systems. Both
the new µPD78F8025 and µPD78F8024 devices offer
higher performance in a compact single-chip design.

In addition to constant-current circuits, the chips
integrate protection circuits such as over-current,
thermal shutdown, and voltage lockout to improve
power control, efficiency, and reliability of the overall
system. Both the µPD78F8024 and µPD78F8025
chips can be used in voltage-booster topology or
buck topology, giving flexibility to designers to con-
struct optimal systems.

Prices start at $5 per unit.

NEC Electronics Corp.
www.am.necel.com

NPN

$119. For customers in the prototype stage, the daughter-
board is also available separately as KIT3803MMA7660FC at
a suggested resale price of $35.

Freescale Semiconductor
www.freescale.com

npn228.qxp 6/12/2009 9:23 AM Page 10

http://www.am.necel.com
http://www.circuitcellar.com
http://www.freescale.com

SIGNAL-CHAIN-ON-CHIP MCUs
To quickly and efficiently develop reliable, convenient,

and low-cost medical devices, engineers require micro-
controllers that provide low power consumption, high per-
formance, and targeted peripheral integration. Address-
ing this need is the new MSP430FG47x ultra-low-power
MCU series. The FG47x MCUs offer on-chip integration of
the complete signal chain, reducing design complexity
and resulting in significant space and cost savings.
These devices will help developers improve the quality
and accessibility of healthcare through products such as
blood glucose meters, digital thermometers, pulse
oximeters, and blood pressure/heart rate monitors.

MCUs in this series offer a complete signal chain inte-
grated on chip, consisting of two configurable op-amps,
a 12-bit DAC, a comparator, and a 16-bit ADC. This
reduces board space, bill of materials, and time to mar-
ket. It also offers a 128-segment LCD driver with con-
trast control for convenient diagnostic display. Multiple
memory options are available with up to 60-KB flash
memory and 2-KB RAM for easy programmability.

FG47x MCUs are currently available and start at
$5.50 (1,000-piece unit pricing). They are fully com-
patible with the $149 MSP-FET430U100 and the $99
MSP-FET430UIF flash emulation tool kits.

Texas Instruments
www.ti.com

www.circuitcellar.com • CIRCUIT CELLAR® 11

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

NPN

npn228.qxp 6/10/2009 9:06 AM Page 11

http://www.ti.com
http://www.circuitcellar.com
http://www.gridconnect.com
http://www.pcbcore.com

12 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

NPN

THREE NEW GAS SENSORS
Three new sensors are available for gas presence detection designs. The MQ-7, MQ-2,

and MQ-5 are each designed to sense a different gas. The MQ-7 (part # 605-0007) is a
carbon monoxide (CO) sensor designed for use in gas detection equipment. It can be
used to detect the presence of carbon monoxide in home, automotive, or industrial set-
tings. The MQ-7 is highly sensitivity to CO gas. It is stable, offers long life, and requires
a simple drive circuit.

The MQ-2 (part # 605-00008) is similar and designed for sensing methane (CH4). It
also requires a simple drive circuit and offers fast response and high sensitivity. The
third sensor is the MQ-5 (part # 605-00009) LPG gas sensor, which can be used to
detect the presence of propane in home, automotive, or industrial settings.

The sensors are priced at $4.99 each. Quantity discounts are available.

Parallax, Inc.
www.parallax.com

mTouch CAPACITIVE TOUCH EVALUATION KIT
The mTouch Capacitive Touch Evaluation Kit enables designers to quickly and easily develop capacitive touch user-interface

applications using Microchip Technology’s 8- and 16-bit PIC microcontrollers. The flexible, comprehensive kit includes: two
main boards (one populated with a PIC16F72x 8-bit MCU and the other with a PIC24F256GB110 16-bit MCU); four daughter-
boards for developing capacitive-touch keys, sliders and a matrix; a PICkit Serial Analyzer; an easy-to-use GUI; and several

code and schematic examples. The modular kit makes it
easy for designers to try different keypad configurations
and experiment with touch-pad sizes and shapes using the
motherboards.

Touch-sensing technology is increasingly being adopted
to improve the look and durability of user interfaces in
appliances, consumer-electronic devices, medical electron-
ics, automobiles, and many other markets and applica-
tions. The new kit provides a one-chip, highly-integrated
solution based upon either the PIC16F72x 8-bit or the
PIC24FGB 16-bit general-purpose MCUs, providing a flexi-
ble evaluation platform that lowers costs and shortens
time to market.

The mTouch Capacitive Touch Evaluation Kit (part #
DM183026) costs $84.95.

Microchip Technology, Inc.
www.microchip.com

RUGGED PICmicro MICROCONTROLLER
The MIAC is a flexible controller for the industrial and experi-

menter markets. It is a rugged PICmicro microcontroller
designed to allow those with little or no programming experi-
ence develop highly functional control systems. The free soft-
ware supplied with MIAC allows users to design a program
using standard flowchart icons, simulate the program on-
screen, and then download the program to the MIAC using a
standard USB cable.

The MIAC unit itself is packed with features including eight
analog or digital inputs, four 10-A relays, four motor outputs, a
keypad, an LCD, and a CAN bus interface, which enables net-
works of MIACs to be developed. The unit is powered by an
advanced 18 series PICmicro microcontroller and is also com-
patible with all third-party PICmicro compilers. The MIAC and
Flowcode 3 graphical programming software costs around
$180.

Matrix Multimedia
www.matrixmultimedia.co.uk

npn228.qxp 6/10/2009 9:06 AM Page 12

http://www.parallax.com
http://www.circuitcellar.com
http://www.microchip.com
http://www.matrixmultimedia.co.uk

2-ch 1GSa/s Scope

1/2GHz RF Generators

Color LCD Scope

RF Generator

16-Ch Logic Analyzer

6 in 1 Scope

Automotive Testing

EMC Spectrum Analyzer Worlds’s Fastest

Pen Scope

USB Bus Analyzers

Handheld Scope

Scope + Analyzer July Offer whi le suppl ies last !

Mixed-Signal ScopeLow-Cost Scope

Te
s
tg

e
a
r

M
is

c

60/100/120MHz AWG

2-ch + trigger standalone USB

bench scope. $325 / $599

20MHz / 60MHz rugged handheld

USB 2-ch scope. $593 / $699

Intuitive full-featured 16-ch 4MB

200MHz sampling memory. $299

200kHz 2-ch 10-bit scope, 2-ch spectrum

analyzer, 16-ch 8MHz logic analyzer,

5-ch sig gen, 8-ch pattern gen. $199

Be
st

Sell
er

10/25MHz USB powered scope-in-a-

probe! Up to 100MS/s. $193 / $308

High-res, extremely low-noise,

portable 6GHz RF generator.

Packet-Master™ - USB 1.1/2.0

analyzers and generators. $699 +

Kits turn your PC into vehicle-

electrics diagnostic tool.

2-ch 1GSa/s (25GSa/s equiv.)

50/100 MHz scope. $595 / $795

High accuracy/stability, wide range, low

phase noise/leakage, serial control.

60/100/120MHz USB 14-bit ARB

with USB RS-232, LAN/GPIB.

Handheld Palm PC-based

2.7GHz Spectrum Analyzer.

2-ch 12GHz sampling scope for

high-speed electrical signals.

100MHz Scope, + Spectrum/Logic

Analyzer and Signal Generator. $1259+

Janz - Full-featured standalone

fanless industrial Linux PC.

CAN Gateway

Above are some of our best-selling, unique, time-saving products - see our website for 100s more:
WiFi/910MHz antennas, wireless boards, LCD display kits, Ethernet/IO, USB/RS232/485, USB-OTG,
instant Ethernet-serial, CAN/LINbus, USB cables/extenders, line testers, logic analyzers, color sensors,
motion controllers, eng. software, wireless boards, SMD adapters, I2C adapters, GPS loggers,
automotive testing, security dongles, video motion detectors, crystals/oscillators, custom switches,
barcode scanners, DSP filters, PLCs, Remote MP3 players, etc. FREE Starbucks card with your $50 order!

Check www.saelig.com often for special offers, bargains, business hints, blog, etc.

NEW
!

RI
GOL

NEW
!

RI
GOL

U N I Q U E P R O D U C T S & S U P P O R T
w w w . s a e l i g . c o m

2-ch 40/100/200MS/s 8-bit scope

range with 5/10/25MHz. $297 +

Serial-Ethernet Cable

Network serial product easily without

a PC using this 28” cable. $89

“Drop-in” solution connects PC to

I2C/SMBUS + 32 I/O lines. $89

USB to I2C

RF Modules

Simultaneouslytransmitcomposite

video and stereo audio signals.

UDP/IP-controlled 24 digital

I/O board 3 x 8-bit TTL ports.

Ethernet - IO

Mini-logger with built-in temp/hum/

pressure/3-axis accel sensors.

Multiparameter Loggers

1/2/4/8/16 x RS232

Add 1-16 COMports via your

PC’s USB Port easily.

RF Testing/EMI Tents

Portable RF test enclosures &

shielding tents with external frame.

Wireless Solutions

Analog input, bluetooth wireless

modules 433/868/915MHz.

SPI Bus Analyzer

Protocol exerciser/analyzer for standard

SPI and non-standard 4-wire and 3-wire

serial protocol interfaces up to 50 Mbps.

Temp/RH Sensors

Novel ambient sensors & modules

accurately measure temp/RH.

Instant Ethernet

No OS needed. TCP/IP offload,

ICs improve system performance.

25MHz 2-ch /16 logic scope

and logic analyzer. $699

PSoC Starter

Get going quickly with PSoC

visual design environment.

.NET Board

Small (2.2” x 2.2”) lowest cost .NET

Micro Framework dev system.

TorqSense

Keyboard Simulator

USB board adds 55 I/O and 5 x

10-bit A/D inputs, 1 x 10-bit analog O/P.

NEW
!

RI
GOL

Compact, economical smart OLED with

graphics drive from USB or RS232.

Easy OLED Display

Be
st

Valu
e

Configurable, patented USB-output

non-contact SAW digital rotary torque

transducers with integral electronics.

Waveform Generator

USB2.0 speed 16-bit digital pattern

or arbitrary waveform generator.

I2C Xpress

Versatile USB 2.0 I2C protocol

exerciser and analyzer.

9p-9p or 25p-25p self-pwrd,

isolated RS232-RS422/485

RS232 to 422/485

CAN-USB

Intelligent CAN connection

from PC’s USB port. $299

Lorlin Switches

Fantastic array of stock and

custom switching devices.

FTDI USB ICs

Popular UART and FIFO chips.

Upgrade Legacy designs to USB.

EMC Spectrum Analyzer

RF & EMF Spectrum Analyzer

1Hz to 7GHz for WiFi, mikes, etc.

USB-Serial

Wireless Data Loggers

U
S

B
iz

i

u
O

L
E

D
-9

6
-G

1

A
W

M
6
X

X
 T

X
/R

X

K
K

 S
y
s
te

m
s

U
S

B
-C

O
M

P
o

K
e
y
s
5
5
T

U
S

B
I2

C
IO

R
T

R
-5

0
W

a
v
e
 X

p
r
e
s
s

U
S

B
1
2
 /

 4
8
0
+

 /
 5

0
0
A

G
P

S
2

2
0

3
/4

/5

P
S

2
1

0
4

/P
S

2
1

0
5

P
D

S
5

0
2

2
S

 /
 P

D
S

6
0

6
2

T

D
S

1
0

0
0

E

H
D

S
1
0
2
2
M

N
 /
 H

D
S

2
0
6
2
M

T
G

R
1
0
4
0
 /
 T

G
R

2
0
5
0

L
A

P
-1

6
1
2
8
U

S
P

I
X

p
r
e
s
s

E
M

C
 R

F
 &

 E
M

C
 S

p
e
c
tr

u
m

P
S

A
2
7
0
1
T

I2
C

 X
p

r
e
s
s

P
S

3
4
2
3
 /

 K
L

A
R

I-
M

O
D

e
m

P
C

-x
1
3
3

A
P

S
IN

6
0
0
0

M
S

R
1
4
5
S

E
L

-U
S

B
-1

/2
/3

/4

L
D

3
0
0

D
G

3
0
6
1
A

/3
1
0
1
A

/3
1
2
1
A

F
T

2
3
2
R

L

C
A

N
-U

S
B

e
C

O
V

-1
1
0
-P

L
o

r
li

n

W
IZ

1
1
0
S

R
 /

 W
5
1
0
0

E
th

e
r
-I

O
 2

4

R
T

G
0
0
5

E
m

b
e
d

R
F

 /
 A

d
e
u

n
is

A complete CP2102 USB-serial

converter in a DB9 shell. $26

Log and display temp, hum, volt,

event-time or pulse-counting data

Lo
west

Pri
ce

s

Electronic DC Load

Const. current, resistance,

conductance,voltage&powermodes

USB Logger

Standalone USB temp / hum / volt /

current loop data logger. $49+

Ready-to-go out-of-the-box FPGA/DSP

designs for beginners and experts!

FPGA Systems

Amazing 7 in 1 Scope! $180

CircuitGear CGR-101™ is a unique

new, low-cost PC-based instrument

which provides the features of seven

devices in one USB-powered compact box:

2-ch 10-bit 20MS/sec 2MHz oscilloscope,

2-ch spectrum-analyzer, 3MHz 8-bit

arbi trary-waveform/standard-funct ion

generator with 8 digital I/O lines. It also

functions as a Network Analyzer, a

Noise Generator and a PWM Output

source. What’s more – its’ open-source

software runs with Windows, Linux and

Mac OS’s! Only $180!

C
G

R
-1

0
1

w
w

w
.s

a
e

li
g

.c
o

m

P
o

S
c

o
p

e
 w

it
h

 P
r
o

b
e

s
C

S
3

2
8

R
F

 T
e

s
ti

n
g

 /
 E

M
I

T
e

n
ts

M
e

n
ti

o
n

 o
ff

e
r
#

 S
B

W
R

W
T

3
2

0
P

S
o

C
 S

ta
r
te

r
U

P
S

IC
A

P
 /

 D
L

P
-T

H
1

C
E

-U
S

B

FREE COFFEE

A
T
-7

0
T

D
S

1
0

2
2

C
D

Buy any Rigol scope and get a

FREE ATSC digital TV!

7” TFT LCD ATSC 16:9 Digital TV with NTSC in, A/V O/P, 480

x 234 pixel, 1W stereo audio O/P + jack, inc. DC12V supply.

You must ask for offer# CC7

Call 1-888-772-3544

to get a free Starbucks

Card with your >$50 order!

While supplies last

- not available with

any other offers

Alan Lowne

Saelig CEO

P
S

9
2
0
0

“I really like this scope adapter

- it’s meant for teaching electronic

experiments but it’s ideal for

engineers too.”

13.qxp 6/2/2009 4:11 PM Page 1

http://www.saelig.com
http://www.saelig.com
http://www.saelig.com
http://www.saelig.com
http://www.saelig.com

14 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

GIGABIT ETHERNET I/O CUBE
The new PowerDNA PPCx-1G Gigabit Ethernet I/O Cube is

available in two basic models: a three-I/O layer (five-slot
PPC5-1G) or a six-I/O layer (eight-slot PPC8-1G). The new
GigE Cube offers higher speed and greatly enhanced diag-
nostics capability relative to the standard Cubes, but it
remains compatible with all 30-plus UEI I/O board types. The
six-layer model (PPC8-1G Cube) can provide up to 150 ana-
log inputs, 192 analog outputs, 288 digital I/O, 48 counter
or quadrature channels, 72 ARINC-429 channels, and 24
serial or CAN-bus ports.

Software for the GigE Cube is provided in the UEIDAQ
Framework. The Framework provides a comprehensive,
easy-to-use API that supports all popular programming and
operating systems such as Windows, Vista, Linux, and most
real-time operating systems (e.g., QNX, RTX, and RT Linux).
In addition, the product is fully supported by LabVIEW, MAT-
LAB/Simulink, DASYLab, or any application that supports
ActiveX, OPC, or Modbus TCP control.

The DNA-PPC5-1G costs $1,395. The DNA-PPC8-1G costs
$1,595.

NPN

FANLESS INTEL CORE 2 DUO INDUSTRIAL PLATFORM
The high-performance GS-L10 system is a fanless Mini-ITX computer capable of supporting Intel’s

Core 2 Duo mobile processors. The GS-L10 exhibits impressive thermal management by
utilizing a complex array of heat pipes to conduct the heat away from the CPU and

chipset to the extruded aluminum heatsinks that comprise the top and
sides of the case. This system can cool CPUs with a thermal design

power (TDP) of up to 35 W, including Intel’s T9xxx series of Core 2 Duo
mobile processors.

The GS-L10 is now available as a complete system with an MSI IM-GM45
(Montevina-based) mainboard. Featuring Intel’s GMA 4500MHD Graphics, up

to 4-GB RAM, HDMI, DVI, two 10/100/1000 LAN ports, and a comprehensive
array of on-board I/O, this system is ready for a wide range of industrial appli-

cations that require high-end processing power.
System prices start around $900, with project pricing available upon request.

Logic Supply
www.logicsupply.com

WirelessHART DEVELOPER KIT
The WirelessHART SmartStart Kit is designed to speed

up the development and testing of new WirelessHART
products. The SmartStart Kit
supplies everything needed to
design, develop, test, and roll
out new WirelessHART-compli-
ant sensor networking solu-
tions. The kit includes a net-
work manager and 15 mote
modules, 10 of which are
equipped with a general-pur-
pose microprocessor for fast
prototyping, RF certified for
FCC, IC, and CE.

Also included is a preconfig-
ured SmartMesh IA-510 intelli-
gent network with a GUI and
dynamic bandwidth to demon-
strate multiple processes along

United Electronic Industries
www.ueidaq.com

with software libraries, code samples, sample Wire-
lessHART command definitions, and utilities to accelerate

development. A complete docu-
mentation package to help
speed up development, testing,
and WirelessHART device certifi-
cation is also included.

OEMs using the SmartStart
Kit can dramatically shorten
development time—often going
from concept to WirelessHART
product in half the time
required by most WirelessHART
development cycles.

The WirelessHART SmartStart
Kit is priced starting at $5,000.

Dust Networks, Inc.
www.dustnetworks.com

npn228.qxp 6/10/2009 9:06 AM Page 14

http://www.logicsupply.com
http://www.ueidaq.com
http://www.circuitcellar.com
http://www.dustnetworks.com

www.circuitcellar.com • CIRCUIT CELLAR® 15

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

Te s t Your
Edited by David TweedCIRCUIT CELLAR

What’s your EQ?—The answers are posted at
www.circuitcellar.com/eq/

You may contact the quizmasters at eq@circuitcellar.com

EQ
Problem 1—Jack operates an employment business
of sorts and has erected a new sign in front of his
establishment. It is to be operated fr om within his
office by a DPDT switch with center of f. In the up
position, it will illuminate the word “WORK” on the
sign with four 110-VAC bulbs, one behind each
letter. The down position will light these four plus
two more behind the letters “NO” or “NO
WORK.” The only source of power is 220 V AC,
both wires being hot with respect to ground.
There are only four conductors between the
switch and the sign with no other means of
ground or earth return. For safety purposes, all
four wires must be floating or disconnected

when the switch is in the center or of f position.
Assuming the bulbs will be run at their rated
voltage (110 VAC), how are the six bulbs wired
to the four conductors? No other components,
active or passive, are used.

Problem 2—So, with this solution, what happens
if one of the bulbs burns out?

Joe Mueck contributed Problem 1 and its answer .

eq-228.qxp 6/10/2009 9:11 AM Page 15

http://www.circuitcellar.com/eq/
mailto:eq@circuitcellar.com
http://www.circuitcellar.com
http://www.newnespress.com

16 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

of

Art

one

the 5″ color TFT monitor. The simple user interface
includes a push button to select current conditions, the
forecast, and active alerts. The TFT monitor includes

Photo 1—The Internet Weather Display gathers weather data from the Internet and presents it on a
monitor. It displays current conditions, the forecast, and alerts issued by the U.S. National Weather
Service.

2907017_nickels.qxp 6/10/2009 9:13 AM Page 16

The Internet Weather Display is a weather station that operates without
external sensors. The design gathers weather data and alerts from the
Internet and displays it on a color TFT monitor. An LED flashes when alerts
are transmitted.

Internet Weather Display

I

F
EA

TU
RE

ARTICLE
by Steven Nickels

t seems like a weather station is one piece of equipment
that every electronics enthusiast has to have. But

for people who live in apartments, condominiums, or
townhomes, mounting exteri-
or sensors is typically diffi-
cult or prohibited. Even some
single-family home neighbor-
hoods have strict homeowner
association rules against
“unsightly” objects outside
the home. My Internet
Weather Display is a weather
station you can operate with-
out exterior sensors. The
project gets its data from pro-
fessional weather stations
located in your neighborhood,
most often at schools or other
government buildings. Like a
backyard weather station, it
shows current conditions. An
added bonus is that you get
forecasts from professional
meteorologists and alerts
issued by the U.S. National
Weather Service (NWS).

Photo 1 shows the project
in action. The system
retrieves weather data from the
Internet and then displays it on

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 17

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

built-in speakers for sounding an alert when new weath-
er alerts are received. An LED also flashes while alerts
are active to notify people who are hard of hearing.

WEATHERBUG API
During the past few years, several weather data providers

have popped up on the Internet. WeatherBug is one such
provider. It offers an application that resides in the task
tray of your Windows PC and constantly shows the tem-
perature of a local weather station. It can even alert you
when an NWS message has been issued. While this applica-
tion keeps you informed of the weather while you are
actively using your PC, many people do not keep their PC
fully powered on all day and night, so they could potential-
ly miss an important weather alert. It’s also inconvenient
to wait the 30 seconds to 2 minutes for a PC to power-up
just so you can check the forecast. A “real” weather station
must remain on and be able to show wind direction imme-
diately.

If you go to the WeatherBug website and get past the
pages for the general consumer, you’ll find the WeatherBug
Labs page. There, you learn how to install WeatherBug on
your Linux PC, cell phone, or personal webpage. A simple
device like my Internet Weather Display has limited
resources, so it needs a way to get just the raw data, and
this is provided through a service called the “WeatherBug
API.” I recommend you review its terms of use. As users of
the Windows PC application have seen, WeatherBug is sup-
ported by revenue from advertisements or through a yearly
subscription. It does not charge for access to the API, and
there are few restrictions if you use it for noncommercial

purposes. But if you plan on selling a device that uses the
WeatherBug API, your device must be able to open links to
the WeatherBug website and you may need to compensate
WeatherBug with a portion of your revenue.

The first step in getting access to the API is to register
on the WeatherBug Labs website. Upon successful registra-
tion, you are assigned a unique access code that must be
included with the request messages that are sent to the
server. The server watches how often your device requests
data and may refuse to respond if your device is polling for
data too often. Watch out for bugs in your code that may
cause a loop to send out a request message even though
your intent was a 1-minute polling period.

There are two message formats available: XML and
“pipe delimited.” The former is a bit more difficult to
use because you must format headers and keep track of
special strings of characters used to identify the data.
The pipe-delimited format is simpler because it uses
readable characters where the data is separated by the
“|” (ASCII 0x7c) character. The Internet Weather Display
uses the pipe-delimited format. Refer to the WeatherBug
API website for the complete documentation.

To request weather information, a message like this is
sent:

http://a1111111111.isapi.wxbug.net/WxAlertISAPI/WxAl
ertIsapi.cgi?GetAlert60&Magic=160&ZipCode=80234&U
nits=0&RegNum=0&Version=7&t=1005&lv=0

Note the use of the HTTP high-level protocol. Only the
“GET” command is necessary. As I already mentioned,

Figure 1—The Internet Weather Display uses a Parallax Propeller microcontroller to drive the video and audio interface. A WIZnet W5100
module handles all the Ethernet messaging up to the TCP/IP level.

2907017_nickels.qxp 6/10/2009 9:13 AM Page 17

http://www.circuitcellar.com

with a monochrome LCD. The “i”
consumer devices have set a new
standard in user interface, so a char-
acter or monochrome LCD just does-
n’t cut it any more. For this updated
version, I went with a bit more
color. Color TFTs are available, but
few larger than 2.8″ have a built-in
controller, and I definitely wanted
something bigger than 4″. I also
needed a microcontroller that could
handle a large color display. The Par-
allax Propeller seemed to be a per-
fect fit for this application.

A while ago, I saw the ads for the
Propeller microcontroller and
thought, “Finally, something new in
the area of microcontrollers.” But
because most of my projects used a
microcontroller costing less than
$10, the Propeller’s $25 price tag at
the time restricted my desire to
learn more about it. Fortunately,

18 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

the request message includes the
unique code assigned to you when
you registered at the WeatherBug
API website. The number following
“Magic=” identifies the data you’re
requesting. Use “10991” to request
the current/live conditions, “10992”
to request the two-day forecast, and
“160” to request the active alerts.
The three-day forecast and a list of
weather station IDs are also avail-
able. The number after “ZipCode=”
identifies the area for which you
want weather information. The
WeatherBug server will pick a sta-
tion near the specified zip code. You
could also specify “StationID=####,”
where “####” is a unique station
number from the aforementioned
list of station IDs.

The response is a stream of read-
able characters that includes HTTP
protocol information followed by
the weather data values. At the front
of the weather data information is
the “magic” ID. Verify this value to
run the proper parsing routine. The
data values that follow are separated
by the “|” character. The following
is an example of a response that con-
tains alert information:

160|5|3|1|2|1197848582|2|3|11978486
42|3|21|1197848702|

To extract the data, use a simple
string-parsing routine to get the
characters delimited by the “|” char-
acter. To reduce the number of bytes
that the server must send, some
fields use a number value to index
into a locally defined string table.
For example, the response for the
alerts message includes an “alert
type” value. The text for the alert is
stored in a table of strings in the
Internet Weather Display’s memory.
The table is searched for the match-
ing “alert type” number, and the
text to display is extracted from the
table.

VERSION 1.0 TO 2.0
I entered the first version of my

Internet Weather Display project in
the 2007 WIZnet iEthernet Design
Contest. In that version, I used an
NXP Semiconductors ARM processor

Parallax has since lowered the price
to a more comfortable $12, so I took
another look and found it could easi-
ly generate the signals for either
composite video or a VGA monitor. I
decided to go with composite video
because medium-size TFT monitors
with composite video inputs are
readily available for around $55,
thanks to the in-car entertainment
market. I could even connect the
project up to my HDTV and have
my own “weather channel.”

The Propeller P8X32A-40 micro-
controller is laid out in much the
same way as the demonstration
board offered by Parallax (see Figure 1).
The video signal is generated by
three output pins that set up a resis-
tor digital-to-analog converter. Two
audio channels are used to create an
attention-getting, warble-tone alert
sound when new alerts are received.

