
MEASUREMENT & SENSORS
MCU-Based SLA Battery
Measurement

Modern DSP Technology

Transformerless Power
Supply

C Code for a FAT File
System

CIRCUIT CELLAR

w
w

w
.circuitcellar.com T H E M A G A Z I N E F O R C O M P U T E R A P P L I C AT I O N S

$5.95 U.S. ($6.95 Canada)

#226 May 2009

USB JTAG Module p. 24 • DOS in the 21st Century p. 36 • Bridge the Gap Between NTSC and VGA p. 52

http://www.netburner.com

http://www.pcbnet.com

TS-7200
shown with
optional A/D
converter,
Compact Flash
and RS-485

Embedded Single Board Computers

Most products stocked and available

for next day shippingEngineers on Tech Support

Design your solution with one of our engineers (480) 837-5200

Custom configurations and designs w/

excellent pricing and turn-around time

Over 20 years in business

Never discontinued a product

Low Price, Low Power, High Reliability

using Linux development tools

options include:
onboard temperature sensor, A/D Converter 8 channel 12 bit, Extended Temperature,

Battery Backed Real Time Clock, USB Flash, USB WiFi

8 boards, over

2000 configurations

2 USB ports

10/100 Ethernet - up to 2

DIO lines - up to 55

Fanless, no heat sink

Flash - up to 128MB onboard

SDRAM - up to 128MB

Linux, Real Time extension, Debian

COM ports- up to 10

200 MHz ARM9
Power as low as 1/4 Watt

Open Source Vision

Programmable FPGAs

High-End Performance

with Embedded Ruggedness

128MB DDR RAM

Gigabit ethernet

2 host USB 2.0 480 Mbps

12K LUT programmable FPGA

512MB high-speed

(17MB/sec) onboard Flash

Sleep mode uses 200 microamps

2 SD sockets

Linux 2.6 and Debian by default

10 serial ports

qty 100
229$Unbrickable

 design

5 ADC (10-bit) 2 SATA ports

110 GPIO

Boots Linux in < 2 seconds

Internal PCI Bus, PC/104 connectorshown
w/ optional
SD Cards

TS-7800

500 MHz ARM9

Low power - 4W@5V

qty 1
269$

qty 100
99$

qty 1
129$

as low as

SD card

option

VGA video

LCD ready

Systems
Technologic

Visit our TS-7800 powered website at

We use our stuff.

www.embeddedARM.com

TS-ADC16

ADC, DAC and Digital I/O

Up to 100Ksps (10us)

Prog. pacing clock

1KB ADC RAM-FIFO

TS-RELAY8

Featured Products and PC/104 Peripherals

qty 1
169$

16 16-bit ADCs

4 ADC voltage ranges

qty 1
89$

TS-TPC-7390

64MB SDRAM (128MB opt)

Dedicated framebuffer- 8MB RAM

800x480 customizable video core

Programmable FPGA- 5K LUT

512MB Flash w/ Debian Linux

Runs Eclipse IDE out-of-the-box

Boots Linux 2.6 in about 1 second

Unbrickable, boots from SD or NAND

Runs X Windows GUI applications

7” Color TFT-LCD Touch-Screen

Mountable aluminum frame

Low Power, Industrial Quality Design

Eight Software Controlled Relays

see our website for x86 SBCs, peripherals and option details

4 inputs, 1 output

4 16 bit counters

4 12-bit DACs

Externally triggered

Up to 277 VAC @ 5A

Up to 30 VDC@ 5A

8 SPDT relays

40mA draw per coil

I/O jumpers

Software controlled

qty 1
449$

Audio codec with speaker

200MHz ARM9 Touch Panel Computer

http://www.embeddedARM.com

Upcoming Microchip MASTERS 2009 Recent Renesas Devcon

Bonus Video Portal:
Circuit Cellar recurring author
Chris Coulston presents the
first installment of the DIY
guide to building a
Goldsprints racing system.

Circuit Cellar video from the

16th annual Trinity College

Fire Fighting Home Robot

Contest 2009.

Sponsor Events – click to see video

http://www.youtube.com/watch?v=TD3EMyufvjM
http://www.youtube.com/watch?v=qE3gJjcIANw
http://www.youtube.com/watch?v=kvx9svLqzQM
http://www.youtube.com/watch?v=RS-9Dhl-ThQ

FOUNDER/EDITORIAL DIRECTOR
Steve Ciarcia

MANAGING EDITOR
C. J. Abate

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Jeff Bachiochi
Ingo Cyliax
Robert Lacoste
George Martin
Ed Nisley

NEW PRODUCTS EDITOR
John Gorsky

PROJECT EDITORS
Gary Bodley
Ken Davidson
David Tweed

ADVERTISING
860.875.2199 • Fax: 860.871.0411 • www.circuitcellar.com/advertise

PUBLISHER
Sean Donnelly
Direct: 860.872.3064, Cell: 860.930.4326, E-mail: sean@circuitcellar.com

ADVERTISING REPRESENTATIVE
Shannon Barraclough
Direct: 860.872.3064, E-mail: shannon@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster
E-mail: val.luster@circuitcellar.com

CONTACTS
SUBSCRIPTIONS

Information: www.circuitcellar.com/subscribe, E-mail: subscribe@circuitcellar.com
Subscribe: 800.269.6301, www.circuitcellar.com/subscribe, Circuit Cellar Subscriptions, P.O. Box 5650,
Hanover, NH 03755-5650
Address Changes/Problems: E-mail: subscribe@circuitcellar.com

GENERAL INFORMATION
860.875.2199, Fax: 860.871.0411, E-mail: info@circuitcellar.com
Editorial Office: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: editor@circuitcellar.com
New Products: New Products, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: newproducts@circuitcellar.com

AUTHORIZED REPRINTS INFORMATION
860.875.2199, E-mail: reprints@circuitcellar.com

AUTHORS
Authors’ e-mail addresses (when available) are included at the end of each article.

CIRCUIT CELLAR®, THE MAGAZINE FOR COMPUTER APPLICATIONS (ISSN 1528-0608) is published monthly by Circuit Cellar
Incorporated, 4 Park Street, Vernon, CT 06066. Periodical rates paid at Vernon, CT and additional offices. One-year (12 issues)
subscription rate USA and possessions $23.95, Canada/Mexico $34.95, all other countries $49.95.Two-year (24 issues) sub-
scription rate USA and possessions $43.95, Canada/Mexico $59.95, all other countries $85. All subscription orders payable in
U.S. funds only via Visa, MasterCard, international postal money order, or check drawn on U.S. bank. Direct subscription orders
and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 5650, Hanover, NH 03755-5650 or call
800.269.6301.

Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 5650, Hanover, NH 03755 5650.

Circuit Cellar® makes no warranties and assumes no respons b lity or liability of any kind for errors in these programs or schematics or for the
consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and workmanship of read-
er-assembled projects, Circuit Ce lar® disclaims any responsib lity for the safe and proper function of reader-assembled projects based upon or
from plans, descriptions, or information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational purposes. Circuit Ce lar® makes no claims or warrants that readers have a right to
build things based upon these ideas under patent or other relevant intellectual property law in their jurisdiction, or that readers have a right to
construct or operate any of the devices described herein under the relevant patent or other intellectual property law of the reader’s jurisdiction.
The reader assumes any risk of infringement iability for constructing or operating such devices.

Entire contents copyright © 2009 by Circuit Cellar, Incorporated. All rights reserved. Circuit Cellar is a registered trademark of Circuit Ce lar, Inc.
Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

MEDIA CONSULTANT
Dan Rodrigues

CUSTOMER SERVICE
Debbie Lavoie

CONTROLLER
Jeff Yanco

ART DIRECTOR
KC Prescott

GRAPHIC DESIGNERS
Grace Chen

Carey Penney

STAFF ENGINEER
John Gorsky

Cover photography by Chris Rakoczy—Rakoczy Photography
www.rakoczyphoto.com

PRINTED IN THE UNITED STATES

At first glance, this issue looks more like one you would’ve
read in the mid-’90s rather than in mid-2009. The topics of
DOS, sealed lead-acid (SLA) batteries, NTSC, C code, digital
signal processing, DIY power supplies, and JTAG don’t really
scream “cutting-edge technology!” But when presented by
Circuit Cellar authors who spend their days and nights dream-
ing up innovative embedded apps, they don’t scream “old
school ideas” either. Yes, we’re up to something here.

Basically, we’ve assembled a group of articles about new
ways of developing and tweaking proven older technologies to
meet modern design goals. For instance, on page 16, Dale
Wheat describes an MCU-based meter he built for SLA battery
charge testing. DJ Delorie finishes his USB GPIO pod series
with information about downloading a JTAG programming
application to program a CPLD circuit (p. 24). In “DOS in the
21st Century,” Andrew Mitz and Jon Daley explain how they use
DOS as an operating system for embedded applications (p. 36).
Turn to Tom Struzik’s article on page 44 to learn how he saved
money by using a transformerless power supply, rather than
expensive transformers or converters, in a recent light switch
design project. On page 52, Jeff Bachiochi describes how he
uses a Propeller to live in a world without NTSC. After say-
ing farewell to NTSC, check out George Martin’s article
about C code for the FAT file system (p. 60). Tom Cantrell
ends the issue with an article about new ways for tackling
DSP apps (p. 65). The part he presents “isn’t your father’s DSP.”

Just so I don’t feel left out, let me describe a new twist on an
old technology. It is called Circuit Cellar Digital Plus, which
is the newest version of Circuit Cellar’s ever-evolving elec-
tronic edition. I encourage all Circuit Cellar readers to give
Digital Plus a try! Here’s a short intro to Digital Plus:

1. Digital Plus is a replica of the print magazine in digital

form, “plus” it includes digital-only extras like bonus arti-

cles, tutorials, videos, photos, advertisements, interviews,

and more.

2. You can easily view Digital Plus in two ways. One,

view it through an online flip book reader, which does not

require special software downloads. Click on the “?” icon

to get instructions about using the flip reader. Two, down-

load each issue as an easy-to-print PDF. Simply click on

the “Adobe Acrobat” icon to download the PDF.

3. An e-mail will notify Digital Plus subscribers when a

new issue is available. New issues (and some old) are

posted at www.circuitcellar.com/DP/.

If you want to subscribe to Digital Plus, renew a sub-
scription, or update your information, feel free to visit
www.circuitcellar.com/DP at any time. Enjoy!

Old Tech, New App

cj@circuitcellar.com

44 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
00

9
–

Iss
ue

 2
26

TASK
MANAGER CIRCUIT CELLAR®

THE MAGAZINE FOR COMPUTER APPLICATIONS

http://www.circuitcellar.com/advertise
mailto:sean@circuitcellar.com
mailto:shannon@circuitcellar.com
mailto:val.luster@circuitcellar.com
http://www.rakoczyphoto.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
mailto:info@circuitcellar.com
mailto:editor@circuitcellar.com
mailto:newproducts@circuitcellar.com
mailto:reprints@circuitcellar.com
http://www.circuitcellar.com/DP/
http://www.circuitcellar.com/DP
mailto:cj@circuitcellar.com
http://www.circuitcellar.com

http://www.htsoft.com
http://www.htsoft.com/ocg

6 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

INSIDE ISSUE

TASK MANAGER 4
Old Tech, New App

C. J. Abate

NEW PRODUCT NEWS 8
edited by John Gorsky

TEST YOUR EQ 15

CROSSWORD 74

INDEX OF ADVERTISERS 79
June Preview

PRIORITY INTERRUPT 80
It’s All About the Content, Stupid!

Steve Ciarcia

52 FROM THE BENCH
AA WWoorldd WWithoout NNTSCC
Bridge the Gap Between NTSC and VGA
Jeff Bachiochi

60 LESSONS FROM THE TRENCHES
FAAT Filee Syysstem Reevvieeww ((PPart 2))
C Code for the File System
George Martin

65 SILICON UPDATE
Whistlee WWhilee Yoou WWoorkk
A Look at a Modern DSP
Tom Cantrell

222266
16 Smart Lead-Acid Battery Meter

An MCU-Based “Gauge” for SLA Batteries
Dale Wheat

24 Construct a USB GPIO Pod (Part 2)
USB JTAG Module
DJ Delorie

36 DOS in the 21st Century
A USB FLash Drive Reader for MCUs Works for DOS
Andrew Mitz & Jon Daley

44 Transformerless Power Supply
Tom Struzik

May 2009 • Measurement & Sensors

p. 24 JTAG Adapter

p. 16 Battery Meter
Design

p. 44 Go
Transformerless

http://www.circuitcellar.com

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and Everywhere You Are® are registered trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be trademarks of others.

Everywhere You Are®

Performance and power consumption have always been key elements in the development of AVR® microcontrollers. Today’s

increasing use of battery and signal line powered applications makes power consumption criteria more important than ever.

To meet the tough requirements of modern microcontrollers, Atmel® has combined more than ten years of low power research and

development into picoPower technology.

picoPower enables tinyAVR®, megaAVR® and XMEGA™ microcontrollers to achieve the industry’s lowest power consumption. Why be satisfied with

microamps when you can have nanoamps? With Atmel MCUs today’s embedded designers get systems using a mere 650 nA running a real-time

clock (RTC) and only 100 nA in sleep mode. Combined with several other innovative techniques, picoPower microcontrollers help you reduce your

applications power consumption without compromising system performance!

Visit our website to learn how picoPower can help you hammer down the power consumption of your next designs. PLUS, get a chance to apply

for a free AVR design kit!

Hammer Down Your Power Consumption with picoPower™!

http://www.atmel.com/picopower/

THE Performance Choice of Lowest-Power
Microcontrollers

http://www.atmel.com/picopower/

8 CIRCUIT CELLAR® • www.circuitcellar.com

NEW PRODUCT NEWS

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

Edited by John Gorsky

NEW OSCILLOSCOPES FOR DEBUGGING
The WWaaveAAcce series of digital oscilloscopes is a line of portable, affordable, easy-to-use oscilloscopes in the 60- to 300-MHz

range. The WaveAce improves troubleshooting and shortens debug time by providing unique features such as long memory, a
color display, extensive measurement capabilities, and advanced triggering. A streamlined, time-saving user interface provides
quick access to all important controls. With its USB host and device ports, the WaveAce easily connects to a memory stick,
PC, or printer. The variety of standard acquisition modes and advanced triggers simplifies capturing even the most complex
waveforms, making the WaveAce a valuable tool for design, debug, and troubleshooting.

The new WaveAce is available in two-chan-
nel models with bandwidths of 60, 100,
200, and 300 MHz. All models have color
displays. With a maximum sample rate of 2
GS/s and up to 8 kpts/ch memory, the
WaveAce is a performance leader in this
class of portable oscilloscopes. The long
memory enables users to capture full sam-
ple rate acquisitions that are two to three
times longer than the competition.

Improving how a user can understand and
analyze waveforms, the WaveAce has 32
built-in automated parameters, including
advanced timing parameters for skew,
phase, and edge-to-edge measurements
between channels. Additional features—such
as Pass/Fail testing, user-definable digital fil-
ters, and a waveform sequence recorder—all
simplify and shorten debug time.

Prices for the WaveAce series start at
approximately $$1,220000.

LeCroy Corp.
www.lecroy.com

NEW SEALED LIMIT SWITCHES
Many limit switches must function in harsh conditions or outdoors—

environments which may damage switches and lead to frequent change
outs. Even limit switches that are IP67 sealed often require wiring
replacements. This could mean changing several meters of cable on out-
door equipment.

In order to facilitate faster maintenance, the newly introduced models
MPP773300 through MPP776600 sealed limit switches with the ability to connect
through an M12x1 connector— which maintains IP67 protection on the
switch—are now available. The connector can be mounted on the side, but
a bottom-mount option is also available.

The MP700 series limit switches are available with a metal housing and a
five-pin connector or with a plastic housing and a four-pin connector. Mount-
ing holes can be placed either 20 mm or 25 mm apart for installation flexi-
bility. The switches are additionally supplied with a large variety of actuator
options and conform to IEC 947-5-1 and EN 60 947-5-1.

Pricing for the switches starts at around $$4400.

Microprecision Electronics
www.microprecision.us

http://www.microprecision.us
http://www.lecroy.com
http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 9

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

LOW-POWER COMPUTER
CAPTURES & TRANSMITS
REMOTE DATA

The DDaataaMooveer offers an economical solu-
tion to remote data capture and transmis-
sion. By integrating an optional GPS receiver,
GPRS cell modem, and Sleep mode power
controller in a die cast aluminum enclosure,
the DataMover is capable of logging and
transmitting data from remote or inaccessi-
ble locations. With power consumption of
less than 1 W during operation and less than
3 mW in Sleep mode, the DataMover can be
battery- or solar-powered with minimal
expense.

The DataMover single board computer
comes standard with RS-232/RS-485 serial
ports, conditioned analog-to-digital converter
inputs, driver outputs, optically isolated
inputs, and simple TTL I/O. The software
supplied includes drivers and a read/write file
system.

The DataMover controller is $$14422 in 100-
piece quantities. Development kits are avail-
able for $$222299.

JK microsystems
www.jkmicro.com

HALL-EFFECT MAGNETIC POSITION SENSORS
The SS33661RRT and SS44661RR are bipolar latch, Hall-effect magnetic position sensors with enhanced sensitivity, which enables

the use of less expensive magnets in some applications. The SS361RT sensor’s small footprint takes up less space on the
printed circuit board, typically allowing for a reduction in costs. Additionally, the SS361RT sensor is supplied on tape and reel,
allowing for automated, high-volume, lower-cost pick-and-place assembly.

The SS361RT and SS461R sensors are designed for
potential use in industrial applications (e.g., speed and
RPM sensing, tachometer, flow-rate sensing,
valve/damper position, brushless dc motors, variable
speed drives, motor and fan control, and robotics con-
trol), medical applications (e.g., motor assemblies and
medication dispense control), and transportation
motion control applications (e.g., RPM sensing,
tachometer, motor and fan control, electric window
lifts, convertible roof positioning, and transmission
positioning).

The SS361RT and SS461R sensors feature a 3-V
supply voltage capability for low-voltage applications.
The sensors are available in two package styles,
providing application flexibility. The SS361RT’s
miniature SOT-23 surface-mount package utilizes a
tape and reel format. The SS461R’s flat TO-92
style is available in bulk (1,000 units per bag).

Please contact your Honeywell distributor for
pricing.

Honeywell International
www.honeywell.com

NPN

http://www.jkmicro.com
http://www.honeywell.com
http://www.circuitcellar.com

10 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

NEW 8-, 16-, AND 32-BIT INDUSTRIAL MCUs
Three new series microcontrollers with embedded flash technology for industrial applications are now available. All are

designed to meet the performance and reliability requirements of a wide range of drive applications across a variety of indus-
tries.

The new XXCC86644 series is designed for cost-sensitive motor control applications. The XC864 series combines in a small
footprint TSSOP-20 package a standard 8051 core with on-chip flash memory of up to 4 KB and powerful on-chip peripherals.
The XC864 series features an internal clock source and embedded voltage regulator, supporting single voltage supply of 3.3
or 5.0 V.

The XXE166xM series of MCUs are designed for use in real-time industrial drive applications, such as servo drives, HVAC com-
pressors and blowers, pumps, advanced sensing and power supplies. The XE16xM series provides additional advanced safety
features for SIL3 applications and 64-pin devices (the XE162M series) with a small footprint. The highly configurable serial

interface USIC supports multiple protocols, such
as Asynchronous and Synchronous Serial Inter-
faces (ASC, SSC), I2C, LIN, and communication to
SD memory cards.

The TCC116677 and TCC119977 are designed for use
in demanding real-time industrial applications,
such as multi-axis controllers for up to five three-
phase complementary PWMs. They support mul-
tiple modulation strategies such as Space Vector
Control or Direct Torque Control and provide mul-
tiprocessor support for reliability and safety.

In quantities of 20,000 units, the 8-bit micro-
controller XC864 costs about $$1.0055 per unit.
The price of the 16-bit XE16xM series starts with
the XE162M at about $77 each. The unit price of
the 32-bit microcontroller TC1167 is about
$$2200.166. The TC1197 is about $$2266.466.

Infineon Technologies AG
www.infineon.com

PROGRAMMABLE SMART CARD
The BaassiccCCaard ZZC3.122 is the first programmable smart card with 2 KB of EEPROM for a price less than $1.30. This micro-

processor-based smart card is programmable in Basic. Applications like E-Purse, Identification Card, Medical Card, Gift and Loy-
alty Card, and so on, can be developed in BASIC and are fully compatible to the ISO 7816 standard. Encryption technology like
AES, DES, or ECC is included.

Programming is accomplished through a bidirectional I/O contact. Communication takes place at 9,600 bps or more, accord-
ing to the T=0 and T=1 protocols defined in ISO/IEC standards 7816-3 and 7816-4. (The latest cards also implement the con-
tactless ISO14443 protocol.) This is completely invisible
to the Basic programmer. All you have to do is define a
command in the card and program it like an ordinary
Basic procedure. Then you can call this command from a
ZC-Basic program running on the PC. Again, the com-
mand is called as if it was an ordinary procedure.

The BasicCard operating system takes care of all the
communications for you. It will even encrypt and decrypt
the commands and responds if you ask it to. All you
have to do is specify a different two-byte ID for each
command that you define

A development kit for the BasicCard ZC3.12 is avail-
able for about $$7788. The BasicCard ZC3.12 is priced at
$$1.300 in quantities of 10 or more.

ZeitControl cardsystems GmbH
www.basiccard.com

NPN

http://www.basiccard.com
http://www.infineon.com
http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 11

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

CO GAS SENSOR MODULE
The CCOO GGaas SSensoor Mooddulee ((#227799331) is designed to allow a microcontroller to

determine when a preset CO gas level has been reached or exceeded. Interfacing
with the sensor module is done through a four-pin SIP header and requires two I/O
pins from the host microcontroller.The sensor module is mainly intended to provide

a means of comparing carbon monoxide sources and
being able to set an alarm limit when the source
becomes excessive.

The module is built around the MQ-7 CO sensor and
features a SIP interface. Included in the kit is the
module, a potentiometer adjustment tool, and com-

plete documentation. The module
requires 5 VDC at 165 mA (Purge
Phase)/50 mA (Sense Phase). The unit

is 1.50″ H × 1.00″ W × 1.00″ D and
operates over a 0 to 70°C range.

The CO Gas Sensor Module costs
$2299.9999.

Parallax, Inc.
www.parallax.com

NEW HINGED POWERSTRIP
Samtec has expanded its rugged PowerStrip High Power Interconnect family with a

hinged version of its 25-A PowerStrip/25 system. The FMPSS/FMMPPT Seeriees connectors
are ideal for applications that call for blind mating or where PCB real estate is tight.

The hinged PowerStrip/25 Socket Terminal system (FMPS/FMPT Series) is a unique
system that allows for 90° or horizontal (planar) board-to-board interfaces and a 90°
mating radius. The design’s flexibility allows the connectors to be mated at an angle
convenient for production and then rotated to the final, permanent required orienta-
tion. It is available with up to eight power pins on 0.200″ (5.08-mm pitch) and can
achieve a robust current rating up to 25 A per contact at 75°C. Optional locking clips
and a screw-down configuration for the socket are also available.

The hinged PowerStrip/25 joins High Power 35 A PowerStrip/35 connector sys-
tems, 25 A PowerStrip/25 connectors, discrete wire cables, and the 10 A Power-
Strip/10 modular connector system.

The full line of Rugged/Power solutions also includes Power Mate, Mini Mate and Q
Series High Speed/Power connectors and cables, and a variety of Rugged/Power
Headers and Sockets.

It costs about $$00.225 per 25-A pin in quantities.

Samtec, Inc.
www.samtec.com

NPN

http://www.parallax.com
http://www.samtec.com
http://www.circuitcellar.com
http://www.segger.com
http://www.segger-us.com/ncu.html

12 CIRCUIT CELLAR® • www.circuitcellar.com

PCF2123 DEMO BOARD
The RRTCC-DDEMOO-PPCCF2212233 is a stand-alone demonstration

platform for the new NXP SPI-based PCF2123. With a typical
standby current of only 100 nA at 2.0 V, the PCF2123 is
the lowest power real-time clock currently available. The unit
is powered by a single 3-V coin cell battery and includes an
eight-character alphanumeric LCD with 128-segment I2C LCD
driver and a P89LPC932 8-KB flash microcontroller. Also
included are an LM75B I2C temperature sensor and two
miniature push buttons for user control. An additional user
interface is available via an expansion header and the flash
microcontroller is user programmable via a 10-pin ICP head-
er.

The RTC-DEMO-PCF2123 is available from stock for $$6699.

Future Designs, Inc.
www.teamfdi.com

STRONG, SILENT INDUSTRIAL PC
Ideal for a variety of embedded applications, the AAMOOS-

3300000 is a robust, custom-designed system based on the
ultra compact and versatile EPIA-P700 Pico-ITX board. Mea-
suring only 13.5 cm × 4.5 cm × 13.1 cm, the AMOS-3000
is strong, durable, and heat-efficient—yet it is tiny enough
to fit in the palm of your hand. The system can be installed
easily using simple table, wall and VESA mounting options.

The AMOS-3000 is based on an EPIA-P700 Pico-ITX
board, powered by either a 1-GHz C7 processor or an ultra-
low-voltage 500-MHz Eden processor coupled with the
VX700 unified digital media chipset, supporting up to 1 GB
of DDR2 SO-DIMM system memory. The system has a certi-

fied operating temperature of –20° to
60°C, vibration tolerance of up to 5
GRMS, and a shock tolerance of up to
50 G.

Storage is provided through a 44-
pin IDE interface for Disk on Module
Flash drive. An optional storage sub-
system expansion chassis offers sup-
port for a standard 2.5″ SATA drive.
An on-board RJ-45 connector pro-
vides Gigabit networking, while the
VT1708A brings HD audio. Additional
features include four USB 2.0 ports,
on-board GPIO port, COM port, and
programmable watchdog timer. Sys-
tem LED indicators are provided for
power and HDD activity.

The AMOS-3000 has a list price of
$$33800.

VIA Technologies, Inc.
www.via.com.tw

Internet pioneers with 15 years experience

Instant online Quotations & Ordering

From Singlesided to 6 layers ML

Leadtimes from 48 hrs

Full DRC included on all orders

High Quality prototypes at LOW cost's

Simply send your layout files
and order online

www.pcb-pool.com
TollFree USA: 1877 3908541 Email: sales@pcb-pool.com

Specializing in Quickturn Proto's

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

NPN

http://www.teamfdi.com
http://www.via.com.tw
http://www.pcb-pool.com
mailto:sales@pcb-pool.com
http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 13

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

NPN

ª

Development Solutions for
ARM, 8051 & XE166

Microcontrollers

Keil RL-ARM and ARTX-166
highly optimised, royalty-free

middleware suites
www.keil.com/rtos

Keil PK51, PK166,
and MDK-ARM

support more than 1,700
microcontrollers

www.keil.com/dd

www.keil.com
1-800-348-8051

Microcontroller
Development Kits

RTOS and Middleware
Components

RTX Kernel Source Code

TCPnet Networking Suite

Flash File System

USB Device Interface

CAN Interface

E
xa

m
p

le
s

an
d

 T
em

p
la

te
s

C and C++ Compilers

Royalty-Free RTX Kernel

μVision Device Database & IDE

μVision Debugger

Complete Device Simulation

E
xa

m
p

le
s

an
d

 T
em

p
la

te
s

SENSOR FILM MEASURES LOW CONTACT PRESSURES
PPreessureexx ZZeeroo is an easy-to-use, tactile pressure-indicating sensor film. Pres-

surex Zero characterizes contact surface pressure down to an extremely low 7.2 psi
(0.5 kg/cm2). It is simply placed between contacting or mating surfaces to instantly
and accurately measure and map pressure magnitude and distribution. Variations in
contact surface pressure are immediately visible by the impression made on the
film. The range for Pressurex Zero is 7.2 to 28 PSI (0.5 to 1.97 kg/cm2).

Pressurex comes in the form of a thin plastic sheet (4 or 8 microns), physi-
cally similar in thickness to paper, and is available in eight different pressure
ranges. When placed between contacting surfaces, it instantaneously and per-
manently changes color directly proportional to the actual pressure applied. The
precise pressure magnitude (psi or kg/cm2) is easily determined by comparing
color variation results to a color correlation chart (conceptually similar to inter-
preting Litmus paper). Pressurex can also be scanned through one of Sensor
Products’s optical imaging systems. The film, which is available in eight different
pressure ranges, is used in the design, manufacture, calibration, and quality

control of many products.
Pressurex is flexible, which

enables it to conform to curved
spaces. It is ideal for invasive,
intolerant environments and
tight spaces that are not acces-
sible to conventional electronic
transducers.

A 270 mm × 3 m roll of Pres-
surex costs $$66998.

Sensor Products, Inc.
www.sensorprod.com

ULTRASONIC SENSORS FEATURE EXTENDED RANGE
AND COMPENSATION

The U-GAAGGE T3300UUX is an ultrasonic sensor for challenging applications. With its
extended functional range and advanced temperature compensation, the T30UX
sensor withstands hostile environments, providing superior ultrasonic sensing to
solve even the toughest application challenges. The T30UX sensor features a
robust U-GAGE housing to resist harsh environmental conditions and provides a
variety of model options to meet a broad range of application requirements.

The T30UX ultrasonic sensor is available in a choice of three ranges for reliable
sensing from 100 mm to 3 m and delivers high-accuracy performance with built-in
temperature compensation across a wide range of ambient temperatures. Tempera-
ture compensation enables the sensor to self-correct for the temperature in its
environment and maintain the highest accuracy in changing conditions. This robust
sensor resists harsh environments with a rugged IP67 (NEMA 6) housing and fully
encapsulated electronics, and its 30-mm
threaded barrel and a selection of
mounting brackets allow simple installa-
tion. Additionally, models are available
with a single analog or user-configurable
discrete output, and all models provide
highly visible LED status indicators for
power, signal strength, and output.

The sensor starts at $$22499 for U.S.
orders and depends on the configuration
needed.

Banner Engineering Corp.
www.bannerengineering.com

http://www.sensorprod.com
http://www.keil.com/dd
http://www.keil.com/rtos
http://www.keil.com
http://www.bannerengineering.com
http://www.circuitcellar.com

14 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

NPN

QUICK-CONNECT WIRING SYSTEM
The new M16 ppooweerfast wiring system is specifically designed

for machine power distribution and motor control. The quick-con-
nect M16 powerfast system provides a time- and cost-saving
replacement for traditional hard-wiring installations and complies
with NFPA 79: Electrical Standard for Industrial Machinery. These
two-, three-, and four-pin connectors and tees
provide up to 18 A in a compact form factor.

The cordsets are offered with Tray Rated,
exposed run PVC flexlife cable. All connectors
deliver IEC IP 67 protection and are rated for 600
V and up to 18 A. Tees are available with simple
connectors or with branches.