Listing 1—The main loop handles the user interface and polls the WeatherBug server for
updated weather data.

Set I/O
Initialize display driver
Initialize WIZnet W5100
Initialize variables

Main Loop (1ms)

If button is pressed (debounce),
If sleeping,
Turn on the display

If new alerts,
Show alerts

Else
Show current/live
Else

Show next screen
Reset alert sound
Set flag to update screen
Reset sleep timer

If sleep timer expired
Stop the display driver
If no new alerts,

Power off the display
(We need power to the speakers for alert sound)

If screen update needed & not sleeping
Show current/live, forecast, or alert(s)
Reset screen update flag

If new alerts, sound alert

If 5 min expired,
Poll for weather data
Set flag to update screen
Check for new alerts

2907017_nickels.qxp 6/10/2009 9:13 AM Page 18

http://www.circuitcellar.com

What is
the missing
component?

Industry guru Forrest M. Mims III has created a stumper. Can you
figure out what's missing? Go to www.Jameco.com/missing to see
if you are correct and while you are there, sign up for our free full
color catalog. It's packed with components at prices below what
you are used to paying.

pu e 3 /30/09 3:30 age
19.qxp 5/27/2009 4:37 PM Page 1

http://www.Jameco.com/missing

20 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

An LED flashes while there are
active alerts, and a push button is
used to select a new screen image.
The program code is stored on the
EEPROM. When the Propeller powers
up, its resident bootloader copies the
first 32-KB from that device into its
internal RAM, starts an operating
system driver called the “SPIN
interpreter,” and then starts execut-
ing the program code from RAM.

The WIZnet W5100 Ethernet con-
troller is the perfect companion chip
for the Propeller microcontroller.
Most other 32-bit microcontrollers
have a version that includes inte-
grated Ethernet. The Propeller does
not; in fact, it doesn’t come with
many peripherals at all. An external
MAC+PHY could be used, but a
TCP/IP stack would eat into the
limited program memory. A better
solution is to use the W5100 to han-
dle all the message passing on the
Ethernet up to the TCP/IP level. The
W5100 chip has both a SPI and a
parallel interface. I chose the SPI to
keep the design simple, and because
I didn’t need the high throughput
rate available in the parallel inter-
face.

The project was constructed using
soldered wire connections on a perf-
board. RCA connectors were used
for video and audio lines just in case
I wanted to try out different TV
monitors. I could’ve used direct wire
connections if the board had been
mounted inside the same plastic
case as the monitor.

The only required external con-
nections were the Ethernet cable
and power from a 12-VDC wall

transformer. If you use a small mon-
itor like the one in Photo 1 and you
can connect it to the same 12 VDC,
be careful that you have the right
size wall transformer. The Internet
Weather Display board components
require less than 100 mA, but my
monitor required 500 mA, so a good
choice was a 1-A transformer. If
you’re using a monitor or TV with
its own power source, a 250-mA
transformer is sufficient. To add a
bit of “green” to the project, the
software turns the TFT monitor off
after a sleep period using a MOSFET
switch pair.

SOFTWARE
This project was the first time I

used the Propeller, so I had a little
bit of a learning curve to overcome. I
had three options for code develop-
ment: Parallax’s custom SPIN lan-
guage, C language using an Image-
Craft compiler, and assembly lan-
guage. I chose the SPIN language
because it appeared simple to learn
and it didn’t cost me anything. Par-
allax provided the Propeller Tool
IDE that enabled me to create the
SPIN source code files and download
them to the chip through a small
USB programming adapter. The Pro-
peller did not offer an emulator, nor
did the chip have any on-chip debug,
so I had to be a little creative while
debugging. Luckily, the included
library code that drove the compos-
ite video signal worked right away
and I was able to use the TFT screen
to watch values.

Listing 1 presents pseudocode for
the main loop. If you press the push

button, the show variable is incre-
mented to select a different display
screen. Pressing the push button also
stops the alert sound if it’s on. Every
5 minutes, the WeatherBug server is
polled for the weather data. The
alert information is checked to see if
there are any new alerts. If there are,
the alert sound is turned on. To be
“green,” the display is turned off 20 s
after the last button press. You may
want to remove this feature if you
use a standard television set instead
of a small TFT monitor or if you
want the display to be on all the
time. Also, if you manually turn off
the TV to save power, then connect
the audio outputs to separate ampli-
fied speakers so that you’re alerted
to new weather statements.

Photo 2 shows the three screens.
The Current Conditions screen
includes temperature, average wind
direction and speed, and rainfall
totals (see Photo 2a). The Forecast
screen shows the high and low tem-
peratures and expected conditions
for the next two time periods (see
Photo 2b). The Alerts screen shows
active weather statements (see
Photo 2c). The display can show
only two alerts at a time. You can
view additional alerts, if they exist,
by pressing the push buttons. The
screens are drawn using the Graph-
ics library included with the Pro-
peller Tool. For more information
about how the Propeller microcon-
troller draws images, refer to Chris
Cantrell’s article “Tile Graphics”
(Circuit Cellar 209, 2007).

Listing 2 shows pseudocode for the
steps needed to get data from a

Photo 2a—The Current Conditions screen shows rainfall totals, temperature, and average wind direction and speed. b—The Forecast screen
shows the high and low temperatures, as well as the expected conditions for the next two time periods. c—The Alerts screen displays
active weather alerts and updates.

b) c)a)

2907017_nickels.qxp 6/10/2009 9:13 AM Page 20

http://www.circuitcellar.com

This year we’ve decided to combine our
annual Circuit Cellar reader survey with a
special sample pool evaluation program.
This gives readers the chance to provide
Circuit Cellar with vital feedback while
also registering for sample product
consideration.

In addition to survey participants
having the chance to win Circuit
Cellar CD archives and subscrip-
tions, a larger group of qualify-
ing survey participants will
also be able to receive a wide
variety of product samples
from our sponsors.

See page 55 of this issue for a few
of the participating sample pool
sponsors. (Additional sponsors
may be added after this issue
prints.)

The world of publishing has changed
dramatically within the last 1-2 years. Now
more than ever it’s crucial that Circuit Cellar has your
input so that we can maintain a course that’s most beneficial to
our core readership.

Please take a moment to complete this reader survey today!
To participate, visit www.circuitcellar.com/RS

21.qxp 6/2/2009 12:58 PM Page 1

http://www.circuitcellar.com/RS

22 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

WeatherBug server. Since there are
multiple servers and the IP address-
es of those servers may change, the
first step is to perform a domain
name system (DNS) transaction.
After the response is received, the
WeatherBug server’s IP address is
known, and the request messages for
live/current conditions, forecast,
and alerts can be sent. After each
request is sent, we get the responses
and save them to specific buffers.

The DNS transaction consists of
sending a query message to a DNS
server. The server then responds
with a message that includes the IP
address that must be used. In my

network setup, my DSL modem acts
as a gateway to a DNS server out on
the Internet. The query message is
sent to my DSL modem, and then
the modem forwards the message to
a DNS server on the Internet. The
modem also forwards the response
back to my device. The project’s
software extracts the WeatherBug
server IP address from the response.
To keep things simple, the DNS
transaction is performed each time
the weather data is updated. If you
want a higher update rate, it would be
better to parse the DNS response for
the “time-to-live” parameter and per-
form only the DNS transaction after

Listing 2—This pseudocode shows the sequence needed to get weather data from the
WeatherBug server. First, DNS must be used to obtain the IP address of one WeatherBug
server. A request is made to the server to send back the current/live conditions, a two-
period forecast, and a list of active alerts.

-DNS
Set destination IP to 192.168.0.1 (my DSL modem)
Set destination port to 53
Open UDP socket
Send DNS query message
Wait for response
Get the response
Parse for the WeatherBug server IP

-Connection Setup
Set destination IP to WeatherBug server IP
Set destination port 80
Open TCP socket

-Get Live/Current Weather Data
Connect
Send request for live data, HTTP “GET”
Wait for response
Get response
Parse for weather information, save to specific buffer
Disconnect

-Repeat above for Forecast

-Repeat above for Alerts

-Connection teardown
Close socket

The W5100 does most of the ‘heavy lifting.’
It handles the entire Ethernet interface up to
the TCP/IP level. It has a simple command
interface to load data for sending outgoing
data and for reading received data.

”“

2907017_nickels.qxp 6/10/2009 9:13 AM Page 22

http://www.circuitcellar.com
http://keil.com/dd
http://www.keil.com/rtos
http://www.keil.com

57.qxp 4/9/2008 9:30 AM Page 1

http://www.embeddeddeveloper.com

that time expires.
If you look at the code that’s posted

on the Circuit Cellar FTP site, you’ll
notice that little code is required to
support the W5100. The W5100 does
most of the “heavy lifting.” It han-
dles the entire Ethernet interface up
to the TCP/IP level. It has a simple
command interface to load data for
sending outgoing data and for read-
ing received data. I ported the
W5100 driver code from the first
version of the project without too
much trouble. The Propeller’s SPIN
language is similar to C, but it has
some interesting nuances, such as
the strict use of indentation rather
than braces to define statement
blocks.

FEATURE CREEP
There are many ways to customize

this project to your liking. First,
there are other weather data
providers. The Weather Channel
provides data, but its terms of use
are a bit strict. The NWS provides
data with very few rules, but the
interface is more complicated. The
advantage of the NWS’s data is that
it is detailed, so you can see exactly
how much snow is predicted and
which direction a storm is moving.

Weather is just one type of infor-
mation the project can display.
Other data providers support news
and stock updates. Be prepared to
learn a new protocol like XML,
SOAP, or RSS because most services
don’t provide simple data interfaces
like WeatherBug’s pipe delimited for-
mat.

My design uses a 64-KB EEPROM,
where only 32 KB are used to sup-
port the Propeller’s 32-KB RAM copy
of the program code. You can use the
remaining 32 KB to log data or store
configuration values. You can also
put additional devices on the I2C bus
for more storage. In addition, you
can use the EEPROM to store image
data so that more RAM is available
for program code. Images are cur-
rently used on the forecast screen
and the raw data is combined with
the program code.

One nice feature would be to show
radar images in a loop. Although it

isn’t part of the WeatherBug API,
you could “get” the image from the
WeatherBug web site, store the last
four images locally, and set up the
display to loop the images. You may
want to go with a different micro-
controller and TFT to support this
feature. The radar images are usually
in JPEG format, so you’d need the
code to convert the image file to a
bitmap. There are a few open-source
solutions available, but the memory
requirements are significantly
greater. The Internet Weather Dis-
play’s graphics capabilities are some-
what limited, so it might take a lot
of work to get a clean radar image.
Consider using a higher-resolution
TFT with a digital interface.

The Internet Weather Display uses
simple tones to alert you when new
alarms are detected. The Propeller
can generate complex sounds with
its StereoSpatializer and VocalTrack
libraries. You can use voice
announcements or musical tunes if
you want sounds that are more
pleasing to hear. There are few
things worse than waking up to a
loud monotone beep during the mid-
dle of the night. You can modify the
software to play different sounds
based on the type of alert. Loud,
attention-getting sounds can be used
for warnings. A quiet, single “ding”
sound could be used for advisories.

Do you want every feature? First
off, step away from the “dark side,”
because you’re starting to think like
a person in a marketing department.
The current version of the Propeller
microcontroller has memory limita-
tions, and my code uses just about
every byte. The graphics library in
Propeller Tool normally uses the
double-buffering of a 12-KB image
buffer. This project doesn’t use ani-
mation, so I was able to use only a
single buffer and I got back a good
amount of memory for program
space. There are other Propeller
hardware platforms that support
larger memory configurations by
swapping program code between the
RAM and external EEPROM as need-
ed. Also, Parallax is currently work-
ing on the next version of the Pro-
peller chip, and it will undoubtedly

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

CIRCUIT CELLAR® • www.circuitcellar.com24

Standards improve quality and enable

designers to share components across

different projects.Today, ARM®

Cortex™-M profile processors, combined

with the Cortex Microcontroller

Software Interface Standard (CMSIS) and

optimized middleware from the

industry’s largest ecosystem, are setting

the hardware and software standards for

microcontrollers.

These standards enable leading vendors

such as Luminary Micro, NXP, and

STMicroelectronics to supply advanced

microcontrollers, while maximizing code

reuse across multiple platforms.

Standards
Make
Sense

“The strengths of ARM processor-based
NXP microcontrollers are fundamentally
changing digital products by combining
ease-of-use with high connectivity and low

power consumption.”

Geoff Lees
Vice President and General Manager,
Microcontroller Product Line

Cortex-M3
Microcontrollers
Make Sense

For more information visit

www.onARM.com

TheArchitecture for the

DigitalWorld
®

©ARM Ltd.AD158 | 01.09

2907017_nickels.qxp 6/10/2009 9:13 AM Page 24

http://www.circuitcellar.com
http://www.onARM.com

www.circuitcellar.com • CIRCUIT CELLAR® 25

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

your junk box. You’ll get a unique
WeatherBug code when you register
at the WeatherBug Labs website.

GO SENSOR-FREE
The Internet Weather Display

project enables everyone to have a
weather station no matter where
they live. Even if you don’t face the
same restrictions associated with
mounting exterior sensors as some
other users, this design may be bet-
ter than a backyard weather station
because you receive accurate, profes-
sional forecasts and NWS alerts. You
don’t have to worry about ideal sen-
sor placement or the cost of main-
taining and replacing the sensors.
You can even modify the design to
connect with other data providers to
display important data such as news
headlines and sound stock market
alerts. I

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/
2009/228.

ESOURCES
Parallax, Inc., “Propeller Manual,” V1.01, www.parallax.com/dl/docs/prod/
prop/WebPM-v1.01.pdf

WeatherBug, “WeatherBug API,” Pipe Delimited Format, http://weather.
weatherbug.com/desktop-weather/api-documents.html.

W5100 and WIZ810MJ Datasheets and information, WIZnet, www.wiznet.
co.kr/en.

OURCES
Propeller P8X32A-40 Microcontroller
Parallax, Inc. | www.parallax.com

WeatherBug Labs API
WeatherBug | http://weather.weatherbug.com/labs.html

W5100 Ethernet controller and WIZ810MJ network module
WIZnet Co. Inc. | www.wiznet.co.kr

P

Steven Nickels (ssea000@gmail.com) has a B.S. degree in electronic engineering
technology from Minnesota State University, Mankato. He is a senior soft-
ware engineer at Medtronic Navigation in Louisville, CO. Steven has not yet
received any complaints from neighbors about the odd-looking equipment
around his house.

R

S

include more RAM.
If you want to try and make this

into a sellable product, make sure
you check the data provider’s terms
of use. They will likely require some
sort of compensation. You will also
want to make the code much more
robust by adding features such as the
ability to select the WeatherBug data
source, and the ability for the device
to get its IP address using DHCP. All
Ethernet devices must have a unique
hardware/MAC address. The IEEE
administers these addresses, and you
can purchase a range. Note that if
you use the project’s code, both the
MAC address and the WeatherBug
unique identifier code have been set
to illegal values. You must obtain
your own unique values. If building
a version for your own use, then per-
haps use the MAC address from on
old PC Ethernet card that’s sitting in

2907017_nickels.qxp 6/10/2009 9:13 AM Page 25

mailto:ssea000@gmail.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/228
http://www.parallax.com/dl/docs/prod/prop/WebPM-v1.01.pdf
http://weather.weatherbug.com/desktop-weather/api-documents.html
http://www.wiznet.co.kr/en
http://www.parallax.com
http://weather.weatherbug.com/labs.html
http://www.wiznet.co.kr
http://www.circuitcellar.com
http://www.pololu.com/ccad

26 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

of

Art

one

module (see Figure 1). In this article, I will describe how
I did it.

NETWORK MODULE
The WIZ810MJ dictates the way the camera communi-

cates with the other devices in the system (see Figure 2).
It is a network module that includes a W5100 TCP/IP
hardwired chip (including PHY) and mag-jack (RJ-45
with transformer) with other glue logic.

A network interface card (NIC) must have a unique
MAC address. Where can you find a MAC address? You
can buy 1,000 to 1,500 MAC addresses from the IEEE,
but it can be expensive. Thus, the best option is to use

Photo 1a—This is the complete web camera design. b—The wiring is fairly simple. c—The design features two single-layer boards.

a) b) c)

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 26

This versatile web camera system can take a picture at a resolution of
640 × 480 or 320 × 240, pan the camera horizontally and vertically, and
change its IP and gateway address to match a network. After each photo
is divided into 64-byte segments, an Ethernet module transmits the packets
over the Internet.

Web Camera Design

Y

F
EA

TU
RE

ARTICLE
by Minas Kalarakis

ou can use cameras for everything from
recording celebrations to building surveillance.

One of the most exciting new developments in camera
technology is the webcam. At the heart of a webcam is a
microcontroller that controls peripheral devices, such as
the camera module (camera chip, lens, etc.) and the com-
munications. Due to my interest in cameras, the Inter-
net, and embedded technology, it made sense for me to
design my own web camera (see Photo 1).

I built my web camera around a Microchip Technology
dsPIC30F4013 16-bit microcontroller, a COMedia C328-
7640 serial camera module, a WIZnet WIZ810MJ mo-
dule, and two standard servos for rotating the camera

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 27

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

an old Ethernet card. I had
one on hand, so I installed
it in my PC to get its
MAC and then I threw it
away. As a result, my cam-
era is recognized as an
Intel NIC.

DHCP OR STATIC IP
In addition to a MAC

address, the camera needs
an IP address. IP addresses
can be assigned statically
or dynamically. Dynamic
assignments are handled
by a Dynamic Host Con-
figuration Protocol
(DHCP) server. For exam-
ple, my home network
gets IP addresses from the ADSL router’s DHCP server,
which uses the range of 10.0.0.xx to 10.0.0.137. The
router itself has a static IP address of 10.0.0.138. Howev-
er, if the camera had a dynamically-assigned IP address,
none of the other machines would know what that
address is and they wouldn’t be able to communicate
with the camera. Therefore, the camera has a statically-
assigned IP address stored in the microcontroller’s EEP-
ROM at address 0x7FFC00. The default value for this
address is 10.0.0.50 (defined in the source code) and the
port is 50000. Of course, this IP address can be changed
through the firmware.

Listing 1 is the code that fetches the stored IP address
from the EEPROM. Each location in the EEPROM is 16
bits wide and can store 2 bytes. As you can see in List-
ing 1, the IP address, the SubNet mask and the gateway
address are copied to addr_param[], a global variable of
type char.

Other Functions like Send_a_UDP_Packet() can
access this array to get the IP address to include with
the data that the WIZ810 will send to the host comput-
er. Later in this article, I will describe the function that

acquires these parameters and stores them in EEPROM.

TCP OR UDP?
This was my first project using embedded Ethernet. I

had to decide between the the transmission control pro-
tocol (TCP) or the user datagram protocol (UDP). TCP
establishes a connection in advance and delivers the data
reliably and in the sequence it was sent. UDP features
an unreliable connectionless datagram transmission
structure. It processes data without establishing a con-
nection. Therefore, lost or out-of-sequence packets are
not hidden from the application. Also, there is no flow
control, which means that packets can arrive faster than
the recipient can process them.

I transmit photos with this system. So what if I lose
one? I can catch the next one.

On one hand, today’s computers are fast enough to
process multiple applications at the same time. On the
other hand, the UDP algorithm, as described in the
W5100 datasheet, is simpler than TCP. That’s why I
chose the UDP protocol.

The WIZnet module can be interfaced via a parallel bus
or via SPI. I chose SPI for its low pin count and simplici-
ty. Although the dsPIC30F4013 microcontroller has two
serial ports, I may develop future projects with microcon-
trollers with only one UART. However, UART1 on the
’3014 shares pins with the SPI interface, so it is neces-
sary to use a command like U1MODEbits.ALTIO=1; to
move the UART1 function to alternate pins. I also
issued a command for a 200-ms delay because it seemed
to need some time to do the job! The SPI port is initial-
ized in 8-bit master mode (see Listing 2).

A Microchip Technology TC2117-33 LDO regulator
supplies the WIZ810 with 3.3 V. It draws 146 mA. I
should also mention that the WIZ810 draws more cur-
rent when the cable isn’t connected. It gets really hot.
All W5100 inputs are 5-V-tolerant, which means that
they can be connected directly to the microcontroller.
However, for compatibility, I reduced the microprocessor’s

Figure 1—Here you see the WIZnet WIZ810MJ module and two standard servos that are used to rotate
the camera module.

Figure 2—The design is fairly straightforward. A dsPIC30F4013 sits
at the center of the design.

Servo y Servo x
World

C328
Camera

CPU
dsPIC30F4013

WIZ810
Module

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 27

http://www.circuitcellar.com

28

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

CIRCUIT CELLAR® • www.circuitcellar.com

output signal to 3.3 V with a resistor divider (see Figure 3).
A 33-Ω resistor is connected in series to eliminate the
SDI current. The SPI_EN and the *CS signals are con-
nected to Port B’s pins 11 and 12, respectively. The
RESET signal is pulled high using a 2.2-kΩ resistor and
connected to pin PB10.

CAMERA MODULE
The C328 camera module provides a serial interface

(UART) and a JPEG compression engine (see Figure 4).
The module consists of three main parts: an OmniVision
Technologies OV7640/8 VGA color digital camera chip
with an 8-bit YCbCr interface; an OV528 serial bridge,
which is an embedded controller chip with a JPEG
CODEC that can compress and then transfer image data
from the camera chip to external devices; and a program

in EEPROM that provides a set of user-friendly com-
mands for interfacing to external host. (This program
supports 11 commands for interfacing to the host.)

RESOLUTION
The module can produce pictures in Normal mode (no

compression) or Compressed mode (picture compressed
with the JPEG algorithm). The maximum resolution in
Compressed mode is 640 × 480 pixels. In Normal mode,
the resolution is 160 × 120 pixels. For each picture, a
total of 57,600 bytes (i.e., 160 × 120 × 3 bytes per pixel)
must be transferred to the host.

In practice, the size of a compressed picture file with a
resolution of 640 × 480 pixels rarely exceeds a total of 90 KB.
For a picture taken inside a
room, the file size is about
60 KB. For a half-size picture
with a 320 × 240 resolution,
the file size will be 30 KB or
less. The bytes must be trans-
ferred with a slow UART
interface at 57,600 bps.

VGA resolution is 640 ×
480 pixels with 16 or 256 col-
ors (the display standard for
the PC). It was introduced in
1987 with IBM’s PS/2 line and
was popular in PCs with 14″

Figure 3—I reduced the
microprocessor’s output
signal to 3.3 V with a
resistor divider.

Listing 1—IP, Subnet, and Gateway static values are stored in
EEPROM starting at location 0x7FFC00. For fast execution, cache
all values to the microcontroller memory.

for (i=0;i<11;i++){
Temp=Eeprom_Read(0x7FFC00+i);
addr_param[i]=(Temp & 0xFF00) >>8;
addr_param[i+1]=Temp & 0x00FF;
i++;

}

“The NAND market has grown faster than any technology in the history of semiconductors.”
— Jim Handy, Objective Analysis

Attend Flash Memory Summit for the latest practical
information on flash memory and the most recent

developments in flash memory applications.

Learn to make your products

Fast, Rugged
and Mobile

at the only conference
dedicated to flash memory!

4th Annual Flash Memory
Summit & Exhibition

August 11-13 2009
Santa Clara, California

FlashMemorySummit.com
Exhibit Space & Sponsorship Information:

Alan@FlashMemorySummit.com

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 28

mailto:Alan@FlashMemorySummit.com
http://www.circuitcellar.com
http://www.flashmemorysummit.com

29.qxp 6/2/2009 1:30 PM Page 1

http://www.pcbwest.com

30.qxp 5/27/2009 5:26 PM Page 1

30.qxp 5/27/2009 5:26 PM Page 1

http://www.embeddedarm.com

32 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

or 15″ monitors. Many new flat pan-
els have a resolution of 1,280 × 1,024
or more. A picture with 640-pixel
horizontal resolution covers about
only half the monitor.

Modern desktop programming sys-
tems have functions that can resize
an image. A picture with a 320 × 240
pixel resolution is balanced in quali-
ty and file size.

CAMERA INTERFACE
The host (a dsPIC30F4013 micro-

controller) must initialize the C328
module after powering it up. Initial-
ization involves transmitting the

SYNC command (AA 0D 00 00 00)
via the UART until the module
sends an acknowledge command
(ACK). An ACK command is usually
received by the time the SYNC com-
mand is sent 60 times. A 10-ms delay

must be used between SYNC com-
mands. The best synchronization
occurs at 57,600 bps (see Listing 3).
At a high speed of 115,200 bps, syn-
chronization can’t be achieved.
Thus, the best for the host is to
power off and on the module. The
BSS22 transistor on the PCB acts as
a switch to power on and off the
module. At the speed of 57,600 bps,
the module synchronizes at 60
SYNC commands and never fails.
Thus, the firmware doesn’t wait to
receive the ACK command.

The C328 implements two differ-
ent communication modes, depend-
ing on which command the host
sends to get a snapshot picture

Listing 2—In the dsPIC30F4013, UART1 and the SPI share the same bus. Force UART1 to
use an alternative bus. The SPI is initialized in 8-bit master mode.

Uart1_Init(57600);
U1MODEbits.ALTIO = 1; // Clear the way for SPI
Delay_ms(200); // It needs some time to do the job
Spi_Init_Advanced(_SPI_MASTER, _SPI_8_BIT, _SPI_PRESCALE_SEC_2,
_SPI_PRESCALE_PRI_1, _SPI_SS_DISABLE ,
_SPI_DATA_SAMPLE_MIDDLE,_SPI_CLK_IDLE_LOW,_SPI_IDLE_2_ACTIVE);

Figure 4—The C328
camera module includes
a VGA color digital cam-
era chip and an OV528
serial bridge. A UART
is the intermediary
between the module
and host.

UART

C328 Camera module

Host

EEPROM
(Program)

OV7640/8
VGA Image

sensor

OV528
Compression

engine

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 32

http://www.circuitcellar.com
http://www.jkmicro.com
http://www.linxtechnologies.com

(uncompressed or a JPEG picture). In
snapshot mode, the host sends a
Get_Picture() command and the
C328 replies with AA A0 01 xx yy zz
(3 bytes hold the length of data fol-
lowing these bytes) and all the bytes
in the picture’s file. This means
about 900 KB of data or 160 s for a
picture with a resolution of 640 ×
480. This mode is unacceptable
because 640 × 480 × 3 bytes per pixel
= 921,600 bytes × 10 bits/byte =
9,216,000 b/57,600 bps = 160 s per
photo, or 2.67 min per photo.