Like most TURCK cordsets, the M16 powerfast
line offers male or female options, straight connec-
tors, standard and custom lengths, and pigtails or
extensions. To complete the system, fully encapsu-
lated mating receptacles with nickel-plated brass
housing and 0.5″ to 14 NPT, 0.375″ to 18 NPT, M18,
and M20 mounting threads are available.

Prices are dependent on the configuration, please
contact TURCK directly.

TURCK, Inc.
www.turck-usa.com

2.6 KERNEL2 6 KERNEL

System on Module

The SoM 9307 uses the same small SODIMM form factor utilized by other EMAC
SoM modules, and is the ideal processor engine for your next design. All of the
ARM9 processor core is included on this tiny board including: Touchscreen
Interface, Flash, Memory, Serial Ports, Ethernet, I2S Audio Interface, PWMs,
Timer/Counters, A/D, Digital I/O lines, and more. Like other modules in EMAC's
SoM product line, the SoM 9307 is designed to plug into a custom or off the shelf
Carrier board containing all the connectors and any additional I/O components
that may be required. The SoM approach provides the flexibility of a fully
customized product at a greatly reduced cost. Single unit pricing starts at $150.

EQUIPMENT MONITOR AND CONTROL

OVER

YEARS OF

SINGLE BOARD

SOLUTIONS

24

Since 1985

Phone: (618) 529-4525 Fax: (618) 457-0110 Web: www.emacinc.com� �

http://www.emacinc.com/som/som9307.htm

Internet Appliance Engine

SoM-9307
�

�

�

�

�

�

�

�

�

EP9307 ARM9 200Mhz CPU

3 Serial Ports & 2 SPIs

Up to 40 Digital GPIOs

10/100 BaseT Fast Ethernet

& WinCE 6.0

s

Small, 144 pin SODIMM form factor (2.66 x 2.38”)

3 USB 2.0 Host Ports

I2S Audio Interface

SD/MMC Flash Card Interface

Up to 64 MB Flash & 128 MB RAM

Graphic LCD Interface with 2D Acceleration

Linux with Eclipse IDE

8 12-Bit A/Ds & 4 16-Bit Timer/Counters

�

�

�

�

�

�

�

�

�

�

�

�

EP9307 ARM9 200Mhz CPU

3 Serial Ports & 2 SPIs

Up to 40 Digital GPIOs

10/100 BaseT Fast Ethernet

& WinCE 6.0

s

Small, 144 pin SODIMM form factor (2.66 x 2.38”)

3 USB 2.0 Host Ports

I2S Audio Interface

SD/MMC Flash Card Interface

Up to 64 MB Flash & 128 MB RAM

Graphic LCD Interface with 2D Acceleration

Linux with Eclipse IDE

8 12-Bit A/Ds & 4 16-Bit Timer/Counters

�

�

�

http://www.turck-usa.com
http://www.emacinc.com/som/som9307.htm
http://www.emacinc.com
http://www.circuitcellar.com
http://www.calao-systems.com

www.circuitcellar.com • CIRCUIT CELLAR® 155

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

Te s t Your
Edited by David TweedCIRCUIT CELLAR

What’s your EQ?—The answers are posted at
www.circuitcellar.com/eq/

You may contact the quizmasters at eq@circuitcellar.com

EQ
Problem 3—Suppose you have a circuit that is
capable of producing step waveforms with very
fast rise times. How can you use a transmission
line to convert the steps to narrow pulses?

Problem 4—Joe is a ham radio operator, and he
likes to operate on the 6-m band (50 to 54 MHz).
One day Bill is visiting Joe’s “shack,” and notices
that Joe has a tee adapter on the transmitter’s
antenna jack, and in addition to the cable to the
antenna, there is a second piece of coax
attached to the tee that doesn't seem to go any-
where. It appears to be about a foot long.

Bill asks Joe about it, who laughs and says,
“Oh, that helps keep me legal!” What’s going on
here?

David Tweed contributed the four problems and answers in this issue.

Robert Lacoste recently wrote about transmission
lines and time-domain reflectometry (TDR) in
Circuit Cellar issues 224 and 225. Let’s explore
that topic a little further.

Problem 1—Suppose we use a step waveform
(instead of a narrow pulse) to excite the trans-
mission line circuit shown below. What sort of
waveform would you expect to see at point A?

Problem 2—Can you reconcile your answer to the
previous question with the waveform created by
pulse excitation that Robert Lacoste discussed in
Circuit Cellar 225?

http://www.circuitcellar.com/eq/
mailto:eq@circuitcellar.com
http://www.circuitcellar.com
http://www.frontpanelexpress.com
http://www.lemosint.com

16 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

Think sealed lead-acid (SLA) batteries are a thing of the past? Think
again. They are bound to be around for years to come. Dale designed a
state-of-charge meter for his SLA batteries. His multicolored LED meter
simplifies battery charge testing.

Smart Lead-Acid Battery Meter
An MCU-Based “Gauge” for SLA Batteries

R

F
EA

TU
RE

ARTICLE
by Dale Wheat

echargeable batteries are found in
almost all portable, mobile, and

mission-critical electronic equipment. New
technologies are storing more energy in less
space than ever before. Sealed lead-acid
(SLA) batteries are far from the leading edge
of available options: they are heavy, poison-
ous, and lack energy density compared with
newer options. Despite these apparent
drawbacks, they are everywhere. Like
COBOL, they will be with us for some
time.

SLA batteries are especially popular in
hobby robotics as well as hobby electronics
in general. Their ubiquity in surplus chan-
nels makes them an easy choice for begin-
ning roboticists. Low initial cost and
dependable, well-documented performance
endear them to novices and seasoned profes-
sionals alike. It also doesn’t hurt to find
that many standardized sizes and capacities
are still being produced all over the world
and will be for the foreseeable future.

Charging characteristics increase their
appeal: A constant voltage charger is often a
good first project for the curious electronics

hacker. Off-the-shelf charging solutions abound and
remain competitively priced.

A FUEL GAUGE
How much charge is left in the battery? I’m glad you

asked! There are several methods available for determin-
ing the “state of charge” (SoC) or, conversely, the “depth
of discharge” (DoD). I think I’ve seen those acronyms
before, somewhere.

The most direct method is to simply measure the bat-
tery voltage and say, “Lo, here is the remaining charge.”
Fortunately for battery users and unfortunately for us
battery measurers, most batteries have a relatively flat
discharge curve. Lithium-based chemistries are the most

Taabblee 1—This is the state of charge versus voltage for a sealed lead-
acid battery at rest. These values were taken from “Battery Universi-
ty,” a series of informative, on-line articles about rechargeable bat-
teries by Isidor Buchmann and sponsored by Cadex Electronics.

Terminal voltage State of charge

12.65 100%

12.45 75%

12.24 50%

12.06 25%

11.89 or less Discharged

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 17

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

notorious for steady, stable voltage output. Curse them
and their dependable, high-energy densities! We will
eventually use a variation of this method to determine

the state of charge, after combining it with
some other knowledge we have that is specific
to lead-acid batteries.

Once upon a time, before SLA batteries were
sealed, the specific gravity of the electrolyte
could be measured and used as a good indication
of the state of charge. You dipped an industrial-
looking turkey baster containing floaties into
the different cells and slurped up a sample elec-
trolyte using the high-tech squeeze bulb on the
end. If you had a steady hand and good lighting,
you probably didn’t spray battery acid on your
clothes and skin. Unfortunately, I often did. I
don’t test those kinds of batteries any more.

A more detailed method to determine SoC is
to measure how much energy has gone into the
battery during the charge cycle and then keep
track of how much energy is then taken out dur-
ing usage. “Counting coulombs” requires both
current and voltage measurements to be inte-
grated over time and must take into considera-
tion temperature and age of the battery. In reali-
ty, temperature and age really have to be consid-
ered in any comprehensive methodology. Sever-
al “coulomb counter” circuits are available from
Maxim Integrated Products, Linear Technology,
Texas Instruments, and others. Also, if you can
count individual coulombs per second, you
know how many amps are flowing in a circuit,
because that is the textbook definition—but you
knew that.

Although there is no linear relationship
between voltage and state of charge, there are
well-known waypoints down the discharge curve
for lead-acid batteries. These voltage levels are
only truly representative of the state of charge
after the battery has been allowed to rest for at
least 8 hours. They are summarized in Table 1.

MEASUREMENT CIRCUITRY
Figure 1 shows a simple data acquisition circuit

that can be used to approximate the state of
charge of an SLA battery. The input signal powers
the entire circuit. The battery voltage is brought
in via J1. From there, it is split into two paths.
The first goes to an LM317L adjustable, positive-
voltage regulator that is set to approximately 5 V
using R5 and R6. I chose this for its wide input
range, excellent output stability, small size, abun-
dant availability, and low cost. The regulator’s
output is filtered by C1. Overall, this is a mun-
dane power supply circuit. Its only special feature
is that it will withstand a high input voltage and
automatically shut itself down if it overheats.

The other path for the incoming power signal
is to a voltage divider composed of R7, R8, and
R9. R9 is a potentiometer allowing the calibra-
tion of the incoming signal to a known value.

Figgure 1—This is the smart SLA battery meter. I originally drew this using Advanced
Circuits’s free/gratis PCB Artist software. It enabled me to enter the schematic, lay
out the PCB, then quote and order PCBs, all from the same program. This is a
redrawn version.

Figgure 22—Here are the mechanical dimensions of the prototype PCBs. This will
allow you to have a custom panel machined that will fit like a glove. The produc-
tion version of the PCB will have the same dimensions but will have rounded
corners.

1.500

1.
50

0

0.200

0020
001.1

0.
20

0

0.000

0.125

0.375

0.625

0.875

1.125

1.375

1.500

0.150

0.125 DIA
TYP Six places

0.125 DIA
TYP Two places

+
–

U1

R1

R2

R3

R4

D1

D2

D3

D4

D5

D6

J1 Power

U2

R5

R6

+

C1
R7

R8

R9

http://www.circuitcellar.com

18 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

This is handled in software to allow
quick and reliable calibration of the bat-
tery meter in production (see Figure 2).
I will describe more about the cali-
bration procedure when I cover the
firmware in detail.

The wiper pin of R9 leads into pin 3
of U1, the main brain of the circuit.
I used one of my favorite Atmel
AVRs, the ATtiny13, for its small
size, ease of programming, versatile
peripheral set, and low cost. The pri-
mary features that helped me
select this part for the design
were an on-chip ADC with
up to 10 bits of accuracy, an
internal clock, low current
requirements, and reprogram-
mable I/O lines.

TELL THE WORLD
The AVR is happy to meas-

ure the incoming voltage and
store the answer in a register
or RAM location. That’s not
interesting at all. I wanted to
add a simple but effective dis-
play using a minimum num-
ber of parts. I also wanted the
display to produce “meaning-
ful” information even with no
user manual handy. A single

and a green LED die mounted inside
the same package. Current applied in
one direction would course through
one die and illuminate it while
reversing the current would light up
the other side. Alternating the cur-
rent rapidly would produce the illu-
sion of both LEDs being lit simulta-
neously. This is alleged to be yellow,
but it only looks yellow if you look
at it quickly and sideways at the
same time. It is yellow-esque, at
best. Five or six multicolor LEDs
would give enough of a range to
make a useful display. Because each
LED package is two distinct LEDs, I
would have to come up with a way
to drive a dozen or so LEDs with a
small microcontroller.

FANCY LED MULTIPLEXING
Normally, 12 individual LEDs

would require, at a minimum, 12
dedicated output driver lines to be
able to individually and randomly
address any LED. The ATtiny13 has
six I/O lines available. Using a mul-
tiplexing technique sometimes
referred to as “charlieplexing,” I was
able to drive the 12 LEDs using only
four output pins. Maxim application
note 1880 credits Charlie Allen with
championing this technique within
the organization. Maxim Integrated
Products offers several devices that
will perform that trick for you. Don
Lancaster wrote about it in his
“Tech Musings” column in August

2001 and gave several exam-
ples (www.tinaja.com). I’m
sure I thought of it long
before, but I must have neg-
lected to write it down in my
journal. Dang.

The number of LEDs that
can be addressed depends on
the number of I/O lines that
you’re willing to throw at it.
The formula is n(n – 1),
where n is the number of I/O
lines. So, four I/O lines
would give you 12 LEDs (i.e.,
4 × 3). That translates to six
bipolar LEDs. The next step
up would be five I/O lines
and 20 normal LEDs or 10
bipolar LEDs. That’s too
many. The next step down

line of LEDs arranged as a bar graph
would give a good report with a sin-
gle glance; the more LEDs lit, the
more power was left in the battery.
Somewhere along the line I decided
to spice it up and use multicolor
LEDs to reinforce the message: green
was good, yellow foretold doom, and
red would announce failure. I sup-
pose “multicolor” is a bit of a reach,
as the LEDs I finally included were
technically “bipolar” LEDs: a red

Phootoo 1—This is the first prototype of the battery meter built on a solderless breadboard.
The extra resistors represent doing it the hard way when you don’t have an exact value in
stock when inspiration strikes.

PB0 PB1

PB3 PB2

2
5 6

3

1

4

Figuure 33—This is the geometric version of the LED array
schematic, showing all the possible combinations of connec-
tions between the four I/O lines. That’s how you light up 12
LEDs with only four I/O lines!

http://www.circuitcellar.com
http://www.tinaja.com

Wi-Fi and
Ethernet
Versions

http://www.rabbitwirelesskits.com
http://www.rabbitwirelesskits.com

20 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

to my scribbled notes as to pin
placement and LED array wiring (see
Figure 3).

I played with various combina-
tions of highs and lows and ins and
outs. Once I could light up individ-
ual LEDs to my satisfaction, I wrote
a routine to scan through a memory
map of LEDs and light them or not,
over and over, too quickly for the
eye to detect. This produces the illu-
sion of multiple LEDs being illumi-
nated at the same time. This became
the main loop of the final firmware.

Now I had a medium waiting for a
message. The next step was to read
the ADC peripheral and determine
what voltage was being presented for
analysis. Naturally, reading it once
was not going to be adequate, due to
sampling noise and other error
terms, so I set up the on-chip
Timer/Counter peripheral to inter-
rupt periodically and in the interrupt
service routine set about to oversam-
ple the ADC input. Eight successive
samples are read and summed then
divided by eight to give a rough
arithmetic average. This number is
compared to a series of preset values
to determine how many LEDs of
each color to light up. This is where
the values from Table 1 come into
play.

I broke down the basic thresholds
from Table 1 and added a few more
of my own devising because my

effectively become tristated at this
point and do not contribute to the
current flow in the LED array. Each
LED has its own pattern of ins, outs,
highs, and lows.

WRITE THE SOFTWARE
I built a prototype of the circuit

using a solderless breadboard (see
Photo 1). I used an Atmel STK-500
to program the ATtiny13. Being an
eight-pin DIP, it was relatively easy
to pop it in and out of the prototype
for programming. Anything larger
would have wanted its own program-
ming cable attached. The AVR
devices have the nice capability of
“in-system programming,” or ISP.
This allows the part to be pro-
grammed and reprogrammed in situ,
without having to remove the part
from the circuit and placed in a
device programmer.

I wrote the code in C. I used the
WinAVR port of the GCC compiler
collection, which works well with
Atmel’s AVR Studio. These are all
free programs, in various senses of
the word (GCC is libre, or free as in
speech, while AVR Studio is gratis,
or free as in beer).

The first task was, as usual in
embedded development, to light a
single LED. This was a little more
complex than the normal embedded
“Hello, world!” monochrome
monopixel. I had to constantly refer

would be three I/O lines
and six normal LEDs or
three bipolar LEDs. That’s
too few. Six LEDs is just
right.

Imagine the four I/O
pins are wired to the four
corners of a square. Now
each square corner is con-
nected by a bidirectional
LED to every other corner.
This makes four LEDs
around the periphery of
the square as well as two
across the diagonals. My
schematic skills omit the
symmetrical beauty of this
circuit and hint only at
the possibilities.

We have 12 LEDs: six
red and six green. They
look just like regular LEDs when
they are not illuminated. Some bipo-
lar LEDs have three legs: one for each
die and a common terminal. I used
the two-legged variety of the 3-mm
persuasion where each leg is
attached to both the anode of one
LED and the cathode of the other.

Instead of wiring a current-limit-
ing resistor to each LED, I wired
them to the I/O lines. This way
there are only four resistors for all
12 LEDs. This works out well as
there is only one LED on at a time,
even when it looks like they are all
illuminated. Because the current
through any LED must flow through
two resistors, the value of each resis-
tor is half of what is required to
limit the current through the LED. I
calculated a maximum of 20 mA
through each LED. I could probably
have upped that number as the duty
cycle is at most 1/6.

To illuminate any single LED, the
I/O pin that is connected to its
anode is programmed to be an out-
put and to drive that output high.
The corresponding cathode pin is
also programmed to be an output
and to drive its output low. The
other two I/O lines are told to sit
down and shut up. A more technical
and accurate way to describe it would
be to say that they are programmed
to become inputs and not activate
their internal pull-up resistors. They

PPhhootoo 22—This is the assembled PCB. These boards made by Advanced Circuits are their BareBones special:
double-sided, plated-though holes, no soldermask, no silkscreen. Believe it or not, they were built in
under 24 hours! Every one perfect, every time.

http://www.circuitcellar.com

www.mouser.com
Over A Million Products Online

The Newest
Optoelectronics

LZ4-4xxx10 Serially
Connected MCPCB
www.mouser.com/
ledengin/a

Experience Mouser’s time-to-market
advantage with no minimums and same-day
shipping of the newest products from more
than 390 leading suppliers.

(800) 346-6873

The Newest Products
 For Your Newest Designs

The ONLY New Catalog Every 90 Days

PCB PolyLEDs
www.mouser.com/
avagotechnologies/a

New Products from:

High Brightness LEDs
www.mouser.com/
kingbright/a

GM5BW High Power White LEDs
www.mouser.com/
Sharpsma/a

http://www.mouser.com
http://www.mouser.com/avagotechnologies/a
http://www.mouser.com/ledengin/a
http://www.mouser.com/kingbright/a
http://www.mouser.com/Sharpsma/a

22 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

multicolored bar graph could easily
express more than the five original
charge states.

If the input voltage is above 13.5 V,
I assume that the battery is being
charged. To announce this, I have
the LEDs do the happy dance, where
an upward sequence of green LEDs is
marched up the bar graph. This is
similar to what you may have seen
on many cellular phones during their
recharge period, except that mine is
greener and happier.

If the voltage is between 12.65 and
13.5 V, the graph shows six of six
bars, or green LEDs in this case.
This represents a fully charged bat-
tery with 100% of its capacity avail-
able. You have to remember that in
the real world, a battery has 100% of
its rated capacity only once, if you’re
lucky, early in its life, and that it
slowly degrades over time.

When the voltage is between 12.45
and 12.65 V, it is estimated that
approximately 75% or more of the
power is still available. Five green
dots out of six indicate this stage.

Note that 12.24 V marks the 50%
line. Only four green dots are dis-
played at this point. When 12.06 V is
measured, it tells you that only
about 25% of the charge remains,
and three yellow LEDs are displayed,
notifying you that it might be time
to start thinking about finding the
charger.

When the measured voltage drops
further but is still above 12 V, two
yellow LEDs describe this sad state
of affairs. The battery is effectively
flat at this point.

While still above 11.89 V, a single
red LED will be lit to announce
impending loss of battery power.
Anything below this is considered a
battery failure and will be displayed
as a blinking red light. Below 11.5 V,
the unit stops displaying anything in
an effort to save what little power
might be left.

DUAL POWER
One of the original requirements

for the meter was to measure both
12- and 24-V battery systems, because
these were the most common for SLA
batteries. I had originally thought of

using different resistors in the
inbound voltage divider, but this
would have ultimately created two
meters: one for 12-V systems and
another for 24-V systems. My first
thought to improve this was to use a
jumper to select between the two
ranges and have both sets of resistors
installed, just in case. I finally decid-
ed to have the required duplication
in software where it would weigh
less and take up less shelf space. The
firmware is actually checking the
various waypoints down the dis-
charge curve and also exactly double
those voltages. This makes the
meter “autoranging” within an
admittedly small set of ranges. It
also makes it hard for the end user
to order the wrong meter or to con-
figure it incorrectly. Note that I did-
n’t say “impossible.” Those of you
with customers of your own will
understand what I mean.

I added an overvoltage condition
test for inputs of over 30 V. The

That’s it!
The final version of the firmware

is contained in a single file of
approximately 300 lines of C code
and takes up 99.4% of the
ATtiny13’s 1-KB flash memory. The
file and its corresponding object file
in Intel HEX format are posted on
the Circuit Cellar FTP site.

SHOW & TELL
Once I had a working prototype of

my new meter, I just had to show it
off to some fellow robot builders.
Last summer, I brought the battery
meter, along with some other blinky
toys that I had been working on, to
an R2 Build Day hosted by Jerry
Chevalier of the R2-D2 Builders
Club. Several of the robot builders
expressed interest in the meter and
that got me thinking about making a
real PCB and offering it for sale.

I had been playing with Advanced
Circuits’s PCB Artist software for
several months but had not really

Several of the robot builders
expressed interest in the meter
and that got me thinking about
making a real PCB and offering it
for sale.

”“
LEDs light up in an alternating red
wig-wag pattern that screams out
“uh oh, uh oh” to let you know
you’ve hooked up the meter to the
wrong wires.

One additional “waypoint” is
coded into the firmware to allow
quick and easy calibration of the
meter. Then exactly 7.50 V is detect-
ed, which is below the normal oper-
ating range but still high enough to
keep the voltage regulator happy, a
special pattern of two yellow LEDs
is lit on the meter. To calibrate,
attach an accurate 7.50-V source (I
happen to have one) and adjust the
potentiometer R9 until the LEDs
light up with the right pattern.

gotten the hang of it yet. I would tell
myself to start out simply and work
my way though a complete, if trivial,
example. It never failed that I would
eventually start trying to get all fancy
and do a lot of things at once and
would inevitably work myself into
some indescribable corner where I
would get frustrated and just end up
walking away. It’s ironic because
Advanced Circuits’s Drew Peterson
lives to help people with PCB Artist
questions. The trick is to be able to
describe the problem you’re having.
If you can describe it, Drew can help
you out. If you can’t, other than “It is
not doing what I want it to do,” then
you’re kinda stuck.

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 23

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

ROJECT FILES
To download code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/226.

ESOURCES
I. Buchmann, “Charging the lead-acid battery,” Battery University,
www.batteryuniversity.com/partone-13.htm.

The Electropaedia, “State of Charge (SOC) Determination,”
www.mpoweruk.com/soc.htm.

D. Lancaster, “Tech Musings,” www.tinaja.com/glib/muse152.pdf.

Maxim Integrated Products, Inc., “Application Note 1798: Frequency Under-
sampling in Coulomb-Counting: Measuring Current Flow in Battery Appli-
cations,” 2002, www.maxim-ic.com/appnotes.cfm/appnote_number/1798.

———, “Application Note 1880: Charlieplexing—Reduced Pin-Count LED
Display Multiplexing,” 2003, www.maximic.com/appnotes.cfm/appnote_
number/1880.

R2-D2 Builders Club, http://astromech.net.

D. Wheat, http://dalewheat.com.

OURCES
PCB Artist software
Advanced Circuits | www.4pcb.com

ATtiny13 and STK-500
Atmel Corp. | www.atmel.com

PP

RR

Dale Wheat is a full-time freelance
writer working primarily with
embedded systems and shiny things
that blink or beep. Dale is married
and the father of two adult children.
He lives near Dallas, where he
enjoys mowing two acres of grass in
the summer and not mowing it in
the winter. To find out what he has
been up to, visit his personal web
site dalewheat.com.

SS

So I started over again, this time
on a schematic-only design. I had
built a small, five-LED “Cylon”
scanner and needed a schematic to
put up on my web page. It just need-
ed to be lines, dots, and text. I had
already laid out a PCB without the
benefit of a schematic (because it
was that trivial). This proved a good
exercise in learning the user inter-
face of PCB Artist.

The next step in PCB-fu was to
learn to make my own symbols. In
PCB Artist, all components are sym-
bols, with a schematic view, a PCB
footprint, and a link associating the
two. Once you can build your own
symbols effectively, the sky’s the
limit. I’m still a long way from being
an expert, but I can rough out a
board in 1 hour or so and have pro-
duction-quality work in a few hours
more. As I mentioned before, the
software also enables you to order
PCBs online. I am constantly amazed
by this wonderful world of ours.

The PCBs arrived the same day as
the last of the components, so I got
busy soldering. I used through-hole
parts exclusively on this design and
the boards were straightforward to
assemble. The finished PCB is
1.500” × 1.500” (see Photo 2). The
components are mounted on one
side of the board, and the LEDs are
mounted on the other side so that
the meter can be flush-mounted in
an enclosure, if desired.

The meters are available for sale on
my web site (www.dalewheat.com).
They are also available on the sites
of the other vendors.

If you have any questions about
this little circuit, please don’t hesi-
tate to contact me. I

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/226
http://www.batteryuniversity.com/partone-13.htm
http://www.mpoweruk.com/soc.htm
http://www.tinaja.com/glib/muse152.pdf
http://www.maxim-ic.com/appnotes.cfm/appnote_number/1798
http://www.maximic.com/appnotes.cfm/appnote_number/1880
http://astromech.net
http://dalewheat.com
http://www.4pcb.com
http://www.atmel.com
http://www.dalewheat.com
http://www.circuitcellar.com
http://www.cubloc.com

24 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

In the first part of this article series, DJ presented a general-purpose input/output
(GPIO) pod that can plug into a USB port. Now he describes how to download a
JTAG programming application and program a CPLD circuit.

Construct a USB GPIO Pod (Part 2)

USB JTAG Module

F
EA

TU
RE

ARTICLE
by DJ Delorie

PPhootoo 1—A closeup of the JTAG
adapter. Most of the complexity
is in the software; the adapter
serves to manage the wiring
itself. My project doesn’t use
TRST, so it is left unconnected.

s I explained in the first part of this article
series, you can use a general-purpose input/out-

put (GPIO) module that plugs into a USB port on your
computer to make up for the lack of a parallel port. While
the flexibility of having a microcontroller in this pod
enables you to do many things, the real advantage is that
you can put a lot of logic—even entire applications—in the
microcontroller. This month, I’ll explain how to download
an entire JTAG programming application into the module.
I’ll then describe how to use it to program a simple CPLD
circuit from a Verilog program from my Linux workstation.

There are commercial devices that let you program
JTAG devices over USB from Linux. Then again, there are
devices that do a lot of the things you learn to do in Circuit

A Cellar, but it’s no fun if you don’t do it yourself, right? The
module I built is a pure do-it-yourself solution. You can use
it for more than just this one task, which saves money in
the long run, too.

JTAG OVERVIEW
The Joint Test Action Group (JTAG) is a specification

created for testing densely populated circuit boards. In
addition to testing, many chips have extended their JTAG
interface to include other operations, such as programming
or debugging. The JTAG interface consists of five logic sig-
nals: Reset (optional), Clock, Mode Select, Data In, and
Data Out. The signals are abbreviated TRST, TCK, TMS,
TDI, and TDO. There are three types of operations, which,

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 25

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

in combination, yield all the opera-
tions the chip defines.

Not all chips include a TRST pin
because it isn’t always needed. When
it is included, you can reset the chip’s
JTAG module by pulsing TRST low.
When it is not present, the JTAG mod-
ule can be reset by clocking in a reset
command to the TMS port. Note that
this doesn’t reset the chip, just the
JTAG interface.

The TMS pin controls a state
machine, which selects the mode in
which the interface operates. Chips
that support JTAG use the same state
machine, so a project with multiple
JTAG chips can tie all the JTAG inter-
faces together—TRST, TCK, and TMS
(in parallel) and TDI and TDO
(chained in series)—and control all the
chips at once. The state machine is
designed so that a reset sequence of
clocking five 1 bits on TMS always
returns it to the idle state, regardless
of where it started. Other combina-
tions of clocked 1 and 0 bits maneuver
the state machine into other states,
where it can stay as long as the TMS

registers (out of many) are used and
allows a wide range of functionality.

After a register is selected (either
the instruction register or one of the
data registers), you can access it
through the TDI and TDO pins. The
state machine first loads the register
with data from elsewhere on the chip.
Then, much like a SPI port, the old
data is clocked out of TDO while new
data is clocked into TDI. Once this is
done, the state machine stores the reg-
ister’s data elsewhere in the chip, per-
forming whichever action is indicated.

Aside from a few well-defined com-
mon functions, each chip has its own
set of registers and functions that it
documents. However, they all follow
the standard JTAG interface for
accessing those registers and func-
tions. Chip manufacturers will often
provide a configuration file that
describes these functions. Software
that uses JTAG to talk to these chips
will often read these configuration
files to understand how to access
these functions. When multiple
devices are in the JTAG chain (TDO

bit remains low. Two of these states
are key. One lets you shift bits into
the instruction register via TDI (and
shift its previous value out via TDO).
The other lets you shift bits through
the data register. In most chips, the
instruction register selects which data

Figuree 1—The JTAG adapter module is
simple. R5 and R6 feed half the tar-
get VCC to P1.0, which is an ADC
input on the pod. The rest is just
blinky lights and connections.

http://www.circuitcellar.com
http://www.rsappkits.com
http://www.apcircuits.com

26 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

chained to TDI), programming utilities
can use the configuration for the chips
they’re not programming to learn how
to bypass those chips and access the
one they’re interested in.

Do you really need to know all this
to use JTAG? Not really. Aside from
telling inputs from outputs, you don’t
even need to know this to port the
programming application to the pod.
However, it helps you understand that
there is a lot of bit twiddling going on.

JTAG POD MODULE
To simplify connections to the project,

I created a JTAG programming module
for the USB-GPIO pod (see Photo 1).
Aside from bringing out the specific
JTAG signals I needed, there are two
other functions this module provides.

First, I added a couple of LEDs to
provide some visual feedback of what
the JTAG protocol is doing. After all, I
can’t have a project without blinky
lights, and the LED on the pod itself is
used to give feedback about the hard-
ware flow control used by the serial
port software. Second, I needed to be
able to monitor the target circuit’s
supply voltage (see Figure 1).

Because the pod can run at either 3.3
or 5 V, and the target circuit can run at
any voltage, I used one of the pod’s
ADCs to compare the target’s voltage
with the pod’s voltage. The reference
voltage is set by the pod to its own sup-
ply voltage. I used a pair of resistors to
divide the target’s supply voltage in half
and feed it into the ADC. If the volt-
ages match, the resulting ADC value
should be about 128 (on a scale of
0–255, or an 8-bit conversion). If the
pod is running at 3.3 V and the target at
5 V, the result will be 5/3.3 times high-
er, or around 194. If the voltages are the
other way, the result will be 3.3/5
times as high, or around 84. If the tar-
get is not yet powered up, the result
will be zero. While the R8C/20 does
not have 5-V-tolerant inputs when run-
ning at 3.3 V, this at least enables me to
find out quickly if the voltages are mis-
matched. Mostly, it just checks to see if
the target is powered up at all, protect-
ing the target from damage.

The pod’s software is a port of the
JTAG programming application, as
provided in Xilinx’s 2007 application

Listing 1—This is the top module for my CPLD project. The signals named on the line
with module top correspond to pins. Each always block corresponds to some logic
gates, and other logic modules are brought in by reference.

module top(ibin, nen, en, blank, lzblank, polarity, oseg2, oseg1, oseg0);
input [7:0] ibin;
input nen;
input en;
input blank;
input lzblank;
input polarity;
output [6:0] oseg2;
output [6:0] oseg1;
output [6:0] oseg0;

wire nen;
wire en;
wire blank;
wire lzblank;
wire polarity;

wire [1:0] bcd2;
wire [3:0] bcd1;
wire [3:0] bcd0;

reg [7:0] ibinh;

reg blank2;
reg blank1;
reg blank0;
reg lz2;
reg lz1;

wire [6:0] oseg2t;
wire [6:0] oseg1t;
wire [6:0] oseg0t;

// Latch in the input value
always @ (ibin, nen, en)
begin

if (en & ~ nen)
ibinh <= ibin;

else
ibinh <= ibinh;

end

// Convert it to BCD
bcd b0 (ibinh, bcd2, bcd1, bcd0);

// Calculate leading zero suppression
always @ (bcd2, bcd1)
begin

lz2 <= (bcd2 == 0) ? 1 : 0;
lz1 <= (bcd1 == 0) ? lz2 : 0;

end

// Calculate blanking
always @ (lz2, lz1, lzblank, blank)
begin

blank2 <= (lzblank & lz2) | blank;
blank1 <= (lzblank & lz1) | blank;
blank0 <= blank;

end

// Convert to seven segment format
sevenseg012 s2 (bcd2, oseg2t);
sevenseg s1 (bcd1, oseg1t);
sevenseg s0 (bcd0, oseg0t);

// Apply blanking and polarity, and output
blanker digit2 (oseg2t, polarity, blank2, oseg2);
blanker digit1 (oseg1t, polarity, blank1, oseg1);
blanker digit0 (oseg0t, polarity, blank0, oseg0);

endmodule // top

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 27

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

note titled “Xilinx In-System Pro-
gramming Using an Embedded Micro-
controller” (XAPP058). I used the core
files as-is, but wrote my own version
of ports.h and ports.c to correspond to
my pod’s hardware. I had to provide
two interfaces.

First, I had to provide a source for
the CPLD data. This data was created
by the Xilinx WebPack utility, which
produces (among other things) a Xilinx
Serial Vector Format (XSVF) file. The
file is a set of binary commands
describing how to program the CPLD.
The host application feeds this data
across the USB link, so the port on the
pod has a serial UART driver that
reads this data.

The second interface is the I/O for
the JTAG signals. I simply mapped
these to GPIO signals on port 3. Con-
veniently, I’d used the SPI pins to
allow for future use of the SPI periph-
erals on the R8C to drive the JTAG
interface even faster.

At first, I ported XAPP058 to run on
the host, using a simple serial protocol
to toggle the output bits and read the

PPhhootoo 22—My CPLD prototype. At the top is a 3.3-V power supply. On the left are two DIP
switches to provide manual input to the CPLD, shown center-mounted on a DIP adapter. At
the right is the LED display, and above that is the pod with the JTAG adapter module. Having
programmable pins on the CPLD means wiring up the circuit the easiest way, which can be
seen here as short, neat connections.

http://www.circuitcellar.com
http://www.ezpcb.com

28 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

input bits. It was slow, clocking at
only a few kilohertz (one serial byte
per logic pin change). By running the
application on the pod and sending
only the XSVF data across the USB
link, I avoided the overhead. The seri-
al port was configured to support full
hardware flow control, so no special
host application was required. I could
use any terminal emulator with a
“send raw file” option. However, I
wrote a small utility to automate the
communication. It resets the pod,
which gives control to the pod’s ini-
tialization function. That let me
check that the power supplies match.
Once they matched, I sent a command
to turn control over to the XSVF appli-
cation, and started sending the .xsvf
file across. When the programming
was done, control returned to my pod
function and it sent the completion
status to the host utility.

How much of a difference does it
make? Running the application on the
host and sending each change output or
read input over the USB interface turns
out to be expensive. Programming the

XC9500XL, which has only a 28-KB
bit file, takes almost 8 minutes! Vary-
ing the pod’s CPU clock, or the data
rate between the FT232R and the
R8C, has almost no effect on this
time. It’s all USB packet overhead for
all those bit changes. Moving the
application to the pod’s CPU makes
the bit twiddling fast, especially if I
inline the pod-specific instructions,
which saves even the function call
overhead. By avoiding the overhead,
the programming time is reduced to
12 s, about 40 times faster.

SAMPLE CPLD CIRCUIT
I got the idea for the circuit from a

Usenet posting. The original poster
was asking for the best way to turn an
8-bit binary number (0–255) into three
seven-segment digits (000 through
256). Although there were other sug-
gestions involving ROMs or special
TTL chips, I suggested an inexpensive
CPLD. At that point, it occurred to
me that such a project would be a use-
ful way to teach myself about CPLDs
and Verilog. The project was well
defined—eight binary inputs repre-
senting a number from 0 to 255, and
21 logic outputs to directly drive three
seven-segment LED displays. Other
pins would be used for other features
if I had space in the chip.

Listing 22—This is a sample session of building and downloading a pod application.

$ cd pod/xsvf ; make

make: Nothing to be done for `all’.
$ sudo ../../host/uflash/uflash xsvf-pod.elf
version = “VER.1.00”
Status: Seq: Ready Erase: Normal Program: Normal ID: ID’d
Status: Seq: Ready Erase: Normal Program: Normal ID: ID’d
00ff00
done!

http://www.circuitcellar.com
http://www.linxtechnologies.com
http://www.circuitcellar.com/newsletter

www.circuitcellar.com • CIRCUIT CELLAR® 29

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

After some searching, I chose the
Xilinx XC9500 family of CPLD chips.
They were available with a variety of
voltage requirements, packages, and
logic cell counts. Also, they were
inexpensive. The smallest member of
the family was only $1 per chip and
available online. It turned out that the
smallest chip wasn’t big enough for
this project, so I chose the second
smallest—the XC9572XL. It is a 3.3-V
part with 72 logic cells that’s available
in a 44-pin TQFP. While the definition
of logic cell varies from manufacturer
to manufacturer, in general each cell
includes some form of flip flop and a
wide range of combinatorial logic
(AND and OR gates, multiplexers, and
so on). The program you download
into the chip decides which gates and
other signals are connected to each
other. Another advantage of this fami-
ly is that the program is stored in the
chip itself, so no other supporting
logic is required once the chip is pro-
grammed.

I chose Verilog to describe the cir-
cuit I wanted, again, as a way to learn
Verilog. Alternatives to Verilog are
VHDL and schematics, but Verilog
was simpler for this project than
VHDL and more powerful than
schematics. The full Verilog sources
for this project are posted on the Cir-
cuit Cellar FTP site. There are three
source files, which correspond to two
independent modules and the logic
that ties them together. Each source
file defines one or more logic blocks
in the form of modules. Like software
functions, each logic block has a set of
parameters that represent its inputs
and outputs. Unlike software func-
tions, these inputs and outputs are
electrical connections, representing
wires. To use one logic block in anoth-
er module, you instantiate a copy of
the block in your own logic. When
you do this, you give each instance its
own name and specify which signals
in your module will connect to which
inputs and outputs in that instance.
Think of modules as a definition of a
chip, and instantiating one as buying a
chip to use.

First, I needed a way of decoding the
binary number into a three-digit deci-
mal number. In bcd.v there is a large

case table, with one entry for each
input combination. Each case
describes the three output digits. I
actually used a script to generate this,
rather than type it all in by hand, but
at least I didn’t need to try to figure
out the logic behind each output bit—
the Xilinx tools did it all for me.

Next, I needed a way to map the
binary encoding of a digit into a
seven-segment encoding for that digit.
There are two of these in sevenseg.v,
as the hundreds digit has only three

possible values. Adding a smaller table
for that digit reduces the amount of
internal logic needed. Again, I used a
case table to describe each combina-
tion, with default entries (not all bina-
ry inputs are valid) of “don’t care” to
help reduce the logic needed.

The last module is the top-level
module for this chip, unimaginatively
named top.v (see Listing 1). The other
two modules had inputs and outputs,
but they existed only for referencing
from other modules. For the top-level

Electrical engineers agree: with a Protomat S-Series
prototyping machine at your side, you’ll arrive at the
best solutions, fast. These highly accurate benchtop
PCB milling machines eliminate bread-boarding and
allow you to create real, repeatable test circuits—
including plated vias—in minutes, not days.

• Declare your independence from board houses

• Affordable, entry-level price tag

• The best milling speed, resolution, and accuracy
in the industry

• Single-sided, double-sided, and multilayered
machining without hazardous chemicals

• Optional vacuum table and autosearch camera
for layer alignment

For complete details visit:
www.lpkfusa.com

or call:
1-800-345-LPKF

ProtoMat® S-Series
PCB Milling Machines

http://www.lpkfusa.com
http://www.circuitcellar.com

http://www.icbank.com

http://www.icbank.com

module, the inputs and outputs are
the pins on the chip. There are eight
inputs for the binary number, and 21
outputs for the LED segments. There
were enough pins and logic cells left
over to add a pair of latch enable pins,
two types of blanking (display and
leading zero), and an output polarity
control pin.

While Verilog looks like generic
software programming code, it’s
describing hardware. You can follow
the interconnections in top.v, as I
coded the logic blocks from the input
pins through to the output pins. First,
I latched the input pins into a register
called ibinh (input binary, held). I
connected this register to the BCD
decoder b0, returning the three digits
as bcd2, bcd1, and bcd0. Next, I
added logic to detect when leading
zeros were present (lz2, lz1—the
third digit is always on) and to com-
pute the blanking signals blank2
through blank0.

I also connected (note that I write
“connected” instead of “passed”—I’m
talking about wires here) the three

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

CIRCUIT CELLAR® • www.circuitcellar.com32

BCD values to three instances of the
seven-segment decoder. I used two of
the full decoders and the one partial
one for the hundreds digit. The results
of these decoders each have to pass
through modules to determine if
they’re inverted, noninverted, or tris-
tated (blanked).

The results of these last modules are
connected to the chip’s output pins.
Programmable logic uses a constraint
file to determine which internal signals
go to which pins. In this case,
bin7.ucf maps all the pins to their
signals. But if your layout is flexible,
you can let the tools choose which pins
get which signals based on the internal
layout of the design and how it relates
to the available pins. Some pins, for
example, are connected to the chip’s
internal clock grid, and the I/O pins
each have an associated logic cell block
that they prefer to be connected to. As
long as the chip permits it, you can
even fix board layout problems by
going back to the chip and moving or
redefining pins. An added bonus is that
you can migrate the design to a different

package just by writing a new con-
straint file and rebuilding.

PROGRAMMING DEMO
Now that I’ve covered all the parts,

let’s focus on how they fit together. I
built the CPLD circuit (“the circuit”)
on some protoboard (see Photo 2). I
plugged the JTAG adapter module into
the USB pod and wired it into the pro-
toboard, matching TDI to TDI, TCK
to TCK, and so on. I labeled mine to
match the pin names, but keep in
mind that if you have to chain two or
more devices together, you connect
TDO to TDI, with the pod’s TDI con-
nected to the first device in the chain,
and its TDO to the last.

While the JTAG module connects to
the circuit’s VDD bus, it neither powers
the circuit nor draws power from it.
The VDD pin on the module only
measures the VDD through a resistor
divider and an ADC. Our CPLD does
not use the TRST pin, so I have not
connected it to anything.

The R8C tristates all I/O pins at
reset, so it’s relatively safe to connect

http://www.circuitcellar.com
http://www.jkmicro.com
http://www.elprotronic.com

http://www.usbee.com

the pod to the circuit before you pro-
gram the pod. If you haven’t done so
already, build the JTAG application
and program it into the pod. This only
has to be done once, unless you put
some other application into the pod
(see Listing 2). If you haven’t built the
host-side application, build that too.
This builds a small host-side program
called xsvf that does nothing but
send the CPLD bitstream to the pod:

$ cd ../../host/xsvf ; make

Many of the pod applications will be
built this way—some software that
runs on the pod, and some software
that runs on the host. As this example
shows, minimizing the amount of
data that needs to go over the USB bus
can yield amazing performance gains.

To build the CPLD image, you’ll
need to download and install the Xil-
inx WebPACK application. This
includes everything you’ll need to pro-
gram CPLDs. I used the GUI to do the
initial design, and then wrote a Make-
file to automate it. There are additional

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

CIRCUIT CELLAR® • www.circuitcellar.com34

instructions on the FTP site; but in a
nutshell, compile the Verilog into a
standard intermediate form, compile
that file to the specific chip, and then
convert that file to the format needed
for programming. In my case, I used
the XSVF format. SVF is a standard
vector format, but it’s a text file.
XSVF is a binary format that’s specifi-
cally designed to be easily interpreted
by a small application. That small
application is the one I put in my pod.
Building the XSVF file is simple with
makefiles:

$ cd ../../cpld ; make

This created a bitstream file bin7.xsvf
with binary-encoded instructions on
how to program the CPLD to do what
I wanted it to do. After all the parts
were built and the pod was pro-
grammed, I could use it to program
the CPLD:

$ sudo ../host/xsvf/xsvf bin7.xsvf

What exactly happened here? Well,

the sudo command provided access to
the USB hardware, needed by the
FTDI libraries. The xsvf host program
used the FTDI libraries to open a
channel to the pod and take it out of
reset, which started the pod’s program.
The host sent a few commands to tell
the pod to check the circuit’s VDD and
verify that it matched the pod’s VDD.
The host then read the XSVF bistream
file and sent it across the USB line to
the pod, which interpreted those
instructions so as to use the JTAG
lines to program the CPLD. Note that
the pod and host used hardware flow
control to control the datastream, and
the pod had a 256-byte buffer to hold
incoming data.

Once the programming was done,
the host program read any diagnostic
text from the pod and printed it, and
the pod released the CPLD. The
CPLD, of course, started running the
logic design programmed into it. Once
programmed, I could disconnect the
pod from the circuit. Done!

The first time you do all this,
there’s a lot of set up. However, edits

http://www.circuitcellar.com
http://www.jkmicro.com
http://www.controlbyweb.com

www.circuitcellar.com • CIRCUIT CELLAR® 35

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

ESOURCES
Bin7 Project Page, www.delorie.com/electronics/bin2seven/.

Xilinx, Inc., XAPP058 Source Files, ftp://ftp.xilinx.com/pub/applications/xapp
/xapp058.zip.

———, “Xilinx In-System Programming Using an Embedded Microcontroller,”
XAPP058, 2007, www.xilinx.com/support/documentation/application_notes
/xapp058.pdf.

OURCE
R8C Microcontroller
Renesas Technology Corp. | www.renesas.com/en/r8ctiny

WebPack Software and XC9500 family of CPLDs
Xilinx, Inc. | www.xilinx.com

RR

SS

DJ Delorie (dj@delorie.com), who has been designing electronic circuits since

high school, earned an ECE degree at Clarkson University. After holding jobs

designing PC motherboards and network management software, he now writes

embedded development tools for Red Hat. DJ is also the creator of DJGPP and

one of the contributors to the gEDA project.

to the Verilog need only a make flash
command to have the Makefile build a
new bitstream and send it to the
CPLD chip. The Makefile rebuilds
whatever is needed and runs the host
xsvf program to send it to the CPLD.

MORE USES
You now know how to use the CPU

in the USB GPIO module to offload
processing in order to optimize per-
formance for a task-oriented purpose.
More than just fiddling bits, it enables
you to put intelligence close to your
circuit in order to take advantage of
the R8C’s speed and peripherals. I also
showed you how the host and pod pro-
grams work together to create smart
peripheral modules, like the JTAG
controller. And last, but not least, I
described an example of how a smart
pod can be used in a real-life circuit—
programming a CPLD chip.

Can you think of another use for the
pod? Experimenting with LCD inter-
faces, testing SPI chips, preprogram-
ming I2C EEPROMs—the possibilities
are limited only by your needs! I

mailto:dj@delorie.com
http://www.delorie.com/electronics/bin2seven/
ftp://ftp.xilinx.com/pub/applications/xapp/xapp058.zip
http://www.xilinx.com/support/documentation/application_notes/xapp058.pdf
http://www.renesas.com/en/r8ctiny
http://www.xilinx.com
http://www.circuitcellar.com
http://www.machinepier.com
http://www.gridconnect.com

36 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

With a little effort, you can turn DOS into a handy real-time operating system.
As Andrew and Jon explain, it can be the perfect fit for embedded applications
that may require too many resources for a single-board microcontroller. Read
on to learn how this USB flash drive reader for DOS can enhance your future
embedded applications.

DOS in the 21st Century
A USB Flash Drive Reader for MCUs Works for DOS

E

F
EA

TU
RE

ARTICLE
by Andrew Mitz & Jon Daley

ven the smallest embedded project can read and
write USB flash memory drives thanks to the

Vinculum VDRIVE2 flash memory drive reader module
from Future Technology Devices International. The
VDRIVE2 module, with its built-in USB socket, snaps
into the front panel of your project and talks to a micro-
processor through either a SPI port or a serial port (see
Photo 1). All of the complexities of talking to a flash
memory drive (attachment, FAT16 support, and so on)
are handled by its FTDI VNC1L flash memory drive host
controller chip, which provides simple commands for
directory listings, file transfers, and other operations.

Phootoo 1—The Vinculum VDRIVE2 USB flash memory drive reader
snaps easily into a front panel. It has a built-in microprocessor
that manages the flash memory file system with simple serial or
SPI port commands, so just about any embedded controller can
access a flash memory drive.

You can get a VDRIVE2 off-the-shelf from Mouser Electronics
for about $25. Although the VDRIVE2 was intended for
microcontroller use, our embedded application uses
DOS. Much of this article will apply to both.

WHY DOS?
DOS may be dead in the desktop computing world, but

it lives on as an important operating system for embed-
ded applications. One of the great advantages of DOS is
that small tweaks can turn it into a true real-time oper-
ating system that is perfect for low-volume, cost-sensi-
tive applications that require too many resources for a
microcontroller. At the National Institute of Mental

Health (part of the NIH), Andrew uses an
open-source data acquisition and control
program called NIMH Cortex. It is a real-
time DOS application developed for
behavioral brain research. It supports
low-speed analog channels (each with a

1 ksps conversion rate), lots of digital I/O, and a
few specialized interfaces (e.g., touchscreens),
and it comes with a companion program for near

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 37

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

real-time display of simple graphics objects on a separate
computer. You program NIMH Cortex in C. Once you
get past the learning curve, it is a powerful tool for
automating experiments. One thing we really miss on
our DOS system, however, is a USB flash memory drive
reader. USB disk support can run under DOS (refer to
www.bootdisk.com/usb.htm for examples), but large
applications like NIMH Cortex don’t tolerate the termi-
nate and stay resident (TSR) and other drivers that eat
up scarce DOS resources. We have circumvented the
DOS memory problem by using the VDRIVE2. In this
article, we will describe our mixed hardware/software
solution for a DOS flash memory drive reader/writer
that can be assembled for less than $50 and doesn’t use
resident memory.

HARDWARE
The VNC1L chip has a built-in UART, but the chip

provides only 5-V logic signals. RS-232 serial ports
require ±5 to ±15 V, so a level converter is needed for the
VDRIVE2. A Maxim Integrated Products MAX232A is
the most common chip for this job. It needs only four
0.1-µF capacitors and a decoupling capacitor to provide
buffering and bipolar voltage boost. We designed a small
PCB using the free layout tools from ExpressPCB. Two
copies of the circuit board layout fit onto a single 2.5″ ×
3.8″ board, the size used for the ExpressPCB MiniBoard
Service. Using our layout file, you can electronically
order three boards (six copies of the circuit) for about
$60. The layout file is posted on the Circuit Cellar FTP
site. Alternatively, you can delete one copy of our circuit
from the layout and lay out another project. Then your
$60 will get you three converter boards and three of your
design. Just don’t forget to leave space between the lay-
outs for cutting each board. If you plan to use the
VDRIVE2 with a SPI port, a level converter is not neces-
sary. However, a level converter will enable you to use

your computer as a test environment for learning about
the VDRIVE2 and even for embedded code development.

Photo 2 shows the populated circuit board. The
schematic is in Figure 1. Table 1 has a complete descrip-
tion of the parts, including the parts for power and pack-
aging. A nine-pin D-sub connector (J1, which is techni-
cally a DE-9, but often called a DB-9) mounts directly on
one end of the PCB for connection to the computer seri-
al port. The other end of the circuit board has a single-
row 2-mm pitch header (H1). The header matches the
jumper cable that comes with the VDRIVE2. For tight
spaces, you can cut one connector off of the jumper
cable and solder the cut wires directly to the circuit
board. An alternative header socket (H2) is on the side of
the circuit board; it has the same connections as H1, but

with 0.1″ spaced pins. H2 can
be used for soldering the cut
VDRIVE2 wires or to gain
access to the VDRIVE2 signals
for testing. Like the two con-
nector alternatives, two alter-
natives are provided for power-
ing the board, as well. The lay-
out has holes for a circular con-
nector (J2) commonly used for
wall power transformers
(bricks). Any DC brick rated
for 9 to 15 V at 100 mA will
work. A low-power, three-ter-
minal regulator (LM78L05, U2)
drops this voltage down to 5 V
for the MAX232A and the
VDRIVE2. Alternatively, regu-
lated 5 V can be pilfered from
any available USB port via J3.
J3 is a type-B USB connector,

PPhooto 22—The VDRIVE2 has 5-V (TTL/CMOS) signals. It needs a level
converter to interface directly with a serial port. Our level converter
circuit board is shown here. It has a header for the VDRIVE2 on one
end and a board-mounted serial port connector (DE-9) on the other
end.

Figure 1—The level converter schematic shows two power options: wall transformer or USB port
power. The circuit can be assembled for one or both power options.

http://www.bootdisk.com/usb.htm
http://www.circuitcellar.com

38 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

making it easy to bring power through a standard USB
peripheral device cable. When using the USB port for
power, J2, U2, and C6 are not needed. Switch SW1 is
shown for those who might want both options on the
same board, but more commonly a board will be assem-
bled for only one power option with a wire jumper in
place of S1.

You might want to mount the VDRIVE2 separately
from the level converter board, but we chose to package
them together in a plastic box (Serpac Series A) (see
Photo 3 and Photo 4). A wide rectangular slot is cut into
one end plate of the box to accommodate the VDRIVE2.
The other end plate is replaced with one precut for the
DE-9 (Serpac A-21) (see Table 1). Standard DE-9 hardware
secures the connector to the end plate and provides a
threaded fastener for the connecting cable. The arrange-
ment is a tight fit and some of the internal plastic ribs
and stand-offs must be trimmed with a hobby knife, but
the final product is appealing. The end plates and
remaining stand-offs provide plenty of support for the
circuit board and VDRIVE2. No additional mounting
screws are needed. Cuts in the box’s sloping sidewalls
provide access to the power connectors.

Look at the VDRIVE2 datasheet before completing
your assembly. The three-pin jumper on the back of the
device (UART/SPI) should be set for pull-up. Once
assembled, connect one of the power sources and con-
nect your computer’s serial port. You can use a modem
program in either DOS or Windows (e.g., HyperTerminal)
running at 9,600 bps to chat with the VDRIVE2. You can

even plug in a flash memory drive and get a directory
listing with simple text commands. Refer to the
Firmware manual for examples.

SOFTWARE CONSIDERATIONS
Our reason for using special hardware was to preserve

DOS memory by avoiding resident drivers. Thus, from
the outset, the plan was to produce a set of DOS com-
mands for each aspect of talking to the flash memory
drive (read, write, directory listing, and more). These
primitive commands could be used on their own or serve
as the backbone for an alternative user interface, perhaps
a Norton Commander-style interface.

PPhootoo 33—This shows how we packaged the VDRIVE2 together with the
level converter circuit board. The fit is tight, so the VDRIVE2 cable is
wired directly into the H2 pads rather than through a connector.

Taabble 1—This is a complete listing of parts and parts sources. A number of parts (J2, C6, U2, SW1, wall transformer) can be omitted when
using the computer’s USB source for power.

Quantity Ref Description Source Part Number Notes

1 Vinculum VDRIVE2 USB flash memory drive
interface

Mouser
Electronics

895-VDRIVE2

2 C1, C2, C3, C4 0.1-µF/50-V Ceramic capacitor Digi-Key 399-4264-ND

3 C5, C6 2.2-µF/50-V Miniature electrolytic capacitor Digi-Key P825-ND

1 H1 Single-row 2-mm header, 50 pins Digi-Key SAM1176-50-ND Break off eight pins for board

3 H2 Single-row 0.1″ header Do not install a connector

2 J1 Nine-position female D connector, PC mount, right
angle

Digi-Key A32075-ND

1 J2 DC power connector, PC mount, 2.1 × 5.5 mm Digi-Key CP-202A-ND Mount connector only if using a wall transformer

1 J3 USB B connector, PC mount Digi-Key AE9925-ND Do not mount connector if only using a wall
transformer

1 SW1 Ultra-miniature slide switch Digi-Key 360-2133 Use jumper instead of switch if only one of J2 or
J3 is used

1 U1 MAX232A RS232 Driver/receiver, 16-pin DIP Digi-Key MAX232ACPE+-ND

1 U2 LM78L05AC Low-power 5-V linear regulator, TO-92 Digi-Key MC78L05ACPFS

2 Mounting screws for J1, 4-40 × 3/8 Digi-Key H781-ND Box of 100, only two needed

2 Nut 4-40 Digi-Key H216-ND Box of 100, only two needed

1 D-Sub hardware set Digi-Key 609-1420-ND

1 Printed circuit board ExpressPCB Order using ExpressPCB software and .PCB file

1 Wall transformer 9 VDC at 125 mA Digi-Key MT7141-ND

1 Serpac series A plastic case, black Digi-Key SRA21B-ND

1 End panel with DB9 cutout for Serpac A-21 Digi-Key SR2005-DB9B-ND

http://www.circuitcellar.com

2-ch 1GSa/s Scope

1/2GHz RF Generators

Color LCD Scope

RF Generator

16-Ch Logic Analyzer

6 in 1 Scope

Automotive Testing

EMC Spectrum Analyzer

Pen Scope

USB Bus Analyzers

Handheld Scope

Sco

Mixed-Signal ScopeLow-Cost Scope

Te
s
tg

e
a
r

M
is

c

60/100/120MHz AWG

2-ch + trigger standalone USB

bench scope. $325 / $599

20MHz / 60MHz rugged handheld

USB 2-ch scope. $593 / $699

Intuitive full-featured 16-ch 4MB

200MHz sampling memory. $299

200kHz 2-ch 10-bit scope, 2-ch spectrum

analyzer, 16-ch 8MHz logic analyzer,

5-ch sig gen, 8-ch pattern gen. $199

Be
st

Sell
er

10/25MHz USB powered scope-in-a-

probe! Up to 100MS/s. $193 / $308

High-res, extremely low-noise,

portable 3GHz RF generator.

Packet-Master™ - USB 1.1/2.0

analyzers and generators. $699 +

Kits turn your PC into vehicle-

electrics diagnostic tool.

2-ch 1GSa/s (25GSa/s equiv.)

50/100 MHz scope. $595 / $795

High accuracy/stabilty, wde range, low

phase noise/leakage, serial control.

60/100/120MHz USB 14-bit ARB

with USB RS-232, LAN/GPIB.

Handheld Palm PC-based

2.7GHz Spectrum Analyzer.

Alan Lowne

Saelig CEO

100MHz Scope, + Spectrum/Logic

Analyzer and Signal Generator. $1259+

Janz - Full-featured standalone

fanless industrial Linux PC.

CAN Gateway

Above are some of our best selling, unique, time saving products see our website for 100s more:
WiFi/910MHz antennas, wireless boards, LCD display kits, Ethernet/IO, USB/RS232/485, USB OTG,
instant Ethernet serial, CAN/LINbus, USB cables/extenders, line testers, logic analyzers, color sensors,
motion controllers, eng. software, wireless boards, SMD adapters, I2C adapters, GPS loggers,
automotive testing, security dongles, video motion detectors, crystals/oscillators, custom switches,
barcode scanners, DSP filters, PLCs, Remote MP3 players, etc. FREE Starbucks card with your $50 order!

Check www.saelig.com often for special offers, bargains, business hints, blog, etc.

NEW
!

RI
GOL

NEW
!

RI
GOL

U N I Q U E P R O D U C T S & S U P P O R T
w w w . s a e l i g . c o m

2-ch 40/100/200MS/s 8-bit scope

range with 5/10/25MHz. $297 +

Serial-Ethernet Cable

Network serial product easily without

a PC using this 28” cable. $89

“Drop-n” solution connects PC to

I2C/SMBUS + 32 I/O lines. $89

USB to I2C

RF Modules

Simultaneouslytransmitcomposite

video and stereo audio signals.

UDP/IP-controlled 24 digital

I/O board 3 x 8-bit TTL ports.

Ethernet - IO

Mini-logger with built-in temp/hum/

pressure/3-axis accel sensors.

Multiparameter Loggers

1/2/4/8/16 x RS232

Add 1-16 COMports via your

PC’s USB Port easily.

RF Testing/EMI Tents

Portable RF test enclosures &

shieldng tents with external frame.

Wireless Solutions

Analog input, bluetooth wireless

modules 433/868/915MHz.

SPI Bus Analyzer

Protocol exerciser/analyzer for standard

SPI and non-standard 4-wire and 3-wire

serial protocol interfaces up to 50 Mbps.

Temp/RH Sensors

Novel ambient sensors & modules

accurately measure temp/RH.

“I really like this scope

adapter - it’s really meant for

teaching electronic experi-

ments but it’s ideal for engi-

neers too.”

Instant Ethernet

No OS needed. TCP/IP offload,

ICs improve system performance.

25MHz 2-ch /16 logic scope

and logic analyzer. $699

PSoC Starter

Get going quickly with PSoC

visual design environment.

.NET Board

Small (2.2” x 2.2”) lowest cost .NET

Micro Framework dev system.

TorqSense

Keyboard Simulator

USB board adds 55 I/O and 5 x

10-bit A/D inputs, 1 x 10-bit analog O/P.

NEW
!

RI
GOL

Compact, economical smart OLED wth

graphics drive from USB or RS232.

Easy OLED Display

Be
st

Valu
e

Configurable, patented USB-output

non-contact SAW digtal rotary torque

transducers with integral electronics.

Waveform Generator

USB2.0 speed 16-bit digital pattern

or arbitrary waveform generator.

I2C Xpress

Versatile USB 2.0 I2C protocol

exerciser and analyzer.