In JPEG mode, the C328 uses the
packet method. Before the Get_Pic-
ture() command, the host issues a
command to determine a packet’s
number of bytes. The default value
is 64 bytes long, and the maximum
is 512 bytes. After some tests, I
found that the best performance was
achieved with the default values.
Figure 5 illustrates this point, and
the camera_snapshot() function
implements it in code. As you can
see, this function requests the pic-
ture data. The resolution must be set
prior to this function. During the
main procedure, the Get_A_Photo
(char resolution) function is
called to set the resolution. But first,
it establishes the connection to the
camera with the camera_con-
nect() function. It sets the resolu-
tion with camera_setup(vgaReso-
lution) and finally calls the cam-
era_snapshot() function to get
the data. camera_snapshot() is
responsible for gathering the packet
data and passing them to the array
character packet[256]. After a packet
is received from the camera, it is
acknowledged, and the function
passes the data to the WIZ810MJ’s

socket 0 buffer and does everything
required to send it as a UDP packet.
It transfers the value of remote_ip
and remote port to the Socket 0’s
registers S0_DIPR and S0_DPORT,
respectively. Subsequently, it calcu-
lates the start address of data and
passes the values to the S0_TX_WR0
and S0_TX_WR1 registers. Finally,
the host issues a S0_CR_SEND com-
mand for the data to be sent to the
output and clears the send flag to be
ready for the next packet. At that
point, an enhancement can be made
to write the data directly to the

socket 0 buffer. To do
so, the length of the
packet must be set at
512 bytes long (maxi-
mum) and the UART
speed must be 115 kbps
to increase performance.
The overall process will
increase the frames cap-
tured by the host from
three to five per minute
to three to six per
minute. One frame more

isn’t important at this time.
On the PCB, there are two red

LEDs. One is connected on pin RC13
and flashes on SYNC commands.
The other is connected on RC14 and
flashes once when the camera takes
a picture.

The C328 requires 3.3 VDC to
work and its I/O is not 5-V-tolerant.
Therefore, a resistor divider (R3 and
R5) at the dsPIC30F4013’s UART2
TX pin is used to convert the 5-V
signal to 3.3-V levels. A 33-Ω resis-
tor (R4) was added to the
dsPIC30F4013’s UART2 Rx pin to

www.circuitcellar.com • CIRCUIT CELLAR® 33

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

Listing 3—The C328 module must synchronize at the host UART speed. The host must send a special
packet several times. An LED connected at pin 13 blinks to indicate this.

void camera_connect(){
char i;

for(i=0;i<70;i++){
send(0xAA , 0x0D , 0 , 0 , 0 , 0); // Sending SYNC packets
PortCbits.RC13 ^=1;
delay_ms(10);

}
send(0xAA , 0x0E , 0x0D , 0 , 0 , 0); // Confirm SYNC with an ACK packet.
Connected=1;

}

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 33

http://www.circuitcellar.com
http://www.usbee.com

34 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

limit the current.

CAMERA ROTATION
Two standard servos—the second is

attached to the shaft of the first
servo—rotate the camera horizontally

and vertically. The dsPIC30F4013
communicates with servos via puls-
es. As the host, the dsPIC30F4013
generates a pulse of various lengths
approximately every 20 ms.

The pulse’s duration applied to the

control wire determines the angle of
the shaft. This is called pulse width
modulation (PWM). The servo
expects to see a pulse every 20 ms or
so. If the pulse spacing is greater
than about 50 ms (manufacturer-
dependent), the servo will enter
Sleep mode in between pulses. It
will move in small steps and the
output will be jerky. The off time
can vary. This has no adverse effects
as long as its value is between
approximately 10 to 30 ms. It is only
the on time that determines the
position of the output arm.

The pulse is normally between 1
and 2 ms long. The length of the
pulse is used by the servo to deter-
mine the position to which it should
rotate. Note that different servos
will have different constraints on
rotation. However, they all have a
neutral position that’s always
around 1.5 ms (e.g., a Futaba S3003
servo’s neutral position is 1,520 µs
and its maximum rotation is 1,900
µs). When a pulse is sent to a servo
that’s less than 1.5 ms, the servo

Photo 2—One board holds the dsPIC30F4013. The WIZ810MJ module is mounted on the
other.

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 34

http://www.circuitcellar.com
http://www.jkmicro.com
http://apcircuits.com

www.circuitcellar.com • CIRCUIT CELLAR® 35

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

frequency of 32 MHz. Therefore,
Timer2 is initialized through the

InitTimer2Interrupt() function with
the following parameters: dual com-
pare mode, continuous pulses output
(OC1CON = 0x0005), rising edge
start (OC1R) = 5, falling edge start
(OC1RS) = 52. The register PR2 is
set at 600. Changing the value of
OC1RS affects the “on” time. This
can be considered a duty cycle that
can be changed at will. The value of
25 corresponds to 0 degrees, and the
value of 85 to 180 degrees, with a
resolution of 3 degrees per step.
Channels 1 and 2 are initialized for
the two servos.

HARDWARE
As you can see in Photo 2, the

design consists of two single-layer
boards. One holds the dsPIC30F4013
and the second is piggy-backed to
WIZ810MJ module. The main board
is simple. It features a dsPIC30F4013
with an 8-MHz crystal, power sup-
ply circuitry, and headers for con-
necting the board holding the
WIZ810MJ (see Figure 6).

A 5-V, 1-A MCP1826S regulator
provides power to the system. A
TC2117-3.3 linear regulator on the
main board provides the 3.3 V

Figure 6—The processor PCB features a dsPIC30F4013, an 8-MHz crystal, power supply cir-
cuitry, and headers for connecting to the other PCB.

rotates its output shaft a number of
degrees counterclockwise from the
neutral point and holds it there. When
the pulse is wider than 1.5 ms, clock-
wise rotation occurs. Generally, the
minimum pulse is about 1 ms wide,
and the maximum pulse is 2 ms wide.
Because of the hardware (e.g., motor
and gears), the servo cannot rotate
instantly to the instructed position
with one pulse. The host has to issue
some pulses to the servo until it reach-
es the final position.

The nominal supply voltage for the
servo is 4.8 to 6.0 V at 7.2 to 8 mA.
A Microchip Technology MCP1826S
regulator supplies the entire device
with 5.0 V at 1,000-mA maximum
current. The supply voltage for the
servos is settled at 5 V, directly con-
nected to MCP1826S.

The dsPIC30F4013 drives the ser-
vos with pulses. This sounds like a
good application for the comparator
module of the microcontroller. The
comparator module is driven by
Timer2. The dsPIC has an 8-MHz
crystal and the PLL enabled with a
multiplier of four, giving a core clock

Figure 5—This is the command protocol to get a snapshot. The host is on the left. The host
requests the image as packets of a known size. At the end, it acknowledges with a special pack-
et. (Source: COMedia, “C328-7640 User Manual,” 2005, www.comedia.com.hk)

ACK
(AA 0E 01 xx 00 00)

ACK
(AA 0E 06 xx 00 00)

ACK
(AA 0E 04 xx 00 00)

Initial
JPEG Preview, VGA
(AA 01 00 07 yy 07)

Get picture
JPEG Preview picture
(AA 04 05 00 00 00)

Data
JPEG Preview picture
(AA 0A 05 ~~ ~~ ~~)

Set package size
512 bytes

(AA 06 08 00 02 00)

ACK
Package ID: 000h

(AA 0E 00 00 00 00)

ACK
Package ID: 001h

(AA 0E 00 00 01 00)

ACK
Package ID: F0F0h

(AA 0E 00 00 F0 F0)

Image data package
512 bytes, ID: 0000h

Note:
xx, yy: Don’t care
~~: Image size returned by

Image data package
512 bytes, ID: 0001h

The last image data
package

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 35

http://www.comedia.com.hk
http://www.circuitcellar.com

36 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

required by the WIZ810MJ module
and the C328 camera. Thus, the
WIZ810MJ module and the
dsPIC30F4013 are 3.3-/5-V-tolerant,
the C328 module is 3.3-V-only so
level-shifting circuitry is required. I
used level-shifting circuitry for both.

The host communicates with the
WIZ810MJ via the SPI bus. It uses the
UART port for the C328. A BSS22
transistor acts as a switch to power on
and off the C328 camera module.

MAIN BOARD FIRMWARE
The main board’s firmware (see

Figure 7) was written in the C lan-
guage. The MikroC compiler was used.
The total size of the code is less than
6 KB. MikroC has an evaluation version
that works fine with code less than 6 KB,
so it is easy to experiment with.

I first read about the WIZ810MJ in
Fred Eady’s 2007 article “iEthernet
Bootcamp: Get Started with the
W5100” (Circuit Cellar 208). He intro-
duces the W5100 and covers the topic
of sockets. In an example, Eady uses
the UDP protocol. After I made a deci-
sion about the protocol, I started look-
ing for code. The well-written W5100
manual details the process of sending
a UDP packet. Searching the Internet,
I also found code for Atmel’s micro-
processors. I keep some header files
from that code and the same alias for
further reference.

The firmware isn’t interrupt-driven.
The main function looks for data that
have arrived in the WIZ810MJ’s Rx
buffers by reading the Sn_RX_RSRx
register. It loops until the arrival of
data (see Listing 4). When data arrives,
it passes them to a global parameter
Packet[]. It moves the buffers
pointer to the new location and writes a
0x04 to S0_IR to clear the Receive flag.

Action is taken according to the first
byte in the packet. A switch statement

takes care of this. There are six differ-
ent cases, and among them are some
that combine actions. For instance,
case 53 (ASCII “5”) means “Rotate
camera then get a photo at 320 × 240
resolution.” The PC client can change
the web camera’s IP Subnet mask
value. Case 52 (ASCII “4”) takes care
of storing the new values to
dsPIC30F4013 EEPROM.

I want to bring special attention to the
SPI routine. When you try to use the
W5100 in SPI mode, even if the *SCS is
High, the W5100 (or WIZ810MJ) drives
the MISO. To avoid doing so, the func-
tions wr_wiz_reg(char reg_data,
unsigned int reg_addr) and
rd_wiz_reg(unsigned int reg_addr)

enable SPI_EN and then pull down the
*CS signal. They write or read from the
module and then they disable SPI_EN
and pull up the *CS.

WEBCAM PROGRAM
Software is required for the desktop

PC to communicate with the camera. A
PC program was needed to display the
photos on its screen. The language is
Visual Basic version 6.0 and standard
controls were used to enable everyone
to experiment with the code.

It all begins with the PC. The client
program is responsible for requesting a
picture, collecting the packets and
checking the photo’s integrity, and then
displaying it (see Photo 3). In the pro-
gram’s main window, there are two but-
tons marked 320 × 240 and 640 × 480.
After pressing a button, the program
sends a UDP packet using the control
WinSoc. The packet consists only of 1
byte. This is the character “2” for but-
ton 320 × 240 and the character “1” for
button 640 × 480. The WinSoc control
uses the camera’s static IP address and
port number to send the packet.

Figure 7—The firmware flow chart is fairly straightforward. It polls the WIZ810 for data. When
data arrives, action is taken according to the first received byte.

Start

Switch camera on

Poll WIZ810 for data

No

Yes

52 51 Store IP Subnet mask
gateway

Data
arrived

?

Rotate
servos

Examine
first byte

Is the last
packet?

Get a packet and
send it to PC

Initialize comparator
WIZ810

C328 Camera

Get a photo

49, 50, 51, 53, 54

Yes No

Listing 4—The firmware polls the WIZ810 for data arrived. The Sn_RX_RSRx register holds
the size of data arrived. If there is no data, then poll the WIZ810 again.

do{
hi_byte = rd_wiz_reg(Sn_RX_RSR0(0));
lo_byte = rd_wiz_reg(Sn_RX_RSR1(0));
get_size = make16(hi_byte,lo_byte);

}while(get_size <=0x0000); // if no bytes received --> loop

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 36

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 37

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

As I already mentioned, action is
taken according to the first byte in the
packet. A switch case takes care of this.
A click on button “320 × 240” sends the
character “2” (ASCII 50). The switch
case calls the function to get and then
send a photo in CCTV resolution.

The WinSoc control listens to the
default port, 50000, and collects the
data. The WinSoc control’s DataArrival
event will be raised when data arrives in
the default port, 50000. To inform the
program how many bytes it has to col-
lect, the first packet includes the logo
length=xxxx, where xxxx is the size of
the picture. Every packet that arrives
adds its bytes on a RAM buffer. When all
bytes arrive at the buffer, a LoadPic-
ture() function writes them to disk,
and then loads the file to a picture con-
trol. The picture control is configured to
double a picture’s width and height.
After that, the procedure checks to see if
the corresponding “continue” box over
the button is checked. If so, it issues a
packet with the same character to the
camera to get a new photo.

A progress bar on the top shows the
progress of the received bytes. There is a
Set button in the main window. By
clicking this button, you send the cam-
era a packet with all the values shown
above. The packet is 13 bytes long. The
sliders at the bottom left corner are used
to rotate the camera. Every time you
move the slider, the slider control fires

the change event and a packet with
new values are transmitted to the
camera.

IMPROVEMENTS
There’s more work to be done on

the firmware. It isn’t interrupt-driven.

A new packet can arrive, but it has
to wait until an entire photo is sent.
This requires a new signal to be
added on the PCB to connect the
WIZ810MJ interrupt to the micro-
controller.

The UART speed should be set to
115 kbps to improve the camera’s
connection. This requires the
firmware to poll the UART RX for
the proper answer before moving to
the next step. Right now, this design
operates with my home ADSL con-
nection at 1024/128 kbps. I can send
five frames per minute to my office
computer. I

Photo 3—Here you see the client program’s main window.

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/
2009/228.

ESOURCES
F. Eady, “iEthernet Bootcamp: GetStarted with the W5100,” Circuit Cellar
208, 2007.

WIZnet, “WIZ810MJ Datasheet,” Ver.1.2, 2008, www.wiznet.co.kr/en/pro
02.php?&ss[2]=2&page=1&num=23.

OURCES
COMedia C328-7640 Serial camera module
COMedia | www.comedia.com.hk
Electronics123.com (distributor) | www.electronics123.com

dsPIC30F4013 Microcontroller, MCP1826S regulator, and TC2117-33 regulator
Microchip Technology, Inc. | www.microchip.com

C compiler
mikroElektronika | www.mikroe.com/en/compilers/mikroc/dspic/

OV528 Serial bridge and OV7640/8 VGA Color digital camera chip
OmniVision Technologies, Inc. | www.ovt.com

WIZ810MJ Ethernet module
WIZnet, Inc. | www.wiznet.co.kr/en

Minas Kalarakis (info@kalarakis.gr)
holds a B.S. in marine communica-
tions from The Naval Marine School of
Crete. He is a network administrator
and computer technician for The Man
Power Organization. Minas’s main
areas of interest are software and
hardware development for embedded
systems. In addition his interest in
electronics, he enjoys flying RC
model aircraft and cycling with his
kids.

R

S

P

2907015_Kalarakis.qxp 6/10/2009 9:15 AM Page 37

mailto:info@kalarakis.gr
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/228
http://www.wiznet.co.kr/en/pro02.php?&ss[2]=2&page=1&num=23
http://www.comedia.com.hk
http://www.electronics123.com
http://www.microchip.com
http://www.mikroe.com/en/compilers/mikroc/dspic/
http://www.ovt.com
http://www.wiznet.co.kr/en
http://www.circuitcellar.com

38 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

After reading a 2006 Circuit Cellar article about the development of a
heat exchange recirculating mash system (HERMS), Kirt set out to
update his own Ethernet-controlled design. In this article, he describes
how upgrading the system involved metal bending, TIG welding, MIG
welding, embedded Linux code, VB.NET code, and more.

iMash

H

F
EA

TU
RE

ARTICLE
by Kirt Weakman

omebrewing is an extremely diverse hobby. On
one end of the spectrum, you can make beer using

simple equipment such as a stock pot and the old stove
top. On the other end, you find complex systems utilizing
control loops and advanced equipment that are comparable
to process-control technologies in industry. I think that is
why homebrewing appeals to me. It’s an endeavor that can
accommodate diverse interests and skill levels.

Beer making involves basically four principal ingredients:
water, malted barley, hops, and yeast. The water allows
starches within the malted barley to dissolve, thus
enabling activated enzymes to convert it into fermentable

of

Art

one

and non-fermentable sugars. Generally, hops are added to
this sugar solution and boiled for a certain period of time.
Hops provide bitterness to balance the sweetness, aroma
for fragrance, and a preservative. Once cooled to a certain
temperature (approximately 68°F), yeast is added. The yeast
comprises the single-cell organisms that consume the fer-
mentable sugars and produce CO2 and alcohol. The beer is
then allowed to ferment until it is ready to be transferred
to another holding vessel or to be served.

Homebrewers usually categorize the brewing process and
use terms like extract, mini-mash, or all-grain. These terms
describe the process of converting the malted barley into a

An Ethernet-Controlled HERMS

Photo 1a—Check out my homebrewed HERMS. I’ve used the system to brew two batches of beer: American Hefeweizen and American Amber.
b—Take a look inside the iMash enclosure. Three solid-state relays along with the SBC are mounted inside. A disconnect switch is integrated
into the assembly to manually control the power. An Ethernet cable and quick connectors allow the unit to interface with the system.

b)a)

2907017_Weakman.qxp 6/10/2009 10:00 AM Page 38

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 39

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

fermentable product the yeast can consume. Extract brew-
ing is generally the simplest and requires the least amount
of equipment. The malted barley has already undergone the

starch conversion process and is packaged in either a liquid
or dried form. As an example, these are the metal cans you
usually see with the appealing graphics that make you

want to brew. Moving up the ladder, mini-mashing
is similar to extract brewing, with the exception
that a small amount (usually less than 1 lb) of actu-
al malted barley is steeped in the brew pot before
the extract is added. This adds some taste complex-
ity to the finished beer. Finally, all-grain is the
process in which milled malted barley is mixed
with hot water and allowed to set to foster the
sugar conversion process. The grain and water
(called mash) are then rinsed with more hot water
(called sparge water) and transferred to a boiling
kettle. At that point, all three processes generally
go through the same process to become beer.

I’ve been brewing for close to 12 years, starting
with extract brewing and slowly working my way
to all-grain. My old system employed a cooler to
hold the water/grain mix during the conversion.
This generally worked pretty well, but it had some
disadvantages. First, it would drop the temperature by
about 4° over the conversion period. Second, there
was variation in the target temperature of the water
added to the grain. Third, some grains like wheat
were not fully modified. This basically meant that
to optimize the characteristics of the grain
(amount of sugar converted, protein levels, and

Figure 1—Here you see the system’s hardware and sensors. There are three
vessels: the sparge tank, the mash tun, and the grant.

Water stir

Heat exchanger
Water level float switch

Recirculation flow valve

Water level sensor

5,500-W Heater

Sparge thermistor

Mash
thermistor

Mash tun

Mash run off valve

Sparge tank

Sparge valve

Grant float

Grant

Pump

Spray arm

2.6 KERNEL

System on Module

The SoM-9307 uses the same small SODIMM form-factor utilized by other EMAC
SoM modules, and is the ideal processor engine for your next design. All of the
ARM9 processor core is included on this tiny board including: Touchscreen
Interface, Flash, Memory, Serial Ports, Ethernet, I2S Audio Interface, PWMs,
Timer/Counters, A/D, Digital I/O lines, and more. Like other modules in EMAC's
SoM product line, the SoM-9307 is designed to plug into a custom or off-the-shelf
Carrier board containing all the connectors and any additional I/O components
that may be required. The SoM approach provides the flexibility of a fully
customized product at a greatly reduced cost. Single unit pricing starts at $150.

EQUIPMENT MONITOR AND CONTROL

OVER

YEARS OF

SINGLE BOARD

SOLUTIONS

24

Since 1985

Phone: (618) 529-4525 Fax: (618) 457-0110 Web: www.emacinc.com� �

http://www.emacinc.com/som/som9307.htm

Internet Appliance Engine

SoM-9307
�

�

�

�

�

�

�

�

�

EP9307 ARM9 200Mhz CPU

3 Serial Ports & 2 SPIs

Up to 40 Digital GPIOs

10/100 BaseT Fast Ethernet

& WinCE 6.0

s

Small, 144 pin SODIMM form factor (2.66 x 2.38”)

3 USB 2.0 Host Ports

I2S Audio Interface

SD/MMC Flash Card Interface

Up to 64 MB Flash & 128 MB RAM

Graphic LCD Interface with 2D Acceleration

Linux with Eclipse IDE

8 12-Bit A/Ds & 4 16-Bit Timer/Counters

�

�

�

2907017_Weakman.qxp 6/10/2009 10:00 AM Page 39

http://www.emacinc.com/som/som9307.htm
http://www.emacinc.com
http://www.circuitcellar.com
http://www.elprotronic.com

After reading Mark Nesdoly’s 2006
article “Home-Brewed HERMS”
(Circuit Cellar 191) and doing some
research on the Internet, I was
inspired to update my system (see
Photo 1). Nesdoly details the differ-
ence between various system archi-
tectures and provides some control
background on the process. I decided
to upgrade my cooler setup to a heat
exchange recirculating mash system
(HERMS). This control methodology
has the capability to actively control

40 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

head retention) the grain had to go
through several different ranges of
temperatures. This was not easy to
do in a cooler since I could not heat
it directly.

the mash temperature, thus address-
ing the problems I had with the cool-
er system. I also wanted to focus on
simplicity and system robustness.
The heart of the control system is a
Glomation GESBC-9302E embedded
single board computer (SBC) running
Embedded Linux. The SBC imple-
mented a network socket communi-
cation scheme back to a Visual Basic
.NET application for interface and
control purposes. Temperature sens-
ing was accomplished by fabricating
two thermistor probes that utilized
high-precision thermistors in a
Wheatstone bridge configuration.
Temperature was controlled with a
5,500-W heating element (water
heater element available at your local
hardware store) along with a small
stir motor. Each was controlled by a
solid state relay (SSR). A March 809-
HS pump and SSR were implemented
to recirculate the mash. The water
level was monitored in the sparge
tank using a Motorola MPXV400X
series pressure transducer. Two fluid
level floats were used detect liquid
levels for the heater and pump logic.

SYSTEM DESIGN
Most HERMS I read about on the

Internet and in Circuit Cellar were
conceptually similar in that they were
designed to control the temperature of

Figure 2—The digital input circuit was used
to read float switches and the interface
panel switch inputs.

Figure 3—The digital output circuit was used
to control various LEDs, SSRs, and buzzer
outputs.

Figure 4—This is a Wheatstone bridge with
an RC filter. Two of these were implemented
to read temperature (mash thermistor and
sparge thermistor).

2907017_Weakman.qxp 6/10/2009 10:00 AM Page 40

http://www.circuitcellar.com
http://www.expresspcb.com

www.circuitcellar.com • CIRCUIT CELLAR® 41

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

the recirculating mash. However,
there is a plethora of implementa-
tions. Some implement gas burners,
some use a dedicated vessel for the
heat exchanger, and there is a myriad
of control implementations (from ele-
gant to scary). My design goals were
simplicity, robustness, and cost.

After much iteration, I decided on
the system detailed in Figure 1. (An
additional schematic is available on
the Circuit Cellar FTP site.) The
sparge tank contains the heat
exchanger, heater, water float switch,
thermistor, and level sensor. The
mash tun contains a thermistor and a
false bottom. The latter separates the
mash liquid from the grains so the liq-
uid can be extracted and recirculated. A
small vessel below the mash tun, called
a “grant,” holds the liquid for the pump
intake. A float is used to determine if
the grant is empty so the pump won’t
run dry. The grant helps eliminate any
vacuum from forming between the
pump and mash tun. Ideally, we want
the grain bed inside the mash tun to
form a filter. A vacuum could poten-
tially interfere with this filter.

I designed my system to utilize both
gravity and an electric pump to recir-
culate and transfer water and mash
liquid. The benefit is that I can use
the pump to recirculate and later
transfer the mash liquid to my boil
kettle. At the same time, I can use
gravity to have the water in the sparge
tank rinse the mash. This methodolo-
gy saves me the addition of another
pump and control logic. I wrapped all
the vessels with high-temperature
insulation. This helps maintain the
vessel temperatures to provide tighter

temperature control. For
convenience, the heater sys-
tem is totally electric. The
main boil kettle is gas fired,
but the sparge tank heater is
electric. The entire system
operates from 240 VAC.

HARDWARE
When I first started this

project, I considered using a
general-purpose microcon-
troller for the system.

Photo 2—The custom-designed daughterboard sits on
top of a Glomation SBC.

Figure 5—This is the pressure sensor inter-
face circuit. The sensor was implemented to
read the water level in the sparge tank.

2907017_Weakman.qxp 6/10/2009 10:00 AM Page 41

http://www.circuitcellar.com
http://www.cadsoftusa.com

41.qxp 1/7/2009 3:07 PM Page 1

www.icbank.com

www.circuitcellar.com • CIRCUIT CELLAR® 43

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

There are numerous free or low-cost programmers and
compilers available, and the development process is
pretty straight forward. One of my main goals was to be
able to log the mash cycle in a Microsoft Excel CSV file.
I wanted to be able to program the mash cycle using an
Excel worksheet (because documentation is key to suc-
cessful repeatable brewing). I did not want to use a serial
interface, and a Bluetooth interface was more than I
wanted to invest. So, I used my home Ethernet because
it was there. Any computer in the house can potentially
interface with the system.

The GESBC-9302E SBC SBC has many useful features
like Ethernet, USB, serial, EEPROM, DIO, and optional
data acquisition (analog-to-digital, 14 bit – 8 channels).
Additionally, the Cirrus ARM SoC chip on the board has
a pretty decent ARM Linux support package implement-
ing the Linux 2.6.24 kernel.

I used Eagle CAD to design a top interface daughter
board for the power, DIO, and A/D interface circuitry.
The interface circuits are pretty straightforward. The
digital input circuit in Figure 2 shows the RC filter
interface circuit used to read the float switches and the
switch positions on the user interface panel. Digital out-
put circuit in Figure 3 uses a simple NPN transistor to
switch various loads such as the SSRs, LEDs, and
buzzer. The SBC is populated with a Texas Instruments
ADS7871 14-bit SPI ADC. This part is capable of operat-
ing in a differential mode, so an RC-filtered Wheatstone
bridge circuit provides an adequate interface to achieve
high resolution and low noise. A Wheatstone bridge
enables the reading of the temperature of the mash and
sparge tanks. Figure 4 shows a Wheatstone bridge with
an RC filter.

A Freescale pressure transducer connected to one of
the open single-ended inputs on the ADC reads the
sparge tank’s water level. Figure 5 shows the pressure
sensor interface circuit. Photo 2 shows how the two
boards are interfaced together. The completed assembly
produces a modular control in a rather small footprint.

A 40-A SSR and two 25-A SSR (purchased from your
friendly Internet auction site) are mounted inside a standard

12×12×6 metal enclosure. A disconnect switch complete-
ly shuts off the system when it isn’t in use. I did not
purposely design in redundant safety mechanisms. I
wanted to have the system in a known safe mode and
not have to rely on software or other interface logic to
sense failed components.