9p-9p or 25p-25p self-pwrd,

isolated RS232-RS422/485

RS232 to 422/485

CAN-USB

Intelligent CAN connection

from PC’s USB port. $299

Lorlin Switches

Amazing 7 in 1 Scope! $180

Fantastic array of stock and

custom switching devices.

FTDI USB ICs

Popular UART and FIFO chips.

Upgrade Legacy designs to USB.

EMC Spectrum Analyzer

RF & EMF Spectrum Analyzer

1Hz to 7GHz for WiFi, mikes, etc.

Quantum

Wireless Data Loggers

U
S

B
iz

i

u
O

L
E

D
-9

6
-G

1

A
W

M
6

X
X

 T
X

/R
X

K
K

 S
y

s
te

m
s

U
S

B
-C

O
M

Q
u

a
n

tu
m

P
o

K
e
y
s
5
5
T

U
S

B
I2

C
IO

R
T

R
-5

0
W

a
v
e
 X

p
r
e
s
s

U
S

B
1
2
 /

 4
8
0
+

 /
 5

0
0
A

G
P

S
2

2
0

3
/4

/5

P
S

2
1

0
4

/P
S

2
1

0
5

P
D

S
5

0
2

2
S

 /
 P

D
S

6
0

6
2

T

D
S

1
0

0
0

E

D
S

1
0

2
2

C
D

P
o

S
c

o
p

e
 w

it
h

 P
r
o

b
e

s

H
D

S
1
0
2
2
M

N
 /
 H

D
S

2
0
6
2
M

T
G

R
1
0
4
0
 /
 T

G
R

2
0
5
0

C
S

3
2

8

L
A

P
-1

6
1
2
8
U

S
P

I
X

p
r
e
s
s

E
M

C
 R

F
 &

 E
M

C
 S

p
e
c
tr

u
m

P
S

A
2
7
0
1
T

C
G

R
-1

0
1

I2
C

 X
p

r
e

s
s

P
S

3
4

2
3

 /
 K

L
A

R
I-

M
O

D

e
m

P
C

-x
1
3
3

A
P

S
IN

3
0

0
0

R
F

 T
e

s
ti

n
g

 /
 E

M
I

T
e

n
ts

M
S

R
1
4
5
S

E
L

-U
S

B
-1

/2
/3

/4

L
D

3
0

0

D
G

3
0
6
1
A

/3
1
0
1
A

/3
1
2
1
A

R
W

T
3
2
0

F
T

2
3
2
R

L

C
A

N
-U

S
B

e
C

O
V

-1
1
0
-P

L
o

r
li

n

P
S

o
C

 S
ta

r
te

r

W
IZ

1
1
0
S

R
 /

 W
5
1
0
0

E
th

e
r
-I

O
 2

4

R
T

G
0

0
5

E
m

b
e

d
R

F
 /

 A
d

e
u

n
is

U
P

S
IC

A
P

 /
 D

L
P

-T
H

1

Quickly add capacitive touch

on / off & X / Y - sensing ICs.

Log and display temp, hum, volt,

event-time or pulse-counting data

CircuitGear CGR-101™ is a unique new, low-cost

PC-based instrument which provides the features of

seven devices in one USB-powered compact box:

2 - c h 1 0 - b i t 2 0 M S a / s e c 2 M H z o s c i l l o s c o p e ,

2-ch spec t rum-ana l yze r, 3 MHz 8-bit arbitrary-

w a v e f o r m / s t a n d a r d -

function generator with

8 digital I/O lines. It also

funct ions as a Network

A n a l y z e r , a N o i s e

Generator and a PWM

Output source – all for

less than $180! What’s

more – its’ open-source

so f twa re r uns w i t h

Windows, Linux and Mac

OS’s! Only $180

Lo
west

Pri
ce

s

Electronic DC Load

Const. current, resistance,

conductance,voltage&powermodes

USB Logger

Standalone USB temp / hum / volt /

current loop data logger. $49+

Ready-to-go out-of-the-box FPGA/DSP

designs for beginners and experts!

FPGA Systems
w

w
w

.s
a
e
li
g

.c
o

m

http://www.saelig.com
http://www.saelig.com
http://www.saelig.com
http://www.saelig.com
http://www.saelig.com

40 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

VDRIVE2 is first powered up.
Perhaps the most vexing problem

associated with implementing read-
write programs for the VDRIVE2 is
dealing with the directory structure
of the flash memory drive. The
VDRIVE2 does not keep track of the
current default directory. Without a
resident program, it is difficult,
albeit not impossible, to keep track
of the current directory. Our pro-
grams require you to take responsi-
bility for knowing the current
default directory after one or more
change directory commands. To
complicate matters, the DRIVE2
supports only 8.3 (eight-character
alphanumeric name followed by up
to three-character alphanumeric
extension) DOS file names. Thus,
Windows XP directory names will
often look like PROJEC~2. In our
application, these limitations do not
pose any real inconvenience. We use
simple directory structures to move
files from our NIMH Cortex data
acquisition system to a Windows
computer for editing or data analy-
sis. With this in mind, we did not
implement complex directory pars-
ing at the command line. Specifica-
tions like ..\..\PJM\DAY2 are not sup-
ported, although specifications like
..\DAY2 and \P\PJM\DAY2 are.

The VDRIVE2 firmware must be
at version V3.64 or later. Updating
the VDRIVE2 can be done in two
ways. One, you can download
VPROG reflasher COM utility and

A number of issues arose before
and during development that were
related to the problem of operating
without a resident driver. A resident
driver can remember the data rate
and other serial port settings entered
earlier by the user. Programs not
loaded into memory need another
way to avoid Korsakoff’s syndrome.
The two standard options are envi-
ronmental variables and configura-
tion files. We chose to use environ-
mental variables. You can place
SETENV commands in the
AUTOEXEC.BAT file for boot-up
configuration, but we recommend
using our batch file that takes the
parameters on the command line
and checks for valid environmental
variable names.

Environmental variables provide
memory for the different programs
using the VDRIVE2, but things get
messy when trying to change the
data rate of the VDRIVE2. If the
VDRIVE2 has been set to one baud
rate (e.g., 9600) and then you change
the environmental variable to a new
baud rate, the old baud rate informa-
tion is lost. Multiple environmental
variable sets could be employed—
one for program tracking and one for
user requests, but this approach was
eschewed out of personal preference.
Rather, we chose an algorithm that
hunts for the proper data rate if
communication with the VDRIVE2
is lost. The algorithm is useful for
other occasions, such as when the

PPhootoo 4—This is the complete assembly,
with the VDRIVE2 on one end and the

level converter power connectors
accessible from the side. The serial

port connection (not visible) is
opposite the VDRIVE2.

http://www.circuitcellar.com
http://www.senix.com
http://www.designnotes.com
http://www.hobbylab.us

www.circuitcellar.com • CIRCUIT CELLAR® 41

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

the latest VDAP ROM file from the
Vinculum download page on the
FTDI web site. The Reflasher COM
utility runs from DOS or a DOS
window and programs the VDRIVE2
via the serial port. Alternatively, you
can rename the FTD file for the lat-
est release to FTRFB.FTD, put the
file on the root directory of a flash
memory drive, and just plug the
flash memory drive into the
VDRIVE2. The VDRIVE2 will find
the file and update its own firmware.

SOFTWARE IMPLEMENTATION
The eight DOS commands for

using the VDRIVE2 are in Table 2.
Two commands, FCONFIG and
FBAUD, provide ways to establish
the serial port communications
parameters with the VDRIVE2.
FCONFIG is the only command
implemented as a DOS batch file
(.BAT). The other commands are exe-
cutable files (.EXE). FCONFIG sets
environmental variables in a conven-
ient way, providing some helpful
error checking. Here are two exam-
ple FCONFIG commands:

fconfig com 2 baud 115200
fconfig address 0x2E8 irq 5 baud 9600

The first example selects COM port 2
at 115,200 bps. The port and inter-
rupt addresses are the standard ones
for COM port 2. The second example
explicitly sets (nonstandard) address-
es. FCONFIG does not try to initiate
communications with the VDRIVE2,
FBAUD does. FBAUD initiates a
search for the VDRIVE2 device, tries
to establish a new data rate, then

reestablishes communications at the
new rate. Allowed data rates are
2,400, 9,600, 19,200, 38,400, 57,600,
and 115,200. A power-up reset places
the VDRIVE2 at 9,600 bps.

FCD is used to change the default
directory on the flash memory drive.
When first inserted, the flash memo-
ry drive is set to the root directory.
FCD can return the flash memory
drive to its root directory using just
a backslash as the command line
parameter, just like the DOS CD
command. Other operations are sim-
ilar to the DOS CD command, with
two exceptions, as noted above. FCD
does not try to manage complex tree
commands, and FCD will not report
the current default directory path.
FDIR also does not report the cur-
rent directory path. FDIR with no
command line parameters lists the
entire contents of the current direc-
tory without any further details.
FDIR with a specific file name will
display the file size of that file. Sim-
ple DOS wild cards will work as
expected (e.g., FDIR *.DAT), but
more complex wild card constructs
are not implemented. This limited
directory functionality could be
greatly expanded. We encourage you
to think about writing a more con-
venient user interface using our
source code as a starting point.

The file operation commands are
FPUT, FGET, FDEL, and FREN. We
thought about implementing an
FCOPY command rather than FPUT
and FGET, but having separate com-
mands lets us use the file path parsing
capabilities of DOS. Access to files
on the DOS system can use any legal

Taabblee 22—This table lists the eight DOS commands for accessing files on the flash memory
drive. FCONFIG is a batch file; the others are all exactly the same .EXE files with different
names!

DOS Command Purpose

FCONFIG.BAT Set COM port address, data rate, and IRQ in the environment.

FBAUD.EXE Establish communications with VDRIVE2 at selected data rate.

FCD.EXE Change default directory.

FDIR.EXE List current default directory.

FPUT.EXE Copy a file from the current DOS directory to the flash memory drive.

FGET.EXE Copy a file from the flash memory drive to the current DOS directory.

FDEL.EXE Delete a file on the flash memory drive.

FREN.EXE Rename a file on the flash memory drive.

http://www.circuitcellar.com
http://www.pololu.com/ccad

file path construction, while access
to files on the flash memory drive
are limited to the current default
directory of the flash memory drive.
Once again, there is an opportunity
for you to program a more general-
purpose interface that supports more
complete file path constructions for
the flash memory drive and renam-
ing files as they are copied. FREN
lets you manually change a file
name on the flash memory drive and
FDEL can delete a file. FPUT, FGET,
and FREN will overwrite only a des-
tination file if a /y option is added as
the first command parameter. (Note
that the option /h will list instruc-
tions for any of the commands.)

The most challenging part of the
source code development was manag-
ing the FIFO of the UART during serial
port transfers. The limited computa-
tional power of the VDRIVE2 and the
wide variation in personal computer
hardware require careful coding of the
serial port handshaking. The FIFO of
the computer UART must be enabled
and disabled at critical moments to
maximize throughput without over-
running the VDRIVE2 buffer at high
data rates. The VDRIVE2 provides an
acknowledge handshake, so errors are
always trapped. Even with the careful
handshake, a file copy (FPUT or
FGET) will fail on occasion. These
failures are rare unless the computer
hardware just cannot handle one of
the high data rates. For large files (over
a few megabytes), it probably makes
more sense to reboot the system to
Windows and use the full speed of a
USB port. It takes about 50 minutes
to copy a 30-MB file at 115,200 bps,
which is close to the theoretical min-
imum time (about 46 minutes).

COMPILER & SOURCE CODE
The source code is posted on the

Circuit Cellar FTP site. Although
the source code is rather generic C

and should work with any C compil-
er, the code comes with a project file
for compilation using Borland C++
version 1.1. The Borland compiler is
available as a free download for non-
commercial use (http://dn.codegear.
com/article/21751). On the web site,
you will find a lot of information for
installing and using the compiler.
For this project, installation on a
Windows XP computer is straightfor-
ward. We use all installation
defaults except the source disk (C
drive instead of a floppy disk). To
keep things simple, the source code
is unzipped to a new directory
C:\TC\FSOURCE, a subdirectory of
the Turbo C++ compiler root. After
everything is set up, double click the
TC.EXE file in the C:\TC\BIN subdi-
rectory to get character-based Turbo
C++ GUI. If you want, use the prop-
erties option of the DOS window to
switch to full-screen mode and flash
back to the good old days of DOS.

Compile is as easy as install. Once
Turbo C++ is running, type ALT-P to
drop down the Project menu and
select Open Project. Navigate to the
FSOURCE directory and select MAS-
TER.PRJ. You should end up back in
the main Turbo C++ screen. Type
ALT-C for the Compile menu and
select Build All. That will create
MASTER.EXE, the only file you
need. Why is MASTER.EXE the only
compiled file? Because all of the
other .EXE files are just clones of
MASTER.EXE with different names.
When the program is started, it
looks at the first parameter of the
command line, which is the file
name of the program; the program’s
file name determines what action to
take. You can manually make copies
of MASTER.EXE, renaming each
copy to match the commands, or
you can use the batch file
MAKE.BAT to generate the entire
set. Consolidating the object code to

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

CIRCUIT CELLAR® • www.circuitcellar.com42

A combined hardware/software solution
provides an affordable way to read from
and write to flash memory drives while
in DOS.

”“Standards improve quality and enable

designers to share components across

different projects.Today, ARM®

Cortex™-M profile processors, combined

with the Cortex Microcontroller

Software Interface Standard (CMSIS) and

optimized middleware from the

industry’s largest ecosystem, are setting

the hardware and software standards for

microcontrollers.

These standards enable leading vendors

such as Luminary Micro, NXP, and

STMicroelectronics to supply advanced

microcontrollers, while maximizing code

reuse across multiple platforms.

Standards
Make
Sense

“We based our award-winning
Stellaris® microcontrollers on Cortex-M3 to
provide users with 32-bit performance while
eliminating future architectural upgrades or

software tool changes.”

JeanAnne Booth
Chief Marketing Officer,
Luminary Micro

Cortex-M3
Microcontrollers
Make Sense

For more information visit

www.onARM.com

TheArchitecture for the

DigitalWorld
®

©ARM Ltd.AD158 | 01.09

http://dn.codegear.com/article/21751
http://dn.codegear.com/article/21751
http://www.onARM.com
http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 43

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

ROJECT FILES
To download code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/
226.

OURCES
FTDI VNC1L Host controller chip and VDRIVE2 reader module
Future Technology Devices International | www.ftdichip.com

NIMH Cortex
NIMH Laboratory of Neuropsychology | www.cortex.salk.edu

PP

SS

Authors’ note: This research was supported by the Intramural Program of the
National Institute of Mental Health, National Institutes of Health.

Andrew Mitz (arm@nih.gov) is a Ph.D. research scientist at the National Insti-
tutes of Health where he studies the electrical activity of the brain. He received
his Bachelor’s and Master’s degrees in electrical engineering from Washington
University and the University of Maryland, before entering a medical research
program at Emory University. Andrew’s laboratory work involves instrumenta-
tion of physiological signals (e.g., muscle activity, heart rate, eye tracking, and
microvolt recordings of brain cells). He has worked on the development of
many real-time embedded systems, including robotics. In his free time,
Andrew collects and repairs antique radios and supports emergency communi-
cations through amateur radio. He has also developed devices for people with
disabilities. Some of Andrew’s designs are now in commercially shipping prod-
ucts, and many end up as publications in a wide variety of professional and
hobby magazines. His favorite moments in embedded design are at the begin-
ning and the end of each project. “The middle,” Andrew says, “is often quite
maddening!”

Jon Daley is an embedded software engineer who currently can be found alter-
nating between the two extremes of assembly language and ajax/php for his
startup company Lime Daley. Wherever he is, you can find him at
http://limedaley.com or circuitcellar@jon.limedaley.com.

a single program simplifies develop-
ment in many ways, but the down
side is that you cannot rename the
file operations. Thus, if you do not
like the program name FPUT.EXE,
you might be tempted to rename it
to, for example, TOFLASH.EXE.
However, the renamed program will
just give you an error message. To
change the name of a command, you
will also have to change the name in
the source code of MAIN.C, shown
in Listing 1. Change the file name in
quotes and then update the number
of characters to match the new
name. Do not exceed the 8.3 (12
character) DOS limit. After updating
MAIN.C, repeat the Build All step
above and then copy MASTER.EXE
to the new command file name.

A BETTER INTERFACE
A combined hardware/software

solution provides an affordable way
to read from and write to flash mem-
ory drives while in DOS. In this
implementation, inexpensive hard-
ware obviates the need for resident
drivers. While version 1 of the soft-
ware can be a little awkward when
the flash memory drive has complex
directory structures, the source code
and information presented here pro-
vide a pathway to better user inter-
faces. It is easy to envision a Norton
Commander-like interface, or some
other classic semi-graphical charac-
ter-based user interface for selecting
and operating on files and directories.
We hope to hear from readers who
take on this part of the challenge.
Because USB ports have such blazing
speeds compared to their serial prede-
cessors, large files are best managed
by setting up dual-boot operating

systems that enable you to defenes-
trate DOS for Windows when more
serious file transfers are necessary.
For smaller files, the VDRIVE2 and
the new DOS commands are an ideal
solution.

Although the software was written

for DOS, much of the code is
reusable for microcontrollers with C
compilers, or as an example for other
embedded applications. If you build
the level converter, you have a great
set of tools for experimenting with
the VDRIVE2. I

Listinng 1—The file name for each command is hard-coded in MAIN.C. Change the string in the strncmp function and recompile MAIN to
rename a command.

if(!strncmp(szCommand, “FDIR.EXE”, 8)) g_eCmd = COMMAND_FDIR;
else if(!strncmp(szCommand, “FPUT.EXE”, 8)) g_eCmd = COMMAND_FPUT;
else if(!strncmp(szCommand, “FGET.EXE”, 8)) g_eCmd = COMMAND_FGET;
else if(!strncmp(szCommand, “FCD.EXE”, 7)) g_eCmd = COMMAND_FCD;
else if(!strncmp(szCommand, “FREN.EXE”, 8)) g_eCmd = COMMAND_FREN;
else if(!strncmp(szCommand, “FDEL.EXE”, 8)) g_eCmd = COMMAND_FDEL;
else if(!strncmp(szCommand, “FTER.EXE”, 8)) g_eCmd = COMMAND_FTER;
else if(!strncmp(szCommand, “FBAUD.EXE”, 9) g_eCmd = COMMAND_FBAUD;
else g_eCmd= COMMAND_UNKNOWN;

mailto:arm@nih.gov
http://limedaley.com
mailto:circuitcellar@jon.limedaley.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/226
http://www.ftdichip.com
http://www.cortex.salk.edu
http://www.circuitcellar.com

44 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

Instead of buying expensive transformers or converters to run your simple circuits,
try using a transformerless power supply. Tom used one to construct a switch that
controls lights in a pantry. When the door is opened, a processor senses a reed
relay and powers up the outlet. Three minutes later, if the door is not closed, the
outlet shuts off.

Transformerless Power Supply

D

F
EA

TU
RE

ARTICLE
by Tom Struzik

o you need a low-cost way to
run a simple 5-V circuit from

120-VAC power without bulky and
expensive transformers or converters? If
so, a transformerless power supply may
be just what you require.

Before I begin, review the circuit in
Figure 1. Do you see something of con-
cern? Do you understand why your
mother would warn you against building
this circuit?

If you said “no,” stop right here and
read no further. This is by no means a
beginner’s circuit. It should be considered
an experimental design. I make no claim
that this design is safe. You are responsi-
ble for knowing and implementing all of
the necessary safety precautions when
working with this or any circuit connected

directly to mains voltages. Now, make your mother
happy by being safe and responsible. Have fun and let’s
continue.

THE PROBLEM
This design started from my dissatisfaction with both

the Smart Home Systems X10 and Insteon light switch
controllers. I never could get a reliable signal out to all
of the modules. Plus, I really needed only a simple
open/close sensor and maximum on-timer functionality.
I thought there should be an easier solution. Having
done some recent work with an Atmel AVR processor, it
seemed a simple answer would be to use an AVR proces-
sor monitoring a switch and controlling a TRIAC.

Here’s a quick preview of the end of the story just to
give you an idea of the potential applications. I built an
AVR switch with my transformerless power supply. My
AVR switch controls lights I placed inside a pantry (see
Photo 1). The AVR switch resides inside an outlet box in

the inside wall just over the door. The
outlets on the right half of the box go
to small under-cabinet lights mounted
along the inner pantry wall. The AVR
switch monitors a reed relay embed-
ded in the door frame directly below
the outlet box. When the door is
opened, the AVR processor senses the
reed relay and powers up the outlet.
Three minutes later, if the door is
not closed, the outlet is turned off.

Refer to the simple timed light switch
in Photo 2. On the left side of the wall
plate, this AVR switch configuration hasFigure 1—This is the basic dangerous circuit.

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 45

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

a push button and a small LED nightlight.
Pushing the button turns on the light. Pushing
it again turns off the light. If I leave it on for
longer than 45 minutes, the light automatical-
ly turns off. As a result, my lights no longer
stay on all day and my electric bill is under
control.

As you can see in Photo 3, the AVR switch is
compact. The AVR processor is at the top. The
transformerless power supply components are at
the bottom.

THE SEARCH FOR A SOLUTION
At the beginning of this project, the idea was to

use a low-power AVR processor to control a TRIAC. A
quick Internet search turned up numerous examples of
how to use a microcontroller with a TRIAC to control a
120-VAC load. One example is presented in Microchip
Technology application note TB094, “Dimming AC
Incandescent Lamps Using a PIC10F20.” I thought this
would be easy, so I started listing components: a proces-
sor, a TRIAC, a transformer, a rectifier, a capacitor, a
zero-crossing detector, a TRIAC optoisolator, and the
list went on. It quickly became apparent that this would
never fit in the 1.5” × 2.5” × 1” area inside a standard

wall outlet box. I needed something smaller and simpler.
The largest components obviously compromised the

power supply. A typical wall-wart power supply, with its
transformer and rectifier, would have taken up all the
space by itself. Thus, the problem became how to make
a tiny power supply. I then remembered I had a handful
of unused cell phone mini-chargers lying around. They
were small, so I thought perhaps there was an answer
inside. A victim was selected so I could find out. The
circuit board from the mini-charger is shown in Photo 4.

As I expected, there was no large transformer or recti-
fier involved; instead, it was a miniature switching

power supply. Unfortunately, even with the small-
ish inductor, the overall size was still too large for
the space I had to work with. Thus, after estimat-
ing the size of a complete solution, the mini-
switcher was removed from the list.

If you are still interested in a mini-switcher for
your own project, check out the TinySwitch-II
family of parts from Power Integrations. (A
TNY266PN is shown on the left in Photo 4.) A
small 4- to 15-W power supply is possible.

Another interesting part I ran across during my
Internet searches was a Supertex SR086/87
adjustable off-line inductorless switching regula-
tor. This is a true inductorless power supply that
works by switching a transistor on or off when the
rectified AC is below or above the desired output
voltage. This part can source only 100 mA, which
was sufficient for my purposes, but it had one
major problem. The circuit called for a rectifier
that would cause the DC outputs to float relative
to the AC mains. Therefore, I would not be able to
drive a TRIAC directly from the processor outputs.

Phhootoo 1—This AVR switch is mounted next to the
receptacle that it controls. Opening the door powers
up the receptacle and turns on the lights inside the
kitchen pantry.

Phootoo 22—In this variation, the AVR switch turns the lights on when the
push button is pressed and automatically turns the lights off if the maxi-
mum on time is exceeded.

http://www.circuitcellar.com

46 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

Using an optoisolator to drive the TRIAC would have
been possible, but it would have increased the parts
count and thus the overall physical volume. Still striv-
ing for the minimum size and parts count, my search
continued.

Finally, I wondered how the original X10 modules fit
a complete power supply into such a small space. This
seemed like a potential path to a solution, so I decided
to dissect one (see Photo 5)!

Inside the X10 module was a notable absence of any
type of transformer, power regulator, or rectifier; it
included mainly resistors and capacitors. It appeared
that the inductor on the right (see Photo 5) was used
only for reducing the output noise caused by the X10
dimmer functionality. Few components were left to
make up the actual power supply. The X10 module was
the essence of a minimal design. So, the question
became, How did X10 build this transformerless power
supply?

It turned out that the phrase “transformerless power
supply” was a good Internet search term. I found various
designs that all focused on a simple capacitor used to
siphon power from the AC mains. One find was a tutori-
al on transformerless power supply design published as a
Microchip technical brief, “TB008: Tranformerless
Power Supply.” I also found a Microchip application
note, “AN954: Transformerless Power Supplies: Resis-
tive and Capacitive,” that actually went into the calcu-
lations for the various component sizes. This finally
appeared to be a solution. I now had the beginnings of
my experimental transformerless power supply.

MAINS-POWERED SUPPLY
My first objective was to use the calculations in appli-

cation note AN954 to determine the required compo-
nent sizes. I based the design on the high-voltage capaci-
tor because its physical size, cost, and availability would
control the overall design. For example, an X2 class
capacitor is relatively large for its small farad value.
Higher value X2 capacitors increase rapidly in both size
and cost, which greatly limits the available component

choices. Application note AN954 also makes some safe-
ty suggestions, which I incorporated into the basic
design. Finally, note that while not currently Underwrit-
ers Laboratories-approved, I knew it would be possible to
produce an enhanced design to meet UL approval
requirements. Read the “Other Considerations” section
in the application note or visit the UL web page
(www.ul.com) for more information.

After crunching some numbers, I defined the basic cir-
cuit in Figure 2. By design, this circuit can provide only
about 10 mA of continuous current. Drawing any more
current will cause severe output voltage sag. Unfortu-
nately, I found that attempting to create a higher current
design increased only the size of the X2 capacitor even
more rapidly.

I read about alternative designs with higher available
currents in the application note. One such alternative
involved adding a rectifier to the front end of this
design. However, as before, I knew that using a rectifier
would make it impossible to drive a TRIAC gate from a
processor output directly.

PPhhootoo 33—The low parts count enables the transformerless power
supply, processor, and TRIAC to all fit in a 1.75” × 2.5” enclosure.

To minimize exposure to high
voltages during construction, I
decided to build a transformerless
power supply prototype as a unit
separate from the logic circuit
prototype.

”
“

Another alternative was a resistive design, rather than
a capacitive one. The problem with the resistive design
was that it required a 10-W resistor, which would result
in both size and power dissipation issues. Ultimately, I
determined that the 10-mA capacitive design was a rea-
sonable compromise between available current and com-
ponent size.

To minimize exposure to high voltages during con-
struction, I decided to build the transformerless power
supply prototype as a unit separate from the logic circuit
prototype. The idea was to allow for the troubleshooting
of the logic section from a normal 5-VDC supply and
risk only high-voltage exposure when troubleshooting
the power supply itself. However, at some point, I knew
both sections would have to be integrated, but being
built as separate prototype units helped minimize risk.

Once I had an assembled prototype of a transformer-
less power supply, the first issue was trying to deter-
mine how well the power supply was working. The
problem was that the DC ground for the circuit design
floated just 5 V below the hot line of the 120-VAC
mains. Thus, if I had tried to measure the 5-DC output
with my mains-powered oscilloscope, and if I was

http://www.circuitcellar.com
http://www.ul.com

www.circuitcellar.com • CIRCUIT CELLAR® 47

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

I chose an Atmel ATtiny26L. The
“L” variant had an operating range
down to 2.7 V with an idle current
of 0.18 mA. Again, low power con-
sumption was critical because the
transformerless power supply could
provide only a small amount of con-
tinuous current. Another benefit was
that with the wide operating range,
it was possible to draw a little more
current from the power supply and
still survive the resulting voltage
sag.

I then selected an isolated gate
TRIAC. For smaller loads, the
TRIAC could operate without a
heatsink; but for larger loads, it
would need a heatsink. I placed my
final design in a plastic box with a
metal lid. The metal lid made a good
heatsink. But because of the trans-
formerless power supply, the TRIAC
had to be an isolated tab version.
Otherwise, the TRIAC tab and thus
the heatsink/metal lid would have
also been energized.

With the processor and TRIAC in
place, I included two digital switch
inputs in the circuit, one zero-cross-
ing interrupt, one analog input with
an adjustable potentiometer, one dig-
ital output with a display LED, and
the basics of a two-wire interface.
Because the entire circuit was at
mains potential, any wiring leaving
the circuit was also at mains poten-
tial. So, to help improve the safety
of the switch inputs, I placed cur-
rent-limiting resistors on both sides
of the switch inputs. The chosen resis-
tor values were the highest values pos-
sible that still allowed the processor
to detect the switch closure. Putting
everything together resulted in the cir-
cuit shown in Figure 4. Remember:
Even with these precautions, you
still need to install the box and cir-
cuit so that no one can come into
direct contact with potentially ener-
gized components.

One of this transformerless power
supply’s advantages was that it had a
built-in zero-crossing signal. Howev-
er, with the capacitive version of the
design, the zero-crossing signal had a
substantial phase shift. I was not
planning to use any dimming func-
tionality, so the zero-crossing signal

VAC in the circuit. So, it
still would be a danger-
ous circuit.

Unfortunately, I didn’t
have an isolation trans-
former handy, so I had to
improvise by wiring two
step-down transformers
secondary-to-secondary
(see Figure 3). With a
pair of 120-/24-VAC
transformers wired back-
to-back, the 120-VAC
input was converted to
24 VAC and then back to
120 VAC on the output
side. More importantly,
no DC current could
flow between the input
and output. With my

improvised isolation transformer, I
could then verify the proper opera-
tion of my transformerless power
supply prototype.

If you build this isolation trans-
former, think the component selec-
tion through and don’t overload the
transformers. Remember 100 mA at
120 VAC becomes 0.5 A in the 24-
VAC winding, so plan accordingly.
This can really become an issue if
you plan on testing your circuit
while it’s actually controlling a load!
A 60-W bulb could pull over 2.5 A
through the 24-VAC windings. Fuse
appropriately and check the VA rating
of the transformers. Be careful. Check
your numbers and double-check your
setup before you proceed. Remember
that you still have 120-VAC potentials

in the circuit even with
the isolation transformer!

AVR POWER SWITCH
With my experimental

transformerless power
supply designed, I needed
to add an AVR processor
and a TRIAC to finish
my AVR power switch.
Because this was intend-
ed to be an experimental
platform, I added a few
expansion options to the
circuit—that is, at least
as much as I could shoe-
horn into such a small
space.

extremely lucky, I might have seen a
115-VAC signal. However, it was
much more likely that I would have
simply fried everything. The dilem-
ma was that the signal ground on
the oscilloscope was at Earth
ground. If I had tried to connect both
grounds together, the 115-VAC
potential difference between the two
grounds would have resulted in sub-
stantial current.

The solution would have been an
isolation transformer. This would
have effectively kept the two
grounds separated and enabled me to
connect the oscilloscope signal
ground to the circuit DC ground and
observe the 5-VDC output. However,
even with the isolation transformer
in place, there would still be 120

PPhhootoo 44—This is a TinySwitch-II miniswitcher.