CONSTRUCTION
I am an advocate of having any material that comes into

contact with the mash or water be constructed of NFS
materials such as copper or stainless steel. These materials
are simple to clean and do not leach any chemicals.

The first order of business was to construct the ther-
mistor probes (see Photo 3). I used 0.25″ hollow stainless
tube and TIG welded the end closed and then welded the
tube to a drilled out 0.50″ plug. The NTC thermistor
was then configured and placed inside the tube.

Once complete, I modified my old sparge tank by
welding in various 0.50″ couplings and a 1″ threaded nut
for the heater. I used 30′ of 0.50″ OD stainless tubing to
form the heat exchanger. I opted for stainless because of
its cost and the performance. Refer to Photo 4 for a look
inside the sparge tank.

Next up, I welded another coupling to the mash tun to
house the thermistor. Infused with the welding spirit, I
went ahead and MIG welded up a new red frame to
showcase the new system.

SOFTWARE & SBC
There are two primary areas of software work, the

embedded Linux in the SBC and a VB.NET application
on the PC. I architected the system to operate in a client
server mode. The SBC was configured as the server and
the PC as the client. I chose this because the SBC might
be completely stand-alone in the future. The two appli-
cations use a predefined network socket at any internal
IP address to communicate.

The Cirrus Linux latest release (at the time I’m writing

Photo 3—These thermistor assemblies were made by TIG welding
stainless steel tubing to 0.50″ threaded and drilled plugs. The ther-
mistors are shown in the bottom-left corner. Wires were soldered
along with heat-shrink tubing to form the electrical assembly.

Photo 4—Take a look at the sparge tank. You can see the heat
exchanger, heater, and the sensors. I took this photo after the stir
motor was attached (key learning).

2907017_Weakman.qxp 6/10/2009 10:00 AM Page 43

http://www.circuitcellar.com

44 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

this article) is Crater 1-0-3. I down-
loaded the release, built the board, and
had it running code in a few hours.
Admittedly, I had some prior experience
with this board, so using the latest
release was pretty painless. I updated
some of the build options using the
Make menuconfig for the board config-
uration and the kernel release. I added
the support of I2C for the on-board EEP-
ROM and I updated the driver for the
on-board RTC. I had to edit the data
rate for the serial terminal settings to
57,600 bps. Otherwise, by default, the
kernel would send out the boot-up

sequences over the terminal at a differ-
ent data rate than what Busybox used.
If you’re unfamiliar with Busybox, it’s
pretty much a bunch of core support
applications targeted toward the embed-
ded environment. Some examples
would be date, ls, shell utilities, top,
tftp, and so on.

Once the Linux operating system was
up and running on the SBC, my next
step was to start application develop-
ment. I configured the Eclipse IDE to
edit and compile the application code. I
was not successful in getting the GNU
debugger (GDB) operating. As a result,

most of my debugging efforts were
focused using printf statements and
log files. It was not the most efficient
debugging environment. I tested some
pieces of code by compiling on my
Linux Debian desktop before deploy-
ing them on the target board. Once
the socket interface was functioning,
I was able to write pieces of test code
using VB.NET.

When the application is launched, it
uses p-threading to create four threads.
Each thread handles some special aspect
of functionality. Figure 6 shows the SBC
software architecture and the various
threads. The interface thread handles all
of the low-level I/O manipulation and
the SPI to read the ADC. The state
thread manages the overall system state
controller, which can put the control in
standby, diagnostics, running, and more.
It also enables loads like the pump and
heater to turn on and off based on the
status of the recipe being executed. The
controller thread is the heart of the
temperature control. It contains the
PID algorithm and software PWM
control for the heater SSR. The PID
algorithm was written using a couple
PID implementation white papers as
references. I chose to implement the
floating library over using fixed-
point math because there were no
hard timing requirements. The PWM
had a 5-s period because the thermal
response of the system is rather
slow. The PWM is evaluated every
100 ms (5 s/100 ms = 50 control

Figure 7a—These are the three temperature steps for the American Hefeweizen. b—These are the two temperature steps used to make the
American Amber.

b)a)

Figure 6—The SBC software architecture includes various threads. Each thread handles a certain
aspect of the application.

Interface thread State thread Control thread

End

iMash start

Socket listen
thread

Threads
complete

Initialize
application

memory

2907017_Weakman.qxp 6/10/2009 10:00 AM Page 44

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 45

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

points). The SSR has a specification of
10 Hz as the fastest control frequency.
The socket listen thread manages all
of the network traffic to communi-
cate with the VB.NET application.

VB.NET
The VB.NET application develop-

ment was pretty straightforward. If
you are used to the “old” VB 6.0 days,
there might be some transitioning
over to the .NET version. The .NET
version is essentially class-based,
which at the end of the day makes the
code much more structured.

I used VB.NET because I have Visu-
al Studio on my machine. If you don’t
have Visual Studio, Microsoft has
express editions you can download.
They’re pretty sweet and will enable
you to do nearly everything you need
to make a Windows application. When
I needed a strip charting graph, I dis-
covered the Zed graph open-source
project. I configured the graph compo-
nent to create a nice strip chart that
included a lot of cool features like
zoom and scale.

TEST RESULTS
I performed the first test just to see if

the system would hold water. It almost
passed. I found a small fracture in one
of the joints and repaired it. Once
water tight, I applied power to the
entire system and started evaluating.

The first issue came from the
sparge tank thermistor. The reading
topped out at about 149°F and pretty
much stopped. I measured the voltage
across the Wheatstone and went back
to the datasheets. After a short period
of time, I realized the thermistor’s
look-up table was set up for the
wrong thermistor part number. A new
table and 5 minutes later I was up and
running. The system began heating
and everything seemed well, except
the bottom of the sparge tank was
cold and the top was pretty hot to the
touch.

I made another discovery. If you are
going to temperature-control a water
bath, you need to recirculate or agitate
the water to ensure you don’t have
any thermal pockets. Next thing you
know, the sparge tank is undergoing
some more TIG welding to support a

small AC motor to stir the water. The
SBC and VB.NET code was modified
with the new stir logic and the entire
system was back up and running.
This time, success!

A MULTIFACETED PROJECT
Since the initial successful test,

I’ve used the system to make two
batches of beer. The first was an
American Hefeweizen. The second
was an American Amber.

The mash temperature profiles in
Figure 7 showcase the system’s
response. So far, I’m extremely
pleased with the results. I have the
system dialed in so that I can main-
tain close to less than 1° to 1.5° of
variation through the brewing ses-
sion. From a process control perspec-
tive, the project was a success. The
real proof will be in the finished
product.

In the future, I might make the
system more stand-alone. It is a nice
option to be able to download vari-
ous mash recipes, but I think even-
tually just a handful will be needed.
I could use the USB interface and
thumb drive on the SBC to log data
and possibly store the recipe pro-
files. I don’t use the USB functional-
ity at this time, although the drivers
are all there to support it. I have also
considered using either a serial LCD
or USB LCD to enhance the system’s
ability to display data.

This multifaceted project involved
metal bending, TIG welding, MIG
welding, embedded Linux code, and
VB.NET code. I found myself wear-
ing many hats. One hour, I was
welding stainless and the next I was
back on the keyboard writing inter-
face code. I guess that’s why home-
brewing appeals to me. I

ROJECT FILES
To download the code and schematic, go to ftp://ftp.circuitcellar.com/pub/
Circuit_Cellar/2009/228.

ESOURCES
Atmel Corp., “Discrete PID controller,” AVR221, 2006, www.atmel.com/dyn
/resources/prod_documents/doc2558.pdf.

Cirrus Logic, ARM Cirrus Linux Support, 2007, http://arm.cirrus.com/files/
index.php?path=linux%2Freleases%2Flinux-2.6%2F1.0.3/.

J. Palmer, “How to Brew,” 1999, www.howtobrew.com.

C. Valenti, “Implementing a PID Controller Using a PIC18 MCU,” AN937,
Microchip Technology, 2004, www.microchip.com/stellent/idcplg?IdcService
=SS_GET_PAGE&nodeId=1824&appnote=en020434.

Zed Graph Project, 2007, http://zedgraph.org/wiki/index.php?title=Main_Page.

OURCES
GESBC-9302E SBC
Glomation | www.glomationinc.com

MPXV400X Pressure transducer
Motorola, Inc. | www.motorola.com

ADS7871 14-bit SPI ADC
Texas Instruments, Inc. | www.ti.com

P

R

S

Kirt Weakman (weakmank@netscape.net) earned a BSEET and an MST from Purdue Uni-
versity. He has been designing and writing code for embedded systems for more than
10 years. Kirt is currently a senior engineer at a major appliance manufacturer. He
enjoys homebrewing, kayaking, camping with his family, and driving and restoring Volk-
swagen buses and Beetles.

2907017_Weakman.qxp 6/10/2009 10:00 AM Page 45

mailto:weakmank@netscape.net
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/228
http://www.atmel.com/dyn/resources/prod_documents/doc2558.pdf
http://arm.cirrus.com/files/index.php?linux%2Freleases%2Flinux-2.6%2F1.0.3/
http://www.howtobrew.com
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en020434
http://zedgraph.org/wiki/index.php?title=Main_Page
http://www.glomationinc.com
http://www.motorola.com
http://www.ti.com
http://www.circuitcellar.com

46 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

Enoch explains how to implement an I 2C master bus controller using an
FPGA. He presents the I2C bus protocol, and then describes how to build
the controller using VHDL or Verilog code. The design accesses a r eal-time
clock chip via the I 2C bus and displays the time on a seven-segment display .

Master Control

T

F
EA

TU
RE

ARTICLE
by Enoch Hwang

he physical size of ICs has reduced dramatically
over the years. The main reason, of course, is

attributed to the fact that more and more transistors can
be cramped into a smaller space. A less-mentioned rea-
son is because the pins for interconnections between ICs
have also decreased both in size and in number. As you
probably know, the actual circuitry of the IC is much
smaller than the packaging of the IC. The reason that
the packaging has to be larger is the larger number of
pins needed for the connections to the PCB. One solu-
tion for reducing the packaging size is therefore to have
fewer pins for the connections. For example, back in the
1980s, the National Semiconductor MM58167B was a
popular real-time clock (RTC) chip. It is a dual-in-line

of

Art

package with 24 pins. Of the 24 pins, four (chip select,
read, write, and ready) are for interfacing control, five
(A0 to A4) are for addressing, and eight (D0 to D7) are
for data. So, 17 out of the 24 pins are used just for send-
ing and receiving data/commands between the RTC and
the microcontroller. A newer RTC chip, the Epson RTC-
58321, still uses 10 out of 16 total pins dedicated for
communication between the chip and the microcon-
troller. In order to reduce the connection pin counts
even further, Philips (NXP Semiconductors) developed
the I2C protocol, which requires only two lines for com-
munication between two or more chips.

In this article, I will show you how to implement an
I2C master bus controller using a field-programmable
gate array (FPGA). An FPGA is a chip that can be used
to implement any digital logic circuit. I will demon-
strate the master controller’s operation by having it
communicate with an RTC chip, the Maxim DS3232,
connected on the I2C bus as a slave. Using the I2C bus as
the communication channel, the master controller can
send and receive data to and from the slave. In order to
show the design of the I2C master bus controller as sim-
ply as possible, some of the subtle details in the I2C
specifications are not fully implemented. Hence, there
might be situations where this master controller might
report a false error.

I2C BUS
The inter-integrated circuit (I2C) bus is a simple bidi-

rectional serial bus that supports multiple masters and
slaves. It consists of only two lines: a serial bidirectional

Implement an I2C Master Bus Controller in an FPGA

Figure 1—This is the I2C bus system with the I2C master controller
implemented in an FPGA and the real-time clock device acting as the
slave. There is only one master, so only the SDA line needs to be pulled
up with a 5.6-kΩ resistor. The SCL line is controlled by the master controller.

VCC

DS3232
RTC

I2C Master
controller

in
FPGA

SCL

SDA

5.6 kΩ

2907016_Hwang.qxp 6/10/2009 10:02 AM Page 46

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 47

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

data line (SDA) and a serial bidirectional clock line
(SCL). Within the I2C bus specifications, two modes are
defined: a standard mode with a maximum clock rate of
100 kHz and a fast mode with a maximum clock rate of
400 kHz.

Each device connected to the I2C bus is software-
addressable by a unique address, and a simple
master/slave relationship exists at all times among the
devices. The device that controls the sending and receiv-
ing of messages by controlling the bus access is referred
to as the master. Devices that are controlled by the mas-
ter are the slaves. Both the master and the slave can
send and receive messages. A device that sends data to
the bus is referred to as the transmitter. A device receiv-
ing data is referred to as the receiver. More than one
master and more than one slave can all coexist on the
same I2C bus. However, the bus is always controlled by a
single master that’s responsible for generating the serial
clock (SCL) and controlling the bus access by initiating
and terminating a message transfer.

IC TO I2C CONNECTION
As I mentioned earlier, the I2C bus consists of only

two lines, SDA and SCL. Both lines are open-drained,
and must be pulled up to VCC with a 5.6-kΩ resistor.
Regardless of how many devices are connected to the
bus, only one pull-up resister is needed per line. Further-
more, the SCL line needs to be pulled up with a resistor
only if there will be two or more masters in the system,
or when the slave will do clock stretching as a flow-con-
trol measure. In the first case, the pull-up resistor on the
SCL line is required for arbitration purposes when two
or more masters try to initiate a data transfer at the
same time. An arbitration procedure has been defined to
avoid the chaos that might ensue from such an event. In
the second case, a receiver may not be ready to receive
data from the transmitter, and so it will hold the SCL
line low to “stretch” the clock to delay the transmitter.

As you can see in Figure 1, the example consists of
only one master and one slave. To make my master con-
troller as simple as possible to understand, I assumed

that the slave will not do any clock stretching. (If the
slave does attempt to perform clock stretching, it will
sink all of the current that the master can supply on the
SCL line, and physical damage may result.) Hence, I did
not use a pull-up resister on the SCL line. Note that this
implementation of the master controller does not follow
the full specifications of the I2C. Nevertheless, after
understanding how the controller is designed, you can
very easily modify it to follow the full specifications.
My I2C master controller is implemented in an Altera
Cyclone II FPGA, and the slave is the Maxim DS3232
real-time clock chip. The master is in control of the SCL
line at all times.

I2C PROTOCOL
The I2C bus is idle when both SCL and SDA are at a

logic 1 level. The master initiates a data transfer by issu-
ing a START condition, which is a high-to-low transi-
tion on the SDA line, while the SCL line is high (see
Figure 2a). The bus is considered to be busy after the
START condition. After the START condition, a slave
address is sent out on the bus by the master. This
address is 7 bits long followed by an eighth bit, which is
a data direction bit where a 0 indicates a write from the
master to the slave and a 1 indicates a read from the

slave to the master. The
master, which is control-
ling the SCL line, sends
out the bits on the SDA
line, one bit per clock
cycle of the SCL line,
with the most significant
bit sent out first. The
value on the SDA line can
be changed only when the
SCL line is at a low.

The slave device—whose
address matches the
address being sent out by
the master—will respond
with an acknowledgment
bit on the SDA line by

Figure 2—The START (a) and STOP (b) conditions are both initiated
by the master. The START condition happens when the SDA line
changes from a high to a low while the SCL line is at a high. The
STOP condition happens when the SDA line changes from a low to a
high while the SCL line is at a high. These are the only two situations
where the SDA line can change when SCL is at a high.

SCL

START Condition

SDA

SCL

STOP Condition

SDA

Figure 3—The master initiates data transmission by sending the START condition. For every 8 bits of data
transmitted, the receiver sends an acknowledgment during the ninth clock cycle by pulling SDA low. The
only exception is when the master-receiver wants to end the data transmission in which case the master
(who is the receiver) will not acknowledge by keeping SDA high. Data transmission is terminated by the
master sending the STOP condition.

1 2

MSBSDA

SCL

R/*W MSB

STOPACKACK

87 9 1 2 7

7-bit Slave address Repeated for as many bytes as needed

8 9

START or
repeated
START

a) b)

2907016_Hwang.qxp 6/10/2009 10:02 AM Page 47

http://www.circuitcellar.com

pulling the SDA line low during the SCL
line’s ninth clock cycle (see Figure 3).
The direction bit R/*W determines
whether the master or the slave will
be the transmitter in the subsequent
data transmission after the sending
of the slave address.

Every byte put on the SDA line for
transmission must be 8-bits long
with the most significant bit first.
Except for the START and STOP
conditions, the SDA line must not
change when the SCL line is high.
The number of bytes that can be
transmitted is unrestricted. Each
byte has to be followed by an
acknowledge bit. The master gener-
ates the acknowledge-related clock
pulse. The transmitter releases the
SDA line (sets it to high impedance)
during the acknowledge clock pulse,
and the receiver must pull down the

48 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

SDA line during the acknowledge
clock pulse to acknowledge the
receipt of the byte. The one excep-
tion is when a master-receiver is
involved in a transfer. In this case,
the master-receiver must signal the
end of data to the slave-transmitter
by not generating an acknowledge-
ment on the last byte clocked out of
the slave.

To signal the end of data transfer,
the master sends a STOP condition
by pulling the SDA line from low to
high, while the SCL line is at a high
(see Figure 2b). Instead of sending a
STOP condition, the master can
send a repeated START condition so
that it can change the direction of
the data transmission without hav-
ing to release the bus.

Figure 4a shows the scenario
where the master writes 1 byte of

Figure 4a—The master transmits 1 byte of data to the slave. b—The master receives 1 byte
of data from the slave. In both cases, the master first sends the 7-bit slave address and the
write bit, followed by the register number to access. In the master-transmitter scenario (a),
the master can immediately send out the data byte since the data direction is still a write.
For the master-receiver scenario (b), the master has to do a repeated START and resend the
slave address with the read bit in order to change the direction of the data transmission
from a write to a read. After this, the master can then receive a byte of data from the slave
from the given register number.

From master to slave

From slave to master

Slave address

Write

Write Read

S Register numberA Slave addressA Sr Receive data1 A A P0

Slave addressS Register numberA Send dataA A P0

S =

Sr =

A =

A =

P =

START Condition

Repeated START condition

Acknowledge (SDA Low)

Not acknowledge (SDA High)

STOP Condition

b)

a)

Figure 5—This is a finite state machine (FSM). There are three main components: the state
memory to store the FSM’s current state, the next-state logic to determine the next state to
go to (depending on the current state and the input signals), and the output logic to gener-
ate the appropriate output signals from the controller.

Input signals

Next state

Clock

Next-state
logic
circuit

State
memory
register

Current state Output signalsOutput
logic
circuit

2907016_Hwang.qxp 6/10/2009 10:02 AM Page 48

http://www.circuitcellar.com
http://www.hobbylab.us
http://www.designnotes.com
http://www.circuitcellar.com/newsletter
http://www.designnotes.com

ESC Boston is a must-attend event for
embedded systems engineers. You can
customize your educational experience by
selecting from over 85 sessions in 20 tracks
specific to your interests. It is the place for
you to identify solutions to immediate
design challenges and meet in person the
solution providers for your next project.

ESC Boston is the place for the
embedded community to learn today to
design tomorrow. Register now at
www.embedded.com/boston

3 Keynotes. 85 Sessions.
75 Speakers.

Training + Education=
All the Answers You Need.

Register Today.
www.embedded.com/boston

We Speak Embedded.

Boston Hynes Convention Center

Robert Brunner
CEO of Ammunition
Renowned Industrial
Designer of such product
lines as the Apple II,
Macintosh, Newton, and
PowerBook

Design Excellence

Creating Technology Solutions

Driving Corporate Excellence

Tom Scholz
Founder of Scholz
Research and Development
Member of the band
Boston and inventor of the
Rockman headphone
guitar amplifier

T.J. Rodgers
Founder, President,
Chief Executive Officer
& Director of
Cypress Semiconductor Corp.

49.qxp 6/10/2009 11:00 AM Page 1

http://www.embedded.com/boston
http://www.embedded.com/boston

50 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

data to the slave (i.e., the master is
the transmitter and the slave is the
receiver). The master initiates the
data transfer by first issuing the
START condition followed by the 7-bit
slave address plus the write (0) bit.
After receiving an acknowledgment
from the slave, the master sends the
register number to let the slave
know which register the following
data is to be written into. Again the
slave responds with an acknowledg-
ment. The master then sends the
data byte to the slave. After the
slave acknowledges the receipt of
the data byte, the master sends the
STOP condition.

Figure 4b shows the scenario
where the master reads 1 byte of
data from the slave (i.e., the master
is the receiver and the slave is the
transmitter). The master initiates
the data transfer by first issuing the
START condition followed by the 7-bit
slave address plus the write (0) bit.
Although the master wants to
receive a byte, I need to send the
register address byte first to let the
slave know which register the mas-
ter wants to read from. After receiv-
ing an acknowledgment from the
slave, the master sends the register
number to let the slave know which
register to read from. The slave
responds again with an acknowledg-
ment. This time the master has to
do a repeated START condition
because it needs to change the data
direction from a write to a read. The
repeated START is followed by the
slave address again, but this time
with the read (1) bit instead. The
slave acknowledges and then sends
the data byte from the addressed reg-
ister to the master. This time,
because the master is the receiver,
the master has to acknowledge the
receipt of the data byte. If the mas-
ter wants to receive more data bytes
from the slave, it sends a 0 to
acknowledge it. If the master doesn’t
want to receive any more bytes, it
won’t acknowledge by keeping SDA
at a high. Finally, the master sends
the STOP condition.

CONTROLLER DESIGN
The trick for implementing the I2C

master controller—or any controller for
that matter—is to use a finite-state
machine (FSM). Manually designing
an FSM requires some knowledge of
digital logic design. This is beyond
the scope of this article. (Refer to
the Resources listed at the end of

this article if you want to learn
more about digital logic design.)
However, even without any knowl-
edge in digital logic design, you can
still easily implement an FSM by
writing VHDL or Verilog code.

VHDL and Verilog are two popular

Listing 1—This is the VHDL code template for an FSM. The language syntax is not case-
sensitive. However, in the example, all keywords are in uppercase, and all user identifiers
are in lowercase or a mixture of uppercase and lowercase.

-- FSM template
-- Copyright Enoch Hwang 2008

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY I2C_controller IS
PORT (

Clock, ResetN: IN STD_LOGIC;
--I2C control output signals
scl: OUT STD_LOGIC;
sda: OUT STD_LOGIC;

END I2C_controller;

ARCHITECTURE fsmd OF I2C_controller IS
SIGNAL state: STD_LOGIC_VECTOR(7 DOWNTO 0);

BEGIN

PROCESS(Clock, ResetN)
BEGIN

IF(ResetN = '0') THEN
scl <= '1';
sda <= '1';
state <= x"00";

ELSIF(Clock'EVENT AND Clock = '1') THEN
CASE state IS
WHEN x"00" => -- Idle

scl <= '1'; -- SCL = 1
sda <= '1'; -- SDA = 1
state <= x"01";

WHEN x"01" => -- Start
scl <= '1'; -- SCL stays at 1 while
sda <= '0'; -- SDA changes from 1 to 0
state <= x"02";

-- remaining states here

WHEN OTHERS =>
scl <= '1';
sda <= '1';

END CASE;
END IF;

END PROCESS;

END fsmd;

2907016_Hwang.qxp 6/10/2009 10:02 AM Page 50

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 51

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

hardware description languages
(HDL) for designing digital circuits.
If you know how to write C code,
you will quickly feel comfortable
with writing VHDL or Verilog code
because many software constructs are
identical. It is just a matter of learning
the new syntax.

Let’s now focus on how the I2C
master controller is designed using
VHDL.

FINITE STATE MACHINE
Before looking at the VHDL code for

the I2C controller, I want to cover the
topic of finite-state machines. A
finite-state machine is a sequential
circuit that uses (as the name sug-
gests) a finite number of states to keep
track of its history of operations.
Based on this history and its current
inputs, it determines what to do next.
A sequential circuit is one where its
outputs are dependent on its history
of operation and its current inputs.
The FSM’s current state is stored in
memory. The FSM’s operation is sim-
ply to traverse from one state to
another by changing the memory’s
content and to output the necessary
control signals from the controller in
the appropriate state. The FSM deter-
mines the next state to go to by con-
sidering the current state that it is in
and the input signals to it.

As you can see in Figure 5, an FSM
consists of three main parts: the
state memory for storing the FSM's
current state, the next-state logic for
determining the FSM’s next state to
go to, and the output logic for gener-
ating the appropriate output signals
from the controller for controlling
particular devices. The next-state
logic is dependent on the current
state that the FSM is in and input
signals to it. The input signals can be
either external signals to the con-
troller or conditional signals generat-
ed within the controller circuit
itself. Output signal generation is
dependent on the FSM’s current
state. In some FSMs, the output sig-
nals are dependent not only on the
current state but also on the input
signals. The timing for the FSM is
controlled by a clock signal. At every
clock cycle, the FSM goes to a new

Listing 2—Fragments of the VHDL code for the I2C master controller show the implemen-
tation of the SDA signal. The first line declares the interface signal sda as INOUT for
bidirectional data transfer. The second line declares an internal signal named sda01,
which will be assigned the logical values of 1 and 0. Next, a conditional assignment
statement is used to set the sda line to either the high impedance value 'Z' or the
logic value 0 depending on the value of sda01. sda gets a Z value if sda01 is a 1; oth-
erwise, sda gets a 0 value. The last two lines show the actual logical value of 1 and 0
being assigned to the internal signal sda01 instead of directly to the interface signal
sda.

...
sda: INOUT STD_LOGIC;
...
SIGNAL sda01: STD_LOGIC; -- internal SDA having values of 0 and 1
...
sda <= 'Z' WHEN sda01 = '1' ELSE '0'; -- convert SDA 0/1 to 0/Z
...
sda01 <= '1'; -- SDA = Z
...
sda01 <= '0'; -- SDA = 0
...

Listing 3—These fragments of the VHDL code for the I2C master controller show the gen-
eration of the SCL signal. A second clock divider process is used to generate a 200-kHz
clock. This 200-kHz clock drives the FSM process for controlling the SCL line. In state
x"02" in this process, SCL is set to 0. In state x"03", SCL is set to a 1. It takes two
states or two cycles to generate one cycle on the SCL line; therefore, the SCL clock
speed is at 100 kHz.

...
CLK_50_MHz: IN STD_LOGIC;
...
-- constants for 200kHz clock divider
-- to get 100kHz for I2C standard; every 2 FSM cycles = 1 I2C cycle
CONSTANT max200k: INTEGER := 50000000/(100000*2); -- = 250
SIGNAL clockticks200k: INTEGER RANGE 0 TO max200k;
SIGNAL CLK_200k_Hz: STD_LOGIC;
...
fsm: PROCESS(CLK_200k_Hz, ResetN)
...