PPhhootoo 55—This is an opened Smart Home Systems X10
light switch.

http://www.circuitcellar.com

48 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

wasn’t necessary. However, because
this was an experimental platform
and the signal was available, I
included it anyway. One result of
that decision was that I could also
use the zero-crossing signal to short-
en the time the TRIAC gate needed
to be powered. As a result, the over-
all circuit current demand was
reduced. To implement the TRIAC
control, the software was designed
to turn on the TRIAC immediately
after the zero-crossing and to leave it
turned on only until sufficient cur-
rent was being conducted through
the TRIAC to latch the gate. At that
point, the TRIAC gate could be
released and the TRIAC would stay
energized.

A second issue associated with the
zero-crossing signal was a tendency
to ring when there were switching
transients present on the incoming
120-VAC line. I tried to compensate
for this. But if the circuit is used in
a noisy environment, there may be
some false triggering of the zero-
crossing interrupt.

SOFTWARE
The sample software for the AVR

power switch platform was written
in WinAVR C. It was relatively
straightforward to write. Code size
and performance were not really
issues with this application.

The entire software package com-
prised several interrupt-driven func-
tions. The first routine, Main, was
nothing more than an empty loop.
The IOInit routine did just that; it
took care of initializing the proces-
sor. OnTime was a simple routine to
look at the ADC value and select
the appropriate “maximum on
time.” A minimum ADC value
equated to a 5-minute delay while

increasing values gave a
longer delay up to a max-
imum of 59 minutes.

The interrupt service
routine (INT0_vect)
was the heart of the
software. It was driven
by the zero-crossing sig-
nal from the trans-
formerless power supply.
The routine was respon-

sible for determining the remaining
“on time” and debouncing the two
switch inputs. It also used the current
TRIAC state, the input switch states,
and the remaining maximum on time
to determine the next TRIAC state. If
the routine determined that the
TRIAC should be on, it started Timer1
with the necessary delay time to com-
pensate for the zero-crossing detector’s
phase shift. Then the Timer1 compare
interrupt service routine
(TIMER1_CMPB_vect) turned on the
TRIAC and restarted Timer1 for the
TRIAC latching delay. When the
Timer1 compare routine triggered
again, the TRIAC was released.
Remember, at this point, the TRIAC
would stay latched by itself until the
next zero crossing. This also meant
that in the future, if I wanted to mod-
ify the software to support dimming,
the basics were there. It would just
involve lengthening the phase-shift
delay as required to control the
TRIAC turn-on point.

Input ports PA0 and PA1 were
defined as the inputs for the switches.
PA0 was intended to act as a door
open/door close switch. This means
shorting PA0 to DC ground moves the
TRIAC state to off and floating PA0
moves the TRIAC state to on.

Switch input PA1 was intended to
act as an On/Off push button. Each
press and release of a push button

Figgure 2—This is a basic capacitive transformerless power
supply.

would toggle the TRIAC state. Yes,
the software was designed so that
both PA0 and PA1 could be used at
the same time.

ADC2 was used to sample the
potentiometer to determine the maxi-
mum on time. Output port PA4 was
designed to control the indicator
LED, while output port PA7 was used
to drive the TRIAC gate.

If you decide to try your hand at
building this circuit after reading this
article, there are a few other consider-
ations to keep in mind. Skip in-cir-
cuit programming capability; other-
wise, I guarantee that at some point
you will accidentally hook-up your
in-circuit programmer while the cir-
cuit is connected to the mains. I’m
not sure if you and your PC will sur-
vive that connection.

Always use your isolation trans-
former if there is even the slightest
possibility that you or your equipment
could come into contact with the cir-
cuit. It’s still a dangerous circuit.

Remember to measure! Your volt-
meter and oscilloscope are your
friends. Before you make a connec-
tion, measure the potential between the
connection points. Is it really 5 VDC, or
did the 120 VAC sneak in? It’s much
better to measure often rather than
smoke parts.

Construct your circuit so that no
external component can be touched.
For example, use in-wall magnetic
reed-relay switches, such as those
found in alarm systems, for external
switches. Remember that despite the
fact that the processor is running at 5
VDC, it is actually at a 120-VAC
potential.

For any external push buttons,
make absolutely sure that there are
no exposed grounded or other metal
surfaces. Those metal surfaces will

ISO-NeutralNeutral

ISO-Hot

TR2TR1FuseHot

Figgure 3—This is a simple isolation transformer.

http://www.circuitcellar.com

What’s the difference?

Order your FREE catalog today at www.Jameco.com/Price

•Over 100,000 skus

•99% of catalog products

are in stock right now

•Low price guarantee

Electronic components work no matter what price you pay. Jameco carries everything you
expect at prices below what others charge. But the price savings don’t stop there. Jameco
offers additional savings with its array of house brand and factory-overrun products.

The Jameco difference begins with the industry’s highest quality catalog and is backed by
the industry’s longest warranty plus much more.

Price!

1-800-831-4242

http://www.Jameco.com/Price

Dear Design Community:

Circuit Cellar would like to thank the following companies for their sponsorship of our

2008 Sample Pool product evaluation program. A wide cross section of our readership

received tens of thousands of dollars worth of hardware and software development tools

because of the generosity of these sponsors and their recognition of the value of Circuit

Cellar’s audience.

• Crossware Products, Inc.

• Keil
• Vesta Technology Inc.

• FlexiPanel Ltd.

• Saelig Co., Inc.

• Reach Technology, Inc.

• Luminary Micro, Inc.

• Custom Computer Services, Inc.

• SEGGER Microcontroller System LLC

• Multilabs

• Schmartboard

• microEngineering Labs, Inc.

• ADM Designs, LLC

• Total Phase, Inc.

The 2008 Sample Pool program was initiated through News Notes, Circuit Cellar’s

e-newsletter. To subscribe to this free newsletter, visit www.circuitcellar.com/newsletter/.

Although some of the newsletter material is archived on our site, certain programs are

only available through the email portion of this monthly publication.

Please note: Circuit Cellar is now preparing for its latest readership survey and is currently

signing up sponsors for another Sample Pool program in conjunction with the survey’s

promotion. Watch for additional information about how you can participate in this year’s

survey through Circuit Cellar’s May edition of News Notes and www.circuitcellar.com.

I look forward to having your input and being able to help many of you gain access to

product samples from Circuit Cellar advertisers.

Sincerely,

Sean Donnelly, Publisher

Circuit Cellar

sean@circuitcellar.com

http://www.circuitcellar.com/newsletter/
http://www.circuitcellar.com/newsletter/
http://www.circuitcellar.com/newsletter/
http://www.circuitcellar.com/newsletter/
http://www.circuitcellar.com
http://www.circuitcellar.com
http://www.circuitcellar.com
mailto:sean@circuitcellar.com
mailto:sean@circuitcellar.com
mailto:sean@circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 51

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

most likely be at circuit ground, not
Earth ground, and thus at 120-VAC
potential! Also be aware of your
push buttons’ failure mode. Do the
plastic tops pop off to expose metal
underneath?

Keep the unfused areas as small as
possible. That way, if you short
something out, there’s a better
chance that what you shorted will
be behind a fuse. Also, keep the 120-
VAC side of the circuit together and
away from the 5-VDC side as much
as possible. This helps reduce the
voltage differential between compo-
nents in case something shorts out.

FUTURE PROJECTS
I plan to include a daylight sensor

and a clock in the next version of
my AVR switch. But what ultimate-
ly makes it into the next version
will depend on the project’s space
and power consumption require-
ments.

If you’d like to experiment with
your own AVR switch, I have circuit
boards and part kits. You’ll have to
assemble everything, and more
importantly, determine for yourself
if this circuit is safe and appropriate.

I hope you find this information
as useful and as interesting as I
have. Maybe your next project will
also incorporate a transformerless
power supply! I

Author’s note: Your safety is your own
responsibility. You must use equipment
and safety gear properly, and determine
whether you have adequate skill and expe-
rience. Power tools, electricity, and the
other resources used for these projects are
dangerous, unless used correctly and with
adequate precautions, including protective
gear. Some illustrative photos do not depict
safety precautions or equipment, in order
to show the project steps more clearly.
Use the instructions and suggestions listed
here at your own risk. It is your responsibil-
ity to ensure that your activities comply
with applicable laws. You can download the
sample code at www.JenRathbun.com/
Electronics/AVRSwitch.html.

Tom Struzik (tpstruzik@earthlink.net) has
been building and taking things apart
from an early age. He built his first
Heathkit project at 12 and sold his first

computer program at 16. Tom has a BSEE from Purdue University, and currently
works for a Fortune-100 chemical company in its engineering systems organization
as an IT systems architect. He continues to build software and hardware projects at
home to “keep his hands dirty.” One of Tom’s current projects, the “Cat Faucet,” was
recently covered by Engadget.com.

PROJECT FILES
To download code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009
/226.

ESOURCES
R. Condit, “AN954: Transformerless Power Supplies: Resistive and Capaci-
tive,” Microchip Technology, Inc., DS00954A, 2004.

S. D’Souza, “TB008: Transformerless Power Supply,” Microchip Technology,
Inc., DS91008C, 2008.

Microchip Technology, Inc., “TB094: Dimming AC Incandescent Lamps
Using a PIC10F20,” DS91094A, 2005.

More information on kits and discussion forums on this project: Sixerdoo-
dle Electronics, “AVR Switch,” www.JenRathbun.com/Electronics/AVR
Switch.html.

Underwriters Laboratories, Inc., www.ul.com.

OURCES
ATtiny26L Microcontroller
Atmel Corp. | www.atmel.com

TNY266PN TinySwitch II
Power Integrations, Inc. | www.powerint.com

SR086 Switching regulator
Supertex, Inc. | www.supertex.com

PP

RR

SS

Figgure 4—The completed circuit contains the transformerless power supply, a TRIAC, an
optional zero-crossing signal, and various other I/O options. The end result is a simple exper-
imental platform, which can be easily configured to support many different uses.

http://www.JenRathbun.com/Electronics/AVRSwitch.html
mailto:tpstruzik@earthlink.net
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/226
http://www.JenRathbun.com/Electronics/AVRSwitch.html
http://www.ul.com
http://www.atmel.com
http://www.powerint.com
http://www.supertex.com
http://www.circuitcellar.com
http://www.JenRathbun.com/Electronics/AVRSwitch.html

52 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

NTSC will soon be a thing of the past. So,
what will you do in a world without the
NTSC? Jeff answers that question and
more. Read on to learn how he is using a
chip to bridge the gap between the NTSC
and VGA formats.

A World Without NTSC
Bridge the Gap Between NTSC and VGA

T

by Jeff Bachiochi

he United States Federal Communications
Commission (FCC) has mandated that most

broadcasters cease transmitting NTSC in favor of
digital television. What will happen in a world
without NTSC?

I was raised on NTSC. My uncle Ray was the
first in my family to have a color TV. I remember
saying, to my uncle’s dismay, “I prefer black and
white to color; look how awful the picture is.”
The grainy, fuzzy, rainbow-colored objects were
tough to watch. And I’ll admit now that this may
have been due to early set design and fringe recep-
tion. Back then, we were considered fortunate if

FROM THE BENCH

we could receive all three major networks. Today’s
TVs (or should I say those of the recent past) do a
great job at receiving broadcast signals. Strong sta-
tions give crystal-clear pictures. I don’t know the
exact numbers, but many viewers have now given
up their antennas for cable or dish connections.
Their broadcasts are already digital. Their receiver
boxes translate the ones and zeros into NTSC out-
put so we can connect our legacy TVs. For those
of you still using an antenna for reception, the
new digital broadcast transmissions can not be
received directly by legacy TVs. They require a
converter box to stupefy the new broadcast format
down into an NTSC output that can be used by
the outdated equipment.

I’m not going to debate the pros and cons of
the new digital broadcast format. Instead, I want
to point out that this means an end to using
inexpensive NTSC TVs and monitors as display
devices. All of this may have started back with
Don Lancaster’s design of the TV typewriter that
appeared on the cover of Radio-Electronics mag-
azine in September 1973.[1]

NTSC is a composite video standard used by the
first personal computers (TRS-80 and Apple) and
video game systems (Coleco and Atari). As higher
resolutions were required, the composite video sig-
nal was separated into multiple components allow-
ing finer control of the video format. While (S)VGA
uses discreet signals, each color is still basically
analog. One of the newer standards, the Digital

Phootoo 1—You can start experi-
menting with the Parallax Pro-
peller processor for $80 using
the Propeller demo board.

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 53

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

Video Interface (DVI) combines DVI-D
(digital mode) and DVI-A (VGA in analog
mode). Of the advertised interfaces on
today’s TVs—such as, HDMI, compo-
nent, VGA, S-Video, RF, and compos-
ite—which option do you think will be
the first to go on future models?

PROPELLING
I spent most of my early hard-earned

pocket money playing Space Invaders
and Asteroids at the local hangout. I
thought I had since shed my addiction
for gaming. Little did I realize the
demon had only moved into the shad-
ows. I continually collect products and
technologies that I think have potential

for the Propeller-Powered HYDRA—I
recently started playing with it. I read
“GPFTPPH,” but it wasn’t until I saw
the FCC’s writing on the wall that I
understood how the Propeller could

for future spotlight time in one of my
monthly raves. For instance, after hav-
ing a Parallax Propeller chip sitting on
my shelf for a few years—along with
Andre LaMothe’s Game Programming

Figuree 1—The Propeller block diagram shows the interaction between the hub and eight cogs. Each cog has access to all I/O pins and the
hub’s RAM and ROM, as well as its own RAM.

PPhootoo 22—The HYDRA game console
is based on the Propeller chip. The
experimental console comes com-
plete with a PS2 mouse, a PS2 key-
board, a game controller, a power
supply, and cables. It also includes
the book Game Programming for
the Propeller-Powered HYDRA and a
CD for $200.

Pin directions

Pin outputs

I/O
 A

ss
is

ta
nt

 A
 +

 P
LL

I/O
 A

ss
is

ta
nt

 B
 +

 P
LL

V
id

eo
 g

en
er

at
or

I/O
 O

ut
pu

t r
eg

is
te

r

I/O
 D

ire
ct

io
n

re
gi

st
er

512 x 32
RAM

Processor

Cog 0

P31

P30

P29

P28

P27

P26

P25

P24

P23

P22

P21

P20

P19

P18

P17

P16

P15

P14

P13

P12

P11

P10

P9

P8

P7

P6

P5

P4

P3

P2

P1

P0

3232

Pin inputs

System counter

System counter

Data bus

Address bus

Clock

32

I/O
Pins

P4

P5

P6

P7

VSS

BOEn

RESn

VDD

P8

P9

P10

1

2

3

4

5

6

7

8

9

10

11

P26

P25

P24

VDD

XO

XI

VSS

P23

P22

P21

P20

33

32

31

30

29

28

27

26

25

24

23

P
11

P
12

P
13

P
14

P
15

V
S

S

V
D

D

P
16

P
17

P
18

P
19

12 13 14 15 16 17 18 19 20 21 22

P
3

P
2

P
1

P
0

V
D

D

V
S

S

P
31

P
30

P
29

P
28

P
27

44 43 42 41 40 39 38 37 36 35 34

P8X32A-Q44
AYWWXZZ

Cog
4

Cog
0

Cog
3

Cog
7

Cog
2

Cog
6

Cog
1

Cog
5

I/O
Pins

Hub

RAM, ROM,
Configuration,
control cord.

Hub and cog interaction

System
counter

2

Hub

Reset

Clock

SOFTRES

PLLENA

OSCENA

OSCMODE

CLKSEL

Clock
selector
(MUX)

CLKSEL

Reset delay
(approximately

50 ms)

Power-up
detector

(approximately
10 ms)

RC Oscillator
12 MHz /
20 KHz

Clock PLL
1x, 2x,

4x, 8x, 16x,
(16x must be
64 - 28 MHz)

Brown out
detector

Bus sequencer

8,192 x 32 RAM

8,192 x 32 ROM

Cog enables

Lock bits (8)

Configuration
register

2

3

3

5

3

VDD

VSS

BOEn

RESn

PLLENA

OSCENA

OSCMODE

SOFTRES

Crystal
oscillator

DC - 80 MHz
(4 - 8 MHz

with clock PLL)

XI

XO

32

32

32

32

Cog 7Cog 6Cog 5Cog 4Cog 3Cog 2Cog 1

http://www.circuitcellar.com

54 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

easily bridge the gap between NTSC
and VGA. So, I took my Propeller demo
board and went to work (see Photo 1).
The HYDRA is shown in Photo 2.

The Propeller chip consists of eight
independent processor units called cogs.
Each cog has its own 512 double words
(32 bits) of RAM. The last 16 bytes of
this RAM are special function regis-
ters that enable the cog to access all
I/O pins, its own counters, and a video
generator. The RAM is used to hold
code and local VARs. Each cog executes
its own code independently, yet all
cogs run from the master clock. The
Propeller can take oscillator or XTAL
input or use an internal RC oscillator
to drive the internal clock directly or
through a 2×/4×/8×/16× PLL for a maxi-
mum clock speed of 80 MHz!

Note that in addition to eight cogs,
there is an additional device called the
hub (see Figure 1). Besides handling the

basic reset, brown out, and master
clocking, the hub has its own memory,
both RAM and ROM, with 8,000 double
words each. Hub ROM contains character
definitions, math functions, a bootloader,
and a Spin interpreter. During reset, the
bootloader loads COG0 with some code
that checks for communication (enabling
you to take control), checks for an exter-
nal EEPROM, and loads it into the hub’s
RAM or shuts down all operations. If an
application has been transferred into the
hub’s RAM, then the SPIN interpreter is
loaded into COG0 and begins to execute
the application in the hub’s RAM.

Like all microcontrollers, the Pro-
peller has a number of assembly instruc-
tions that make up its vocabulary. You
may want to write your application
code (or parts of it) in assembly lan-
guage. However, there are those who
detest having to work with assembly
code, so the Parallax folks created a

higher-level language called Spin. It
removes much of this burden by pro-
viding a bunch of useful functions.

While each cog executes on its own,
your application directs this operation
and will determine exactly how a cog
will be used. For instance, if your appli-
cation requires asynchronous serial com-
munication, you might write a cog appli-
cation that samples the RX input looking
for a start bit, and upon reception uses
the system clock to continue sampling
the input at the proper data rate. Collect-
ed bytes might be put into hub RAM
(available to any cog). The hub continu-
ously does a “round robin” on all of the
cogs. It controls when a cog has access to
the system RAM and keeps cogs from
simultaneous access. A cog may have to
wait its turn, which is a maximum of
once every 16 clock cycles, depending on
whose turn it is. If a cog needs to update
multiple RAM locations prior to allowing

Figgure 22—The Propeller demo board schematic shows how simple resistors added to the Propeller’s I/O pins act as a DAC (with a monitor’s
75-Ω input impedance) creating an inexpensive interface for either NTSC or VGA video.

http://www.circuitcellar.com

Conference: June 8-June 10, 2009
Exhibits: June 9-June 10, 2009
Donald E Stephens Convention Center
Rosemont, Illinois
www.sensorsexpo.com

Advances i n Measurement , Mon i to r i ng ,
De tec t i on & Con t ro l

Register Today for Your Conference Pass at the Early Bird Rates! Or, Sign Up Now
for a FREE Expo Hall Pass! Visit www.sensorsexpo.com or call 877-232-0132

or 972-620-3036 (Outside U.S.). Don’t Forget to Use Your Source Code: 303M

This Year’s Conference Program
Covers 18 Tracks

• Sensor Interfaces & Sensor Integration
• Sensor Systems Design
• RF Sensing
• Wireless Sensor Networks
• Energy Harvesting
• Energy Conservation
• Low-Power Sensing
• Harsh Environments
• Position Sensing
• Fiber Optics
• Machine Health & Predictive Maintenance
• Smart Materials
• Novel Approaches to Measurement & Detection
• Environmental Monitoring
• Business Trends & Issues
• Wireless Standards
• Location-Aware Sensing
• Novel Approaches to Biodetection

New Approaches • New Technologies • New Applications • New Ideas

Don’t Miss the Sensors
Opening Keynote

Cassini: Five Years at Saturn
Dr. Kevin Grazier
Investigation Scientist & Science Planning Engineer,

Cassini/Huygens Mission to Saturn & Titan, NASA’s

Jet Propulsion Laboratory (JPL)

A World of Interconnected
Sensors
Beth Wozniak
President of Sensing & Control, Honeywell

Automation & Control Solutions

Produced Official Silver Media
by: Publication: Sponsor: Sponsor:

http://www.sensorsexpo.com
http://www.sensorsexpo.com

56 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

floating point ($C000-$DFFF), a sine table for 0° to 90° with
0.0439° resolution ($E000-$EFFF), and the bootloader/Spin
interpreter ($F000-$FFFF).

VIDEO HARDWARE
Each cog has its own video hardware consisting of two con-

figuration registers and the ability to stream data using Pro-
peller output pins via the video streaming unit (VSU). (Note
that while the primary use here is video, don’t overlook the
audio possibilities.) The digital outputs are meant to interface
to an external DAC producing composite NTSC video output.
Because a composite monitor presents a 75-Ω load, discrete
resistors can be used to implement a DAC (see Figure 2). The
VCFG 32-bit register is used to configure the VSU in a
number of modes (i.e., Composite Baseband, Composite
Broadband) (55.25 MHz = channel 2) or VGA (see Table 1).
The VSCL 32-bit register contains two values: the number
of CTLA PLL clocks per pixel (PixelClocks), and the number
of clocks per frame (FrameClocks) (see Table 2). A CTRA PLL
clock is based on your XTAL value, the PLL multiplier, and
the CTRA PLL divider. When using NTSC, the active pixel
area of a scan line is 52.6 µs. If you want to divide this into
256 pixels, that’s approximately 205 ns/pixel (52.6 µs/256 pix-
els). If the CTRA PLL clock is running at 40 MHz, that’s 25 ns
(1/40,000,000). The closest you could come to 205 ns would be
to use a count of eight CTRL PPL clocks. That would be 200 ns
(PixelClocks = $08). If you were using 2-bit (four-color)
mode, you would be storing 16 pixels worth of 2-bit infor-
mation in each 32-bit double word. This means that the
FrameClocks value would need to be 16 pixels × Pixel-
Clocks, in this case 8 (FrameClocks=$080).

With these registers set up, the cog has all of the timing
information it needs to automatically output a stream of
data via selected output pins. But what about the data that
needs to be moved? The data will come from a RAM buffer.
The Propeller has 32 KB of RAM for system use. This includes
variable storage, program storage, and stack space, so you have
only a fraction for video data. Just how much is necessary and
how does it all fit together? From the VCFG and VSCL regis-
ters, you have defined a single scan line as having 256 pixels.
(Actually, 256 colored pixels is beyond the bandwidth of
NTSC. But let’s not worry about that right now.) Each pixel
will require 2 bits of data to determine which color (or
shade of gray) will be displayed at that pixel location. This
will require 512 bits of data per line (i.e., 256 pixels/line × 2
bits/pixel). A field has 262.5 scans lines that make up one
screen scan. The first and last few are usually out of the field

others to access the data, it can indicate this with a lock-
flag. Other cogs should respect this flag and cease access
until it is cleared.

There are no interrupts on the Propeller. Think of a cog
as an interrupt routine that continuously executes its
code, independent of other cogs. Every cog can read and
write to every I/O at any time! You can use this to your
advantage, but without proper attention, it can cause you
headaches. Any pin configured as an output by one cog
will force the configuration of the pin to an output even if
another cog is trying to use the pin as an input. Any cog
outputting a high on a pin will force the pin high even if
another cog is outputting a low to the same pin.

The hub’s RAM ($0000-$7FFF) will hold your application after
it is transferred at boot time. The hub’s ROM code consists
of 256 printable characters and graphics ($8000-$BFFF), Log
and Anti-log tables that help convert between base-2 and

Taablee 1—This 32-bit register defines how the VSU hardware is used.
The upper bits define the NTSC/VGA modes, resolution, chroma, and
audio carrier source, while the lower bits define which processor pins
are used for output.

Bits Video configuration register (VCFG)
31 n/a

30:29 VMode (Enable)

0 0 Disable VSU

0 1 VGA Mode

1 0 NTSC Mode (Broadband on upper pins, baseband on lower pins)

1 1 NTSC Mode (Baseband on upper pins, broadband on lower pins)

28 CMode (colors/shades)

0 Two-color mode

1 Four-color mode

27 Chroma 1 (Broadcast)

0 Disable chroma (color) on broadband

1 Enable chroma (color) driver

26 Chroma 0 (Baseband)

0 Disable chroma (color) on baseband

1 Enable chroma (color) driver

25:23 Aural subcarrier (source)

0 0 0 Use COG 0's PLLA

0 0 1 Use COG 1’s PLLA

0 1 0 Use COG 2’s PLLA

0 1 1 Use COG 3’s PLLA

1 0 0 Use COG 4’s PLLA

1 0 1 Use COG 5’s PLLA

1 1 0 Use COG 6’s PLLA

1 1 1 Use COG 7’s PLLA

22:12 N/A

11:9 VGroup (Port drive)

0 0 0 Group 0 (P7:0)

0 0 1 Group 1 (P15:8)

0 1 0 Group 2 (P23:16)

0 1 1 Group 3 (P31:24)

1 x x Reserved

8 n/a

7:0 VPins (Pin drive)

0 1111 Driving lower four pins only (NTSC)

1111 0000 Driving upper four pins only (NTSC)

1111 1111 Driving all eight pins (VGA)

Taabblee 22—This 32-bit register contains an 8-bit count of clocks per
pixel and a 12-bit count of clocks per frame (1- or 2-bit resolution-
dependent).

Bits Video scale register (VSCL)
31:20 N/A

19:12 PixelClocks (Number of CTRA PLL clocks/pixel)

$00-FF 8-bit value

11:0 FrameClocks (16 or 32 × PixelClocks)

$000-FFF 12-bit value

http://www.circuitcellar.com

http://www.embeddeddeveloper.com

58 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

real experiences and alter those sights broadcast in black
and white. It was an extraordinary engineering feat to add
color information to the standard black and white trans-
mission signal without negatively affecting all the existing
black and white receivers. A color sync signal hidden in
the horizontal blanking portion of each scan line is disre-
garded by black and white sets, as is the modulated (and
phase-shifted) color burst cycles during the active portion
of each scan line. The average value left (of the color-mod-
ulated signal) remains as luminance levels for the black
and white monitor producing levels of gray (between a
black 0.25 V and white 1 V). A color monitor uses the
phase difference between the color sync and the modulated
color signal in the active portion of the scan line to deter-
mine color and the amplitude of the modulated signal to
determine color saturation (or intensity). You saw earlier
that the two video registers can configure the hardware to
produce a composite video output signal containing all of
the necessary syncs and modulations to do both black and
white and color signal streams.

A cog driver can actually produce a signal with the full
gamut of color. However, we’ve determined that it
requires a lot of RAM to hold high-resolution color infor-
mation. Because of the required RAM limits, RAM is
conserved by limiting the resolution to 1 or 2 bits per
pixel. One bit gives you black and white (or two colors).
Two bits gives a few more colors to choose from, but
how does this value relate to a specific color?

The grid that makes up the screen tile locations hori-
zontal (rows) by vertical (columns) has a tile pointer map
(TPM) associated with it. There is a 16-bit pointer for
each tile location. Each pointer has double duty. The top
6 bits are an index into the tile color set table (TCT). The
bottom 10 bits are an index into the tile bitmap memory
(TBM). The tile color set table is a list of 64 4-byte
entries. Each TCT entry holds the 8-bit color informa-
tion for each of the four potential colors. Thus, this tile
could choose to use any of the 64 color sets. The 10-bit

of view, leaving about 244 maximum viewable lines.
Gamers will limit themselves to approximately 200 lines to
be sure their environment is not chopped off at the top or
bottom. So, at 200 scan lines, you need 12.8 KB of data
space (512 bits/scan line × 200 lines/8 bits). In many circum-
stances, you would like to use double buffering, which means
two equal size video buffers. That would mean 25.6 KB of
RAM. That sure doesn’t leave much room for the application.

TILING
Earlier I mentioned that there are 256 character graphics

stored in ROM. Each character is made up of 16 bits (hori-
zontally) × 32 bits (vertically). Two characters are combined
to make use of the 32-bit double word data format. When
the even or odd bytes of horizontal data are displayed on 32
separate scan lines, a picture of that character appears on the
screen. If you want to print a character to the screen, you
need a single byte to define the chosen character. The appli-
cation doesn’t need to figure out what data is required to
form a character on the screen. All that is waiting for you to
access it via a ROM address. This might require 1 byte
pointer instead of 64 bytes of RAM (i.e., 16 × 32 = 512 bits).

Similarly, you can create special characters called tiles. A tile
is used to create a background. You can think of a tile as a
piece of a puzzle. The puzzle (picture) is a grid of horizon-
tal and vertical positions on the screen where these pieces may
be placed. The number of horizontal and vertical positions
depends on the screen and tile resolutions. For instance, if each
tile is 8 pixels × 8 pixels and the screen is 256 pixels × 200 pix-
els, then you can fit 32 tiles horizontally (256 pixels per scan
line/eight pixels per tile) and 25 tiles vertically (200 lines/eight
lines per tile). The tile bitmap of an 8 pixel × 8 pixel tile would
require 16 bits (eight pixels × two color bits) per row times
eight rows or 128 bits (four double words). For a gamer, the
screen might be a bird’s eye view of a maze. The entire picture
could be drawn using only two tiles: a wall tile and a floor tile.
Various mazes could be displayed by rearranging the two tiles
in different patterns. Again, this reduces the amount of work
associated with computing and storing a screen of information.

You can use tiles to dynamically change the way a screen
is displayed; however, another object has been developed to
operate in a more useful way. It is a sprite. While a tile and a
sprite may have the same dimensions (and pattern), the lat-
ter has the ability to be placed anywhere on the screen and
not just at the grid locations of tiles. One color of a sprite’s
pixel pattern is used as a transparent indicator that can let
any tile color show through. The sprite can be magnified to
become a multiple of its original size. And, most important-
ly, it has a depth associated with it that enables it to pass in
front of or behind other sprites, creating a 3-D effect. While
all of this is based on the tile/sprite generator written to run
within a cog, this and many other Spin drivers written by
the Parallax folks and other contributors like Andre
LaMothe are available at www.parallax.com.

A BIT OF COLOR
If you have seen black and white TV, you may have been

able to visualize color because your brain can take your

PPhhootoo 3—This photo of my VGA monitor’s screen shows the simple
display of three buttons with a horizontal gauge on a background of
random characters and graphics. The red spot is the mouse cursor
used to select a button. The buttons change a variable whose value
determines the gauge’s length. This data could come from an inter-
nal cog running a sampling application or from an external processor
using the Propeller strictly as a display device.

http://www.circuitcellar.com
http://www.parallax.com

www.circuitcellar.com • CIRCUIT CELLAR® 59

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

tile bitmap memory index is used as the upper 10 bits of
a 16-bit address that holds all of the tile’s bitmapped data.