ELSIF(CLK_200k_Hz'EVENT and CLK_200k_Hz = '1') THEN
CASE state IS

...
WHEN x"02" =>

SCL <= '0';
state <= x"03";

WHEN x"03" =>
SCL <= '1';
IF (bitcount - 1) >= 0 THEN

bitcount <= bitcount - 1;
state <= x"02";

ELSE
bitcount <= 7;
state <= x"12";

END IF;

clockdivider200k: PROCESS
BEGIN

WAIT UNTIL CLK_50_MHz'EVENT and CLK_50_MHz = '1';
IF clockticks200k < max200k THEN

clockticks200k <= clockticks200k + 1;
ELSE

clockticks200k <= 0;
END IF;
IF clockticks200k < max200k/2 THEN

CLK_200k_Hz <= '0';
ELSE

CLK_200k_Hz <= '1';
END IF;

END PROCESS;

2907016_Hwang.qxp 6/10/2009 10:02 AM Page 51

http://www.circuitcellar.com

52 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

state and generates a new set of out-
put signals.

VHDL CODE
Listing 1 shows a VHDL code tem-

plate for describing an FSM. The lan-
guage syntax is not case-sensitive;
however, in the example, all key-
words are uppercase and all user
identifiers are lowercase or a mix-
ture of uppercase and lowercase. The
first two lines with the two dashes
are comments. The next three lines
are standard library files to include.
Among other things, these library
files define the STD_LOGIC and
STD_LOGIC_VECTOR type that are
used later on.

The ENTITY section—which begins
with the ENTITY keyword and ends
with the END I2C_controller
line—defines the interface between
the module (black box) and the out-
side. It includes all the necessary
input and output signals to the mod-
ule. In the example, there are the
clock and the reset input signals,
and the two output signals scl and
sda.

The ARCHITECTURE section
defines the operations of the mod-
ule, which in this case is the FSM,
and therefore must contain the three
parts of an FSM as modeled in Figure
5. The state variable declared using
the SIGNAL keyword is the state mem-
ory. It is of type STD_LOGIC_VEC-
TOR, which is an 8-bit bit string.

The PROCESS block specifies that
whenever there is a change in either
of the two signals, Clock and
ResetN, the statements inside the
block will be executed in sequential
order starting with the first line. I
have an active-low reset signal as
specified in the IF statement that
tests for the signal being a 0. When
ResetN is asserted (i.e., when
ResetN is equal to 0), the module
goes into the reset mode and outputs
a logic 1 value for both the scl and
sda output signals. Furthermore, it
assigns state x"00" as the initial
state for when the FSM starts.
x"00" is the syntax for the two
hexadecimal digits 00.

When ResetN is de-asserted, the
ELSIF statement is executed. The

condition, Clock'EVENT AND
Clock = '1', specified inside the
ELSIF statement checks for a rising
clock edge. So, at every rising clock
edge, the FSM goes to a new state
and a new set of output signals is
generated.

The state that the FSM is current-
ly in is implemented using the CASE
statement that tests for the value in
the state variable. The CASE state-
ment is the same as the SWITCH
statement in C, which is like a nest-
ed IF statement.

The different states that the FSM
can go to are defined in the different

cases using the WHEN keyword. So,
at start-up, the FSM goes to state
x"00" because the case for WHEN
x"00" is true. In this state, the FSM
generates a logic 1 signal for the two
output signals scl and sda. In this
state, it also assigns x"01" to the
state variable, which means that
the next state the FSM will go to
will be state x"01". At the next ris-
ing clock edge, when it executes the
CASE statement, the state variable
now has the value x"01" so it will
go to the WHEN x"01" case. In state
x"01", the FSM assigns a logic 1 to
scl, a logic 0 to sda, and x"02" as

Listing 4—This portion of the VHDL code for the I2C master controller shows the sending
of the slave address and the write bit to the RTC.

ARCHITECTURE FSMD OF I2C_controller IS
-- I2C address of the slave + write'
CONSTANT SlaveAddress_Write: STD_LOGIC_VECTOR(7 DOWNTO

0):="1101000"&'0';
...

WHEN x"00" => -- Idle
-- when idle, both SDA and SCL = 1
scl <= '1'; -- SCL = 1
sda01 <= '1'; -- SDA = 1
state <= x"01";

WHEN x"01" => -- Start
scl <= '1'; -- SCL stays at 1 while
sda01 <= '0'; -- SDA changes from 1 to 0
bitcount <= 7; -- starting bit count
state <= x"02";

-- send 7-bit slave address followed by R/W' bit, MSB first
WHEN x"02" =>

scl <= '0';
sda01 <= SlaveAddress_Write(bitcount);
state <= x"03";

WHEN x"03" =>
scl <= '1';
IF (bitcount - 1) >= 0 THEN

bitcount <= bitcount - 1;
state <= x"02";

ELSE
bitcount <= 7;
state <= x"12";

END IF;
-- get acknowledgment' from slave
WHEN x"12" =>

scl <= '0';
sda01 <= '1';
state <= x"13";

WHEN x"13" =>
scl <= '1';
Ack <= sda; -- 0 = acknowledge'; error if it is a 1
IF sda = '1' THEN

RegisterAddressOut <= x"13";
state <= x"EE"; -- acknowledge error

ELSE
state <= x"20"; -- send register address

END IF;

2907016_Hwang.qxp 6/10/2009 10:02 AM Page 52

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 53

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

the next state to go to.

I2C MASTER CONTROLLER
I am now ready to fill in the

details pertaining to my VHDL FSM
code template to implement the I2C
master controller. Of course, the
output signals to generate and the
input signals to test for must follow
the I2C protocol as described previ-
ously. Furthermore, the FSM’s clock
speed must also satisfy the speed
defined in the I2C protocol. The
complete code is posted on the Cir-
cuit Cellar FTP site. Relevant code
fragments are shown in Listing 2,
Listing 3, and Listing 4.

The implementation of the sda
signal requires some special atten-
tion (see Listing 2). Recall that the
SDA line in the I2C bus is bidirec-
tional. In the ENTITY declaration,
the sda signal has to be declared as
INOUT so that it is capable of doing
both input and output. Furthermore,
the SDA line in the I2C bus is open-
drained and is pulled up by a 5.6-kΩ
resistor. So, to output a logic 1 on
this line, I need to actually set the
line to a high impedance. To get a
high impedance, I need to use a tris-
tate output and assign to it a 'Z'
value.

Refer to the following conditional

signal assignment statement:

sda <= 'Z' WHEN sda01 = '1' ELSE '0';

It assigns a high impedance value
'Z' to the sda line when the inter-
nal signal sda01 has a logic 1 value;
otherwise, the sda line gets the
logic value 0. Hence, to assign the
logic value 0 or 1 to the sda line, I
would instead assign the value 0 or
1 to the internal signal sda01,
which in turn sets the sda line to 0
or Z, respectively.

Listing 3 shows the relevant
VHDL code for the generation of the
scl clock signal. The scl signal is
generated in the FSM process by
going back and forth between two
states: the first state sets scl to a 0
and the second state sets scl to a 1.
Therefore, for every scl cycle, the
FSM must go through two states or
two cycles. Hence, to get a 100-kHz
speed for the scl signal, which is
the I2C standard mode maximum clock
speed, the FSM clock speed must run
two times faster or at 200 kHz. Our
primary input clock speed is 50 MHz. I
need a clock divider to slow the
clock down to 200 kHz. The clock
divider process counts the 50-MHz
clock ticks from 0 to 250 (i.e.,
50,000,000/200,000). To get a 50%

duty cycle for the 200-kHz clock,
the clock signal CLK_200k_Hz tog-
gles after every 125 counts (i.e.,
250/2).

The fsm process executes whenev-
er there is a change in the
CLK_200k_Hz signal. The ELSIF
(CLK_200k_Hz'EVENT and
CLK_200k_Hz = '1') statement
says that the CASE statement is exe-
cuted only at the rising edge of the
CLK_200k_Hz clock. The code frag-
ment shown in Listing 3 shows that
the FSM goes back and forth
between state x"02" and state
x"03". In state x"02", scl is
assigned a 0. In state x"03", scl is
assigned a 1. The IF statement in
state x"03" tests when to exit this
loop and continues to state x"12".

Listing 4 shows the portion of the
VHDL code that sends the start con-
dition signal, followed by the slave
address of 1101000, plus the write
bit of 0 to the RTC slave. The sig-
nals to output or input on the scl
and sda lines follow the I2C proto-
col, as I already mentioned. The ini-
tial state, x"00", is the I2C idle state
when both the clock and data lines
are at a logic 1 level. In the next
state, x"01", I send out a start sig-
nal by assigning a 0 to sda01 while
scl remains at a 1. Recall from the

Photo 1a—The DS3232 RTC chip is connected to the I2C master controller implemented inside the Cyclone FPGA via the GPIO pins. In addi-
tion to the RTC chip connected to the GPIO is also the 5.6-kΩ pull-up resistor for the SDA line. b—The Altera DE2 board with the seven-seg-
ment display shows (from left to right): the FSM state d5, which the FSM is currently in; the slave’s register 02 that the FSM is reading data
from; and the data 16 that is stored in register 02. The right-most eight switches at the bottom of the board are configured for inputting 8-bit
data. The next eight switches are for inputting an 8-bit address. The left-most switch is the direction switch for read or write.

b)a)

2907016_Hwang.qxp 6/10/2009 10:02 AM Page 53

http://www.circuitcellar.com

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/
2009/228.

ESOURCES
J. Bhasker, A VHDL Primer, Prentice Hall Professional Technical Refer-
ence, September 1998.

E. Hwang, Digital Logic and Microprocessor Design with VHDL, Thomson,
2006, www.lasierra.edu/~ehwang.

Maxim Integrated Products, “DS3232: Extremely Accurate I2C RTC with
Integrated Crystal and SRAM,” Rev 4, 2008, http://datasheets.maxim-ic.com
/en/ds/DS3232.pdf.

Philips Semiconductors (NXP), “The I2C-Bus Specification,” Ver. 2.1,
9398 393 40011, 2000, www.nxp.com/acrobat_download/literature/9398/
39340011.pdf.

OURCES
Cyclone II FPGA, DE2 development board, and Quartus II development
software
Altera | www.altera.com

DS3232 RTC Chip
Maxim Integrated Produces | www.maxim-ic.com

P

Enoch Hwang (ehwang@lasierra.edu) has a Ph.D. in computer science. He is
currently a professor of computer science at La Sierra University, Riverside,
California. Enoch is interested in embedded microprocessor systems,
automation, and robotics.

R

S

earlier discussion that sda gets the
value 0 when sda01 is a 0. In state
x"02", we assign one bit of the slave
address to sda01 when scl is at a 0.
The variable bitcount is used to
index the bit string SlaveAd-
dress_Write, which contains the 7-
bit slave address plus the write bit.

In state x"03", sda remains stable
while scl is at a 1. States x"02" and
x"03" repeat eight times for sending
out the 8 bits in SlaveAddress_Write.
After sending out the last bit, the
FSM goes to state x"12" to get an
acknowledgment from the slave.
This is accomplished by first setting
the sda line to high-impedance 'Z'
in state x"12", and then reading the
sda line in state x"13" to see if the
slave has set it to a 0. In state
x"13", if sda is a 0, then the slave
has acknowledged the receipt of the
address and the communication
between the master and the slave
can continue. Otherwise, there is an
error and the FSM jumps to the
error-handling state x"EE". The rest
of the data transfer between the
master and the slave pretty much
follows the same pattern you see in
Listing 4.

IMPLEMENTATION
If you have the complete I2C mas-

ter controller design written in
VHDL, you can implement it to actu-
ally see it working. To do so, you
first must get a hardware description
language (HDL) compiler to synthe-
size the VHDL source code into a
netlist.

A free edition of Quartus II is
available on Altera’s web site. After
installing the program, you can start
a new project and add our master
controller VHDL code to the project.
Quartus compiles the VHDL source
code to a netlist that can be down-
loaded onto the FPGA.

For my demonstration, I used the
Altera DE2 development board with
a Cyclone II FPGA. The board did
not have the DS3232 RTC chip, so I
wire-wrapped the chip to the general
PIO pins on the board (see Photo 1a).
There are six wires connecting the
RTC chip to the GPIO pins, but only
four of them are used for the I2C bus

communication: SDL, SCL, VCC,
and GND. In addition to the RTC
chip connected to the GPIO, there is
also the 5.6-kΩ pull-up resistor for
the SDA line.

After you successfully compile the
master controller VHDL code, you
can use Quartus to download the
resulting netlist onto the FPGA on
the DE2 board. Photo 1b shows the
full DE2 board with the I2C master
controller implemented inside the
Cyclone FPGA and communicating
with the RTC. The seven-segment
display shows (from left to right) the
FSM state d5, register 02 of the
slave, and the data 16 being sent
from the slave’s register 02 to the
master. The master controller also
allows you to set the address and data
switches at the bottom of the board to

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

CIRCUIT CELLAR® • www.circuitcellar.com54

read or write from and to specific reg-
ister locations in the RTC chip.

A final note regarding the imple-
mentation of this design. You can
use a different FPGA prototype board
or synthesizer software. The VHDL
source code should be general
enough so you can use another com-
piler and compile it for another
FPGA chip. If you do, you will need
to change the hardware-dependent
pin mappings. Furthermore, you
should also be able to use another
chip instead of the RTC chip that I
used as the I2C slave.

In any case, the I2C master con-
troller design I presented should be
easy enough for you to understand
and modify as necessary. You can
also use my FSM as a template for
designing other controllers. I

2907016_Hwang.qxp 6/10/2009 10:02 AM Page 54

mailto:ehwang@lasierra.edu
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/228
http://www.lasierra.edu/~ehwang
http://datasheets.maxim-ic.com/en/ds/DS3232.pdf
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf
http://www.altera.com
http://www.maxim-ic.com
http://www.circuitcellar.com

WWW.CIRCUITCELLAR.COM/RS

USB Bus Analyzers

1-888-7SAELIG

info@saelig.com

www.saelig.com

Packet-Master™ - best value in
USB1.1/2.0 USB analyzers and
generators. Identify USB problems
fast, f ine-tune performance, easi ly
v iew Host Commands, emulate
host/device sequences, etc.

USB12 (USB1.1) $699

USB480+ (USB1.1/2.0) $1199

USB500AG (USB1.1/2.0/Gen) $1399

CUSTOMIZE YOUR MCU!

CAPFPGA
ARM

Standard
Product

www.atmel.com/products/AT91CAP

2009 CIRCUIT CELLAR READER SURVEY & SAMPLE POOL SPONSORS

55.qxp 6/2/2009 12:49 PM Page 73

mailto:info@saelig.com
http://www.saelig.com
http://www.atmel.com/products/AT91CAP
http://www.ccsinfo.com/eight
http://www.usbee.com/
http://www.calao-systems.com
http://www.lvr.com
http://www.pololu.com/ccad
http://www.medallionsystems.com
http://www.jameco.com/missing
http://circuitcellar.com/RS

56 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

Do you need to add text-to-speech capability to a project? If your design
requires more than a few canned phrases (strings of allophone codes), you
must build up the system’s vocabulary. Jeff explains how to develop a text
library for real-time translation.

Embedded Speak
A Text Library for Allophone Translation

I

by Jeff Bachiochi

n my May 2005 column, I presented the
Magnevation SpeakJet sound and speech gen-

erator (“Speech Synthesis with SpeakJet,” Circuit
Cellar 178). If you recall, you can control the com-
plex generator via a serial port. It uses mathemati-
cal sound architecture (MSA) to generate complex
sounds and speech synthesis. Although you have
complete control over its parameters, there are
preconfigured DTMF tones, 43 sound effects, and
72 speech elements. Any of these can be invoked

FROM THE BENCH

by simply sending a single byte from a computer
or microcontroller.

The Phrase-A-Lator is a companion program
available from Magnevation. With this PC applica-
tion, you can choose a series of allophones to send
to the SpeakJet to produce a recognizable word, or
pure gibberish, depending on your intentions. This
process—replacing the letters of a word with allo-
phones, or a textual representation of specific
sounds, and substituting these allophones with
byte codes that the SpeakJet will translate into
sounds—can be defined as “text to speech.” Here,
it takes two to tango, so to speak: translation and
pronunciation. SpeakJet provides the pronuncia-
tion, and you are left to provide the translation.

TRANSLATION
When your project requires the production of a

few voice commands or responses, a few canned
phrases (strings of allophone codes) are all you
need to make use of the SpeakJet’s inexpensive
speech capability. However, as a project’s vocabu-
lary grows, so does the need for flexibility. Real-
time translation may be required. As often is the
case, there are a number of different ways to get
the job done. In this case, you could use a diction-
ary look-up or rule-based translation. Each of
these has its benefits and its drawbacks.

Dictionary look-up is as straightforward as its
name implies. Each word to be translated must
have an entry in the look-up table. Any word that
doesn’t have a matching entry in the dictionary
will be tossed out (or you could choose to spell
the word, say “what,” or something else). This
can make for some very large tables, especially
considering plurals or other forms of the same
word. However, each table entry has a predefined

Photo 1—This is the Library Maintenance application
written in Liberty Basic. Although you can use this
application to add, edit, and remove library entries, its
ultimate use is to create an Intel HEX file to program a
serial EEPROM for use with this month’s embedded
text-to-allophone value application.

of

Art

2907002-bachiochi.qxp 6/10/2009 10:03 AM Page 56

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 57

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

allophone string, so every word can be
constructed for accurate pronunciation.

Rule-based translation can be table-
oriented as well, but the rules, rather
than words, are searched. In English,
most rules have exceptions, which actu-
ally makes rule-based translation a com-
bination of rules and exceptions.

For this project, I base my translation
on a dictionary look-up, which means
there must be a way of maintaining the
dictionary as well. So, let’s start with the
dictionary presented by Magnevation for
use with their Phrase-A-Lator applica-
tion. This dictionary has about 1,500
entries and can be easily expanded (with
the total size limited to the amount of
storage space you have available).

The dictionary is a simple text file
consisting of a line of text for each
word, and its list of allophones, split by
a separation character (the “=” character
in this case). Although you can certainly
use the Phrase-A-Lator program to
maintain the dictionary, the file, in its
present text state, requires much more
storage space than is necessary. Each
allophone can take up to five characters
to store as opposed to the single byte
value that each allophone represents.
Therefore, a good deal of space can be
saved by creating a dictionary that holds
only those byte values necessary to
“speak” the allophones. Plus, the dic-
tionary must be able to be stored in
memory, so you’ll need to create a
library maintenance program anyway.

LIBRARY MAINTENANCE
Library maintenance is a way to add,

delete, or alter library entries. In addi-
tion, this library must be saved as an
Intel HEX file so it can be loaded into a
memory device and searched by an
embedded microcontroller. This library
maintenance program is written in Lib-
erty Basic to handle these functions (see
Photo 1). The application will read in a
dictionary file (like PhrasALator.DIC)
and separate each entry into two arrays
of words and allophone strings. You can
choose an existing entry from the dic-
tionary and play or edit it, add a new
one, or delete an unwanted one. Maybe
the key word here is “play.” If you con-
nect up the SpeakJet to the PC, you can
hear what your translation sounds like
(as you would with the Phrase-A-Lator

stored in a ROM or EPROM. Most
EPROM programmers or emulators will
import Intel HEX files.

The data within the HEX file is noth-
ing more than each dictionary entry
with a data word preceding it, which is
used as a pointer to the next word. This
helps speed the dictionary search
process by pre-locating the next entry.
The first 26 entries are special entry
pointers to locate the first word in the
dictionary that starts with a particular
letter allowing all prior entries to be
skipped. As you can see from the letter
“z” pointer in Table 1 (the twenty-sixth
entry at address 0x0032), the first 25
letters use addresses up to 0x4C94
(19604 decimal). At about 1,500 entries,
this is roughly 14 bytes per dictionary
entry. All this may not make any sense

program). When a change is made per-
manent (by updating the word), the
entire file is resorted to assure it
remains in alphabetical order. (This is
important to the search operation. More
on this later.)

Once the dictionary is completed, it
should be exported as an Intel HEX file.
An Intel HEX file is an ASCII text file
with lines of text that follow the Intel
HEX file format. Each line in an Intel
HEX file contains one HEX record. A
record begins with a colon followed by a
number of hexadecimal values that
include the record length, address, record
type, data, and a checksum. The data
consists of the actual bytes you are sav-
ing. The other record fields are informa-
tional. Intel HEX files are often used to
transfer a program or data that would be

Address Word Pointer Data Data entry=allophones
0000 0034

0002 0416

0004 060F

0006 0BBA

0008 0F12

000A 121B

000C 193F

000E 1BC5

0010 1EAC

0012 210E

0014 21CE

0016 226B

0018 2567

001A 2862

001C 2A39

001E 2BA0

0020 3106

0022 31AB

0024 342D

0026 3F4F

0028 46AB

002A 4778

002C 485E

002E 4BC9

0030 4C07

0032 4C95

0034 003A 613D9A80 a=<154><128>

003A 46 61626C653D079AAB8A91 able=<7><154><171><138><145>

0046 52 61626F75743D86ADA3BF about=<134><173><163><191>

… … … …

00416 041D 623DAA8080 b=<170><128><128>

Table 1—The data is stored linearly beginning at address 0x0000. The pointer for the “a” dic-
tionary entries is located at address 0x0000. Notice that it points to address 0x0034, where
the pointer to the next “a” dictionary entries is found at 0x003A. Following the next pointer
are 4 bytes of data. (The data is shown in ASCII in the last column.) The pointer for the “b”
dictionary entries is located at address 0x0002.

2907002-bachiochi.qxp 6/10/2009 10:03 AM Page 57

http://www.circuitcellar.com

63.qxp 1/7/2009 3:20 PM Page 1

http://www.icbank.com

www.circuitcellar.com • CIRCUIT CELLAR® 59

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

unless you understand this project’s circuit.

LIBRARIAN
I used a Microchip Technology dsPIC30F3013 for this proj-

ect because it has two serial ports: one as a text input port
and the other as an allophone (value) output port. The text
comes from the PC or the embedded project. The allophone
values go the SpeakJet. No data actually flows back from the
SpeakJet (except for a buffer full signal), so this project could
be accomplished with a single port (with the TX and RX con-
necting to different peripherals). However, I wanted multiple
ports to aid in debugging.

An extra PCB from a previous project (that supports the
dsPIC) provided me with a platform to start with. The
dsPIC30F3013 has 1 KB of internal EEPROM, so I could write
some code using the internal EEPROM prior to building up a
complete circuit with an external EEP-
ROM. There is enough room internally to
hold a small dictionary (approximately 64
entries), if well chosen. You can see that
the previously discussed Phrase-A-
Lator.DIC file was going to need more
room than this. Figure 1 shows the pro-
ject’s circuitry.

Although the internal EEPROM data is
accessed differently than data from an

external EEPROM, it seemed like a good
idea to try out a few ideas quickly. It was
a sanity check. After adding letters and
numbers to the internal dictionary, I
chose a few other words to fill up the
available space. This provided a sufficient
dictionary with which to test my theo-
ries. As it turned out, this was extremely
helpful because it enabled me to create
the project application before prototyping
the complete circuit. But once the initial
circuit was operating and providing out-
put that could connect to the SpeakJet, I
longed for more. So it was on to a bigger
dictionary.

For the external EEPROM, I chose a
SPI serial EEPROM because it can be
clocked up to 20 MHz. A 1-Mb
25LC1024 can store more than 10 times
the present library. Note that the Intel
HEX file will have to be modified to add
an Extended Linear Address Record when
the Library size exceeds 0xFFFF (16 bits).
The EEPROM requires an 8-bit read com-
mand followed by a 24-bit address to get
pointed to the required data. Data then
can be received 1 byte at a time. The
EEPROM’s internal pointer is automati-
cally incremented so that additional
sequential bytes can be read without sep-
arate requests. With the microcontroller’s
internal RC oscillator in use (7.37 MHz),

a single byte grab of data from the external serial EEPROM
takes approximately 30 µs. A real search through all of the
200 “s” entries in the dictionary takes less than 40 ms.

SERIAL I/O
Both UARTs in the dsPIC are set to run at 9,600 bps, which

is the default rate for SpeakJet. Each UART has its own TX
and RX ring buffers to allow for the continuous reception and
transmission of data. After my one-track mind got over the
literal meaning of “text to speech,” I began to see an advan-
tage associated with characterizing the input. To do this, I
created a routine that identifies an input character as belong-
ing to one of five groups: alpha, numeric, control, punctua-
tion, and symbols (see Table 2). This way, actions can be
based on groups rather than individual characters.

The input ring buffer is monitored for a punctuation char-
acter. When one is received, all characters
including this one are transferred to a
working buffer. Most of the time, this
working buffer will contain a word con-
sisting of alpha characters followed by a
space, but it could be another form of
punctuation that will be interpreted as
the end of a word.

The first letter in the working buffer is
down-converted to a number between 0 (a)

Table 2—I characterize a character by
group to help determine how to handle it.

Figure 1—This circuit fragment shows the parts necessary to add text-to-allophone conver-
sion as input to the SpeakJet. Refer to my May 2005 Circuit Cellar article for the original
circuitry (or visit www.magnevation.com).

Group Characters

Alpha a–z and A–Z

Numeric 0–9

Control 0x00-0x1F

Punctuation <sp>!”#’+,.-:;?

Other #$%&()*/<>=@[\]^_`{|}~

2907002-bachiochi.qxp 6/10/2009 10:03 AM Page 59

http://www.magnevation.com
http://www.circuitcellar.com

60 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

All the exception text must be in the
dictionary or nothing will be transmit-
ted (word not found).

At this point, I have not added any
routines to pronounce numbers in any
format other than single digits. It might
be nice to add the ability to interpret
numbers in groups using hundreds, thou-
sands, millions, dollars/cents, and so on.

dsPIC CIRCUIT FRAGMENT
In my May 2005 article, I explained

how to connect the SpeakJet to a Future
Technology Devices International FT232
(USB/Serial) device and use it with a PC.
The PC was responsible for sending allo-
phone data values to the project’s cir-
cuitry to get the SpeakJet to, eh, speak.
This month’s project is designed to go
between the FT232 (or some other form
of communication interface like RS-232
or your microcontroller) and the Speak-
Jet. Its input is ASCII text of some kind.
The dsPIC30F2013 translates this text
into allophones as it matches the text to
a dictionary stored in EEPROM. Allo-
phone values are then transmitted to the
SpeakJet, thereby relieving the PC or
your microcontroller from having to
handle this task.