GRAPHICS
While I consider characters, tiles, and sprites to be graphi-

cal in nature, the graphics engine driver uses point plotting
to draw lines and polygons. You may be familiar with Carte-
sian coordinates, where x as a horizontal offset and y is a
vertical offset from 0 in the center. Offsets increase when
moving up and to the right, while they decrease when mov-
ing down and to the left of center. Any point P consists of
an x and a y offset from 0. It is usually written as P(x,y).
Note that the video screen is usually mapped with an
inverted y-axis so that P(0,0) is the upper-left corner of the
screen and P(screen_width, screen_height) is the lower-right
corner of the screen. While the Cartesian coordinate system
eases rendering, it is labor-intensive when dealing with rota-
tions. Therefore, you may find the polar coordinate system
more efficient when you must deal with rotational move-
ments even though you will need to convert back and forth.

VGA
Up to this point, I’ve been discussing the power of the

Propeller to work with NTSC video output. VGA video is
actually less demanding than NTSC because the sync signal
is digital in nature and separated from the color informa-
tion. The color information is broken down into the three
primary colors, and each has its own signal. The pixel clock
is internally generated by the VGA monitor and will sup-
port 640 × 480 pixels. The VGA output consists of separated
horizontal and vertical syncs plus separate R, G, and B ana-
log outputs. Resister DACs can be used for each color simi-
lar to the DAC used for NTSC. Whereas the NTSC output
requires 3 to 4 bits, the VGA output requires 8 bits. As for
the VSU, it doesn’t care which monitor is connected on the
outside, as long as the timing configured into the video con-
figuration registers is correct for the monitor type. Photo 3
is an old VGA monitor (DB15 connection) I had connected
to a Linux system here in the shop. It shows what can be
done with just the Propeller demo board (or Hydra game
console). If you do the math on 640 × 480, you’ll find that
there isn’t anywhere near enough RAM for this resolution,
even at only 1 bit/pixel. However, by using 32 × 16 tiling,
the RAM requirements are minimal.

I used the embedded character set to design a three-but-
ton screen with a linear bar graph. A mouse input enables
button pushing, which in turn increases or decreases a vari-
able that controls the length of the bar graph. The center
button selects alternate color sets for the bar inside the
graphs frame. Think of the variable associated with the
bar’s length as data coming through the USB port or other
alternative connections, such as SPI, I2C, TTL serial, or a
parallel port controlled by a spare cog.

While most of the examples in LaMothe’s book use a
composite NTSC output, you can find enough stuff inside
about VGA to get started experimenting with some useful out-
puts. You can certainly start writing your own drivers for
another microcontroller, but Propeller has some good things

going for it. With the internal PLL and an external 5-MHz crys-
tal, the Propeller can clock at up to 80 MHz. With eight cogs,
it’s like having eight programs executing in parallel. Each cog
has its own cog and also has its own VSU that makes out-
putting streaming video or audio a snap. While the resolution
might be limited by the RAM available, the Propeller makes
transitioning from NTSC to VGA a simple matter of software.

FARE THEE WELL
Our broadcasting buddy NTSC brought us closer to our

world. We’ve seen world disasters, war, and poverty, as
well as disaster relief, the Olympic games, and men land-
ing on the moon. Thanks to NTSC, we’ve experienced pos-
itive and negative events together as one world. Digital
broadcasting won’t improve the standard of living for those
in need, but it can carry on the tradition of NTSC by help-
ing us understand more clearly (in HD) that we are no bet-
ter than the least of our brothers.

And so we say goodbye to NTSC. It’s been good knowing ya!
If you check your endangered species list, you might find

that the CRT is hovering around the top. Not many bulky
lead-shielded glass tube TVs (or computer monitors) are
being manufactured. This is a case of less is more. LCDs
have less weight and require fewer watts. Although we
might see a continuing variety of interfacing connectors,
for now all conform (for the most part) to the all-encom-
passing VGA (UXGA covers 1080p) standard. Who
would’ve thought we’d have access to streaming TV pro-
gramming via a cell phone? Cartoonist Chester Gould gave
Dick Tracy the first two-way wrist radio in 1946, thanks to
Al Gross’s work on the walkie-talkie.[2] I

Jeff Bachiochi (pronounced BAH-key-AH-key) has been writing
for Circuit Cellar since 1988. His background includes product
design and manufacturing. You can reach him at jeff.bachiochi@
imaginethatnow.com or at www.imaginethatnow.com.

RR EFERENCES
[1] D. Lancaster, “TV Typewriter,” Radio Electronics,
Gernsback Publications, New York, NY, 1973.

[2] Winnipeg Free Press, “Born Too Soon,” 2001,
www.comsoc.org/socstr/org/operation/awards/assocpress.
html.

ESOURCE
A. LaMothe, Game Programming for the Propeller-Pow-
ered HYDRA, www. parallax.com, www.xgamestation.
com.

OURCES
HYDRA Development kit
Nurve Networks | www.xgamestation.com

Propeller
Parallax | www.parallax.com

RR

SS

http://www.imaginethatnow.com
http://www.comsoc.org/socstr/org/operation/awards/assocpress.html
http://www.parallax.com
http://www.xgamestation.com
http://www.xgamestation.com
http://www.parallax.com
http://www.circuitcellar.com
http://www.xgamestation.com

60 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

Now that you’re familiar with the FAT file system, George approaches the subject
from a different angle. By presenting you with a general-purpose FAT file system,
he challenges you to remove the features you don’t need and customize your
application.

FAT File System Review (Part 2)

C Code for the File System

I

by George Martin

n “DIY Signal Generation,” Neal Martini
writes: “I have been using C to program my

past few projects. It was a little painful coming
up to speed, but now I am a real convert.” (Cir-
cuit Cellar 219, 2008) He went on to explain
how C helped.

Isn’t it great that everyone is reading my arti-
cles about the C programming language and con-
verting? Actually, I don’t believe my work has
had much effect just yet. If you look at the articles
in Circuit Cellar closely, you will see a movement
toward structured design. This can be demonstrat-
ed in two ways: one, with the use of structured
languages (e.g., C) and, two, in the flowcharts.
Years ago, assembly language was king, and convo-
luted flowcharts that looked like plates of
spaghetti were the norm. Today, designs are
much more refined (structured). So quit hiding
your head in the sand. Bite the bullet, take that
the plunge, move toward the light, and step over
to using C in your embedded systems. (I like to
see how many clichés I can get past my editors.)

Last time, I started a discussion about using a
removable memory card (either CompactFlash or
Serial Digital) in your next system and a file sys-
tem on those devices. These cards offer a large
capacity at a low price. At some point in your
system analysis, you might decide that a file sys-
tem is the best way to manage all the data on
the card. If that’s the case, then here is another
solution to add to your bag of tools.

I discussed the low-level routines used to access
and control these memory devices. And I also pre-
sented one solution to the FAT file system design
I found in the Circuit Cellar archives. (Refer to
the following two articles: “PIC a CompactFlash

LESSONS FROM THE TRENCHES

Card,” [M. Samuels, Circuit Cellar Online 127,
2001] and “Portable FAT Library for MCU Appli-
cations,” [I. Sham, W. Hue, and P. Rizun, Circuit
Cellar 176, 2005]). You’ll find the original C code
and the analysis output that has been generated
using Source Publisher (www.scitools.com). The
original code has documentation dated June 2004.
Also I would like to point you to an Intel reference
design “Intel IXP42X Product Line of Network
Processors and IXC1100 Control Plane Processor:
Using CompactFlash.” Don’t let the title scare
you. It’s a good article about interfacing to a Com-
pactFlash card and the code to support the inter-
face. It’s written from a hardware point of view
more than a software (file system) point of view.

I also discussed the support that the C language
has for file operations. I did not go into much
depth about C file I/O support. That could be
another multipart article series. If you’ve never
written such routines, I recommend that you
download a free (as in free beer) copy of Turbo C++
(or any other C environment). You need to work
with these procedures. Keep in mind that Borland
did a good job of protecting the designer from him-
self (or herself). For example, if you open a file and
then exit the program, Turbo C++ takes care of the
details and closes the file so that your disk does
not become corrupted. But, if the power fails on
your PC while a file is open, look out. You need to
design for these issues. Actually, this is a good test
to see if your program can recover the file(s) that
were open when the lights went out. I recommend
CTL-ALT-DEL as a gentler method to crash the
Turbo C++ program than switching off the power.

Jeff Bachiochi recently presented a two-part arti-
cle series about connecting an SD card to a PIC

http://www.circuitcellar.com
http://www.scitools.com

processor (“Access SD Memory Cards,” Parts 1/2,
Circuit Cellar 221/222, 2009). Most of the articles
I’ve come across don’t give you much information,
detail, or control over the FAT file system. This is
not a criticism, it is just an observation. As practical
embedded system designers (geeks), we’re not going
to implement only what’s needed to get the job done.
We’re likely to probe, kick, stretch, test, and add fea-
tures that improve and enhance the design, even if
only implemented for use during in-house testing.
We also like to get “under the hood” and understand
the inner-workings.

With that in mind, I’d like to present a more general-
purpose FAT file system. You can remove the features
you won’t use and tune the operation to suit your appli-
cation and specific hardware. I purchased a low-power
Altera NIOS evaluation system for another project. On
that board is an interface to an SD card along with the
embedded file system library (EFSL). This library is
available for download from SourceForge, as are other
interesting hardware and software projects. If you
haven’t looked at the site yet, be careful. It’s full of great projects
and you could spend mega-hours wandering through them.

GET STARTED
The EFSL is written in C and is only a library. It doesn’t

do anything out of the box but will tie in nicely with your
embedded C code. It has hardware targets for Linux, the
Atmel ATmega128, and the Texas Instruments DSP families.
In a future article, I’ll get this up and running on another
embedded system and make that available to you. The
download package includes a manual that explains the
design and how to apply the library to your specific applica-
tion. This library handles FAT12, FAT16, and FAT32, with
with long file names and time and date support.

The EFSL has the structure shown in Figure 1. The design-
ers describe this as a linear object model. And you perhaps
thought objects were used only in object-oriented languages
such as C++ or Visual Basic. That is not so. You can use
objects in regular old C. This is a good way to help you tran-
sition into those object-oriented designs and languages. Con-
tinue reading for a description of the EFSL.

FILE & FILESYSTEM OBJECTS
The File and Filesystem objects in the EFSL design deal

with handling file system-specific details. The module file.c
contains functions dealing with files such as fopen(),
fread(), and fwrite(). The module fs.c contains general
file system functions supported by the functions of dir.c and
fat.c. Note that file.c uses these functions heavily.

The Partition object is responsible for translating partition
relative addressing into disc-based LBA addressing. The func-
tions in the Partition object are partition-specific. These
include searching FAT-type partitions and read/write func-
tions to partitions. They are found in the module partition.c.

The Disc object holds the partition table and has a direct
link to a cache manager. The disc.c file contains the func-
tions regarding the entire disc, such as loading the Master

Boot Record (MBR) and performing read/write tests.
The IOMan(ager) object receives all requests for sec-

tors. This enables it to make smart decisions regarding
caching. You will find these routines in ioman.c. One
key define in this file is IOMAN_NUMBUFFER. It deter-
mines how many sectors IOMan can cache. I find that
the IOManager holds several clever solutions that
apply to most embedded designs. It supports delayed
write. So as you fill up buffers with data, you can
either force a write or let the IOManager decide when
a write is necessary. IOManager also can allocate
memory itself or use memory that you have previ-
ously allocated. This is key to being flexible enough
to make it applicable to a broad variety of systems.

The hwInterface (hardware interface) object has
three responsibilities: initialize the hardware, read the
sectors, and write the sectors. In the first part of this
article series, I presented code outlines for interfacing
to a CompactFlash card and included those routines.

As you study this design, I think you will find it straight-
forward yet sophisticated enough to handle your embedded
system requirements. I was looking for FAT32 support
because I predicted that smaller capacity memory cards will
soon disappear from production or their prices will rise
above the larger capacity designs.

The text in the EFSL manual reads: “This library is
released under the Lesser General Public License (LGPL).
This means that you may use the library and its source code
for any purpose you want. You may link with it and use it
commercially. But ANY change to the code must be released
under the same license.” (http://efsl.be)

If I look up more details on the LGPL, it seems that if you
keep the EFSL as a separate library and do not merge it with
your code, then your code does not become part of the LGPL
license and you can keep it confidential. However, if you mix
the EFSL with your source code, the LGPL governs the entire
package. I am not a lawyer. You should get proper legal advice
if you proceed down this path. Still, I’m convinced the LGPL
can be made to work in our competitive embedded world.

I recently used the Intel application note to create a FAT
file system on a project. It worked well. There were a few
areas that were a bit unpolished and my design was perhaps
not the greatest. Specifically, I needed to open each file from
a directory, one at a time, and read the data in that file. I
stumbled my way through this. The code is presently used
by the factory for system configuration purposes, and my
solution was acceptable. In all fairness, this area of operation
was not part of the Intel application note so this is not a
criticism of that approach in any way.

Put in a more general way, the functions missing are func-
tions like listing a directory—using standard C functions
like fopen(), fread(), and fwrite()—and managing
buffers. Also, you may be looking for commands like
mkdir(), rmdir(), and lsdir() to make, delete, and list a
directory. And consider how do you format memory cards?
Well, it looks like the EFSL either provides these functions

www.circuitcellar.com • CIRCUIT CELLAR® 61

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

Figguure 1—This is the EFSL structure.

File

File system

Partition

Disc

I/O Manager

hwinterface

http://efsl.be
http://www.circuitcellar.com

George Martin (gmm50@att.net) began his career in the aerospace industry in
1969. After five years at a real job, he set out on his own and co-founded a
design and manufacturing firm (www.embedded-designer.com). His designs typi-
cally include servo-motion control, graphical input and output, data acquisition,
and remote control systems. George is a charter member of the Ciarcia Design
Works Team. He’s currently working on a mobile communications system that
announces highway info. He is also a nationally ranked revolver shooter.

ROJECT FILES
To download code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009
/226.

ESOURCES
G. Martin, “FAT File System (Part 1): Open Files and Perform Operations,”
Circuit Cellar 224, 2009.

———, “Structured Design (Part 1): An Introduction to Structured Tech-
niques” Circuit Cellar 128, 2001.

Intel Corp., Application Note: Intel IXP42X Product Line of Network Proces-
sors and IXC1100 Control Plane Processor: Using CompactFlash,” 2004.

SourceForge, “Embedded Filesystems Library,” http://efsl.be/.

Wikipedia, “Structured Systems Analysis and Design Method,”
http://en.wikipedia.org/wiki/Structured_Systems_Analysis_and_Design_
Method.

OURCE
Source Publisher
Scientific Toolworks, Inc. | www.scitools.com/products/sourcepublisher

PP

62 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

directly or gives you the hooks need to
implement them rather easily.

USING EFSL
How do you use the EFSL? I would

create a directory to hold the library,
make that directory part of your proj-
ect, and then perform a compile and
link. Remember: If you mix the EPFSL
code with your code, then the entire
work becomes covered by the LGPL.

To figure out what is in the EFSL, I
put the library through a documentation
program. I use Source Publisher from
Scientific Toolworks. A compressed file
(sp_EFSL.zip) is posted on the Circuit
Cellar FTP site. The file unzips into a
directory named “sp_EFSL.” The direc-
tory includes the output from the
Source Publisher program. The
index.html file is the starting file. I ran
Source Publisher on the EFSL library
and enabled every feature. Perhaps I
should be brought up on charges for
excessive documentation, but I’m sure
I can talk my way out of that one.

From the index, you can view the
Navigation Menu, read the Understand
Reports for the project (another utility
offered from STI), view the Globals Used
Report, view the Globals Report, view
the code, and view the metrics. All of
these reports contain hyperlinked refer-
ences. So, if you are not sure of the defi-
nition of a constant, variable, or routine,
one clock will get you to that definition.
If you haven’t used one of these pro-
grams yet, this should impress you. If
you are used to this richness of informa-
tion, then just read on. Code review and
SourcePublisher deserve a complete
article. Perhaps you will write that one.

Starting with the config.h file, you can
see the various definitions used in the
project. The first is HW_ENDPOINT_NIOS.
This sets the code up for compiling all
that is needed to run on the NIOS evalua-
tion board. You could add HW_END-
POINT_CCI for this code to run on the
Circuit Cellar evaluation board if there
was one. (That’s also another article.)
Next, you’ll see BYTE_ALIGNMENT
commented out. This is for the Big-
endian and Little-endian issues. Next
are cache definitions. I’m glad to see
this early on in the definitions. I bet
memory allocation is on everyone’s list
of things to look out for. A bit further on

you’ll find DATE_TIME_SUPPORT defined.
Do you need to keep the file date and
time up-to-date in our system? Well,
here’s the flag to do just that. I bet
you’ll have to hook into routines that
provide a time structure from your
hardware to this code. Notice that all
these definitions come with well-written
comments. A really nice piece of work.
As you look through this code, why don’t
you offer to add more comments to
clean up any unclear portions? It’s an
open-source community project.

In debug.h, you’ll find definitions
for adding debug functions to the code.
Again, you can tailor this to your sys-
tem requirements. In the other “.h”
files, you’ll find definitions that will
look familiar if you’ve been reading
my articles on C or you’re already
using C language. It’s sort of like an
old pair of shoes. It’s comfortable and
gives you the confidence to incorporate

this work into your project.
I don’t mean to bore you with all

these details, because you just want a
prepackaged answer to your FAT file
system issue. But you’ll probably find
that you need to tailor some portion of
any design to fit your needs. And isn’t it
great to have such a complete solution?

LOOKING AHEAD
As I mentioned earlier, I plan to use

this library in a project I’m working on.
At that time, I’ll report on just how
fast some of these routines operate and
the size of the generated code.

If there are any areas of the C lan-
guage (short of homework assignments)
you would like me to cover in more
detail, just send me e-mail and I’ll try
to address your comments in an
upcoming article. Remember: Circuit
Cellar writers like me are doing this
for you. I

SS

RR

mailto:gmm50@att.net
http://www.embedded-designer.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/226
http://efsl.be/
http://en.wikipedia.org/wiki/Structured_Systems_Analysis_and_Design_Method
http://www.scitools.com/products/sourcepublisher
http://www.circuitcellar.com

http://www.earthlcd.com
http://www.phycore.com
http://www.phytec.com
http://www.circuitcellar.com/network

2

CIRCUIT CELLAR®
• www circuitcella

Ap
ril

20
09

–
Iss

ue
22

5
CI

RC
UI

T C
EL

LA
R

D
IG

IT
AL

PL
US

BO
NU

S

In this series of articles, Mike takes a closer look at time-triggered systems.

he explains his recent “re-awakening” to the advantages of co-operative sched

and presents an interesting approach to using them.

Time-Triggered Systems (P

R

B
ON

USARTICLE

b

ecently, an overseas internship student, Phillipe G ,

joined my group for an eight week research proj

ect It was planned that he and a local music professor

would collaborate on using a new time frequency analysis

algorithm called the ultra fast s transform for voice train

ing However, they needed to demonstrate an implementa

tion of this DSP algorithm working in real time on a low

cost processor before even thinking of proposing any com

mercial ideas to the algorithm’s original inventors—two

colleagues of mine at the University of Calgary, Canada

Over a period of about a month, many unusual, but reason

ably musical, noises floated around my laboratory Phillipe

was moving fast down the road of getting the algorithm

going on an Analog Devices Blackfin processor This proces

sor looked like a suitable target for this project because of its

DSP capabilities and ability to

t The Analog Devices BF533 evaluation board is capable

supporting basic audio and video demonstrations

support both audio and video peripherals (
However, about six weeks into the eight w
musical notes from that corner of the room
sour The algorithm was working well, but
satisfied with the resolution of the TV displ
Analog Devices BF533 EZ KIT provided Alw
and considerate professorial host, I offered m
BF548 evaluation board, which has expanded c
compared to the basic BF533 evaluation board
I admit not being able to find specific connect
proverbial kitchen sink; but there was a hard d
type of flash, that type of flash, a UART, Ether
best of all, a color LCD The BF548 processor has the same basic core

BF533, so moving Phillipe’s existing audio ana
system to the new board was straightforwar
then able to merge this code with the existi
LCD video interrupt driven screen demonst
code This gave him a grayscale display of t
of his ultra fast s transform implementation
er, in the time he had remaining, Phillipe w
able to get a fully functional color display ru
It would initially work, and then, over a per
or 4 minutes, color synchronization would s
how get lost, and the display would then rot
between red and blue color casts We conclu
that there was an occasional race condition
between the audio interrupts updating a num
buffers, all the various memory DMA transfe
occurring on those buffers, and the video driv

THE MAGAZINE FOR COMPUTER APPLICATIONS

Co-Operative Schedulers 101

You hold in your hands a ticket to access

Circuit Cellar magazine’s new “Digital Plus” edition.

“Digital Plus” is your chance to:

• Read Circuit Cellar BONUS ARTICLES not available in print

• Enjoy audio/video-enhanced project articles

• Archive Circuit Cellar’s print magazine as a PDF for your

 design library

To access the preview edition, visit www.circuitcellar.com

and click on the April issue icon on our home page.

Date:

Bring your friends to this limited-time public preview of Circuit

Cellar’s new venue. “Digital Plus” means more content, super-fast

delivery of your favorite publication, and many additional features.

As a current reader, you’re entitled to special introductory pricing

on “Digital Plus” subscription services.

Act now to receive the April 2009 preview bonus material,

which launches with “Time-Triggered Systems: Co-Operative

Schedulers 101,” by Circuit Cellar feature author Michael Smith.

March 23, 2009 – May 31, 2009

Circuit Cellar “Digital Plus” launchEvent:

http://www.circuitcellar.April
http://www.circuitcellar.April
http://www.circuitcellar.com

www.circuitcellar.com CIRCUIT CELLAR® 65

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

L abels and acronyms have always been par t of the silicon
game. Shorthand can be helpful, but sometimes it can be

misleading, especially as the underlying technology changes over
time.

RISC and CISC are examples of labels whose meanings have
devolved to the point of meaninglessness. Yes, when originally
coined many years ago, the ter ms clearly defined distinct architec-
tures. But over time, as each camp adopted the best features of the
other, the differences have become blur red to the point that what a
chip is called has little to do with its “instr uction set complexity.”

“Microcontroller” (i.e., MCU) and “microprocessor” (i.e., MPU)
are other schizophrenic labels, though still meaningful at the
extremes. For example, an 8051 is clearly an MCU, while the ’x86
under the hood of your PC is clearly an MPU. But in the middle
are a vast array of parts with aspects of both MCUs (e.g., on-chip
flash memory and I/O) and MPUs (e.g., exter nal bus).

This month, let’s contemplate another acronym de jour , “DSP.”
The term itself has semantic ambiguity. After all, don’t MCUs and
MPUs process digital signals? Historically, DSPs were differentiat-
ed by their multiple busses and high-speed math capabilities, as
typified by the classic MAC (multiply and accumulate) operation
at the heart of signal-processing (e.g., filter) inner loops. But these
days, virtually every 32-bit MCU or MPU has a measure of those
capabilities as well.

Indeed, if anything, the trend has seen classic DSPs on the
defensive. For instance, long-time Circuit Cellar contributor Pro-
fessor Michael Smith wrote an ar ticle titled “To DSP or Not To
DSP: Will a RISC Chip Do It Better?” in Circuit Cellar 28. That
was way back in 1992!

Remember your father’s DSP? Well, the Texas
Instruments Piccolo isn’t it. Tom presents this
“DSP in disguise” and describes how you can
use it to handle signal-processing applications
such as switcher power supplies and other
handy applications.

Whistle While You Work
A Look at a Modern DSP

by Tom Cantrell

SILICON UPDATE

http://www.circuitcellar.com

66 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

definitely isn’t your father’s DSP.

PIPE DREAM
Piccolo comprises a family of par ts

with roots in the venerable Texas
Instruments ’C2000 DSP line-up (see
Figure 1). Nevertheless, from
50,000’, you’d be hard-pressed to tell
the difference between Piccolo and a
traditional 32-bit MCU (see Figure 2).
Notably, it’s got on-chip memory,
peripherals, and glue logic and is
fully capable of stand-alone, single-
chip operation.

But dive down to treetop level and
the DSP difference becomes more
apparent. The processing core itself,
with an eight-stage pipeline, is more
complicated than the three-to-five-
stage unit you’ll find on a typical 32-bit
MCU. It’s arguably a bit of architectural

But DSPs aren’t dead. They’ve just
been hiding, retro-marketed with
new labels such as Digital Signal
Controller. Along the way DSP sup-
pliers have diligently worked to
overcome historic DSP objections:
high-price, high power consumption,
hard-to-program, needs extra chips
and glue logic, and more.

Let’s put all the labels and precon-
ceptions aside and take an impar tial
look at a modern DSP in disguise,
the Piccolo from Texas Instruments.
Yes, it’s a natural for classic DSP
apps such as fancy (e.g., sensorless
motor controls and smart (e.g.,
power factor correction) switcher
power supplies. But I think you’ll be
surprised to see the potential Piccolo
offers general-purpose applications
as well. In many, many respects it

overkill because the slowest Piccolo
runs at blue-collar 40 MHz, but
makes more sense when you realize
Piccolo should, and does, maintain a
measure of compatibility (i.e.,
assembly source) with higher-end
’C2000 parts that run at hundreds of
megahertz.

Longer pipelines can be more haz-
ardous—for example, when one
instruction tries to read an operand
not yet written by the preceding one,
and Piccolo is no exception. Howev-
er, the TI design features a measure
of hardware interlocking that will
keep you out of trouble. Ideally, you,
or more likely the C compiler , will
schedule instructions to avoid haz-
ards; but if not, the pipeline will
automatically stall. Notably, this
does not incur the code bloat of

Figgure 1—The TMS320F280xx Piccolo family is the latest addition to TI’s venerable line of C2000 DSPs (er, make that MCUs).

64-KB Flash memory
40 MHz

38 pin 48 pin 64 pin 80 pin 100 pin

32-KB Flash memory
40 MHz

64-KB Flash memory
60 MHz

F2802x

32-KB Flash memory
60 MHz

128-KB Flash memory
60 MHz with CLA

128-KB Flash memory
60 MHz with CLA

64-KB Flash memory
60 MHz with CLA

64-KB Flash memory
60 MHz with CLA

F2803x

Without CLA Without CLA

Without CLA Without CLA

Multiple temperature grades:
-40° to 85°C
-40° to 125°C
-40° to 125°C (Automative)

• 40–60 MHz C28x CPU

• Starting from 38 pins

• Control law accelerator

• CAN, LIN, AECQ100

• Increased on-chip memory

• More functional I/Os

• Enhanced safety features

Future
“Piccolo”

Future
“Piccolo”

F280xx

P
er

fo
rm

an
ce

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 67

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

program and data spaces. That’s
helpful because it makes it easy to
access data stored in flash memor y
or run programs stored in RAM.

Instruction set-wise, Piccolo has
something for everyone with RISC,
CISC, and DSP all rolled into one.
As noted above, the XAR registers
support a measure of load/store pro-
cessing, yet also can ser ve as point-
ers that allow instructions to oper-
ate directly on memory. The DSP
DNA is apparent in all manner of
number-crunching embellishments,
such as saturation, rounding, and so
on. But overall, Piccolo is quite CISCy,
both as a matter of principle and to

delay slots (i.e., NOP inser tions) that
purely software-scheduled pipelines
incur.

Piccolo features an interesting mix of
architectural styles, as seen in the lay-
out of the main registers (see Figure 3).
The XT, P, and ACC registers do the
DSP heavy lifting for the single-
cycle 32 × 32 multiplier and bar rel
shifter. On the other hand, the 8- ×
32-bit XAR general-purpose registers
lend a RISC-like feel. To streamline
direct addressing, the 16-bit data
pointer (DP) register fronts a 6-bit
offset contained in the instr uction to
reach any location in the lower 4M
words of data space. Of course,
much of the big-iron addressing
capability is underused in single-
chip devices.

While Piccolo is a Har vard design
capable of simultaneous instruction
fetch, memory read, and memory
write, access is made simpler by the
fact memories are mapped into both

maintain software compatibility
with earlier ’C2000 parts.

EASY DOES IT
Historically, one of the knocks on

DSPs was that they paid little atten-
tion to the details beyond their num-
ber-crunching mission, burdening a
design (and the designer) with the need
for extra peripheral chips, clock genera-
tion, multiple power supplies, and
sundry glue logic. It’s here that Piccolo
stands out from its predecessors with
features like an on-chip oscillator with
PLL and missing clock detection, a sin-
gle 3.3-V power supply with an on-chip
regulator, power-on/brownout/watch-
dog RESET, and a vectored inter rupt
controller, all in tidy sur face-mount
packages. Unlike traditional DSPs, Pic-
colo is downsized with MCU-like 38-,
48-, 64-, and 80-pin package options.
Peripheral-wise, there’s a full comple-
ment comprising the usual suspects:
GPIO pins (with an input glitch fil-
tering feature), serial ports (UART,
SPI, I2C—have it your way), and three
general-purpose 32-bit timers. Picco-
lo’s signal-centric aspirations are
served by multichannel, high-speed
(up to 4.6 Msps) 12-bit ADC with flexible
triggering and auto-sequencing options.

These features are all well and
good, but except for the for midable
number crunching capability, they’re
otherwise little different than those
found on a typical 32-bit flash mem-
ory MCU (which is, after all, the
point). All else being equal, for those
who aren’t already in a committed
relationship with Piccolo’s C2000
predecessors, it would seem there’s
little compelling reason to switch.

But maybe all else isn’t equal, consid-
ering the advanced I/O capabilities
embodied in Piccolo’s on-chip enhanced
control peripherals, which include
enhanced (ePWM) and high-resolution
(HRPWM) PWMs, input capture
(eCAP) and quadrature encoder

Figuuree 22—With on-chip flash memory and RAM, glue logic, and a full complement of I/O, Piccolo
is a contender for low-cost single-chip applications.

Memory Power and clocking

20-KB RAM

Boot ROM

Debug

Real-time JTAG

Dual OSC
10 MHz

3.3-V Supply
(On-chip 1.9 V)

Power-on
reset

Brown-out
reset

64- to 128-KB
Flash memory

Analog modules

Peripheral bus

Serial interfaces

I2CCAN

LIN

SCISPI
x2

Peripherals

12-bit, 13-/16-ch
up to 4 MSPS

Comparators
up to 3x

10-bit DAC
2x

Timer modules

ePWMx12
(5x HR PWM)

QEP
up to 1x

eCAPx1

C28x 32-bit
CPU

60 MHz
32 x 32-bit Multiplier
RMW Atomic ALU

Control law
accelerator

TMS320F2803x

Instruction set-wise, Piccolo has
something for everyone with RISC,
CISC, and DSP all rolled into one.

”“

http://www.circuitcellar.com

68 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

(eQEP). Naturally, the enhanced I/O
modules are a big plus for traditional
DSP apps (e.g., motor control) but may
find favor in other high-frequency,
timing-centric applications. For exam-
ple, using a fancy “Micro-Edge Posi-
tioning” technique, the HRPWM
offers edge timing resolution on the
order of 150 ps. Yes, that’s “picosec-
onds” with a “p.” Try that with your
run-of-the-mill MCU.

Higher-end Piccolos will also
include what TI calls a control law
accelerator (CLA). I don’t have specs

yet, but sifting through the press tea
leaves reveals the CLA is an independ-
ent 32-bit floating-point coprocessor
that autonomously runs control loops
(e.g., PID). Able to communicate
directly with peripherals (e.g., ADC,
ePWM) and deal with inter rupt
requests, the CLA is said to signifi-
cantly reduce overhead for the main
processor (see Table 1).

SYMPHONY IN C
Of course, if you’re already into

DSPs, TI has you covered when it

comes to apps like motor control,
smart power supplies, and such.
They’ve got an effective develop-
ment and prototyping regime com-
prising DIMM-like processor mod-
ules that plug into various applica-
tion-specific motherboards and plen-
ty of software, app notes, and more
to go with. There’s even something
called DSP/BIOS, kind of a mini-me
modular RTOS, comprising a library
with hundreds of basic data acquisi-
tion, storage, and control functions.

But you don’t need to be a rocket

Figurree 3—RISC, CISC, or DSP? The Piccolo
architecture combines aspects of all three.

T[16] TL[16]

PH[16] PL[16]

AR0H[16] AR0[16] XAR0[32]

XAR1[32]

XAR2[32]

XAR3[32]

XAR4[32]

XAR5[32]

XAR6[32]

DP[16]
6-/7-bit
offset

SP[16]

AR1H[16] AR1[16]

AR2H[16] AR2[16]

AR3H[16] AR3[16]

AR4H[16] AR4[16]

AR5H[16] AR5[16]

AR6H[16] AR6[16]

AR7H[16] AR7[16]

PC[22]

RPC[22]

ST0[16]

ST1[16]

IER[16]

DBGIER[16]

IFR[16]

AH[16] AL[16]

XT[32]

P[32]

ACC[32]

XAR6[32]

http://www.circuitcellar.com
http://www.cadsoftusa.com

www.circuitcellar.com • CIRCUIT CELLAR® 69

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

it’s almost as though the compiler
folks would just as soon get rid of
the application programmer and do
it all themselves.

There’s a laundry list of dozens of

scientist, or have a budget like
NASA, to kick the tires. Let’s check
out the Piccolo MCU controlSTICK,
which definitely qualifies as an
impulse buy at just $39.

If you haven’t caught on to the
fact Piccolo can impersonate an
MCU, Photo 1 should make it clear.
There, you can see that the control-
STICK comprises little more than
the Piccolo itself along with a Future
Technology Devices International
chip to handle the USB inter face. If
it walks like an MCU and talks like
an MCU?

The same goes for the Texas
Instruments Code Composer Studio,
which at least at first glance, looks
like a typical MCU toolchain with a
dizzying array of menus and win-
dows to play with (see Photo 2).
Indeed, if anything, Code Composer
Studio takes it a step fur ther with
advanced analysis capabilities that
leverage Piccolo’s on-chip debug
hardware (see Photo 3). Scratch a bit
further under the surface and you’ll
find unique vestiges of Piccolo’s DSP
heritage. For example, you can cer-
tainly monitor data with the conven-
tional Watch Window. But you can
also capture data as a graph, and
Code Composer Studio can even r un
it through an FFT for you (see Photo 4).
Pretty cool.

I’ll be frank and admit with the
complexity of modern toolchains,
kicking the tires is just that. It
would take quite a while to get up to
speed and actually test drive all of
the advanced features. The best I can
do is tell you I ran through some of
the demo projects and ever ything
worked as advertised.

As someone who has always been
interested in computer architecture,
within the thousands of pages of
chip, tool, and application documen-
tation, my attention was captured by
the “Optimizing Your Code” chapter
in the C/C++ compiler manual. [1] I
learned long ago that any discussion
of an architecture’s merits is moot
unless compiler quality is factored
in.

It was fun and interesting to see
all the hoops the compiler jumps
through to tweak your code. I mean

potential optimizations. Many of
these are pretty obvious and old-
school, such as dead-code removal
(i.e., remove code that is not reach-
able) and common sub-expression

Photoo 1—If it walks like an MCU and talks like an MCU? The MCU controlSTICK highlights the
fact Piccolo (shown here along with a Future Technology Devices International chip that handles
the USB interface) is well-suited for low-cost single-chip applications.

http://www.circuitcellar.com
http://www.pcbcart.com

elimination (eliminates redundant calculations). And as
you might imagine, there are a number of low-level
instruction scheduling optimizations to keep that long
pipeline from stalling while preser ving the intent (e.g.,
ordering) of the programmer.

Actually, the DSP gurus have been at the front of the
pack leading the charge to fancier compilers, and it
shows in CCStudio with some tr uly Poindexter high-
level optimizations. You’re probably familiar with ones
like loop unrolling (eliminates branches) and function
inlining (ditto) but how about Alias Disambiguation?

C programmers love pointers, and C compiler writers
hate them. Here’s the “alias” dilemma. Compiler writers
want the flexibility to move instr uctions around willy-
nilly. And they could if it weren’ t for those darn data
dependencies. For example, if the program is:

a = a1 * a2
…
b = b1 + b2
…
z = a + b

The first two statements
can be moved around and
even their order can be
reversed. The only
restriction is the last
statement has to remain
last because z’s value
depends on the prior set-
ting of a and b.

Easy enough. But what if
instead of referencing the
variable by name, the pro-
grammer referenced it
using a dynamically calcu-
lated pointer to (i.e.,
address of) the variable.

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

CIRCUIT CELLAR® • www.circuitcellar.com70

Now the compiler has to tr y to establish the possible
run-time values a pointer can, or can’ t, take on in
order to guarantee dependencies aren’t compro-
mised. Two different pointers may point to the
same variable (the “alias”) and the compiler has to
figure out whether that is, or isn’ t, possible (the
“disambiguation”).

I’m no expert, so it all seems like magic to me. I
do remember discussing the subject of alias disam-
biguation with a compiler exper t once. He told me
there are ways to deal with the challenge theoreti-
cally, a minor caveat being possibly infinite com-

pile time. An effective compromise is for you, the pro-
grammer, to give the compiler some hints. For instance,
the TI compiler has “aliased_variable” options that
enable you to tell the compiler that you’re sure a par tic-
ular pointer is safe from aliasing.

Just keep in mind that optimizers, especially ones that
move instructions around, can make debugging more
mind-numbingly complicated than it already is. Consid-
er the common technique of viewing your compiled pro-
gram as C source mixed with assembly language. The
problem is a piece of the assembly language associated
with a particular line of C code may be moved to a dif-
ferent location. The compiler has an interlist option that
keeps the listing sane by restricting the optimizations.

Similarly, watch out if you mix inline ASM with your
C code, especially if it messes with C variables, func-
tions, and so on. For example, if your ASM code calls a
C function, you may find the compiler didn’ t know that
function was needed and optimized it away . The compil-
er offers a “FUNCTION_EXT_CALLED” pragma you can
use to explicitly mark functions that should be pre-
served. There’s also a “CALL ASSUMPTIONS” option
that tells the compiler whether your ASM code does, or

PPhootoo 22—Programmers will feel
right at home with Code Com-
poser Studio, TI’s full-featured
C/C++ IDE for Piccolo.

Taablee 1—The control law accelerator (CLA) in higher-end Piccolos can handle
closed-loop control by itself, freeing the main processor for other tasks. In
this example provided by TI, the combination of the C28x processor core
and the CLA is nearly three times faster than the processor core alone.

Operation C28 (60 MHz) C28/CLA (60 MHz)

Feedforward control cycles 482 482/0

Feedback control cycles 1,081 0/550

Total control Law cycles 1,563 482/550

Megahertz used (20-kHz loop) 32 MHz 10/11 MHz

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 71

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

doesn’t, call C functions or modify C
variables.

In short, debugging compiler opti-
mized code is a pain, although
you’re welcome to try. If you get
really deep into it, CCStudio
includes a pipeline simulator that
may come in handy (see Photo 5).

THREE Ps
So how does Picco-

lo measure up to
other 32-bit flash
memory MCUs when
it comes to the
“three Ps”—perform-
ance, power, and
price?

Of course, per-
formance depends
on the application
being performed.

Clearly, Piccolo will excel in tradi-
tional DSP number-crunching applica-
tions, all the more true by taking
advantage of the unique control law
accelerator. But as well, there’s every
reason to believe Piccolo can hold its
own in general-purpose applications
too. Indeed, TI claims Piccolo delivers

PPhhootoo 33—With a single-chip MCU, all the action is hidden inside behind the pins. Piccolo
includes an on-chip bus analyzer that goes far beyond a simple “breakpoint” so you can see
what's going on.

Phootoo 4—TI may not call
Piccolo a “DSP,” but if
you should happen to
stumble across a signal,
Code Composer Studio
has got you covered with
unique signal-centric debug
features.

http://www.circuitcellar.com
http://www.lvr.com
http://www.picservo.com
http://xgamestation.com

show active power consumption of
about 2 mA/MHz, which is a little
higher than generic 32-bit flash mem-
ory MCUs, but not bad considering

the horsepower on tap. Besides the
clock rate, a key factor is which, if
any, of the Piccolo peripherals aren’t
used and can be powered down. For
example, turning off the CAN module
saves 11 mA and in fact simply dis-
abling the CPU clock output pin
(XCLKOUT) saves a whopping 15 mA.
Standby current consumption in the
lowest power mode (i.e., everything
off) is on the order of 100 µA, which is
somewhat higher than typical MCUs,
but certainly not a showstopper. My
conclusion is that the slightly higher
Piccolo power consumption would
only be an issue in the most batter y-
life-sensitive applications.

Finally, there is price. I don’t have
an official price quote, but the press
release says Piccolo starts at less than
$2 in volume. In terms of historic
pricing for DSPs, that’s quite a bargain
considering high-end parts (such as
TI’s own C6x line) can have triple-
digit price tags. At the same time,
we’ve all seen the headlines for $1
chips from other 32-bit flash memor y
MCU suppliers.

There’s no free lunch, and you get
what you pay for. If you need only a
plain-vanilla MCU that’s probably
what you should use. But if you can
take advantage of even just one of its
advanced features—notably the num-
ber-crunching capability or the
advanced peripherals (e.g., HRPWM,
CLA)—Piccolo may hit just the right
note in your application. I

72 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

Tom Cantrell has been working on chip,
board, and systems design and market-
ing for several years. You may reach him
by e-mail at tom.cantrell@circuitcellar.com.

EFERENCE
[1] Texas Instruments, “TMS320C28x
Optimizing C/C++ Compiler,”
2007, http://focus.ti.com/lit/ug/spru
514c/spru514c.pdf.

OURCE
controlSTICK Evaluation kit and
Piccolo microcontroller
Texas Instruments, Inc. |
www.ti.com

SS

RR

25% better Dhrystone performance
than a Cortex-M3-based MCU.

Power consumption is equally system-
and application-dependent. The specs

PPhootoo 55—Code Com-
poser Studio includes
a Piccolo simulator
that lets you see
what’s going on
under the hood.

mailto:tom.cantrell@circuitcellar.com
http://focus.ti.com/lit/ug/spru514c/spru514c.pdf
http://www.ti.com
http://www.circuitcellar.com
http://www.expresspcb.com

UNIQUE PRODUCTS
FREE SUPPORT!

1-888-772-3544

www.saelig.com

Color LCD ScopeUSB Bus Analyzers

2-ch + trigger standalone USB

bench scope. $325 / $599

Be
st

Sell
er

Packet-Master™ - USB 1.1/2.0

analyzers and generators. $699+

USB to I2C

.NET Board

Small (2.2” x 2.2”) lowest cost .NET

Micro Framework dev system.

Keyboard Simulator

USB board adds 55 I/O & 5 x 10-bit

A/D inputs, 1 x 10-bit analog O/P.

.NET Micro box with CANbus,

Ethernet, RS232, A/D, analog out

CANxtra

Be
st

Valu
e

U
S

B
iz

i

C
A

N
x

tr
a

P
o

K
e

y
s

5
5

T
U

S
B

1
2

 /
 4

8
0

+
 /

 5
0

0
A

G
C

E
-U

S
B

D
S

1
0

0
0

B
 S

e
r
ie

s
P

D
S

5
0

2
2

S
 /

 P
D

S
6

0
6

2
T

U
S

B
I2

C
IO

Fast 4-ch Scopes

4-ch 2 GSa/s DSO 5.7” TFT

color LCD b/w to 200MHz.

USB-Serial

A complete USB-serial

converter in a DB9 shell. $26

I2C Xpress

Versatile USB 2.0 I2C protocol

exerciser and analyzer.

Wireless Solutions

Analog input, bluetooth wireless

modules 433/868/915MHz.

7 in 1 USB Scope

2-ch 10-bit 2MHz scope/spectrum-

analyzer, 3MHz 8-bt wfm gen. $180

I2
C

 X
p

r
e
s
s

E
m

b
e

d
R

F
 /

 A
d

e
u

n
is

“Drop-in” solution connectsPC to

I2C/SMBUS + 32 I/O lines. $89

C
G

R
-1

0
1

H
F

4
0
4

0
 /

 H
F

6
0

8
0

EMC Spectrum Analyzer

EMC RF & EMF Spectrum Analyzer

1Hz to 7GHz from $782 / $1875

Linear IC Technology

Introductory Circuit Analysis

Op Amp Design Techniques

ELECTRONIC
COMMUNICATIONS

MATHEMATICS
IN ELECTRONICS

To update your professor account or to find

out more about our college program, visit

www.circuitcellar.com/products/collegeprogram/

PROFESSORS
The Circuit Cellar college program
puts quality engineering information
in the hands of your students every
month. Sign up now to get
Circuit Cellar distributed to your
class this semester.

http://www.saelig.com
http://www.circuitcellar.com/products/collegeprogram/
http://www.mcc-us.com
http://www.circuitcellar.com/archives/backissuescd.html

7744 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
00

9
–

Iss
ue

 2
26

1 2 3

4 5

6 7 8

9

10 11

12

13

14

15 16

17

18 19

20

CCRROOSSSSWWOORRDD

The answers are available at
www.circuitcellar.com/crossword.

Down
2. An app’s server
3. Fluid/air resistance
4. Mini notebook
5. Plus for loopback tests
8. Reduce OSC amplitude
10. Positively charged ions
11. In 1882, Edison’s network provided 110 V to customers in

this borough
13. Examine an older system, replace problem parts
14. 109

15. Unidirectional communication
16. Diode, 1904

Across
1. Weber
6. Explosion in a star
7. 57.2958 degrees
9. 1012

12. Negatively charged ions
17. The “R” in I = V/R
18. cd/m2

19. Si
20. 6.0221415 × 1023

http://www.circuitcellar.com
http://www.circuitcellar.com/crossword

www.circuitcellar.com • CIRCUIT CELLAR® 75

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

THE DIRECTORY OF
PRODUCTS AND SERVICES

AD FORMAT: Advertisers must furnish digital submission sheet and digital files that meet the specifications on the digital submission sheet. ALL TEXT AND OTHER
ELEMENTS MUST FIT WITHIN A 2" x 3" FORMAT. Call for current rate and deadline information. E-mail adcopy@circuitcellar.com with your file and digital submission
or send it to IDEA BOX, Circuit Cellar, 4 Park Street, Vernon, CT 06066. For more information call Shannon Barraclough at (860) 875-2199.

The Vendor Directory at www.circuitcellar.com/vendor/
is your guide to a variety of engineering products and services.

IDEA
BOX

UUSSBB
Add USB to your next

project—it’s easier than you
might think!

USB-FIFO up to 8 mbps

USB-UART up to 3 mbps

USB/Microcontroller boards

pre-programmed with firmware

2.4GHz ZigBee™ & 802.15.4
RFID Reader/Writer

Absolutely NO driver software

development required!

www.dlpdesign.com

���

�������������	

��������	��
����

���� ���	���� � ��� ��
��������������	������
�������

mailto:adcopy@circuitcellar.com
http://www.circuitcellar.com/vendor/
http://www.circuitcellar.com
http://www.tracesystemsinc.com
http://www.dlpdesign.com
http://www.allelectronics.com
http://www.i2cchip.com
http://www.jkmicro.com

76 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

Starting at $125!

Program in
Assembler, BASIC, C, and Forth

www.TechnologicalArts.com

Adapt9S12XDP512
Modular Prototyping System

* Robotics and Mechatronics
* Electronic Fuel Injection
* Freescale 9S12XDP512

* RTOS-capable

Evaluate * Educate * Embed

http://www.TechnologicalArts.com
http://www.circuitcellar.com
http://www.rabbit-u.com
http://www.reachtech.com
http://www.hexwax.com
http://www.flexipanel.com
http://www.maxbotix.com
http://www.circuitcellar.com/newsletter
http://www.captroncorp.com
mailto:sales@captroncorp.com
http://www.tri-plc.com/cci.htm
http://www.ccsinfo.com/PIC16CC

www.circuitcellar.com • CIRCUIT CELLAR® 77

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

http://www.circuitcellar.com
http://www.aagelectronica.com
http://www.stx104.com
http://www.phytec.com
http://www.phycore.com
http://www.can232.com
http://www.canusb.com
http://www.earthlcd.com
http://www.mcc-us.com
http://www.tern.com
http://www.lemosint.com

78 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

�
�
�
�
�
�
�
�
�

To
o

ls
 f

o
r

E
m

b
ed

d
ed

 D
ev

el
o

p
m

en
t

ARM7
MODULAR
TOOLSET

� C/C++
� Code Wizards
� Debugging
� Simulation

www.crossware.com
info@crossware.com

Advanced software
tools since 1984

Add support for Atmel, NXP
or STMicro’ ARM7 variants to
Base Package to suit your
requirements and budget

®

http://www.crossware.com
mailto:info@crossware.com
http://www.circuitcellar.com
http://www.picofab.net
mailto:sales@picofab.net
http://www.nkcelectronics.com
http://www.ontrak.net
http://www.pulsar-inc.com
http://www.ironwoodelectronics.com
http://www.melabs.com
http://www.melabs.com

77 AAG Electronica, LLC

25 AP Circuits

42 ARM

75 All Electronics Corp.

77 Apex Embedded Systems

7 Atmel

33 CWAV

68 CadSoft Computer, Inc.

14 Calao Systems

76 CapTron Corp.

23 Comfile Technology, Inc.

78 Crossware Products, Inc.

76 Custom Computer Services, Inc.

75 DLP Design

40 DesignNotes

14 EMAC, Inc.

63, 77 Earth Computer Technologies

32 Elprotronic

The Index of Advertisers with links to their web sites is

located at www.circuitcellar.com under the current issue.

Page

57 Embedded Developer

72 ExpressPCB

27 ezPCB

76 FlexiPanel Ltd.

15 Front Panel Express LLC

69 General Circuits

35 Grid Connect, Inc.

5 HI-TECH Software, LLC

40 HobbyLab, LLC

75 I2CChip

30, 31 ICbank Inc.

1 Imagineering, Inc.

78 Ironwood Electronics

32, 34 JKmicrosystems, Inc.

75 JKmicrosystems, Inc.

49 Jameco

71 Jeffrey Kerr, LLC

13 Keil Software

29 LPKF Laser & Electronics

71 Lakeview Research

77 Lawicel AB

15, 77 Lemos International Co. Inc.

28 Linx Technologies

73, 77 MCC (Micro Computer Control)

35 MachinePIER

76 Maxbotix

78 microEngineering Labs, Inc.

21 Mouser Electronics

78 NKC Electronics

C2 NetBurner

71 Nurve Networks LLC

78 Ontrak Control Systems

12 PCB-Pool

C4 Parallax, Inc.

63, 77 Phytec America LLC

78 Picofab Inc.

Page Page Page

41 Pololu Corp.

78 Pulsar, Inc.

19, 25 Rabbit, A Digi International Brand

76 Rabbit, A Digi International Brand

76 Reach Technology, Inc.

39, 73 Saelig Co.

11 SEGGER Microcontroller Systems LLC

40 Senix

55 Sensors Expo & Conf.

C3 Tech Tools

2, 3 Technologic Systems

76 Technological Arts

77 Tern, Inc.

75 Trace Systems, Inc.

76 Triangle Research Int’l, Inc.

34 Xytronix R&D, Inc.

Keystroke Communication: Design a Customizable Virtual Keyboard

Autonomous Vehicle Design: Embedded Systems, Sensor Technology, & Motor Control

SSI Controller for Linear-Position Sensors

THE DARKER SIDE High-Speed Signal Transmission: Preemphasis, Equalization, & More

ABOVE THE GROUND PLANE Solar Data Logger (Part 2): Data Points

FROM THE BENCH Location Notification: A Look at Anisotropic Magnetoresistance Sensors

SILICON UPDATE Easy (E)mbed: An Alternative Approach to Embedded Programming

www.circuitcellar.com • CIRCUIT CELLAR®

INDEX OF
ADVERTISERS

PREVIEWof June Issue 227

Theme: Communications
July Issue 228

Deadlines
Space Close: May 12

Material Close: May 19

Theme
Internet & Connectivity

ATTENTION ADVERTISERS

Call Shannon Barraclough
now to reserve your space!

860.875.2199
e-mail: shannon@circuitcellar.com

779

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

http://www.circuitcellar.com
http://www.circuitcellar.com
mailto:shannon@circuitcellar.com

80 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6

PRIORITY

A lot has been written about the demise of newspapers and commercial publishing companies. The popular
opinion is that newspapers in particular are going down the drain because the same information is available faster
and cheaper via the Internet. I suppose there is some merit to that conclusion, but it sure doesn’t jibe with my
explanation for not reading as many newspapers these days. Let me explain.

OK, I’m one of those anachronistic people who still do read “real” newspapers. When I’m away at the cottage,
I read USA Today and a local paper every morning. On Sundays, I get the local paper and the Sunday edition from
the nearby metropolis. I used to get a second large city paper on Sundays along with the big city daily newspaper,
but I cancelled them after getting very tired that 90% of the editorial was always about big city blood, death, and
mayhem. That same reason made me give up listening to the 11PM one-hour TV news programs—too much of,
“If it bleeds, it leads.”

Back in Connecticut, I have a similar newspaper “disconnect,” but for different yet related reasons. I still fol-
low the same morning regime with USA Today and a non-Hartford local paper. But because Hartford is a much
smaller city, at least the local TV channels get over the blood and guts earlier and still have 15 minutes of a half
hour news program worth watching. Unfortunately, Sunday is a total washout—no newspapers!

But wait. There are plenty of Sunday papers in the Northeast, so why not? The reason is content, not the infor-
mation delivery speed or cost. For me, the rejection of support for various newspapers and magazines is because
of bad content and better competition, not because of faster availability of the same information elsewhere. I used
to get the Hartford paper seven days a week along with the Sunday New York Times. At first, I just got irritated
that the news presentations and political coverage were increasingly one-sided, but when the opinion pieces and
news stories became indistinguishable, I had to draw the line. I wasn’t going to pay for lousy (in my opinion) con-
tent. I wasn’t passing on buying the paper version so I could then go to their web sites and read the same content
for free. I simply didn’t believe in the credibility of their content anymore.

The Internet is the most open and uniquely diverse source of mass media ever developed. Part of its uniqueness
is that it fosters a low-cost interchange of ideas and published materials. At one time, we sat around the campfire
and swapped stories. Now, kids sign on to a variety of social networks to hear and exchange tall tales. The beau-
ty of the Internet and the worry for traditional publishers is that the Internet is interactive and not meant solely
to push content in one direction to a captive audience. Information on any subject, to any depth of analysis
desired, and with virtually any degree of correctness, is available on demand.

In my opinion, a lot of the financial problems in publishing are coincident with bad economic conditions, but
certainly many newspapers and magazines are feeling a lot more heat simply because readers no longer trust their
content. The fact that readers might seek alternatives on the Internet is a consequence of smart people seeking a
better source. It is too simplistic to attribute all print publishing failures merely to cheaper and faster access on
the Internet. Similarly, moving from a print venue to an online one doesn’t alleviate the issue of crappy content.

In my opinion, publishing survival—whether using print, the Internet, PDFs, wireless e-paper, or whatever—is
all about readers valuing the credibility and content of the message and not solely about the delivery medium.
Don’t get me wrong, printing paper is a whole lot more expensive than simply posting an article online. But no
one would read Circuit Cellar in any form (whether in print or online) if they didn’t trust us in the first place. I
know we owe the trust we have earned to the smart engineers, programmers, and scientists who write the excep-
tional editorial we publish. In turn, they know we go to extreme efforts to remain both a viable venue for enlight-
ening their interests as well as enhancing their professional careers.

Right now, the entire publishing industry is in flux as it tries to deal with evolving delivery technologies. Like
many magazines, Circuit Cellar has an online component. In our case, we view Digital Plus as a complement and
enhancement to our print venue and not an escape from print. When the dust settles, the commercial publishing
survivors will be the ones, regardless of venue, with superior content. We intend to be among them.

It’s All About the Content, Stupid!

steve.ciarcia@circuitcellar.com

by Steve Ciarcia, Founder and Editorial Director

INTERRUPT

mailto:steve.ciarcia@circuitcellar.com
http://www.circuitcellar.com

http://www.tech-tools.com

http://www.parallax.com

2 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

Now that you’re familiar with the topic of co-operative scheduling, it’s time to move
on to the topic of adding a GUI to a co-operative scheduler. The end goal is the
development of an interesting multitask audio device, a modern Theremin.

Time-Triggered Systems (Part 2)

I

B
O

N
U

S

ARTICLE
by MIke Smith & Lizie Dunling-Smith

In “Time-Triggered Systems (Part 1): Co-Operative
Schedulers 101,” I (Mike Smith) described how I

rediscovered the idea of controlling multiple embedded
processor tasks through the use of a co-operative sched-
uler (Circuit Cellar Digital Plus 225, 2009). One often-
stated advantage of these schedulers is that they can be
programmed to provide “complete predictability” of when
each task is run. This is possible for two main reasons.
One reason is that only one interrupt is ever active at the
same time within the system. The other reason is the ease
with which the developer can specify when each program
task would run. This predictability can be put to great use
in safety-critical systems where reliability and other
known performance issues are important.

In the first article, I also showed that this complete pre-
dictability did not occur automatically, even when the system

Figgure 1a—This is the TAOS TSL230R light-to-frequency converter (www.circuitcellar.com/library/print/1204/Bachiochi173/3.htm).
b—This chip has two pins (S0, S1) to control its light sensitivity over a range of 1 to 100 and two pins (S2, S3) to control its
frequency sensitivity over a range of 1 Hz to 1 MHz (http://pdf1.alldatasheet.com/datasheet-pdf/view/153439/ETC/TSL230R.html).

just involved a series of trivial tasks (e.g., a series of flash-
ing LEDs). The problem was associated with “time jitter.”
This is the (undesirable) delay in the execution of one task
that occurs when two tasks are simultaneously prepared
for running within the co-operative operating system. It is
analogous to the changes in execution times that occur in a
preemptive scheduler when the execution of one task is
switched out or interrupted by another task. When the sys-
tem just involves two minimalistic tasks, the possible pres-
ence of time jitter in a co-operative scheduler can be deter-
mined using simple “back-of-the-envelope” calculations, as
I explained. However, if you are developing a more compli-
cated project that involves a design with many interacting
tasks, and if “real” timing and safety concerns are present,
a more sophisticated automated tool would be better than a
scrap of paper.

In this article, Lizie and I will cover the topic of adding a
graphical user interface (GUI) to the co-operative scheduler
to obtain detailed timing information on how tasks inter-
act with each other during the development of a multitask
audio project. We will explain how to use this tool to
check the solution for a project where long tasks have the
potential of blocking short tasks when running within a
co-operative scheduler.

THE THEREMIN
The Theremin, or aetherphone, is a musical instrument

with a number of unique firsts in its background. It is the
earliest electronic musical instrument (1913), and the first
musical instrument that could be played without being

THE MAGAZINE FOR COMPUTER APPLICATIONS

A Tool for Automating Analysis

S3
S2
Out
VDD

S0
S1

*OE
GND

0
2
3
4

8
7
6
5

a))

bb)

www.circuitcellar.com • CIRCUIT CELLAR® 3

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

touched. Originally, there were two metal anten-
nae used to sense the position of the musician’s
hands. These antennae were coupled to radio-fre-
quency oscillators used to control circuitry that
manipulated the Theremin’s sound volume and fre-
quency. Rather than using metal antennae, we
implemented two programmable light-to-frequency
converters. Changing light levels caused by shad-
ows were used to sense the position of the
Theremin-ist’s hands.

Circuit Cellar columnist Jeff Bachiochi featured
TAOS sensors (see Figure 1) in his 2004–2005 arti-
cle series about a pulse oximeter design (“Light-to-
Frequency Conversion,” Parts 1–2, Circuit Cellar
173–174). The easy-to-use sensors provide a train
(series) of 50% duty cycle square waves, whose fre-
quency is directly proportional to the light level
falling on them. Connect the sensor to a general-
purpose input/output (GPIO) pin on any processor
and you will able to sense the positions of a musi-
cian’s hands by the amount of shadow that’s cast.
Figure 2 shows the proposed hardware. Two light sensors
are connected to a processor’s GPIO pins. A speaker is
plugged into an evaluation board’s analog output channel.

As you learned in the first part of this article series, it
isn’t difficult to use a co-operative scheduler to prototype
a multitask embedded product, such as the Theremin
(see Listing 1). First, use TTCOS_Init() to initialize the
TTCOS scheduler (Line 6). Then add tasks to the sched-
uler’s todoList by specifying each task’s initial time
delay and period with TTCOS_AddTask() (Lines 11 to 14).
Next, activate the scheduler’s single interrupt (timer)
TTCOS_Start() (Line 16) and send the system into a
low-power mode TTCOS_GoToSleep() (Line 20). The
timer interrupt service (Lines 27–30) routine uses
TTCOS_Update() (Line 29) to increment the Run-Me-
Now variable of each task based on the current time and
the task’s delay and period stored in the scheduler’s to-do
list. With the processor now out of Sleep mode, the
TTCOS_DispatchTask() routine (Line 21) activates all
the tasks that need to run and the processor is given a
bite of the poisoned apple and sent to sleep once again
(Line 20). For more details about all the code needed to
develop a basic co-operative scheduler, see Michael
Pont’s book Patterns for Time-Triggered System. (A free
download is available at www.tte-systems.com/books.)