Besides the dsPIC30F2013’s two
UARTs, this device also supports SPI/I2C
serial communications. The specifica-
tions for the SPI devices (20-MHz clock)
are faster than the I2C device’s (maxi-
mum 1-MHz clock). And since commu-
nications speed is important to search
times, the SPI mode is used. The previ-
ous discussion showed that the present
dictionary required less than 10% of a
25LC1024 EEPROM, but I chose to
include the provisions for three addi-
tional devices. There is address space for
seven additional devices in the
25LC1024’s 24-bit address structure with-
out having to increase to a 32-bit address.

I have other ways of programming an
EEPROM (other than in-circuit), so
you’ll notice all the EEPROMs are write
protected (via grounding the *WP input
on pin 3). You need to tie these high if
you want to implement an Intel HEX
input application that will program the
EEPROM via the input’s serial connec-
tion to the dsPIC30F2013. You can use
one of the unused configuration jumpers
to access this function if you want to
add that routine to your code.

and 25 (z). By doubling this number, you
come up with an address within the
external EEPROM that points to the
address in the dictionary where all of the
entries for that letter are held. The actu-
al search is nothing more than a big loop
sequentially looking through each dic-
tionary entry for word (letter) matches
between the buffer and the present dic-
tionary entry (see Figure 2). As long as
each letter in the present entry matches
the buffer, you continue checking the
next letters of dictionary entry. Let’s
assume all of the letters match and the
words are the same length. Then you
find a match and continue by transfer-
ring the remaining characters in this
entry to the output ring buffer, as they
are allophone values necessary for this
word. These are automatically transmit-
ted to the SpeakJet and pronounced as
the matched word or at least what is
defined by the dictionary entry. A short
silence value is sent after each word to
prevent slurred speech.

What happens when the word in the

working buffer doesn’t match the pres-
ent entry in the dictionary? If the tested
letter is greater than the entry’s letter,
you can give up on this entry and try the
next word entry. If it is less than the
entry’s letter, you can give up and return
with no word (because the entries are
sorted). Even when a match exists, they
must have identical word lengths or this
is not really a match. Again, you can
give up on this entry and try the next
word entry.

For the most part, any character that
is a number or symbol is treated in the
exception routine. In this routine, the
working buffer is transferred to a hold-
ing buffer (see Figure 3). Now each char-
acter in the holding buffer can be dealt
with separately. For example, if an entry
in the holding buffer is the character
“9,” the text “9” is placed in the work-
ing buffer and EEPROM is searched and
the allophones are transferred if the dic-
tionary entry is found. The complete
holding register is converted one charac-
ter at a time to handle every exception.

Figure 2—This is where the EEPROM actually gets searched for a match with the text in the
working buffer. The entries are sorted, so you can give up, once past the appropriate entry.
Otherwise, transmit the associated allophones to the SpeakJet.

holdingbuffer = workingbuffer

Search

Initialize

Call type

Alpha?

First letter?

Other?

Num?

BufferData = @holdingbuffer
bytecntr = bytecntr + 1

BufferData = @workingbuffer
bytecntr = bytecntr + 1

N

Y

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

BufferData
=+?

BufferData
= 9?

End of holding
buffer?

workingbuffer
=‘plus’

workingbuffer
= ‘nine’

Call
GetTableOffset

Save firstletter
Set firstletter flag

Return

2907002-bachiochi.qxp 6/10/2009 10:03 AM Page 60

http://www.circuitcellar.com

much more than just uttering words
in a particular sequence. I’ve treated
words here as if they are independent

www.circuitcellar.com • CIRCUIT CELLAR® 61

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

of each other. In reality, they are not.
You might say the same word differ-
ently depending on its context in a
sentence. These words are called
homographs. Examples are words like
bass, bow, and read—each has an
entirely different pronunciation and
meaning. Syllable emphasis can be
built into look-up dictionaries. But
other stresses, hinted at by punctua-
tion, are outside the function of a
dictionary.

Prosodics involve variation in syl-
lable length, loudness, pitch, and the
formant frequencies of speech
sounds. Sentence structure algo-
rithms can be used to determine how
these variations might be used to
alter the written words based on
punctuation. SpeakJet has parameters
that can be used to alter an allo-
phone’s rate, volume, and pitch.
You’ll find the stress and relax com-
mands used extensively within the
project’s dictionary add emphasis
within individual words.

Although I’d like the time to inves-
tigate rule-based algorithms, it is
much more than I can cover in a sin-
gle column. The best way for me to
gauge interest in a subject is to gath-
er feedback from you. Drop me an e-
mail and tell me what you want
more of (or less of, for that matter). I

One note about using dsPIC devices
with an in-circuit debugger: Chip periph-
erals tie up all I/O pins (especially on
low-pin-count versions of the device),
and the debugger requires a pair of
pins to do its job, so the connections for
the in-circuit debugger can be redirected
to a number of alternate pins to help you
avoid interference to these peripherals.
Normally, this function is shared with
the programming pins, which can’t be
redirected, for obvious reasons. JP12 and
JP13 allow these programming pins to be
enabled (connected to the ICD) if you are
programming or disabled (disconnected
from the ICD) if you are debugging.

TEXT TO SPEECH?
It might be incorrect to label this as

a “text-to-speech” project. Speech is

Figure 3—Before searching the EEPROM table, the working buffer may be holding a word or
other character. A holding buffer is used if it has been determined that there are numeric or other
characters that need translation into text before calling the actual hunt routine GetTableOffset.

GetTableOffset

Initialize

Save EntryPointer

Save NextPointer

Save NextPointer

bytecntr = bytecntr + 1

TableData = ‘=’?

Call SendAllophones

Call SendWordPause Return

Call
GetEEPROMWord

Call
GetEEPROMWord

bytecntr = 1
EntryPointer = NextPointer

EntryPointer >=
NextPointer?

Call
GetEEPROMWord

Call
GetEEPROMWord

Save TableData
BufferData = @workingbuffertail

bytecntr =
bytecount?

TableData =
BufferData?

N

N

N

N

N

Y

Y

Y

Y

Y

EntryPointer >
NextPointer?

Jeff Bachiochi (pronounced BAH-key-AH-
key) has been writing for Circuit Cellar since
1988. His background includes product
design and manufacturing. You can reach
him at jeff.bachiochi@imaginethatnow.com
or at www.imaginethatnow.com.

ROJECT FILES
To download the code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/
2009/228.

OURCES
FT232 USB-to-serial UART interface
Future Technology Devices International | www.ftdichip.com

Phrase-A-Lator software and SpeakJet Sound Synthesizer
Magnevation | www.magnevation.com

dsPIC30F3013 DSC and 25LC1024 EEPROM
Microchip Technology, Inc. | www.microchip.com

Liberty Basic
Shoptalk Systems | www.libertybasic.com

S

P

2907002-bachiochi.qxp 6/10/2009 10:03 AM Page 61

mailto:jeff.bachiochi@imaginethatnow.com
http://www.imaginethatnow.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/228
http://www.ftdichip.com
http://www.magnevation.com
http://www.microchip.com
http://www.libertybasic.com
http://www.circuitcellar.com

62 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

With the price of oil all over the
map, a trip to the local gas sta-

tion feels like a trip to Vegas. The gas pump
is a slot machine: you put your money in,
watch the dials spin, and hope today’s your
lucky day.

It’s safe to say that “Green” is the new
black and embedded designers must do their
part in this new era of energy consciousness.
Beyond the headline grabbers, innovations
like hybrid vehicles and efficient light bulbs
are a myriad of mainstream apps that should
go on a digital diet.

Got Energy? Energy harvesting is all the rage, but like a real harvest you need
a place to store the crop. This month, Tom introduces the next advance in
thin-film rechargeable lithium battery technology: a battery-in-a-chip.

LiOn King
A Look at “Battery-in-a-Chip” Technology

by Tom Cantrell

SILICON UPDATE

Hats off to the silicon wizards for deliver-
ing chips that not only do more for less, but
also consume less energy doing it. However,
these silicon advances put the ball back in
the designer’s court. It’s up to you to figure
out innovative applications and clever design
techniques that make the most of the energy-
saving opportunities.

ENERGY IN A CHIP
Battery technology will play a pivotal role

in the Green revolution. For instance, if the
question is about the widespread move to

Figure 1—One advantage for lithium batteries, including EnerChips, is a flat discharge curve. Just watch out as you
approach the “cliff” since deep discharge isn’t good for the battery.

4.2

3.8

3.4

3.0

4.0

3.6

3.2

0 10 20 30 40 50 60

Discharge capacity (μAh)

V
o

lta
g

e
 (

V
)

1 μA

5 μA

10 μA

2907003-cantrell.qxp 6/10/2009 10:04 AM Page 62

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 63

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

although this is on the order of a thou-
sand times less than the familiar lithi-
um “coin cell.” At least the output is a
healthy 3.8 V. That’s suitable for use
in typical (e.g., 3.3-V) designs. Of
course, as with any battery technolo-
gy, you can always lash them togeth-
er to increase voltage, current, and
capacity.

It’s a fact of life for all batteries
that specs like “50 µAH” and “3.8 V”
are overly simplistic and tend to
obscure the fact that a myriad of
other application factors come into
play. The Cymbet batteries are no
exception. Let’s take a closer look to
get a better understanding of how
they can serve existing designs or,
better yet, enable exciting new ones.

electric vehicles, the answer is bat-
tery technology that can deliver the
range and performance fossil-fuelers
are used to.

At the other extreme, Cymbet is
taking a “small is beautiful” tack
with their “EnerChip” thin-film
rechargeable lithium battery tech-
nology. In short, as the name
implies, it’s a battery-in-a-chip.
Combined with the latest in
nanopower silicon, the EnerChip
offers an intriguing option for
designers to consider.

Just keep in mind we’re not talking
about a lot of energy here. So far, the
Cymbet batteries top out at 50-µAh
capacity (CBC050) with a lesser 12-
µAh model (CBC012) also offered,

Although on a tinier
scale, the Cymbet bat-
teries exhibit the same
desirable performance
characteristics that
have made their larger
lithium coin cell
cousins so popular. For
instance, the voltage
discharge curve is as
flat as a board, which
guarantees virtually full
output until the bitter
end (see Figure 1). If
there’s a downside, this
means you can’t really
expect to use the volt-
age output level as a
foolproof indicator of
remaining battery life.

Power management will have to be
smarter than that, which is all the
more reason to better understand the
specs.

With a throwaway coin cell, using
it until it’s dead (and then replaced)
is standard procedure. By contrast,
with the Cymbet rechargeable, you
need to be careful not to run it off
the cliff shown in Figure 1. There’s
no simpler way to say it than the
CBC050 datasheet does: “Failure to
cutoff the discharge voltage at 3.0 V
will result in battery performance
degradation.”

Another benefit of lithium cells is
the ability to deliver surprisingly
high surge currents—in the case of
the CBC050, up to 300 µA. But

Figure 2—Although capable of relatively high discharge (e.g., 300 µA for 20 ms), note that effective capacity
decreases with increasing loads.

55

53

51

49

47

45

54

52

50

48

46

0 2 4 6 8 10 12

Discharge rate (µA)

D
is

ch
a
rg

e
 c

a
p
a
ci

ty
 (

µ
A

h
)

Figure 3—To recharge an
EnerChip, you’ll need a
power supply that delivers
exactly 4.1 V—no more, no
less. The proper charge volt-
age both maximizes charge
capacity while minimizing
“cycle fade.”

60

40

20

0

50

30

10

0 20 50 70 9010 30 40 60 80 100

Cycles

A
ch

ie
ve

d
 c

a
p

a
ci

ty
 (

µ
A

h
)

4.3 V

4.2 V

4.15 V

4.1 V

4.0 V

CBC050-Q8C,
25-µA load,
90% depth of discharge

2907003-cantrell.qxp 6/10/2009 10:04 AM Page 63

http://www.circuitcellar.com

64 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

instance, I have an older digital cam-
era with rechargeable NiMH batter-
ies that I might use once a month to
take a picture for this column.
Despite being nearly fully charged
when I last used it, it is invariably
drained when I fire it up a month
later.

By contrast, the CBC050 is quite
happy to sit idly by for many
months or even years. The self-dis-
charge spec comprises two parts.
The first is “recoverable” self-dis-
charge. Yes, the capacity will decline
over time, but the next recharge will
make everything right again with no
permanent damage. There’s also a
“non-recoverable” self-discharge, or
“aging,” that’s more serious in that
it represents a permanent loss of
capacity.

That all sounds scary until you
look at the CBC050’s specs. The
“recoverable” self-discharge rate is
8% and the “non-recoverable” rate
is 2.5%. But that’s per year! At a

watch out, because the
capacity declines almost lin-
early with the load as shown
in Figure 2. If you think a
“50-µAh” lithium cell should
be able to run a 300-µA load
for 10 minutes (i.e., 50/300,
or 1/6 of an hour), you’ve got
quite a surprise coming.
Extrapolate the line in Fig-
ure 1 to the right and you’ll
see what I mean. Using a car
analogy, drive with a heavy
foot on the throttle and
your mileage will suffer,
so a full tank of gas won’t
take you as far as if you
drive more sedately.

In the old days, NiCad batteries
were the all the rage for rechargeable
applications. Do you remember the
infamous “memory effect”? That
referred to the propensity for NiCad
batteries to “remember” repeated
partial discharge levels and get stuck
at a less-than-rated capacity. To
counter, users in the know would be
careful to “deep discharge” their
NiCads to wipe the “memory”
clean.

The Cymbet rechargeable lithium
technology is somewhat the oppo-
site. It’s more like a car (i.e., lead
acid) battery in that deep discharge
is something you want to avoid
because it reduces the number of
potential recharge cycles. Ponder the
specs and you’ll see the effect is by
no means trivial. For instance, keep
the CBC050 “topped off” by limiting
discharge to 10% and you can expect
to get a full 5,000 discharge/recharge
cycles out of it. But if you routinely
run it down to half full (i.e., 50%
discharge), that spec drops by a fac-
tor of five to 1,000 cycles.

Temperature also plays a role. The
aforementioned specs are for 25°C
operation. Boost the temperature to
40° and cycle counts are cut in half
(i.e., 2,500 and 500 cycles at 10%
and 50% discharge, respectively).
Also take note of the operating tem-
perature range of –20° to 70°C, a
possibly limiting spec in “harsh-
environment” applications.

Self-discharge can be a problem for
lesser battery technologies. For

total of 10.5% per year,
that means the CBC050
could come to life after
almost 10 years in stor-
age, and it would still be
quite serviceable (i.e., able
to charge back up to 75%
of the original rated
capacity).

Put all the specs togeth-
er and you start to get a
realistic picture of what a
CBC050 can deliver in a
particular application.
Consider these different
application scenarios.

The first has the
CBC050 fulfilling the typical role of
“battery-backup” for a low-power
CMOS chip (i.e., MCU, SRAM,
RTC). It’s quite well-suited to the
task, but faces notable competition
from an unlikely source: not another
battery, but the so-called “Super-
Cap” high-value capacitors. But put
on your “Green” eyeshade to look
closely at a SuperCap datasheet and
notice the very high self-discharge
spec. In essence, SuperCaps need to
be kept on the charger at all times in
order to be ready for a call to action.
It also means there’s energy wasted
keeping them topped-up. The differ-
ence may not seem like a big deal,
but from a holistic “energy con-
sciousness” point of view, the poten-
tial self-discharge energy advantage
is significant. According to Cymbet,
up to one-third the energy spent
charging a SuperCap (e.g., 0.2 F) is
lost to self-discharge versus a tiny
fraction of a percent for an Ener-
Chip.[1]

Figure 4—While the charge voltage should be precise (e.g., 4.1 V), not
much current is required, just 200-µA peak for the 50-µAh CBC050.

4.0

3.0

2.0

1.0

0.0

0 10 20 30 40 50 60
Time (minutes)

C
u

rr
e

n
t

in
 µ

A
 /

 C
a

p
a

ci
ty

 in
 µ

A
h

Figure 5—The EnerChip “Charge Controller” parts combine an EnerChip battery and charge
control electronics in a single chip.

2907003-cantrell.qxp 6/10/2009 10:04 AM Page 64

http://www.circuitcellar.com

32.qxp 7/11/2008 11:59 AM Page 66

http://www.circuitcellar.com/archives
http://www.circuitcellar.com/network

66 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

Safety is something easy to over-
look, at least until it jumps up and
bites you. Everyone has seen the
headlines about exploding laptops
and such. Fortunately, Cymbet says
that even a dead-short won’t lead to
unwanted pyrotechnics.[2]

CHARGE IT
Recharging an EnerChip battery is

simple enough. The easiest approach
is simply to connect it to a 4.1-V
supply and the battery will fully
recharge in less than an hour. Alter-
natively, a two-phase scheme can be
used that starts with a constant cur-
rent (e.g., 50 µA) phase and finishes
with a constant voltage (4.1 V)
phase. The documentation notes the
two-phase approach may be required
for future EnerChips; but for these
initial batteries, the single-phase
constant voltage approach is fast and
easy.[3]

The main consideration is that the
4.1-V supply needs to be rather pre-
cise—within a few percentage points
(see Figure 3). If the voltage is too
high (e.g., 4.3 V), the battery will
exhibit “cycle fade,” in which the
capacity declines with each recharge

them for you internally, the answer
is that a single EnerChip CC can
work with up to 10 external Ener-
Chip batteries for applications that
need higher current and capacity
than the on-chip battery provides.
While it doesn’t hurt the battery to
charge it all the time, needless
charging consumes power to keep
the charge pump running, so the
ENABLE (EN) pin provides an exter-
nal On/Off switch.

The EnerChip CC automatically
handles the switchover between pri-
mary (VDD pin) and back-up (VBAT)
power delivery, the threshold being
set with the VMODE pin. If VMODE
is connected to VDD, the threshold
is 4.5 V (i.e., suitable for 5-V
designs). If VMODE is grounded, the
threshold is 3.0 V (i.e., for 3.3-V
designs). A third option requires a pair
of external resistors, the ratio
between them setting the threshold
voltage anywhere between 2.5 and 5 V.
The RESET* pin is driven low when
the EnerChip CC is providing power

cycle. Too low (e.g., 4.0 V) and the
battery won’t recharge to full capacity.

The EnerChip internal impedance
is high enough that there’s no need
for extra components to limit the
charge current, at least as long as the
charging voltage isn’t too high (i.e., it
should not be greater than 4.3 V). As
shown in the typical battery-charg-
ing profile (see Figure 4), the charge
current peaks at about four times
the battery capacity (i.e., 48 µA for
the CBC012 and 200 µA for the
CBC050).

UPS-LITE
Cymbet takes their EnerChip tech-

nology a major step further with the
so-called “CC” upgrade that com-
bines the battery with power-man-
agement logic and packs a complete
mini-me Uninterruptable Power
Source (UPS) in a chip that’s just
slightly larger than the battery
alone.

EnerChip CCs are available using
either the 50-µAh (CBC3150) or 12-µAh
(CBC3112) batteries. They’re pack-
aged in a 9 mm × 9 mm 20-pin pack-
age, but as shown in Figure 5, there
are really only a few pins to deal
with.

With a wide 2.5- to 5-V input
range, VDD is the primary power
source for the EnerChip CC, just as
wall power is the primary source for
a 120-VAC UPS. VBAT is directly
connected to the battery. VOUT is
the uninterruptable 3.3-V (typical)
output to the load.

An internal charge pump (with an
external capacitor connected to the
CP and CN pins) generates a precise
4.1 V on the VCHG pin to charge
the battery. It’s simply a matter of
connecting the VCHG and VBAT
pins to close the loop. If you’re wonder-
ing why Cymbet didn’t just connect

Photo 1—The CBC-EVAL-05 includes both
50-µAh (CBC3150) and 12-µAh (CBC3112)
EnerChips. It’s easy to switch between one
or the other just by rotating the module.

Figure 6—The CBC-EVAL-05 module makes
it easy to experiment with Cymbet EnerChip
technology.

1

2

3

4

5

6

7

8

9

10

11

12

NC

NC

CN

CP

*RESET

GND

VMODE

ENABLE

VCHG

VDD

VOUT

VBAT

24

23

22

21

20

19

18

17

16

15

14

13

VBAT

VOUT

VDD

VCHG

ENABLE

VMODE

GND

*RESET

CP

CN

NC

NC

Cymbet takes their EnerChip technology a
major step further with the so-called ‘CC’
upgrade that combines the battery with
power-management logic and packs a
complete mini-me Uninterruptible Power
Source (UPS) in a chip ...

”“

2907003-cantrell.qxp 6/10/2009 10:04 AM Page 66

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 67

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

by connecting their VBAT pins with
either VCHG pin (not both).

DUST STORM
When comparing Cymbet’s Ener-

Chips to existing solutions such as
coin cells and SuperCaps, it’s all too
easy to fall into the “us vs. them”
trap. There are no doubt applications
where an EnerChip is the clear-cut
winner and should replace the earli-
er devices. But “us vs. them” over-
looks the fact that there are a lot of
situations where “us and them” can
work well together. Let’s take a look
at some EnerChip-based gadgets and
you’ll see what I mean.

Photo 2 shows what might seem
an unlikely pairing of a coin cell bat-
tery and an EnerChip, but it’s actu-
ally a combination that makes a lot
of sense. The application would gen-
erally draw from the coin cell, call-
ing on the EnerChip to “bridge” the
power-gap when it’s time to replace
the coin-cell. The EnerChip would
allow “in-flight refueling” (i.e.,
application continues to run) and
preserve critical data across battery
swaps. For instance, keeping a real-
time clock alive with an EnerChip
would put an end to the embedded
equivalent of the flashing “12:12:12”
problem (i.e., devices that lose their
minds and need to be re-initialized
when you change the battery).

Look no further than Cymbet’s
“Solar Energy Harvesting” demo kit
(CBC-EVAL-08) to see how Ener-
Chips and capacitors can be best
buddies too. The kit utilizes a three-
tier hierarchy of power generation
starting with a solar panel that picks
up what energy it can, when it can,
from ambient light. The solar panel
output feeds a boost converter that
steps up the voltage to a useful level
(3.5 V). When solar energy is suffi-
cient, it drives the load and charges
a pair of CBC050 batteries. If the
light fades, the EnerChips take over
supplying the load.

So far, so good. The only gotcha
being said load had better be pretty
small. `Whether powered by the
solar panel in bright sun, or running
off the EnerChips, we’re talking
about only tens to hundreds of

to VOUT from the internal battery.
Battery-protection is also built-in,

with the output (VOUT) automati-
cally disconnected from the battery
when VBAT falls too low. The com-
bination of precise charge voltage
and battery protection maximizes
the capacity and number of recharge
cycles the battery delivers.

Cymbet offers some handy evalua-
tion modules that make it easy to
experiment and prototype with Ener-
Chip batteries and CC controllers.
Consider the CBC-EVAL-05 (see
Photo 1), which includes both a
CBC3112 and a CBC3150 packaged
in a 24-pin DIP format. Notice on
the pinout (see Figure 6) how the left
and right sides of the DIP are mirror
images. One side connects to the
CBC3112 and the other the
CBC3150 so you can test either by
simply rotating the module.

The module has the flexibility to
support a variety of experiments. For
instance, if you’re mainly interested
in playing with the batteries, but
not Cymbet’s charge controller, just
leave the VCHG pin disconnected
from the VBAT pin and have at it.

There’s also a hybrid option that
has one CC, pardon the pun, in
charge of the other’s battery (i.e.,
CBC3150 charge controlling the
CBC3112 battery and vice versa). A vari-
ation runs both CBCs simultaneously

Photo 2—This design shows how EnerChips
and coin cell batteries can work together.[4]

The EnerChip keeps the system alive when
the coin cell needs to be replaced.

2907003-cantrell.qxp 6/10/2009 10:04 AM Page 67

http://www.circuitcellar.com
http://www.xgamestation.com
http://www.picservo.com
http://www.lvr.com

68 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

When you’re talking millionths of an amp for a power
budget, every little bit adds up.

For example, when was the last time anyone really
thought much about all those lowly pull-up resistors lit-
tering most designs? Well, think again. Consider the typ-
ical 100-kΩ pull-ups inside most MCUs, not just on the
I/O lines, but also on the control inputs such as inter-
rupts and reset. The bad news is that a 100-kΩ pull-up at
3.3 V burns 33 µA just sitting there. We always new
that, but just didn’t care. Now we do.

So, for example, you don’t want to leave the pull-ups
on your software-scanned matrix keypad enabled all the
time. Instead they should only be powered during the
active scan. Indeed, where possible (i.e., external pull-
ups), use a higher value resistor (e.g., 1 MΩ). But pay
close attention to your rise and fall times since chips
burn more power during the time an input transitions
through the “floating” region between rails.

Similarly, be on the lookout for subtle leakage paths
between chips. For instance, an RTC powered by a bat-
tery can leak power through its pins to an attached
MCU, even if the MCU is powered off. Use diodes and
transistors as hose clamps and valves to seal even the
tiniest leaks.

The cyclic nature of the capacitor discharge power
supply poses all manner of creative challenges for
designers. You no longer have the luxury of consuming
all the clock cycles you want whenever you want them.
Instead your hardware and software design has to deal
with the reality that the power supply drives the sched-
ule. Imagine how this complicates an already tricky and
timing-sensitive task like wireless networking. The

microamps on tap.
Here’s where our little friend the capacitor comes in.

Capacitors may be leaky, but they’re also more than
willing to give it all they’ve got in a big bang (i.e., high
discharge current). That brings us to the third tier in the
power-generation pyramid: a 1,000-µF capacitor.
Although hardly a “SuperCap” (real ones are measured
in Farads), it can nevertheless deliver a whopping 30-mA
discharge for 20 ms, fully 50 times the 600-µA surge the
pair of EnerChip batteries can provide. Of course, there’s
no free lunch. The battery resistance and the capacitor
form an RC network that takes a few seconds to
recharge.

Is that enough energy to do anything useful? Texas
Instruments says so, and to prove it, they’ve come up
with the eZ430-RF2500 Solar Energy Harvesting kit (see
Photo 3) that uses the Cymbet Solar Energy Harvester to
power a wireless sensor solution based on their MSP430
flash memory MCU and CC2500 802.15.4 radio chips.

The kit comes with the Solar Energy Harvester, a USB
adapter that connects to your PC, and a plug-in MCU-
plus-radio module for each. The software comprises a
simple temperature-sensing application with TI’s home-
grown SimpliciTI network stack running on the nodes,
and a PC-monitoring program that displays the network
in action (see Photo 4).

Yes, the application is trivial, but the design implica-
tions aren’t. This stuff really works! The solar panel was
able to power the load and keep the EnerChip charged in
moderate lighting conditions, even indoors. But when
there wasn’t enough light, the EnerChip seamlessly
kicked in, able to keep the node on the air for up to 400
additional packets on battery power alone.

TIPS & TRICKS
By now most designers are familiar with the typical

low-power design techniques (i.e., sleep mode, powering
down unused logic, up/down-shifting the clock rate, and
so on). But getting on the energy-harvesting bandwagon
requires taking low-power design techniques even further.

Photo 3—The Texas Instruments eZ430-RF2500 Solar Energy Harvesting
kit puts Cymbet EnerChips to work with TI silicon in a “zero-power”
wireless sensor application.

Photo 4—The PC software that comes with the TI kit shows the
network in action. Note how the node counts down the number of
packets it will be able to send on EnerChip power alone (i.e., in
the dark).

2907003-cantrell.qxp 6/10/2009 10:04 AM Page 68

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 69

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

Tom Cantrell has been working on chip, board, and systems design and marketing for
several years. You may reach him by e-mail at tom.cantrell@circuitcellar.com.

EFERENCES
[1] Cymbet Corp., “Benefits of Using Cymbet EnerChips Instead of Coin-

Cells and Super Capacitors,” AN-1008, www.cymbet.com/MContentA/
pdfs/AN-1008-Replacing-Coin-Cells-and-Supercapacitors.pdf.

[2] Cymbet Corp., “Cymbet Rechargeable Battery and Energy Storage
Device,” www.cymbet.com/content/applications-faqs.asp.

[3] Cymbet Corp., “Guidelines for charging Cymbet EnerChip Batteries”
AN-1002, www.cymbet.com/MContentA/pdfs/AN-1002-Charging-
Cymbet-Batteries.pdf.

[4] Cymbet Corp., “Using the Atmel picoPower AVR Microcontroller
with Cymbet EnerChips,” AN-1014, www.cymbet.com/MContentA/
pdfs/AN-1014-Atmel-picoPower-AVR-Demo.pdf.

[5] M. Raju, “Energy Harvesting,” Texas Instruments, 2008, http://focus.
ti.com/lit/wp/slyy018/slyy018.pdf.

OURCES
EnerChip CBC-EVAL-05 Evaluation kit
Cymbet | www.cymbet.com

eZ430-RF2500-SEH Solar energy harvesting kit
Texas Instruments, Inc. | www.ti.com

S

R

MCU may have to “stairstep” its
way through complex procedures
one short burst of energy at a time.

With all the starting and stopping,
you even need to pay attention to
the energy overhead of waking up
and shutting down. After all, if your
workday was only 10 minutes long,
how fast you tie your shoes would
suddenly matter a lot.

HARVEST TIME
When you think about it, the envi-

ronment is filled with huge amounts
of energy we can tap (see Table 1).
Our old pal Sol(ar) gets most of the
headlines, but there are plenty more
sources free for the taking. Piezo
transducers can capture energy from
the vibration of a motor or the shock
of a shoe hitting the pavement.
Tomorrow’s smart wardrobe might
literally include “smart clothes”
that run off power harvested from
the heat of your skin. Or imagine, as
Tesla did a century ago, being able to
skim power from the RF chatter that
bombards us.

We’re only at the beginning of the
green revolution, and already it’s
clear that energy harvesting is well
beyond the (sunny) “blue sky” hype
phase. The technology from Cymbet
and TI is clearly viable for some
real-world applications today and,
with inexorable advances in technol-
ogy, many more tomorrow. If you
want to reap the benefits of energy
harvesting, it’s time to sow some
new and clever designs. I

Table 1—The environment is filled with
ambient energy free for the taking.[5] All you
have to do is figure out ways to harvest it.

Energy Source Harvested Power
Vibration/Motion

Human 4 μW/cm2

Industry 100 μW/cm2

Temperature Difference

Human 25 μW/cm2

Industry 1-10 mW/cm2

Light

Indoor 10 μW/cm2

Outdoor 10 mW/cm2

RF

GSM 0.1 μW/cm2

Wi-Fi 0.001 μW/cm2

2907003-cantrell.qxp 6/10/2009 10:04 AM Page 69

mailto:tom.cantrell@circuitcellar.com
http://www.cymbet.com/MContentA/pdfs/AN-1008-Replacing-Coin-Cells-and-Supercapacitors.pdf
http://www.cymbet.com/content/applications-faqs.asp
http://www.cymbet.com/MContentA/pdfs/AN-1002-Charging-Cymbet-Batteries.pdf
http://www.cymbet.com/MContentA/pdfs/AN-1002-Charging-Cymbet-Batteries.pdf
http://www.cymbet.com/MContentA/pdfs/AN-1014-Atmel-picoPower-AVR-Demo.pdf
http://focus.ti.com/lit/wp/slyy018/slyy018.pdf
http://www.cymbet.com
http://www.ti.com
http://www.circuitcellar.com
http://www.cubloc.com

70 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

might start up. (Refer to the “references” at
the end of this article.) Let’s review.

START-UP REVIEW
Clearly, start-up in Linux is much different

than start-up in Texas Instruments Code
Composer for the 430, and both differ from
starting up the ARM. They do, however, have
features in common. The differences in
microprocessor architectures dictate differ-
ences in start-up.

Some of the more common considerations
in starting a C environment have to do with
memory and its initialization. There are dif-
ferent memory sections or segments of your
program. Let’s look at memory initialization
and the .bss segment. The memory region
contains variables that are to be initialized to
0.[2] These are all the global (or static) vari-
ables, except those that are set to a specific
value at start-up. The variables that need to
be set to a specific value are found in the
.data segment. The constants are found in the
.rodata segment. (“ro” probably stands for
read only.) The code is found in the .code seg-
ment (also known as the .text segment). So,
initializing of the segments is one of the
start-up routine’s functions.

Sounds simple. But think about this a bit.
Memory locations that can be changed by the
program (.bss and .data) need to be located in
RAM so that read and write instructions can
operate on them. Memory locations that do
not need to be changed (.rodata and .text) may
be located in RAM, but they could also be

2907013 martin.qxp 6/10/2009 10:03 AM Page 70

You’ve decided to try the C language and have a new design ready to
go. Now it’s time to get your embedded system up and running.

C Start-Up
Get a C Program Up and Running

H

by George Martin

ow do the C language and your com-
piler take care of getting your C

code up and running? I thought this would be
an easy article. I figured I’d just search the
’Net and pages of answers would just appear.
Or so I thought.

When I started searching with “Starting C
program,” I got links to information about
starting to learn the C programming language.
Of course, my search parameters had to be
more specific. The best phrase I came up with
was “C code start-up.” The results were more
in line with what I needed. To make a long
story short, I came across Derek Jones’s “The
New C Standard,” in which he writes: “Two
execution environments are defined: free-
standing and hosted. Commentary… Free-
standing is often referred to as an embedded
system, outside of the C Standard’s world.”[1]

Hey, what gives? All my embedded code
starts up and runs just fine (until I encounter
my design and coding errors). The C language is
so popular. How can the C (and C++) language
ignore embedded designers and applications?

Well, if you think about it a bit, you’ll see
that “C environments” is a broad statement.
If you’re writing a C program that runs on a
PC to operate on data read from a file, and if
the results are presented on the display, that’s
an entirely different start-up than your typi-
cal embedded system. On the PC, C start-up
is much more of an operating system issue
than a language issue. The documents I list in
the References section of this article cover
how specific types of embedded systems

LESSONS FROM THE TRENCHES

http://www.circuitcellar.com

located in EPROM or flash memory. Some embedded
systems transfer these segments from flash memory (or
disk) to RAM with a bootloader early in the start-up
process. I’ve worked with compilers that generated com-
pressed .rodata and then uncompressed that data in the
start-up process. This saves a tremendous amount of
space. And if you are loading your code from the EPROM
of DISK into RAM, the savings are significant.

Another start-up function is setting up interrupt vec-
tors. When an embedded microprocessor powers up, it
fetches instructions from a reset vector location. That
reset location along with other vector (general descrip-
tion) or interrupt (more specific description) locations
are found in the vector table. On smaller micros, these
are eight or 16 vectors, and they are constants located at
a fixed memory location. On larger more powerful
micros, these vectors (there can be hundreds of them) are
in a table that can be changed and even relocated by the
program (usually to RAM). Think about it. You may
have a vector location for timer interrupt and another
for divide by zero.

In the first case (the smaller CPUs), the vector table is
defined in assembly language and contains the address of
the interrupt routines. So, at compile/link time, all the
addresses are known and the table is filled in. In the sec-
ond case (the larger CPUs), the vector table is relocated
and set up in some sort of start-up code. This more com-
plicated setup is usually done in the application code.
Each interrupt vector can point to the appropriate inter-
rupt routine when that interrupt is registered. Also, pri-
ority levels and other pertinent information are defined.
Setting up these vector tables is done at start-up.

We also need to set up the stack and heap. To help
understand these concepts, let’s look at some code. As a
refresher, when you define a variable INT16 c;, you are
reserving space for that variable. If the definition is in a
procedure, then the space is created when the routine is
called and destroyed when the routine is exited. When
you define a variable INT16 c = 7;, you are reserving
space for that variable and also setting it to the value 7.
If the definition is in a procedure, then the space is cre-
ated when the routine is called and destroyed when the
routine is exited.

STACK & HEAP
How does all this happen? We need to look into the

stack.
Two closely related programming concepts that C uses

are the stack and heap. From the ARM literature: “The
ANSI C library will initialize the stack pointer for the
current mode itself. It determines where to place the
stack by using one of the following options: If the sym-
bols __heap_base, __heap_limit, __stack_base and
__stack_limit are defined, their values will be used to
define the top and bottom of the stack and heap.”[3]

It is best to first describe how the CPU operates with a
stack. In the hardware, when an interrupt occurs, infor-
mation about the state of the CPU is pushed onto the

stack. When that interrupt is completed, the informa-
tion is popped off the stack. Other information (e.g., reg-
isters) may be saved and restored in this interrupt opera-
tion. Also in assembly language, there are the PUSH and
POP instructions. Now the stack pointer is set to either
the top or bottom of the available RAM. I believe it’s
more common to be set to the top (a numerical larger
value), so let’s just focus on that. But be warned: this
might be different in your system. The interrupt opera-
tion (or the PUSH instruction) will save the data at the
location pointed to buy the stack pointer and then decre-
ment the stack pointer by the size of the data saved. The
POP instruction will increment the stack pointer and
load the data found at that location. The return from
interrupt also increments the stack pointer and restores
the data from that incremented location. This is also the
method used to reserve space for variables and to pass
parameters to a routine.

First, look at reserving space. The INT16 a = 7; state-
ment caused the stack pointer to be decremented (reserv-
ing space) and then an instruction to store the value 7 at
the location pointer to the stack pointer +1 (assuming a
16-bit CPU). Next, consider the call to the INT16
Sqrt(INT16 A, INT16 B); procedure. It pushes the A
and B values on the stack and also pushes or reserves
space for the return value. By looking at the assembly
language output, you should be able to see how a vari-
able is defined locally to a routine and how memory is
created for the variable and then destroyed as the rou-
tine is exited. Look carefully at the assembly code your
compiler generates to see how the stack is used.

The stack can’t go on forever. I found that C compilers
for microprocessors typically have a default stack size.
You can change this default value for your specific appli-
cation. Also, you can enable or disable stack-checking to
test to see if the stack has grown past its defined size. Be
careful. With stack-checking enabled, the code runs
much slower.

Next let’s look at the heap. In “Essential C,” Nick Par-
lante writes: “C gives programmers the standard sort of
facilities to allocate and de-allocate dynamic heap mem-
ory. A word of warning: writing programs which manage
their heap memory is notoriously difficult. This partly
explains the great popularity of languages such as Java
and Perl, which handle heap management automatically.
These languages take over a task that has proven to be
extremely difficult for the programmer. As a result Perl
and Java programs run a little more slowly, but they con-
tain far fewer bugs. (For a detailed discussion of heap
memory, refer to http://cslibrary.stanford.edu/102/,
Pointers and Memory.) C provides access to the heap fea-
tures through library functions that any C code can call.
The prototypes for these functions are in the file
<stdlib.h>, so any code that wants to call these must
#include that header file. The three functions of interest
are: void* malloc(size_t size);, which requests a
contiguous block of memory of the given size in the
heap; void free(void* block;), where the mirror

www.circuitcellar.com • CIRCUIT CELLAR® 71

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

2907013 martin.qxp 6/10/2009 10:03 AM Page 71

http://cslibrary.stanford.edu/102/
http://www.circuitcellar.com

72 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

image of malloc() – free takes a
pointer to a heap block earlier allo-
cated by malloc() and returns that
block to the heap for re-use; and
void* realloc(void* block,
size_t size);, which takes an
existing heap block and tries to relo-
cate it to a heap block of the given
size that may be larger or smaller
than the original size of the block.”[4]

The heap is a memory region that
is below the stack (in our example
CPU). It is defined by its boundaries
__heap_base and __heap_limit. The
C language provides support for your
code by allocating some heap memo-
ry (malloc()), using it, and then
releasing that heap memory for other
routines to use (free()). This can
be very useful if you need to reserve
lots of memory for one time (or
some time) usage and then don’t
need that memory for a while. There
is not a heap pointer in most CPUs
like there is a stack pointer. Separate
routines manage the heap region.
You will find as you look through
the references that heap usage and
heap management is a difficult
process. Memory leaks are a real
danger. I usually allocate only one
time an amount of memory large
enough to do the job. And then I free
that memory on exit. This very con-
servative approach seems to work for
me.

In ending this part of the discus-
sion, note that there can be other
regions of memory such as battery-
backed-up memory or EEPROM
memory. Perhaps some compilers
will give you the tools to deal with
this at start-up. But that’s at the
black-belt level and we won’t go
there just yet.

FILES
Three files from a working project

are posted on the Circuit Cellar FTP
site. The files ncrt0.a30, sect30.inc,
and NCRT0.LST are for a Renesas
Technology MC16 CPU. In
ncrt0.a30, you will find all the defi-
nitions of the various memory seg-
ments. Also, you’ll see custom
instructions defined. (Remember all
caps are #defines.) In NCRT0.LST,
you’ll see the assembly language

that is expanded from these defines.
This is the actual code that is execut-
ed to set up the memory segments.

In the file sect30.inc, you’ll find
the vector area. I set up three vectors;
the environment set up the others.
One is for a timer interrupt and two
are for serial port interrupts. Renesas
has thousands of microcontrollers
and each come in different flavors.
You see that there are vector tables
for this microcontroller in a 60-pin
and then in an 80-pin package. I start-
ed putting my vectors in both areas.
Sort of defensive programming.

What if the timer was set up
before I defined the package (60 ver-
sus 80 pins)? I was new to the CPU
and the development environment
and didn’t want to be surprised or
constrained in the order I initialized
the hardware.

Well, so what now? Let’s write
some code and look at project-specific
start-up and initialization. I’ll talk
about the Texas Instruments MSP430
and get into the classic for(;;) loop.

CODE & INITIALIZATION
Main.c is the main program loop

that you will find in a typical embed-
ded system. The file starts out with a
header for information purposes. It’s
just good practice to identify your
code. I always add the copyright
notices even if that might not legally
secure the copyright. But if you don’t
mention the copyright, I’m sure you
never get any protection.

Next, you’ll come across the
include of the file msp430x12x2.h.
That file is specific to the CPU. It
sets up all the defines that you will
need to access the CPU’s hardware.
Here is where you get access to reg-
isters such as the timer and UART.
That file comes with the compiler.

Then you’ll find the type defini-
tions of INT8 and INT16. If you are a
regular reader, you’ll recognize these
as how we keep our heads screwed
on straight. The C keyword int
changes meaning as you change
micros. An int becomes different
sizes on different micros. Our key-
words of INT8 and INT16 do not
change meanings but are translated
into the appropriate constructs for our

usage. We’ve captured (hidden) that
translation in the type definitions.

Next you’ll find the procedures
that initialize the hardware (void
InitHardware(void);), initialize
the software (void InitSoft-
ware(void);), and then the
for(;;) loop. This for(;;) caused
the code to execute here forever. It’s
an embedded system after all.

The main() is entered after start-
up (and you now know all about the
start-up process). The first step is to
disable interrupts. Then the hardware
is initialized and then the software is
initialized after the interrupts are
enabled. The _DINT(); and _EINT();
instructions are not in the C lan-
guage. They are macros that translate
to the assembly language instructions
that disable and enable interrupts in
the CPU. Clearly, these are imple-
mentation- and compiler-dependent.
After initializing my system, I send
out a message on the serial port and
enter the for(;;) loop. This is the
classic method for creating a program
that never ends.

If you look close, you will see the
_DINT() called twice. I do this to be
certain interrupts are disabled. Each
CPU instruction is actually broken
into several segments. Even the sin-
gle clock instructions look at the
interrupt input at a specific point
during the instruction. On some
microcontrollers, it’s possible for the
interrupt to come along at a critical
time so that the interrupt in the
CPU disabled but the interrupt is
executed. And then the return from
the interrupt reenables the inter-
rupts. Two of the disable interrupt
instructions take care of this situa-
tion. Hey, those of you who are pay-
ing attention have just moved up to
your gray belt. Not exactly a black
belt yet.

In main.c, I first initialize the
hardware and then the software.
This seems to be the best way, but
perhaps you have a really good rea-
son to reverse the order. In
InitHardware(), I take care of all
the raw hardware settings. If a bit in
the CPU needs to be set/cleared to
define a specific hardware characteris-
tic. You find it in InitHardware().

2907013 martin.qxp 6/10/2009 10:03 AM Page 72

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 73

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

Let’s consider a UART. In
InitHardware(), I would set up the
CPU registers that control the UART
parameters like the clock source, the
baud rate, the number of data/stop
bits, the parity, and the handshake. I
might also read the receive register
and make sure any error flags are
cleared. In InitSoftware(), I would
again flush out any data and reset any
error flags. But I would probably make
these operations a procedure and make
that procedure available to the code in
general. That way it would be easier to
recover from UART errors.

The InitSoftware() procedures
would initialize items such as vari-
ables, any states in state machines,
pointers, and databases. If indicators
such as an LED error indicator need to
be on for testing or off for normal oper-
ation, I would do that here. I suppose
you could have a StartupTest() pro-
cedure that you run after the system is
stable.

UP & RUNNING
Well, I hope this gave you some

insight into how to get your embedded
system up and running. If you’ve been
reading this series, you’ve seen refer-
ences to free (as in free beer) tools.
Low-cost ($50) and even free evaluation
boards are also available. So, let’s get
started using the C language. If you
have any topics that you would like to
have me cover, please let me know. I

George Martin (gmm50@att.net) began
his career in the aerospace industry in
1969. After five years at a real job, he set
out on his own and co-founded a design
and manufacturing firm (www.embedded-
designer.com). His designs typically
include servo-motion control, graphical
input and output, data acquisition, and
remote control systems. George is a
charter member of the Ciarcia Design
Works Team. He’s currently working on a
mobile communications system that
announces highway info. He is also a
nationally ranked revolver shooter.

EFERENCES
[1] D. Jones, “The New C Standard,” 2008, http://c0x.coding-guidelines.com/
5.1.2.pdf.

[2] Wikipedia, BSS Section, http://en.wikipedia.org/wiki/Block_Started_by_Symbol.

[3] ARM, Documentation Homepage, http://infocenter.arm.com/help/index.
jsp?topic=/com.arm.doc.faqs/ka3696.html.

[4] N. Parlante, “Essential C,” http://cslibrary.stanford.edu/101/EssentialC.pdf.

ESOURCES
K. Boldyshev, “Startup State of a Linux/i386 ELF Binary,” 1999-2000,
http://asm.sourceforge.net/articles/startup.html.

Rowley Associates, “Startup Code,” Rowley Associates Online
Documentation, www.rowley.co.uk/documentation/arm_1_7/index.htm?
http://www.rowley.co.uk/documentation/arm_1_7/arm_crt0.htm.

Texas Instruments, “Code Composer Essentials V 3: Modified or Custom
Startup-Code,” TI E2E Community (Beta), https://community.ti.com/forums
/p/286/762.aspx.

OURCES
M16C Microcontroller
Renesas Technology | www.renesas.com

MSP430 Microcontroller
Texas Instruments, Inc. | www.ti.com

S

R

R

ROJECT FILES
To download code, go to ftp://ftp.
circuitcellar.com/pub/Circuit_
Cellar/2009/228.

P

2907013 martin.qxp 6/10/2009 10:03 AM Page 73

mailto:gmm50@att.net
http://www.embedded-designer.com
http://c0x.coding-guidelines.com/5.1.2.pdf
http://en.wikipedia.org/wiki/Block_Started_by_Symbol
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka3696.html
http://cslibrary.stanford.edu/101/EssentialC.pdf
http://asm.sourceforge.net/articles/startup.html
http://www.rowley.co.uk/documentation/arm_1_7/index.htm
http://www.rowley.co.uk/documentation/arm_1_7/arm_crt0.htm
https://community.ti.com/forums/p/286/762.aspx
http://www.renesas.com
http://www.ti.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/228
http://www.circuitcellar.com
http://www.pcb-pool.com

74 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

20
09

 –
 Is

su
e 2

28

1 2 3 4

5

6

7 8

9 10

11 12

13

14

15 16

17 18

19

CROSSWORD

The answers are available at
www.circuitcellar.com/crossword.

Down
1. Circuit Cellar headquarters
2. Secure protocol
3. ax2 + bx + c = 0
4. Standards Institute; Washington, DC
7. .PS
8. Links two LANs
10. Negative subatomic particle
11. F, CI, Br, I, At
12. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610
14. Mn
18. Wire sizes

Across
1. Touching contacts, electricity flows
5. Unidirectional electric current (two words)
6. No value
9. 0.000000000000001
10. “FE” is a framing what?
13. Ground (two words)
15. Switch with a lever
16. _____ guidance computer; real-time flight info
17. mrad
19. Light waves; 10–10 meter

crossword2.qxp 6/12/2009 10:06 AM Page 78

http://www.circuitcellar.com
http://www.circuitcellar.com/crossword

www.circuitcellar.com • CIRCUIT CELLAR® 75

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

UUSSBB
Add USB to your next

project—it’s easier than you
might think!

USB-FIFO up to 8 mbps

USB-UART up to 3 mbps

USB/Microcontroller boards

pre-programmed with firmware

2.4GHz ZigBee™ & 802.15.4
RFID Reader/Writer

Absolutely NO driver software

development required!

www.dlpdesign.com

�������	
������������� ����

����� ��������

www.copelandcommunications.com

Low Cost 56K V.92 MNP4 Modems, Dialup Device
Servers, Ethernet and WiFi—all in one form factor!

��300 – 56K baud V.92
��V.42 - V.42bis - MNP4
��Global Compliance—

5KV
��FCC, CE and TBR21 approvals
��AT command set
��SocketModem™ compatible
��Low Power—35mA
��Small Footprint

1.045” x 2.54”

��Wireless Modules—
902-928MHz - 33Kb

��Auto Error Detection
& Flow Control

��Modules are H/W & S/W
compatible

��Custom antennas
��USB 2.0 Modules—Adapt

legacy RS-232 DB9 to USB
��WiFi, Ethernet available soon!

Low Cost Embedded OEM
Modems & Device Servers

��������	
������
�

�������������
� ������
��� ����

������� ������	
����

�������
 ���
����

�� ������ ����
������������ ������� ������

�
�� � �� !�"��
���#$ ��� ���
�� �%& ��

�� ���
����� ������������
���� ����&���

�� �����'�� ������� () ����������
*

��
������
 �� �� ����
���!
��"#$�% �� "��� & "'(�#$)* +�#($$

&�%����'�%���+��� ��'� �� ������� ,,

��
�������-,��������
� ����&��������
����

���'���
���� ��%������ �����
���� ����*

��,-.��% ��)/0� 12',-.��+ �#($$

������'����������% ��
��� ��
�� �&��� ����

��
������
 ������ ���� � ���'�������
*

���

�������������	

��������	��
����

���� ���	���� � ��� ��
��������������	������
�������

ib-228.qxp 6/10/2009 11:48 AM Page 75

THE DIRECTORY OF
PRODUCTS AND SERVICES

AD FORMAT: Advertisers must furnish digital submission sheet and digital files that meet the specifications on the digital submission sheet. ALL TEXT AND OTHER
ELEMENTS MUST FIT WITHIN A 2" x 3" FORMAT. Call for current rate and deadline information. E-mail adcopy@circuitcellar.com with your file and digital submission
or send it to IDEA BOX, Circuit Cellar, 4 Park Street, Vernon, CT 06066. For more information call Shannon Barraclough at (860) 875-2199.

The Vendor Directory at www.circuitcellar.com/vendor/
is your guide to a variety of engineering products and services.

IDEA
BOX

mailto:adcopy@circuitcellar.com
http://www.circuitcellar.com/vendor/
http://www.dlpdesign.com
http://www.copelandcommunications.com
http://www.circuitcellar.com
http://www.picofab.net
http://www.digitalshortcut.com
http://www.i2cchip.com
http://www.jkmicro.com

76 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

SURVEY SPONSOR

ib-228.qxp 6/10/2009 11:48 AM Page 76

http://www.circuitcellar.com
http://www.allelectronics.com
http://www.tri-plc.com/cci.htm
http://www.flexipanel.com
http://www.hexwax.com
http://www.nkcelectronics.com
http://www.totalphase.com
http://www.prolificusa.com
http://www.tracesystemsinc.com
http://www.ccsinfo.com/more

www.circuitcellar.com • CIRCUIT CELLAR® 77

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

Low cost Temperature Data
Acquisition and Control
Low cost Temperature Data
Acquisition and Control

3.0 x 4.0", 50 μA standby,

200 mA, 6-24V DC

C/C++ programmable,

Ready to use firmware

100+ Temperature IC-Sensors with

0.5°C accuracy

Thermocouple with 24-bit ADC,

12-bit ADC

CompactFlash with FAT file system support

Solenoid drivers, LCD, RS232, ZigBee wireless

10/100-baseT Ethernet or USB

Aluminum box with screw terminals

ib-228.qxp 6/10/2009 11:48 AM Page 77

http://www.circuitcellar.com
http://reachtech.com
http://www.stx104.com
http://www.phytec.com
http://www.phycore.com
http://www.canusb.com
http://www.can232.com
http://www.earthlcd.com
http://www.mcc-us.com
http://www.tern.com
http://www.lemosint.com

78 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

Starting at $125!

Program in
Assembler, BASIC, C, and Forth

www.TechnologicalArts.com

Adapt9S12XDP512
Modular Prototyping System

* Robotics and Mechatronics
* Electronic Fuel Injection
* Freescale 9S12XDP512

* RTOS-capable

Evaluate * Educate * Embed

ib-228.qxp 6/12/2009 9:27 AM Page 78

http://www.TechnologicalArts.com
http://www.circuitcellar.com
http://www.medallionsystems.com
http://www.aagelectronica.com
http://www.captroncorp.com
http://www.pulsar-inc.com
http://www.ironwoodelectronics.com
http://www.melabs.com
http://www.melabs.com

78 AAG Electronica, LLC

34 AP Circuits

24 ARM

76 All Electronics Corp.

77 Apex Embedded Systems

7, 55 Atmel

33, 55 CWAV

41 CadSoft Computer, Inc.

55 Calao Systems

78 CapTron Corp.

69 Comfile Technology, Inc.

75 Copeland Communications

55, 76 Custom Computer Services, Inc.