CODE INSTRUMENTATION
Building the Theremin required just four tasks to be added

to the scheduler’s to-do list. The LightSensorVolume()
and LightSensorFrequency() tasks provide the tim-
ing information necessary to calculate the light sensors’
output frequency. These are set to have a period of
RUN_OFTEN. There is one task ModifyAudioSet-
tings(), set to RUN_AS_NEEDED, to update the volume
and frequency information used to generate the
Theremin sound. This information is used by the final
task, OutputSound(), which is RUN_MORE_FREQUENTLY

to output the audio signal.
For this initial prototype, we chose approximate values

for the time periods (RUN_OFTEN, RUN_AS_NEEDED, and
RUN_FREQUENTLY) needed in the project based on initial
project characteristics. However, this prototype is just the
first stage in a full-blown Theremin project. Therefore, it
was useful to have a tool capable of validating our design
assumptions when the hardware and software actually
interacted. The tool had to be able to display a “state histo-
ry” to show when each task ran and how the various tasks
interacted with each other. In particular, we wanted the
tool to be able to automatically recognize when one task
blocked the expected execution of another task.

To make this tool work, we made some changes to
TTCOS_UpdateTask(), which was called by the TTCOS
scheduler timer ISR (see Listing 2). This function was
responsible for determining when a given taskDelay had
decremented to zero (see Listing 2, Line 55). When this
occurred, the task’s RunMeNow semaphore variable was
incremented; this indicated that the task was now in the
READY_TO_RUN state. Activated by a RunMeNow sema-
phore’s value great than 1, additional software instrumen-
tation (Lines 61 to 64) indicates whether or not the task
had been prevented from running by another task:

if (RunMeNow > 1)
StatusHistory(CurrentTime(),

taskIndex,
TASK_BLOCKED); // Line 61

The StatusHistory() function (see Listing 2, Lines 38 to 47)
added the new task status information into HistoryInfo,
which is an array of HistoryStruct structures arranged
as a ring (circular) buffer (see Listing 3).

Information must be recorded to prepare for the time
when the task status changes between READY_TO_RUN,
TASK_RUNNING, and TASK_COMPLETED. This, together

Figure 22—The initial plans are to use the light sensors to control the sound
frequency and volume, but video manipulation in time with the music is possi-
ble given the evaluation board’s capabilities.

Possible
future extensions

Video
manipulation
in time with

sounds

TAOS TSL230R
Light sensors to

monitor musician’s
hand positions

Output using
evaluation board’s

audio D/A

Light intensity
calibration through

push buttons

Blackfin evaluation board
ADSPBF533

S3
S2
Out
VDD

S0
S1

*OE
GND

0
2
3
4

8
7
6
5

4 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

with statistical information about the
minimum and maximum task run
times, can be obtained by adding addi-
tional software instrumentation to
the TTCOS_DispatchTasks() func-
tion that’s responsible for running
each task (see Listing 4, Lines 98 to
104).

The software instrumentation code
used to store status information and
timing statistics in the TimingInfo
structure can be left in the run-time
code for use after the product has
been released. It can form the basis of
a tool that performs system diagnosis
during start-up, or it can be part of a
database uploaded over the Internet
for more detailed problem-solving analy-
sis—something akin to Microsoft’s “Do
you want to send in an error report
now?”

However, there is always a problem
to be faced with any software instru-
mentation, whether it is used during
development or post-release analysis.
The actual process of storing (too much)
detailed status information could steal

so much time from the processor core
that deadlines could be missed. This
means that the presence of the instru-
mentation actually introduces defects
into the system’s performance.

With many processors, it is possible
to minimize this possibility by caus-
ing the compiler to always_inline
the code for the StatusHistory()
(see Listing 2) and RunStatistic()
(see Listing 4) functions. In-lining
improves performance as it reduces
many of the redundant operations
that occur when subroutines are
called (e.g., moving a value from one
register to another register by the call-
ing function) only for the value to be
moved back to the original register by
the called function.

The Blackfin processor has a large
amount of internal instruction mem-
ory, and the instrumentation does
not involve making many inline
calls. However, for other processors,
the number of processor clock cycles
used during the software instrumen-
tation process could be a real issue.

In such situations, the equivalent of
the following C embedded assembly
language macros could be useful:

#define StatusHistory(A,B,C) \
asm(“nop;”);

#define RunStatistics(A,B) \
asm(“nop;”);

When the compiler expands these
macros, the software instrumentation
is reduced to trivial do-nothing nop
instructions. These will be removed as
redundant code by any half-way-intel-
ligent optimizing compiler, and then
the core can run at full speed.

TASK STATUS & TIMING INFO
We’ve covered the topic of adding

software instrumentation to provide
task status and timing information. So
now that you have all of these details,
what are you going to do with them?

Our initial idea was to do something
simple, such as add a breakpoint to stop
the TTCOS_Update() code whenever a
task was blocked from running when

Listingg 1—The proposed Theremin musical instrument code appears as four tasks in the co-operative scheduler’s to-do list. Three tasks
change the Theremin’s volume and frequency based on the shadows cast by the musician’s hands. A fourth task uses this information to
produce the “eerie sound” that is typical of the Theremin.

1 #include "./Theremin.h"
2
3 todoList Tasks[NUMBERTASKS];
4
5 int main(void) {
6 TTCOS_Init(TICK_TIME_IS_10us); // Init scheduler "to-do" list and scheduler timer
7
8 InitHardware();
9
10 // Add basic Theremin Tasks, initial delay and task period
11 TTCOS_AddTask(LightSensorFrequency, NO_DELAY, RUN_OFTEN); // Theremin frequency control
12 TTCOS_AddTask(LightSensorVolume,SHORT_DELAY, RUN_OFTEN); // Theremin volume control
13 TTCOS_AddTask(ModifyAudioSettings,LONGER_DELAY,RUN_AS_NEEDED); // Adjust audio parameters
14 TTCOS_AddTask(OutputAudio, NO_DELAY, RUN_MORE_FREQUENTLY); // Generate and output audio
15
16 TTCOS_Start(); // Activate scheduler timer interrupt service routine
17 // which calls TTCOS_Update() to update task's Run-Me-Now variables
18
19 while (1) { // Wait, in low power mode, for an interrupt
20 TTCOS_GoToSleep(); // Then run all the tasks in the scheduler's 'to-do' list according
21 TTCOS_DispatchTasks(); // to whether their delays have expired (RunMeNow > 0)
22 }
23
24 return 0; // Make compiler happy
25 }
26
27 EX_INTERRUPT_HANDLER(TTCOS_Interrupt) { // Only ISR operating in the co-operative scheduler
28 Acknowledge_TTCOSInterrupt();
29 TTCOS_Update(); // Update the Run-Me-Now variables for each task
30 }

www.circuitcellar.com • CIRCUIT CELLAR® 5

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

existing code in an unusual way. We
had to redefine display constants, such
as TASK_BLOCKED, in terms of the con-
stants needed by the VDK plug-in. Ana-
log Devices eventType of information
can be chosen from a list of possible
events equivalent to taskCreated,
taskDestroyed, and taskSwitched.
Their taskStatusChange event type
permits the recording of when the task
status switches between Ready, Run-
ning, Blocked, or Sleeping.

The VDSP development environ-
ment handles projects with both C
and C++ code. But we wanted to avoid
generating such a mixed project; how-
ever, there was no documentation
available for using the VDK plug-in in
this unusual manner. This made
things a little difficult.

For example, it is straightforward to
access the global VDK C++ g_Histo-
ry variable from C and assembly code
using the standard name-mangled syn-
tax format of extern History-
Buffer g_History__3VDK. However,

plug-in includes an interface for cus-
tomizing the performance analysis of
multiple threads. There is consider-
able similarity in functionality need-
ed to analyze preemptive and cooper-
ative scheduling. Thus, the VDK
dynamic timing and event informa-
tion was stored in a history table
with a structure equivalent to the
HistoryStruct entries in Listing 3.

The VDK Help pages indicated
that the VDK state history plug-in
accessed a global VDK C++ class
member variable:

HistoryBuffer g_History =
{MAX_HISTORY_ENTRIES,
currentEntry,

TTCOS_HistoryTable }

The VDKHistory.dll plug-in was able
to generate the state history shown in
Photo 1 when we added this variable
to a C++ file linked to our C project.

We encountered typical issues asso-
ciated with using someone else’s

it was designed to run (see Listing 2,
Line 61). We figured this breakpoint
could be made “intelligent” by using
the development environment’s applica-
tion-programming interface to upload
the status information to the host PC
automatically. We planned to display
the task information there using the
graphing capabilities of Excel or possi-
bly by generating a plug-in for use with
the Ellipse development framework.
However, when we actually got around
to developing a “state history” GUI, the
amount of work involved did not look
so appealing. So, we searched instead
for existing shareware capable of per-
forming the same operations. We found
an unexpected solution.

We had previously worked with the
Analog Devices VDSP integrated devel-
opment environment (IDDE) that has
a state history plug-in
(VDKHistory.dll). Running under
Windows, this plug-in used to display
the performance of Analog Devices’s
preemptive VDK scheduler. This

Listingg 22—The scheduler timer interrupt service routine (Listing 1, Lines 29–31) calls TTCOS_Update(). This function is responsible for
determining which tasks are now ready to run. Software instrumentation (highlighted) can be added to document the predictability present
in the system—in particular, whether one task has been blocked from running by another task.

34 volatile int historyIndex = 0;
35 HistoryStruct HistoryInfo[MAXHISTORY];
36
37 #pragma always_inline // Inline "write-to-history" operations to minimize instrumentation impact
38 inline void StatusHistory(unsigned long eventTime, int taskID, int taskStatus){
39 historyIndex++; // Update history index
40 if (historyIndex > MAXHISTORY) // and perform circular buffer operations
41 historyIndex = 0;
42
43 HistoryInfo[historyIndex].eventTime = eventTime; // Enter event status information
44
45 HistoryInfo[historyIndex].taskID = taskID;
46 HistoryInfo[historyIndex].taskStatus = taskStatus;
47 }
48
49 void TTCOS_Update(void) { // Part of scheduler interrupt service routine
50 int taskIndex;
51
52 for(taskIndex = 0; taskIndex < NUMBERTASKS; taskIndex++) {
53 if (Tasks[taskIndex].pointerToTask != DOLIST_ENTRY_EMPTY) { // Is there a valid task in the todoList?
54
55 if (Tasks[taskIndex].taskDelay != 0) // If taskDelay is non-zero then task is not ready to be run
56 Tasks[taskIndex].taskDelay--; // simply decrement the remaining delay time57
57
58 else { // If the task is READY_TO_RUN
59 Tasks[taskIndex].RunMeNow++; // then increment the RunMeNow flag
60
61 if (Tasks[taskIndex].RunMeNow > 1) // Check to see if task has been blocked from running
62 StatusHistory(CurrentTime(), taskIndex, TASK_BLOCKED);
63 else
64 StatusHistory(CurrentTime(), taskIndex, READY_TO_RUN);
65
66 if (Tasks[taskIndex].taskPeriod != RUN_ONCE) // Prepare periodic tasks to run again
67 Tasks[taskIndex].taskDelay = Tasks[taskIndex].taskPeriod - 1;
68 }
69 }
70 }
71 }

6 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

if you build your own version of the C
name-mangled g_History__3VDK
variable and delete the C++ version,
then the plug-in will no longer rec-
ognize the history table! The new
g_History__3VDK label can be seen
in the symbol table, but somehow
that is not enough to allow the dll to
work.

Additional minor annoyances were
associated with the lack of access to
the VDK plug-in internals. This
meant it was not possible to modify
the picture legend to display such
words as taskCreated rather than
threadCreated (see Photo 1). Nor
was it possible to customize the dis-
play axis labels to display the actual
task names. The first issue can be

Listingg 3—Adding this HistoryStruct to the code adds all the necessary information to
allow the VDSPHistory.dll plug-in to generate timing information for the co-operative
scheduler. Information stored in the newTimingStruct can be used to provide detailed run-
time statistics to determine whether the code meets design requirements.

#define DOLIST_ENTRY_EMPTY (0)

enum {READY_TO_RUN, TASK_BLOCKED, TASK_RUNNING, TASK_COMPLETED,
TASK_OVERRUN};

typedef struct {
unsigned long int eventTime;
unsigned int taskID;
unsigned int eventType;
unsigned int taskStatus;

} HistoryStruct;

typedef struct {
unsigned long int minRunTime;
unsigned long int maxRunTime;
unsigned long int lastRunTime;
unsigned long int taskSpecification;

} TimingStruct;

Lisstingg 44—Software instrumentation (highlighted) can be added to TTCOS_DispatchTasks() to record the run-time statistics for each
task.

74 TimingStruct TimingInfo[NUMBERTASKS];
75
76 #pragma always_inline
77 inline void RunStatistics(int taskID, unsigned long taskDuration){
78 // Record minimum and maximum run times
79 if (taskDuration < TimingInfo[taskID].minRunTime)
80 TimingInfo[taskID].minRunTime = taskDuration;
81
82 if (taskDuration > TimingInfo[taskID].maxRunTime)
83 TimingInfo[taskID].maxRunTime = taskDuration;
84
85 // Indicate that outside of project specifications
86 if (taskDuration > TimingInfo[taskID].taskSpecification)
87 StatusHistory(CurrentTime(), taskID, TASK_OVERRUN);
88 }
89
90 void TTCOS_DispatchTasks(void) { // Dispatches (runs) the next task (if one is ready)
91 int taskIndex;
92 unsigned long int taskStart;
93
94 for(taskIndex = 0; taskIndex < NUMBERTASKS; taskIndex++) {
95 if(Tasks[taskIndex].RunMeNow > 0) { // Check for a task ready to run
96 // Add status information about running the task
97 // and collect run time information
98 StatusHistory(CurrentTime(), taskIndex, TASK_RUNNING);
99 taskStart = CurrentTime();
100
101 (*Tasks[taskIndex].pointerToTask)(); // Run the task
102 // and record duration
103 StatusHistory(CurrentTime(), taskIndex, TASK_COMPLETED);
104 RunStatistics(taskIndex, CurrentTime() - taskStart);
105
106 Tasks[taskIndex].RunMeNow--; // Indicate that the task has run
107 // Remove 'RUN_ONCE' tasks from todoList
108 if (Tasks[taskIndex].taskPeriod == RUN_ONCE)
109 TTCOS_DeleteTask(taskIndex);
110 }
111 }
112 }

www.circuitcellar.com • CIRCUIT CELLAR® 7

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

solved by “ignoring the problem,” and a Notepad text
window can be superimposed on the state history pic-
ture to solve the labeling issue in the near-term (see
Photo 1).

If you want to build a scheduling GUI for a co-opera-
tive scheduler, we would recommend the route of “cre-
ative adaptation.” The preemptive scheduler state history
display plug-in of your own evaluation kit’s IDDE is cer-
tainly a good place to start!

NEW THEREMIN PROTOTYPE
When we planned the four tasks for the Theremin

(Listing 1), we assumed that each of the LightSensor
tasks would have the format in Listing 5 to capture the
timings for the beginning and end of the pulses output
by the TSL230R sensor. The first two while loops were
used to find the leading edge of the light sensor pulse
(time1). The other while loops were used to find the
end of the pulse (time2). These edge times could be used
to determine the light sensor frequency and allow the
ModifyAudioSettings() task to update the volume
and frequency information of the Theremin.

As you can see in the state history in Photo 1 (and it’s
obvious in hindsight), there was an issue with the infre-
quent LightSensor() “wait-for-signal-transition” tasks
blocking the more frequent audio OutputSound() task
(top track showing EventBlocked orange). This form of
coding scheduler tasks with “wait loops” was not particu-
larly co-operative. The time that the sensor tasks spent
waiting for external events continually blocked the more
frequent audio event. This meant that the audio stream
could be disrupted and the Theremin would sound terrible
rather than capable of providing the “eerie” sounds needed
for all of our lucrative movie soundtrack contracts.

This issue is common in embedded applications that use
co-operative schedulers. For example, how do you put out
the contents of a long buffer over a serial peripheral inter-
face (SPI) without blocking other tasks? We found the
answer is actually fairly straightforward when we adapted

ideas from Pont’s book.
First, we needed to re-express (re-factor) the task in

terms of the following series of states of the input GPIO
input signals:

enum {HIGH1, LOW1, HIGH2, LOW2};

We then recoded the LightSensor task to perform either
an operation in response to a transition between two states
(e.g., input changes from low to high) or simply to exit the
task (see Listing 6).

With this new format, two advantages became immedi-
ately apparent. One, the waiting for a sensor input to
change no longer occurred inside a task—a situation which
could possibly cause slow tasks that timed signals to block
the faster occurring audio tasks. Two, the “waiting” occurs
inside the TTCOS_GoToSleep() subroutine with the proces-
sor in a low-power mode. This approach offered considerable
power savings with a hand-held Theremin product.

Photo 2 shows that this new “no-waiting policy” ensured
that the faster tasks were no longer blocked by tasks wait-
ing for slow signal changes. We also show an undocument-
ed feature of the VDK state history plug-in. By using
“cycles since the program started” instead of the “number
of interrupts” as a time measure in the HistoryTable, we
got a quick and clear indication of the exact execution time
of each task.

CO-OPERATIVE VS. PRE-EMPTIVE
Is this suggested co-operative approach any better than

simply measuring times using interrupts generated each
time a GPIO pin senses an edge in the light sensor input
signal? Why not just use a pre-emptive-type scheduler
where tasks, activated by their own external interrupts,
interrupt other tasks?

The answer depends on what is meant by better. If there
is only one light sensor, and thus only one interrupt, the
pre-emptive scheduler always will be more accurate as we
identify the sensor signal edge precisely as the “exact”
time when the input interrupt is triggered. Compare that
accuracy with the co-operative scheduler, where an individ-
ual task can never provide precision greater than an integer
multiple of the timer interrupt.

On the other hand, the uncertainty in timing with every
task in the co-operative scheduler remains the same regard-
less of the number and timing of input signals that are
present. This precise knowledge can be put to real advan-
tage in many situations.

Is this level of timing precision a real issue because just
how accurately do you need to measure the period of a sig-
nal? If it is really necessary, you can set the accuracy to
better than any specified x µs by simply adjusting the fre-
quency at which the co-operative scheduler timer causes
interrupts.

TIMING REQUIREMENTS
Up to this point, we have described the timings of tasks

very loosely: RUN_AS_NEEDED, RUN_OFTEN, and

PPhootoo 1—The inclusion of a single global C++ variable was all that
we needed to enable an Analog Devices VDK State History plug-in to
display the co-operative scheduler’s timing information. We can see
that the AudioOutput() task (top line) is continually being blocked
by the wait-till-done loops in the timing LightSensor() tasks.

8 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

RUN_MORE_FREQUENTLY. To get practical definitions of
these timing intervals, we need to think in detail of what
we are trying to do.

The pianist in our choir often uses “eighth notes,” and
when playing “flat out,” plays tunes with 160 beats per
minute (quarter notes per minute). Let’s use that number
as a starting point and ignore possible carpal tunnel syn-
drome for our Theremin-ist. This would suggest that we
set around six note selections per second as our target for
the LightSensor() tasks. However, that does not mean
that we select 0.13 s (6 Hz) for the RUN_OFTEN interval.
The LightSensor() task must sense four signal
transitions for each note selection. These timings
directly impact on the note sound, and we don’t want
any sour, off-key notes. This indicates a probably
required accuracy of around 1%. That means that
RUN_OFTEN should be around 1.3 ms as a maximum.

While worrying about what value to use for
RUN_OFTEN, we uncovered a missed design issue. The
actual value depends on the settings of the light sen-
sor’s frequency selection pins (see Figure 1). We need
the light sensor to put out a signal whose frequency
we can accurately measure with the LightSensor()
task. Our Theremin-ist will probably start a career in
a dark sleazy night club before becoming world
famous and appearing on the well lit stage at
Carnegie Hall in New York. Due to the varying light
conditions, we need to add a new task Adjust-
LightSensitivity() to use the processor’s GPIO
output pins to control the S1 and S0 sensitivity select
pins on the TAOS TSL230R light sensor (see Figure 1).
This task can be set to RUN_OCCASIONALLY. We can
imagine this task responding to pushes on two but-
tons (INCREASE_SENSITIVITY and LOWER_SENSI-
TIVITY) connected to a processor’s GPIO input pins.
That suggests that RUN_OCCASIONALLY could be set
to around 0.1 s (10 Hz) to respond to the user’s
input requests in a reasonably responsive manner.

That now leaves us with the audio OutputSound()
task. For the Theremin application, imagine the flow
of this task something like the following. A sound
signal is pre-sampled and stored in an array that can
be accessed as a circular buffer. For an initial proto-
type, we stored a single period of a sine wave and had

the Theremin use the sine wave samples to generate a pure
musical tone. Each time the OutputSound() task is acti-
vated, a value from the sound array is sent to the evalua-
tion board’s DAC at a volume determined by the Light-
SensorVolume() task timings. Then the pointer into
the sound array is adjusted based on the values recorded
by the LightSensorFrequency() task. A large adjust-
ment to the pointer position could be made if we want to
generate a high-frequency sound from the stored sine
wave. A smaller step through the stored sound array will
generate lower frequency tones.

We will get a distorted sound signal if we just set
RUN_MORE_FREQUENTLY = 0.5 ms, which will generate a
low 2-kHz audio sampling rate. An eerie distorted sound
might just be appropriate for our Theremin. However,
this audio sampling rate would probably be insufficient if
we want to generate the Theremin sound accompanied by
a sampled music signal “beat.” So, we can make a design
decision to set RUN_FREQUENTLY to handle a 48-kHz
audio sampling, requiring a scheduler timer interrupt at
20 µs intervals.

A GOOD DESIGN?
We have gone through the system architecture analysis

and described the prototype system. Now we are ready to

Listing 55—The most obvious form of the LightSensorTask()
involves while loops to wait while the input signal changes
between four states. In a co-operative scheduler, this waiting
would block other tasks that need to execute more frequently.

void LightSensorTask() {
while (GPIOPin() == HIGH) /* Wait */;
while (GPIOPin() == LOW) /* Wait */;

// Now at leading edge of the sensor pulse
time1 = CurrentTime();

while (GPIOPin() == HIGH) /* Wait */;

while (GPIOPin() == LOW) /* Wait */;
sensorPeriod= CurrentTime() – time1;

}

Listing 66—We can avoid the LightSensor() routine from blocking
audio tasks by replacing the slow code of Listing 5 that “waits-till-some-
input-value-changes.” Instead we need fast code that operates under
the principle: “If no input value has changed, I’m leaving as quickly as
possible and going elsewhere to do something more important!”

void LightSensorTask() {
static int currentState = HIGH1;
int newState = currentState;
int pinState = GPIOPin(); // Input level

switch (currentState) {
case HIGH1: /* Test for sensor going low */

if (pinState == LOW)
newState = LOW1;

break;
case LOW1: /* Test for sensor going high */

if (pinState == HIGH) {
newState = HIGH2;

// Now at leading edge of light sensor pulse
time1 = CurrentTime();

}
break;

case HIGH2: /* Test for sensor going low */
if (pinState == LOW) {

newState = LOW2;
}

break;
case LOW2: /* Test for sensor going high */

if (pinState == HIGH) {
newState = HIGH1;
sensorPeriod = CurrentTime() – time1;

}
break;

// Update the task state
currentState = newState;

}

www.circuitcellar.com • CIRCUIT CELLAR® 9

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

code for a finished product, or are we?
What practical issues have we over-
looked?

The 20-µs scheduler interrupt nec-
essary to handle the audio sampling
rate looked easily capable of providing

the 1% accuracy needed for
the LightSensor() tim-
ings. However, we now had
an internal time interrupt at
50 kHz servicing an external
device that acquired sam-
ples at a 48-kHz rate. That
made for rather tight design
constraints.

There were two obvious
solutions. The first was to
speed up the scheduler
timer to provide 100-kHz
interrupts (10 µs). The sec-
ond was to switch the co-
operative scheduler to use
the external audio inter-
rupts, rather than the inter-
nal timer. Both approaches
have pros and cons.

Using an internal 100-kHz timer
interrupt ensured that we could meet a
timing guarantee that the audio chip

aa) bb))

Phhootoo 22a—We can get a clear indication of the execution time of each task by using “cycles since the pro-
gram started” rather than the “number of interrupts” time measure normally used by the VDK State History
display plug-in. We can even use, at no extra expense, the plug-in’s zoom feature for really close-up shots
with great timing detail. b—On the right, we see the processor switching from the low-power idle mode
(track 2) into the ISR (track 3), where the AudioOutput() task (top track) is prepared to run. The proces-
sor drops out of its idle mode to run the loop in main() (bottom track). The AudioOutput() task is then
dispatched (top track) before the processor goes back to sleep (track 2).

Listingg 7—In this working code for a prototype Theremin, many problems were solved by adding a task (Line 9) to switch control of the
co-operative scheduler from the internal timer interrupt to the external audio interrupt. In this project, tasks were added to enable the
recording and playback of “musical beats” to accompany the Theremin music (Lines 19 to 26). The DSPTasks code is used to automate
the match between the beat tempo of the recorded music and the beat of the music generated by the Theremin. This software task must
meet strict timing requirements if it is not to block the other, more hardware-oriented, tasks.

3 int main(void) {
4 TTCOS_Init(ORIGINAL_TICK_TIME_IS_10us); // Start the scheduler using internal timer interrupts
5
6 InitHardware();
7
8 // Switch from internal timer interrupts to external audio interrupts to control the scheduler
9 TTCOS_AddTask(SwitchToAudioInterrupt, NO_DELAY, RUN_ONCE);
10
11 // Wait a while to ensure the system is stable
12 // Play Theremin music on one channel and 'recorded' background beats on another
13 TTCOS_AddTask(AudioTask, HUNDRED_MS_DELAY, EVERY_TICK);
14
15 // Read Light Sensors that control Theremin volume and frequency
16 TTCOS_AddTask(ReadLightSensors, HUNDRED_MS_DELAY + 1, EVERY_TICK);
17
18 // Use switches SW1 and SW2 to control recording and playback of background beats to accompany music
19 TTCOS_AddTask(RecordSW1Button, HUNDRED_MS_DELAY + 2, EVERY_20_MS);
20 TTCOS_AddTask(PlayBackSW2Button, HUNDRED_MS_DELAY + 3, EVERY_20_MS);
21
22
23 // Use switches SW3 and SW4 to provide coarse adjustment of background beat tempo
24 // Display information on evaluation board's LEDs
25 TTCOS_AddTask(Down_Shift_SW3Button, HUNDRED_MS_DELAY + 4, EVERY_20_MS);
26 TTCOS_AddTask(UpShift_SW4Button, HUNDRED_MS_DELAY + 5, EVERY_20_MS);
27 TTCOS_AddTask(DisplayLEDShift, HUNDRED_MS_DELAY + 6, EVERY_20_MS);
28
29 // DSP tasks to automate the beat tempo in response to the Theremin music being played
30 // and linearize the light sensor reading
31 TTCOS_AddTask(DSPTasks, HUNDRED_MS_DELAY + 7, EVERY_10_MS);
32
33 // Activate scheduler timer interrupt service routine
34 TTCOS_Start(); // which calls TTCOS_Update() to update task's Run-Me-Now semaphore
35
36 while (1) { // Wait, in low power mode, for an interrupt
37 TTCOS_GoToSleep(); // The interrupt service routine calls TTCOS_Update()
38 // Run all the tasks in the system according
39 TTCOS_DispatchTasks(); // to whether their delays have expired
40 }
41
42 return 0; // Make compiler happy
43 }

10 CIRCUIT CELLAR® • www.circuitcellar.com

M
ay

 2
0
0
9
 –

 I
ss
ue

 2
2
6
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

input value would be updated every
20 µs. However, it could have been
argued that having this higher inter-
rupt rate meant that we were “wast-
ing battery power” as we were often
unnecessarily waking the processor
from its TTCOS_Sleep() low-power
mode.

In some ways, worrying about
power consumption seems superflu-
ous. After all, if we have to drive
current consuming audio amplifiers
using an external power supply, why
is there a need to run the processor
itself on batteries?

However, it is actually a good
design point to consider. Suppose we
want to run “Theremin music” as
part of a stand-alone hand-held game
application using head phones as
output. Ignoring other power con-
sumption issues, by using faster
interrupts in this situation, we
would be consuming more of the
battery capacity than is really neces-
sary to power the processor core.

In Listing 7, a screen dump of a
running Theremin musical instru-
ment, we solved this problem by
adding a RUN_ONCE task that switch-
es the system from using the inter-
nal timer interrupt to drive the
scheduler to using the external audio
(Line 9). However, that alone is
rather an unsafe design decision, as
we have swapped from using a high-
ly reliable internal interrupt for a
less reliable external interrupt. If
that external interrupt vanishes, the
whole system would hang!

In the current situation, having the
system lock up because the audio
interrupt dies is not a practical con-
cern. We need the audio chip to work
in order to play the Theremin music.
If this chip dies, we still have to pack
up our gig and go home, regardless of
whether the system is running (and
happily printing out error messages) or
has totally locked up!

However, this does bring up a valid
point. Just how do you handle error
conditions with a co-operative sched-
uler? This, as they used to say in the
cliff-hanger movies, will be covered in
the next exciting episode. There we
will detail data acquisition issues
using co-operative schedulers. I

Mike Smith (mike.smith@ucalgary.ca) has
been contributing to Circuit Cellar since
the 1980s. He is a professor in comput-
er engineering at the Schulich School of
Engineering, University of Calgary, Cana-
da. Mike’s main interests are developing
new biomedical engineering algorithms
and moving them onto multicore and
multiple-processor embedded systems in
a systematic and reliable fashion. He
recently became a convert to the applica-
tion of Agile Methodologies in the embed-
ded environment. Mention “test-driven
development” and his eyes light up. In
2008, Mike had his Analog Devices Uni-
versity Ambassadorship renewed for the
eighth straight year.

Lizie Dunling-Smith is a fourth-year
undergraduate student at the University
of Alberta, Canada. She will graduate in
2009 with a B.Sc. in engineering physics,
specializing in electrical engineering.

OURCES
ADSP-BF533 Blackfin processor
Analog Devices, Inc. | www.analog.com

TTSL230R Sensors
TAOS, Inc. | www.taosinc.com

SS

SUBSCRIBE or

RENEW TODAY!

If you’re seeing this issue in its PDF version and you’re not a Circuit Cellar subscriber,

you may be missing out on audio and video enhancements that are included with Circuit

Cellar’s flip book version of Digital Plus. For an example of an editorial video

enhancement, CLICK HERE for courtesy access. (URL links to Circuit Cellar’s flip book hosted by trusted source

at mygazines.net.)

By maintaining a Circuit Cellar Digital Plus subscription, you ensure that you’re among

the first to view Circuit Cellar magazine each month. And you’ll get all the benefits of

multimedia material in the flip book version of the magazine along with a PDF version for

your archives.

Always be among the first to have access to Circuit Cellar each month. And guarantee

that you’ll see it all. Renew or Subscribe to Digital Plus today! CLICK HERE for

subscription options.

Circuit Cellar, Inc. Subscription Service: Toll-Free (U.S.) 800.269.6301; 860.875.2199

http://www.mygazines.com/issue/268/8
http://www.mygazines.com/issue/268/8
www.circuitcellar.com/DP