75 DLP Design

48 DesignNotes

75 Digital Shortcut Inc.

39 EMAC, Inc.

The Index of Advertisers with links to their web sites is

located at www.circuitcellar.com under the current issue.

Page

77 Earth Computer Technologies

39 Elprotronic

15 Elsevier

23 Embedded Developer

49 Embedded Systems Conference East

40 ExpressPCB

28 Flash Memory Summit

76 FlexiPanel Ltd.

11 Grid Connect, Inc.

2 HI-TECH Software, LLC

48 HobbyLab, LLC

75 I2CChip

42, 58 ICbank Inc.

1 Imagineering, Inc.

78 Ironwood Electronics

32, 34 JKmicrosystems, Inc.

75 JKmicrosystems, Inc.

19, 55 Jameco

67 Jeffrey Kerr, LLC

22 Keil Software

55, 67 Lakeview Research

77 Lawicel AB

77 Lemos International Co. Inc.

32 Linx Technologies

77 MCC (Micro Computer Control)

78 microEngineering Labs, Inc.

5 Mouser Electronics

76 NKC Electronics

C2 NetBurner

67 Nurve Networks LLC

11 PCBCore

29 PCB West Design Conf.

73 PCB-Pool

C4 Parallax, Inc.

Page Page Page

77 Phytec America LLC

75 Picofab Inc.

25, 55 Pololu Corp.

76 ProlificUSA

78 Pulsar, Inc.

C3 Rabbit, A Digi International Brand

77 Reach Technology, Inc.

13, 55 Saelig Co.

3 Spark Fun Electronics

55, 78 Technical Solutions, Inc.

30, 31 Technologic Systems

78 Technological Arts

77 Tern, Inc.

76 Total Phase, Inc.

76 Trace Systems, Inc.

76 Triangle Research Int’l, Inc.

Get Started With Embedded Development (Part 1): “Bare Metal” Implementations and

“CircleOS” Apps

Cable Tracer Design (Part 1): Underground Cable Detection Made Simple

Infrared Radiation Measurement: FFT Double Beam Infrared Spectrophotometer

THE DARKER SIDE Power Analysis Primer: From Power Line Measurements to PFC

ABOVE THE GROUND PLANE A Blast for the Past: High-Voltage DC Dosimeter Charger

FROM THE BENCH Threat Level Indication System: Implement a Simple USB-to-Parallel

FIFO Interface

SILICON UPDATE Thin Is In: High-Profile Energy in a Low-Profile Package

www.circuitcellar.com • CIRCUIT CELLAR®

INDEX OF
ADVERTISERS

PREVIEWof August Issue 229

Theme: Embedded Development
September Issue 230

Deadlines
Space Close: July 14

Material Close: July 22

Theme
Data Acquisition

Bonus Distribution
Embedded Systems Conference East;

PCB West

ATTENTION ADVERTISERS

Call Shannon Barraclough
now to reserve your space!

860.875.2199
e-mail: shannon@circuitcellar.com

79

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8

79-advertiser's index.qxp 6/12/2009 11:00 AM Page 79

http://www.circuitcellar.com
http://www.circuitcellar.com
mailto:shannon@circuitcellar.com

80 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

20
09

 –
 Is

su
e 2

28

PRIORITY

It all started with the mulch, but I’m told you grass guys have similar problems. I won’t reiterate my rationale for spread-
ing 60 yards of mulch, but let’s just say that the best part for me is not having a lawn at all (long story). I just spread the mulch
in the spring and then listen to all my friends talk about dying in the 90° heat while they are mowing lawns every Saturday.

The bad news about spreading all this mulch for 20 years is that it has ultimately become a composted smorgasbord for
all sorts of underground animal life. I used to wonder why we seemed to have three times as many robin nests than the neigh-
bors until I realized that we’re probably growing more earthworms and grubs than a bait factory. Unfortunately, the down-
side of creating this massive food source is that the local mole population thinks they have died and gone to their version of
a Las Vegas buffet.

I don’t know whether they are moles, voles, or whatever, but the result is the same—tunnels! There aren’t just a few tun-
nels, mind you. Unabated, a month of mole mayhem is a backyard that looks like the New York subway system after a major
earthquake. Over the years, I’ve tried a number of remedies: mechanical traps, battery-operated vibrators, “mole pellets,”
grub killers, and other things. After reading that certain moles avoid castor oil like the plague (Who knows what kind of stuff
my particular moles or voles don’t like?), last year I bought a gallon of pure castor oil—talk about an expensive deterrent! I
just had to mix it in a soapy “carrier solution” (easier said than done), spray it on the affected area, and then apply a thou-
sand gallons of water to soak it down to “mole level.” Needless to say, it was about as effective as everything else I’ve tried.

I don’t like admitting defeat, but I have a 4-oz nemesis that has definitely been winning the war so far. I’ve considered a
massive overkill application of grub killers and assorted chemical-warfare agents, but I do care about the environment, and I
don’t want to poison all the birds as a consequence. Besides, I think these guys are attracted by the earthworms rather than
the grubs, and since our domestic water supply comes from a well, chemically eradicating all life in my yard might acciden-
tally include me as well.

The one tiny glimmer of hope in the “Critter Chronicles” was that the critters didn’t seem to like heavy machinery driv-
ing across their latest dig sites. Whenever I spent an afternoon in the backyard with the tractor or some other motorized vehi-
cle, it seemed to take the moles a day or two before they ventured back. “Ah hah! Perhaps there is a simple engineering solu-
tion rather than using WMD,” I thought. “Apparently, the critters don’t like vibration (at least from 2-ton tractors anyway),
but the degree of vibration must be important too.”

I bought a bunch of those wimpy battery-operated vibrators a number of years back, but they were worthless. Certainly it
was because there wasn’t enough vibration to be of consequence. I decided to fix that. I had some quick thoughts about sink-
ing a dozen 5′ steel rods in the yard with 0.5-horsepower, paint-shaker motors welded to them, but it would have been pret-
ty ugly. Fortunately, sanity prevailed, and it was off to Home Depot to get parts for a more cost-effective alternative.

Big box stores attract all kinds. Unfortunately, because engineers are a minority population, the Home Depot staff hasn’t
experienced enough of us to avoid hitting the Panic button when we start selecting out-of-the-ordinary project materials.
There I was in the plumbing aisle cutting 8″ pieces of plastic pipe fitted with closed-end caps and piling them in the cart as
three staffers walked down the aisle toward me. One of them cautiously asked, “Sir, are you planning on filling those pipes
with something flammable?”

Immediately, I realized that these guys were wondering if I was some kind of misguided terrorist who perhaps didn’t real-
ize the difference between 350-PSI plastic and 4000-PSIG cast iron pipe. I just smiled and said, “Nope, I’m making mole
bombs!” To make a long story short, the terror on their faces evaporated when I explained that I was using the pipes for a less
nefarious purpose. I said each pipe would contain a powerful 12-V DC motor with an off-center metal weight attached to the
shaft—basically a big vibrator—and would be buried in the yard.

Like everything else I do these days, this project ended up to be more than I originally anticipated. Buried vibrators with
enough power to constitute acceptable overkill take a bit of current at 12 V. Ultimately, the three sections of the yard where
mole bombs would be tested required separate heavy-duty power supplies and heavy-gauge wiring out to each “field.” In addi-
tion, since I didn’t want the moles to get used to it, I installed a central controller that was wired to the three field controllers
and programmed to randomly select on and off times for the vibrators.

Who knows if it works? At this point, I have nine vibrators buried and six more planned. It’s been too short a time to see
if there has been any affect at all or if this is just another big expensive boondoggle. If that’s the case, I think my next attempt
will involve using ground-penetrating radar and a harpoon. ;-)

The Critter Chronicles

steve.ciarcia@circuitcellar.com

by Steve Ciarcia, Founder and Editorial Director

INTERRUPT

steve_edit_228.qxp 6/12/2009 10:05 AM Page 96

mailto:steve.ciarcia@circuitcellar.com
http://www.circuitcellar.com

Wi-Fi and
Ethernet
Versions

42.qxp 12/27/2008 11:55 AM Page 1

http://www.rabbitwirelesskits.com
http://www.rabbitwirelesskits.com

C4.qxp 6/2/2009 3:55 PM Page 1

http://www.parallax.com
http://www.parallax.com/go/counters

22 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

The NimbleSig DDS generator was unveiled in a 2007 CIrcuit Cellar article.
The “NimbleSig III” is the newest version of the design. Thomas describes
the updated features and firmware.

NimbleSig III

M

B
O

N
U

S

ARTICLE
by Thomas Alldread

uch to my delight, my original NimbleSig
direct digital synthesis (DDS) RF generator

design won Second Prize in the Luminary Micro Design
Stellaris 2006 contest. Circuit Cellar subsequently pub-
lished an article I wrote about the project and design
process (“NimbleSig: A Compact DDS RF Signal Genera-
tor,” Circuit Cellar 208, 2007). Since that time, I have
updated the design, which I now call “NimbleSig III”
(see Photo 1). In this article, I’ll bring you up to speed on
the project’s current status, and I’ll describe the
improvements I made to the original NimbleSig design.

UPDATED FUNCTIONALITY
A significant improvement over the original design is

that the NimbleSig III includes a relatively new Analog
Devices AD9958 DDS IC, which incorporates two DDS
engines. These engines produce a pair of RF generator out-
puts. The two DDS engines can operate independently on
different frequencies or they can be phased-locked together
on the same frequency. When locked together, the relative
phase offset between the two generators can be accurately
specified. Additionally, I increased the original NimbleSig’s
maximum frequency of 160 MHz to 200 MHz.

I use the fast interrupt feature of an NXP Semiconduc-
tors LPC2138 microcontroller, along with an assembler
code service routine, for the higher-rate modulation. As
you can see in columns A, B, and C in Photo 2, the modu-
lation linearity outperforms most legacy generators. The
amplitude steps are much finer for the higher-modulation
rates than what’s obtained with the original NimbleSig
design. Photo 2 (D1) shows an extremely deep Bessel zero
carrier null. This reflects the purity of the FM modulation
and the accuracy of the deviation setting. The spectrum ana-
lyzer display in Photo 2 (D2)—which spans 0 to 200 MHz—
shows the typical spectrum purity of the output. The

PPhhoottoo 11——The NimbleSig III is an up-to-date version of my compact
DDS RF signal generator. Here you see two different modules.

amplitude and frequency of the spurs vary with operating
frequency. They typically remain more than 50 dB down
from the –10-dBm output level.

MPU AND HARDWARE
The NimbleSig III’s MPU is an NXP Semiconductors

LPC2138 ARM 7 series microcontroller. It provides 512 KB
of program memory space that’s roomy enough to provide

THE MAGAZINE FOR COMPUTER APPLICATIONS

A New and Improved DDS RF Generator

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 33

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

an improved plain-language user interface with a lot of
Help files. An external 64-KB EEPROM is now provided
for the nonvolatile storage of initialization variables and
calibration data. I also chose a different device for the
linear regulators, which use an SMD package that’s much
easier to work with.

As you can see in Figure 1, a 25-MHz internal TCXO
provides the MPU clock and optionally provides the ref-
erence for the DDS. The full TCXO output of 3.3 VPP is

reduced to the required DDS input level of 1.4 VPP by a
voltage divider when the TCXO is used for the frequency
reference. An external reference may be injected by
replacing the voltage divider with a termination resistor.
The DDS operates with a 500-MHz reference by appropri-
ately multiplying the reference signal frequency with an
internal PLL. Similarly, a PLL within the 50-MHz MPU
internally multiplies the TCXO frequency by two.

The DDS outputs feed a pair of seven-pole elliptic filters

FFiigguurree 11——I built the NimbleSig III around an NXP Semiconductors LPC2138 microcontroller.

VFO A

Dual
DDS

AD9958
500 MHz

512-KB
50-MHz

ARM MPU
LPC 2138

TCXO
FOX 924
25 MHz

64-KB
EEPROM

Nonvolatile
memory

JTAG Programming/debugging bus

Seven-pole
elliptic

230 MHz
L.P.F.

Seven-pole
elliptic

230 MHz
L.P.F.

Log RF Power
detector
AD8307

1.8/3.3-V Dual-output
voltage regulator

RF OutPuts

VFO B

ADC 0.2ASCII; 3.3 VPP; 115,200 bps; 8N1

25 MHz

GPIO

1.4 VPP

51 kΩ

12C

0 dBM

GRN
HEART_BEAT

25 Mbps
SPI

RST
RED

RF IN

RXD

External
reference

clock

TXD

TCXO +3.3 V

DDS +1.8 V
Analog

-10 dBm/50 Ω

200 Hz to 200 MHz
1-Hz Steps

-10 dBm/50 Ω

100 Hz to 500 MHz
-50 to +10 dBm/50 Ω

Digital logic
+3.3 V

DDS +1.8 V
Digital

51 kΩ

1 kΩ

+5-VDC
Reg.

Schottky
protect

1.8/3.3-V Dual-output
voltage regulator

J
T
A
G

1 kΩ

PPhhoottoo 22——Take a look at the NimbleSig III’s modulation performance and spectrum purity. These are examples of test results.

http://www.circuitcellar.com

Author’s note: I wish to express my gratitude to Dr.
James A.R. Koehler for introducing me to surface-mount
construction and for his significant contribution. I also
wish to thank Analog Devices, for their innovative line
of fine IC products, and Rowley Associates, for their
wonderful IDE and excellent customer support. Addi-
tional information about this new design was published
by the ARRL in a series that spans the first three 2009
issues of QEX.

Thomas Alldread (nimblesig@telus.net) graduated from
the CREI’s Telecommunications Engineering Technology
program and received certification from MANSCETT.
After working in the telecommunications industry as a
technician, instructor, and transmission standards engi-
neering specialist, Thomas worked for Bell Canada as a
long-distance facilities management advisor in Saudi
Arabia. Now retired, Thomas lives with his wife on pic-
turesque Vancouver Island, where he spends most of his
time pursuing interests such as designing surface-mount
electronics, hobby farming, RVing, digital photography,
and amateur radio.

44 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

constructed from tiny 0402 SMD air core inductors and
NPO capacitors. Shunt capacitor pairs are used between
sections to minimize the effects of stray inductance.
Design information and test results for the filters are post-
ed on my web page (www3.telus.net/ta/NimbleSig%20III/
NS3_230%20MHz%20LowPassFilter/index.html).

A Schottky rectifier provides reverse-polarity protec-
tion. Separate linear regulators are provided for the
TCXO 3.3-V, DDS analog 1.8-V, DDS digital 1.8-V, and
3.3-V digital power buses. Photo 3 shows the component
layout.

FIRMWARE
I expanded the firmware from the original 16 KB size

up to about 100 KB. The new firmware provides more
than 130 commands that harness the capabilities of the
NimbleSig III module as follows:

— Frequency Setting 200 kHz to 200 MHz – 1 Hz steps
— Relative Phase Offset 0 to 360 degrees – 22 milliDegree

steps
— Modulation Rate 1 Hz to 20 kHz – 1 Hz steps
— AM Modulation Depth 1 to 99% – 1% steps
— FM Deviation 1 Hz to 100 kHz – 1 Hz steps
— Output Level Reduction 0 to 10 dB – 0.1 dB steps
— Power Level Meter measurement modes - single sample,

128 averaged, 1024 averaged, minimum and peak
— Power Level Meter Calibration – detector dynamic

range tracking
— Power Level Meter Calibration – frequency response

200 kHz to 500 MHz
— A and B Signal Generator – 10 dBm output level frequency

response correction – 200 kHz to 200 MHz
— DDS register value modification commands
— Calibration table screen dumps
— Help pages that list the commands and provide syntax
— Control of the human interface verbosity level

The majority of the new firmware is written in C with-
in the “CrossWorks for ARM” IDE by Rowley Associ-
ates. CrossWorks, in turn, uses the GNU GCC compiler.
I became interested in the CrossWorks for ARM product
because Rowley offers a low-cost, noncommercial

license for this fully functional, fully supported profes-
sional IDE. The NimbleSig III’s current code size is
around 100 KB, so it far exceeds the crippling limitations
of most trial-version IDE platforms, which are typically
expensive to license.

The NimbleSig III software uses some proprietary code
from Rowley that can’t be released in source code format
under the terms of the license. Thus, the source code is
not available. Although I retain the copyrights for the
NimbleSig III program, the current beta release of the
object code is available for noncommercial use by hobby-
ists. You may download the memory image file in Intel
hex code format from my web site.

BARE PC BOARD
At the time I write this, I have a limited supply of bare

NimbleSig III prototype PC boards. The current boards
require four rather minor modifications and do not have
solder-mask protection over the vias, which I left bare
for test point access. Go to my web site for detailed
views and information about the bare boards and needed
modifications.

Please note that good surface-mount construction
tools, a good microscope (or equivalent), and well-devel-
oped skills in surface-mount construction are needed to
successfully populate the NimbleSig III board. Some of
the ICs have fine-pitched contact spacings and small
0402/0603-size discrete components are used.

Although I am personally very pleased with the Nim-
bleSig III’s performance, with consideration for the usual
need for liability protection, I must emphasize that there
are no implied warranties or guarantees associated with
the use of my NimbleSig III prototype design for any
application. Additional schematics, parts lists, test
results, and more are available on my web site. I

PPhhoottoo 33——This is a top view of the populated PCB.

mailto:nimblesig@telus.net
http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 55

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

ESOURCES
Analog Devices, “Two-Channel 500 MSPS DDS with
10-Bit DACs,” D9958, 2008, www.analog.com/en/rfif-
components/direct-digital-synthesis-dds/ad9958/products/
product.html.

American Radio Relay League, QEX, www.arrl.org/qex/.

OURCES
AD9958 DDS IC
Analog Devices, Inc. | www.analog.com

LPC2138 Microcontroller
NXP Semiconductors | www.nxp.com

CrossWorks for ARM
Rowley Associates | www.rowley.co.uk

SS

RR

http://www.analog.com/en/rfif-components/direct-digital-synthesis-dds/ad9958/products/product.html
http://www.arrl.org/qex/
http://www.analog.com
http://www.nxp.com
http://www.rowley.co.uk
http://www.circuitcellar.com

22 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

Peter recently entered the world of simple music synthesis. He built a
compact electronic sound-generating box. The design features DC-to-DC
converter circuitry, an EEPROM containing sequences of notes, 18 LEDs,
and a microcontroller and audio circuitry.

Sound Synthesis Made Simple

M

B
O

N
U

S

ARTICLE
by Peter McCollum

y daughter has a collection of music boxes
and the mechanisms that they contain. She has

several of the standard boxes that you wind up to play a single
song. But we recently came across a more exotic type of music
box in an antique store. It had a single drum that was longer
than normal with a large number of pins. After playing one
song, the mechanism shifted the drum sideways slightly so
that a different set of notes played. This music box was too
expensive for our budget, but it occurred to me that I could
build an “equivalent” design using some familiar parts: micro-
controllers, op-amps, and other electronic devices! And so a
project idea was born: Build an electronic device that could
emulate the features of a multiple-song music box mecha-
nism. The wind-up motor would be replaced by a battery and
some DC-to-DC converter circuitry. The drum that defines the
song (or songs) would be an EEPROM containing sequences of
notes. The mechanical governor that allows it to play at a con-
stant speed—plus the tines of the “comb”—would be replaced
by a microcontroller and audio circuitry. Because a mechanical
version would have moving parts that could be watched, I
decided that a row of 18 LEDs was needed to give some visual
effects. (Common music box mechanisms play 18 notes, or 1.5
octaves on the standard scale.)

Another purpose of this project was to explore the digital-to-
analog converter (DAC) peripheral on Microchip Technology’s
dsPIC33FJxxxGP8xx series of microcontrollers. The DAC sup-
ports two channels of 16-bit data at a rate of up to 100,000
samples per second. This project seemed like a great excuse to
learn about a new peripheral (see Photo 1)!

WIND-UP MOTOR POWER
My plan was to use a fairly small battery pack and avoid the

inconveniences of linear regulators. The MPU—a Microchip
Technology dsPIC33FJ64GP804—requires 3.3 V, yet the audio

components I had chosen work best on 5 V. The solution was
to use a pair of Microchip MCP1253 DC-to-DC charge pump
converters, one of each configured to provide the two required
voltages (see Figure 1). These chips come in a small eight-lead
MSOP package and do not require an inductor for operation.
The devices accept an input voltage of 2.1 to 5.5 V—and so
they operate in either a “buck” or “boost” mode—as needed.
This wide input range enables the device to keep operating
normally even when the battery is mostly depleted. For a
battery pack, I chose a bank of three AAA cells to provide a
nominal 4.5-V input.

NOTE GENERATION
To produce a musical note through a DAC, the first step

was to define the basic waveform numerically as a sequence of
numbers that represent exactly one full cycle. I call this the
“wave table.” I chose to represent a cycle with eight values:
four for the positive half-cycle and four for the negative. If
these eight values are made available to the DAC at a fixed
rate, the output is a tone that has a frequency of one-eighth
the DAC’s input rate. To represent an approximation of a sine
wave, the values were: [0.0, 0.707, 1.0, 0.707, 0.0, –0.707, –1.0,
–0.707]. The DAC in the MPU works with 16-bit values, so
the numbers I actually used were these signed integers: [0,
1414, 2000, 1414, 0, –1414, –2000, –1414].

Once I could produce a tone of a certain frequency, the next
step was to define a series of possible tones that represented 18
adjacent notes on the standard musical scale. Notes that are
one octave apart differ in frequency by a factor of two, and any
two adjacent notes differ by a factor of the twelfth root of two.
In my scheme for controlling the tone-sample timing, the
pitch of a note was really defined by its period, rather than its
frequency. So, a partial listing of the notes [C, C#, D, D#, E, ...]
was represented by period values of [2100, 1990, 1870, 1770,

A Multi-MIPS Music Box

http://www.circuitcellar.com

1670, ...]. In the MPU, any given note can be played by assign-
ing the appropriate period value to an MPU timer, and each
time the timer expires, the next value in the wave table

(described in the previous paragraph) is output via the DAC.
Therefore, in the code, only a single value assignment was
required to play any of the available notes. Also, it is fairly

PPhhoottoo 11aa——This is the electronic music box, and its mechanical counterpart. My version is mounted in a small box from a craft store. bb——On the
left edge of the box, I mounted a switch that powers up the board when the lid is opened. An array of green SMT LEDs is across the top edge of
the board, with a small speaker on the right. The three-cell battery pack is under the PCB.

bb))aa))

FFiigguurree 11——The four main portions of the circuit are the MPU, power system, EEPROM, and audio section. The audio section was adapted from a
suggested design in the dsPIC datasheet. My PCB design includes the additional components for a second audio channel so that the board could
be used in another application that requires stereo sound.

44 CIRCUIT CELLAR® • www.circuitcellar.com

Ju
ly

 2
0
0
9
 –

 I
ss
ue

 2
2
8
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

ROJECT FILES
To download the code and a project
video, go to ftp://ftp.circuitcellar.
com/pub/Circuit_Cellar/2009/228.

OURCES
dsPIC33FJ64GP804 Microcon-
troller, MCP1253 converters, and
24LC16B EEPROM
Microchip Technology, Inc. |
www.microchip.com

Aardvark I2C/SPI Adapter and
Flash Center software
Total Phase | www.totalphase.com

PP

Peter McCollum (saipan59@Q.com)
holds a BSEE from Colorado State Uni-
versity and has been working in the
computer industry since 1981. He cur-
rently works as a firmware engineer
focused on MPU applications in storage
systems. As a hobby, Peter designs and
builds projects that range from microcon-
troller devices to vacuum-tube radios.

a new note or a new time delay. Using
this system, the EEPROM has room for
seven songs of up to 127 steps each,
where a “step” is either a note or a time
delay. One additional byte indicates the
length of the song.

The EEPROM is also used to record
which song plays in a nonvolatile man-
ner. This is so that the next song plays
each time the Music Box’s lid is opened
according to the order that they are
stored. An interesting variation would
be to choose the next song randomly. By
using the EEPROM to store a state vari-
able, I could easily implement a pseudo-
random sequence. Or can you think of a
way to produce a truly random value
from a device that always powers up in
the same state? I’ll leave it up to you to
consider.

A FINAL “NOTE”
I hope you’ve enjoyed this little excur-

sion into the world of simple music syn-
thesis. You can also use this board as a
handy development platform for explor-
ing the DAC peripheral available on cer-
tain dsPIC33 series MPUs. Feel free to e-
mail me your questions. I

easy to play multiple notes in parallel
(polyphony), if multiple timers are used.

One more feature was necessary in
order to produce an output tone that
sounded roughly like the plucking of a
tine in a music box: an amplitude enve-
lope. Without applying an amplitude
envelope, the output is just a sequence
of “beeps” that has no personality at all
and sounds rather robotic. The solution
was to control the volume of each tone
so that it started out loud but decayed to
zero in a short time. In a traditional
music synthesizer, an ADSR (Attack,
Decay, Sustain, Release) envelope gener-
ator is used. But I simplified the model
to be just an instantaneous attack fol-
lowed by a linear decay. I believe I can
improve the music box emulation’s
sound quality by implementing a more
complex ADSR system. I encourage you
to experiment in this area.

SONG SEQUENCING
My Music Box system has the capa-

bility to play 18 different notes. The
final step in the design was to provide
sequences of notes that represent
songs. The board includes a Microchip
Technology 24LC16B 2-KB EEPROM
for storing not only song information,
but also the aforementioned wave table
and note period values. The MPU com-
municates with the EEPROM via an
I2C bus. I used a Total Phase Aardvark
I2C/SPI host adapter to easily program
song data into the EEPROM. The PCB
design includes a four-pin header that
mates directly with the Aardvark
device. Total Phase’s free Flash Center
software package was used for reading
and writing EEPROM and flash memo-
ry devices.

Playing a song in a recognizable fash-
ion requires both a sequence of notes
and the timing of the notes. In the case
of a music box, the length of the actual
notes is fixed, but the time between the
notes varies. In the EEPROM, I stored
sequences of bytes that represented
either notes or time delays. For notes,
the byte value was simply the number of
the note, from 0 to 17. But for time-
delay bytes, the high-order bit was set,
and the remainder of the byte represent-
ed a relative time delay value.

The software reads each byte, checks
the high-order bit, and then plays either

SS

mailto:saipan59@Q.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/228
http://www.microchip.com
http://www.totalphase.com
http://www.circuitcellar.com

